isl-0.16.1/0000775000175000017500000000000012645755215007405 500000000000000isl-0.16.1/isl_morph.c0000664000175000017500000005513412645737235011477 00000000000000/* * Copyright 2010-2011 INRIA Saclay * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_basic_set_get_ctx(morph->dom); } __isl_give isl_morph *isl_morph_alloc( __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran, __isl_take isl_mat *map, __isl_take isl_mat *inv) { isl_morph *morph; if (!dom || !ran || !map || !inv) goto error; morph = isl_alloc_type(dom->ctx, struct isl_morph); if (!morph) goto error; morph->ref = 1; morph->dom = dom; morph->ran = ran; morph->map = map; morph->inv = inv; return morph; error: isl_basic_set_free(dom); isl_basic_set_free(ran); isl_mat_free(map); isl_mat_free(inv); return NULL; } __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph) { if (!morph) return NULL; morph->ref++; return morph; } __isl_give isl_morph *isl_morph_dup(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_morph_alloc(isl_basic_set_copy(morph->dom), isl_basic_set_copy(morph->ran), isl_mat_copy(morph->map), isl_mat_copy(morph->inv)); } __isl_give isl_morph *isl_morph_cow(__isl_take isl_morph *morph) { if (!morph) return NULL; if (morph->ref == 1) return morph; morph->ref--; return isl_morph_dup(morph); } void isl_morph_free(__isl_take isl_morph *morph) { if (!morph) return; if (--morph->ref > 0) return; isl_basic_set_free(morph->dom); isl_basic_set_free(morph->ran); isl_mat_free(morph->map); isl_mat_free(morph->inv); free(morph); } /* Is "morph" an identity on the parameters? */ static int identity_on_parameters(__isl_keep isl_morph *morph) { int is_identity; unsigned nparam; isl_mat *sub; nparam = isl_morph_dom_dim(morph, isl_dim_param); if (nparam != isl_morph_ran_dim(morph, isl_dim_param)) return 0; if (nparam == 0) return 1; sub = isl_mat_sub_alloc(morph->map, 0, 1 + nparam, 0, 1 + nparam); is_identity = isl_mat_is_scaled_identity(sub); isl_mat_free(sub); return is_identity; } /* Return an affine expression of the variables of the range of "morph" * in terms of the parameters and the variables of the domain on "morph". * * In order for the space manipulations to make sense, we require * that the parameters are not modified by "morph". */ __isl_give isl_multi_aff *isl_morph_get_var_multi_aff( __isl_keep isl_morph *morph) { isl_space *dom, *ran, *space; isl_local_space *ls; isl_multi_aff *ma; unsigned nparam, nvar; int i; int is_identity; if (!morph) return NULL; is_identity = identity_on_parameters(morph); if (is_identity < 0) return NULL; if (!is_identity) isl_die(isl_morph_get_ctx(morph), isl_error_invalid, "cannot handle parameter compression", return NULL); dom = isl_morph_get_dom_space(morph); ls = isl_local_space_from_space(isl_space_copy(dom)); ran = isl_morph_get_ran_space(morph); space = isl_space_map_from_domain_and_range(dom, ran); ma = isl_multi_aff_zero(space); nparam = isl_multi_aff_dim(ma, isl_dim_param); nvar = isl_multi_aff_dim(ma, isl_dim_out); for (i = 0; i < nvar; ++i) { isl_val *val; isl_vec *v; isl_aff *aff; v = isl_mat_get_row(morph->map, 1 + nparam + i); v = isl_vec_insert_els(v, 0, 1); val = isl_mat_get_element_val(morph->map, 0, 0); v = isl_vec_set_element_val(v, 0, val); aff = isl_aff_alloc_vec(isl_local_space_copy(ls), v); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); return ma; } /* Return the domain space of "morph". */ __isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_basic_set_get_space(morph->dom); } __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph) { if (!morph) return NULL; return isl_space_copy(morph->ran->dim); } unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type) { if (!morph) return 0; return isl_basic_set_dim(morph->dom, type); } unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type) { if (!morph) return 0; return isl_basic_set_dim(morph->ran, type); } __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n) { unsigned dom_offset; if (n == 0) return morph; morph = isl_morph_cow(morph); if (!morph) return NULL; dom_offset = 1 + isl_space_offset(morph->dom->dim, type); morph->dom = isl_basic_set_remove_dims(morph->dom, type, first, n); morph->map = isl_mat_drop_cols(morph->map, dom_offset + first, n); morph->inv = isl_mat_drop_rows(morph->inv, dom_offset + first, n); if (morph->dom && morph->ran && morph->map && morph->inv) return morph; isl_morph_free(morph); return NULL; } __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n) { unsigned ran_offset; if (n == 0) return morph; morph = isl_morph_cow(morph); if (!morph) return NULL; ran_offset = 1 + isl_space_offset(morph->ran->dim, type); morph->ran = isl_basic_set_remove_dims(morph->ran, type, first, n); morph->map = isl_mat_drop_rows(morph->map, ran_offset + first, n); morph->inv = isl_mat_drop_cols(morph->inv, ran_offset + first, n); if (morph->dom && morph->ran && morph->map && morph->inv) return morph; isl_morph_free(morph); return NULL; } /* Project domain of morph onto its parameter domain. */ __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph) { unsigned n; morph = isl_morph_cow(morph); if (!morph) return NULL; n = isl_basic_set_dim(morph->dom, isl_dim_set); morph = isl_morph_remove_dom_dims(morph, isl_dim_set, 0, n); if (!morph) return NULL; morph->dom = isl_basic_set_params(morph->dom); if (morph->dom) return morph; isl_morph_free(morph); return NULL; } /* Project range of morph onto its parameter domain. */ __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph) { unsigned n; morph = isl_morph_cow(morph); if (!morph) return NULL; n = isl_basic_set_dim(morph->ran, isl_dim_set); morph = isl_morph_remove_ran_dims(morph, isl_dim_set, 0, n); if (!morph) return NULL; morph->ran = isl_basic_set_params(morph->ran); if (morph->ran) return morph; isl_morph_free(morph); return NULL; } void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out) { if (!morph) return; isl_basic_set_dump(morph->dom); isl_basic_set_dump(morph->ran); isl_mat_print_internal(morph->map, out, 4); isl_mat_print_internal(morph->inv, out, 4); } void isl_morph_dump(__isl_take isl_morph *morph) { isl_morph_print_internal(morph, stderr); } __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *universe; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); universe = isl_basic_set_universe(isl_space_copy(bset->dim)); return isl_morph_alloc(universe, isl_basic_set_copy(universe), id, isl_mat_copy(id)); } /* Create a(n identity) morphism between empty sets of the same dimension * a "bset". */ __isl_give isl_morph *isl_morph_empty(__isl_keep isl_basic_set *bset) { isl_mat *id; isl_basic_set *empty; unsigned total; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); id = isl_mat_identity(bset->ctx, 1 + total); empty = isl_basic_set_empty(isl_space_copy(bset->dim)); return isl_morph_alloc(empty, isl_basic_set_copy(empty), id, isl_mat_copy(id)); } /* Given a matrix that maps a (possibly) parametric domain to * a parametric domain, add in rows that map the "nparam" parameters onto * themselves. */ static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat, unsigned nparam) { int i; if (nparam == 0) return mat; if (!mat) return NULL; mat = isl_mat_insert_rows(mat, 1, nparam); if (!mat) return NULL; for (i = 0; i < nparam; ++i) { isl_seq_clr(mat->row[1 + i], mat->n_col); isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]); } return mat; } /* Construct a basic set described by the "n" equalities of "bset" starting * at "first". */ static __isl_give isl_basic_set *copy_equalities(__isl_keep isl_basic_set *bset, unsigned first, unsigned n) { int i, k; isl_basic_set *eq; unsigned total; isl_assert(bset->ctx, bset->n_div == 0, return NULL); total = isl_basic_set_total_dim(bset); eq = isl_basic_set_alloc_space(isl_space_copy(bset->dim), 0, n, 0); if (!eq) return NULL; for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_equality(eq); if (k < 0) goto error; isl_seq_cpy(eq->eq[k], bset->eq[first + i], 1 + total); } return eq; error: isl_basic_set_free(eq); return NULL; } /* Given a basic set, exploit the equalties in the basic set to construct * a morphishm that maps the basic set to a lower-dimensional space. * Specifically, the morphism reduces the number of dimensions of type "type". * * This function is a slight generalization of isl_mat_variable_compression * in that it allows the input to be parametric and that it allows for the * compression of either parameters or set variables. * * We first select the equalities of interest, that is those that involve * variables of type "type" and no later variables. * Denote those equalities as * * -C(p) + M x = 0 * * where C(p) depends on the parameters if type == isl_dim_set and * is a constant if type == isl_dim_param. * * First compute the (left) Hermite normal form of M, * * M [U1 U2] = M U = H = [H1 0] * or * M = H Q = [H1 0] [Q1] * [Q2] * * with U, Q unimodular, Q = U^{-1} (and H lower triangular). * Define the transformed variables as * * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x * [ x2' ] [Q2] * * The equalities then become * * -C(p) + H1 x1' = 0 or x1' = H1^{-1} C(p) = C'(p) * * If the denominator of the constant term does not divide the * the common denominator of the parametric terms, then every * integer point is mapped to a non-integer point and then the original set has no * integer solutions (since the x' are a unimodular transformation * of the x). In this case, an empty morphism is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} C(p) + U2 x2' * * The inverse transformation is simply * * x2' = Q2 x * * Both matrices are extended to map the full original space to the full * compressed space. */ __isl_give isl_morph *isl_basic_set_variable_compression( __isl_keep isl_basic_set *bset, enum isl_dim_type type) { unsigned otype; unsigned ntype; unsigned orest; unsigned nrest; int f_eq, n_eq; isl_space *dim; isl_mat *H, *U, *Q, *C = NULL, *H1, *U1, *U2; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); isl_assert(bset->ctx, bset->n_div == 0, return NULL); otype = 1 + isl_space_offset(bset->dim, type); ntype = isl_basic_set_dim(bset, type); orest = otype + ntype; nrest = isl_basic_set_total_dim(bset) - (orest - 1); for (f_eq = 0; f_eq < bset->n_eq; ++f_eq) if (isl_seq_first_non_zero(bset->eq[f_eq] + orest, nrest) == -1) break; for (n_eq = 0; f_eq + n_eq < bset->n_eq; ++n_eq) if (isl_seq_first_non_zero(bset->eq[f_eq + n_eq] + otype, ntype) == -1) break; if (n_eq == 0) return isl_morph_identity(bset); H = isl_mat_sub_alloc6(bset->ctx, bset->eq, f_eq, n_eq, otype, ntype); H = isl_mat_left_hermite(H, 0, &U, &Q); if (!H || !U || !Q) goto error; Q = isl_mat_drop_rows(Q, 0, n_eq); Q = isl_mat_diagonal(isl_mat_identity(bset->ctx, otype), Q); Q = isl_mat_diagonal(Q, isl_mat_identity(bset->ctx, nrest)); C = isl_mat_alloc(bset->ctx, 1 + n_eq, otype); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_seq_clr(C->row[0] + 1, otype - 1); isl_mat_sub_neg(C->ctx, C->row + 1, bset->eq + f_eq, n_eq, 0, 0, otype); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); if (!C) goto error; isl_mat_free(H); if (!isl_int_is_one(C->row[0][0])) { int i; isl_int g; isl_int_init(g); for (i = 0; i < n_eq; ++i) { isl_seq_gcd(C->row[1 + i] + 1, otype - 1, &g); isl_int_gcd(g, g, C->row[0][0]); if (!isl_int_is_divisible_by(C->row[1 + i][0], g)) break; } isl_int_clear(g); if (i < n_eq) { isl_mat_free(C); isl_mat_free(U); isl_mat_free(Q); return isl_morph_empty(bset); } C = isl_mat_normalize(C); } U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, n_eq); U1 = isl_mat_lin_to_aff(U1); U2 = isl_mat_sub_alloc(U, 0, U->n_row, n_eq, U->n_row - n_eq); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); C = isl_mat_product(U1, C); C = isl_mat_aff_direct_sum(C, U2); C = insert_parameter_rows(C, otype - 1); C = isl_mat_diagonal(C, isl_mat_identity(bset->ctx, nrest)); dim = isl_space_copy(bset->dim); dim = isl_space_drop_dims(dim, type, 0, ntype); dim = isl_space_add_dims(dim, type, ntype - n_eq); ran = isl_basic_set_universe(dim); dom = copy_equalities(bset, f_eq, n_eq); return isl_morph_alloc(dom, ran, Q, C); error: isl_mat_free(C); isl_mat_free(H); isl_mat_free(U); isl_mat_free(Q); return NULL; } /* Construct a parameter compression for "bset". * We basically just call isl_mat_parameter_compression with the right input * and then extend the resulting matrix to include the variables. * * The implementation assumes that "bset" does not have any equalities * that only involve the parameters and that isl_basic_set_gauss has * been applied to "bset". * * Let the equalities be given as * * B(p) + A x = 0. * * We use isl_mat_parameter_compression_ext to compute the compression * * p = T p'. */ __isl_give isl_morph *isl_basic_set_parameter_compression( __isl_keep isl_basic_set *bset) { unsigned nparam; unsigned nvar; unsigned n_div; int n_eq; isl_mat *H, *B; isl_mat *map, *inv; isl_basic_set *dom, *ran; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_morph_empty(bset); if (bset->n_eq == 0) return isl_morph_identity(bset); n_eq = bset->n_eq; nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); n_div = isl_basic_set_dim(bset, isl_dim_div); if (isl_seq_first_non_zero(bset->eq[bset->n_eq - 1] + 1 + nparam, nvar + n_div) == -1) isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid, "input not allowed to have parameter equalities", return NULL); if (n_eq > nvar + n_div) isl_die(isl_basic_set_get_ctx(bset), isl_error_invalid, "input not gaussed", return NULL); B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 0, 1 + nparam); H = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, n_eq, 1 + nparam, nvar + n_div); inv = isl_mat_parameter_compression_ext(B, H); inv = isl_mat_diagonal(inv, isl_mat_identity(bset->ctx, nvar)); map = isl_mat_right_inverse(isl_mat_copy(inv)); dom = isl_basic_set_universe(isl_space_copy(bset->dim)); ran = isl_basic_set_universe(isl_space_copy(bset->dim)); return isl_morph_alloc(dom, ran, map, inv); } /* Add stride constraints to "bset" based on the inverse mapping * that was plugged in. In particular, if morph maps x' to x, * the the constraints of the original input * * A x' + b >= 0 * * have been rewritten to * * A inv x + b >= 0 * * However, this substitution may loose information on the integrality of x', * so we need to impose that * * inv x * * is integral. If inv = B/d, this means that we need to impose that * * B x = 0 mod d * * or * * exists alpha in Z^m: B x = d alpha * * This function is similar to add_strides in isl_affine_hull.c */ static __isl_give isl_basic_set *add_strides(__isl_take isl_basic_set *bset, __isl_keep isl_morph *morph) { int i, div, k; isl_int gcd; if (isl_int_is_one(morph->inv->row[0][0])) return bset; isl_int_init(gcd); for (i = 0; 1 + i < morph->inv->n_row; ++i) { isl_seq_gcd(morph->inv->row[1 + i], morph->inv->n_col, &gcd); if (isl_int_is_divisible_by(gcd, morph->inv->row[0][0])) continue; div = isl_basic_set_alloc_div(bset); if (div < 0) goto error; isl_int_set_si(bset->div[div][0], 0); k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], morph->inv->row[1 + i], morph->inv->n_col); isl_seq_clr(bset->eq[k] + morph->inv->n_col, bset->n_div); isl_int_set(bset->eq[k][morph->inv->n_col + div], morph->inv->row[0][0]); } isl_int_clear(gcd); return bset; error: isl_int_clear(gcd); isl_basic_set_free(bset); return NULL; } /* Apply the morphism to the basic set. * We basically just compute the preimage of "bset" under the inverse mapping * in morph, add in stride constraints and intersect with the range * of the morphism. */ __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph, __isl_take isl_basic_set *bset) { isl_basic_set *res = NULL; isl_mat *mat = NULL; int i, k; int max_stride; if (!morph || !bset) goto error; isl_assert(bset->ctx, isl_space_is_equal(bset->dim, morph->dom->dim), goto error); max_stride = morph->inv->n_row - 1; if (isl_int_is_one(morph->inv->row[0][0])) max_stride = 0; res = isl_basic_set_alloc_space(isl_space_copy(morph->ran->dim), bset->n_div + max_stride, bset->n_eq + max_stride, bset->n_ineq); for (i = 0; i < bset->n_div; ++i) if (isl_basic_set_alloc_div(res) < 0) goto error; mat = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_eq; ++i) { k = isl_basic_set_alloc_equality(res); if (k < 0) goto error; isl_seq_cpy(res->eq[k], mat->row[i], mat->n_col); isl_seq_scale(res->eq[k] + mat->n_col, bset->eq[i] + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); mat = isl_mat_sub_alloc6(bset->ctx, bset->ineq, 0, bset->n_ineq, 0, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(res); if (k < 0) goto error; isl_seq_cpy(res->ineq[k], mat->row[i], mat->n_col); isl_seq_scale(res->ineq[k] + mat->n_col, bset->ineq[i] + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); mat = isl_mat_sub_alloc6(bset->ctx, bset->div, 0, bset->n_div, 1, morph->inv->n_row); mat = isl_mat_product(mat, isl_mat_copy(morph->inv)); if (!mat) goto error; for (i = 0; i < bset->n_div; ++i) { isl_int_mul(res->div[i][0], morph->inv->row[0][0], bset->div[i][0]); isl_seq_cpy(res->div[i] + 1, mat->row[i], mat->n_col); isl_seq_scale(res->div[i] + 1 + mat->n_col, bset->div[i] + 1 + mat->n_col, morph->inv->row[0][0], bset->n_div); } isl_mat_free(mat); res = add_strides(res, morph); if (isl_basic_set_is_rational(bset)) res = isl_basic_set_set_rational(res); res = isl_basic_set_simplify(res); res = isl_basic_set_finalize(res); res = isl_basic_set_intersect(res, isl_basic_set_copy(morph->ran)); isl_morph_free(morph); isl_basic_set_free(bset); return res; error: isl_mat_free(mat); isl_morph_free(morph); isl_basic_set_free(bset); isl_basic_set_free(res); return NULL; } /* Apply the morphism to the set. */ __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph, __isl_take isl_set *set) { int i; if (!morph || !set) goto error; isl_assert(set->ctx, isl_space_is_equal(set->dim, morph->dom->dim), goto error); set = isl_set_cow(set); if (!set) goto error; isl_space_free(set->dim); set->dim = isl_space_copy(morph->ran->dim); if (!set->dim) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_morph_basic_set(isl_morph_copy(morph), set->p[i]); if (!set->p[i]) goto error; } isl_morph_free(morph); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); isl_morph_free(morph); return NULL; } /* Construct a morphism that first does morph2 and then morph1. */ __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1, __isl_take isl_morph *morph2) { isl_mat *map, *inv; isl_basic_set *dom, *ran; if (!morph1 || !morph2) goto error; map = isl_mat_product(isl_mat_copy(morph1->map), isl_mat_copy(morph2->map)); inv = isl_mat_product(isl_mat_copy(morph2->inv), isl_mat_copy(morph1->inv)); dom = isl_morph_basic_set(isl_morph_inverse(isl_morph_copy(morph2)), isl_basic_set_copy(morph1->dom)); dom = isl_basic_set_intersect(dom, isl_basic_set_copy(morph2->dom)); ran = isl_morph_basic_set(isl_morph_copy(morph1), isl_basic_set_copy(morph2->ran)); ran = isl_basic_set_intersect(ran, isl_basic_set_copy(morph1->ran)); isl_morph_free(morph1); isl_morph_free(morph2); return isl_morph_alloc(dom, ran, map, inv); error: isl_morph_free(morph1); isl_morph_free(morph2); return NULL; } __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph) { isl_basic_set *bset; isl_mat *mat; morph = isl_morph_cow(morph); if (!morph) return NULL; bset = morph->dom; morph->dom = morph->ran; morph->ran = bset; mat = morph->map; morph->map = morph->inv; morph->inv = mat; return morph; } /* We detect all the equalities first to avoid implicit equalties * being discovered during the computations. In particular, * the compression on the variables could expose additional stride * constraints on the parameters. This would result in existentially * quantified variables after applying the resulting morph, which * in turn could break invariants of the calling functions. */ __isl_give isl_morph *isl_basic_set_full_compression( __isl_keep isl_basic_set *bset) { isl_morph *morph, *morph2; bset = isl_basic_set_copy(bset); bset = isl_basic_set_detect_equalities(bset); morph = isl_basic_set_variable_compression(bset, isl_dim_param); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); morph2 = isl_basic_set_parameter_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph2), bset); morph = isl_morph_compose(morph2, morph); morph2 = isl_basic_set_variable_compression(bset, isl_dim_set); isl_basic_set_free(bset); morph = isl_morph_compose(morph2, morph); return morph; } __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph, __isl_take isl_vec *vec) { if (!morph) goto error; vec = isl_mat_vec_product(isl_mat_copy(morph->map), vec); isl_morph_free(morph); return vec; error: isl_morph_free(morph); isl_vec_free(vec); return NULL; } isl-0.16.1/isl_scan.h0000664000175000017500000000115112645737061011266 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_SCAN_H #define ISL_SCAN_H #include #include struct isl_scan_callback { isl_stat (*add)(struct isl_scan_callback *cb, __isl_take isl_vec *sample); }; int isl_basic_set_scan(struct isl_basic_set *bset, struct isl_scan_callback *callback); int isl_set_scan(__isl_take isl_set *set, struct isl_scan_callback *callback); #endif isl-0.16.1/mp_get_memory_functions.c0000644000175000017500000000056511242575471014424 00000000000000#include void mp_get_memory_functions( void *(**alloc_func_ptr) (size_t), void *(**realloc_func_ptr) (void *, size_t, size_t), void (**free_func_ptr) (void *, size_t)) { if (alloc_func_ptr) *alloc_func_ptr = __gmp_allocate_func; if (realloc_func_ptr) *realloc_func_ptr = __gmp_reallocate_func; if (free_func_ptr) *free_func_ptr = __gmp_free_func; } isl-0.16.1/isl_multi_gist.c0000664000175000017500000000150712645737061012522 00000000000000/* * Copyright 2011 Sven Verdoolaege * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include /* Compute the gist of "multi" with respect to the domain constraints * of "context". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),gist)(__isl_take MULTI(BASE) *multi, __isl_take DOM *context) { return FN(FN(MULTI(BASE),apply),DOMBASE)(multi, context, &FN(EL,gist)); } /* Compute the gist of "multi" with respect to the parameter constraints * of "context". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),gist_params)( __isl_take MULTI(BASE) *multi, __isl_take isl_set *context) { return FN(MULTI(BASE),apply_set)(multi, context, &FN(EL,gist_params)); } isl-0.16.1/isl_polynomial.c0000664000175000017500000032064612645737061012535 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return 0; case isl_dim_in: return dim->nparam; case isl_dim_out: return dim->nparam + dim->n_in; default: return 0; } } int isl_upoly_is_cst(__isl_keep struct isl_upoly *up) { if (!up) return -1; return up->var < 0; } __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up) { if (!up) return NULL; isl_assert(up->ctx, up->var < 0, return NULL); return (struct isl_upoly_cst *)up; } __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up) { if (!up) return NULL; isl_assert(up->ctx, up->var >= 0, return NULL); return (struct isl_upoly_rec *)up; } isl_bool isl_upoly_is_equal(__isl_keep struct isl_upoly *up1, __isl_keep struct isl_upoly *up2) { int i; struct isl_upoly_rec *rec1, *rec2; if (!up1 || !up2) return isl_bool_error; if (up1 == up2) return isl_bool_true; if (up1->var != up2->var) return isl_bool_false; if (isl_upoly_is_cst(up1)) { struct isl_upoly_cst *cst1, *cst2; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); if (!cst1 || !cst2) return isl_bool_error; return isl_int_eq(cst1->n, cst2->n) && isl_int_eq(cst1->d, cst2->d); } rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) return isl_bool_error; if (rec1->n != rec2->n) return isl_bool_false; for (i = 0; i < rec1->n; ++i) { isl_bool eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]); if (eq < 0 || !eq) return eq; } return isl_bool_true; } int isl_upoly_is_zero(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d); } int isl_upoly_sgn(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return 0; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return 0; return isl_int_sgn(cst->n); } int isl_upoly_is_nan(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_infty(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d); } int isl_upoly_is_one(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d); } int isl_upoly_is_negone(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return -1; if (!isl_upoly_is_cst(up)) return 0; cst = isl_upoly_as_cst(up); if (!cst) return -1; return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d); } __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_alloc_type(ctx, struct isl_upoly_cst); if (!cst) return NULL; cst->up.ref = 1; cst->up.ctx = ctx; isl_ctx_ref(ctx); cst->up.var = -1; isl_int_init(cst->n); isl_int_init(cst->d); return cst; } __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 0); isl_int_set_si(cst->d, 1); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 1); isl_int_set_si(cst->d, 1); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 1); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, -1); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set_si(cst->n, 0); isl_int_set_si(cst->d, 0); return &cst->up; } __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx, isl_int n, isl_int d) { struct isl_upoly_cst *cst; cst = isl_upoly_cst_alloc(ctx); if (!cst) return NULL; isl_int_set(cst->n, n); isl_int_set(cst->d, d); return &cst->up; } __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx, int var, int size) { struct isl_upoly_rec *rec; isl_assert(ctx, var >= 0, return NULL); isl_assert(ctx, size >= 0, return NULL); rec = isl_calloc(ctx, struct isl_upoly_rec, sizeof(struct isl_upoly_rec) + size * sizeof(struct isl_upoly *)); if (!rec) return NULL; rec->up.ref = 1; rec->up.ctx = ctx; isl_ctx_ref(ctx); rec->up.var = var; rec->n = 0; rec->size = size; return rec; } __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim) { qp = isl_qpolynomial_cow(qp); if (!qp || !dim) goto error; isl_space_free(qp->dim); qp->dim = dim; return qp; error: isl_qpolynomial_free(qp); isl_space_free(dim); return NULL; } /* Reset the space of "qp". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both. */ __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, __isl_take isl_space *domain) { isl_space_free(space); return isl_qpolynomial_reset_domain_space(qp, domain); } isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp) { return qp ? qp->dim->ctx : NULL; } __isl_give isl_space *isl_qpolynomial_get_domain_space( __isl_keep isl_qpolynomial *qp) { return qp ? isl_space_copy(qp->dim) : NULL; } __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp) { isl_space *space; if (!qp) return NULL; space = isl_space_copy(qp->dim); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); return space; } /* Externally, an isl_qpolynomial has a map space, but internally, the * ls field corresponds to the domain of that space. */ unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type) { if (!qp) return 0; if (type == isl_dim_out) return 1; if (type == isl_dim_in) type = isl_dim_set; return isl_space_dim(qp->dim, type); } isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_zero(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_one(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_nan(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_infty(qp->upoly) : isl_bool_error; } isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_is_neginfty(qp->upoly) : isl_bool_error; } int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp) { return qp ? isl_upoly_sgn(qp->upoly) : 0; } static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst) { isl_int_clear(cst->n); isl_int_clear(cst->d); } static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec) { int i; for (i = 0; i < rec->n; ++i) isl_upoly_free(rec->p[i]); } __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up) { if (!up) return NULL; up->ref++; return up; } __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; struct isl_upoly_cst *dup; cst = isl_upoly_as_cst(up); if (!cst) return NULL; dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx)); if (!dup) return NULL; isl_int_set(dup->n, cst->n); isl_int_set(dup->d, cst->d); return &dup->up; } __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up) { int i; struct isl_upoly_rec *rec; struct isl_upoly_rec *dup; rec = isl_upoly_as_rec(up); if (!rec) return NULL; dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n); if (!dup) return NULL; for (i = 0; i < rec->n; ++i) { dup->p[i] = isl_upoly_copy(rec->p[i]); if (!dup->p[i]) goto error; dup->n++; } return &dup->up; error: isl_upoly_free(&dup->up); return NULL; } __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up) { if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_dup_cst(up); else return isl_upoly_dup_rec(up); } __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up) { if (!up) return NULL; if (up->ref == 1) return up; up->ref--; return isl_upoly_dup(up); } void isl_upoly_free(__isl_take struct isl_upoly *up) { if (!up) return; if (--up->ref > 0) return; if (up->var < 0) upoly_free_cst((struct isl_upoly_cst *)up); else upoly_free_rec((struct isl_upoly_rec *)up); isl_ctx_deref(up->ctx); free(up); } static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst) { isl_int gcd; isl_int_init(gcd); isl_int_gcd(gcd, cst->n, cst->d); if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) { isl_int_divexact(cst->n, cst->n, gcd); isl_int_divexact(cst->d, cst->d, gcd); } isl_int_clear(gcd); } __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_cst *cst1; struct isl_upoly_cst *cst2; up1 = isl_upoly_cow(up1); if (!up1 || !up2) goto error; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); if (isl_int_eq(cst1->d, cst2->d)) isl_int_add(cst1->n, cst1->n, cst2->n); else { isl_int_mul(cst1->n, cst1->n, cst2->d); isl_int_addmul(cst1->n, cst2->n, cst1->d); isl_int_mul(cst1->d, cst1->d, cst2->d); } isl_upoly_cst_reduce(cst1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } static __isl_give struct isl_upoly *replace_by_zero( __isl_take struct isl_upoly *up) { struct isl_ctx *ctx; if (!up) return NULL; ctx = up->ctx; isl_upoly_free(up); return isl_upoly_zero(ctx); } static __isl_give struct isl_upoly *replace_by_constant_term( __isl_take struct isl_upoly *up) { struct isl_upoly_rec *rec; struct isl_upoly *cst; if (!up) return NULL; rec = isl_upoly_as_rec(up); if (!rec) goto error; cst = isl_upoly_copy(rec->p[0]); isl_upoly_free(up); return cst; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { int i; struct isl_upoly_rec *rec1, *rec2; if (!up1 || !up2) goto error; if (isl_upoly_is_nan(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_nan(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up1)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up2)) { isl_upoly_free(up2); return up1; } if (up1->var < up2->var) return isl_upoly_sum(up2, up1); if (up2->var < up1->var) { struct isl_upoly_rec *rec; if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { isl_upoly_free(up1); return up2; } up1 = isl_upoly_cow(up1); rec = isl_upoly_as_rec(up1); if (!rec) goto error; rec->p[0] = isl_upoly_sum(rec->p[0], up2); if (rec->n == 1) up1 = replace_by_constant_term(up1); return up1; } if (isl_upoly_is_cst(up1)) return isl_upoly_sum_cst(up1, up2); rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) goto error; if (rec1->n < rec2->n) return isl_upoly_sum(up2, up1); up1 = isl_upoly_cow(up1); rec1 = isl_upoly_as_rec(up1); if (!rec1) goto error; for (i = rec2->n - 1; i >= 0; --i) { rec1->p[i] = isl_upoly_sum(rec1->p[i], isl_upoly_copy(rec2->p[i])); if (!rec1->p[i]) goto error; if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) { isl_upoly_free(rec1->p[i]); rec1->n--; } } if (rec1->n == 0) up1 = replace_by_zero(up1); else if (rec1->n == 1) up1 = replace_by_constant_term(up1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_cst *cst; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_addmul(cst->n, cst->d, v); return up; } __isl_give struct isl_upoly *isl_upoly_add_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_add_isl_int(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v); if (!rec->p[0]) goto error; return up; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int( __isl_take struct isl_upoly *up, isl_int v) { struct isl_upoly_cst *cst; if (isl_upoly_is_zero(up)) return up; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_mul(cst->n, cst->n, v); return up; } __isl_give struct isl_upoly *isl_upoly_mul_isl_int( __isl_take struct isl_upoly *up, isl_int v) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_mul_isl_int(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } /* Multiply the constant polynomial "up" by "v". */ static __isl_give struct isl_upoly *isl_upoly_cst_scale_val( __isl_take struct isl_upoly *up, __isl_keep isl_val *v) { struct isl_upoly_cst *cst; if (isl_upoly_is_zero(up)) return up; up = isl_upoly_cow(up); if (!up) return NULL; cst = isl_upoly_as_cst(up); isl_int_mul(cst->n, cst->n, v->n); isl_int_mul(cst->d, cst->d, v->d); isl_upoly_cst_reduce(cst); return up; } /* Multiply the polynomial "up" by "v". */ static __isl_give struct isl_upoly *isl_upoly_scale_val( __isl_take struct isl_upoly *up, __isl_keep isl_val *v) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up)) return isl_upoly_cst_scale_val(up, v); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_scale_val(rec->p[i], v); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_cst *cst1; struct isl_upoly_cst *cst2; up1 = isl_upoly_cow(up1); if (!up1 || !up2) goto error; cst1 = isl_upoly_as_cst(up1); cst2 = isl_upoly_as_cst(up2); isl_int_mul(cst1->n, cst1->n, cst2->n); isl_int_mul(cst1->d, cst1->d, cst2->d); isl_upoly_cst_reduce(cst1); isl_upoly_free(up2); return up1; error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { struct isl_upoly_rec *rec1; struct isl_upoly_rec *rec2; struct isl_upoly_rec *res = NULL; int i, j; int size; rec1 = isl_upoly_as_rec(up1); rec2 = isl_upoly_as_rec(up2); if (!rec1 || !rec2) goto error; size = rec1->n + rec2->n - 1; res = isl_upoly_alloc_rec(up1->ctx, up1->var, size); if (!res) goto error; for (i = 0; i < rec1->n; ++i) { res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]), isl_upoly_copy(rec1->p[i])); if (!res->p[i]) goto error; res->n++; } for (; i < size; ++i) { res->p[i] = isl_upoly_zero(up1->ctx); if (!res->p[i]) goto error; res->n++; } for (i = 0; i < rec1->n; ++i) { for (j = 1; j < rec2->n; ++j) { struct isl_upoly *up; up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]), isl_upoly_copy(rec1->p[i])); res->p[i + j] = isl_upoly_sum(res->p[i + j], up); if (!res->p[i + j]) goto error; } } isl_upoly_free(up1); isl_upoly_free(up2); return &res->up; error: isl_upoly_free(up1); isl_upoly_free(up2); isl_upoly_free(&res->up); return NULL; } __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2) { if (!up1 || !up2) goto error; if (isl_upoly_is_nan(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_nan(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_zero(up1)) { isl_upoly_free(up2); return up1; } if (isl_upoly_is_zero(up2)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_one(up1)) { isl_upoly_free(up1); return up2; } if (isl_upoly_is_one(up2)) { isl_upoly_free(up2); return up1; } if (up1->var < up2->var) return isl_upoly_mul(up2, up1); if (up2->var < up1->var) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) { isl_ctx *ctx = up1->ctx; isl_upoly_free(up1); isl_upoly_free(up2); return isl_upoly_nan(ctx); } up1 = isl_upoly_cow(up1); rec = isl_upoly_as_rec(up1); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_mul(rec->p[i], isl_upoly_copy(up2)); if (!rec->p[i]) goto error; } isl_upoly_free(up2); return up1; } if (isl_upoly_is_cst(up1)) return isl_upoly_mul_cst(up1, up2); return isl_upoly_mul_rec(up1, up2); error: isl_upoly_free(up1); isl_upoly_free(up2); return NULL; } __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up, unsigned power) { struct isl_upoly *res; if (!up) return NULL; if (power == 1) return up; if (power % 2) res = isl_upoly_copy(up); else res = isl_upoly_one(up->ctx); while (power >>= 1) { up = isl_upoly_mul(up, isl_upoly_copy(up)); if (power % 2) res = isl_upoly_mul(res, isl_upoly_copy(up)); } isl_upoly_free(up); return res; } __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim, unsigned n_div, __isl_take struct isl_upoly *up) { struct isl_qpolynomial *qp = NULL; unsigned total; if (!dim || !up) goto error; if (!isl_space_is_set(dim)) isl_die(isl_space_get_ctx(dim), isl_error_invalid, "domain of polynomial should be a set", goto error); total = isl_space_dim(dim, isl_dim_all); qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial); if (!qp) goto error; qp->ref = 1; qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div); if (!qp->div) goto error; qp->dim = dim; qp->upoly = up; return qp; error: isl_space_free(dim); isl_upoly_free(up); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp) { if (!qp) return NULL; qp->ref++; return qp; } __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp) { struct isl_qpolynomial *dup; if (!qp) return NULL; dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, isl_upoly_copy(qp->upoly)); if (!dup) return NULL; isl_mat_free(dup->div); dup->div = isl_mat_copy(qp->div); if (!dup->div) goto error; return dup; error: isl_qpolynomial_free(dup); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp) { if (!qp) return NULL; if (qp->ref == 1) return qp; qp->ref--; return isl_qpolynomial_dup(qp); } __isl_null isl_qpolynomial *isl_qpolynomial_free( __isl_take isl_qpolynomial *qp) { if (!qp) return NULL; if (--qp->ref > 0) return NULL; isl_space_free(qp->dim); isl_mat_free(qp->div); isl_upoly_free(qp->upoly); free(qp); return NULL; } __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power) { int i; struct isl_upoly_rec *rec; struct isl_upoly_cst *cst; rec = isl_upoly_alloc_rec(ctx, pos, 1 + power); if (!rec) return NULL; for (i = 0; i < 1 + power; ++i) { rec->p[i] = isl_upoly_zero(ctx); if (!rec->p[i]) goto error; rec->n++; } cst = isl_upoly_as_cst(rec->p[power]); isl_int_set_si(cst->n, 1); return &rec->up; error: isl_upoly_free(&rec->up); return NULL; } /* r array maps original positions to new positions. */ static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up, int *r) { int i; struct isl_upoly_rec *rec; struct isl_upoly *base; struct isl_upoly *res; if (isl_upoly_is_cst(up)) return up; rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); base = isl_upoly_var_pow(up->ctx, r[up->var], 1); res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r); for (i = rec->n - 2; i >= 0; --i) { res = isl_upoly_mul(res, isl_upoly_copy(base)); res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r)); } isl_upoly_free(base); isl_upoly_free(up); return res; error: isl_upoly_free(up); return NULL; } static int compatible_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2) { int n_row, n_col; int equal; isl_assert(div1->ctx, div1->n_row >= div2->n_row && div1->n_col >= div2->n_col, return -1); if (div1->n_row == div2->n_row) return isl_mat_is_equal(div1, div2); n_row = div1->n_row; n_col = div1->n_col; div1->n_row = div2->n_row; div1->n_col = div2->n_col; equal = isl_mat_is_equal(div1, div2); div1->n_row = n_row; div1->n_col = n_col; return equal; } static int cmp_row(__isl_keep isl_mat *div, int i, int j) { int li, lj; li = isl_seq_last_non_zero(div->row[i], div->n_col); lj = isl_seq_last_non_zero(div->row[j], div->n_col); if (li != lj) return li - lj; return isl_seq_cmp(div->row[i], div->row[j], div->n_col); } struct isl_div_sort_info { isl_mat *div; int row; }; static int div_sort_cmp(const void *p1, const void *p2) { const struct isl_div_sort_info *i1, *i2; i1 = (const struct isl_div_sort_info *) p1; i2 = (const struct isl_div_sort_info *) p2; return cmp_row(i1->div, i1->row, i2->row); } /* Sort divs and remove duplicates. */ static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp) { int i; int skip; int len; struct isl_div_sort_info *array = NULL; int *pos = NULL, *at = NULL; int *reordering = NULL; unsigned div_pos; if (!qp) return NULL; if (qp->div->n_row <= 1) return qp; div_pos = isl_space_dim(qp->dim, isl_dim_all); array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info, qp->div->n_row); pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); len = qp->div->n_col - 2; reordering = isl_alloc_array(qp->div->ctx, int, len); if (!array || !pos || !at || !reordering) goto error; for (i = 0; i < qp->div->n_row; ++i) { array[i].div = qp->div; array[i].row = i; pos[i] = i; at[i] = i; } qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info), div_sort_cmp); for (i = 0; i < div_pos; ++i) reordering[i] = i; for (i = 0; i < qp->div->n_row; ++i) { if (pos[array[i].row] == i) continue; qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]); pos[at[i]] = pos[array[i].row]; at[pos[array[i].row]] = at[i]; at[i] = array[i].row; pos[array[i].row] = i; } skip = 0; for (i = 0; i < len - div_pos; ++i) { if (i > 0 && isl_seq_eq(qp->div->row[i - skip - 1], qp->div->row[i - skip], qp->div->n_col)) { qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1, 2 + div_pos + i - skip); qp->div = isl_mat_drop_cols(qp->div, 2 + div_pos + i - skip, 1); skip++; } reordering[div_pos + array[i].row] = div_pos + i - skip; } qp->upoly = reorder(qp->upoly, reordering); if (!qp->upoly || !qp->div) goto error; free(at); free(pos); free(array); free(reordering); return qp; error: free(at); free(pos); free(array); free(reordering); isl_qpolynomial_free(qp); return NULL; } static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up, int *exp, int first) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_cst(up)) return up; if (up->var < first) return up; if (exp[up->var - first] == up->var - first) return up; up = isl_upoly_cow(up); if (!up) goto error; up->var = exp[up->var - first] + first; rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = expand(rec->p[i], exp, first); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } static __isl_give isl_qpolynomial *with_merged_divs( __isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2), __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { int *exp1 = NULL; int *exp2 = NULL; isl_mat *div = NULL; int n_div1, n_div2; qp1 = isl_qpolynomial_cow(qp1); qp2 = isl_qpolynomial_cow(qp2); if (!qp1 || !qp2) goto error; isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row && qp1->div->n_col >= qp2->div->n_col, goto error); n_div1 = qp1->div->n_row; n_div2 = qp2->div->n_row; exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1); exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2); if ((n_div1 && !exp1) || (n_div2 && !exp2)) goto error; div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2); if (!div) goto error; isl_mat_free(qp1->div); qp1->div = isl_mat_copy(div); isl_mat_free(qp2->div); qp2->div = isl_mat_copy(div); qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2); qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2); if (!qp1->upoly || !qp2->upoly) goto error; isl_mat_free(div); free(exp1); free(exp2); return fn(qp1, qp2); error: isl_mat_free(div); free(exp1); free(exp2); isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_cow(qp1); if (!qp1 || !qp2) goto error; if (qp1->div->n_row < qp2->div->n_row) return isl_qpolynomial_add(qp2, qp1); isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); if (!compatible_divs(qp1->div, qp2->div)) return with_merged_divs(isl_qpolynomial_add, qp1, qp2); qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly)); if (!qp1->upoly) goto error; isl_qpolynomial_free(qp2); return qp1; error: isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( __isl_keep isl_set *dom, __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_add(qp1, qp2); qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom)); return qp1; } __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2)); } __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( __isl_take isl_qpolynomial *qp, isl_int v) { if (isl_int_is_zero(v)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_add_isl_int(qp->upoly, v); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp) { if (!qp) return NULL; return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone); } __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( __isl_take isl_qpolynomial *qp, isl_int v) { if (isl_int_is_one(v)) return qp; if (qp && isl_int_is_zero(v)) { isl_qpolynomial *zero; zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim)); isl_qpolynomial_free(qp); return zero; } qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_scale( __isl_take isl_qpolynomial *qp, isl_int v) { return isl_qpolynomial_mul_isl_int(qp, v); } /* Multiply "qp" by "v". */ __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) { if (!qp || !v) goto error; if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_one(v)) { isl_val_free(v); return qp; } if (isl_val_is_zero(v)) { isl_space *space; space = isl_qpolynomial_get_domain_space(qp); isl_qpolynomial_free(qp); isl_val_free(v); return isl_qpolynomial_zero_on_domain(space); } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; qp->upoly = isl_upoly_scale_val(qp->upoly, v); if (!qp->upoly) qp = isl_qpolynomial_free(qp); isl_val_free(v); return qp; error: isl_val_free(v); isl_qpolynomial_free(qp); return NULL; } /* Divide "qp" by "v". */ __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v) { if (!qp || !v) goto error; if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); return isl_qpolynomial_scale_val(qp, isl_val_inv(v)); error: isl_val_free(v); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2) { qp1 = isl_qpolynomial_cow(qp1); if (!qp1 || !qp2) goto error; if (qp1->div->n_row < qp2->div->n_row) return isl_qpolynomial_mul(qp2, qp1); isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error); if (!compatible_divs(qp1->div, qp2->div)) return with_merged_divs(isl_qpolynomial_mul, qp1, qp2); qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly)); if (!qp1->upoly) goto error; isl_qpolynomial_free(qp2); return qp1; error: isl_qpolynomial_free(qp1); isl_qpolynomial_free(qp2); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, unsigned power) { qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->upoly = isl_upoly_pow(qp->upoly, power); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( __isl_take isl_pw_qpolynomial *pwqp, unsigned power) { int i; if (power == 1) return pwqp; pwqp = isl_pw_qpolynomial_cow(pwqp); if (!pwqp) return NULL; for (i = 0; i < pwqp->n; ++i) { pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power); if (!pwqp->p[i].qp) return isl_pw_qpolynomial_free(pwqp); } return pwqp; } __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( __isl_take isl_space *dim) { if (!dim) return NULL; return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx)); } __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain( __isl_take isl_space *dim, isl_int v) { struct isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!dim) return NULL; qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); if (!qp) return NULL; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, v); return qp; } int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, isl_int *n, isl_int *d) { struct isl_upoly_cst *cst; if (!qp) return -1; if (!isl_upoly_is_cst(qp->upoly)) return 0; cst = isl_upoly_as_cst(qp->upoly); if (!cst) return -1; if (n) isl_int_set(*n, cst->n); if (d) isl_int_set(*d, cst->d); return 1; } /* Return the constant term of "up". */ static __isl_give isl_val *isl_upoly_get_constant_val( __isl_keep struct isl_upoly *up) { struct isl_upoly_cst *cst; if (!up) return NULL; while (!isl_upoly_is_cst(up)) { struct isl_upoly_rec *rec; rec = isl_upoly_as_rec(up); if (!rec) return NULL; up = rec->p[0]; } cst = isl_upoly_as_cst(up); if (!cst) return NULL; return isl_val_rat_from_isl_int(cst->up.ctx, cst->n, cst->d); } /* Return the constant term of "qp". */ __isl_give isl_val *isl_qpolynomial_get_constant_val( __isl_keep isl_qpolynomial *qp) { if (!qp) return NULL; return isl_upoly_get_constant_val(qp->upoly); } int isl_upoly_is_affine(__isl_keep struct isl_upoly *up) { int is_cst; struct isl_upoly_rec *rec; if (!up) return -1; if (up->var < 0) return 1; rec = isl_upoly_as_rec(up); if (!rec) return -1; if (rec->n > 2) return 0; isl_assert(up->ctx, rec->n > 1, return -1); is_cst = isl_upoly_is_cst(rec->p[1]); if (is_cst < 0) return -1; if (!is_cst) return 0; return isl_upoly_is_affine(rec->p[0]); } int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp) { if (!qp) return -1; if (qp->div->n_row > 0) return 0; return isl_upoly_is_affine(qp->upoly); } static void update_coeff(__isl_keep isl_vec *aff, __isl_keep struct isl_upoly_cst *cst, int pos) { isl_int gcd; isl_int f; if (isl_int_is_zero(cst->n)) return; isl_int_init(gcd); isl_int_init(f); isl_int_gcd(gcd, cst->d, aff->el[0]); isl_int_divexact(f, cst->d, gcd); isl_int_divexact(gcd, aff->el[0], gcd); isl_seq_scale(aff->el, aff->el, f, aff->size); isl_int_mul(aff->el[1 + pos], gcd, cst->n); isl_int_clear(gcd); isl_int_clear(f); } int isl_upoly_update_affine(__isl_keep struct isl_upoly *up, __isl_keep isl_vec *aff) { struct isl_upoly_cst *cst; struct isl_upoly_rec *rec; if (!up || !aff) return -1; if (up->var < 0) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) return -1; update_coeff(aff, cst, 0); return 0; } rec = isl_upoly_as_rec(up); if (!rec) return -1; isl_assert(up->ctx, rec->n == 2, return -1); cst = isl_upoly_as_cst(rec->p[1]); if (!cst) return -1; update_coeff(aff, cst, 1 + up->var); return isl_upoly_update_affine(rec->p[0], aff); } __isl_give isl_vec *isl_qpolynomial_extract_affine( __isl_keep isl_qpolynomial *qp) { isl_vec *aff; unsigned d; if (!qp) return NULL; d = isl_space_dim(qp->dim, isl_dim_all); aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row); if (!aff) return NULL; isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row); isl_int_set_si(aff->el[0], 1); if (isl_upoly_update_affine(qp->upoly, aff) < 0) goto error; return aff; error: isl_vec_free(aff); return NULL; } /* Is "qp1" obviously equal to "qp2"? * * NaN is not equal to anything, not even to another NaN. */ isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, __isl_keep isl_qpolynomial *qp2) { isl_bool equal; if (!qp1 || !qp2) return isl_bool_error; if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2)) return isl_bool_false; equal = isl_space_is_equal(qp1->dim, qp2->dim); if (equal < 0 || !equal) return equal; equal = isl_mat_is_equal(qp1->div, qp2->div); if (equal < 0 || !equal) return equal; return isl_upoly_is_equal(qp1->upoly, qp2->upoly); } static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d) { int i; struct isl_upoly_rec *rec; if (isl_upoly_is_cst(up)) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) return; isl_int_lcm(*d, *d, cst->d); return; } rec = isl_upoly_as_rec(up); if (!rec) return; for (i = 0; i < rec->n; ++i) upoly_update_den(rec->p[i], d); } void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d) { isl_int_set_si(*d, 1); if (!qp) return; upoly_update_den(qp->upoly, d); } __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain( __isl_take isl_space *dim, int pos, int power) { struct isl_ctx *ctx; if (!dim) return NULL; ctx = dim->ctx; return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power)); } __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos) { if (!dim) return NULL; isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error); isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error); if (type == isl_dim_set) pos += isl_space_dim(dim, isl_dim_param); return isl_qpolynomial_var_pow_on_domain(dim, pos, 1); error: isl_space_free(dim); return NULL; } __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up, unsigned first, unsigned n, __isl_keep struct isl_upoly **subs) { int i; struct isl_upoly_rec *rec; struct isl_upoly *base, *res; if (!up) return NULL; if (isl_upoly_is_cst(up)) return up; if (up->var < first) return up; rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); if (up->var >= first + n) base = isl_upoly_var_pow(up->ctx, up->var, 1); else base = isl_upoly_copy(subs[up->var - first]); res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs); for (i = rec->n - 2; i >= 0; --i) { struct isl_upoly *t; t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs); res = isl_upoly_mul(res, isl_upoly_copy(base)); res = isl_upoly_sum(res, t); } isl_upoly_free(base); isl_upoly_free(up); return res; error: isl_upoly_free(up); return NULL; } __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f, isl_int denom, unsigned len) { int i; struct isl_upoly *up; isl_assert(ctx, len >= 1, return NULL); up = isl_upoly_rat_cst(ctx, f[0], denom); for (i = 0; i < len - 1; ++i) { struct isl_upoly *t; struct isl_upoly *c; if (isl_int_is_zero(f[1 + i])) continue; c = isl_upoly_rat_cst(ctx, f[1 + i], denom); t = isl_upoly_var_pow(ctx, i, 1); t = isl_upoly_mul(c, t); up = isl_upoly_sum(up, t); } return up; } /* Remove common factor of non-constant terms and denominator. */ static void normalize_div(__isl_keep isl_qpolynomial *qp, int div) { isl_ctx *ctx = qp->div->ctx; unsigned total = qp->div->n_col - 2; isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, qp->div->row[div][0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2, ctx->normalize_gcd, total); isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0], ctx->normalize_gcd); isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1], ctx->normalize_gcd); } /* Replace the integer division identified by "div" by the polynomial "s". * The integer division is assumed not to appear in the definition * of any other integer divisions. */ static __isl_give isl_qpolynomial *substitute_div( __isl_take isl_qpolynomial *qp, int div, __isl_take struct isl_upoly *s) { int i; int total; int *reordering; if (!qp || !s) goto error; qp = isl_qpolynomial_cow(qp); if (!qp) goto error; total = isl_space_dim(qp->dim, isl_dim_all); qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s); if (!qp->upoly) goto error; reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row); if (!reordering) goto error; for (i = 0; i < total + div; ++i) reordering[i] = i; for (i = total + div + 1; i < total + qp->div->n_row; ++i) reordering[i] = i - 1; qp->div = isl_mat_drop_rows(qp->div, div, 1); qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1); qp->upoly = reorder(qp->upoly, reordering); free(reordering); if (!qp->upoly || !qp->div) goto error; isl_upoly_free(s); return qp; error: isl_qpolynomial_free(qp); isl_upoly_free(s); return NULL; } /* Replace all integer divisions [e/d] that turn out to not actually be integer * divisions because d is equal to 1 by their definition, i.e., e. */ static __isl_give isl_qpolynomial *substitute_non_divs( __isl_take isl_qpolynomial *qp) { int i, j; int total; struct isl_upoly *s; if (!qp) return NULL; total = isl_space_dim(qp->dim, isl_dim_all); for (i = 0; qp && i < qp->div->n_row; ++i) { if (!isl_int_is_one(qp->div->row[i][0])) continue; for (j = i + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + i])) continue; isl_seq_combine(qp->div->row[j] + 1, qp->div->ctx->one, qp->div->row[j] + 1, qp->div->row[j][2 + total + i], qp->div->row[i] + 1, 1 + total + i); isl_int_set_si(qp->div->row[j][2 + total + i], 0); normalize_div(qp, j); } s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, qp->div->row[i][0], qp->div->n_col - 1); qp = substitute_div(qp, i, s); --i; } return qp; } /* Reduce the coefficients of div "div" to lie in the interval [0, d-1], * with d the denominator. When replacing the coefficient e of x by * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x * inside the division, so we need to add floor(e/d) * x outside. * That is, we replace q by q' + floor(e/d) * x and we therefore need * to adjust the coefficient of x in each later div that depends on the * current div "div" and also in the affine expression "aff" * (if it too depends on "div"). */ static void reduce_div(__isl_keep isl_qpolynomial *qp, int div, __isl_keep isl_vec *aff) { int i, j; isl_int v; unsigned total = qp->div->n_col - qp->div->n_row - 2; isl_int_init(v); for (i = 0; i < 1 + total + div; ++i) { if (isl_int_is_nonneg(qp->div->row[div][1 + i]) && isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0])) continue; isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]); isl_int_fdiv_r(qp->div->row[div][1 + i], qp->div->row[div][1 + i], qp->div->row[div][0]); if (!isl_int_is_zero(aff->el[1 + total + div])) isl_int_addmul(aff->el[i], v, aff->el[1 + total + div]); for (j = div + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + div])) continue; isl_int_addmul(qp->div->row[j][1 + i], v, qp->div->row[j][2 + total + div]); } } isl_int_clear(v); } /* Check if the last non-zero coefficient is bigger that half of the * denominator. If so, we will invert the div to further reduce the number * of distinct divs that may appear. * If the last non-zero coefficient is exactly half the denominator, * then we continue looking for earlier coefficients that are bigger * than half the denominator. */ static int needs_invert(__isl_keep isl_mat *div, int row) { int i; int cmp; for (i = div->n_col - 1; i >= 1; --i) { if (isl_int_is_zero(div->row[row][i])) continue; isl_int_mul_ui(div->row[row][i], div->row[row][i], 2); cmp = isl_int_cmp(div->row[row][i], div->row[row][0]); isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2); if (cmp) return cmp > 0; if (i == 1) return 1; } return 0; } /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d]. * We only invert the coefficients of e (and the coefficient of q in * later divs and in "aff"). After calling this function, the * coefficients of e should be reduced again. */ static void invert_div(__isl_keep isl_qpolynomial *qp, int div, __isl_keep isl_vec *aff) { unsigned total = qp->div->n_col - qp->div->n_row - 2; isl_seq_neg(qp->div->row[div] + 1, qp->div->row[div] + 1, qp->div->n_col - 1); isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1); isl_int_add(qp->div->row[div][1], qp->div->row[div][1], qp->div->row[div][0]); if (!isl_int_is_zero(aff->el[1 + total + div])) isl_int_neg(aff->el[1 + total + div], aff->el[1 + total + div]); isl_mat_col_mul(qp->div, 2 + total + div, qp->div->ctx->negone, 2 + total + div); } /* Assuming "qp" is a monomial, reduce all its divs to have coefficients * in the interval [0, d-1], with d the denominator and such that the * last non-zero coefficient that is not equal to d/2 is smaller than d/2. * * After the reduction, some divs may have become redundant or identical, * so we call substitute_non_divs and sort_divs. If these functions * eliminate divs or merge two or more divs into one, the coefficients * of the enclosing divs may have to be reduced again, so we call * ourselves recursively if the number of divs decreases. */ static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp) { int i; isl_vec *aff = NULL; struct isl_upoly *s; unsigned n_div; if (!qp) return NULL; aff = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1); aff = isl_vec_clr(aff); if (!aff) goto error; isl_int_set_si(aff->el[1 + qp->upoly->var], 1); for (i = 0; i < qp->div->n_row; ++i) { normalize_div(qp, i); reduce_div(qp, i, aff); if (needs_invert(qp->div, i)) { invert_div(qp, i, aff); reduce_div(qp, i, aff); } } s = isl_upoly_from_affine(qp->div->ctx, aff->el, qp->div->ctx->one, aff->size); qp->upoly = isl_upoly_subs(qp->upoly, qp->upoly->var, 1, &s); isl_upoly_free(s); if (!qp->upoly) goto error; isl_vec_free(aff); n_div = qp->div->n_row; qp = substitute_non_divs(qp); qp = sort_divs(qp); if (qp && qp->div->n_row < n_div) return reduce_divs(qp); return qp; error: isl_qpolynomial_free(qp); isl_vec_free(aff); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( __isl_take isl_space *dim, const isl_int n, const isl_int d) { struct isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!dim) return NULL; qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx)); if (!qp) return NULL; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, n); isl_int_set(cst->d, d); return qp; } /* Return an isl_qpolynomial that is equal to "val" on domain space "domain". */ __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( __isl_take isl_space *domain, __isl_take isl_val *val) { isl_qpolynomial *qp; struct isl_upoly_cst *cst; if (!domain || !val) goto error; qp = isl_qpolynomial_alloc(isl_space_copy(domain), 0, isl_upoly_zero(domain->ctx)); if (!qp) goto error; cst = isl_upoly_as_cst(qp->upoly); isl_int_set(cst->n, val->n); isl_int_set(cst->d, val->d); isl_space_free(domain); isl_val_free(val); return qp; error: isl_space_free(domain); isl_val_free(val); return NULL; } static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d) { struct isl_upoly_rec *rec; int i; if (!up) return -1; if (isl_upoly_is_cst(up)) return 0; if (up->var < d) active[up->var] = 1; rec = isl_upoly_as_rec(up); for (i = 0; i < rec->n; ++i) if (up_set_active(rec->p[i], active, d) < 0) return -1; return 0; } static int set_active(__isl_keep isl_qpolynomial *qp, int *active) { int i, j; int d = isl_space_dim(qp->dim, isl_dim_all); if (!qp || !active) return -1; for (i = 0; i < d; ++i) for (j = 0; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + i])) continue; active[i] = 1; break; } return up_set_active(qp->upoly, active, d); } isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { int i; int *active = NULL; isl_bool involves = isl_bool_false; if (!qp) return isl_bool_error; if (n == 0) return isl_bool_false; isl_assert(qp->dim->ctx, first + n <= isl_qpolynomial_dim(qp, type), return isl_bool_error); isl_assert(qp->dim->ctx, type == isl_dim_param || type == isl_dim_in, return isl_bool_error); active = isl_calloc_array(qp->dim->ctx, int, isl_space_dim(qp->dim, isl_dim_all)); if (set_active(qp, active) < 0) goto error; if (type == isl_dim_in) first += isl_space_dim(qp->dim, isl_dim_param); for (i = 0; i < n; ++i) if (active[first + i]) { involves = isl_bool_true; break; } free(active); return involves; error: free(active); return isl_bool_error; } /* Remove divs that do not appear in the quasi-polynomial, nor in any * of the divs that do appear in the quasi-polynomial. */ static __isl_give isl_qpolynomial *remove_redundant_divs( __isl_take isl_qpolynomial *qp) { int i, j; int d; int len; int skip; int *active = NULL; int *reordering = NULL; int redundant = 0; int n_div; isl_ctx *ctx; if (!qp) return NULL; if (qp->div->n_row == 0) return qp; d = isl_space_dim(qp->dim, isl_dim_all); len = qp->div->n_col - 2; ctx = isl_qpolynomial_get_ctx(qp); active = isl_calloc_array(ctx, int, len); if (!active) goto error; if (up_set_active(qp->upoly, active, len) < 0) goto error; for (i = qp->div->n_row - 1; i >= 0; --i) { if (!active[d + i]) { redundant = 1; continue; } for (j = 0; j < i; ++j) { if (isl_int_is_zero(qp->div->row[i][2 + d + j])) continue; active[d + j] = 1; break; } } if (!redundant) { free(active); return qp; } reordering = isl_alloc_array(qp->div->ctx, int, len); if (!reordering) goto error; for (i = 0; i < d; ++i) reordering[i] = i; skip = 0; n_div = qp->div->n_row; for (i = 0; i < n_div; ++i) { if (!active[d + i]) { qp->div = isl_mat_drop_rows(qp->div, i - skip, 1); qp->div = isl_mat_drop_cols(qp->div, 2 + d + i - skip, 1); skip++; } reordering[d + i] = d + i - skip; } qp->upoly = reorder(qp->upoly, reordering); if (!qp->upoly || !qp->div) goto error; free(active); free(reordering); return qp; error: free(active); free(reordering); isl_qpolynomial_free(qp); return NULL; } __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up, unsigned first, unsigned n) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (n == 0 || up->var < 0 || up->var < first) return up; if (up->var < first + n) { up = replace_by_constant_term(up); return isl_upoly_drop(up, first, n); } up = isl_upoly_cow(up); if (!up) return NULL; up->var -= n; rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { rec->p[i] = isl_upoly_drop(rec->p[i], first, n); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned pos, const char *s) { qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot drop output/set dimension", goto error); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), goto error); isl_assert(qp->dim->ctx, type == isl_dim_param || type == isl_dim_set, goto error); qp->dim = isl_space_drop_dims(qp->dim, type, first, n); if (!qp->dim) goto error; if (type == isl_dim_set) first += isl_space_dim(qp->dim, isl_dim_param); qp->div = isl_mat_drop_cols(qp->div, 2 + first, n); if (!qp->div) goto error; qp->upoly = isl_upoly_drop(qp->upoly, first, n); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } /* Project the domain of the quasi-polynomial onto its parameter space. * The quasi-polynomial may not involve any of the domain dimensions. */ __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( __isl_take isl_qpolynomial *qp) { isl_space *space; unsigned n; int involves; n = isl_qpolynomial_dim(qp, isl_dim_in); involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n); if (involves < 0) return isl_qpolynomial_free(qp); if (involves) isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid, "polynomial involves some of the domain dimensions", return isl_qpolynomial_free(qp)); qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n); space = isl_qpolynomial_get_domain_space(qp); space = isl_space_params(space); qp = isl_qpolynomial_reset_domain_space(qp, space); return qp; } static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted( __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) { int i, j, k; isl_int denom; unsigned total; unsigned n_div; struct isl_upoly *up; if (!eq) goto error; if (eq->n_eq == 0) { isl_basic_set_free(eq); return qp; } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; total = 1 + isl_space_dim(eq->dim, isl_dim_all); n_div = eq->n_div; isl_int_init(denom); for (i = 0; i < eq->n_eq; ++i) { j = isl_seq_last_non_zero(eq->eq[i], total + n_div); if (j < 0 || j == 0 || j >= total) continue; for (k = 0; k < qp->div->n_row; ++k) { if (isl_int_is_zero(qp->div->row[k][1 + j])) continue; isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total, &qp->div->row[k][0]); normalize_div(qp, k); } if (isl_int_is_pos(eq->eq[i][j])) isl_seq_neg(eq->eq[i], eq->eq[i], total); isl_int_abs(denom, eq->eq[i][j]); isl_int_set_si(eq->eq[i][j], 0); up = isl_upoly_from_affine(qp->dim->ctx, eq->eq[i], denom, total); qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up); isl_upoly_free(up); } isl_int_clear(denom); if (!qp->upoly) goto error; isl_basic_set_free(eq); qp = substitute_non_divs(qp); qp = sort_divs(qp); return qp; error: isl_basic_set_free(eq); isl_qpolynomial_free(qp); return NULL; } /* Exploit the equalities in "eq" to simplify the quasi-polynomial. */ __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq) { if (!qp || !eq) goto error; if (qp->div->n_row > 0) eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row); return isl_qpolynomial_substitute_equalities_lifted(qp, eq); error: isl_basic_set_free(eq); isl_qpolynomial_free(qp); return NULL; } static __isl_give isl_basic_set *add_div_constraints( __isl_take isl_basic_set *bset, __isl_take isl_mat *div) { int i; unsigned total; if (!bset || !div) goto error; bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row); if (!bset) goto error; total = isl_basic_set_total_dim(bset); for (i = 0; i < div->n_row; ++i) if (isl_basic_set_add_div_constraints_var(bset, total - div->n_row + i, div->row[i]) < 0) goto error; isl_mat_free(div); return bset; error: isl_mat_free(div); isl_basic_set_free(bset); return NULL; } /* Look for equalities among the variables shared by context and qp * and the integer divisions of qp, if any. * The equalities are then used to eliminate variables and/or integer * divisions from qp. */ __isl_give isl_qpolynomial *isl_qpolynomial_gist( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) { isl_basic_set *aff; if (!qp) goto error; if (qp->div->n_row > 0) { isl_basic_set *bset; context = isl_set_add_dims(context, isl_dim_set, qp->div->n_row); bset = isl_basic_set_universe(isl_set_get_space(context)); bset = add_div_constraints(bset, isl_mat_copy(qp->div)); context = isl_set_intersect(context, isl_set_from_basic_set(bset)); } aff = isl_set_affine_hull(context); return isl_qpolynomial_substitute_equalities_lifted(qp, aff); error: isl_qpolynomial_free(qp); isl_set_free(context); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context) { isl_space *space = isl_qpolynomial_get_domain_space(qp); isl_set *dom_context = isl_set_universe(space); dom_context = isl_set_intersect_params(dom_context, context); return isl_qpolynomial_gist(qp, dom_context); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial( __isl_take isl_qpolynomial *qp) { isl_set *dom; if (!qp) return NULL; if (isl_qpolynomial_is_zero(qp)) { isl_space *dim = isl_qpolynomial_get_space(qp); isl_qpolynomial_free(qp); return isl_pw_qpolynomial_zero(dim); } dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp)); return isl_pw_qpolynomial_alloc(dom, qp); } #undef PW #define PW isl_pw_qpolynomial #undef EL #define EL isl_qpolynomial #undef EL_IS_ZERO #define EL_IS_ZERO is_zero #undef ZERO #define ZERO zero #undef IS_ZERO #define IS_ZERO is_zero #undef FIELD #define FIELD qp #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 1 #define NO_PULLBACK #include #undef UNION #define UNION isl_union_pw_qpolynomial #undef PART #define PART isl_pw_qpolynomial #undef PARTS #define PARTS pw_qpolynomial #include #include #include int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp) { if (!pwqp) return -1; if (pwqp->n != -1) return 0; if (!isl_set_plain_is_universe(pwqp->p[0].set)) return 0; return isl_qpolynomial_is_one(pwqp->p[0].qp); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2) { return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2) { int i, j, n; struct isl_pw_qpolynomial *res; if (!pwqp1 || !pwqp2) goto error; isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim), goto error); if (isl_pw_qpolynomial_is_zero(pwqp1)) { isl_pw_qpolynomial_free(pwqp2); return pwqp1; } if (isl_pw_qpolynomial_is_zero(pwqp2)) { isl_pw_qpolynomial_free(pwqp1); return pwqp2; } if (isl_pw_qpolynomial_is_one(pwqp1)) { isl_pw_qpolynomial_free(pwqp1); return pwqp2; } if (isl_pw_qpolynomial_is_one(pwqp2)) { isl_pw_qpolynomial_free(pwqp2); return pwqp1; } n = pwqp1->n * pwqp2->n; res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n); for (i = 0; i < pwqp1->n; ++i) { for (j = 0; j < pwqp2->n; ++j) { struct isl_set *common; struct isl_qpolynomial *prod; common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set), isl_set_copy(pwqp2->p[j].set)); if (isl_set_plain_is_empty(common)) { isl_set_free(common); continue; } prod = isl_qpolynomial_mul( isl_qpolynomial_copy(pwqp1->p[i].qp), isl_qpolynomial_copy(pwqp2->p[j].qp)); res = isl_pw_qpolynomial_add_piece(res, common, prod); } } isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); return res; error: isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); return NULL; } __isl_give isl_val *isl_upoly_eval(__isl_take struct isl_upoly *up, __isl_take isl_vec *vec) { int i; struct isl_upoly_rec *rec; isl_val *res; isl_val *base; if (isl_upoly_is_cst(up)) { isl_vec_free(vec); res = isl_upoly_get_constant_val(up); isl_upoly_free(up); return res; } rec = isl_upoly_as_rec(up); if (!rec) goto error; isl_assert(up->ctx, rec->n >= 1, goto error); base = isl_val_rat_from_isl_int(up->ctx, vec->el[1 + up->var], vec->el[0]); res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]), isl_vec_copy(vec)); for (i = rec->n - 2; i >= 0; --i) { res = isl_val_mul(res, isl_val_copy(base)); res = isl_val_add(res, isl_upoly_eval(isl_upoly_copy(rec->p[i]), isl_vec_copy(vec))); } isl_val_free(base); isl_upoly_free(up); isl_vec_free(vec); return res; error: isl_upoly_free(up); isl_vec_free(vec); return NULL; } __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt) { isl_vec *ext; isl_val *v; if (!qp || !pnt) goto error; isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error); if (qp->div->n_row == 0) ext = isl_vec_copy(pnt->vec); else { int i; unsigned dim = isl_space_dim(qp->dim, isl_dim_all); ext = isl_vec_alloc(qp->dim->ctx, 1 + dim + qp->div->n_row); if (!ext) goto error; isl_seq_cpy(ext->el, pnt->vec->el, pnt->vec->size); for (i = 0; i < qp->div->n_row; ++i) { isl_seq_inner_product(qp->div->row[i] + 1, ext->el, 1 + dim + i, &ext->el[1+dim+i]); isl_int_fdiv_q(ext->el[1+dim+i], ext->el[1+dim+i], qp->div->row[i][0]); } } v = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext); isl_qpolynomial_free(qp); isl_point_free(pnt); return v; error: isl_qpolynomial_free(qp); isl_point_free(pnt); return NULL; } int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1, __isl_keep struct isl_upoly_cst *cst2) { int cmp; isl_int t; isl_int_init(t); isl_int_mul(t, cst1->n, cst2->d); isl_int_submul(t, cst2->n, cst1->d); cmp = isl_int_sgn(t); isl_int_clear(t); return cmp; } __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n) { unsigned total; unsigned g_pos; int *exp; if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->div->ctx, isl_error_invalid, "cannot insert output/set dimensions", goto error); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type)) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type), goto error); g_pos = pos(qp->dim, type) + first; qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n); if (!qp->div) goto error; total = qp->div->n_col - 2; if (total > g_pos) { int i; exp = isl_alloc_array(qp->div->ctx, int, total - g_pos); if (!exp) goto error; for (i = 0; i < total - g_pos; ++i) exp[i] = i + n; qp->upoly = expand(qp->upoly, exp, g_pos); free(exp); if (!qp->upoly) goto error; } qp->dim = isl_space_insert_dims(qp->dim, type, first, n); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_qpolynomial_dim(qp, type); return isl_qpolynomial_insert_dims(qp, type, pos, n); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_pw_qpolynomial_dim(pwqp, type); return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n); } static int *reordering_move(isl_ctx *ctx, unsigned len, unsigned dst, unsigned src, unsigned n) { int i; int *reordering; reordering = isl_alloc_array(ctx, int, len); if (!reordering) return NULL; if (dst <= src) { for (i = 0; i < dst; ++i) reordering[i] = i; for (i = 0; i < n; ++i) reordering[src + i] = dst + i; for (i = 0; i < src - dst; ++i) reordering[dst + i] = dst + n + i; for (i = 0; i < len - src - n; ++i) reordering[src + n + i] = src + n + i; } else { for (i = 0; i < src; ++i) reordering[i] = i; for (i = 0; i < n; ++i) reordering[src + i] = dst + i; for (i = 0; i < dst - src; ++i) reordering[src + n + i] = src + i; for (i = 0; i < len - dst - n; ++i) reordering[dst + n + i] = dst + n + i; } return reordering; } __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { unsigned g_dst_pos; unsigned g_src_pos; int *reordering; if (n == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; if (dst_type == isl_dim_out || src_type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot move output/set dimension", goto error); if (dst_type == isl_dim_in) dst_type = isl_dim_set; if (src_type == isl_dim_in) src_type = isl_dim_set; isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type), goto error); g_dst_pos = pos(qp->dim, dst_type) + dst_pos; g_src_pos = pos(qp->dim, src_type) + src_pos; if (dst_type > src_type) g_dst_pos -= n; qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n); if (!qp->div) goto error; qp = sort_divs(qp); if (!qp) goto error; reordering = reordering_move(qp->dim->ctx, qp->div->n_col - 2, g_dst_pos, g_src_pos, n); if (!reordering) goto error; qp->upoly = reorder(qp->upoly, reordering); free(reordering); if (!qp->upoly) goto error; qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n); if (!qp->dim) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim, isl_int *f, isl_int denom) { struct isl_upoly *up; dim = isl_space_domain(dim); if (!dim) return NULL; up = isl_upoly_from_affine(dim->ctx, f, denom, 1 + isl_space_dim(dim, isl_dim_all)); return isl_qpolynomial_alloc(dim, 0, up); } __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff) { isl_ctx *ctx; struct isl_upoly *up; isl_qpolynomial *qp; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0], aff->v->size - 1); qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff), aff->ls->div->n_row, up); if (!qp) goto error; isl_mat_free(qp->div); qp->div = isl_mat_copy(aff->ls->div); qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; isl_aff_free(aff); qp = reduce_divs(qp); qp = remove_redundant_divs(qp); return qp; error: isl_aff_free(aff); return isl_qpolynomial_free(qp); } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( __isl_take isl_pw_aff *pwaff) { int i; isl_pw_qpolynomial *pwqp; if (!pwaff) return NULL; pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff), pwaff->n); for (i = 0; i < pwaff->n; ++i) { isl_set *dom; isl_qpolynomial *qp; dom = isl_set_copy(pwaff->p[i].set); qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff)); pwqp = isl_pw_qpolynomial_add_piece(pwqp, dom, qp); } isl_pw_aff_free(pwaff); return pwqp; } __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos) { isl_aff *aff; aff = isl_constraint_get_bound(c, type, pos); isl_constraint_free(c); return isl_qpolynomial_from_aff(aff); } /* For each 0 <= i < "n", replace variable "first" + i of type "type" * in "qp" by subs[i]. */ __isl_give isl_qpolynomial *isl_qpolynomial_substitute( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs) { int i; struct isl_upoly **ups; if (n == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->dim->ctx, isl_error_invalid, "cannot substitute output/set dimension", goto error); if (type == isl_dim_in) type = isl_dim_set; for (i = 0; i < n; ++i) if (!subs[i]) goto error; isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type), goto error); for (i = 0; i < n; ++i) isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim), goto error); isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error); for (i = 0; i < n; ++i) isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error); first += pos(qp->dim, type); ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n); if (!ups) goto error; for (i = 0; i < n; ++i) ups[i] = subs[i]->upoly; qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups); free(ups); if (!qp->upoly) goto error; return qp; error: isl_qpolynomial_free(qp); return NULL; } /* Extend "bset" with extra set dimensions for each integer division * in "qp" and then call "fn" with the extended bset and the polynomial * that results from replacing each of the integer divisions by the * corresponding extra set dimension. */ int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, __isl_keep isl_basic_set *bset, int (*fn)(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user), void *user) { isl_space *dim; isl_mat *div; isl_qpolynomial *poly; if (!qp || !bset) goto error; if (qp->div->n_row == 0) return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp), user); div = isl_mat_copy(qp->div); dim = isl_space_copy(qp->dim); dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row); poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly)); bset = isl_basic_set_copy(bset); bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row); bset = add_div_constraints(bset, div); return fn(bset, poly, user); error: return -1; } /* Return total degree in variables first (inclusive) up to last (exclusive). */ int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last) { int deg = -1; int i; struct isl_upoly_rec *rec; if (!up) return -2; if (isl_upoly_is_zero(up)) return -1; if (isl_upoly_is_cst(up) || up->var < first) return 0; rec = isl_upoly_as_rec(up); if (!rec) return -2; for (i = 0; i < rec->n; ++i) { int d; if (isl_upoly_is_zero(rec->p[i])) continue; d = isl_upoly_degree(rec->p[i], first, last); if (up->var < last) d += i; if (d > deg) deg = d; } return deg; } /* Return total degree in set variables. */ int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly) { unsigned ovar; unsigned nvar; if (!poly) return -2; ovar = isl_space_offset(poly->dim, isl_dim_set); nvar = isl_space_dim(poly->dim, isl_dim_set); return isl_upoly_degree(poly->upoly, ovar, ovar + nvar); } __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up, unsigned pos, int deg) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_cst(up) || up->var < pos) { if (deg == 0) return isl_upoly_copy(up); else return isl_upoly_zero(up->ctx); } rec = isl_upoly_as_rec(up); if (!rec) return NULL; if (up->var == pos) { if (deg < rec->n) return isl_upoly_copy(rec->p[deg]); else return isl_upoly_zero(up->ctx); } up = isl_upoly_copy(up); up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { struct isl_upoly *t; t = isl_upoly_coeff(rec->p[i], pos, deg); if (!t) goto error; isl_upoly_free(rec->p[i]); rec->p[i] = t; } return up; error: isl_upoly_free(up); return NULL; } /* Return coefficient of power "deg" of variable "t_pos" of type "type". */ __isl_give isl_qpolynomial *isl_qpolynomial_coeff( __isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned t_pos, int deg) { unsigned g_pos; struct isl_upoly *up; isl_qpolynomial *c; if (!qp) return NULL; if (type == isl_dim_out) isl_die(qp->div->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return NULL); if (type == isl_dim_in) type = isl_dim_set; isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type), return NULL); g_pos = pos(qp->dim, type) + t_pos; up = isl_upoly_coeff(qp->upoly, g_pos, deg); c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up); if (!c) return NULL; isl_mat_free(c->div); c->div = isl_mat_copy(qp->div); if (!c->div) goto error; return c; error: isl_qpolynomial_free(c); return NULL; } /* Homogenize the polynomial in the variables first (inclusive) up to * last (exclusive) by inserting powers of variable first. * Variable first is assumed not to appear in the input. */ __isl_give struct isl_upoly *isl_upoly_homogenize( __isl_take struct isl_upoly *up, int deg, int target, int first, int last) { int i; struct isl_upoly_rec *rec; if (!up) return NULL; if (isl_upoly_is_zero(up)) return up; if (deg == target) return up; if (isl_upoly_is_cst(up) || up->var < first) { struct isl_upoly *hom; hom = isl_upoly_var_pow(up->ctx, first, target - deg); if (!hom) goto error; rec = isl_upoly_as_rec(hom); rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up); return hom; } up = isl_upoly_cow(up); rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { if (isl_upoly_is_zero(rec->p[i])) continue; rec->p[i] = isl_upoly_homogenize(rec->p[i], up->var < last ? deg + i : i, target, first, last); if (!rec->p[i]) goto error; } return up; error: isl_upoly_free(up); return NULL; } /* Homogenize the polynomial in the set variables by introducing * powers of an extra set variable at position 0. */ __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( __isl_take isl_qpolynomial *poly) { unsigned ovar; unsigned nvar; int deg = isl_qpolynomial_degree(poly); if (deg < -1) goto error; poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1); poly = isl_qpolynomial_cow(poly); if (!poly) goto error; ovar = isl_space_offset(poly->dim, isl_dim_set); nvar = isl_space_dim(poly->dim, isl_dim_set); poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg, ovar, ovar + nvar); if (!poly->upoly) goto error; return poly; error: isl_qpolynomial_free(poly); return NULL; } __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim, __isl_take isl_mat *div) { isl_term *term; int n; if (!dim || !div) goto error; n = isl_space_dim(dim, isl_dim_all) + div->n_row; term = isl_calloc(dim->ctx, struct isl_term, sizeof(struct isl_term) + (n - 1) * sizeof(int)); if (!term) goto error; term->ref = 1; term->dim = dim; term->div = div; isl_int_init(term->n); isl_int_init(term->d); return term; error: isl_space_free(dim); isl_mat_free(div); return NULL; } __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term) { if (!term) return NULL; term->ref++; return term; } __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term) { int i; isl_term *dup; unsigned total; if (!term) return NULL; total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div)); if (!dup) return NULL; isl_int_set(dup->n, term->n); isl_int_set(dup->d, term->d); for (i = 0; i < total; ++i) dup->pow[i] = term->pow[i]; return dup; } __isl_give isl_term *isl_term_cow(__isl_take isl_term *term) { if (!term) return NULL; if (term->ref == 1) return term; term->ref--; return isl_term_dup(term); } void isl_term_free(__isl_take isl_term *term) { if (!term) return; if (--term->ref > 0) return; isl_space_free(term->dim); isl_mat_free(term->div); isl_int_clear(term->n); isl_int_clear(term->d); free(term); } unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type) { if (!term) return 0; switch (type) { case isl_dim_param: case isl_dim_in: case isl_dim_out: return isl_space_dim(term->dim, type); case isl_dim_div: return term->div->n_row; case isl_dim_all: return isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; default: return 0; } } isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term) { return term ? term->dim->ctx : NULL; } void isl_term_get_num(__isl_keep isl_term *term, isl_int *n) { if (!term) return; isl_int_set(*n, term->n); } void isl_term_get_den(__isl_keep isl_term *term, isl_int *d) { if (!term) return; isl_int_set(*d, term->d); } /* Return the coefficient of the term "term". */ __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term) { if (!term) return NULL; return isl_val_rat_from_isl_int(isl_term_get_ctx(term), term->n, term->d); } int isl_term_get_exp(__isl_keep isl_term *term, enum isl_dim_type type, unsigned pos) { if (!term) return -1; isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1); if (type >= isl_dim_set) pos += isl_space_dim(term->dim, isl_dim_param); if (type >= isl_dim_div) pos += isl_space_dim(term->dim, isl_dim_set); return term->pow[pos]; } __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos) { isl_local_space *ls; isl_aff *aff; if (!term) return NULL; isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div), return NULL); ls = isl_local_space_alloc_div(isl_space_copy(term->dim), isl_mat_copy(term->div)); aff = isl_aff_alloc(ls); if (!aff) return NULL; isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size); aff = isl_aff_normalize(aff); return aff; } __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up, isl_stat (*fn)(__isl_take isl_term *term, void *user), __isl_take isl_term *term, void *user) { int i; struct isl_upoly_rec *rec; if (!up || !term) goto error; if (isl_upoly_is_zero(up)) return term; isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error); isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error); isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error); if (isl_upoly_is_cst(up)) { struct isl_upoly_cst *cst; cst = isl_upoly_as_cst(up); if (!cst) goto error; term = isl_term_cow(term); if (!term) goto error; isl_int_set(term->n, cst->n); isl_int_set(term->d, cst->d); if (fn(isl_term_copy(term), user) < 0) goto error; return term; } rec = isl_upoly_as_rec(up); if (!rec) goto error; for (i = 0; i < rec->n; ++i) { term = isl_term_cow(term); if (!term) goto error; term->pow[up->var] = i; term = isl_upoly_foreach_term(rec->p[i], fn, term, user); if (!term) goto error; } term->pow[up->var] = 0; return term; error: isl_term_free(term); return NULL; } isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user) { isl_term *term; if (!qp) return isl_stat_error; term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div)); if (!term) return isl_stat_error; term = isl_upoly_foreach_term(qp->upoly, fn, term, user); isl_term_free(term); return term ? isl_stat_ok : isl_stat_error; } __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term) { struct isl_upoly *up; isl_qpolynomial *qp; int i, n; if (!term) return NULL; n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row; up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d); for (i = 0; i < n; ++i) { if (!term->pow[i]) continue; up = isl_upoly_mul(up, isl_upoly_var_pow(term->dim->ctx, i, term->pow[i])); } qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up); if (!qp) goto error; isl_mat_free(qp->div); qp->div = isl_mat_copy(term->div); if (!qp->div) goto error; isl_term_free(term); return qp; error: isl_qpolynomial_free(qp); isl_term_free(term); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, __isl_take isl_space *dim) { int i; int extra; unsigned total; if (!qp || !dim) goto error; if (isl_space_is_equal(qp->dim, dim)) { isl_space_free(dim); return qp; } qp = isl_qpolynomial_cow(qp); if (!qp) goto error; extra = isl_space_dim(dim, isl_dim_set) - isl_space_dim(qp->dim, isl_dim_set); total = isl_space_dim(qp->dim, isl_dim_all); if (qp->div->n_row) { int *exp; exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row); if (!exp) goto error; for (i = 0; i < qp->div->n_row; ++i) exp[i] = extra + i; qp->upoly = expand(qp->upoly, exp, total); free(exp); if (!qp->upoly) goto error; } qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra); if (!qp->div) goto error; for (i = 0; i < qp->div->n_row; ++i) isl_seq_clr(qp->div->row[i] + 2 + total, extra); isl_space_free(qp->dim); qp->dim = dim; return qp; error: isl_space_free(dim); isl_qpolynomial_free(qp); return NULL; } /* For each parameter or variable that does not appear in qp, * first eliminate the variable from all constraints and then set it to zero. */ static __isl_give isl_set *fix_inactive(__isl_take isl_set *set, __isl_keep isl_qpolynomial *qp) { int *active = NULL; int i; int d; unsigned nparam; unsigned nvar; if (!set || !qp) goto error; d = isl_space_dim(set->dim, isl_dim_all); active = isl_calloc_array(set->ctx, int, d); if (set_active(qp, active) < 0) goto error; for (i = 0; i < d; ++i) if (!active[i]) break; if (i == d) { free(active); return set; } nparam = isl_space_dim(set->dim, isl_dim_param); nvar = isl_space_dim(set->dim, isl_dim_set); for (i = 0; i < nparam; ++i) { if (active[i]) continue; set = isl_set_eliminate(set, isl_dim_param, i, 1); set = isl_set_fix_si(set, isl_dim_param, i, 0); } for (i = 0; i < nvar; ++i) { if (active[nparam + i]) continue; set = isl_set_eliminate(set, isl_dim_set, i, 1); set = isl_set_fix_si(set, isl_dim_set, i, 0); } free(active); return set; error: free(active); isl_set_free(set); return NULL; } struct isl_opt_data { isl_qpolynomial *qp; int first; isl_val *opt; int max; }; static isl_stat opt_fn(__isl_take isl_point *pnt, void *user) { struct isl_opt_data *data = (struct isl_opt_data *)user; isl_val *val; val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt); if (data->first) { data->first = 0; data->opt = val; } else if (data->max) { data->opt = isl_val_max(data->opt, val); } else { data->opt = isl_val_min(data->opt, val); } return isl_stat_ok; } __isl_give isl_val *isl_qpolynomial_opt_on_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max) { struct isl_opt_data data = { NULL, 1, NULL, max }; if (!set || !qp) goto error; if (isl_upoly_is_cst(qp->upoly)) { isl_set_free(set); data.opt = isl_qpolynomial_get_constant_val(qp); isl_qpolynomial_free(qp); return data.opt; } set = fix_inactive(set, qp); data.qp = qp; if (isl_set_foreach_point(set, opt_fn, &data) < 0) goto error; if (data.first) data.opt = isl_val_zero(isl_set_get_ctx(set)); isl_set_free(set); isl_qpolynomial_free(qp); return data.opt; error: isl_set_free(set); isl_qpolynomial_free(qp); isl_val_free(data.opt); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph) { int i; int n_sub; isl_ctx *ctx; struct isl_upoly **subs; isl_mat *mat, *diag; qp = isl_qpolynomial_cow(qp); if (!qp || !morph) goto error; ctx = qp->dim->ctx; isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error); n_sub = morph->inv->n_row - 1; if (morph->inv->n_row != morph->inv->n_col) n_sub += qp->div->n_row; subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub); if (n_sub && !subs) goto error; for (i = 0; 1 + i < morph->inv->n_row; ++i) subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i], morph->inv->row[0][0], morph->inv->n_col); if (morph->inv->n_row != morph->inv->n_col) for (i = 0; i < qp->div->n_row; ++i) subs[morph->inv->n_row - 1 + i] = isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1); qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs); for (i = 0; i < n_sub; ++i) isl_upoly_free(subs[i]); free(subs); diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]); mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv)); diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]); mat = isl_mat_diagonal(mat, diag); qp->div = isl_mat_product(qp->div, mat); isl_space_free(qp->dim); qp->dim = isl_space_copy(morph->ran->dim); if (!qp->upoly || !qp->div || !qp->dim) goto error; isl_morph_free(morph); return qp; error: isl_qpolynomial_free(qp); isl_morph_free(morph); return NULL; } __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2) { return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2, &isl_pw_qpolynomial_mul); } /* Reorder the columns of the given div definitions according to the * given reordering. */ static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div, __isl_take isl_reordering *r) { int i, j; isl_mat *mat; int extra; if (!div || !r) goto error; extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len; mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra); if (!mat) goto error; for (i = 0; i < div->n_row; ++i) { isl_seq_cpy(mat->row[i], div->row[i], 2); isl_seq_clr(mat->row[i] + 2, mat->n_col - 2); for (j = 0; j < r->len; ++j) isl_int_set(mat->row[i][2 + r->pos[j]], div->row[i][2 + j]); } isl_reordering_free(r); isl_mat_free(div); return mat; error: isl_reordering_free(r); isl_mat_free(div); return NULL; } /* Reorder the dimension of "qp" according to the given reordering. */ __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r) { qp = isl_qpolynomial_cow(qp); if (!qp) goto error; r = isl_reordering_extend(r, qp->div->n_row); if (!r) goto error; qp->div = reorder_divs(qp->div, isl_reordering_copy(r)); if (!qp->div) goto error; qp->upoly = reorder(qp->upoly, r->pos); if (!qp->upoly) goto error; qp = isl_qpolynomial_reset_domain_space(qp, isl_space_copy(r->dim)); isl_reordering_free(r); return qp; error: isl_qpolynomial_free(qp); isl_reordering_free(r); return NULL; } __isl_give isl_qpolynomial *isl_qpolynomial_align_params( __isl_take isl_qpolynomial *qp, __isl_take isl_space *model) { if (!qp || !model) goto error; if (!isl_space_match(qp->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(qp->dim, model); exp = isl_reordering_extend_space(exp, isl_qpolynomial_get_domain_space(qp)); qp = isl_qpolynomial_realign_domain(qp, exp); } isl_space_free(model); return qp; error: isl_space_free(model); isl_qpolynomial_free(qp); return NULL; } struct isl_split_periods_data { int max_periods; isl_pw_qpolynomial *res; }; /* Create a slice where the integer division "div" has the fixed value "v". * In particular, if "div" refers to floor(f/m), then create a slice * * m v <= f <= m v + (m - 1) * * or * * f - m v >= 0 * -f + m v + (m - 1) >= 0 */ static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim, __isl_keep isl_qpolynomial *qp, int div, isl_int v) { int total; isl_basic_set *bset = NULL; int k; if (!dim || !qp) goto error; total = isl_space_dim(dim, isl_dim_all); bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total); isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total); isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]); isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]); isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); isl_space_free(dim); return isl_set_from_basic_set(bset); error: isl_basic_set_free(bset); isl_space_free(dim); return NULL; } static isl_stat split_periods(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user); /* Create a slice of the domain "set" such that integer division "div" * has the fixed value "v" and add the results to data->res, * replacing the integer division by "v" in "qp". */ static isl_stat set_div(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, int div, isl_int v, struct isl_split_periods_data *data) { int i; int total; isl_set *slice; struct isl_upoly *cst; slice = set_div_slice(isl_set_get_space(set), qp, div, v); set = isl_set_intersect(set, slice); if (!qp) goto error; total = isl_space_dim(qp->dim, isl_dim_all); for (i = div + 1; i < qp->div->n_row; ++i) { if (isl_int_is_zero(qp->div->row[i][2 + total + div])) continue; isl_int_addmul(qp->div->row[i][1], qp->div->row[i][2 + total + div], v); isl_int_set_si(qp->div->row[i][2 + total + div], 0); } cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one); qp = substitute_div(qp, div, cst); return split_periods(set, qp, data); error: isl_set_free(set); isl_qpolynomial_free(qp); return -1; } /* Split the domain "set" such that integer division "div" * has a fixed value (ranging from "min" to "max") on each slice * and add the results to data->res. */ static isl_stat split_div(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max, struct isl_split_periods_data *data) { for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) { isl_set *set_i = isl_set_copy(set); isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp); if (set_div(set_i, qp_i, div, min, data) < 0) goto error; } isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_ok; error: isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_error; } /* If "qp" refers to any integer division * that can only attain "max_periods" distinct values on "set" * then split the domain along those distinct values. * Add the results (or the original if no splitting occurs) * to data->res. */ static isl_stat split_periods(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user) { int i; isl_pw_qpolynomial *pwqp; struct isl_split_periods_data *data; isl_int min, max; int total; isl_stat r = isl_stat_ok; data = (struct isl_split_periods_data *)user; if (!set || !qp) goto error; if (qp->div->n_row == 0) { pwqp = isl_pw_qpolynomial_alloc(set, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); return isl_stat_ok; } isl_int_init(min); isl_int_init(max); total = isl_space_dim(qp->dim, isl_dim_all); for (i = 0; i < qp->div->n_row; ++i) { enum isl_lp_result lp_res; if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total, qp->div->n_row) != -1) continue; lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1, set->ctx->one, &min, NULL, NULL); if (lp_res == isl_lp_error) goto error2; if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) continue; isl_int_fdiv_q(min, min, qp->div->row[i][0]); lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1, set->ctx->one, &max, NULL, NULL); if (lp_res == isl_lp_error) goto error2; if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty) continue; isl_int_fdiv_q(max, max, qp->div->row[i][0]); isl_int_sub(max, max, min); if (isl_int_cmp_si(max, data->max_periods) < 0) { isl_int_add(max, max, min); break; } } if (i < qp->div->n_row) { r = split_div(set, qp, i, min, max, data); } else { pwqp = isl_pw_qpolynomial_alloc(set, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp); } isl_int_clear(max); isl_int_clear(min); return r; error2: isl_int_clear(max); isl_int_clear(min); error: isl_set_free(set); isl_qpolynomial_free(qp); return isl_stat_error; } /* If any quasi-polynomial in pwqp refers to any integer division * that can only attain "max_periods" distinct values on its domain * then split the domain along those distinct values. */ __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( __isl_take isl_pw_qpolynomial *pwqp, int max_periods) { struct isl_split_periods_data data; data.max_periods = max_periods; data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0) goto error; isl_pw_qpolynomial_free(pwqp); return data.res; error: isl_pw_qpolynomial_free(data.res); isl_pw_qpolynomial_free(pwqp); return NULL; } /* Construct a piecewise quasipolynomial that is constant on the given * domain. In particular, it is * 0 if cst == 0 * 1 if cst == 1 * infinity if cst == -1 */ static __isl_give isl_pw_qpolynomial *constant_on_domain( __isl_take isl_basic_set *bset, int cst) { isl_space *dim; isl_qpolynomial *qp; if (!bset) return NULL; bset = isl_basic_set_params(bset); dim = isl_basic_set_get_space(bset); if (cst < 0) qp = isl_qpolynomial_infty_on_domain(dim); else if (cst == 0) qp = isl_qpolynomial_zero_on_domain(dim); else qp = isl_qpolynomial_one_on_domain(dim); return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp); } /* Factor bset, call fn on each of the factors and return the product. * * If no factors can be found, simply call fn on the input. * Otherwise, construct the factors based on the factorizer, * call fn on each factor and compute the product. */ static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call( __isl_take isl_basic_set *bset, __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) { int i, n; isl_space *dim; isl_set *set; isl_factorizer *f; isl_qpolynomial *qp; isl_pw_qpolynomial *pwqp; unsigned nparam; unsigned nvar; f = isl_basic_set_factorizer(bset); if (!f) goto error; if (f->n_group == 0) { isl_factorizer_free(f); return fn(bset); } nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); dim = isl_basic_set_get_space(bset); dim = isl_space_domain(dim); set = isl_set_universe(isl_space_copy(dim)); qp = isl_qpolynomial_one_on_domain(dim); pwqp = isl_pw_qpolynomial_alloc(set, qp); bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset); for (i = 0, n = 0; i < f->n_group; ++i) { isl_basic_set *bset_i; isl_pw_qpolynomial *pwqp_i; bset_i = isl_basic_set_copy(bset); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam + n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam, n); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n); pwqp_i = fn(bset_i); pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i); n += f->len[i]; } isl_basic_set_free(bset); isl_factorizer_free(f); return pwqp; error: isl_basic_set_free(bset); return NULL; } /* Factor bset, call fn on each of the factors and return the product. * The function is assumed to evaluate to zero on empty domains, * to one on zero-dimensional domains and to infinity on unbounded domains * and will not be called explicitly on zero-dimensional or unbounded domains. * * We first check for some special cases and remove all equalities. * Then we hand over control to compressed_multiplicative_call. */ __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( __isl_take isl_basic_set *bset, __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)) { int bounded; isl_morph *morph; isl_pw_qpolynomial *pwqp; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return constant_on_domain(bset, 0); if (isl_basic_set_dim(bset, isl_dim_set) == 0) return constant_on_domain(bset, 1); bounded = isl_basic_set_is_bounded(bset); if (bounded < 0) goto error; if (!bounded) return constant_on_domain(bset, -1); if (bset->n_eq == 0) return compressed_multiplicative_call(bset, fn); morph = isl_basic_set_full_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); pwqp = compressed_multiplicative_call(bset, fn); morph = isl_morph_dom_params(morph); morph = isl_morph_ran_params(morph); morph = isl_morph_inverse(morph); pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph); return pwqp; error: isl_basic_set_free(bset); return NULL; } /* Drop all floors in "qp", turning each integer division [a/m] into * a rational division a/m. If "down" is set, then the integer division * is replaced by (a-(m-1))/m instead. */ static __isl_give isl_qpolynomial *qp_drop_floors( __isl_take isl_qpolynomial *qp, int down) { int i; struct isl_upoly *s; if (!qp) return NULL; if (qp->div->n_row == 0) return qp; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; for (i = qp->div->n_row - 1; i >= 0; --i) { if (down) { isl_int_sub(qp->div->row[i][1], qp->div->row[i][1], qp->div->row[i][0]); isl_int_add_ui(qp->div->row[i][1], qp->div->row[i][1], 1); } s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1, qp->div->row[i][0], qp->div->n_col - 1); qp = substitute_div(qp, i, s); if (!qp) return NULL; } return qp; } /* Drop all floors in "pwqp", turning each integer division [a/m] into * a rational division a/m. */ static __isl_give isl_pw_qpolynomial *pwqp_drop_floors( __isl_take isl_pw_qpolynomial *pwqp) { int i; if (!pwqp) return NULL; if (isl_pw_qpolynomial_is_zero(pwqp)) return pwqp; pwqp = isl_pw_qpolynomial_cow(pwqp); if (!pwqp) return NULL; for (i = 0; i < pwqp->n; ++i) { pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0); if (!pwqp->p[i].qp) goto error; } return pwqp; error: isl_pw_qpolynomial_free(pwqp); return NULL; } /* Adjust all the integer divisions in "qp" such that they are at least * one over the given orthant (identified by "signs"). This ensures * that they will still be non-negative even after subtracting (m-1)/m. * * In particular, f is replaced by f' + v, changing f = [a/m] * to f' = [(a - m v)/m]. * If the constant term k in a is smaller than m, * the constant term of v is set to floor(k/m) - 1. * For any other term, if the coefficient c and the variable x have * the same sign, then no changes are needed. * Otherwise, if the variable is positive (and c is negative), * then the coefficient of x in v is set to floor(c/m). * If the variable is negative (and c is positive), * then the coefficient of x in v is set to ceil(c/m). */ static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp, int *signs) { int i, j; int total; isl_vec *v = NULL; struct isl_upoly *s; qp = isl_qpolynomial_cow(qp); if (!qp) return NULL; qp->div = isl_mat_cow(qp->div); if (!qp->div) goto error; total = isl_space_dim(qp->dim, isl_dim_all); v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1); for (i = 0; i < qp->div->n_row; ++i) { isl_int *row = qp->div->row[i]; v = isl_vec_clr(v); if (!v) goto error; if (isl_int_lt(row[1], row[0])) { isl_int_fdiv_q(v->el[0], row[1], row[0]); isl_int_sub_ui(v->el[0], v->el[0], 1); isl_int_submul(row[1], row[0], v->el[0]); } for (j = 0; j < total; ++j) { if (isl_int_sgn(row[2 + j]) * signs[j] >= 0) continue; if (signs[j] < 0) isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]); else isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]); isl_int_submul(row[2 + j], row[0], v->el[1 + j]); } for (j = 0; j < i; ++j) { if (isl_int_sgn(row[2 + total + j]) >= 0) continue; isl_int_fdiv_q(v->el[1 + total + j], row[2 + total + j], row[0]); isl_int_submul(row[2 + total + j], row[0], v->el[1 + total + j]); } for (j = i + 1; j < qp->div->n_row; ++j) { if (isl_int_is_zero(qp->div->row[j][2 + total + i])) continue; isl_seq_combine(qp->div->row[j] + 1, qp->div->ctx->one, qp->div->row[j] + 1, qp->div->row[j][2 + total + i], v->el, v->size); } isl_int_set_si(v->el[1 + total + i], 1); s = isl_upoly_from_affine(qp->dim->ctx, v->el, qp->div->ctx->one, v->size); qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s); isl_upoly_free(s); if (!qp->upoly) goto error; } isl_vec_free(v); return qp; error: isl_vec_free(v); isl_qpolynomial_free(qp); return NULL; } struct isl_to_poly_data { int sign; isl_pw_qpolynomial *res; isl_qpolynomial *qp; }; /* Appoximate data->qp by a polynomial on the orthant identified by "signs". * We first make all integer divisions positive and then split the * quasipolynomials into terms with sign data->sign (the direction * of the requested approximation) and terms with the opposite sign. * In the first set of terms, each integer division [a/m] is * overapproximated by a/m, while in the second it is underapproximated * by (a-(m-1))/m. */ static int to_polynomial_on_orthant(__isl_take isl_set *orthant, int *signs, void *user) { struct isl_to_poly_data *data = user; isl_pw_qpolynomial *t; isl_qpolynomial *qp, *up, *down; qp = isl_qpolynomial_copy(data->qp); qp = make_divs_pos(qp, signs); up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign); up = qp_drop_floors(up, 0); down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign); down = qp_drop_floors(down, 1); isl_qpolynomial_free(qp); qp = isl_qpolynomial_add(up, down); t = isl_pw_qpolynomial_alloc(orthant, qp); data->res = isl_pw_qpolynomial_add_disjoint(data->res, t); return 0; } /* Approximate each quasipolynomial by a polynomial. If "sign" is positive, * the polynomial will be an overapproximation. If "sign" is negative, * it will be an underapproximation. If "sign" is zero, the approximation * will lie somewhere in between. * * In particular, is sign == 0, we simply drop the floors, turning * the integer divisions into rational divisions. * Otherwise, we split the domains into orthants, make all integer divisions * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m, * depending on the requested sign and the sign of the term in which * the integer division appears. */ __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( __isl_take isl_pw_qpolynomial *pwqp, int sign) { int i; struct isl_to_poly_data data; if (sign == 0) return pwqp_drop_floors(pwqp); if (!pwqp) return NULL; data.sign = sign; data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp)); for (i = 0; i < pwqp->n; ++i) { if (pwqp->p[i].qp->div->n_row == 0) { isl_pw_qpolynomial *t; t = isl_pw_qpolynomial_alloc( isl_set_copy(pwqp->p[i].set), isl_qpolynomial_copy(pwqp->p[i].qp)); data.res = isl_pw_qpolynomial_add_disjoint(data.res, t); continue; } data.qp = pwqp->p[i].qp; if (isl_set_foreach_orthant(pwqp->p[i].set, &to_polynomial_on_orthant, &data) < 0) goto error; } isl_pw_qpolynomial_free(pwqp); return data.res; error: isl_pw_qpolynomial_free(pwqp); isl_pw_qpolynomial_free(data.res); return NULL; } static __isl_give isl_pw_qpolynomial *poly_entry( __isl_take isl_pw_qpolynomial *pwqp, void *user) { int *sign = user; return isl_pw_qpolynomial_to_polynomial(pwqp, *sign); } __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( __isl_take isl_union_pw_qpolynomial *upwqp, int sign) { return isl_union_pw_qpolynomial_transform_inplace(upwqp, &poly_entry, &sign); } __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( __isl_take isl_qpolynomial *qp) { int i, k; isl_space *dim; isl_vec *aff = NULL; isl_basic_map *bmap = NULL; unsigned pos; unsigned n_div; if (!qp) return NULL; if (!isl_upoly_is_affine(qp->upoly)) isl_die(qp->dim->ctx, isl_error_invalid, "input quasi-polynomial not affine", goto error); aff = isl_qpolynomial_extract_affine(qp); if (!aff) goto error; dim = isl_qpolynomial_get_space(qp); pos = 1 + isl_space_offset(dim, isl_dim_out); n_div = qp->div->n_row; bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div); for (i = 0; i < n_div; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col); isl_int_set_si(bmap->div[k][qp->div->n_col], 0); if (isl_basic_map_add_div_constraints(bmap, k) < 0) goto error; } k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_int_neg(bmap->eq[k][pos], aff->el[0]); isl_seq_cpy(bmap->eq[k], aff->el + 1, pos); isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div); isl_vec_free(aff); isl_qpolynomial_free(qp); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_vec_free(aff); isl_qpolynomial_free(qp); isl_basic_map_free(bmap); return NULL; } isl-0.16.1/isl_ast_codegen.c0000664000175000017500000054703412645737414012631 00000000000000/* * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Data used in generate_domain. * * "build" is the input build. * "list" collects the results. */ struct isl_generate_domain_data { isl_ast_build *build; isl_ast_graft_list *list; }; static __isl_give isl_ast_graft_list *generate_next_level( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build); static __isl_give isl_ast_graft_list *generate_code( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, int internal); /* Generate an AST for a single domain based on * the (non single valued) inverse schedule "executed". * * We extend the schedule with the iteration domain * and continue generating through a call to generate_code. * * In particular, if executed has the form * * S -> D * * then we continue generating code on * * [S -> D] -> D * * The extended inverse schedule is clearly single valued * ensuring that the nested generate_code will not reach this function, * but will instead create calls to all elements of D that need * to be executed from the current schedule domain. */ static isl_stat generate_non_single_valued(__isl_take isl_map *executed, struct isl_generate_domain_data *data) { isl_map *identity; isl_ast_build *build; isl_ast_graft_list *list; build = isl_ast_build_copy(data->build); identity = isl_set_identity(isl_map_range(isl_map_copy(executed))); executed = isl_map_domain_product(executed, identity); build = isl_ast_build_set_single_valued(build, 1); list = generate_code(isl_union_map_from_map(executed), build, 1); data->list = isl_ast_graft_list_concat(data->list, list); return isl_stat_ok; } /* Call the at_each_domain callback, if requested by the user, * after recording the current inverse schedule in the build. */ static __isl_give isl_ast_graft *at_each_domain(__isl_take isl_ast_graft *graft, __isl_keep isl_map *executed, __isl_keep isl_ast_build *build) { if (!graft || !build) return isl_ast_graft_free(graft); if (!build->at_each_domain) return graft; build = isl_ast_build_copy(build); build = isl_ast_build_set_executed(build, isl_union_map_from_map(isl_map_copy(executed))); if (!build) return isl_ast_graft_free(graft); graft->node = build->at_each_domain(graft->node, build, build->at_each_domain_user); isl_ast_build_free(build); if (!graft->node) graft = isl_ast_graft_free(graft); return graft; } /* Generate a call expression for the single executed * domain element "map" and put a guard around it based its (simplified) * domain. "executed" is the original inverse schedule from which "map" * has been derived. In particular, "map" is either identical to "executed" * or it is the result of gisting "executed" with respect to the build domain. * "executed" is only used if there is an at_each_domain callback. * * At this stage, any pending constraints in the build can no longer * be simplified with respect to any enforced constraints since * the call node does not have any enforced constraints. * Since all pending constraints not covered by any enforced constraints * will be added as a guard to the graft in create_node_scaled, * even in the eliminated case, the pending constraints * can be considered to have been generated by outer constructs. * * If the user has set an at_each_domain callback, it is called * on the constructed call expression node. */ static isl_stat add_domain(__isl_take isl_map *executed, __isl_take isl_map *map, struct isl_generate_domain_data *data) { isl_ast_build *build; isl_ast_graft *graft; isl_ast_graft_list *list; isl_set *guard, *pending; build = isl_ast_build_copy(data->build); pending = isl_ast_build_get_pending(build); build = isl_ast_build_replace_pending_by_guard(build, pending); guard = isl_map_domain(isl_map_copy(map)); guard = isl_set_compute_divs(guard); guard = isl_set_coalesce(guard); guard = isl_set_gist(guard, isl_ast_build_get_generated(build)); guard = isl_ast_build_specialize(build, guard); graft = isl_ast_graft_alloc_domain(map, build); graft = at_each_domain(graft, executed, build); isl_ast_build_free(build); isl_map_free(executed); graft = isl_ast_graft_add_guard(graft, guard, data->build); list = isl_ast_graft_list_from_ast_graft(graft); data->list = isl_ast_graft_list_concat(data->list, list); return isl_stat_ok; } /* Generate an AST for a single domain based on * the inverse schedule "executed" and add it to data->list. * * If there is more than one domain element associated to the current * schedule "time", then we need to continue the generation process * in generate_non_single_valued. * Note that the inverse schedule being single-valued may depend * on constraints that are only available in the original context * domain specified by the user. We therefore first introduce * some of the constraints of data->build->domain. In particular, * we intersect with a single-disjunct approximation of this set. * We perform this approximation to avoid further splitting up * the executed relation, possibly introducing a disjunctive guard * on the statement. * * On the other hand, we only perform the test after having taken the gist * of the domain as the resulting map is the one from which the call * expression is constructed. Using this map to construct the call * expression usually yields simpler results in cases where the original * map is not obviously single-valued. * If the original map is obviously single-valued, then the gist * operation is skipped. * * Because we perform the single-valuedness test on the gisted map, * we may in rare cases fail to recognize that the inverse schedule * is single-valued. This becomes problematic if this happens * from the recursive call through generate_non_single_valued * as we would then end up in an infinite recursion. * We therefore check if we are inside a call to generate_non_single_valued * and revert to the ungisted map if the gisted map turns out not to be * single-valued. * * Otherwise, call add_domain to generate a call expression (with guard) and * to call the at_each_domain callback, if any. */ static isl_stat generate_domain(__isl_take isl_map *executed, void *user) { struct isl_generate_domain_data *data = user; isl_set *domain; isl_map *map = NULL; int empty, sv; domain = isl_ast_build_get_domain(data->build); domain = isl_set_from_basic_set(isl_set_simple_hull(domain)); executed = isl_map_intersect_domain(executed, domain); empty = isl_map_is_empty(executed); if (empty < 0) goto error; if (empty) { isl_map_free(executed); return isl_stat_ok; } sv = isl_map_plain_is_single_valued(executed); if (sv < 0) goto error; if (sv) return add_domain(executed, isl_map_copy(executed), data); executed = isl_map_coalesce(executed); map = isl_map_copy(executed); map = isl_ast_build_compute_gist_map_domain(data->build, map); sv = isl_map_is_single_valued(map); if (sv < 0) goto error; if (!sv) { isl_map_free(map); if (data->build->single_valued) map = isl_map_copy(executed); else return generate_non_single_valued(executed, data); } return add_domain(executed, map, data); error: isl_map_free(map); isl_map_free(executed); return isl_stat_error; } /* Call build->create_leaf to a create "leaf" node in the AST, * encapsulate the result in an isl_ast_graft and return the result * as a 1-element list. * * Note that the node returned by the user may be an entire tree. * * Since the node itself cannot enforce any constraints, we turn * all pending constraints into guards and add them to the resulting * graft to ensure that they will be generated. * * Before we pass control to the user, we first clear some information * from the build that is (presumbably) only meaningful * for the current code generation. * This includes the create_leaf callback itself, so we make a copy * of the build first. */ static __isl_give isl_ast_graft_list *call_create_leaf( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { isl_set *guard; isl_ast_node *node; isl_ast_graft *graft; isl_ast_build *user_build; guard = isl_ast_build_get_pending(build); user_build = isl_ast_build_copy(build); user_build = isl_ast_build_replace_pending_by_guard(user_build, isl_set_copy(guard)); user_build = isl_ast_build_set_executed(user_build, executed); user_build = isl_ast_build_clear_local_info(user_build); if (!user_build) node = NULL; else node = build->create_leaf(user_build, build->create_leaf_user); graft = isl_ast_graft_alloc(node, build); graft = isl_ast_graft_add_guard(graft, guard, build); isl_ast_build_free(build); return isl_ast_graft_list_from_ast_graft(graft); } static __isl_give isl_ast_graft_list *build_ast_from_child( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed); /* Generate an AST after having handled the complete schedule * of this call to the code generator or the complete band * if we are generating an AST from a schedule tree. * * If we are inside a band node, then move on to the child of the band. * * If the user has specified a create_leaf callback, control * is passed to the user in call_create_leaf. * * Otherwise, we generate one or more calls for each individual * domain in generate_domain. */ static __isl_give isl_ast_graft_list *generate_inner_level( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { isl_ctx *ctx; struct isl_generate_domain_data data = { build }; if (!build || !executed) goto error; if (isl_ast_build_has_schedule_node(build)) { isl_schedule_node *node; node = isl_ast_build_get_schedule_node(build); build = isl_ast_build_reset_schedule_node(build); return build_ast_from_child(build, node, executed); } if (build->create_leaf) return call_create_leaf(executed, build); ctx = isl_union_map_get_ctx(executed); data.list = isl_ast_graft_list_alloc(ctx, 0); if (isl_union_map_foreach_map(executed, &generate_domain, &data) < 0) data.list = isl_ast_graft_list_free(data.list); if (0) error: data.list = NULL; isl_ast_build_free(build); isl_union_map_free(executed); return data.list; } /* Call the before_each_for callback, if requested by the user. */ static __isl_give isl_ast_node *before_each_for(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build) { isl_id *id; if (!node || !build) return isl_ast_node_free(node); if (!build->before_each_for) return node; id = build->before_each_for(build, build->before_each_for_user); node = isl_ast_node_set_annotation(node, id); return node; } /* Call the after_each_for callback, if requested by the user. */ static __isl_give isl_ast_graft *after_each_for(__isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { if (!graft || !build) return isl_ast_graft_free(graft); if (!build->after_each_for) return graft; graft->node = build->after_each_for(graft->node, build, build->after_each_for_user); if (!graft->node) return isl_ast_graft_free(graft); return graft; } /* Plug in all the know values of the current and outer dimensions * in the domain of "executed". In principle, we only need to plug * in the known value of the current dimension since the values of * outer dimensions have been plugged in already. * However, it turns out to be easier to just plug in all known values. */ static __isl_give isl_union_map *plug_in_values( __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build) { return isl_ast_build_substitute_values_union_map_domain(build, executed); } /* Check if the constraint "c" is a lower bound on dimension "pos", * an upper bound, or independent of dimension "pos". */ static int constraint_type(isl_constraint *c, int pos) { if (isl_constraint_is_lower_bound(c, isl_dim_set, pos)) return 1; if (isl_constraint_is_upper_bound(c, isl_dim_set, pos)) return 2; return 0; } /* Compare the types of the constraints "a" and "b", * resulting in constraints that are independent of "depth" * to be sorted before the lower bounds on "depth", which in * turn are sorted before the upper bounds on "depth". */ static int cmp_constraint(__isl_keep isl_constraint *a, __isl_keep isl_constraint *b, void *user) { int *depth = user; int t1 = constraint_type(a, *depth); int t2 = constraint_type(b, *depth); return t1 - t2; } /* Extract a lower bound on dimension "pos" from constraint "c". * * If the constraint is of the form * * a x + f(...) >= 0 * * then we essentially return * * l = ceil(-f(...)/a) * * However, if the current dimension is strided, then we need to make * sure that the lower bound we construct is of the form * * f + s a * * with f the offset and s the stride. * We therefore compute * * f + s * ceil((l - f)/s) */ static __isl_give isl_aff *lower_bound(__isl_keep isl_constraint *c, int pos, __isl_keep isl_ast_build *build) { isl_aff *aff; aff = isl_constraint_get_bound(c, isl_dim_set, pos); aff = isl_aff_ceil(aff); if (isl_ast_build_has_stride(build, pos)) { isl_aff *offset; isl_val *stride; offset = isl_ast_build_get_offset(build, pos); stride = isl_ast_build_get_stride(build, pos); aff = isl_aff_sub(aff, isl_aff_copy(offset)); aff = isl_aff_scale_down_val(aff, isl_val_copy(stride)); aff = isl_aff_ceil(aff); aff = isl_aff_scale_val(aff, stride); aff = isl_aff_add(aff, offset); } aff = isl_ast_build_compute_gist_aff(build, aff); return aff; } /* Return the exact lower bound (or upper bound if "upper" is set) * of "domain" as a piecewise affine expression. * * If we are computing a lower bound (of a strided dimension), then * we need to make sure it is of the form * * f + s a * * where f is the offset and s is the stride. * We therefore need to include the stride constraint before computing * the minimum. */ static __isl_give isl_pw_aff *exact_bound(__isl_keep isl_set *domain, __isl_keep isl_ast_build *build, int upper) { isl_set *stride; isl_map *it_map; isl_pw_aff *pa; isl_pw_multi_aff *pma; domain = isl_set_copy(domain); if (!upper) { stride = isl_ast_build_get_stride_constraint(build); domain = isl_set_intersect(domain, stride); } it_map = isl_ast_build_map_to_iterator(build, domain); if (upper) pma = isl_map_lexmax_pw_multi_aff(it_map); else pma = isl_map_lexmin_pw_multi_aff(it_map); pa = isl_pw_multi_aff_get_pw_aff(pma, 0); isl_pw_multi_aff_free(pma); pa = isl_ast_build_compute_gist_pw_aff(build, pa); pa = isl_pw_aff_coalesce(pa); return pa; } /* Callback for sorting the isl_pw_aff_list passed to reduce_list and * remove_redundant_lower_bounds. */ static int reduce_list_cmp(__isl_keep isl_pw_aff *a, __isl_keep isl_pw_aff *b, void *user) { return isl_pw_aff_plain_cmp(a, b); } /* Given a list of lower bounds "list", remove those that are redundant * with respect to the other bounds in "list" and the domain of "build". * * We first sort the bounds in the same way as they would be sorted * by set_for_node_expressions so that we can try and remove the last * bounds first. * * For a lower bound to be effective, there needs to be at least * one domain element for which it is larger than all other lower bounds. * For each lower bound we therefore intersect the domain with * the conditions that it is larger than all other bounds and * check whether the result is empty. If so, the bound can be removed. */ static __isl_give isl_pw_aff_list *remove_redundant_lower_bounds( __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) { int i, j, n; isl_set *domain; list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL); if (!list) return NULL; n = isl_pw_aff_list_n_pw_aff(list); if (n <= 1) return list; domain = isl_ast_build_get_domain(build); for (i = n - 1; i >= 0; --i) { isl_pw_aff *pa_i; isl_set *domain_i; int empty; domain_i = isl_set_copy(domain); pa_i = isl_pw_aff_list_get_pw_aff(list, i); for (j = 0; j < n; ++j) { isl_pw_aff *pa_j; isl_set *better; if (j == i) continue; pa_j = isl_pw_aff_list_get_pw_aff(list, j); better = isl_pw_aff_gt_set(isl_pw_aff_copy(pa_i), pa_j); domain_i = isl_set_intersect(domain_i, better); } empty = isl_set_is_empty(domain_i); isl_set_free(domain_i); isl_pw_aff_free(pa_i); if (empty < 0) goto error; if (!empty) continue; list = isl_pw_aff_list_drop(list, i, 1); n--; } isl_set_free(domain); return list; error: isl_set_free(domain); return isl_pw_aff_list_free(list); } /* Extract a lower bound on dimension "pos" from each constraint * in "constraints" and return the list of lower bounds. * If "constraints" has zero elements, then we extract a lower bound * from "domain" instead. * * If the current dimension is strided, then the lower bound * is adjusted by lower_bound to match the stride information. * This modification may make one or more lower bounds redundant * with respect to the other lower bounds. We therefore check * for this condition and remove the redundant lower bounds. */ static __isl_give isl_pw_aff_list *lower_bounds( __isl_keep isl_constraint_list *constraints, int pos, __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_pw_aff_list *list; int i, n; if (!build) return NULL; n = isl_constraint_list_n_constraint(constraints); if (n == 0) { isl_pw_aff *pa; pa = exact_bound(domain, build, 0); return isl_pw_aff_list_from_pw_aff(pa); } ctx = isl_ast_build_get_ctx(build); list = isl_pw_aff_list_alloc(ctx,n); for (i = 0; i < n; ++i) { isl_aff *aff; isl_constraint *c; c = isl_constraint_list_get_constraint(constraints, i); aff = lower_bound(c, pos, build); isl_constraint_free(c); list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff)); } if (isl_ast_build_has_stride(build, pos)) list = remove_redundant_lower_bounds(list, build); return list; } /* Extract an upper bound on dimension "pos" from each constraint * in "constraints" and return the list of upper bounds. * If "constraints" has zero elements, then we extract an upper bound * from "domain" instead. */ static __isl_give isl_pw_aff_list *upper_bounds( __isl_keep isl_constraint_list *constraints, int pos, __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_pw_aff_list *list; int i, n; n = isl_constraint_list_n_constraint(constraints); if (n == 0) { isl_pw_aff *pa; pa = exact_bound(domain, build, 1); return isl_pw_aff_list_from_pw_aff(pa); } ctx = isl_ast_build_get_ctx(build); list = isl_pw_aff_list_alloc(ctx,n); for (i = 0; i < n; ++i) { isl_aff *aff; isl_constraint *c; c = isl_constraint_list_get_constraint(constraints, i); aff = isl_constraint_get_bound(c, isl_dim_set, pos); isl_constraint_free(c); aff = isl_aff_floor(aff); list = isl_pw_aff_list_add(list, isl_pw_aff_from_aff(aff)); } return list; } /* Return an isl_ast_expr that performs the reduction of type "type" * on AST expressions corresponding to the elements in "list". * * The list is assumed to contain at least one element. * If the list contains exactly one element, then the returned isl_ast_expr * simply computes that affine expression. * If the list contains more than one element, then we sort it * using a fairly abitrary but hopefully reasonably stable order. */ static __isl_give isl_ast_expr *reduce_list(enum isl_ast_op_type type, __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build) { int i, n; isl_ctx *ctx; isl_ast_expr *expr; if (!list) return NULL; n = isl_pw_aff_list_n_pw_aff(list); if (n == 1) return isl_ast_build_expr_from_pw_aff_internal(build, isl_pw_aff_list_get_pw_aff(list, 0)); ctx = isl_pw_aff_list_get_ctx(list); expr = isl_ast_expr_alloc_op(ctx, type, n); if (!expr) return NULL; list = isl_pw_aff_list_copy(list); list = isl_pw_aff_list_sort(list, &reduce_list_cmp, NULL); if (!list) return isl_ast_expr_free(expr); for (i = 0; i < n; ++i) { isl_ast_expr *expr_i; expr_i = isl_ast_build_expr_from_pw_aff_internal(build, isl_pw_aff_list_get_pw_aff(list, i)); if (!expr_i) goto error; expr->u.op.args[i] = expr_i; } isl_pw_aff_list_free(list); return expr; error: isl_pw_aff_list_free(list); isl_ast_expr_free(expr); return NULL; } /* Add guards implied by the "generated constraints", * but not (necessarily) enforced by the generated AST to "guard". * In particular, if there is any stride constraints, * then add the guard implied by those constraints. * If we have generated a degenerate loop, then add the guard * implied by "bounds" on the outer dimensions, i.e., the guard * that ensures that the single value actually exists. * Since there may also be guards implied by a combination * of these constraints, we first combine them before * deriving the implied constraints. */ static __isl_give isl_set *add_implied_guards(__isl_take isl_set *guard, int degenerate, __isl_keep isl_basic_set *bounds, __isl_keep isl_ast_build *build) { int depth, has_stride; isl_space *space; isl_set *dom, *set; depth = isl_ast_build_get_depth(build); has_stride = isl_ast_build_has_stride(build, depth); if (!has_stride && !degenerate) return guard; space = isl_basic_set_get_space(bounds); dom = isl_set_universe(space); if (degenerate) { bounds = isl_basic_set_copy(bounds); bounds = isl_basic_set_drop_constraints_not_involving_dims( bounds, isl_dim_set, depth, 1); set = isl_set_from_basic_set(bounds); dom = isl_set_intersect(dom, set); } if (has_stride) { set = isl_ast_build_get_stride_constraint(build); dom = isl_set_intersect(dom, set); } dom = isl_set_eliminate(dom, isl_dim_set, depth, 1); dom = isl_ast_build_compute_gist(build, dom); guard = isl_set_intersect(guard, dom); return guard; } /* Update "graft" based on "sub_build" for the degenerate case. * * "build" is the build in which graft->node was created * "sub_build" contains information about the current level itself, * including the single value attained. * * We set the initialization part of the for loop to the single * value attained by the current dimension. * The increment and condition are not strictly needed as the are known * to be "1" and "iterator <= value" respectively. */ static __isl_give isl_ast_graft *refine_degenerate( __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) { isl_pw_aff *value; if (!graft || !sub_build) return isl_ast_graft_free(graft); value = isl_pw_aff_copy(sub_build->value); graft->node->u.f.init = isl_ast_build_expr_from_pw_aff_internal(build, value); if (!graft->node->u.f.init) return isl_ast_graft_free(graft); return graft; } /* Return the intersection of constraints in "list" as a set. */ static __isl_give isl_set *intersect_constraints( __isl_keep isl_constraint_list *list) { int i, n; isl_basic_set *bset; n = isl_constraint_list_n_constraint(list); if (n < 1) isl_die(isl_constraint_list_get_ctx(list), isl_error_internal, "expecting at least one constraint", return NULL); bset = isl_basic_set_from_constraint( isl_constraint_list_get_constraint(list, 0)); for (i = 1; i < n; ++i) { isl_basic_set *bset_i; bset_i = isl_basic_set_from_constraint( isl_constraint_list_get_constraint(list, i)); bset = isl_basic_set_intersect(bset, bset_i); } return isl_set_from_basic_set(bset); } /* Compute the constraints on the outer dimensions enforced by * graft->node and add those constraints to graft->enforced, * in case the upper bound is expressed as a set "upper". * * In particular, if l(...) is a lower bound in "lower", and * * -a i + f(...) >= 0 or a i <= f(...) * * is an upper bound ocnstraint on the current dimension i, * then the for loop enforces the constraint * * -a l(...) + f(...) >= 0 or a l(...) <= f(...) * * We therefore simply take each lower bound in turn, plug it into * the upper bounds and compute the intersection over all lower bounds. * * If a lower bound is a rational expression, then * isl_basic_set_preimage_multi_aff will force this rational * expression to have only integer values. However, the loop * itself does not enforce this integrality constraint. We therefore * use the ceil of the lower bounds instead of the lower bounds themselves. * Other constraints will make sure that the for loop is only executed * when each of the lower bounds attains an integral value. * In particular, potentially rational values only occur in * lower_bound if the offset is a (seemingly) rational expression, * but then outer conditions will make sure that this rational expression * only attains integer values. */ static __isl_give isl_ast_graft *set_enforced_from_set( __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, int pos, __isl_keep isl_set *upper) { isl_space *space; isl_basic_set *enforced; isl_pw_multi_aff *pma; int i, n; if (!graft || !lower) return isl_ast_graft_free(graft); space = isl_set_get_space(upper); enforced = isl_basic_set_universe(isl_space_copy(space)); space = isl_space_map_from_set(space); pma = isl_pw_multi_aff_identity(space); n = isl_pw_aff_list_n_pw_aff(lower); for (i = 0; i < n; ++i) { isl_pw_aff *pa; isl_set *enforced_i; isl_basic_set *hull; isl_pw_multi_aff *pma_i; pa = isl_pw_aff_list_get_pw_aff(lower, i); pa = isl_pw_aff_ceil(pa); pma_i = isl_pw_multi_aff_copy(pma); pma_i = isl_pw_multi_aff_set_pw_aff(pma_i, pos, pa); enforced_i = isl_set_copy(upper); enforced_i = isl_set_preimage_pw_multi_aff(enforced_i, pma_i); hull = isl_set_simple_hull(enforced_i); enforced = isl_basic_set_intersect(enforced, hull); } isl_pw_multi_aff_free(pma); graft = isl_ast_graft_enforce(graft, enforced); return graft; } /* Compute the constraints on the outer dimensions enforced by * graft->node and add those constraints to graft->enforced, * in case the upper bound is expressed as * a list of affine expressions "upper". * * The enforced condition is that each lower bound expression is less * than or equal to each upper bound expression. */ static __isl_give isl_ast_graft *set_enforced_from_list( __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, __isl_keep isl_pw_aff_list *upper) { isl_set *cond; isl_basic_set *enforced; lower = isl_pw_aff_list_copy(lower); upper = isl_pw_aff_list_copy(upper); cond = isl_pw_aff_list_le_set(lower, upper); enforced = isl_set_simple_hull(cond); graft = isl_ast_graft_enforce(graft, enforced); return graft; } /* Does "aff" have a negative constant term? */ static isl_stat aff_constant_is_negative(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user) { int *neg = user; isl_val *v; v = isl_aff_get_constant_val(aff); *neg = isl_val_is_neg(v); isl_val_free(v); isl_set_free(set); isl_aff_free(aff); return *neg ? isl_stat_ok : isl_stat_error; } /* Does "pa" have a negative constant term over its entire domain? */ static isl_stat pw_aff_constant_is_negative(__isl_take isl_pw_aff *pa, void *user) { isl_stat r; int *neg = user; r = isl_pw_aff_foreach_piece(pa, &aff_constant_is_negative, user); isl_pw_aff_free(pa); return (*neg && r >= 0) ? isl_stat_ok : isl_stat_error; } /* Does each element in "list" have a negative constant term? * * The callback terminates the iteration as soon an element has been * found that does not have a negative constant term. */ static int list_constant_is_negative(__isl_keep isl_pw_aff_list *list) { int neg = 1; if (isl_pw_aff_list_foreach(list, &pw_aff_constant_is_negative, &neg) < 0 && neg) return -1; return neg; } /* Add 1 to each of the elements in "list", where each of these elements * is defined over the internal schedule space of "build". */ static __isl_give isl_pw_aff_list *list_add_one( __isl_take isl_pw_aff_list *list, __isl_keep isl_ast_build *build) { int i, n; isl_space *space; isl_aff *aff; isl_pw_aff *one; space = isl_ast_build_get_space(build, 1); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_add_constant_si(aff, 1); one = isl_pw_aff_from_aff(aff); n = isl_pw_aff_list_n_pw_aff(list); for (i = 0; i < n; ++i) { isl_pw_aff *pa; pa = isl_pw_aff_list_get_pw_aff(list, i); pa = isl_pw_aff_add(pa, isl_pw_aff_copy(one)); list = isl_pw_aff_list_set_pw_aff(list, i, pa); } isl_pw_aff_free(one); return list; } /* Set the condition part of the for node graft->node in case * the upper bound is represented as a list of piecewise affine expressions. * * In particular, set the condition to * * iterator <= min(list of upper bounds) * * If each of the upper bounds has a negative constant term, then * set the condition to * * iterator < min(list of (upper bound + 1)s) * */ static __isl_give isl_ast_graft *set_for_cond_from_list( __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *list, __isl_keep isl_ast_build *build) { int neg; isl_ast_expr *bound, *iterator, *cond; enum isl_ast_op_type type = isl_ast_op_le; if (!graft || !list) return isl_ast_graft_free(graft); neg = list_constant_is_negative(list); if (neg < 0) return isl_ast_graft_free(graft); list = isl_pw_aff_list_copy(list); if (neg) { list = list_add_one(list, build); type = isl_ast_op_lt; } bound = reduce_list(isl_ast_op_min, list, build); iterator = isl_ast_expr_copy(graft->node->u.f.iterator); cond = isl_ast_expr_alloc_binary(type, iterator, bound); graft->node->u.f.cond = cond; isl_pw_aff_list_free(list); if (!graft->node->u.f.cond) return isl_ast_graft_free(graft); return graft; } /* Set the condition part of the for node graft->node in case * the upper bound is represented as a set. */ static __isl_give isl_ast_graft *set_for_cond_from_set( __isl_take isl_ast_graft *graft, __isl_keep isl_set *set, __isl_keep isl_ast_build *build) { isl_ast_expr *cond; if (!graft) return NULL; cond = isl_ast_build_expr_from_set_internal(build, isl_set_copy(set)); graft->node->u.f.cond = cond; if (!graft->node->u.f.cond) return isl_ast_graft_free(graft); return graft; } /* Construct an isl_ast_expr for the increment (i.e., stride) of * the current dimension. */ static __isl_give isl_ast_expr *for_inc(__isl_keep isl_ast_build *build) { int depth; isl_val *v; isl_ctx *ctx; if (!build) return NULL; ctx = isl_ast_build_get_ctx(build); depth = isl_ast_build_get_depth(build); if (!isl_ast_build_has_stride(build, depth)) return isl_ast_expr_alloc_int_si(ctx, 1); v = isl_ast_build_get_stride(build, depth); return isl_ast_expr_from_val(v); } /* Should we express the loop condition as * * iterator <= min(list of upper bounds) * * or as a conjunction of constraints? * * The first is constructed from a list of upper bounds. * The second is constructed from a set. * * If there are no upper bounds in "constraints", then this could mean * that "domain" simply doesn't have an upper bound or that we didn't * pick any upper bound. In the first case, we want to generate the * loop condition as a(n empty) conjunction of constraints * In the second case, we will compute * a single upper bound from "domain" and so we use the list form. * * If there are upper bounds in "constraints", * then we use the list form iff the atomic_upper_bound option is set. */ static int use_upper_bound_list(isl_ctx *ctx, int n_upper, __isl_keep isl_set *domain, int depth) { if (n_upper > 0) return isl_options_get_ast_build_atomic_upper_bound(ctx); else return isl_set_dim_has_upper_bound(domain, isl_dim_set, depth); } /* Fill in the expressions of the for node in graft->node. * * In particular, * - set the initialization part of the loop to the maximum of the lower bounds * - extract the increment from the stride of the current dimension * - construct the for condition either based on a list of upper bounds * or on a set of upper bound constraints. */ static __isl_give isl_ast_graft *set_for_node_expressions( __isl_take isl_ast_graft *graft, __isl_keep isl_pw_aff_list *lower, int use_list, __isl_keep isl_pw_aff_list *upper_list, __isl_keep isl_set *upper_set, __isl_keep isl_ast_build *build) { isl_ast_node *node; if (!graft) return NULL; build = isl_ast_build_copy(build); node = graft->node; node->u.f.init = reduce_list(isl_ast_op_max, lower, build); node->u.f.inc = for_inc(build); if (use_list) graft = set_for_cond_from_list(graft, upper_list, build); else graft = set_for_cond_from_set(graft, upper_set, build); isl_ast_build_free(build); if (!node->u.f.iterator || !node->u.f.init || !node->u.f.cond || !node->u.f.inc) return isl_ast_graft_free(graft); return graft; } /* Update "graft" based on "bounds" and "domain" for the generic, * non-degenerate, case. * * "c_lower" and "c_upper" contain the lower and upper bounds * that the loop node should express. * "domain" is the subset of the intersection of the constraints * for which some code is executed. * * There may be zero lower bounds or zero upper bounds in "constraints" * in case the list of constraints was created * based on the atomic option or based on separation with explicit bounds. * In that case, we use "domain" to derive lower and/or upper bounds. * * We first compute a list of one or more lower bounds. * * Then we decide if we want to express the condition as * * iterator <= min(list of upper bounds) * * or as a conjunction of constraints. * * The set of enforced constraints is then computed either based on * a list of upper bounds or on a set of upper bound constraints. * We do not compute any enforced constraints if we were forced * to compute a lower or upper bound using exact_bound. The domains * of the resulting expressions may imply some bounds on outer dimensions * that we do not want to appear in the enforced constraints since * they are not actually enforced by the corresponding code. * * Finally, we fill in the expressions of the for node. */ static __isl_give isl_ast_graft *refine_generic_bounds( __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *c_lower, __isl_take isl_constraint_list *c_upper, __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) { int depth; isl_ctx *ctx; isl_pw_aff_list *lower; int use_list; isl_set *upper_set = NULL; isl_pw_aff_list *upper_list = NULL; int n_lower, n_upper; if (!graft || !c_lower || !c_upper || !build) goto error; depth = isl_ast_build_get_depth(build); ctx = isl_ast_graft_get_ctx(graft); n_lower = isl_constraint_list_n_constraint(c_lower); n_upper = isl_constraint_list_n_constraint(c_upper); use_list = use_upper_bound_list(ctx, n_upper, domain, depth); lower = lower_bounds(c_lower, depth, domain, build); if (use_list) upper_list = upper_bounds(c_upper, depth, domain, build); else if (n_upper > 0) upper_set = intersect_constraints(c_upper); else upper_set = isl_set_universe(isl_set_get_space(domain)); if (n_lower == 0 || n_upper == 0) ; else if (use_list) graft = set_enforced_from_list(graft, lower, upper_list); else graft = set_enforced_from_set(graft, lower, depth, upper_set); graft = set_for_node_expressions(graft, lower, use_list, upper_list, upper_set, build); isl_pw_aff_list_free(lower); isl_pw_aff_list_free(upper_list); isl_set_free(upper_set); isl_constraint_list_free(c_lower); isl_constraint_list_free(c_upper); return graft; error: isl_constraint_list_free(c_lower); isl_constraint_list_free(c_upper); return isl_ast_graft_free(graft); } /* Internal data structure used inside count_constraints to keep * track of the number of constraints that are independent of dimension "pos", * the lower bounds in "pos" and the upper bounds in "pos". */ struct isl_ast_count_constraints_data { int pos; int n_indep; int n_lower; int n_upper; }; /* Increment data->n_indep, data->lower or data->upper depending * on whether "c" is independenct of dimensions data->pos, * a lower bound or an upper bound. */ static isl_stat count_constraints(__isl_take isl_constraint *c, void *user) { struct isl_ast_count_constraints_data *data = user; if (isl_constraint_is_lower_bound(c, isl_dim_set, data->pos)) data->n_lower++; else if (isl_constraint_is_upper_bound(c, isl_dim_set, data->pos)) data->n_upper++; else data->n_indep++; isl_constraint_free(c); return isl_stat_ok; } /* Update "graft" based on "bounds" and "domain" for the generic, * non-degenerate, case. * * "list" respresent the list of bounds that need to be encoded by * the for loop. Only the constraints that involve the iterator * are relevant here. The other constraints are taken care of by * the caller and are included in the generated constraints of "build". * "domain" is the subset of the intersection of the constraints * for which some code is executed. * "build" is the build in which graft->node was created. * * We separate lower bounds, upper bounds and constraints that * are independent of the loop iterator. * * The actual for loop bounds are generated in refine_generic_bounds. */ static __isl_give isl_ast_graft *refine_generic_split( __isl_take isl_ast_graft *graft, __isl_take isl_constraint_list *list, __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) { struct isl_ast_count_constraints_data data; isl_constraint_list *lower; isl_constraint_list *upper; if (!list) return isl_ast_graft_free(graft); data.pos = isl_ast_build_get_depth(build); list = isl_constraint_list_sort(list, &cmp_constraint, &data.pos); if (!list) return isl_ast_graft_free(graft); data.n_indep = data.n_lower = data.n_upper = 0; if (isl_constraint_list_foreach(list, &count_constraints, &data) < 0) { isl_constraint_list_free(list); return isl_ast_graft_free(graft); } lower = isl_constraint_list_drop(list, 0, data.n_indep); upper = isl_constraint_list_copy(lower); lower = isl_constraint_list_drop(lower, data.n_lower, data.n_upper); upper = isl_constraint_list_drop(upper, 0, data.n_lower); return refine_generic_bounds(graft, lower, upper, domain, build); } /* Update "graft" based on "bounds" and "domain" for the generic, * non-degenerate, case. * * "bounds" respresent the bounds that need to be encoded by * the for loop (or a guard around the for loop). * "domain" is the subset of "bounds" for which some code is executed. * "build" is the build in which graft->node was created. * * We break up "bounds" into a list of constraints and continue with * refine_generic_split. */ static __isl_give isl_ast_graft *refine_generic( __isl_take isl_ast_graft *graft, __isl_keep isl_basic_set *bounds, __isl_keep isl_set *domain, __isl_keep isl_ast_build *build) { isl_constraint_list *list; if (!build || !graft) return isl_ast_graft_free(graft); list = isl_basic_set_get_constraint_list(bounds); graft = refine_generic_split(graft, list, domain, build); return graft; } /* Create a for node for the current level. * * Mark the for node degenerate if "degenerate" is set. */ static __isl_give isl_ast_node *create_for(__isl_keep isl_ast_build *build, int degenerate) { int depth; isl_id *id; isl_ast_node *node; if (!build) return NULL; depth = isl_ast_build_get_depth(build); id = isl_ast_build_get_iterator_id(build, depth); node = isl_ast_node_alloc_for(id); if (degenerate) node = isl_ast_node_for_mark_degenerate(node); return node; } /* If the ast_build_exploit_nested_bounds option is set, then return * the constraints enforced by all elements in "list". * Otherwise, return the universe. */ static __isl_give isl_basic_set *extract_shared_enforced( __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_space *space; if (!list) return NULL; ctx = isl_ast_graft_list_get_ctx(list); if (isl_options_get_ast_build_exploit_nested_bounds(ctx)) return isl_ast_graft_list_extract_shared_enforced(list, build); space = isl_ast_build_get_space(build, 1); return isl_basic_set_universe(space); } /* Return the pending constraints of "build" that are not already taken * care of (by a combination of "enforced" and the generated constraints * of "build"). */ static __isl_give isl_set *extract_pending(__isl_keep isl_ast_build *build, __isl_keep isl_basic_set *enforced) { isl_set *guard, *context; guard = isl_ast_build_get_pending(build); context = isl_set_from_basic_set(isl_basic_set_copy(enforced)); context = isl_set_intersect(context, isl_ast_build_get_generated(build)); return isl_set_gist(guard, context); } /* Create an AST node for the current dimension based on * the schedule domain "bounds" and return the node encapsulated * in an isl_ast_graft. * * "executed" is the current inverse schedule, taking into account * the bounds in "bounds" * "domain" is the domain of "executed", with inner dimensions projected out. * It may be a strict subset of "bounds" in case "bounds" was created * based on the atomic option or based on separation with explicit bounds. * * "domain" may satisfy additional equalities that result * from intersecting "executed" with "bounds" in add_node. * It may also satisfy some global constraints that were dropped out because * we performed separation with explicit bounds. * The very first step is then to copy these constraints to "bounds". * * Since we may be calling before_each_for and after_each_for * callbacks, we record the current inverse schedule in the build. * * We consider three builds, * "build" is the one in which the current level is created, * "body_build" is the build in which the next level is created, * "sub_build" is essentially the same as "body_build", except that * the depth has not been increased yet. * * "build" already contains information (in strides and offsets) * about the strides at the current level, but this information is not * reflected in the build->domain. * We first add this information and the "bounds" to the sub_build->domain. * isl_ast_build_set_loop_bounds adds the stride information and * checks whether the current dimension attains * only a single value and whether this single value can be represented using * a single affine expression. * In the first case, the current level is considered "degenerate". * In the second, sub-case, the current level is considered "eliminated". * Eliminated levels don't need to be reflected in the AST since we can * simply plug in the affine expression. For degenerate, but non-eliminated, * levels, we do introduce a for node, but mark is as degenerate so that * it can be printed as an assignment of the single value to the loop * "iterator". * * If the current level is eliminated, we explicitly plug in the value * for the current level found by isl_ast_build_set_loop_bounds in the * inverse schedule. This ensures that if we are working on a slice * of the domain based on information available in the inverse schedule * and the build domain, that then this information is also reflected * in the inverse schedule. This operation also eliminates the current * dimension from the inverse schedule making sure no inner dimensions depend * on the current dimension. Otherwise, we create a for node, marking * it degenerate if appropriate. The initial for node is still incomplete * and will be completed in either refine_degenerate or refine_generic. * * We then generate a sequence of grafts for the next level, * create a surrounding graft for the current level and insert * the for node we created (if the current level is not eliminated). * Before creating a graft for the current level, we first extract * hoistable constraints from the child guards and combine them * with the pending constraints in the build. These constraints * are used to simplify the child guards and then added to the guard * of the current graft to ensure that they will be generated. * If the hoisted guard is a disjunction, then we use it directly * to gist the guards on the children before intersect it with the * pending constraints. We do so because this disjunction is typically * identical to the guards on the children such that these guards * can be effectively removed completely. After the intersection, * the gist operation would have a harder time figuring this out. * * Finally, we set the bounds of the for loop in either * refine_degenerate or refine_generic. * We do so in a context where the pending constraints of the build * have been replaced by the guard of the current graft. */ static __isl_give isl_ast_graft *create_node_scaled( __isl_take isl_union_map *executed, __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, __isl_take isl_ast_build *build) { int depth; int degenerate, eliminated; isl_basic_set *hull; isl_basic_set *enforced; isl_set *guard, *hoisted; isl_ast_node *node = NULL; isl_ast_graft *graft; isl_ast_graft_list *children; isl_ast_build *sub_build; isl_ast_build *body_build; domain = isl_ast_build_eliminate_divs(build, domain); domain = isl_set_detect_equalities(domain); hull = isl_set_unshifted_simple_hull(isl_set_copy(domain)); bounds = isl_basic_set_intersect(bounds, hull); build = isl_ast_build_set_executed(build, isl_union_map_copy(executed)); depth = isl_ast_build_get_depth(build); sub_build = isl_ast_build_copy(build); bounds = isl_basic_set_remove_redundancies(bounds); bounds = isl_ast_build_specialize_basic_set(sub_build, bounds); sub_build = isl_ast_build_set_loop_bounds(sub_build, isl_basic_set_copy(bounds)); degenerate = isl_ast_build_has_value(sub_build); eliminated = isl_ast_build_has_affine_value(sub_build, depth); if (degenerate < 0 || eliminated < 0) executed = isl_union_map_free(executed); if (!degenerate) bounds = isl_ast_build_compute_gist_basic_set(build, bounds); sub_build = isl_ast_build_set_pending_generated(sub_build, isl_basic_set_copy(bounds)); if (eliminated) executed = plug_in_values(executed, sub_build); else node = create_for(build, degenerate); body_build = isl_ast_build_copy(sub_build); body_build = isl_ast_build_increase_depth(body_build); if (!eliminated) node = before_each_for(node, body_build); children = generate_next_level(executed, isl_ast_build_copy(body_build)); enforced = extract_shared_enforced(children, build); guard = extract_pending(sub_build, enforced); hoisted = isl_ast_graft_list_extract_hoistable_guard(children, build); if (isl_set_n_basic_set(hoisted) > 1) children = isl_ast_graft_list_gist_guards(children, isl_set_copy(hoisted)); guard = isl_set_intersect(guard, hoisted); if (!eliminated) guard = add_implied_guards(guard, degenerate, bounds, build); graft = isl_ast_graft_alloc_from_children(children, isl_set_copy(guard), enforced, build, sub_build); if (!eliminated) { isl_ast_build *for_build; graft = isl_ast_graft_insert_for(graft, node); for_build = isl_ast_build_copy(build); for_build = isl_ast_build_replace_pending_by_guard(for_build, isl_set_copy(guard)); if (degenerate) graft = refine_degenerate(graft, for_build, sub_build); else graft = refine_generic(graft, bounds, domain, for_build); isl_ast_build_free(for_build); } isl_set_free(guard); if (!eliminated) graft = after_each_for(graft, body_build); isl_ast_build_free(body_build); isl_ast_build_free(sub_build); isl_ast_build_free(build); isl_basic_set_free(bounds); isl_set_free(domain); return graft; } /* Internal data structure for checking if all constraints involving * the input dimension "depth" are such that the other coefficients * are multiples of "m", reducing "m" if they are not. * If "m" is reduced all the way down to "1", then the check has failed * and we break out of the iteration. */ struct isl_check_scaled_data { int depth; isl_val *m; }; /* If constraint "c" involves the input dimension data->depth, * then make sure that all the other coefficients are multiples of data->m, * reducing data->m if needed. * Break out of the iteration if data->m has become equal to "1". */ static isl_stat constraint_check_scaled(__isl_take isl_constraint *c, void *user) { struct isl_check_scaled_data *data = user; int i, j, n; enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_out, isl_dim_div }; if (!isl_constraint_involves_dims(c, isl_dim_in, data->depth, 1)) { isl_constraint_free(c); return isl_stat_ok; } for (i = 0; i < 4; ++i) { n = isl_constraint_dim(c, t[i]); for (j = 0; j < n; ++j) { isl_val *d; if (t[i] == isl_dim_in && j == data->depth) continue; if (!isl_constraint_involves_dims(c, t[i], j, 1)) continue; d = isl_constraint_get_coefficient_val(c, t[i], j); data->m = isl_val_gcd(data->m, d); if (isl_val_is_one(data->m)) break; } if (j < n) break; } isl_constraint_free(c); return i < 4 ? isl_stat_error : isl_stat_ok; } /* For each constraint of "bmap" that involves the input dimension data->depth, * make sure that all the other coefficients are multiples of data->m, * reducing data->m if needed. * Break out of the iteration if data->m has become equal to "1". */ static isl_stat basic_map_check_scaled(__isl_take isl_basic_map *bmap, void *user) { isl_stat r; r = isl_basic_map_foreach_constraint(bmap, &constraint_check_scaled, user); isl_basic_map_free(bmap); return r; } /* For each constraint of "map" that involves the input dimension data->depth, * make sure that all the other coefficients are multiples of data->m, * reducing data->m if needed. * Break out of the iteration if data->m has become equal to "1". */ static isl_stat map_check_scaled(__isl_take isl_map *map, void *user) { isl_stat r; r = isl_map_foreach_basic_map(map, &basic_map_check_scaled, user); isl_map_free(map); return r; } /* Create an AST node for the current dimension based on * the schedule domain "bounds" and return the node encapsulated * in an isl_ast_graft. * * "executed" is the current inverse schedule, taking into account * the bounds in "bounds" * "domain" is the domain of "executed", with inner dimensions projected out. * * * Before moving on to the actual AST node construction in create_node_scaled, * we first check if the current dimension is strided and if we can scale * down this stride. Note that we only do this if the ast_build_scale_strides * option is set. * * In particular, let the current dimension take on values * * f + s a * * with a an integer. We check if we can find an integer m that (obviously) * divides both f and s. * * If so, we check if the current dimension only appears in constraints * where the coefficients of the other variables are multiples of m. * We perform this extra check to avoid the risk of introducing * divisions by scaling down the current dimension. * * If so, we scale the current dimension down by a factor of m. * That is, we plug in * * i = m i' (1) * * Note that in principle we could always scale down strided loops * by plugging in * * i = f + s i' * * but this may result in i' taking on larger values than the original i, * due to the shift by "f". * By constrast, the scaling in (1) can only reduce the (absolute) value "i". */ static __isl_give isl_ast_graft *create_node(__isl_take isl_union_map *executed, __isl_take isl_basic_set *bounds, __isl_take isl_set *domain, __isl_take isl_ast_build *build) { struct isl_check_scaled_data data; isl_ctx *ctx; isl_aff *offset; isl_val *d; ctx = isl_ast_build_get_ctx(build); if (!isl_options_get_ast_build_scale_strides(ctx)) return create_node_scaled(executed, bounds, domain, build); data.depth = isl_ast_build_get_depth(build); if (!isl_ast_build_has_stride(build, data.depth)) return create_node_scaled(executed, bounds, domain, build); offset = isl_ast_build_get_offset(build, data.depth); data.m = isl_ast_build_get_stride(build, data.depth); if (!data.m) offset = isl_aff_free(offset); offset = isl_aff_scale_down_val(offset, isl_val_copy(data.m)); d = isl_aff_get_denominator_val(offset); if (!d) executed = isl_union_map_free(executed); if (executed && isl_val_is_divisible_by(data.m, d)) data.m = isl_val_div(data.m, d); else { data.m = isl_val_set_si(data.m, 1); isl_val_free(d); } if (!isl_val_is_one(data.m)) { if (isl_union_map_foreach_map(executed, &map_check_scaled, &data) < 0 && !isl_val_is_one(data.m)) executed = isl_union_map_free(executed); } if (!isl_val_is_one(data.m)) { isl_space *space; isl_multi_aff *ma; isl_aff *aff; isl_map *map; isl_union_map *umap; space = isl_ast_build_get_space(build, 1); space = isl_space_map_from_set(space); ma = isl_multi_aff_identity(space); aff = isl_multi_aff_get_aff(ma, data.depth); aff = isl_aff_scale_val(aff, isl_val_copy(data.m)); ma = isl_multi_aff_set_aff(ma, data.depth, aff); bounds = isl_basic_set_preimage_multi_aff(bounds, isl_multi_aff_copy(ma)); domain = isl_set_preimage_multi_aff(domain, isl_multi_aff_copy(ma)); map = isl_map_reverse(isl_map_from_multi_aff(ma)); umap = isl_union_map_from_map(map); executed = isl_union_map_apply_domain(executed, isl_union_map_copy(umap)); build = isl_ast_build_scale_down(build, isl_val_copy(data.m), umap); } isl_aff_free(offset); isl_val_free(data.m); return create_node_scaled(executed, bounds, domain, build); } /* Add the basic set to the list that "user" points to. */ static isl_stat collect_basic_set(__isl_take isl_basic_set *bset, void *user) { isl_basic_set_list **list = user; *list = isl_basic_set_list_add(*list, bset); return isl_stat_ok; } /* Extract the basic sets of "set" and collect them in an isl_basic_set_list. */ static __isl_give isl_basic_set_list *isl_basic_set_list_from_set( __isl_take isl_set *set) { int n; isl_ctx *ctx; isl_basic_set_list *list; if (!set) return NULL; ctx = isl_set_get_ctx(set); n = isl_set_n_basic_set(set); list = isl_basic_set_list_alloc(ctx, n); if (isl_set_foreach_basic_set(set, &collect_basic_set, &list) < 0) list = isl_basic_set_list_free(list); isl_set_free(set); return list; } /* Generate code for the schedule domain "bounds" * and add the result to "list". * * We mainly detect strides here and check if the bounds do not * conflict with the current build domain * and then pass over control to create_node. * * "bounds" reflects the bounds on the current dimension and possibly * some extra conditions on outer dimensions. * It does not, however, include any divs involving the current dimension, * so it does not capture any stride constraints. * We therefore need to compute that part of the schedule domain that * intersects with "bounds" and derive the strides from the result. */ static __isl_give isl_ast_graft_list *add_node( __isl_take isl_ast_graft_list *list, __isl_take isl_union_map *executed, __isl_take isl_basic_set *bounds, __isl_take isl_ast_build *build) { isl_ast_graft *graft; isl_set *domain = NULL; isl_union_set *uset; int empty, disjoint; uset = isl_union_set_from_basic_set(isl_basic_set_copy(bounds)); executed = isl_union_map_intersect_domain(executed, uset); empty = isl_union_map_is_empty(executed); if (empty < 0) goto error; if (empty) goto done; uset = isl_union_map_domain(isl_union_map_copy(executed)); domain = isl_set_from_union_set(uset); domain = isl_ast_build_specialize(build, domain); domain = isl_set_compute_divs(domain); domain = isl_ast_build_eliminate_inner(build, domain); disjoint = isl_set_is_disjoint(domain, build->domain); if (disjoint < 0) goto error; if (disjoint) goto done; build = isl_ast_build_detect_strides(build, isl_set_copy(domain)); graft = create_node(executed, bounds, domain, isl_ast_build_copy(build)); list = isl_ast_graft_list_add(list, graft); isl_ast_build_free(build); return list; error: list = isl_ast_graft_list_free(list); done: isl_set_free(domain); isl_basic_set_free(bounds); isl_union_map_free(executed); isl_ast_build_free(build); return list; } /* Does any element of i follow or coincide with any element of j * at the current depth for equal values of the outer dimensions? */ static isl_bool domain_follows_at_depth(__isl_keep isl_basic_set *i, __isl_keep isl_basic_set *j, void *user) { int depth = *(int *) user; isl_basic_map *test; isl_bool empty; int l; test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i), isl_basic_set_copy(j)); for (l = 0; l < depth; ++l) test = isl_basic_map_equate(test, isl_dim_in, l, isl_dim_out, l); test = isl_basic_map_order_ge(test, isl_dim_in, depth, isl_dim_out, depth); empty = isl_basic_map_is_empty(test); isl_basic_map_free(test); return empty < 0 ? isl_bool_error : !empty; } /* Split up each element of "list" into a part that is related to "bset" * according to "gt" and a part that is not. * Return a list that consist of "bset" and all the pieces. */ static __isl_give isl_basic_set_list *add_split_on( __isl_take isl_basic_set_list *list, __isl_take isl_basic_set *bset, __isl_keep isl_basic_map *gt) { int i, n; isl_basic_set_list *res; if (!list) bset = isl_basic_set_free(bset); gt = isl_basic_map_copy(gt); gt = isl_basic_map_intersect_domain(gt, isl_basic_set_copy(bset)); n = isl_basic_set_list_n_basic_set(list); res = isl_basic_set_list_from_basic_set(bset); for (i = 0; res && i < n; ++i) { isl_basic_set *bset; isl_set *set1, *set2; isl_basic_map *bmap; int empty; bset = isl_basic_set_list_get_basic_set(list, i); bmap = isl_basic_map_copy(gt); bmap = isl_basic_map_intersect_range(bmap, bset); bset = isl_basic_map_range(bmap); empty = isl_basic_set_is_empty(bset); if (empty < 0) res = isl_basic_set_list_free(res); if (empty) { isl_basic_set_free(bset); bset = isl_basic_set_list_get_basic_set(list, i); res = isl_basic_set_list_add(res, bset); continue; } res = isl_basic_set_list_add(res, isl_basic_set_copy(bset)); set1 = isl_set_from_basic_set(bset); bset = isl_basic_set_list_get_basic_set(list, i); set2 = isl_set_from_basic_set(bset); set1 = isl_set_subtract(set2, set1); set1 = isl_set_make_disjoint(set1); res = isl_basic_set_list_concat(res, isl_basic_set_list_from_set(set1)); } isl_basic_map_free(gt); isl_basic_set_list_free(list); return res; } static __isl_give isl_ast_graft_list *generate_sorted_domains( __isl_keep isl_basic_set_list *domain_list, __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build); /* Internal data structure for add_nodes. * * "executed" and "build" are extra arguments to be passed to add_node. * "list" collects the results. */ struct isl_add_nodes_data { isl_union_map *executed; isl_ast_build *build; isl_ast_graft_list *list; }; /* Generate code for the schedule domains in "scc" * and add the results to "list". * * The domains in "scc" form a strongly connected component in the ordering. * If the number of domains in "scc" is larger than 1, then this means * that we cannot determine a valid ordering for the domains in the component. * This should be fairly rare because the individual domains * have been made disjoint first. * The problem is that the domains may be integrally disjoint but not * rationally disjoint. For example, we may have domains * * { [i,i] : 0 <= i <= 1 } and { [i,1-i] : 0 <= i <= 1 } * * These two domains have an empty intersection, but their rational * relaxations do intersect. It is impossible to order these domains * in the second dimension because the first should be ordered before * the second for outer dimension equal to 0, while it should be ordered * after for outer dimension equal to 1. * * This may happen in particular in case of unrolling since the domain * of each slice is replaced by its simple hull. * * For each basic set i in "scc" and for each of the following basic sets j, * we split off that part of the basic set i that shares the outer dimensions * with j and lies before j in the current dimension. * We collect all the pieces in a new list that replaces "scc". * * While the elements in "scc" should be disjoint, we double-check * this property to avoid running into an infinite recursion in case * they intersect due to some internal error. */ static isl_stat add_nodes(__isl_take isl_basic_set_list *scc, void *user) { struct isl_add_nodes_data *data = user; int i, n, depth; isl_basic_set *bset, *first; isl_basic_set_list *list; isl_space *space; isl_basic_map *gt; n = isl_basic_set_list_n_basic_set(scc); bset = isl_basic_set_list_get_basic_set(scc, 0); if (n == 1) { isl_basic_set_list_free(scc); data->list = add_node(data->list, isl_union_map_copy(data->executed), bset, isl_ast_build_copy(data->build)); return data->list ? isl_stat_ok : isl_stat_error; } depth = isl_ast_build_get_depth(data->build); space = isl_basic_set_get_space(bset); space = isl_space_map_from_set(space); gt = isl_basic_map_universe(space); for (i = 0; i < depth; ++i) gt = isl_basic_map_equate(gt, isl_dim_in, i, isl_dim_out, i); gt = isl_basic_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth); first = isl_basic_set_copy(bset); list = isl_basic_set_list_from_basic_set(bset); for (i = 1; i < n; ++i) { int disjoint; bset = isl_basic_set_list_get_basic_set(scc, i); disjoint = isl_basic_set_is_disjoint(bset, first); if (disjoint < 0) list = isl_basic_set_list_free(list); else if (!disjoint) isl_die(isl_basic_set_list_get_ctx(scc), isl_error_internal, "basic sets in scc are assumed to be disjoint", list = isl_basic_set_list_free(list)); list = add_split_on(list, bset, gt); } isl_basic_set_free(first); isl_basic_map_free(gt); isl_basic_set_list_free(scc); scc = list; data->list = isl_ast_graft_list_concat(data->list, generate_sorted_domains(scc, data->executed, data->build)); isl_basic_set_list_free(scc); return data->list ? isl_stat_ok : isl_stat_error; } /* Sort the domains in "domain_list" according to the execution order * at the current depth (for equal values of the outer dimensions), * generate code for each of them, collecting the results in a list. * If no code is generated (because the intersection of the inverse schedule * with the domains turns out to be empty), then an empty list is returned. * * The caller is responsible for ensuring that the basic sets in "domain_list" * are pair-wise disjoint. It can, however, in principle happen that * two basic sets should be ordered one way for one value of the outer * dimensions and the other way for some other value of the outer dimensions. * We therefore play safe and look for strongly connected components. * The function add_nodes takes care of handling non-trivial components. */ static __isl_give isl_ast_graft_list *generate_sorted_domains( __isl_keep isl_basic_set_list *domain_list, __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) { isl_ctx *ctx; struct isl_add_nodes_data data; int depth; int n; if (!domain_list) return NULL; ctx = isl_basic_set_list_get_ctx(domain_list); n = isl_basic_set_list_n_basic_set(domain_list); data.list = isl_ast_graft_list_alloc(ctx, n); if (n == 0) return data.list; if (n == 1) return add_node(data.list, isl_union_map_copy(executed), isl_basic_set_list_get_basic_set(domain_list, 0), isl_ast_build_copy(build)); depth = isl_ast_build_get_depth(build); data.executed = executed; data.build = build; if (isl_basic_set_list_foreach_scc(domain_list, &domain_follows_at_depth, &depth, &add_nodes, &data) < 0) data.list = isl_ast_graft_list_free(data.list); return data.list; } /* Do i and j share any values for the outer dimensions? */ static isl_bool shared_outer(__isl_keep isl_basic_set *i, __isl_keep isl_basic_set *j, void *user) { int depth = *(int *) user; isl_basic_map *test; isl_bool empty; int l; test = isl_basic_map_from_domain_and_range(isl_basic_set_copy(i), isl_basic_set_copy(j)); for (l = 0; l < depth; ++l) test = isl_basic_map_equate(test, isl_dim_in, l, isl_dim_out, l); empty = isl_basic_map_is_empty(test); isl_basic_map_free(test); return empty < 0 ? isl_bool_error : !empty; } /* Internal data structure for generate_sorted_domains_wrap. * * "n" is the total number of basic sets * "executed" and "build" are extra arguments to be passed * to generate_sorted_domains. * * "single" is set to 1 by generate_sorted_domains_wrap if there * is only a single component. * "list" collects the results. */ struct isl_ast_generate_parallel_domains_data { int n; isl_union_map *executed; isl_ast_build *build; int single; isl_ast_graft_list *list; }; /* Call generate_sorted_domains on "scc", fuse the result into a list * with either zero or one graft and collect the these single element * lists into data->list. * * If there is only one component, i.e., if the number of basic sets * in the current component is equal to the total number of basic sets, * then data->single is set to 1 and the result of generate_sorted_domains * is not fused. */ static isl_stat generate_sorted_domains_wrap(__isl_take isl_basic_set_list *scc, void *user) { struct isl_ast_generate_parallel_domains_data *data = user; isl_ast_graft_list *list; list = generate_sorted_domains(scc, data->executed, data->build); data->single = isl_basic_set_list_n_basic_set(scc) == data->n; if (!data->single) list = isl_ast_graft_list_fuse(list, data->build); if (!data->list) data->list = list; else data->list = isl_ast_graft_list_concat(data->list, list); isl_basic_set_list_free(scc); if (!data->list) return isl_stat_error; return isl_stat_ok; } /* Look for any (weakly connected) components in the "domain_list" * of domains that share some values of the outer dimensions. * That is, domains in different components do not share any values * of the outer dimensions. This means that these components * can be freely reordered. * Within each of the components, we sort the domains according * to the execution order at the current depth. * * If there is more than one component, then generate_sorted_domains_wrap * fuses the result of each call to generate_sorted_domains * into a list with either zero or one graft and collects these (at most) * single element lists into a bigger list. This means that the elements of the * final list can be freely reordered. In particular, we sort them * according to an arbitrary but fixed ordering to ease merging of * graft lists from different components. */ static __isl_give isl_ast_graft_list *generate_parallel_domains( __isl_keep isl_basic_set_list *domain_list, __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) { int depth; struct isl_ast_generate_parallel_domains_data data; if (!domain_list) return NULL; data.n = isl_basic_set_list_n_basic_set(domain_list); if (data.n <= 1) return generate_sorted_domains(domain_list, executed, build); depth = isl_ast_build_get_depth(build); data.list = NULL; data.executed = executed; data.build = build; data.single = 0; if (isl_basic_set_list_foreach_scc(domain_list, &shared_outer, &depth, &generate_sorted_domains_wrap, &data) < 0) data.list = isl_ast_graft_list_free(data.list); if (!data.single) data.list = isl_ast_graft_list_sort_guard(data.list); return data.list; } /* Internal data for separate_domain. * * "explicit" is set if we only want to use explicit bounds. * * "domain" collects the separated domains. */ struct isl_separate_domain_data { isl_ast_build *build; int explicit; isl_set *domain; }; /* Extract implicit bounds on the current dimension for the executed "map". * * The domain of "map" may involve inner dimensions, so we * need to eliminate them. */ static __isl_give isl_set *implicit_bounds(__isl_take isl_map *map, __isl_keep isl_ast_build *build) { isl_set *domain; domain = isl_map_domain(map); domain = isl_ast_build_eliminate(build, domain); return domain; } /* Extract explicit bounds on the current dimension for the executed "map". * * Rather than eliminating the inner dimensions as in implicit_bounds, * we simply drop any constraints involving those inner dimensions. * The idea is that most bounds that are implied by constraints on the * inner dimensions will be enforced by for loops and not by explicit guards. * There is then no need to separate along those bounds. */ static __isl_give isl_set *explicit_bounds(__isl_take isl_map *map, __isl_keep isl_ast_build *build) { isl_set *domain; int depth, dim; dim = isl_map_dim(map, isl_dim_out); map = isl_map_drop_constraints_involving_dims(map, isl_dim_out, 0, dim); domain = isl_map_domain(map); depth = isl_ast_build_get_depth(build); dim = isl_set_dim(domain, isl_dim_set); domain = isl_set_detect_equalities(domain); domain = isl_set_drop_constraints_involving_dims(domain, isl_dim_set, depth + 1, dim - (depth + 1)); domain = isl_set_remove_divs_involving_dims(domain, isl_dim_set, depth, 1); domain = isl_set_remove_unknown_divs(domain); return domain; } /* Split data->domain into pieces that intersect with the range of "map" * and pieces that do not intersect with the range of "map" * and then add that part of the range of "map" that does not intersect * with data->domain. */ static isl_stat separate_domain(__isl_take isl_map *map, void *user) { struct isl_separate_domain_data *data = user; isl_set *domain; isl_set *d1, *d2; if (data->explicit) domain = explicit_bounds(map, data->build); else domain = implicit_bounds(map, data->build); domain = isl_set_coalesce(domain); domain = isl_set_make_disjoint(domain); d1 = isl_set_subtract(isl_set_copy(domain), isl_set_copy(data->domain)); d2 = isl_set_subtract(isl_set_copy(data->domain), isl_set_copy(domain)); data->domain = isl_set_intersect(data->domain, domain); data->domain = isl_set_union(data->domain, d1); data->domain = isl_set_union(data->domain, d2); return isl_stat_ok; } /* Separate the schedule domains of "executed". * * That is, break up the domain of "executed" into basic sets, * such that for each basic set S, every element in S is associated with * the same domain spaces. * * "space" is the (single) domain space of "executed". */ static __isl_give isl_set *separate_schedule_domains( __isl_take isl_space *space, __isl_take isl_union_map *executed, __isl_keep isl_ast_build *build) { struct isl_separate_domain_data data = { build }; isl_ctx *ctx; ctx = isl_ast_build_get_ctx(build); data.explicit = isl_options_get_ast_build_separation_bounds(ctx) == ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT; data.domain = isl_set_empty(space); if (isl_union_map_foreach_map(executed, &separate_domain, &data) < 0) data.domain = isl_set_free(data.domain); isl_union_map_free(executed); return data.domain; } /* Temporary data used during the search for a lower bound for unrolling. * * "build" is the build in which the unrolling will be performed * "domain" is the original set for which to find a lower bound * "depth" is the dimension for which to find a lower boudn * "expansion" is the expansion that needs to be applied to "domain" * in the unrolling that will be performed * * "lower" is the best lower bound found so far. It is NULL if we have not * found any yet. * "n" is the corresponding size. If lower is NULL, then the value of n * is undefined. * "n_div" is the maximal number of integer divisions in the first * unrolled iteration (after expansion). It is set to -1 if it hasn't * been computed yet. */ struct isl_find_unroll_data { isl_ast_build *build; isl_set *domain; int depth; isl_basic_map *expansion; isl_aff *lower; int *n; int n_div; }; /* Return the constraint * * i_"depth" = aff + offset */ static __isl_give isl_constraint *at_offset(int depth, __isl_keep isl_aff *aff, int offset) { aff = isl_aff_copy(aff); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, depth, -1); aff = isl_aff_add_constant_si(aff, offset); return isl_equality_from_aff(aff); } /* Update *user to the number of integer divsions in the first element * of "ma", if it is larger than the current value. */ static isl_stat update_n_div(__isl_take isl_set *set, __isl_take isl_multi_aff *ma, void *user) { isl_aff *aff; int *n = user; int n_div; aff = isl_multi_aff_get_aff(ma, 0); n_div = isl_aff_dim(aff, isl_dim_div); isl_aff_free(aff); isl_multi_aff_free(ma); isl_set_free(set); if (n_div > *n) *n = n_div; return aff ? isl_stat_ok : isl_stat_error; } /* Get the number of integer divisions in the expression for the iterator * value at the first slice in the unrolling based on lower bound "lower", * taking into account the expansion that needs to be performed on this slice. */ static int get_expanded_n_div(struct isl_find_unroll_data *data, __isl_keep isl_aff *lower) { isl_constraint *c; isl_set *set; isl_map *it_map, *expansion; isl_pw_multi_aff *pma; int n; c = at_offset(data->depth, lower, 0); set = isl_set_copy(data->domain); set = isl_set_add_constraint(set, c); expansion = isl_map_from_basic_map(isl_basic_map_copy(data->expansion)); set = isl_set_apply(set, expansion); it_map = isl_ast_build_map_to_iterator(data->build, set); pma = isl_pw_multi_aff_from_map(it_map); n = 0; if (isl_pw_multi_aff_foreach_piece(pma, &update_n_div, &n) < 0) n = -1; isl_pw_multi_aff_free(pma); return n; } /* Is the lower bound "lower" with corresponding iteration count "n" * better than the one stored in "data"? * If there is no upper bound on the iteration count ("n" is infinity) or * if the count is too large, then we cannot use this lower bound. * Otherwise, if there was no previous lower bound or * if the iteration count of the new lower bound is smaller than * the iteration count of the previous lower bound, then we consider * the new lower bound to be better. * If the iteration count is the same, then compare the number * of integer divisions that would be needed to express * the iterator value at the first slice in the unrolling * according to the lower bound. If we end up computing this * number, then store the lowest value in data->n_div. */ static int is_better_lower_bound(struct isl_find_unroll_data *data, __isl_keep isl_aff *lower, __isl_keep isl_val *n) { int cmp; int n_div; if (!n) return -1; if (isl_val_is_infty(n)) return 0; if (isl_val_cmp_si(n, INT_MAX) > 0) return 0; if (!data->lower) return 1; cmp = isl_val_cmp_si(n, *data->n); if (cmp < 0) return 1; if (cmp > 0) return 0; if (data->n_div < 0) data->n_div = get_expanded_n_div(data, data->lower); if (data->n_div < 0) return -1; if (data->n_div == 0) return 0; n_div = get_expanded_n_div(data, lower); if (n_div < 0) return -1; if (n_div >= data->n_div) return 0; data->n_div = n_div; return 1; } /* Check if we can use "c" as a lower bound and if it is better than * any previously found lower bound. * * If "c" does not involve the dimension at the current depth, * then we cannot use it. * Otherwise, let "c" be of the form * * i >= f(j)/a * * We compute the maximal value of * * -ceil(f(j)/a)) + i + 1 * * over the domain. If there is such a value "n", then we know * * -ceil(f(j)/a)) + i + 1 <= n * * or * * i < ceil(f(j)/a)) + n * * meaning that we can use ceil(f(j)/a)) as a lower bound for unrolling. * We just need to check if we have found any lower bound before and * if the new lower bound is better (smaller n or fewer integer divisions) * than the previously found lower bounds. */ static isl_stat update_unrolling_lower_bound(struct isl_find_unroll_data *data, __isl_keep isl_constraint *c) { isl_aff *aff, *lower; isl_val *max; int better; if (!isl_constraint_is_lower_bound(c, isl_dim_set, data->depth)) return isl_stat_ok; lower = isl_constraint_get_bound(c, isl_dim_set, data->depth); lower = isl_aff_ceil(lower); aff = isl_aff_copy(lower); aff = isl_aff_neg(aff); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, data->depth, 1); aff = isl_aff_add_constant_si(aff, 1); max = isl_set_max_val(data->domain, aff); isl_aff_free(aff); better = is_better_lower_bound(data, lower, max); if (better < 0 || !better) { isl_val_free(max); isl_aff_free(lower); return better < 0 ? isl_stat_error : isl_stat_ok; } isl_aff_free(data->lower); data->lower = lower; *data->n = isl_val_get_num_si(max); isl_val_free(max); return isl_stat_ok; } /* Check if we can use "c" as a lower bound and if it is better than * any previously found lower bound. */ static isl_stat constraint_find_unroll(__isl_take isl_constraint *c, void *user) { struct isl_find_unroll_data *data; isl_stat r; data = (struct isl_find_unroll_data *) user; r = update_unrolling_lower_bound(data, c); isl_constraint_free(c); return r; } /* Look for a lower bound l(i) on the dimension at "depth" * and a size n such that "domain" is a subset of * * { [i] : l(i) <= i_d < l(i) + n } * * where d is "depth" and l(i) depends only on earlier dimensions. * Furthermore, try and find a lower bound such that n is as small as possible. * In particular, "n" needs to be finite. * "build" is the build in which the unrolling will be performed. * "expansion" is the expansion that needs to be applied to "domain" * in the unrolling that will be performed. * * Inner dimensions have been eliminated from "domain" by the caller. * * We first construct a collection of lower bounds on the input set * by computing its simple hull. We then iterate through them, * discarding those that we cannot use (either because they do not * involve the dimension at "depth" or because they have no corresponding * upper bound, meaning that "n" would be unbounded) and pick out the * best from the remaining ones. * * If we cannot find a suitable lower bound, then we consider that * to be an error. */ static __isl_give isl_aff *find_unroll_lower_bound( __isl_keep isl_ast_build *build, __isl_keep isl_set *domain, int depth, __isl_keep isl_basic_map *expansion, int *n) { struct isl_find_unroll_data data = { build, domain, depth, expansion, NULL, n, -1 }; isl_basic_set *hull; hull = isl_set_simple_hull(isl_set_copy(domain)); if (isl_basic_set_foreach_constraint(hull, &constraint_find_unroll, &data) < 0) goto error; isl_basic_set_free(hull); if (!data.lower) isl_die(isl_set_get_ctx(domain), isl_error_invalid, "cannot find lower bound for unrolling", return NULL); return data.lower; error: isl_basic_set_free(hull); return isl_aff_free(data.lower); } /* Call "fn" on each iteration of the current dimension of "domain". * If "init" is not NULL, then it is called with the number of * iterations before any call to "fn". * Return -1 on failure. * * Since we are going to be iterating over the individual values, * we first check if there are any strides on the current dimension. * If there is, we rewrite the current dimension i as * * i = stride i' + offset * * and then iterate over individual values of i' instead. * * We then look for a lower bound on i' and a size such that the domain * is a subset of * * { [j,i'] : l(j) <= i' < l(j) + n } * * and then take slices of the domain at values of i' * between l(j) and l(j) + n - 1. * * We compute the unshifted simple hull of each slice to ensure that * we have a single basic set per offset. The slicing constraint * may get simplified away before the unshifted simple hull is taken * and may therefore in some rare cases disappear from the result. * We therefore explicitly add the constraint back after computing * the unshifted simple hull to ensure that the basic sets * remain disjoint. The constraints that are dropped by taking the hull * will be taken into account at the next level, as in the case of the * atomic option. * * Finally, we map i' back to i and call "fn". */ static int foreach_iteration(__isl_take isl_set *domain, __isl_keep isl_ast_build *build, int (*init)(int n, void *user), int (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) { int i, n; int empty; int depth; isl_multi_aff *expansion; isl_basic_map *bmap; isl_aff *lower = NULL; isl_ast_build *stride_build; depth = isl_ast_build_get_depth(build); domain = isl_ast_build_eliminate_inner(build, domain); domain = isl_set_intersect(domain, isl_ast_build_get_domain(build)); stride_build = isl_ast_build_copy(build); stride_build = isl_ast_build_detect_strides(stride_build, isl_set_copy(domain)); expansion = isl_ast_build_get_stride_expansion(stride_build); domain = isl_set_preimage_multi_aff(domain, isl_multi_aff_copy(expansion)); domain = isl_ast_build_eliminate_divs(stride_build, domain); isl_ast_build_free(stride_build); bmap = isl_basic_map_from_multi_aff(expansion); empty = isl_set_is_empty(domain); if (empty < 0) { n = -1; } else if (empty) { n = 0; } else { lower = find_unroll_lower_bound(build, domain, depth, bmap, &n); if (!lower) n = -1; } if (n >= 0 && init && init(n, user) < 0) n = -1; for (i = 0; i < n; ++i) { isl_set *set; isl_basic_set *bset; isl_constraint *slice; slice = at_offset(depth, lower, i); set = isl_set_copy(domain); set = isl_set_add_constraint(set, isl_constraint_copy(slice)); bset = isl_set_unshifted_simple_hull(set); bset = isl_basic_set_add_constraint(bset, slice); bset = isl_basic_set_apply(bset, isl_basic_map_copy(bmap)); if (fn(bset, user) < 0) break; } isl_aff_free(lower); isl_set_free(domain); isl_basic_map_free(bmap); return n < 0 || i < n ? -1 : 0; } /* Data structure for storing the results and the intermediate objects * of compute_domains. * * "list" is the main result of the function and contains a list * of disjoint basic sets for which code should be generated. * * "executed" and "build" are inputs to compute_domains. * "schedule_domain" is the domain of "executed". * * "option" constains the domains at the current depth that should by * atomic, separated or unrolled. These domains are as specified by * the user, except that inner dimensions have been eliminated and * that they have been made pair-wise disjoint. * * "sep_class" contains the user-specified split into separation classes * specialized to the current depth. * "done" contains the union of the separation domains that have already * been handled. */ struct isl_codegen_domains { isl_basic_set_list *list; isl_union_map *executed; isl_ast_build *build; isl_set *schedule_domain; isl_set *option[4]; isl_map *sep_class; isl_set *done; }; /* Internal data structure for do_unroll. * * "domains" stores the results of compute_domains. * "class_domain" is the original class domain passed to do_unroll. * "unroll_domain" collects the unrolled iterations. */ struct isl_ast_unroll_data { struct isl_codegen_domains *domains; isl_set *class_domain; isl_set *unroll_domain; }; /* Given an iteration of an unrolled domain represented by "bset", * add it to data->domains->list. * Since we may have dropped some constraints, we intersect with * the class domain again to ensure that each element in the list * is disjoint from the other class domains. */ static int do_unroll_iteration(__isl_take isl_basic_set *bset, void *user) { struct isl_ast_unroll_data *data = user; isl_set *set; isl_basic_set_list *list; set = isl_set_from_basic_set(bset); data->unroll_domain = isl_set_union(data->unroll_domain, isl_set_copy(set)); set = isl_set_intersect(set, isl_set_copy(data->class_domain)); set = isl_set_make_disjoint(set); list = isl_basic_set_list_from_set(set); data->domains->list = isl_basic_set_list_concat(data->domains->list, list); return 0; } /* Extend domains->list with a list of basic sets, one for each value * of the current dimension in "domain" and remove the corresponding * sets from the class domain. Return the updated class domain. * The divs that involve the current dimension have not been projected out * from this domain. * * We call foreach_iteration to iterate over the individual values and * in do_unroll_iteration we collect the individual basic sets in * domains->list and their union in data->unroll_domain, which is then * used to update the class domain. */ static __isl_give isl_set *do_unroll(struct isl_codegen_domains *domains, __isl_take isl_set *domain, __isl_take isl_set *class_domain) { struct isl_ast_unroll_data data; if (!domain) return isl_set_free(class_domain); if (!class_domain) return isl_set_free(domain); data.domains = domains; data.class_domain = class_domain; data.unroll_domain = isl_set_empty(isl_set_get_space(domain)); if (foreach_iteration(domain, domains->build, NULL, &do_unroll_iteration, &data) < 0) data.unroll_domain = isl_set_free(data.unroll_domain); class_domain = isl_set_subtract(class_domain, data.unroll_domain); return class_domain; } /* Add domains to domains->list for each individual value of the current * dimension, for that part of the schedule domain that lies in the * intersection of the option domain and the class domain. * Remove the corresponding sets from the class domain and * return the updated class domain. * * We first break up the unroll option domain into individual pieces * and then handle each of them separately. The unroll option domain * has been made disjoint in compute_domains_init_options, * * Note that we actively want to combine different pieces of the * schedule domain that have the same value at the current dimension. * We therefore need to break up the unroll option domain before * intersecting with class and schedule domain, hoping that the * unroll option domain specified by the user is relatively simple. */ static __isl_give isl_set *compute_unroll_domains( struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) { isl_set *unroll_domain; isl_basic_set_list *unroll_list; int i, n; int empty; empty = isl_set_is_empty(domains->option[isl_ast_loop_unroll]); if (empty < 0) return isl_set_free(class_domain); if (empty) return class_domain; unroll_domain = isl_set_copy(domains->option[isl_ast_loop_unroll]); unroll_list = isl_basic_set_list_from_set(unroll_domain); n = isl_basic_set_list_n_basic_set(unroll_list); for (i = 0; i < n; ++i) { isl_basic_set *bset; bset = isl_basic_set_list_get_basic_set(unroll_list, i); unroll_domain = isl_set_from_basic_set(bset); unroll_domain = isl_set_intersect(unroll_domain, isl_set_copy(class_domain)); unroll_domain = isl_set_intersect(unroll_domain, isl_set_copy(domains->schedule_domain)); empty = isl_set_is_empty(unroll_domain); if (empty >= 0 && empty) { isl_set_free(unroll_domain); continue; } class_domain = do_unroll(domains, unroll_domain, class_domain); } isl_basic_set_list_free(unroll_list); return class_domain; } /* Try and construct a single basic set that includes the intersection of * the schedule domain, the atomic option domain and the class domain. * Add the resulting basic set(s) to domains->list and remove them * from class_domain. Return the updated class domain. * * We construct a single domain rather than trying to combine * the schedule domains of individual domains because we are working * within a single component so that non-overlapping schedule domains * should already have been separated. * We do however need to make sure that this single domains is a subset * of the class domain so that it would not intersect with any other * class domains. This means that we may end up splitting up the atomic * domain in case separation classes are being used. * * "domain" is the intersection of the schedule domain and the class domain, * with inner dimensions projected out. */ static __isl_give isl_set *compute_atomic_domain( struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) { isl_basic_set *bset; isl_basic_set_list *list; isl_set *domain, *atomic_domain; int empty; domain = isl_set_copy(domains->option[isl_ast_loop_atomic]); domain = isl_set_intersect(domain, isl_set_copy(class_domain)); domain = isl_set_intersect(domain, isl_set_copy(domains->schedule_domain)); empty = isl_set_is_empty(domain); if (empty < 0) class_domain = isl_set_free(class_domain); if (empty) { isl_set_free(domain); return class_domain; } domain = isl_ast_build_eliminate(domains->build, domain); domain = isl_set_coalesce(domain); bset = isl_set_unshifted_simple_hull(domain); domain = isl_set_from_basic_set(bset); atomic_domain = isl_set_copy(domain); domain = isl_set_intersect(domain, isl_set_copy(class_domain)); class_domain = isl_set_subtract(class_domain, atomic_domain); domain = isl_set_make_disjoint(domain); list = isl_basic_set_list_from_set(domain); domains->list = isl_basic_set_list_concat(domains->list, list); return class_domain; } /* Split up the schedule domain into uniform basic sets, * in the sense that each element in a basic set is associated to * elements of the same domains, and add the result to domains->list. * Do this for that part of the schedule domain that lies in the * intersection of "class_domain" and the separate option domain. * * "class_domain" may or may not include the constraints * of the schedule domain, but this does not make a difference * since we are going to intersect it with the domain of the inverse schedule. * If it includes schedule domain constraints, then they may involve * inner dimensions, but we will eliminate them in separation_domain. */ static int compute_separate_domain(struct isl_codegen_domains *domains, __isl_keep isl_set *class_domain) { isl_space *space; isl_set *domain; isl_union_map *executed; isl_basic_set_list *list; int empty; domain = isl_set_copy(domains->option[isl_ast_loop_separate]); domain = isl_set_intersect(domain, isl_set_copy(class_domain)); executed = isl_union_map_copy(domains->executed); executed = isl_union_map_intersect_domain(executed, isl_union_set_from_set(domain)); empty = isl_union_map_is_empty(executed); if (empty < 0 || empty) { isl_union_map_free(executed); return empty < 0 ? -1 : 0; } space = isl_set_get_space(class_domain); domain = separate_schedule_domains(space, executed, domains->build); list = isl_basic_set_list_from_set(domain); domains->list = isl_basic_set_list_concat(domains->list, list); return 0; } /* Split up the domain at the current depth into disjoint * basic sets for which code should be generated separately * for the given separation class domain. * * If any separation classes have been defined, then "class_domain" * is the domain of the current class and does not refer to inner dimensions. * Otherwise, "class_domain" is the universe domain. * * We first make sure that the class domain is disjoint from * previously considered class domains. * * The separate domains can be computed directly from the "class_domain". * * The unroll, atomic and remainder domains need the constraints * from the schedule domain. * * For unrolling, the actual schedule domain is needed (with divs that * may refer to the current dimension) so that stride detection can be * performed. * * For atomic and remainder domains, inner dimensions and divs involving * the current dimensions should be eliminated. * In case we are working within a separation class, we need to intersect * the result with the current "class_domain" to ensure that the domains * are disjoint from those generated from other class domains. * * The domain that has been made atomic may be larger than specified * by the user since it needs to be representable as a single basic set. * This possibly larger domain is removed from class_domain by * compute_atomic_domain. It is computed first so that the extended domain * would not overlap with any domains computed before. * Similary, the unrolled domains may have some constraints removed and * may therefore also be larger than specified by the user. * * If anything is left after handling separate, unroll and atomic, * we split it up into basic sets and append the basic sets to domains->list. */ static isl_stat compute_partial_domains(struct isl_codegen_domains *domains, __isl_take isl_set *class_domain) { isl_basic_set_list *list; isl_set *domain; class_domain = isl_set_subtract(class_domain, isl_set_copy(domains->done)); domains->done = isl_set_union(domains->done, isl_set_copy(class_domain)); class_domain = compute_atomic_domain(domains, class_domain); class_domain = compute_unroll_domains(domains, class_domain); domain = isl_set_copy(class_domain); if (compute_separate_domain(domains, domain) < 0) goto error; domain = isl_set_subtract(domain, isl_set_copy(domains->option[isl_ast_loop_separate])); domain = isl_set_intersect(domain, isl_set_copy(domains->schedule_domain)); domain = isl_ast_build_eliminate(domains->build, domain); domain = isl_set_intersect(domain, isl_set_copy(class_domain)); domain = isl_set_coalesce(domain); domain = isl_set_make_disjoint(domain); list = isl_basic_set_list_from_set(domain); domains->list = isl_basic_set_list_concat(domains->list, list); isl_set_free(class_domain); return isl_stat_ok; error: isl_set_free(domain); isl_set_free(class_domain); return isl_stat_error; } /* Split up the domain at the current depth into disjoint * basic sets for which code should be generated separately * for the separation class identified by "pnt". * * We extract the corresponding class domain from domains->sep_class, * eliminate inner dimensions and pass control to compute_partial_domains. */ static isl_stat compute_class_domains(__isl_take isl_point *pnt, void *user) { struct isl_codegen_domains *domains = user; isl_set *class_set; isl_set *domain; int disjoint; class_set = isl_set_from_point(pnt); domain = isl_map_domain(isl_map_intersect_range( isl_map_copy(domains->sep_class), class_set)); domain = isl_ast_build_compute_gist(domains->build, domain); domain = isl_ast_build_eliminate(domains->build, domain); disjoint = isl_set_plain_is_disjoint(domain, domains->schedule_domain); if (disjoint < 0) return isl_stat_error; if (disjoint) { isl_set_free(domain); return isl_stat_ok; } return compute_partial_domains(domains, domain); } /* Extract the domains at the current depth that should be atomic, * separated or unrolled and store them in option. * * The domains specified by the user might overlap, so we make * them disjoint by subtracting earlier domains from later domains. */ static void compute_domains_init_options(isl_set *option[4], __isl_keep isl_ast_build *build) { enum isl_ast_loop_type type, type2; isl_set *unroll; for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { option[type] = isl_ast_build_get_option_domain(build, type); for (type2 = isl_ast_loop_atomic; type2 < type; ++type2) option[type] = isl_set_subtract(option[type], isl_set_copy(option[type2])); } unroll = option[isl_ast_loop_unroll]; unroll = isl_set_coalesce(unroll); unroll = isl_set_make_disjoint(unroll); option[isl_ast_loop_unroll] = unroll; } /* Split up the domain at the current depth into disjoint * basic sets for which code should be generated separately, * based on the user-specified options. * Return the list of disjoint basic sets. * * There are three kinds of domains that we need to keep track of. * - the "schedule domain" is the domain of "executed" * - the "class domain" is the domain corresponding to the currrent * separation class * - the "option domain" is the domain corresponding to one of the options * atomic, unroll or separate * * We first consider the individial values of the separation classes * and split up the domain for each of them separately. * Finally, we consider the remainder. If no separation classes were * specified, then we call compute_partial_domains with the universe * "class_domain". Otherwise, we take the "schedule_domain" as "class_domain", * with inner dimensions removed. We do this because we want to * avoid computing the complement of the class domains (i.e., the difference * between the universe and domains->done). */ static __isl_give isl_basic_set_list *compute_domains( __isl_keep isl_union_map *executed, __isl_keep isl_ast_build *build) { struct isl_codegen_domains domains; isl_ctx *ctx; isl_set *domain; isl_union_set *schedule_domain; isl_set *classes; isl_space *space; int n_param; enum isl_ast_loop_type type; int empty; if (!executed) return NULL; ctx = isl_union_map_get_ctx(executed); domains.list = isl_basic_set_list_alloc(ctx, 0); schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); domain = isl_set_from_union_set(schedule_domain); compute_domains_init_options(domains.option, build); domains.sep_class = isl_ast_build_get_separation_class(build); classes = isl_map_range(isl_map_copy(domains.sep_class)); n_param = isl_set_dim(classes, isl_dim_param); classes = isl_set_project_out(classes, isl_dim_param, 0, n_param); space = isl_set_get_space(domain); domains.build = build; domains.schedule_domain = isl_set_copy(domain); domains.executed = executed; domains.done = isl_set_empty(space); if (isl_set_foreach_point(classes, &compute_class_domains, &domains) < 0) domains.list = isl_basic_set_list_free(domains.list); isl_set_free(classes); empty = isl_set_is_empty(domains.done); if (empty < 0) { domains.list = isl_basic_set_list_free(domains.list); domain = isl_set_free(domain); } else if (empty) { isl_set_free(domain); domain = isl_set_universe(isl_set_get_space(domains.done)); } else { domain = isl_ast_build_eliminate(build, domain); } if (compute_partial_domains(&domains, domain) < 0) domains.list = isl_basic_set_list_free(domains.list); isl_set_free(domains.schedule_domain); isl_set_free(domains.done); isl_map_free(domains.sep_class); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) isl_set_free(domains.option[type]); return domains.list; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a union map. * * We first split up the domain at the current depth into disjoint * basic sets based on the user-specified options. * Then we generated code for each of them and concatenate the results. */ static __isl_give isl_ast_graft_list *generate_shifted_component_flat( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { isl_basic_set_list *domain_list; isl_ast_graft_list *list = NULL; domain_list = compute_domains(executed, build); list = generate_parallel_domains(domain_list, executed, build); isl_basic_set_list_free(domain_list); isl_union_map_free(executed); isl_ast_build_free(build); return list; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree * and the separate option was specified. * * We perform separation on the domain of "executed" and then generate * an AST for each of the resulting disjoint basic sets. */ static __isl_give isl_ast_graft_list *generate_shifted_component_tree_separate( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { isl_space *space; isl_set *domain; isl_basic_set_list *domain_list; isl_ast_graft_list *list; space = isl_ast_build_get_space(build, 1); domain = separate_schedule_domains(space, isl_union_map_copy(executed), build); domain_list = isl_basic_set_list_from_set(domain); list = generate_parallel_domains(domain_list, executed, build); isl_basic_set_list_free(domain_list); isl_union_map_free(executed); isl_ast_build_free(build); return list; } /* Internal data structure for generate_shifted_component_tree_unroll. * * "executed" and "build" are inputs to generate_shifted_component_tree_unroll. * "list" collects the constructs grafts. */ struct isl_ast_unroll_tree_data { isl_union_map *executed; isl_ast_build *build; isl_ast_graft_list *list; }; /* Initialize data->list to a list of "n" elements. */ static int init_unroll_tree(int n, void *user) { struct isl_ast_unroll_tree_data *data = user; isl_ctx *ctx; ctx = isl_ast_build_get_ctx(data->build); data->list = isl_ast_graft_list_alloc(ctx, n); return 0; } /* Given an iteration of an unrolled domain represented by "bset", * generate the corresponding AST and add the result to data->list. */ static int do_unroll_tree_iteration(__isl_take isl_basic_set *bset, void *user) { struct isl_ast_unroll_tree_data *data = user; data->list = add_node(data->list, isl_union_map_copy(data->executed), bset, isl_ast_build_copy(data->build)); return 0; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree * and the unroll option was specified. * * We call foreach_iteration to iterate over the individual values and * construct and collect the corresponding grafts in do_unroll_tree_iteration. */ static __isl_give isl_ast_graft_list *generate_shifted_component_tree_unroll( __isl_take isl_union_map *executed, __isl_take isl_set *domain, __isl_take isl_ast_build *build) { struct isl_ast_unroll_tree_data data = { executed, build, NULL }; if (foreach_iteration(domain, build, &init_unroll_tree, &do_unroll_tree_iteration, &data) < 0) data.list = isl_ast_graft_list_free(data.list); isl_union_map_free(executed); isl_ast_build_free(build); return data.list; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree. * In particular, handle the base case where there is either no isolated * set or we are within the isolated set (in which case "isolated" is set) * or the iterations that precede or follow the isolated set. * * The schedule domain is broken up or combined into basic sets * according to the AST generation option specified in the current * schedule node, which may be either atomic, separate, unroll or * unspecified. If the option is unspecified, then we currently simply * split the schedule domain into disjoint basic sets. * * In case the separate option is specified, the AST generation is * handled by generate_shifted_component_tree_separate. * In the other cases, we need the global schedule domain. * In the unroll case, the AST generation is then handled by * generate_shifted_component_tree_unroll which needs the actual * schedule domain (with divs that may refer to the current dimension) * so that stride detection can be performed. * In the atomic or unspecified case, inner dimensions and divs involving * the current dimensions should be eliminated. * The result is then either combined into a single basic set or * split up into disjoint basic sets. * Finally an AST is generated for each basic set and the results are * concatenated. */ static __isl_give isl_ast_graft_list *generate_shifted_component_tree_base( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, int isolated) { isl_union_set *schedule_domain; isl_set *domain; isl_basic_set_list *domain_list; isl_ast_graft_list *list; enum isl_ast_loop_type type; type = isl_ast_build_get_loop_type(build, isolated); if (type < 0) goto error; if (type == isl_ast_loop_separate) return generate_shifted_component_tree_separate(executed, build); schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); domain = isl_set_from_union_set(schedule_domain); if (type == isl_ast_loop_unroll) return generate_shifted_component_tree_unroll(executed, domain, build); domain = isl_ast_build_eliminate(build, domain); domain = isl_set_coalesce(domain); if (type == isl_ast_loop_atomic) { isl_basic_set *hull; hull = isl_set_unshifted_simple_hull(domain); domain_list = isl_basic_set_list_from_basic_set(hull); } else { domain = isl_set_make_disjoint(domain); domain_list = isl_basic_set_list_from_set(domain); } list = generate_parallel_domains(domain_list, executed, build); isl_basic_set_list_free(domain_list); isl_union_map_free(executed); isl_ast_build_free(build); return list; error: isl_union_map_free(executed); isl_ast_build_free(build); return NULL; } /* Extract out the disjunction imposed by "domain" on the outer * schedule dimensions. * * In particular, remove all inner dimensions from "domain" (including * the current dimension) and then remove the constraints that are shared * by all disjuncts in the result. */ static __isl_give isl_set *extract_disjunction(__isl_take isl_set *domain, __isl_keep isl_ast_build *build) { isl_set *hull; int depth, dim; domain = isl_ast_build_specialize(build, domain); depth = isl_ast_build_get_depth(build); dim = isl_set_dim(domain, isl_dim_set); domain = isl_set_eliminate(domain, isl_dim_set, depth, dim - depth); domain = isl_set_remove_unknown_divs(domain); hull = isl_set_copy(domain); hull = isl_set_from_basic_set(isl_set_unshifted_simple_hull(hull)); domain = isl_set_gist(domain, hull); return domain; } /* Add "guard" to the grafts in "list". * "build" is the outer AST build, while "sub_build" includes "guard" * in its generated domain. * * First combine the grafts into a single graft and then add the guard. * If the list is empty, or if some error occurred, then simply return * the list. */ static __isl_give isl_ast_graft_list *list_add_guard( __isl_take isl_ast_graft_list *list, __isl_keep isl_set *guard, __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) { isl_ast_graft *graft; list = isl_ast_graft_list_fuse(list, sub_build); if (isl_ast_graft_list_n_ast_graft(list) != 1) return list; graft = isl_ast_graft_list_get_ast_graft(list, 0); graft = isl_ast_graft_add_guard(graft, isl_set_copy(guard), build); list = isl_ast_graft_list_set_ast_graft(list, 0, graft); return list; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree. * In particular, do so for the specified subset of the schedule domain. * * If we are outside of the isolated part, then "domain" may include * a disjunction. Explicitly generate this disjunction at this point * instead of relying on the disjunction getting hoisted back up * to this level. */ static __isl_give isl_ast_graft_list *generate_shifted_component_tree_part( __isl_keep isl_union_map *executed, __isl_take isl_set *domain, __isl_keep isl_ast_build *build, int isolated) { isl_union_set *uset; isl_ast_graft_list *list; isl_ast_build *sub_build; int empty; uset = isl_union_set_from_set(isl_set_copy(domain)); executed = isl_union_map_copy(executed); executed = isl_union_map_intersect_domain(executed, uset); empty = isl_union_map_is_empty(executed); if (empty < 0) goto error; if (empty) { isl_ctx *ctx; isl_union_map_free(executed); isl_set_free(domain); ctx = isl_ast_build_get_ctx(build); return isl_ast_graft_list_alloc(ctx, 0); } sub_build = isl_ast_build_copy(build); if (!isolated) { domain = extract_disjunction(domain, build); sub_build = isl_ast_build_restrict_generated(sub_build, isl_set_copy(domain)); } list = generate_shifted_component_tree_base(executed, isl_ast_build_copy(sub_build), isolated); if (!isolated) list = list_add_guard(list, domain, build, sub_build); isl_ast_build_free(sub_build); isl_set_free(domain); return list; error: isl_union_map_free(executed); isl_set_free(domain); return NULL; } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree. * In particular, do so for the specified sequence of subsets * of the schedule domain, "before", "isolated", "after" and "other", * where only the "isolated" part is considered to be isolated. */ static __isl_give isl_ast_graft_list *generate_shifted_component_parts( __isl_take isl_union_map *executed, __isl_take isl_set *before, __isl_take isl_set *isolated, __isl_take isl_set *after, __isl_take isl_set *other, __isl_take isl_ast_build *build) { isl_ast_graft_list *list, *res; res = generate_shifted_component_tree_part(executed, before, build, 0); list = generate_shifted_component_tree_part(executed, isolated, build, 1); res = isl_ast_graft_list_concat(res, list); list = generate_shifted_component_tree_part(executed, after, build, 0); res = isl_ast_graft_list_concat(res, list); list = generate_shifted_component_tree_part(executed, other, build, 0); res = isl_ast_graft_list_concat(res, list); isl_union_map_free(executed); isl_ast_build_free(build); return res; } /* Does "set" intersect "first", but not "second"? */ static isl_bool only_intersects_first(__isl_keep isl_set *set, __isl_keep isl_set *first, __isl_keep isl_set *second) { isl_bool disjoint; disjoint = isl_set_is_disjoint(set, first); if (disjoint < 0) return isl_bool_error; if (disjoint) return isl_bool_false; return isl_set_is_disjoint(set, second); } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree. * In particular, do so in case of isolation where there is * only an "isolated" part and an "after" part. * "dead1" and "dead2" are freed by this function in order to simplify * the caller. * * The "before" and "other" parts are set to empty sets. */ static __isl_give isl_ast_graft_list *generate_shifted_component_only_after( __isl_take isl_union_map *executed, __isl_take isl_set *isolated, __isl_take isl_set *after, __isl_take isl_ast_build *build, __isl_take isl_set *dead1, __isl_take isl_set *dead2) { isl_set *empty; empty = isl_set_empty(isl_set_get_space(after)); isl_set_free(dead1); isl_set_free(dead2); return generate_shifted_component_parts(executed, isl_set_copy(empty), isolated, after, empty, build); } /* Generate code for a single component, after shifting (if any) * has been applied, in case the schedule was specified as a schedule tree. * * We first check if the user has specified an isolated schedule domain * and that we are not already outside of this isolated schedule domain. * If so, we break up the schedule domain into iterations that * precede the isolated domain, the isolated domain itself, * the iterations that follow the isolated domain and * the remaining iterations (those that are incomparable * to the isolated domain). * We generate an AST for each piece and concatenate the results. * * In the special case where at least one element of the schedule * domain that does not belong to the isolated domain needs * to be scheduled after this isolated domain, but none of those * elements need to be scheduled before, break up the schedule domain * in only two parts, the isolated domain, and a part that will be * scheduled after the isolated domain. * * If no isolated set has been specified, then we generate an * AST for the entire inverse schedule. */ static __isl_give isl_ast_graft_list *generate_shifted_component_tree( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { int i, depth; int empty, has_isolate; isl_space *space; isl_union_set *schedule_domain; isl_set *domain; isl_basic_set *hull; isl_set *isolated, *before, *after, *test; isl_map *gt, *lt; isl_bool pure; build = isl_ast_build_extract_isolated(build); has_isolate = isl_ast_build_has_isolated(build); if (has_isolate < 0) executed = isl_union_map_free(executed); else if (!has_isolate) return generate_shifted_component_tree_base(executed, build, 0); schedule_domain = isl_union_map_domain(isl_union_map_copy(executed)); domain = isl_set_from_union_set(schedule_domain); isolated = isl_ast_build_get_isolated(build); isolated = isl_set_intersect(isolated, isl_set_copy(domain)); test = isl_ast_build_specialize(build, isl_set_copy(isolated)); empty = isl_set_is_empty(test); isl_set_free(test); if (empty < 0) goto error; if (empty) { isl_set_free(isolated); isl_set_free(domain); return generate_shifted_component_tree_base(executed, build, 0); } isolated = isl_ast_build_eliminate(build, isolated); hull = isl_set_unshifted_simple_hull(isolated); isolated = isl_set_from_basic_set(hull); depth = isl_ast_build_get_depth(build); space = isl_space_map_from_set(isl_set_get_space(isolated)); gt = isl_map_universe(space); for (i = 0; i < depth; ++i) gt = isl_map_equate(gt, isl_dim_in, i, isl_dim_out, i); gt = isl_map_order_gt(gt, isl_dim_in, depth, isl_dim_out, depth); lt = isl_map_reverse(isl_map_copy(gt)); before = isl_set_apply(isl_set_copy(isolated), gt); after = isl_set_apply(isl_set_copy(isolated), lt); domain = isl_set_subtract(domain, isl_set_copy(isolated)); pure = only_intersects_first(domain, after, before); if (pure < 0) executed = isl_union_map_free(executed); else if (pure) return generate_shifted_component_only_after(executed, isolated, domain, build, before, after); domain = isl_set_subtract(domain, isl_set_copy(before)); domain = isl_set_subtract(domain, isl_set_copy(after)); after = isl_set_subtract(after, isl_set_copy(isolated)); after = isl_set_subtract(after, isl_set_copy(before)); before = isl_set_subtract(before, isl_set_copy(isolated)); return generate_shifted_component_parts(executed, before, isolated, after, domain, build); error: isl_set_free(domain); isl_set_free(isolated); isl_union_map_free(executed); isl_ast_build_free(build); return NULL; } /* Generate code for a single component, after shifting (if any) * has been applied. * * Call generate_shifted_component_tree or generate_shifted_component_flat * depending on whether the schedule was specified as a schedule tree. */ static __isl_give isl_ast_graft_list *generate_shifted_component( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { if (isl_ast_build_has_schedule_node(build)) return generate_shifted_component_tree(executed, build); else return generate_shifted_component_flat(executed, build); } struct isl_set_map_pair { isl_set *set; isl_map *map; }; /* Given an array "domain" of isl_set_map_pairs and an array "order" * of indices into the "domain" array, * return the union of the "map" fields of the elements * indexed by the first "n" elements of "order". */ static __isl_give isl_union_map *construct_component_executed( struct isl_set_map_pair *domain, int *order, int n) { int i; isl_map *map; isl_union_map *executed; map = isl_map_copy(domain[order[0]].map); executed = isl_union_map_from_map(map); for (i = 1; i < n; ++i) { map = isl_map_copy(domain[order[i]].map); executed = isl_union_map_add_map(executed, map); } return executed; } /* Generate code for a single component, after shifting (if any) * has been applied. * * The component inverse schedule is specified as the "map" fields * of the elements of "domain" indexed by the first "n" elements of "order". */ static __isl_give isl_ast_graft_list *generate_shifted_component_from_list( struct isl_set_map_pair *domain, int *order, int n, __isl_take isl_ast_build *build) { isl_union_map *executed; executed = construct_component_executed(domain, order, n); return generate_shifted_component(executed, build); } /* Does set dimension "pos" of "set" have an obviously fixed value? */ static int dim_is_fixed(__isl_keep isl_set *set, int pos) { int fixed; isl_val *v; v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, pos); if (!v) return -1; fixed = !isl_val_is_nan(v); isl_val_free(v); return fixed; } /* Given an array "domain" of isl_set_map_pairs and an array "order" * of indices into the "domain" array, * do all (except for at most one) of the "set" field of the elements * indexed by the first "n" elements of "order" have a fixed value * at position "depth"? */ static int at_most_one_non_fixed(struct isl_set_map_pair *domain, int *order, int n, int depth) { int i; int non_fixed = -1; for (i = 0; i < n; ++i) { int f; f = dim_is_fixed(domain[order[i]].set, depth); if (f < 0) return -1; if (f) continue; if (non_fixed >= 0) return 0; non_fixed = i; } return 1; } /* Given an array "domain" of isl_set_map_pairs and an array "order" * of indices into the "domain" array, * eliminate the inner dimensions from the "set" field of the elements * indexed by the first "n" elements of "order", provided the current * dimension does not have a fixed value. * * Return the index of the first element in "order" with a corresponding * "set" field that does not have an (obviously) fixed value. */ static int eliminate_non_fixed(struct isl_set_map_pair *domain, int *order, int n, int depth, __isl_keep isl_ast_build *build) { int i; int base = -1; for (i = n - 1; i >= 0; --i) { int f; f = dim_is_fixed(domain[order[i]].set, depth); if (f < 0) return -1; if (f) continue; domain[order[i]].set = isl_ast_build_eliminate_inner(build, domain[order[i]].set); base = i; } return base; } /* Given an array "domain" of isl_set_map_pairs and an array "order" * of indices into the "domain" array, * find the element of "domain" (amongst those indexed by the first "n" * elements of "order") with the "set" field that has the smallest * value for the current iterator. * * Note that the domain with the smallest value may depend on the parameters * and/or outer loop dimension. Since the result of this function is only * used as heuristic, we only make a reasonable attempt at finding the best * domain, one that should work in case a single domain provides the smallest * value for the current dimension over all values of the parameters * and outer dimensions. * * In particular, we compute the smallest value of the first domain * and replace it by that of any later domain if that later domain * has a smallest value that is smaller for at least some value * of the parameters and outer dimensions. */ static int first_offset(struct isl_set_map_pair *domain, int *order, int n, __isl_keep isl_ast_build *build) { int i; isl_map *min_first; int first = 0; min_first = isl_ast_build_map_to_iterator(build, isl_set_copy(domain[order[0]].set)); min_first = isl_map_lexmin(min_first); for (i = 1; i < n; ++i) { isl_map *min, *test; int empty; min = isl_ast_build_map_to_iterator(build, isl_set_copy(domain[order[i]].set)); min = isl_map_lexmin(min); test = isl_map_copy(min); test = isl_map_apply_domain(isl_map_copy(min_first), test); test = isl_map_order_lt(test, isl_dim_in, 0, isl_dim_out, 0); empty = isl_map_is_empty(test); isl_map_free(test); if (empty >= 0 && !empty) { isl_map_free(min_first); first = i; min_first = min; } else isl_map_free(min); if (empty < 0) break; } isl_map_free(min_first); return i < n ? -1 : first; } /* Construct a shifted inverse schedule based on the original inverse schedule, * the stride and the offset. * * The original inverse schedule is specified as the "map" fields * of the elements of "domain" indexed by the first "n" elements of "order". * * "stride" and "offset" are such that the difference * between the values of the current dimension of domain "i" * and the values of the current dimension for some reference domain are * equal to * * stride * integer + offset[i] * * Moreover, 0 <= offset[i] < stride. * * For each domain, we create a map * * { [..., j, ...] -> [..., j - offset[i], offset[i], ....] } * * where j refers to the current dimension and the other dimensions are * unchanged, and apply this map to the original schedule domain. * * For example, for the original schedule * * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } * * and assuming the offset is 0 for the A domain and 1 for the B domain, * we apply the mapping * * { [j] -> [j, 0] } * * to the schedule of the "A" domain and the mapping * * { [j - 1] -> [j, 1] } * * to the schedule of the "B" domain. * * * Note that after the transformation, the differences between pairs * of values of the current dimension over all domains are multiples * of stride and that we have therefore exposed the stride. * * * To see that the mapping preserves the lexicographic order, * first note that each of the individual maps above preserves the order. * If the value of the current iterator is j1 in one domain and j2 in another, * then if j1 = j2, we know that the same map is applied to both domains * and the order is preserved. * Otherwise, let us assume, without loss of generality, that j1 < j2. * If c1 >= c2 (with c1 and c2 the corresponding offsets), then * * j1 - c1 < j2 - c2 * * and the order is preserved. * If c1 < c2, then we know * * 0 <= c2 - c1 < s * * We also have * * j2 - j1 = n * s + r * * with n >= 0 and 0 <= r < s. * In other words, r = c2 - c1. * If n > 0, then * * j1 - c1 < j2 - c2 * * If n = 0, then * * j1 - c1 = j2 - c2 * * and so * * (j1 - c1, c1) << (j2 - c2, c2) * * with "<<" the lexicographic order, proving that the order is preserved * in all cases. */ static __isl_give isl_union_map *contruct_shifted_executed( struct isl_set_map_pair *domain, int *order, int n, __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, __isl_take isl_ast_build *build) { int i; isl_union_map *executed; isl_space *space; isl_map *map; int depth; isl_constraint *c; depth = isl_ast_build_get_depth(build); space = isl_ast_build_get_space(build, 1); executed = isl_union_map_empty(isl_space_copy(space)); space = isl_space_map_from_set(space); map = isl_map_identity(isl_space_copy(space)); map = isl_map_eliminate(map, isl_dim_out, depth, 1); map = isl_map_insert_dims(map, isl_dim_out, depth + 1, 1); space = isl_space_insert_dims(space, isl_dim_out, depth + 1, 1); c = isl_constraint_alloc_equality(isl_local_space_from_space(space)); c = isl_constraint_set_coefficient_si(c, isl_dim_in, depth, 1); c = isl_constraint_set_coefficient_si(c, isl_dim_out, depth, -1); for (i = 0; i < n; ++i) { isl_map *map_i; isl_val *v; v = isl_multi_val_get_val(offset, i); if (!v) break; map_i = isl_map_copy(map); map_i = isl_map_fix_val(map_i, isl_dim_out, depth + 1, isl_val_copy(v)); v = isl_val_neg(v); c = isl_constraint_set_constant_val(c, v); map_i = isl_map_add_constraint(map_i, isl_constraint_copy(c)); map_i = isl_map_apply_domain(isl_map_copy(domain[order[i]].map), map_i); executed = isl_union_map_add_map(executed, map_i); } isl_constraint_free(c); isl_map_free(map); if (i < n) executed = isl_union_map_free(executed); return executed; } /* Generate code for a single component, after exposing the stride, * given that the schedule domain is "shifted strided". * * The component inverse schedule is specified as the "map" fields * of the elements of "domain" indexed by the first "n" elements of "order". * * The schedule domain being "shifted strided" means that the differences * between the values of the current dimension of domain "i" * and the values of the current dimension for some reference domain are * equal to * * stride * integer + offset[i] * * We first look for the domain with the "smallest" value for the current * dimension and adjust the offsets such that the offset of the "smallest" * domain is equal to zero. The other offsets are reduced modulo stride. * * Based on this information, we construct a new inverse schedule in * contruct_shifted_executed that exposes the stride. * Since this involves the introduction of a new schedule dimension, * the build needs to be changed accodingly. * After computing the AST, the newly introduced dimension needs * to be removed again from the list of grafts. We do this by plugging * in a mapping that represents the new schedule domain in terms of the * old schedule domain. */ static __isl_give isl_ast_graft_list *generate_shift_component( struct isl_set_map_pair *domain, int *order, int n, __isl_keep isl_val *stride, __isl_keep isl_multi_val *offset, __isl_take isl_ast_build *build) { isl_ast_graft_list *list; int first; int depth; isl_val *val; isl_multi_val *mv; isl_space *space; isl_multi_aff *ma, *zero; isl_union_map *executed; depth = isl_ast_build_get_depth(build); first = first_offset(domain, order, n, build); if (first < 0) goto error; mv = isl_multi_val_copy(offset); val = isl_multi_val_get_val(offset, first); val = isl_val_neg(val); mv = isl_multi_val_add_val(mv, val); mv = isl_multi_val_mod_val(mv, isl_val_copy(stride)); executed = contruct_shifted_executed(domain, order, n, stride, mv, build); space = isl_ast_build_get_space(build, 1); space = isl_space_map_from_set(space); ma = isl_multi_aff_identity(isl_space_copy(space)); space = isl_space_from_domain(isl_space_domain(space)); space = isl_space_add_dims(space, isl_dim_out, 1); zero = isl_multi_aff_zero(space); ma = isl_multi_aff_range_splice(ma, depth + 1, zero); build = isl_ast_build_insert_dim(build, depth + 1); list = generate_shifted_component(executed, build); list = isl_ast_graft_list_preimage_multi_aff(list, ma); isl_multi_val_free(mv); return list; error: isl_ast_build_free(build); return NULL; } /* Does any node in the schedule tree rooted at the current schedule node * of "build" depend on outer schedule nodes? */ static int has_anchored_subtree(__isl_keep isl_ast_build *build) { isl_schedule_node *node; int dependent = 0; node = isl_ast_build_get_schedule_node(build); dependent = isl_schedule_node_is_subtree_anchored(node); isl_schedule_node_free(node); return dependent; } /* Generate code for a single component. * * The component inverse schedule is specified as the "map" fields * of the elements of "domain" indexed by the first "n" elements of "order". * * This function may modify the "set" fields of "domain". * * Before proceeding with the actual code generation for the component, * we first check if there are any "shifted" strides, meaning that * the schedule domains of the individual domains are all strided, * but that they have different offsets, resulting in the union * of schedule domains not being strided anymore. * * The simplest example is the schedule * * { A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } * * Both schedule domains are strided, but their union is not. * This function detects such cases and then rewrites the schedule to * * { A[i] -> [2i, 0]: 0 <= i < 10; B[i] -> [2i, 1] : 0 <= i < 10 } * * In the new schedule, the schedule domains have the same offset (modulo * the stride), ensuring that the union of schedule domains is also strided. * * * If there is only a single domain in the component, then there is * nothing to do. Similarly, if the current schedule dimension has * a fixed value for almost all domains then there is nothing to be done. * In particular, we need at least two domains where the current schedule * dimension does not have a fixed value. * Finally, in case of a schedule map input, * if any of the options refer to the current schedule dimension, * then we bail out as well. It would be possible to reformulate the options * in terms of the new schedule domain, but that would introduce constraints * that separate the domains in the options and that is something we would * like to avoid. * In the case of a schedule tree input, we bail out if any of * the descendants of the current schedule node refer to outer * schedule nodes in any way. * * * To see if there is any shifted stride, we look at the differences * between the values of the current dimension in pairs of domains * for equal values of outer dimensions. These differences should be * of the form * * m x + r * * with "m" the stride and "r" a constant. Note that we cannot perform * this analysis on individual domains as the lower bound in each domain * may depend on parameters or outer dimensions and so the current dimension * itself may not have a fixed remainder on division by the stride. * * In particular, we compare the first domain that does not have an * obviously fixed value for the current dimension to itself and all * other domains and collect the offsets and the gcd of the strides. * If the gcd becomes one, then we failed to find shifted strides. * If the gcd is zero, then the differences were all fixed, meaning * that some domains had non-obviously fixed values for the current dimension. * If all the offsets are the same (for those domains that do not have * an obviously fixed value for the current dimension), then we do not * apply the transformation. * If none of the domains were skipped, then there is nothing to do. * If some of them were skipped, then if we apply separation, the schedule * domain should get split in pieces with a (non-shifted) stride. * * Otherwise, we apply a shift to expose the stride in * generate_shift_component. */ static __isl_give isl_ast_graft_list *generate_component( struct isl_set_map_pair *domain, int *order, int n, __isl_take isl_ast_build *build) { int i, d; int depth; isl_ctx *ctx; isl_map *map; isl_set *deltas; isl_val *gcd = NULL; isl_multi_val *mv; int fixed, skip; int base; isl_ast_graft_list *list; int res = 0; depth = isl_ast_build_get_depth(build); skip = n == 1; if (skip >= 0 && !skip) skip = at_most_one_non_fixed(domain, order, n, depth); if (skip >= 0 && !skip) { if (isl_ast_build_has_schedule_node(build)) skip = has_anchored_subtree(build); else skip = isl_ast_build_options_involve_depth(build); } if (skip < 0) goto error; if (skip) return generate_shifted_component_from_list(domain, order, n, build); base = eliminate_non_fixed(domain, order, n, depth, build); if (base < 0) goto error; ctx = isl_ast_build_get_ctx(build); mv = isl_multi_val_zero(isl_space_set_alloc(ctx, 0, n)); fixed = 1; for (i = 0; i < n; ++i) { isl_val *r, *m; map = isl_map_from_domain_and_range( isl_set_copy(domain[order[base]].set), isl_set_copy(domain[order[i]].set)); for (d = 0; d < depth; ++d) map = isl_map_equate(map, isl_dim_in, d, isl_dim_out, d); deltas = isl_map_deltas(map); res = isl_set_dim_residue_class_val(deltas, depth, &m, &r); isl_set_free(deltas); if (res < 0) break; if (i == 0) gcd = m; else gcd = isl_val_gcd(gcd, m); if (isl_val_is_one(gcd)) { isl_val_free(r); break; } mv = isl_multi_val_set_val(mv, i, r); res = dim_is_fixed(domain[order[i]].set, depth); if (res < 0) break; if (res) continue; if (fixed && i > base) { isl_val *a, *b; a = isl_multi_val_get_val(mv, i); b = isl_multi_val_get_val(mv, base); if (isl_val_ne(a, b)) fixed = 0; isl_val_free(a); isl_val_free(b); } } if (res < 0 || !gcd) { isl_ast_build_free(build); list = NULL; } else if (i < n || fixed || isl_val_is_zero(gcd)) { list = generate_shifted_component_from_list(domain, order, n, build); } else { list = generate_shift_component(domain, order, n, gcd, mv, build); } isl_val_free(gcd); isl_multi_val_free(mv); return list; error: isl_ast_build_free(build); return NULL; } /* Store both "map" itself and its domain in the * structure pointed to by *next and advance to the next array element. */ static isl_stat extract_domain(__isl_take isl_map *map, void *user) { struct isl_set_map_pair **next = user; (*next)->map = isl_map_copy(map); (*next)->set = isl_map_domain(map); (*next)++; return isl_stat_ok; } static int after_in_tree(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node); /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the child of "node"? */ static int after_in_child(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { isl_schedule_node *child; int after; child = isl_schedule_node_get_child(node, 0); after = after_in_tree(umap, child); isl_schedule_node_free(child); return after; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the band node "node"? * * We first check if any domain element is scheduled after any * of the corresponding image elements by the band node itself. * If not, we restrict "map" to those pairs of element that * are scheduled together by the band node and continue with * the child of the band node. * If there are no such pairs then the map passed to after_in_child * will be empty causing it to return 0. */ static int after_in_band(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { isl_multi_union_pw_aff *mupa; isl_union_map *partial, *test, *gt, *universe, *umap1, *umap2; isl_union_set *domain, *range; isl_space *space; int empty; int after; if (isl_schedule_node_band_n_member(node) == 0) return after_in_child(umap, node); mupa = isl_schedule_node_band_get_partial_schedule(node); space = isl_multi_union_pw_aff_get_space(mupa); partial = isl_union_map_from_multi_union_pw_aff(mupa); test = isl_union_map_copy(umap); test = isl_union_map_apply_domain(test, isl_union_map_copy(partial)); test = isl_union_map_apply_range(test, isl_union_map_copy(partial)); gt = isl_union_map_from_map(isl_map_lex_gt(space)); test = isl_union_map_intersect(test, gt); empty = isl_union_map_is_empty(test); isl_union_map_free(test); if (empty < 0 || !empty) { isl_union_map_free(partial); return empty < 0 ? -1 : 1; } universe = isl_union_map_universe(isl_union_map_copy(umap)); domain = isl_union_map_domain(isl_union_map_copy(universe)); range = isl_union_map_range(universe); umap1 = isl_union_map_copy(partial); umap1 = isl_union_map_intersect_domain(umap1, domain); umap2 = isl_union_map_intersect_domain(partial, range); test = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2)); test = isl_union_map_intersect(test, isl_union_map_copy(umap)); after = after_in_child(test, node); isl_union_map_free(test); return after; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the context node "node"? * * The context constraints apply to the schedule domain, * so we cannot apply them directly to "umap", which contains * pairs of statement instances. Instead, we add them * to the range of the prefix schedule for both domain and * range of "umap". */ static int after_in_context(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { isl_union_map *prefix, *universe, *umap1, *umap2; isl_union_set *domain, *range; isl_set *context; int after; umap = isl_union_map_copy(umap); context = isl_schedule_node_context_get_context(node); prefix = isl_schedule_node_get_prefix_schedule_union_map(node); universe = isl_union_map_universe(isl_union_map_copy(umap)); domain = isl_union_map_domain(isl_union_map_copy(universe)); range = isl_union_map_range(universe); umap1 = isl_union_map_copy(prefix); umap1 = isl_union_map_intersect_domain(umap1, domain); umap2 = isl_union_map_intersect_domain(prefix, range); umap1 = isl_union_map_intersect_range(umap1, isl_union_set_from_set(context)); umap1 = isl_union_map_apply_range(umap1, isl_union_map_reverse(umap2)); umap = isl_union_map_intersect(umap, umap1); after = after_in_child(umap, node); isl_union_map_free(umap); return after; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the expansion node "node"? * * We apply the expansion to domain and range of "umap" and * continue with its child. */ static int after_in_expansion(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { isl_union_map *expansion; int after; expansion = isl_schedule_node_expansion_get_expansion(node); umap = isl_union_map_copy(umap); umap = isl_union_map_apply_domain(umap, isl_union_map_copy(expansion)); umap = isl_union_map_apply_range(umap, expansion); after = after_in_child(umap, node); isl_union_map_free(umap); return after; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the extension node "node"? * * Since the extension node may add statement instances before or * after the pairs of statement instances in "umap", we return 1 * to ensure that these pairs are not broken up. */ static int after_in_extension(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { return 1; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the filter node "node"? * * We intersect domain and range of "umap" with the filter and * continue with its child. */ static int after_in_filter(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { isl_union_set *filter; int after; umap = isl_union_map_copy(umap); filter = isl_schedule_node_filter_get_filter(node); umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(filter)); umap = isl_union_map_intersect_range(umap, filter); after = after_in_child(umap, node); isl_union_map_free(umap); return after; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the set node "node"? * * This is only the case if this condition holds in any * of the (filter) children of the set node. * In particular, if the domain and the range of "umap" * are contained in different children, then the condition * does not hold. */ static int after_in_set(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { int i, n; n = isl_schedule_node_n_children(node); for (i = 0; i < n; ++i) { isl_schedule_node *child; int after; child = isl_schedule_node_get_child(node, i); after = after_in_tree(umap, child); isl_schedule_node_free(child); if (after < 0 || after) return after; } return 0; } /* Return the filter of child "i" of "node". */ static __isl_give isl_union_set *child_filter( __isl_keep isl_schedule_node *node, int i) { isl_schedule_node *child; isl_union_set *filter; child = isl_schedule_node_get_child(node, i); filter = isl_schedule_node_filter_get_filter(child); isl_schedule_node_free(child); return filter; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at * the sequence node "node"? * * This happens in particular if any domain element is * contained in a later child than one containing a range element or * if the condition holds within a given child in the sequence. * The later part of the condition is checked by after_in_set. */ static int after_in_sequence(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { int i, j, n; isl_union_map *umap_i; int empty, after = 0; n = isl_schedule_node_n_children(node); for (i = 1; i < n; ++i) { isl_union_set *filter_i; umap_i = isl_union_map_copy(umap); filter_i = child_filter(node, i); umap_i = isl_union_map_intersect_domain(umap_i, filter_i); empty = isl_union_map_is_empty(umap_i); if (empty < 0) goto error; if (empty) { isl_union_map_free(umap_i); continue; } for (j = 0; j < i; ++j) { isl_union_set *filter_j; isl_union_map *umap_ij; umap_ij = isl_union_map_copy(umap_i); filter_j = child_filter(node, j); umap_ij = isl_union_map_intersect_range(umap_ij, filter_j); empty = isl_union_map_is_empty(umap_ij); isl_union_map_free(umap_ij); if (empty < 0) goto error; if (!empty) after = 1; if (after) break; } isl_union_map_free(umap_i); if (after) break; } if (after < 0 || after) return after; return after_in_set(umap, node); error: isl_union_map_free(umap_i); return -1; } /* Is any domain element of "umap" scheduled after any of * the corresponding image elements by the tree rooted at "node"? * * If "umap" is empty, then clearly there is no such element. * Otherwise, consider the different types of nodes separately. */ static int after_in_tree(__isl_keep isl_union_map *umap, __isl_keep isl_schedule_node *node) { int empty; enum isl_schedule_node_type type; empty = isl_union_map_is_empty(umap); if (empty < 0) return -1; if (empty) return 0; if (!node) return -1; type = isl_schedule_node_get_type(node); switch (type) { case isl_schedule_node_error: return -1; case isl_schedule_node_leaf: return 0; case isl_schedule_node_band: return after_in_band(umap, node); case isl_schedule_node_domain: isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, "unexpected internal domain node", return -1); case isl_schedule_node_context: return after_in_context(umap, node); case isl_schedule_node_expansion: return after_in_expansion(umap, node); case isl_schedule_node_extension: return after_in_extension(umap, node); case isl_schedule_node_filter: return after_in_filter(umap, node); case isl_schedule_node_guard: case isl_schedule_node_mark: return after_in_child(umap, node); case isl_schedule_node_set: return after_in_set(umap, node); case isl_schedule_node_sequence: return after_in_sequence(umap, node); } return 1; } /* Is any domain element of "map1" scheduled after any domain * element of "map2" by the subtree underneath the current band node, * while at the same time being scheduled together by the current * band node, i.e., by "map1" and "map2? * * If the child of the current band node is a leaf, then * no element can be scheduled after any other element. * * Otherwise, we construct a relation between domain elements * of "map1" and domain elements of "map2" that are scheduled * together and then check if the subtree underneath the current * band node determines their relative order. */ static int after_in_subtree(__isl_keep isl_ast_build *build, __isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_schedule_node *node; isl_map *map; isl_union_map *umap; int after; node = isl_ast_build_get_schedule_node(build); if (!node) return -1; node = isl_schedule_node_child(node, 0); if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { isl_schedule_node_free(node); return 0; } map = isl_map_copy(map2); map = isl_map_apply_domain(map, isl_map_copy(map1)); umap = isl_union_map_from_map(map); after = after_in_tree(umap, node); isl_union_map_free(umap); isl_schedule_node_free(node); return after; } /* Internal data for any_scheduled_after. * * "build" is the build in which the AST is constructed. * "depth" is the number of loops that have already been generated * "group_coscheduled" is a local copy of options->ast_build_group_coscheduled * "domain" is an array of set-map pairs corresponding to the different * iteration domains. The set is the schedule domain, i.e., the domain * of the inverse schedule, while the map is the inverse schedule itself. */ struct isl_any_scheduled_after_data { isl_ast_build *build; int depth; int group_coscheduled; struct isl_set_map_pair *domain; }; /* Is any element of domain "i" scheduled after any element of domain "j" * (for a common iteration of the first data->depth loops)? * * data->domain[i].set contains the domain of the inverse schedule * for domain "i", i.e., elements in the schedule domain. * * If we are inside a band of a schedule tree and there is a pair * of elements in the two domains that is schedule together by * the current band, then we check if any element of "i" may be schedule * after element of "j" by the descendants of the band node. * * If data->group_coscheduled is set, then we also return 1 if there * is any pair of elements in the two domains that are scheduled together. */ static isl_bool any_scheduled_after(int i, int j, void *user) { struct isl_any_scheduled_after_data *data = user; int dim = isl_set_dim(data->domain[i].set, isl_dim_set); int pos; for (pos = data->depth; pos < dim; ++pos) { int follows; follows = isl_set_follows_at(data->domain[i].set, data->domain[j].set, pos); if (follows < -1) return isl_bool_error; if (follows > 0) return isl_bool_true; if (follows < 0) return isl_bool_false; } if (isl_ast_build_has_schedule_node(data->build)) { int after; after = after_in_subtree(data->build, data->domain[i].map, data->domain[j].map); if (after < 0 || after) return after; } return data->group_coscheduled; } /* Look for independent components at the current depth and generate code * for each component separately. The resulting lists of grafts are * merged in an attempt to combine grafts with identical guards. * * Code for two domains can be generated separately if all the elements * of one domain are scheduled before (or together with) all the elements * of the other domain. We therefore consider the graph with as nodes * the domains and an edge between two nodes if any element of the first * node is scheduled after any element of the second node. * If the ast_build_group_coscheduled is set, then we also add an edge if * there is any pair of elements in the two domains that are scheduled * together. * Code is then generated (by generate_component) * for each of the strongly connected components in this graph * in their topological order. * * Since the test is performed on the domain of the inverse schedules of * the different domains, we precompute these domains and store * them in data.domain. */ static __isl_give isl_ast_graft_list *generate_components( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { int i; isl_ctx *ctx = isl_ast_build_get_ctx(build); int n = isl_union_map_n_map(executed); struct isl_any_scheduled_after_data data; struct isl_set_map_pair *next; struct isl_tarjan_graph *g = NULL; isl_ast_graft_list *list = NULL; int n_domain = 0; data.domain = isl_calloc_array(ctx, struct isl_set_map_pair, n); if (!data.domain) goto error; n_domain = n; next = data.domain; if (isl_union_map_foreach_map(executed, &extract_domain, &next) < 0) goto error; if (!build) goto error; data.build = build; data.depth = isl_ast_build_get_depth(build); data.group_coscheduled = isl_options_get_ast_build_group_coscheduled(ctx); g = isl_tarjan_graph_init(ctx, n, &any_scheduled_after, &data); if (!g) goto error; list = isl_ast_graft_list_alloc(ctx, 0); i = 0; while (list && n) { isl_ast_graft_list *list_c; int first = i; if (g->order[i] == -1) isl_die(ctx, isl_error_internal, "cannot happen", goto error); ++i; --n; while (g->order[i] != -1) { ++i; --n; } list_c = generate_component(data.domain, g->order + first, i - first, isl_ast_build_copy(build)); list = isl_ast_graft_list_merge(list, list_c, build); ++i; } if (0) error: list = isl_ast_graft_list_free(list); isl_tarjan_graph_free(g); for (i = 0; i < n_domain; ++i) { isl_map_free(data.domain[i].map); isl_set_free(data.domain[i].set); } free(data.domain); isl_union_map_free(executed); isl_ast_build_free(build); return list; } /* Generate code for the next level (and all inner levels). * * If "executed" is empty, i.e., no code needs to be generated, * then we return an empty list. * * If we have already generated code for all loop levels, then we pass * control to generate_inner_level. * * If "executed" lives in a single space, i.e., if code needs to be * generated for a single domain, then there can only be a single * component and we go directly to generate_shifted_component. * Otherwise, we call generate_components to detect the components * and to call generate_component on each of them separately. */ static __isl_give isl_ast_graft_list *generate_next_level( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build) { int depth; if (!build || !executed) goto error; if (isl_union_map_is_empty(executed)) { isl_ctx *ctx = isl_ast_build_get_ctx(build); isl_union_map_free(executed); isl_ast_build_free(build); return isl_ast_graft_list_alloc(ctx, 0); } depth = isl_ast_build_get_depth(build); if (depth >= isl_ast_build_dim(build, isl_dim_set)) return generate_inner_level(executed, build); if (isl_union_map_n_map(executed) == 1) return generate_shifted_component(executed, build); return generate_components(executed, build); error: isl_union_map_free(executed); isl_ast_build_free(build); return NULL; } /* Internal data structure used by isl_ast_build_node_from_schedule_map. * internal, executed and build are the inputs to generate_code. * list collects the output. */ struct isl_generate_code_data { int internal; isl_union_map *executed; isl_ast_build *build; isl_ast_graft_list *list; }; /* Given an inverse schedule in terms of the external build schedule, i.e., * * [E -> S] -> D * * with E the external build schedule and S the additional schedule "space", * reformulate the inverse schedule in terms of the internal schedule domain, * i.e., return * * [I -> S] -> D * * We first obtain a mapping * * I -> E * * take the inverse and the product with S -> S, resulting in * * [I -> S] -> [E -> S] * * Applying the map to the input produces the desired result. */ static __isl_give isl_union_map *internal_executed( __isl_take isl_union_map *executed, __isl_keep isl_space *space, __isl_keep isl_ast_build *build) { isl_map *id, *proj; proj = isl_ast_build_get_schedule_map(build); proj = isl_map_reverse(proj); space = isl_space_map_from_set(isl_space_copy(space)); id = isl_map_identity(space); proj = isl_map_product(proj, id); executed = isl_union_map_apply_domain(executed, isl_union_map_from_map(proj)); return executed; } /* Generate an AST that visits the elements in the range of data->executed * in the relative order specified by the corresponding domain element(s) * for those domain elements that belong to "set". * Add the result to data->list. * * The caller ensures that "set" is a universe domain. * "space" is the space of the additional part of the schedule. * It is equal to the space of "set" if build->domain is parametric. * Otherwise, it is equal to the range of the wrapped space of "set". * * If the build space is not parametric and * if isl_ast_build_node_from_schedule_map * was called from an outside user (data->internal not set), then * the (inverse) schedule refers to the external build domain and needs to * be transformed to refer to the internal build domain. * * If the build space is parametric, then we add some of the parameter * constraints to the executed relation. Adding these constraints * allows for an earlier detection of conflicts in some cases. * However, we do not want to divide the executed relation into * more disjuncts than necessary. We therefore approximate * the constraints on the parameters by a single disjunct set. * * The build is extended to include the additional part of the schedule. * If the original build space was not parametric, then the options * in data->build refer only to the additional part of the schedule * and they need to be adjusted to refer to the complete AST build * domain. * * After having adjusted inverse schedule and build, we start generating * code with the outer loop of the current code generation * in generate_next_level. * * If the original build space was not parametric, we undo the embedding * on the resulting isl_ast_node_list so that it can be used within * the outer AST build. */ static isl_stat generate_code_in_space(struct isl_generate_code_data *data, __isl_take isl_set *set, __isl_take isl_space *space) { isl_union_map *executed; isl_ast_build *build; isl_ast_graft_list *list; int embed; executed = isl_union_map_copy(data->executed); executed = isl_union_map_intersect_domain(executed, isl_union_set_from_set(set)); embed = !isl_set_is_params(data->build->domain); if (embed && !data->internal) executed = internal_executed(executed, space, data->build); if (!embed) { isl_set *domain; domain = isl_ast_build_get_domain(data->build); domain = isl_set_from_basic_set(isl_set_simple_hull(domain)); executed = isl_union_map_intersect_params(executed, domain); } build = isl_ast_build_copy(data->build); build = isl_ast_build_product(build, space); list = generate_next_level(executed, build); list = isl_ast_graft_list_unembed(list, embed); data->list = isl_ast_graft_list_concat(data->list, list); return isl_stat_ok; } /* Generate an AST that visits the elements in the range of data->executed * in the relative order specified by the corresponding domain element(s) * for those domain elements that belong to "set". * Add the result to data->list. * * The caller ensures that "set" is a universe domain. * * If the build space S is not parametric, then the space of "set" * need to be a wrapped relation with S as domain. That is, it needs * to be of the form * * [S -> T] * * Check this property and pass control to generate_code_in_space * passing along T. * If the build space is not parametric, then T is the space of "set". */ static isl_stat generate_code_set(__isl_take isl_set *set, void *user) { struct isl_generate_code_data *data = user; isl_space *space, *build_space; int is_domain; space = isl_set_get_space(set); if (isl_set_is_params(data->build->domain)) return generate_code_in_space(data, set, space); build_space = isl_ast_build_get_space(data->build, data->internal); space = isl_space_unwrap(space); is_domain = isl_space_is_domain(build_space, space); isl_space_free(build_space); space = isl_space_range(space); if (is_domain < 0) goto error; if (!is_domain) isl_die(isl_set_get_ctx(set), isl_error_invalid, "invalid nested schedule space", goto error); return generate_code_in_space(data, set, space); error: isl_set_free(set); isl_space_free(space); return isl_stat_error; } /* Generate an AST that visits the elements in the range of "executed" * in the relative order specified by the corresponding domain element(s). * * "build" is an isl_ast_build that has either been constructed by * isl_ast_build_from_context or passed to a callback set by * isl_ast_build_set_create_leaf. * In the first case, the space of the isl_ast_build is typically * a parametric space, although this is currently not enforced. * In the second case, the space is never a parametric space. * If the space S is not parametric, then the domain space(s) of "executed" * need to be wrapped relations with S as domain. * * If the domain of "executed" consists of several spaces, then an AST * is generated for each of them (in arbitrary order) and the results * are concatenated. * * If "internal" is set, then the domain "S" above refers to the internal * schedule domain representation. Otherwise, it refers to the external * representation, as returned by isl_ast_build_get_schedule_space. * * We essentially run over all the spaces in the domain of "executed" * and call generate_code_set on each of them. */ static __isl_give isl_ast_graft_list *generate_code( __isl_take isl_union_map *executed, __isl_take isl_ast_build *build, int internal) { isl_ctx *ctx; struct isl_generate_code_data data = { 0 }; isl_space *space; isl_union_set *schedule_domain; isl_union_map *universe; if (!build) goto error; space = isl_ast_build_get_space(build, 1); space = isl_space_align_params(space, isl_union_map_get_space(executed)); space = isl_space_align_params(space, isl_union_map_get_space(build->options)); build = isl_ast_build_align_params(build, isl_space_copy(space)); executed = isl_union_map_align_params(executed, space); if (!executed || !build) goto error; ctx = isl_ast_build_get_ctx(build); data.internal = internal; data.executed = executed; data.build = build; data.list = isl_ast_graft_list_alloc(ctx, 0); universe = isl_union_map_universe(isl_union_map_copy(executed)); schedule_domain = isl_union_map_domain(universe); if (isl_union_set_foreach_set(schedule_domain, &generate_code_set, &data) < 0) data.list = isl_ast_graft_list_free(data.list); isl_union_set_free(schedule_domain); isl_union_map_free(executed); isl_ast_build_free(build); return data.list; error: isl_union_map_free(executed); isl_ast_build_free(build); return NULL; } /* Generate an AST that visits the elements in the domain of "schedule" * in the relative order specified by the corresponding image element(s). * * "build" is an isl_ast_build that has either been constructed by * isl_ast_build_from_context or passed to a callback set by * isl_ast_build_set_create_leaf. * In the first case, the space of the isl_ast_build is typically * a parametric space, although this is currently not enforced. * In the second case, the space is never a parametric space. * If the space S is not parametric, then the range space(s) of "schedule" * need to be wrapped relations with S as domain. * * If the range of "schedule" consists of several spaces, then an AST * is generated for each of them (in arbitrary order) and the results * are concatenated. * * We first initialize the local copies of the relevant options. * We do this here rather than when the isl_ast_build is created * because the options may have changed between the construction * of the isl_ast_build and the call to isl_generate_code. * * The main computation is performed on an inverse schedule (with * the schedule domain in the domain and the elements to be executed * in the range) called "executed". */ __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) { isl_ast_graft_list *list; isl_ast_node *node; isl_union_map *executed; build = isl_ast_build_copy(build); build = isl_ast_build_set_single_valued(build, 0); schedule = isl_union_map_coalesce(schedule); schedule = isl_union_map_remove_redundancies(schedule); executed = isl_union_map_reverse(schedule); list = generate_code(executed, isl_ast_build_copy(build), 0); node = isl_ast_node_from_graft_list(list, build); isl_ast_build_free(build); return node; } /* The old name for isl_ast_build_node_from_schedule_map. * It is being kept for backward compatibility, but * it will be removed in the future. */ __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule) { return isl_ast_build_node_from_schedule_map(build, schedule); } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the band node "node" and its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * If the band is empty, we continue with its descendants. * Otherwise, we extend the build and the inverse schedule with * the additional space/partial schedule and continue generating * an AST in generate_next_level. * As soon as we have extended the inverse schedule with the additional * partial schedule, we look for equalities that may exists between * the old and the new part. */ static __isl_give isl_ast_graft_list *build_ast_from_band( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_space *space; isl_multi_union_pw_aff *extra; isl_union_map *extra_umap; isl_ast_graft_list *list; unsigned n1, n2; if (!build || !node || !executed) goto error; if (isl_schedule_node_band_n_member(node) == 0) return build_ast_from_child(build, node, executed); extra = isl_schedule_node_band_get_partial_schedule(node); extra = isl_multi_union_pw_aff_align_params(extra, isl_ast_build_get_space(build, 1)); space = isl_multi_union_pw_aff_get_space(extra); extra_umap = isl_union_map_from_multi_union_pw_aff(extra); extra_umap = isl_union_map_reverse(extra_umap); executed = isl_union_map_domain_product(executed, extra_umap); executed = isl_union_map_detect_equalities(executed); n1 = isl_ast_build_dim(build, isl_dim_param); build = isl_ast_build_product(build, space); n2 = isl_ast_build_dim(build, isl_dim_param); if (n2 > n1) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "band node is not allowed to introduce new parameters", build = isl_ast_build_free(build)); build = isl_ast_build_set_schedule_node(build, node); list = generate_next_level(executed, build); list = isl_ast_graft_list_unembed(list, 1); return list; error: isl_schedule_node_free(node); isl_union_map_free(executed); isl_ast_build_free(build); return NULL; } /* Hoist a list of grafts (in practice containing a single graft) * from "sub_build" (which includes extra context information) * to "build". * * In particular, project out all additional parameters introduced * by the context node from the enforced constraints and the guard * of the single graft. */ static __isl_give isl_ast_graft_list *hoist_out_of_context( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) { isl_ast_graft *graft; isl_basic_set *enforced; isl_set *guard; unsigned n_param, extra_param; if (!build || !sub_build) return isl_ast_graft_list_free(list); n_param = isl_ast_build_dim(build, isl_dim_param); extra_param = isl_ast_build_dim(sub_build, isl_dim_param); if (extra_param == n_param) return list; extra_param -= n_param; enforced = isl_ast_graft_list_extract_shared_enforced(list, sub_build); enforced = isl_basic_set_project_out(enforced, isl_dim_param, n_param, extra_param); enforced = isl_basic_set_remove_unknown_divs(enforced); guard = isl_ast_graft_list_extract_hoistable_guard(list, sub_build); guard = isl_set_remove_divs_involving_dims(guard, isl_dim_param, n_param, extra_param); guard = isl_set_project_out(guard, isl_dim_param, n_param, extra_param); guard = isl_set_compute_divs(guard); graft = isl_ast_graft_alloc_from_children(list, guard, enforced, build, sub_build); list = isl_ast_graft_list_from_ast_graft(graft); return list; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the context node "node" * and its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * The context node may introduce additional parameters as well as * constraints on the outer schedule dimenions or original parameters. * * We add the extra parameters to a new build and the context * constraints to both the build and (as a single disjunct) * to the domain of "executed". Since the context constraints * are specified in terms of the input schedule, we first need * to map them to the internal schedule domain. * * After constructing the AST from the descendants of "node", * we combine the list of grafts into a single graft within * the new build, in order to be able to exploit the additional * context constraints during this combination. * * Additionally, if the current node is the outermost node in * the schedule tree (apart from the root domain node), we generate * all pending guards, again to be able to exploit the additional * context constraints. We currently do not do this for internal * context nodes since we may still want to hoist conditions * to outer AST nodes. * * If the context node introduced any new parameters, then they * are removed from the set of enforced constraints and guard * in hoist_out_of_context. */ static __isl_give isl_ast_graft_list *build_ast_from_context( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_set *context; isl_space *space; isl_multi_aff *internal2input; isl_ast_build *sub_build; isl_ast_graft_list *list; int n, depth; depth = isl_schedule_node_get_tree_depth(node); space = isl_ast_build_get_space(build, 1); context = isl_schedule_node_context_get_context(node); context = isl_set_align_params(context, space); sub_build = isl_ast_build_copy(build); space = isl_set_get_space(context); sub_build = isl_ast_build_align_params(sub_build, space); internal2input = isl_ast_build_get_internal2input(sub_build); context = isl_set_preimage_multi_aff(context, internal2input); sub_build = isl_ast_build_restrict_generated(sub_build, isl_set_copy(context)); context = isl_set_from_basic_set(isl_set_simple_hull(context)); executed = isl_union_map_intersect_domain(executed, isl_union_set_from_set(context)); list = build_ast_from_child(isl_ast_build_copy(sub_build), node, executed); n = isl_ast_graft_list_n_ast_graft(list); if (n < 0) list = isl_ast_graft_list_free(list); list = isl_ast_graft_list_fuse(list, sub_build); if (depth == 1) list = isl_ast_graft_list_insert_pending_guard_nodes(list, sub_build); if (n >= 1) list = hoist_out_of_context(list, build, sub_build); isl_ast_build_free(build); isl_ast_build_free(sub_build); return list; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the expansion node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * We expand the domain elements by the expansion and * continue with the descendants of the node. */ static __isl_give isl_ast_graft_list *build_ast_from_expansion( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_union_map *expansion; unsigned n1, n2; expansion = isl_schedule_node_expansion_get_expansion(node); expansion = isl_union_map_align_params(expansion, isl_union_map_get_space(executed)); n1 = isl_union_map_dim(executed, isl_dim_param); executed = isl_union_map_apply_range(executed, expansion); n2 = isl_union_map_dim(executed, isl_dim_param); if (n2 > n1) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "expansion node is not allowed to introduce " "new parameters", goto error); return build_ast_from_child(build, node, executed); error: isl_ast_build_free(build); isl_schedule_node_free(node); isl_union_map_free(executed); return NULL; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the extension node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * Extend the inverse schedule with the extension applied to current * set of generated constraints. Since the extension if formulated * in terms of the input schedule, it first needs to be transformed * to refer to the internal schedule. */ static __isl_give isl_ast_graft_list *build_ast_from_extension( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_union_set *schedule_domain; isl_union_map *extension; isl_set *set; set = isl_ast_build_get_generated(build); set = isl_set_from_basic_set(isl_set_simple_hull(set)); schedule_domain = isl_union_set_from_set(set); extension = isl_schedule_node_extension_get_extension(node); extension = isl_union_map_preimage_domain_multi_aff(extension, isl_multi_aff_copy(build->internal2input)); extension = isl_union_map_intersect_domain(extension, schedule_domain); extension = isl_ast_build_substitute_values_union_map_domain(build, extension); executed = isl_union_map_union(executed, extension); return build_ast_from_child(build, node, executed); } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the filter node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * We simply intersect the iteration domain (i.e., the range of "executed") * with the filter and continue with the descendants of the node, * unless the resulting inverse schedule is empty, in which * case we return an empty list. * * If the result of the intersection is equal to the original "executed" * relation, then keep the original representation since the intersection * may have unnecessarily broken up the relation into a greater number * of disjuncts. */ static __isl_give isl_ast_graft_list *build_ast_from_filter( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_ctx *ctx; isl_union_set *filter; isl_union_map *orig; isl_ast_graft_list *list; int empty; isl_bool unchanged; unsigned n1, n2; orig = isl_union_map_copy(executed); if (!build || !node || !executed) goto error; filter = isl_schedule_node_filter_get_filter(node); filter = isl_union_set_align_params(filter, isl_union_map_get_space(executed)); n1 = isl_union_map_dim(executed, isl_dim_param); executed = isl_union_map_intersect_range(executed, filter); n2 = isl_union_map_dim(executed, isl_dim_param); if (n2 > n1) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "filter node is not allowed to introduce " "new parameters", goto error); unchanged = isl_union_map_is_subset(orig, executed); empty = isl_union_map_is_empty(executed); if (unchanged < 0 || empty < 0) goto error; if (unchanged) { isl_union_map_free(executed); return build_ast_from_child(build, node, orig); } isl_union_map_free(orig); if (!empty) return build_ast_from_child(build, node, executed); ctx = isl_ast_build_get_ctx(build); list = isl_ast_graft_list_alloc(ctx, 0); isl_ast_build_free(build); isl_schedule_node_free(node); isl_union_map_free(executed); return list; error: isl_ast_build_free(build); isl_schedule_node_free(node); isl_union_map_free(executed); isl_union_map_free(orig); return NULL; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the guard node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * Ensure that the associated guard is enforced by the outer AST * constructs by adding it to the guard of the graft. * Since we know that we will enforce the guard, we can also include it * in the generated constraints used to construct an AST for * the descendant nodes. */ static __isl_give isl_ast_graft_list *build_ast_from_guard( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_space *space; isl_set *guard, *hoisted; isl_basic_set *enforced; isl_ast_build *sub_build; isl_ast_graft *graft; isl_ast_graft_list *list; unsigned n1, n2; space = isl_ast_build_get_space(build, 1); guard = isl_schedule_node_guard_get_guard(node); n1 = isl_space_dim(space, isl_dim_param); guard = isl_set_align_params(guard, space); n2 = isl_set_dim(guard, isl_dim_param); if (n2 > n1) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "guard node is not allowed to introduce " "new parameters", guard = isl_set_free(guard)); guard = isl_set_preimage_multi_aff(guard, isl_multi_aff_copy(build->internal2input)); guard = isl_ast_build_specialize(build, guard); guard = isl_set_gist(guard, isl_set_copy(build->generated)); sub_build = isl_ast_build_copy(build); sub_build = isl_ast_build_restrict_generated(sub_build, isl_set_copy(guard)); list = build_ast_from_child(isl_ast_build_copy(sub_build), node, executed); hoisted = isl_ast_graft_list_extract_hoistable_guard(list, sub_build); if (isl_set_n_basic_set(hoisted) > 1) list = isl_ast_graft_list_gist_guards(list, isl_set_copy(hoisted)); guard = isl_set_intersect(guard, hoisted); enforced = extract_shared_enforced(list, build); graft = isl_ast_graft_alloc_from_children(list, guard, enforced, build, sub_build); isl_ast_build_free(sub_build); isl_ast_build_free(build); return isl_ast_graft_list_from_ast_graft(graft); } /* Call the before_each_mark callback, if requested by the user. * * Return 0 on success and -1 on error. * * The caller is responsible for recording the current inverse schedule * in "build". */ static isl_stat before_each_mark(__isl_keep isl_id *mark, __isl_keep isl_ast_build *build) { if (!build) return isl_stat_error; if (!build->before_each_mark) return isl_stat_ok; return build->before_each_mark(mark, build, build->before_each_mark_user); } /* Call the after_each_mark callback, if requested by the user. * * The caller is responsible for recording the current inverse schedule * in "build". */ static __isl_give isl_ast_graft *after_each_mark( __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { if (!graft || !build) return isl_ast_graft_free(graft); if (!build->after_each_mark) return graft; graft->node = build->after_each_mark(graft->node, build, build->after_each_mark_user); if (!graft->node) return isl_ast_graft_free(graft); return graft; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the mark node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * Since we may be calling before_each_mark and after_each_mark * callbacks, we record the current inverse schedule in the build. * * We generate an AST for the child of the mark node, combine * the graft list into a single graft and then insert the mark * in the AST of that single graft. */ static __isl_give isl_ast_graft_list *build_ast_from_mark( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { isl_id *mark; isl_ast_graft *graft; isl_ast_graft_list *list; int n; build = isl_ast_build_set_executed(build, isl_union_map_copy(executed)); mark = isl_schedule_node_mark_get_id(node); if (before_each_mark(mark, build) < 0) node = isl_schedule_node_free(node); list = build_ast_from_child(isl_ast_build_copy(build), node, executed); list = isl_ast_graft_list_fuse(list, build); n = isl_ast_graft_list_n_ast_graft(list); if (n < 0) list = isl_ast_graft_list_free(list); if (n == 0) { isl_id_free(mark); } else { graft = isl_ast_graft_list_get_ast_graft(list, 0); graft = isl_ast_graft_insert_mark(graft, mark); graft = after_each_mark(graft, build); list = isl_ast_graft_list_set_ast_graft(list, 0, graft); } isl_ast_build_free(build); return list; } static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed); /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the sequence (or set) node "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * We simply generate an AST for each of the children and concatenate * the results. */ static __isl_give isl_ast_graft_list *build_ast_from_sequence( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { int i, n; isl_ctx *ctx; isl_ast_graft_list *list; ctx = isl_ast_build_get_ctx(build); list = isl_ast_graft_list_alloc(ctx, 0); n = isl_schedule_node_n_children(node); for (i = 0; i < n; ++i) { isl_schedule_node *child; isl_ast_graft_list *list_i; child = isl_schedule_node_get_child(node, i); list_i = build_ast_from_schedule_node(isl_ast_build_copy(build), child, isl_union_map_copy(executed)); list = isl_ast_graft_list_concat(list, list_i); } isl_ast_build_free(build); isl_schedule_node_free(node); isl_union_map_free(executed); return list; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the node "node" and its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * If the node is a leaf, then we pass control to generate_inner_level. * Note that the current build does not refer to any band node, so * that generate_inner_level will not try to visit the child of * the leaf node. * * The other node types are handled in separate functions. * Set nodes are currently treated in the same way as sequence nodes. * The children of a set node may be executed in any order, * including the order of the children. */ static __isl_give isl_ast_graft_list *build_ast_from_schedule_node( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { enum isl_schedule_node_type type; type = isl_schedule_node_get_type(node); switch (type) { case isl_schedule_node_error: goto error; case isl_schedule_node_leaf: isl_schedule_node_free(node); return generate_inner_level(executed, build); case isl_schedule_node_band: return build_ast_from_band(build, node, executed); case isl_schedule_node_context: return build_ast_from_context(build, node, executed); case isl_schedule_node_domain: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "unexpected internal domain node", goto error); case isl_schedule_node_expansion: return build_ast_from_expansion(build, node, executed); case isl_schedule_node_extension: return build_ast_from_extension(build, node, executed); case isl_schedule_node_filter: return build_ast_from_filter(build, node, executed); case isl_schedule_node_guard: return build_ast_from_guard(build, node, executed); case isl_schedule_node_mark: return build_ast_from_mark(build, node, executed); case isl_schedule_node_sequence: case isl_schedule_node_set: return build_ast_from_sequence(build, node, executed); } isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "unhandled type", goto error); error: isl_union_map_free(executed); isl_schedule_node_free(node); isl_ast_build_free(build); return NULL; } /* Generate an AST that visits the elements in the domain of "executed" * in the relative order specified by the (single) child of "node" and * its descendants. * * The relation "executed" maps the outer generated loop iterators * to the domain elements executed by those iterations. * * This function is never called on a leaf, set or sequence node, * so the node always has exactly one child. */ static __isl_give isl_ast_graft_list *build_ast_from_child( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node, __isl_take isl_union_map *executed) { node = isl_schedule_node_child(node, 0); return build_ast_from_schedule_node(build, node, executed); } /* Generate an AST that visits the elements in the domain of the domain * node "node" in the relative order specified by its descendants. * * An initial inverse schedule is created that maps a zero-dimensional * schedule space to the node domain. * The input "build" is assumed to have a parametric domain and * is replaced by the same zero-dimensional schedule space. * * We also add some of the parameter constraints in the build domain * to the executed relation. Adding these constraints * allows for an earlier detection of conflicts in some cases. * However, we do not want to divide the executed relation into * more disjuncts than necessary. We therefore approximate * the constraints on the parameters by a single disjunct set. */ static __isl_give isl_ast_node *build_ast_from_domain( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node) { isl_ctx *ctx; isl_union_set *domain, *schedule_domain; isl_union_map *executed; isl_space *space; isl_set *set; isl_ast_graft_list *list; isl_ast_node *ast; int is_params; if (!build) goto error; ctx = isl_ast_build_get_ctx(build); space = isl_ast_build_get_space(build, 1); is_params = isl_space_is_params(space); isl_space_free(space); if (is_params < 0) goto error; if (!is_params) isl_die(ctx, isl_error_unsupported, "expecting parametric initial context", goto error); domain = isl_schedule_node_domain_get_domain(node); domain = isl_union_set_coalesce(domain); space = isl_union_set_get_space(domain); space = isl_space_set_from_params(space); build = isl_ast_build_product(build, space); set = isl_ast_build_get_domain(build); set = isl_set_from_basic_set(isl_set_simple_hull(set)); schedule_domain = isl_union_set_from_set(set); executed = isl_union_map_from_domain_and_range(schedule_domain, domain); list = build_ast_from_child(isl_ast_build_copy(build), node, executed); ast = isl_ast_node_from_graft_list(list, build); isl_ast_build_free(build); return ast; error: isl_schedule_node_free(node); isl_ast_build_free(build); return NULL; } /* Generate an AST that visits the elements in the domain of "schedule" * in the relative order specified by the schedule tree. * * "build" is an isl_ast_build that has been created using * isl_ast_build_alloc or isl_ast_build_from_context based * on a parametric set. * * The construction starts at the root node of the schedule, * which is assumed to be a domain node. */ __isl_give isl_ast_node *isl_ast_build_node_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule) { isl_ctx *ctx; isl_schedule_node *node; if (!build || !schedule) goto error; ctx = isl_ast_build_get_ctx(build); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); build = isl_ast_build_copy(build); build = isl_ast_build_set_single_valued(build, 0); if (isl_schedule_node_get_type(node) != isl_schedule_node_domain) isl_die(ctx, isl_error_unsupported, "expecting root domain node", build = isl_ast_build_free(build)); return build_ast_from_domain(build, node); error: isl_schedule_free(schedule); return NULL; } isl-0.16.1/isl_sample.h0000664000175000017500000000162212645737061011626 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_SAMPLE_H #define ISL_SAMPLE_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset); struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset); __isl_give isl_vec *isl_basic_set_sample_with_cone( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone); __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec); int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab, struct isl_tab *tab_cone); struct isl_vec *isl_tab_sample(struct isl_tab *tab); #if defined(__cplusplus) } #endif #endif isl-0.16.1/isl_convex_hull.c0000664000175000017500000024304412645737450012676 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include #include #include #include #include "isl_equalities.h" #include "isl_tab.h" #include static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set); /* Return 1 if constraint c is redundant with respect to the constraints * in bmap. If c is a lower [upper] bound in some variable and bmap * does not have a lower [upper] bound in that variable, then c cannot * be redundant and we do not need solve any lp. */ int isl_basic_map_constraint_is_redundant(struct isl_basic_map **bmap, isl_int *c, isl_int *opt_n, isl_int *opt_d) { enum isl_lp_result res; unsigned total; int i, j; if (!bmap) return -1; total = isl_basic_map_total_dim(*bmap); for (i = 0; i < total; ++i) { int sign; if (isl_int_is_zero(c[1+i])) continue; sign = isl_int_sgn(c[1+i]); for (j = 0; j < (*bmap)->n_ineq; ++j) if (sign == isl_int_sgn((*bmap)->ineq[j][1+i])) break; if (j == (*bmap)->n_ineq) break; } if (i < total) return 0; res = isl_basic_map_solve_lp(*bmap, 0, c, (*bmap)->ctx->one, opt_n, opt_d, NULL); if (res == isl_lp_unbounded) return 0; if (res == isl_lp_error) return -1; if (res == isl_lp_empty) { *bmap = isl_basic_map_set_to_empty(*bmap); return 0; } return !isl_int_is_neg(*opt_n); } int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, isl_int *c, isl_int *opt_n, isl_int *opt_d) { return isl_basic_map_constraint_is_redundant( (struct isl_basic_map **)bset, c, opt_n, opt_d); } /* Remove redundant * constraints. If the minimal value along the normal of a constraint * is the same if the constraint is removed, then the constraint is redundant. * * Alternatively, we could have intersected the basic map with the * corresponding equality and the checked if the dimension was that * of a facet. */ __isl_give isl_basic_map *isl_basic_map_remove_redundancies( __isl_take isl_basic_map *bmap) { struct isl_tab *tab; if (!bmap) return NULL; bmap = isl_basic_map_gauss(bmap, NULL); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_REDUNDANT)) return bmap; if (bmap->n_ineq <= 1) return bmap; tab = isl_tab_from_basic_map(bmap, 0); if (isl_tab_detect_implicit_equalities(tab) < 0) goto error; if (isl_tab_detect_redundant(tab) < 0) goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); isl_tab_free(tab); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_REDUNDANT); return bmap; error: isl_tab_free(tab); isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_remove_redundancies( __isl_take isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_remove_redundancies((struct isl_basic_map *)bset); } /* Remove redundant constraints in each of the basic maps. */ __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map) { return isl_map_inline_foreach_basic_map(map, &isl_basic_map_remove_redundancies); } __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set) { return isl_map_remove_redundancies(set); } /* Check if the set set is bound in the direction of the affine * constraint c and if so, set the constant term such that the * resulting constraint is a bounding constraint for the set. */ static int uset_is_bound(struct isl_set *set, isl_int *c, unsigned len) { int first; int j; isl_int opt; isl_int opt_denom; isl_int_init(opt); isl_int_init(opt_denom); first = 1; for (j = 0; j < set->n; ++j) { enum isl_lp_result res; if (ISL_F_ISSET(set->p[j], ISL_BASIC_SET_EMPTY)) continue; res = isl_basic_set_solve_lp(set->p[j], 0, c, set->ctx->one, &opt, &opt_denom, NULL); if (res == isl_lp_unbounded) break; if (res == isl_lp_error) goto error; if (res == isl_lp_empty) { set->p[j] = isl_basic_set_set_to_empty(set->p[j]); if (!set->p[j]) goto error; continue; } if (first || isl_int_is_neg(opt)) { if (!isl_int_is_one(opt_denom)) isl_seq_scale(c, c, opt_denom, len); isl_int_sub(c[0], c[0], opt); } first = 0; } isl_int_clear(opt); isl_int_clear(opt_denom); return j >= set->n; error: isl_int_clear(opt); isl_int_clear(opt_denom); return -1; } __isl_give isl_basic_map *isl_basic_map_set_rational( __isl_take isl_basic_set *bmap) { if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL); return isl_basic_map_finalize(bmap); } __isl_give isl_basic_set *isl_basic_set_set_rational( __isl_take isl_basic_set *bset) { return isl_basic_map_set_rational(bset); } __isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_set_rational(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set) { return isl_map_set_rational(set); } static struct isl_basic_set *isl_basic_set_add_equality( struct isl_basic_set *bset, isl_int *c) { int i; unsigned dim; if (!bset) return NULL; if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return bset; isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend(bset, 0, dim, 0, 1, 0); i = isl_basic_set_alloc_equality(bset); if (i < 0) goto error; isl_seq_cpy(bset->eq[i], c, 1 + dim); return bset; error: isl_basic_set_free(bset); return NULL; } static struct isl_set *isl_set_add_basic_set_equality(struct isl_set *set, isl_int *c) { int i; set = isl_set_cow(set); if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_add_equality(set->p[i], c); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } /* Given a union of basic sets, construct the constraints for wrapping * a facet around one of its ridges. * In particular, if each of n the d-dimensional basic sets i in "set" * contains the origin, satisfies the constraints x_1 >= 0 and x_2 >= 0 * and is defined by the constraints * [ 1 ] * A_i [ x ] >= 0 * * then the resulting set is of dimension n*(1+d) and has as constraints * * [ a_i ] * A_i [ x_i ] >= 0 * * a_i >= 0 * * \sum_i x_{i,1} = 1 */ static struct isl_basic_set *wrap_constraints(struct isl_set *set) { struct isl_basic_set *lp; unsigned n_eq; unsigned n_ineq; int i, j, k; unsigned dim, lp_dim; if (!set) return NULL; dim = 1 + isl_set_n_dim(set); n_eq = 1; n_ineq = set->n; for (i = 0; i < set->n; ++i) { n_eq += set->p[i]->n_eq; n_ineq += set->p[i]->n_ineq; } lp = isl_basic_set_alloc(set->ctx, 0, dim * set->n, 0, n_eq, n_ineq); lp = isl_basic_set_set_rational(lp); if (!lp) return NULL; lp_dim = isl_basic_set_n_dim(lp); k = isl_basic_set_alloc_equality(lp); isl_int_set_si(lp->eq[k][0], -1); for (i = 0; i < set->n; ++i) { isl_int_set_si(lp->eq[k][1+dim*i], 0); isl_int_set_si(lp->eq[k][1+dim*i+1], 1); isl_seq_clr(lp->eq[k]+1+dim*i+2, dim-2); } for (i = 0; i < set->n; ++i) { k = isl_basic_set_alloc_inequality(lp); isl_seq_clr(lp->ineq[k], 1+lp_dim); isl_int_set_si(lp->ineq[k][1+dim*i], 1); for (j = 0; j < set->p[i]->n_eq; ++j) { k = isl_basic_set_alloc_equality(lp); isl_seq_clr(lp->eq[k], 1+dim*i); isl_seq_cpy(lp->eq[k]+1+dim*i, set->p[i]->eq[j], dim); isl_seq_clr(lp->eq[k]+1+dim*(i+1), dim*(set->n-i-1)); } for (j = 0; j < set->p[i]->n_ineq; ++j) { k = isl_basic_set_alloc_inequality(lp); isl_seq_clr(lp->ineq[k], 1+dim*i); isl_seq_cpy(lp->ineq[k]+1+dim*i, set->p[i]->ineq[j], dim); isl_seq_clr(lp->ineq[k]+1+dim*(i+1), dim*(set->n-i-1)); } } return lp; } /* Given a facet "facet" of the convex hull of "set" and a facet "ridge" * of that facet, compute the other facet of the convex hull that contains * the ridge. * * We first transform the set such that the facet constraint becomes * * x_1 >= 0 * * I.e., the facet lies in * * x_1 = 0 * * and on that facet, the constraint that defines the ridge is * * x_2 >= 0 * * (This transformation is not strictly needed, all that is needed is * that the ridge contains the origin.) * * Since the ridge contains the origin, the cone of the convex hull * will be of the form * * x_1 >= 0 * x_2 >= a x_1 * * with this second constraint defining the new facet. * The constant a is obtained by settting x_1 in the cone of the * convex hull to 1 and minimizing x_2. * Now, each element in the cone of the convex hull is the sum * of elements in the cones of the basic sets. * If a_i is the dilation factor of basic set i, then the problem * we need to solve is * * min \sum_i x_{i,2} * st * \sum_i x_{i,1} = 1 * a_i >= 0 * [ a_i ] * A [ x_i ] >= 0 * * with * [ 1 ] * A_i [ x_i ] >= 0 * * the constraints of each (transformed) basic set. * If a = n/d, then the constraint defining the new facet (in the transformed * space) is * * -n x_1 + d x_2 >= 0 * * In the original space, we need to take the same combination of the * corresponding constraints "facet" and "ridge". * * If a = -infty = "-1/0", then we just return the original facet constraint. * This means that the facet is unbounded, but has a bounded intersection * with the union of sets. */ isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, isl_int *facet, isl_int *ridge) { int i; isl_ctx *ctx; struct isl_mat *T = NULL; struct isl_basic_set *lp = NULL; struct isl_vec *obj; enum isl_lp_result res; isl_int num, den; unsigned dim; if (!set) return NULL; ctx = set->ctx; set = isl_set_copy(set); set = isl_set_set_rational(set); dim = 1 + isl_set_n_dim(set); T = isl_mat_alloc(ctx, 3, dim); if (!T) goto error; isl_int_set_si(T->row[0][0], 1); isl_seq_clr(T->row[0]+1, dim - 1); isl_seq_cpy(T->row[1], facet, dim); isl_seq_cpy(T->row[2], ridge, dim); T = isl_mat_right_inverse(T); set = isl_set_preimage(set, T); T = NULL; if (!set) goto error; lp = wrap_constraints(set); obj = isl_vec_alloc(ctx, 1 + dim*set->n); if (!obj) goto error; isl_int_set_si(obj->block.data[0], 0); for (i = 0; i < set->n; ++i) { isl_seq_clr(obj->block.data + 1 + dim*i, 2); isl_int_set_si(obj->block.data[1 + dim*i+2], 1); isl_seq_clr(obj->block.data + 1 + dim*i+3, dim-3); } isl_int_init(num); isl_int_init(den); res = isl_basic_set_solve_lp(lp, 0, obj->block.data, ctx->one, &num, &den, NULL); if (res == isl_lp_ok) { isl_int_neg(num, num); isl_seq_combine(facet, num, facet, den, ridge, dim); isl_seq_normalize(ctx, facet, dim); } isl_int_clear(num); isl_int_clear(den); isl_vec_free(obj); isl_basic_set_free(lp); isl_set_free(set); if (res == isl_lp_error) return NULL; isl_assert(ctx, res == isl_lp_ok || res == isl_lp_unbounded, return NULL); return facet; error: isl_basic_set_free(lp); isl_mat_free(T); isl_set_free(set); return NULL; } /* Compute the constraint of a facet of "set". * * We first compute the intersection with a bounding constraint * that is orthogonal to one of the coordinate axes. * If the affine hull of this intersection has only one equality, * we have found a facet. * Otherwise, we wrap the current bounding constraint around * one of the equalities of the face (one that is not equal to * the current bounding constraint). * This process continues until we have found a facet. * The dimension of the intersection increases by at least * one on each iteration, so termination is guaranteed. */ static __isl_give isl_mat *initial_facet_constraint(__isl_keep isl_set *set) { struct isl_set *slice = NULL; struct isl_basic_set *face = NULL; int i; unsigned dim = isl_set_n_dim(set); int is_bound; isl_mat *bounds = NULL; isl_assert(set->ctx, set->n > 0, goto error); bounds = isl_mat_alloc(set->ctx, 1, 1 + dim); if (!bounds) return NULL; isl_seq_clr(bounds->row[0], dim); isl_int_set_si(bounds->row[0][1 + dim - 1], 1); is_bound = uset_is_bound(set, bounds->row[0], 1 + dim); if (is_bound < 0) goto error; isl_assert(set->ctx, is_bound, goto error); isl_seq_normalize(set->ctx, bounds->row[0], 1 + dim); bounds->n_row = 1; for (;;) { slice = isl_set_copy(set); slice = isl_set_add_basic_set_equality(slice, bounds->row[0]); face = isl_set_affine_hull(slice); if (!face) goto error; if (face->n_eq == 1) { isl_basic_set_free(face); break; } for (i = 0; i < face->n_eq; ++i) if (!isl_seq_eq(bounds->row[0], face->eq[i], 1 + dim) && !isl_seq_is_neg(bounds->row[0], face->eq[i], 1 + dim)) break; isl_assert(set->ctx, i < face->n_eq, goto error); if (!isl_set_wrap_facet(set, bounds->row[0], face->eq[i])) goto error; isl_seq_normalize(set->ctx, bounds->row[0], bounds->n_col); isl_basic_set_free(face); } return bounds; error: isl_basic_set_free(face); isl_mat_free(bounds); return NULL; } /* Given the bounding constraint "c" of a facet of the convex hull of "set", * compute a hyperplane description of the facet, i.e., compute the facets * of the facet. * * We compute an affine transformation that transforms the constraint * * [ 1 ] * c [ x ] = 0 * * to the constraint * * z_1 = 0 * * by computing the right inverse U of a matrix that starts with the rows * * [ 1 0 ] * [ c ] * * Then * [ 1 ] [ 1 ] * [ x ] = U [ z ] * and * [ 1 ] [ 1 ] * [ z ] = Q [ x ] * * with Q = U^{-1} * Since z_1 is zero, we can drop this variable as well as the corresponding * column of U to obtain * * [ 1 ] [ 1 ] * [ x ] = U' [ z' ] * and * [ 1 ] [ 1 ] * [ z' ] = Q' [ x ] * * with Q' equal to Q, but without the corresponding row. * After computing the facets of the facet in the z' space, * we convert them back to the x space through Q. */ static struct isl_basic_set *compute_facet(struct isl_set *set, isl_int *c) { struct isl_mat *m, *U, *Q; struct isl_basic_set *facet = NULL; struct isl_ctx *ctx; unsigned dim; ctx = set->ctx; set = isl_set_copy(set); dim = isl_set_n_dim(set); m = isl_mat_alloc(set->ctx, 2, 1 + dim); if (!m) goto error; isl_int_set_si(m->row[0][0], 1); isl_seq_clr(m->row[0]+1, dim); isl_seq_cpy(m->row[1], c, 1+dim); U = isl_mat_right_inverse(m); Q = isl_mat_right_inverse(isl_mat_copy(U)); U = isl_mat_drop_cols(U, 1, 1); Q = isl_mat_drop_rows(Q, 1, 1); set = isl_set_preimage(set, U); facet = uset_convex_hull_wrap_bounded(set); facet = isl_basic_set_preimage(facet, Q); if (facet && facet->n_eq != 0) isl_die(ctx, isl_error_internal, "unexpected equality", return isl_basic_set_free(facet)); return facet; error: isl_basic_set_free(facet); isl_set_free(set); return NULL; } /* Given an initial facet constraint, compute the remaining facets. * We do this by running through all facets found so far and computing * the adjacent facets through wrapping, adding those facets that we * hadn't already found before. * * For each facet we have found so far, we first compute its facets * in the resulting convex hull. That is, we compute the ridges * of the resulting convex hull contained in the facet. * We also compute the corresponding facet in the current approximation * of the convex hull. There is no need to wrap around the ridges * in this facet since that would result in a facet that is already * present in the current approximation. * * This function can still be significantly optimized by checking which of * the facets of the basic sets are also facets of the convex hull and * using all the facets so far to help in constructing the facets of the * facets * and/or * using the technique in section "3.1 Ridge Generation" of * "Extended Convex Hull" by Fukuda et al. */ static struct isl_basic_set *extend(struct isl_basic_set *hull, struct isl_set *set) { int i, j, f; int k; struct isl_basic_set *facet = NULL; struct isl_basic_set *hull_facet = NULL; unsigned dim; if (!hull) return NULL; isl_assert(set->ctx, set->n > 0, goto error); dim = isl_set_n_dim(set); for (i = 0; i < hull->n_ineq; ++i) { facet = compute_facet(set, hull->ineq[i]); facet = isl_basic_set_add_equality(facet, hull->ineq[i]); facet = isl_basic_set_gauss(facet, NULL); facet = isl_basic_set_normalize_constraints(facet); hull_facet = isl_basic_set_copy(hull); hull_facet = isl_basic_set_add_equality(hull_facet, hull->ineq[i]); hull_facet = isl_basic_set_gauss(hull_facet, NULL); hull_facet = isl_basic_set_normalize_constraints(hull_facet); if (!facet || !hull_facet) goto error; hull = isl_basic_set_cow(hull); hull = isl_basic_set_extend_space(hull, isl_space_copy(hull->dim), 0, 0, facet->n_ineq); if (!hull) goto error; for (j = 0; j < facet->n_ineq; ++j) { for (f = 0; f < hull_facet->n_ineq; ++f) if (isl_seq_eq(facet->ineq[j], hull_facet->ineq[f], 1 + dim)) break; if (f < hull_facet->n_ineq) continue; k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; isl_seq_cpy(hull->ineq[k], hull->ineq[i], 1+dim); if (!isl_set_wrap_facet(set, hull->ineq[k], facet->ineq[j])) goto error; } isl_basic_set_free(hull_facet); isl_basic_set_free(facet); } hull = isl_basic_set_simplify(hull); hull = isl_basic_set_finalize(hull); return hull; error: isl_basic_set_free(hull_facet); isl_basic_set_free(facet); isl_basic_set_free(hull); return NULL; } /* Special case for computing the convex hull of a one dimensional set. * We simply collect the lower and upper bounds of each basic set * and the biggest of those. */ static struct isl_basic_set *convex_hull_1d(struct isl_set *set) { struct isl_mat *c = NULL; isl_int *lower = NULL; isl_int *upper = NULL; int i, j, k; isl_int a, b; struct isl_basic_set *hull; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_simplify(set->p[i]); if (!set->p[i]) goto error; } set = isl_set_remove_empty_parts(set); if (!set) goto error; isl_assert(set->ctx, set->n > 0, goto error); c = isl_mat_alloc(set->ctx, 2, 2); if (!c) goto error; if (set->p[0]->n_eq > 0) { isl_assert(set->ctx, set->p[0]->n_eq == 1, goto error); lower = c->row[0]; upper = c->row[1]; if (isl_int_is_pos(set->p[0]->eq[0][1])) { isl_seq_cpy(lower, set->p[0]->eq[0], 2); isl_seq_neg(upper, set->p[0]->eq[0], 2); } else { isl_seq_neg(lower, set->p[0]->eq[0], 2); isl_seq_cpy(upper, set->p[0]->eq[0], 2); } } else { for (j = 0; j < set->p[0]->n_ineq; ++j) { if (isl_int_is_pos(set->p[0]->ineq[j][1])) { lower = c->row[0]; isl_seq_cpy(lower, set->p[0]->ineq[j], 2); } else { upper = c->row[1]; isl_seq_cpy(upper, set->p[0]->ineq[j], 2); } } } isl_int_init(a); isl_int_init(b); for (i = 0; i < set->n; ++i) { struct isl_basic_set *bset = set->p[i]; int has_lower = 0; int has_upper = 0; for (j = 0; j < bset->n_eq; ++j) { has_lower = 1; has_upper = 1; if (lower) { isl_int_mul(a, lower[0], bset->eq[j][1]); isl_int_mul(b, lower[1], bset->eq[j][0]); if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) isl_seq_cpy(lower, bset->eq[j], 2); if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) isl_seq_neg(lower, bset->eq[j], 2); } if (upper) { isl_int_mul(a, upper[0], bset->eq[j][1]); isl_int_mul(b, upper[1], bset->eq[j][0]); if (isl_int_lt(a, b) && isl_int_is_pos(bset->eq[j][1])) isl_seq_neg(upper, bset->eq[j], 2); if (isl_int_gt(a, b) && isl_int_is_neg(bset->eq[j][1])) isl_seq_cpy(upper, bset->eq[j], 2); } } for (j = 0; j < bset->n_ineq; ++j) { if (isl_int_is_pos(bset->ineq[j][1])) has_lower = 1; if (isl_int_is_neg(bset->ineq[j][1])) has_upper = 1; if (lower && isl_int_is_pos(bset->ineq[j][1])) { isl_int_mul(a, lower[0], bset->ineq[j][1]); isl_int_mul(b, lower[1], bset->ineq[j][0]); if (isl_int_lt(a, b)) isl_seq_cpy(lower, bset->ineq[j], 2); } if (upper && isl_int_is_neg(bset->ineq[j][1])) { isl_int_mul(a, upper[0], bset->ineq[j][1]); isl_int_mul(b, upper[1], bset->ineq[j][0]); if (isl_int_gt(a, b)) isl_seq_cpy(upper, bset->ineq[j], 2); } } if (!has_lower) lower = NULL; if (!has_upper) upper = NULL; } isl_int_clear(a); isl_int_clear(b); hull = isl_basic_set_alloc(set->ctx, 0, 1, 0, 0, 2); hull = isl_basic_set_set_rational(hull); if (!hull) goto error; if (lower) { k = isl_basic_set_alloc_inequality(hull); isl_seq_cpy(hull->ineq[k], lower, 2); } if (upper) { k = isl_basic_set_alloc_inequality(hull); isl_seq_cpy(hull->ineq[k], upper, 2); } hull = isl_basic_set_finalize(hull); isl_set_free(set); isl_mat_free(c); return hull; error: isl_set_free(set); isl_mat_free(c); return NULL; } static struct isl_basic_set *convex_hull_0d(struct isl_set *set) { struct isl_basic_set *convex_hull; if (!set) return NULL; if (isl_set_is_empty(set)) convex_hull = isl_basic_set_empty(isl_space_copy(set->dim)); else convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); isl_set_free(set); return convex_hull; } /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions using Fourier-Motzkin elimination. * The convex hull is the set of all points that can be written as * the sum of points from both basic sets (in homogeneous coordinates). * We set up the constraints in a space with dimensions for each of * the three sets and then project out the dimensions corresponding * to the two original basic sets, retaining only those corresponding * to the convex hull. */ static struct isl_basic_set *convex_hull_pair_elim(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { int i, j, k; struct isl_basic_set *bset[2]; struct isl_basic_set *hull = NULL; unsigned dim; if (!bset1 || !bset2) goto error; dim = isl_basic_set_n_dim(bset1); hull = isl_basic_set_alloc(bset1->ctx, 0, 2 + 3 * dim, 0, 1 + dim + bset1->n_eq + bset2->n_eq, 2 + bset1->n_ineq + bset2->n_ineq); bset[0] = bset1; bset[1] = bset2; for (i = 0; i < 2; ++i) { for (j = 0; j < bset[i]->n_eq; ++j) { k = isl_basic_set_alloc_equality(hull); if (k < 0) goto error; isl_seq_clr(hull->eq[k], (i+1) * (1+dim)); isl_seq_clr(hull->eq[k]+(i+2)*(1+dim), (1-i)*(1+dim)); isl_seq_cpy(hull->eq[k]+(i+1)*(1+dim), bset[i]->eq[j], 1+dim); } for (j = 0; j < bset[i]->n_ineq; ++j) { k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; isl_seq_clr(hull->ineq[k], (i+1) * (1+dim)); isl_seq_clr(hull->ineq[k]+(i+2)*(1+dim), (1-i)*(1+dim)); isl_seq_cpy(hull->ineq[k]+(i+1)*(1+dim), bset[i]->ineq[j], 1+dim); } k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; isl_seq_clr(hull->ineq[k], 1+2+3*dim); isl_int_set_si(hull->ineq[k][(i+1)*(1+dim)], 1); } for (j = 0; j < 1+dim; ++j) { k = isl_basic_set_alloc_equality(hull); if (k < 0) goto error; isl_seq_clr(hull->eq[k], 1+2+3*dim); isl_int_set_si(hull->eq[k][j], -1); isl_int_set_si(hull->eq[k][1+dim+j], 1); isl_int_set_si(hull->eq[k][2*(1+dim)+j], 1); } hull = isl_basic_set_set_rational(hull); hull = isl_basic_set_remove_dims(hull, isl_dim_set, dim, 2*(1+dim)); hull = isl_basic_set_remove_redundancies(hull); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return hull; error: isl_basic_set_free(bset1); isl_basic_set_free(bset2); isl_basic_set_free(hull); return NULL; } /* Is the set bounded for each value of the parameters? */ int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset) { struct isl_tab *tab; int bounded; if (!bset) return -1; if (isl_basic_set_plain_is_empty(bset)) return 1; tab = isl_tab_from_recession_cone(bset, 1); bounded = isl_tab_cone_is_bounded(tab); isl_tab_free(tab); return bounded; } /* Is the image bounded for each value of the parameters and * the domain variables? */ int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap) { unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param); unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in); int bounded; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_move_dims(bmap, isl_dim_param, nparam, isl_dim_in, 0, n_in); bounded = isl_basic_set_is_bounded((isl_basic_set *)bmap); isl_basic_map_free(bmap); return bounded; } /* Is the set bounded for each value of the parameters? */ int isl_set_is_bounded(__isl_keep isl_set *set) { int i; if (!set) return -1; for (i = 0; i < set->n; ++i) { int bounded = isl_basic_set_is_bounded(set->p[i]); if (!bounded || bounded < 0) return bounded; } return 1; } /* Compute the lineality space of the convex hull of bset1 and bset2. * * We first compute the intersection of the recession cone of bset1 * with the negative of the recession cone of bset2 and then compute * the linear hull of the resulting cone. */ static struct isl_basic_set *induced_lineality_space( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { int i, k; struct isl_basic_set *lin = NULL; unsigned dim; if (!bset1 || !bset2) goto error; dim = isl_basic_set_total_dim(bset1); lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset1), 0, bset1->n_eq + bset2->n_eq, bset1->n_ineq + bset2->n_ineq); lin = isl_basic_set_set_rational(lin); if (!lin) goto error; for (i = 0; i < bset1->n_eq; ++i) { k = isl_basic_set_alloc_equality(lin); if (k < 0) goto error; isl_int_set_si(lin->eq[k][0], 0); isl_seq_cpy(lin->eq[k] + 1, bset1->eq[i] + 1, dim); } for (i = 0; i < bset1->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(lin); if (k < 0) goto error; isl_int_set_si(lin->ineq[k][0], 0); isl_seq_cpy(lin->ineq[k] + 1, bset1->ineq[i] + 1, dim); } for (i = 0; i < bset2->n_eq; ++i) { k = isl_basic_set_alloc_equality(lin); if (k < 0) goto error; isl_int_set_si(lin->eq[k][0], 0); isl_seq_neg(lin->eq[k] + 1, bset2->eq[i] + 1, dim); } for (i = 0; i < bset2->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(lin); if (k < 0) goto error; isl_int_set_si(lin->ineq[k][0], 0); isl_seq_neg(lin->ineq[k] + 1, bset2->ineq[i] + 1, dim); } isl_basic_set_free(bset1); isl_basic_set_free(bset2); return isl_basic_set_affine_hull(lin); error: isl_basic_set_free(lin); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } static struct isl_basic_set *uset_convex_hull(struct isl_set *set); /* Given a set and a linear space "lin" of dimension n > 0, * project the linear space from the set, compute the convex hull * and then map the set back to the original space. * * Let * * M x = 0 * * describe the linear space. We first compute the Hermite normal * form H = M U of M = H Q, to obtain * * H Q x = 0 * * The last n rows of H will be zero, so the last n variables of x' = Q x * are the one we want to project out. We do this by transforming each * basic set A x >= b to A U x' >= b and then removing the last n dimensions. * After computing the convex hull in x'_1, i.e., A' x'_1 >= b', * we transform the hull back to the original space as A' Q_1 x >= b', * with Q_1 all but the last n rows of Q. */ static struct isl_basic_set *modulo_lineality(struct isl_set *set, struct isl_basic_set *lin) { unsigned total = isl_basic_set_total_dim(lin); unsigned lin_dim; struct isl_basic_set *hull; struct isl_mat *M, *U, *Q; if (!set || !lin) goto error; lin_dim = total - lin->n_eq; M = isl_mat_sub_alloc6(set->ctx, lin->eq, 0, lin->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; isl_mat_free(M); isl_basic_set_free(lin); Q = isl_mat_drop_rows(Q, Q->n_row - lin_dim, lin_dim); U = isl_mat_lin_to_aff(U); Q = isl_mat_lin_to_aff(Q); set = isl_set_preimage(set, U); set = isl_set_remove_dims(set, isl_dim_set, total - lin_dim, lin_dim); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, Q); return hull; error: isl_basic_set_free(lin); isl_set_free(set); return NULL; } /* Given two polyhedra with as constraints h_{ij} x >= 0 in homegeneous space, * set up an LP for solving * * \sum_j \alpha_{1j} h_{1j} = \sum_j \alpha_{2j} h_{2j} * * \alpha{i0} corresponds to the (implicit) positivity constraint 1 >= 0 * The next \alpha{ij} correspond to the equalities and come in pairs. * The final \alpha{ij} correspond to the inequalities. */ static struct isl_basic_set *valid_direction_lp( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { isl_space *dim; struct isl_basic_set *lp; unsigned d; int n; int i, j, k; if (!bset1 || !bset2) goto error; d = 1 + isl_basic_set_total_dim(bset1); n = 2 + 2 * bset1->n_eq + bset1->n_ineq + 2 * bset2->n_eq + bset2->n_ineq; dim = isl_space_set_alloc(bset1->ctx, 0, n); lp = isl_basic_set_alloc_space(dim, 0, d, n); if (!lp) goto error; for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_inequality(lp); if (k < 0) goto error; isl_seq_clr(lp->ineq[k] + 1, n); isl_int_set_si(lp->ineq[k][0], -1); isl_int_set_si(lp->ineq[k][1 + i], 1); } for (i = 0; i < d; ++i) { k = isl_basic_set_alloc_equality(lp); if (k < 0) goto error; n = 0; isl_int_set_si(lp->eq[k][n], 0); n++; /* positivity constraint 1 >= 0 */ isl_int_set_si(lp->eq[k][n], i == 0); n++; for (j = 0; j < bset1->n_eq; ++j) { isl_int_set(lp->eq[k][n], bset1->eq[j][i]); n++; isl_int_neg(lp->eq[k][n], bset1->eq[j][i]); n++; } for (j = 0; j < bset1->n_ineq; ++j) { isl_int_set(lp->eq[k][n], bset1->ineq[j][i]); n++; } /* positivity constraint 1 >= 0 */ isl_int_set_si(lp->eq[k][n], -(i == 0)); n++; for (j = 0; j < bset2->n_eq; ++j) { isl_int_neg(lp->eq[k][n], bset2->eq[j][i]); n++; isl_int_set(lp->eq[k][n], bset2->eq[j][i]); n++; } for (j = 0; j < bset2->n_ineq; ++j) { isl_int_neg(lp->eq[k][n], bset2->ineq[j][i]); n++; } } lp = isl_basic_set_gauss(lp, NULL); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return lp; error: isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } /* Compute a vector s in the homogeneous space such that > 0 * for all rays in the homogeneous space of the two cones that correspond * to the input polyhedra bset1 and bset2. * * We compute s as a vector that satisfies * * s = \sum_j \alpha_{ij} h_{ij} for i = 1,2 (*) * * with h_{ij} the normals of the facets of polyhedron i * (including the "positivity constraint" 1 >= 0) and \alpha_{ij} * strictly positive numbers. For simplicity we impose \alpha_{ij} >= 1. * We first set up an LP with as variables the \alpha{ij}. * In this formulation, for each polyhedron i, * the first constraint is the positivity constraint, followed by pairs * of variables for the equalities, followed by variables for the inequalities. * We then simply pick a feasible solution and compute s using (*). * * Note that we simply pick any valid direction and make no attempt * to pick a "good" or even the "best" valid direction. */ static struct isl_vec *valid_direction( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { struct isl_basic_set *lp; struct isl_tab *tab; struct isl_vec *sample = NULL; struct isl_vec *dir; unsigned d; int i; int n; if (!bset1 || !bset2) goto error; lp = valid_direction_lp(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2)); tab = isl_tab_from_basic_set(lp, 0); sample = isl_tab_get_sample_value(tab); isl_tab_free(tab); isl_basic_set_free(lp); if (!sample) goto error; d = isl_basic_set_total_dim(bset1); dir = isl_vec_alloc(bset1->ctx, 1 + d); if (!dir) goto error; isl_seq_clr(dir->block.data + 1, dir->size - 1); n = 1; /* positivity constraint 1 >= 0 */ isl_int_set(dir->block.data[0], sample->block.data[n]); n++; for (i = 0; i < bset1->n_eq; ++i) { isl_int_sub(sample->block.data[n], sample->block.data[n], sample->block.data[n+1]); isl_seq_combine(dir->block.data, bset1->ctx->one, dir->block.data, sample->block.data[n], bset1->eq[i], 1 + d); n += 2; } for (i = 0; i < bset1->n_ineq; ++i) isl_seq_combine(dir->block.data, bset1->ctx->one, dir->block.data, sample->block.data[n++], bset1->ineq[i], 1 + d); isl_vec_free(sample); isl_seq_normalize(bset1->ctx, dir->el, dir->size); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return dir; error: isl_vec_free(sample); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } /* Given a polyhedron b_i + A_i x >= 0 and a map T = S^{-1}, * compute b_i' + A_i' x' >= 0, with * * [ b_i A_i ] [ y' ] [ y' ] * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 * * In particular, add the "positivity constraint" and then perform * the mapping. */ static struct isl_basic_set *homogeneous_map(struct isl_basic_set *bset, struct isl_mat *T) { int k; if (!bset) goto error; bset = isl_basic_set_extend_constraints(bset, 0, 1); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k] + 1, isl_basic_set_total_dim(bset)); isl_int_set_si(bset->ineq[k][0], 1); bset = isl_basic_set_preimage(bset, T); return bset; error: isl_mat_free(T); isl_basic_set_free(bset); return NULL; } /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions, where the convex hull is known to be pointed, * but the basic sets may be unbounded. * * We turn this problem into the computation of a convex hull of a pair * _bounded_ polyhedra by "changing the direction of the homogeneous * dimension". This idea is due to Matthias Koeppe. * * Consider the cones in homogeneous space that correspond to the * input polyhedra. The rays of these cones are also rays of the * polyhedra if the coordinate that corresponds to the homogeneous * dimension is zero. That is, if the inner product of the rays * with the homogeneous direction is zero. * The cones in the homogeneous space can also be considered to * correspond to other pairs of polyhedra by chosing a different * homogeneous direction. To ensure that both of these polyhedra * are bounded, we need to make sure that all rays of the cones * correspond to vertices and not to rays. * Let s be a direction such that > 0 for all rays r of both cones. * Then using s as a homogeneous direction, we obtain a pair of polytopes. * The vector s is computed in valid_direction. * * Note that we need to consider _all_ rays of the cones and not just * the rays that correspond to rays in the polyhedra. If we were to * only consider those rays and turn them into vertices, then we * may inadvertently turn some vertices into rays. * * The standard homogeneous direction is the unit vector in the 0th coordinate. * We therefore transform the two polyhedra such that the selected * direction is mapped onto this standard direction and then proceed * with the normal computation. * Let S be a non-singular square matrix with s as its first row, * then we want to map the polyhedra to the space * * [ y' ] [ y ] [ y ] [ y' ] * [ x' ] = S [ x ] i.e., [ x ] = S^{-1} [ x' ] * * We take S to be the unimodular completion of s to limit the growth * of the coefficients in the following computations. * * Let b_i + A_i x >= 0 be the constraints of polyhedron i. * We first move to the homogeneous dimension * * b_i y + A_i x >= 0 [ b_i A_i ] [ y ] [ 0 ] * y >= 0 or [ 1 0 ] [ x ] >= [ 0 ] * * Then we change directoin * * [ b_i A_i ] [ y' ] [ y' ] * [ 1 0 ] S^{-1} [ x' ] >= 0 or [ b_i' A_i' ] [ x' ] >= 0 * * Then we compute the convex hull of the polytopes b_i' + A_i' x' >= 0 * resulting in b' + A' x' >= 0, which we then convert back * * [ y ] [ y ] * [ b' A' ] S [ x ] >= 0 or [ b A ] [ x ] >= 0 * * The polyhedron b + A x >= 0 is then the convex hull of the input polyhedra. */ static struct isl_basic_set *convex_hull_pair_pointed( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { struct isl_ctx *ctx = NULL; struct isl_vec *dir = NULL; struct isl_mat *T = NULL; struct isl_mat *T2 = NULL; struct isl_basic_set *hull; struct isl_set *set; if (!bset1 || !bset2) goto error; ctx = isl_basic_set_get_ctx(bset1); dir = valid_direction(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2)); if (!dir) goto error; T = isl_mat_alloc(ctx, dir->size, dir->size); if (!T) goto error; isl_seq_cpy(T->row[0], dir->block.data, dir->size); T = isl_mat_unimodular_complete(T, 1); T2 = isl_mat_right_inverse(isl_mat_copy(T)); bset1 = homogeneous_map(bset1, isl_mat_copy(T2)); bset2 = homogeneous_map(bset2, T2); set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); set = isl_set_add_basic_set(set, bset1); set = isl_set_add_basic_set(set, bset2); hull = uset_convex_hull(set); hull = isl_basic_set_preimage(hull, T); isl_vec_free(dir); return hull; error: isl_vec_free(dir); isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set); static struct isl_basic_set *modulo_affine_hull( struct isl_set *set, struct isl_basic_set *affine_hull); /* Compute the convex hull of a pair of basic sets without any parameters or * integer divisions. * * This function is called from uset_convex_hull_unbounded, which * means that the complete convex hull is unbounded. Some pairs * of basic sets may still be bounded, though. * They may even lie inside a lower dimensional space, in which * case they need to be handled inside their affine hull since * the main algorithm assumes that the result is full-dimensional. * * If the convex hull of the two basic sets would have a non-trivial * lineality space, we first project out this lineality space. */ static struct isl_basic_set *convex_hull_pair(struct isl_basic_set *bset1, struct isl_basic_set *bset2) { isl_basic_set *lin, *aff; int bounded1, bounded2; if (bset1->ctx->opt->convex == ISL_CONVEX_HULL_FM) return convex_hull_pair_elim(bset1, bset2); aff = isl_set_affine_hull(isl_basic_set_union(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2))); if (!aff) goto error; if (aff->n_eq != 0) return modulo_affine_hull(isl_basic_set_union(bset1, bset2), aff); isl_basic_set_free(aff); bounded1 = isl_basic_set_is_bounded(bset1); bounded2 = isl_basic_set_is_bounded(bset2); if (bounded1 < 0 || bounded2 < 0) goto error; if (bounded1 && bounded2) return uset_convex_hull_wrap(isl_basic_set_union(bset1, bset2)); if (bounded1 || bounded2) return convex_hull_pair_pointed(bset1, bset2); lin = induced_lineality_space(isl_basic_set_copy(bset1), isl_basic_set_copy(bset2)); if (!lin) goto error; if (isl_basic_set_is_universe(lin)) { isl_basic_set_free(bset1); isl_basic_set_free(bset2); return lin; } if (lin->n_eq < isl_basic_set_total_dim(lin)) { struct isl_set *set; set = isl_set_alloc_space(isl_basic_set_get_space(bset1), 2, 0); set = isl_set_add_basic_set(set, bset1); set = isl_set_add_basic_set(set, bset2); return modulo_lineality(set, lin); } isl_basic_set_free(lin); return convex_hull_pair_pointed(bset1, bset2); error: isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } /* Compute the lineality space of a basic set. * We currently do not allow the basic set to have any divs. * We basically just drop the constants and turn every inequality * into an equality. */ struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset) { int i, k; struct isl_basic_set *lin = NULL; unsigned dim; if (!bset) goto error; isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_total_dim(bset); lin = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, dim, 0); if (!lin) goto error; for (i = 0; i < bset->n_eq; ++i) { k = isl_basic_set_alloc_equality(lin); if (k < 0) goto error; isl_int_set_si(lin->eq[k][0], 0); isl_seq_cpy(lin->eq[k] + 1, bset->eq[i] + 1, dim); } lin = isl_basic_set_gauss(lin, NULL); if (!lin) goto error; for (i = 0; i < bset->n_ineq && lin->n_eq < dim; ++i) { k = isl_basic_set_alloc_equality(lin); if (k < 0) goto error; isl_int_set_si(lin->eq[k][0], 0); isl_seq_cpy(lin->eq[k] + 1, bset->ineq[i] + 1, dim); lin = isl_basic_set_gauss(lin, NULL); if (!lin) goto error; } isl_basic_set_free(bset); return lin; error: isl_basic_set_free(lin); isl_basic_set_free(bset); return NULL; } /* Compute the (linear) hull of the lineality spaces of the basic sets in the * "underlying" set "set". */ static struct isl_basic_set *uset_combined_lineality_space(struct isl_set *set) { int i; struct isl_set *lin = NULL; if (!set) return NULL; if (set->n == 0) { isl_space *dim = isl_set_get_space(set); isl_set_free(set); return isl_basic_set_empty(dim); } lin = isl_set_alloc_space(isl_set_get_space(set), set->n, 0); for (i = 0; i < set->n; ++i) lin = isl_set_add_basic_set(lin, isl_basic_set_lineality_space(isl_basic_set_copy(set->p[i]))); isl_set_free(set); return isl_set_affine_hull(lin); } /* Compute the convex hull of a set without any parameters or * integer divisions. * In each step, we combined two basic sets until only one * basic set is left. * The input basic sets are assumed not to have a non-trivial * lineality space. If any of the intermediate results has * a non-trivial lineality space, it is projected out. */ static struct isl_basic_set *uset_convex_hull_unbounded(struct isl_set *set) { struct isl_basic_set *convex_hull = NULL; convex_hull = isl_set_copy_basic_set(set); set = isl_set_drop_basic_set(set, convex_hull); if (!set) goto error; while (set->n > 0) { struct isl_basic_set *t; t = isl_set_copy_basic_set(set); if (!t) goto error; set = isl_set_drop_basic_set(set, t); if (!set) goto error; convex_hull = convex_hull_pair(convex_hull, t); if (set->n == 0) break; t = isl_basic_set_lineality_space(isl_basic_set_copy(convex_hull)); if (!t) goto error; if (isl_basic_set_is_universe(t)) { isl_basic_set_free(convex_hull); convex_hull = t; break; } if (t->n_eq < isl_basic_set_total_dim(t)) { set = isl_set_add_basic_set(set, convex_hull); return modulo_lineality(set, t); } isl_basic_set_free(t); } isl_set_free(set); return convex_hull; error: isl_set_free(set); isl_basic_set_free(convex_hull); return NULL; } /* Compute an initial hull for wrapping containing a single initial * facet. * This function assumes that the given set is bounded. */ static struct isl_basic_set *initial_hull(struct isl_basic_set *hull, struct isl_set *set) { struct isl_mat *bounds = NULL; unsigned dim; int k; if (!hull) goto error; bounds = initial_facet_constraint(set); if (!bounds) goto error; k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; dim = isl_set_n_dim(set); isl_assert(set->ctx, 1 + dim == bounds->n_col, goto error); isl_seq_cpy(hull->ineq[k], bounds->row[0], bounds->n_col); isl_mat_free(bounds); return hull; error: isl_basic_set_free(hull); isl_mat_free(bounds); return NULL; } struct max_constraint { struct isl_mat *c; int count; int ineq; }; static int max_constraint_equal(const void *entry, const void *val) { struct max_constraint *a = (struct max_constraint *)entry; isl_int *b = (isl_int *)val; return isl_seq_eq(a->c->row[0] + 1, b, a->c->n_col - 1); } static void update_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, isl_int *con, unsigned len, int n, int ineq) { struct isl_hash_table_entry *entry; struct max_constraint *c; uint32_t c_hash; c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) return; c = entry->data; if (c->count < n) { isl_hash_table_remove(ctx, table, entry); return; } c->count++; if (isl_int_gt(c->c->row[0][0], con[0])) return; if (isl_int_eq(c->c->row[0][0], con[0])) { if (ineq) c->ineq = ineq; return; } c->c = isl_mat_cow(c->c); isl_int_set(c->c->row[0][0], con[0]); c->ineq = ineq; } /* Check whether the constraint hash table "table" constains the constraint * "con". */ static int has_constraint(struct isl_ctx *ctx, struct isl_hash_table *table, isl_int *con, unsigned len, int n) { struct isl_hash_table_entry *entry; struct max_constraint *c; uint32_t c_hash; c_hash = isl_seq_get_hash(con + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, max_constraint_equal, con + 1, 0); if (!entry) return 0; c = entry->data; if (c->count < n) return 0; return isl_int_eq(c->c->row[0][0], con[0]); } /* Check for inequality constraints of a basic set without equalities * such that the same or more stringent copies of the constraint appear * in all of the basic sets. Such constraints are necessarily facet * constraints of the convex hull. * * If the resulting basic set is by chance identical to one of * the basic sets in "set", then we know that this basic set contains * all other basic sets and is therefore the convex hull of set. * In this case we set *is_hull to 1. */ static struct isl_basic_set *common_constraints(struct isl_basic_set *hull, struct isl_set *set, int *is_hull) { int i, j, s, n; int min_constraints; int best; struct max_constraint *constraints = NULL; struct isl_hash_table *table = NULL; unsigned total; *is_hull = 0; for (i = 0; i < set->n; ++i) if (set->p[i]->n_eq == 0) break; if (i >= set->n) return hull; min_constraints = set->p[i]->n_ineq; best = i; for (i = best + 1; i < set->n; ++i) { if (set->p[i]->n_eq != 0) continue; if (set->p[i]->n_ineq >= min_constraints) continue; min_constraints = set->p[i]->n_ineq; best = i; } constraints = isl_calloc_array(hull->ctx, struct max_constraint, min_constraints); if (!constraints) return hull; table = isl_alloc_type(hull->ctx, struct isl_hash_table); if (isl_hash_table_init(hull->ctx, table, min_constraints)) goto error; total = isl_space_dim(set->dim, isl_dim_all); for (i = 0; i < set->p[best]->n_ineq; ++i) { constraints[i].c = isl_mat_sub_alloc6(hull->ctx, set->p[best]->ineq + i, 0, 1, 0, 1 + total); if (!constraints[i].c) goto error; constraints[i].ineq = 1; } for (i = 0; i < min_constraints; ++i) { struct isl_hash_table_entry *entry; uint32_t c_hash; c_hash = isl_seq_get_hash(constraints[i].c->row[0] + 1, total); entry = isl_hash_table_find(hull->ctx, table, c_hash, max_constraint_equal, constraints[i].c->row[0] + 1, 1); if (!entry) goto error; isl_assert(hull->ctx, !entry->data, goto error); entry->data = &constraints[i]; } n = 0; for (s = 0; s < set->n; ++s) { if (s == best) continue; for (i = 0; i < set->p[s]->n_eq; ++i) { isl_int *eq = set->p[s]->eq[i]; for (j = 0; j < 2; ++j) { isl_seq_neg(eq, eq, 1 + total); update_constraint(hull->ctx, table, eq, total, n, 0); } } for (i = 0; i < set->p[s]->n_ineq; ++i) { isl_int *ineq = set->p[s]->ineq[i]; update_constraint(hull->ctx, table, ineq, total, n, set->p[s]->n_eq == 0); } ++n; } for (i = 0; i < min_constraints; ++i) { if (constraints[i].count < n) continue; if (!constraints[i].ineq) continue; j = isl_basic_set_alloc_inequality(hull); if (j < 0) goto error; isl_seq_cpy(hull->ineq[j], constraints[i].c->row[0], 1 + total); } for (s = 0; s < set->n; ++s) { if (set->p[s]->n_eq) continue; if (set->p[s]->n_ineq != hull->n_ineq) continue; for (i = 0; i < set->p[s]->n_ineq; ++i) { isl_int *ineq = set->p[s]->ineq[i]; if (!has_constraint(hull->ctx, table, ineq, total, n)) break; } if (i == set->p[s]->n_ineq) *is_hull = 1; } isl_hash_table_clear(table); for (i = 0; i < min_constraints; ++i) isl_mat_free(constraints[i].c); free(constraints); free(table); return hull; error: isl_hash_table_clear(table); free(table); if (constraints) for (i = 0; i < min_constraints; ++i) isl_mat_free(constraints[i].c); free(constraints); return hull; } /* Create a template for the convex hull of "set" and fill it up * obvious facet constraints, if any. If the result happens to * be the convex hull of "set" then *is_hull is set to 1. */ static struct isl_basic_set *proto_hull(struct isl_set *set, int *is_hull) { struct isl_basic_set *hull; unsigned n_ineq; int i; n_ineq = 1; for (i = 0; i < set->n; ++i) { n_ineq += set->p[i]->n_eq; n_ineq += set->p[i]->n_ineq; } hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); hull = isl_basic_set_set_rational(hull); if (!hull) return NULL; return common_constraints(hull, set, is_hull); } static struct isl_basic_set *uset_convex_hull_wrap(struct isl_set *set) { struct isl_basic_set *hull; int is_hull; hull = proto_hull(set, &is_hull); if (hull && !is_hull) { if (hull->n_ineq == 0) hull = initial_hull(hull, set); hull = extend(hull, set); } isl_set_free(set); return hull; } /* Compute the convex hull of a set without any parameters or * integer divisions. Depending on whether the set is bounded, * we pass control to the wrapping based convex hull or * the Fourier-Motzkin elimination based convex hull. * We also handle a few special cases before checking the boundedness. */ static struct isl_basic_set *uset_convex_hull(struct isl_set *set) { struct isl_basic_set *convex_hull = NULL; struct isl_basic_set *lin; if (isl_set_n_dim(set) == 0) return convex_hull_0d(set); set = isl_set_coalesce(set); set = isl_set_set_rational(set); if (!set) goto error; if (!set) return NULL; if (set->n == 1) { convex_hull = isl_basic_set_copy(set->p[0]); isl_set_free(set); return convex_hull; } if (isl_set_n_dim(set) == 1) return convex_hull_1d(set); if (isl_set_is_bounded(set) && set->ctx->opt->convex == ISL_CONVEX_HULL_WRAP) return uset_convex_hull_wrap(set); lin = uset_combined_lineality_space(isl_set_copy(set)); if (!lin) goto error; if (isl_basic_set_is_universe(lin)) { isl_set_free(set); return lin; } if (lin->n_eq < isl_basic_set_total_dim(lin)) return modulo_lineality(set, lin); isl_basic_set_free(lin); return uset_convex_hull_unbounded(set); error: isl_set_free(set); isl_basic_set_free(convex_hull); return NULL; } /* This is the core procedure, where "set" is a "pure" set, i.e., * without parameters or divs and where the convex hull of set is * known to be full-dimensional. */ static struct isl_basic_set *uset_convex_hull_wrap_bounded(struct isl_set *set) { struct isl_basic_set *convex_hull = NULL; if (!set) goto error; if (isl_set_n_dim(set) == 0) { convex_hull = isl_basic_set_universe(isl_space_copy(set->dim)); isl_set_free(set); convex_hull = isl_basic_set_set_rational(convex_hull); return convex_hull; } set = isl_set_set_rational(set); set = isl_set_coalesce(set); if (!set) goto error; if (set->n == 1) { convex_hull = isl_basic_set_copy(set->p[0]); isl_set_free(set); convex_hull = isl_basic_map_remove_redundancies(convex_hull); return convex_hull; } if (isl_set_n_dim(set) == 1) return convex_hull_1d(set); return uset_convex_hull_wrap(set); error: isl_set_free(set); return NULL; } /* Compute the convex hull of set "set" with affine hull "affine_hull", * We first remove the equalities (transforming the set), compute the * convex hull of the transformed set and then add the equalities back * (after performing the inverse transformation. */ static struct isl_basic_set *modulo_affine_hull( struct isl_set *set, struct isl_basic_set *affine_hull) { struct isl_mat *T; struct isl_mat *T2; struct isl_basic_set *dummy; struct isl_basic_set *convex_hull; dummy = isl_basic_set_remove_equalities( isl_basic_set_copy(affine_hull), &T, &T2); if (!dummy) goto error; isl_basic_set_free(dummy); set = isl_set_preimage(set, T); convex_hull = uset_convex_hull(set); convex_hull = isl_basic_set_preimage(convex_hull, T2); convex_hull = isl_basic_set_intersect(convex_hull, affine_hull); return convex_hull; error: isl_basic_set_free(affine_hull); isl_set_free(set); return NULL; } /* Return an empty basic map living in the same space as "map". */ static __isl_give isl_basic_map *replace_map_by_empty_basic_map( __isl_take isl_map *map) { isl_space *space; space = isl_map_get_space(map); isl_map_free(map); return isl_basic_map_empty(space); } /* Compute the convex hull of a map. * * The implementation was inspired by "Extended Convex Hull" by Fukuda et al., * specifically, the wrapping of facets to obtain new facets. */ struct isl_basic_map *isl_map_convex_hull(struct isl_map *map) { struct isl_basic_set *bset; struct isl_basic_map *model = NULL; struct isl_basic_set *affine_hull = NULL; struct isl_basic_map *convex_hull = NULL; struct isl_set *set = NULL; map = isl_map_detect_equalities(map); map = isl_map_align_divs(map); if (!map) goto error; if (map->n == 0) return replace_map_by_empty_basic_map(map); model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); if (!set) goto error; affine_hull = isl_set_affine_hull(isl_set_copy(set)); if (!affine_hull) goto error; if (affine_hull->n_eq != 0) bset = modulo_affine_hull(set, affine_hull); else { isl_basic_set_free(affine_hull); bset = uset_convex_hull(set); } convex_hull = isl_basic_map_overlying_set(bset, model); if (!convex_hull) return NULL; ISL_F_SET(convex_hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(convex_hull, ISL_BASIC_MAP_ALL_EQUALITIES); ISL_F_CLR(convex_hull, ISL_BASIC_MAP_RATIONAL); return convex_hull; error: isl_set_free(set); isl_basic_map_free(model); return NULL; } struct isl_basic_set *isl_set_convex_hull(struct isl_set *set) { return (struct isl_basic_set *) isl_map_convex_hull((struct isl_map *)set); } __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map) { isl_basic_map *hull; hull = isl_map_convex_hull(map); return isl_basic_map_remove_divs(hull); } __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set) { return (isl_basic_set *)isl_map_polyhedral_hull((isl_map *)set); } struct sh_data_entry { struct isl_hash_table *table; struct isl_tab *tab; }; /* Holds the data needed during the simple hull computation. * In particular, * n the number of basic sets in the original set * hull_table a hash table of already computed constraints * in the simple hull * p for each basic set, * table a hash table of the constraints * tab the tableau corresponding to the basic set */ struct sh_data { struct isl_ctx *ctx; unsigned n; struct isl_hash_table *hull_table; struct sh_data_entry p[1]; }; static void sh_data_free(struct sh_data *data) { int i; if (!data) return; isl_hash_table_free(data->ctx, data->hull_table); for (i = 0; i < data->n; ++i) { isl_hash_table_free(data->ctx, data->p[i].table); isl_tab_free(data->p[i].tab); } free(data); } struct ineq_cmp_data { unsigned len; isl_int *p; }; static int has_ineq(const void *entry, const void *val) { isl_int *row = (isl_int *)entry; struct ineq_cmp_data *v = (struct ineq_cmp_data *)val; return isl_seq_eq(row + 1, v->p + 1, v->len) || isl_seq_is_neg(row + 1, v->p + 1, v->len); } static int hash_ineq(struct isl_ctx *ctx, struct isl_hash_table *table, isl_int *ineq, unsigned len) { uint32_t c_hash; struct ineq_cmp_data v; struct isl_hash_table_entry *entry; v.len = len; v.p = ineq; c_hash = isl_seq_get_hash(ineq + 1, len); entry = isl_hash_table_find(ctx, table, c_hash, has_ineq, &v, 1); if (!entry) return - 1; entry->data = ineq; return 0; } /* Fill hash table "table" with the constraints of "bset". * Equalities are added as two inequalities. * The value in the hash table is a pointer to the (in)equality of "bset". */ static int hash_basic_set(struct isl_hash_table *table, struct isl_basic_set *bset) { int i, j; unsigned dim = isl_basic_set_total_dim(bset); for (i = 0; i < bset->n_eq; ++i) { for (j = 0; j < 2; ++j) { isl_seq_neg(bset->eq[i], bset->eq[i], 1 + dim); if (hash_ineq(bset->ctx, table, bset->eq[i], dim) < 0) return -1; } } for (i = 0; i < bset->n_ineq; ++i) { if (hash_ineq(bset->ctx, table, bset->ineq[i], dim) < 0) return -1; } return 0; } static struct sh_data *sh_data_alloc(struct isl_set *set, unsigned n_ineq) { struct sh_data *data; int i; data = isl_calloc(set->ctx, struct sh_data, sizeof(struct sh_data) + (set->n - 1) * sizeof(struct sh_data_entry)); if (!data) return NULL; data->ctx = set->ctx; data->n = set->n; data->hull_table = isl_hash_table_alloc(set->ctx, n_ineq); if (!data->hull_table) goto error; for (i = 0; i < set->n; ++i) { data->p[i].table = isl_hash_table_alloc(set->ctx, 2 * set->p[i]->n_eq + set->p[i]->n_ineq); if (!data->p[i].table) goto error; if (hash_basic_set(data->p[i].table, set->p[i]) < 0) goto error; } return data; error: sh_data_free(data); return NULL; } /* Check if inequality "ineq" is a bound for basic set "j" or if * it can be relaxed (by increasing the constant term) to become * a bound for that basic set. In the latter case, the constant * term is updated. * Relaxation of the constant term is only allowed if "shift" is set. * * Return 1 if "ineq" is a bound * 0 if "ineq" may attain arbitrarily small values on basic set "j" * -1 if some error occurred */ static int is_bound(struct sh_data *data, struct isl_set *set, int j, isl_int *ineq, int shift) { enum isl_lp_result res; isl_int opt; if (!data->p[j].tab) { data->p[j].tab = isl_tab_from_basic_set(set->p[j], 0); if (!data->p[j].tab) return -1; } isl_int_init(opt); res = isl_tab_min(data->p[j].tab, ineq, data->ctx->one, &opt, NULL, 0); if (res == isl_lp_ok && isl_int_is_neg(opt)) { if (shift) isl_int_sub(ineq[0], ineq[0], opt); else res = isl_lp_unbounded; } isl_int_clear(opt); return (res == isl_lp_ok || res == isl_lp_empty) ? 1 : res == isl_lp_unbounded ? 0 : -1; } /* Check if inequality "ineq" from basic set "i" is or can be relaxed to * become a bound on the whole set. If so, add the (relaxed) inequality * to "hull". Relaxation is only allowed if "shift" is set. * * We first check if "hull" already contains a translate of the inequality. * If so, we are done. * Then, we check if any of the previous basic sets contains a translate * of the inequality. If so, then we have already considered this * inequality and we are done. * Otherwise, for each basic set other than "i", we check if the inequality * is a bound on the basic set. * For previous basic sets, we know that they do not contain a translate * of the inequality, so we directly call is_bound. * For following basic sets, we first check if a translate of the * inequality appears in its description and if so directly update * the inequality accordingly. */ static struct isl_basic_set *add_bound(struct isl_basic_set *hull, struct sh_data *data, struct isl_set *set, int i, isl_int *ineq, int shift) { uint32_t c_hash; struct ineq_cmp_data v; struct isl_hash_table_entry *entry; int j, k; if (!hull) return NULL; v.len = isl_basic_set_total_dim(hull); v.p = ineq; c_hash = isl_seq_get_hash(ineq + 1, v.len); entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, has_ineq, &v, 0); if (entry) return hull; for (j = 0; j < i; ++j) { entry = isl_hash_table_find(hull->ctx, data->p[j].table, c_hash, has_ineq, &v, 0); if (entry) break; } if (j < i) return hull; k = isl_basic_set_alloc_inequality(hull); if (k < 0) goto error; isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len); for (j = 0; j < i; ++j) { int bound; bound = is_bound(data, set, j, hull->ineq[k], shift); if (bound < 0) goto error; if (!bound) break; } if (j < i) { isl_basic_set_free_inequality(hull, 1); return hull; } for (j = i + 1; j < set->n; ++j) { int bound, neg; isl_int *ineq_j; entry = isl_hash_table_find(hull->ctx, data->p[j].table, c_hash, has_ineq, &v, 0); if (entry) { ineq_j = entry->data; neg = isl_seq_is_neg(ineq_j + 1, hull->ineq[k] + 1, v.len); if (neg) isl_int_neg(ineq_j[0], ineq_j[0]); if (isl_int_gt(ineq_j[0], hull->ineq[k][0])) isl_int_set(hull->ineq[k][0], ineq_j[0]); if (neg) isl_int_neg(ineq_j[0], ineq_j[0]); continue; } bound = is_bound(data, set, j, hull->ineq[k], shift); if (bound < 0) goto error; if (!bound) break; } if (j < set->n) { isl_basic_set_free_inequality(hull, 1); return hull; } entry = isl_hash_table_find(hull->ctx, data->hull_table, c_hash, has_ineq, &v, 1); if (!entry) goto error; entry->data = hull->ineq[k]; return hull; error: isl_basic_set_free(hull); return NULL; } /* Check if any inequality from basic set "i" is or can be relaxed to * become a bound on the whole set. If so, add the (relaxed) inequality * to "hull". Relaxation is only allowed if "shift" is set. */ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, struct sh_data *data, struct isl_set *set, int i, int shift) { int j, k; unsigned dim = isl_basic_set_total_dim(bset); for (j = 0; j < set->p[i]->n_eq; ++j) { for (k = 0; k < 2; ++k) { isl_seq_neg(set->p[i]->eq[j], set->p[i]->eq[j], 1+dim); bset = add_bound(bset, data, set, i, set->p[i]->eq[j], shift); } } for (j = 0; j < set->p[i]->n_ineq; ++j) bset = add_bound(bset, data, set, i, set->p[i]->ineq[j], shift); return bset; } /* Compute a superset of the convex hull of set that is described * by only (translates of) the constraints in the constituents of set. * Translation is only allowed if "shift" is set. */ static __isl_give isl_basic_set *uset_simple_hull(__isl_take isl_set *set, int shift) { struct sh_data *data = NULL; struct isl_basic_set *hull = NULL; unsigned n_ineq; int i; if (!set) return NULL; n_ineq = 0; for (i = 0; i < set->n; ++i) { if (!set->p[i]) goto error; n_ineq += 2 * set->p[i]->n_eq + set->p[i]->n_ineq; } hull = isl_basic_set_alloc_space(isl_space_copy(set->dim), 0, 0, n_ineq); if (!hull) goto error; data = sh_data_alloc(set, n_ineq); if (!data) goto error; for (i = 0; i < set->n; ++i) hull = add_bounds(hull, data, set, i, shift); sh_data_free(data); isl_set_free(set); return hull; error: sh_data_free(data); isl_basic_set_free(hull); isl_set_free(set); return NULL; } /* Compute a superset of the convex hull of map that is described * by only (translates of) the constraints in the constituents of map. * Handle trivial cases where map is NULL or contains at most one disjunct. */ static __isl_give isl_basic_map *map_simple_hull_trivial( __isl_take isl_map *map) { isl_basic_map *hull; if (!map) return NULL; if (map->n == 0) return replace_map_by_empty_basic_map(map); hull = isl_basic_map_copy(map->p[0]); isl_map_free(map); return hull; } /* Compute a superset of the convex hull of map that is described * by only (translates of) the constraints in the constituents of map. * Translation is only allowed if "shift" is set. */ static __isl_give isl_basic_map *map_simple_hull(__isl_take isl_map *map, int shift) { struct isl_set *set = NULL; struct isl_basic_map *model = NULL; struct isl_basic_map *hull; struct isl_basic_map *affine_hull; struct isl_basic_set *bset = NULL; if (!map || map->n <= 1) return map_simple_hull_trivial(map); map = isl_map_detect_equalities(map); if (!map || map->n <= 1) return map_simple_hull_trivial(map); affine_hull = isl_map_affine_hull(isl_map_copy(map)); map = isl_map_align_divs(map); model = map ? isl_basic_map_copy(map->p[0]) : NULL; set = isl_map_underlying_set(map); bset = uset_simple_hull(set, shift); hull = isl_basic_map_overlying_set(bset, model); hull = isl_basic_map_intersect(hull, affine_hull); hull = isl_basic_map_remove_redundancies(hull); if (!hull) return NULL; ISL_F_SET(hull, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(hull, ISL_BASIC_MAP_ALL_EQUALITIES); hull = isl_basic_map_finalize(hull); return hull; } /* Compute a superset of the convex hull of map that is described * by only translates of the constraints in the constituents of map. */ __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map) { return map_simple_hull(map, 1); } struct isl_basic_set *isl_set_simple_hull(struct isl_set *set) { return (struct isl_basic_set *) isl_map_simple_hull((struct isl_map *)set); } /* Compute a superset of the convex hull of map that is described * by only the constraints in the constituents of map. */ __isl_give isl_basic_map *isl_map_unshifted_simple_hull( __isl_take isl_map *map) { return map_simple_hull(map, 0); } __isl_give isl_basic_set *isl_set_unshifted_simple_hull( __isl_take isl_set *set) { return isl_map_unshifted_simple_hull(set); } /* Drop all inequalities from "bmap1" that do not also appear in "bmap2". * A constraint that appears with different constant terms * in "bmap1" and "bmap2" is also kept, with the least restrictive * (i.e., greatest) constant term. * "bmap1" and "bmap2" are assumed to have the same (known) * integer divisions. * The constraints of both "bmap1" and "bmap2" are assumed * to have been sorted using isl_basic_map_sort_constraints. * * Run through the inequality constraints of "bmap1" and "bmap2" * in sorted order. * Each constraint of "bmap1" without a matching constraint in "bmap2" * is removed. * If a match is found, the constraint is kept. If needed, the constant * term of the constraint is adjusted. */ static __isl_give isl_basic_map *select_shared_inequalities( __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int i1, i2; bmap1 = isl_basic_map_cow(bmap1); if (!bmap1 || !bmap2) return isl_basic_map_free(bmap1); i1 = bmap1->n_ineq - 1; i2 = bmap2->n_ineq - 1; while (bmap1 && i1 >= 0 && i2 >= 0) { int cmp; cmp = isl_basic_map_constraint_cmp(bmap1, bmap1->ineq[i1], bmap2->ineq[i2]); if (cmp < 0) { --i2; continue; } if (cmp > 0) { if (isl_basic_map_drop_inequality(bmap1, i1) < 0) bmap1 = isl_basic_map_free(bmap1); --i1; continue; } if (isl_int_lt(bmap1->ineq[i1][0], bmap2->ineq[i2][0])) isl_int_set(bmap1->ineq[i1][0], bmap2->ineq[i2][0]); --i1; --i2; } for (; i1 >= 0; --i1) if (isl_basic_map_drop_inequality(bmap1, i1) < 0) bmap1 = isl_basic_map_free(bmap1); return bmap1; } /* Drop all equalities from "bmap1" that do not also appear in "bmap2". * "bmap1" and "bmap2" are assumed to have the same (known) * integer divisions. * * Run through the equality constraints of "bmap1" and "bmap2". * Each constraint of "bmap1" without a matching constraint in "bmap2" * is removed. */ static __isl_give isl_basic_map *select_shared_equalities( __isl_take isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int i1, i2; unsigned total; bmap1 = isl_basic_map_cow(bmap1); if (!bmap1 || !bmap2) return isl_basic_map_free(bmap1); total = isl_basic_map_total_dim(bmap1); i1 = bmap1->n_eq - 1; i2 = bmap2->n_eq - 1; while (bmap1 && i1 >= 0 && i2 >= 0) { int last1, last2; last1 = isl_seq_last_non_zero(bmap1->eq[i1] + 1, total); last2 = isl_seq_last_non_zero(bmap2->eq[i2] + 1, total); if (last1 > last2) { --i2; continue; } if (last1 < last2) { if (isl_basic_map_drop_equality(bmap1, i1) < 0) bmap1 = isl_basic_map_free(bmap1); --i1; continue; } if (!isl_seq_eq(bmap1->eq[i1], bmap2->eq[i2], 1 + total)) { if (isl_basic_map_drop_equality(bmap1, i1) < 0) bmap1 = isl_basic_map_free(bmap1); } --i1; --i2; } for (; i1 >= 0; --i1) if (isl_basic_map_drop_equality(bmap1, i1) < 0) bmap1 = isl_basic_map_free(bmap1); return bmap1; } /* Compute a superset of "bmap1" and "bmap2" that is described * by only the constraints that appear in both "bmap1" and "bmap2". * * First drop constraints that involve unknown integer divisions * since it is not trivial to check whether two such integer divisions * in different basic maps are the same. * Then align the remaining (known) divs and sort the constraints. * Finally drop all inequalities and equalities from "bmap1" that * do not also appear in "bmap2". */ __isl_give isl_basic_map *isl_basic_map_plain_unshifted_simple_hull( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { bmap1 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap1); bmap2 = isl_basic_map_drop_constraint_involving_unknown_divs(bmap2); bmap2 = isl_basic_map_align_divs(bmap2, bmap1); bmap1 = isl_basic_map_align_divs(bmap1, bmap2); bmap1 = isl_basic_map_gauss(bmap1, NULL); bmap2 = isl_basic_map_gauss(bmap2, NULL); bmap1 = isl_basic_map_sort_constraints(bmap1); bmap2 = isl_basic_map_sort_constraints(bmap2); bmap1 = select_shared_inequalities(bmap1, bmap2); bmap1 = select_shared_equalities(bmap1, bmap2); isl_basic_map_free(bmap2); bmap1 = isl_basic_map_finalize(bmap1); return bmap1; } /* Compute a superset of the convex hull of "map" that is described * by only the constraints in the constituents of "map". * In particular, the result is composed of constraints that appear * in each of the basic maps of "map" * * Constraints that involve unknown integer divisions are dropped * since it is not trivial to check whether two such integer divisions * in different basic maps are the same. * * The hull is initialized from the first basic map and then * updated with respect to the other basic maps in turn. */ __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull( __isl_take isl_map *map) { int i; isl_basic_map *hull; if (!map) return NULL; if (map->n <= 1) return map_simple_hull_trivial(map); map = isl_map_drop_constraint_involving_unknown_divs(map); hull = isl_basic_map_copy(map->p[0]); for (i = 1; i < map->n; ++i) { isl_basic_map *bmap_i; bmap_i = isl_basic_map_copy(map->p[i]); hull = isl_basic_map_plain_unshifted_simple_hull(hull, bmap_i); } isl_map_free(map); return hull; } /* Check if "ineq" is a bound on "set" and, if so, add it to "hull". * * For each basic set in "set", we first check if the basic set * contains a translate of "ineq". If this translate is more relaxed, * then we assume that "ineq" is not a bound on this basic set. * Otherwise, we know that it is a bound. * If the basic set does not contain a translate of "ineq", then * we call is_bound to perform the test. */ static __isl_give isl_basic_set *add_bound_from_constraint( __isl_take isl_basic_set *hull, struct sh_data *data, __isl_keep isl_set *set, isl_int *ineq) { int i, k; isl_ctx *ctx; uint32_t c_hash; struct ineq_cmp_data v; if (!hull || !set) return isl_basic_set_free(hull); v.len = isl_basic_set_total_dim(hull); v.p = ineq; c_hash = isl_seq_get_hash(ineq + 1, v.len); ctx = isl_basic_set_get_ctx(hull); for (i = 0; i < set->n; ++i) { int bound; struct isl_hash_table_entry *entry; entry = isl_hash_table_find(ctx, data->p[i].table, c_hash, &has_ineq, &v, 0); if (entry) { isl_int *ineq_i = entry->data; int neg, more_relaxed; neg = isl_seq_is_neg(ineq_i + 1, ineq + 1, v.len); if (neg) isl_int_neg(ineq_i[0], ineq_i[0]); more_relaxed = isl_int_gt(ineq_i[0], ineq[0]); if (neg) isl_int_neg(ineq_i[0], ineq_i[0]); if (more_relaxed) break; else continue; } bound = is_bound(data, set, i, ineq, 0); if (bound < 0) return isl_basic_set_free(hull); if (!bound) break; } if (i < set->n) return hull; k = isl_basic_set_alloc_inequality(hull); if (k < 0) return isl_basic_set_free(hull); isl_seq_cpy(hull->ineq[k], ineq, 1 + v.len); return hull; } /* Compute a superset of the convex hull of "set" that is described * by only some of the "n_ineq" constraints in the list "ineq", where "set" * has no parameters or integer divisions. * * The inequalities in "ineq" are assumed to have been sorted such * that constraints with the same linear part appear together and * that among constraints with the same linear part, those with * smaller constant term appear first. * * We reuse the same data structure that is used by uset_simple_hull, * but we do not need the hull table since we will not consider the * same constraint more than once. We therefore allocate it with zero size. * * We run through the constraints and try to add them one by one, * skipping identical constraints. If we have added a constraint and * the next constraint is a more relaxed translate, then we skip this * next constraint as well. */ static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_constraints( __isl_take isl_set *set, int n_ineq, isl_int **ineq) { int i; int last_added = 0; struct sh_data *data = NULL; isl_basic_set *hull = NULL; unsigned dim; hull = isl_basic_set_alloc_space(isl_set_get_space(set), 0, 0, n_ineq); if (!hull) goto error; data = sh_data_alloc(set, 0); if (!data) goto error; dim = isl_set_dim(set, isl_dim_set); for (i = 0; i < n_ineq; ++i) { int hull_n_ineq = hull->n_ineq; int parallel; parallel = i > 0 && isl_seq_eq(ineq[i - 1] + 1, ineq[i] + 1, dim); if (parallel && (last_added || isl_int_eq(ineq[i - 1][0], ineq[i][0]))) continue; hull = add_bound_from_constraint(hull, data, set, ineq[i]); if (!hull) goto error; last_added = hull->n_ineq > hull_n_ineq; } sh_data_free(data); isl_set_free(set); return hull; error: sh_data_free(data); isl_set_free(set); isl_basic_set_free(hull); return NULL; } /* Collect pointers to all the inequalities in the elements of "list" * in "ineq". For equalities, store both a pointer to the equality and * a pointer to its opposite, which is first copied to "mat". * "ineq" and "mat" are assumed to have been preallocated to the right size * (the number of inequalities + 2 times the number of equalites and * the number of equalities, respectively). */ static __isl_give isl_mat *collect_inequalities(__isl_take isl_mat *mat, __isl_keep isl_basic_set_list *list, isl_int **ineq) { int i, j, n, n_eq, n_ineq; if (!mat) return NULL; n_eq = 0; n_ineq = 0; n = isl_basic_set_list_n_basic_set(list); for (i = 0; i < n; ++i) { isl_basic_set *bset; bset = isl_basic_set_list_get_basic_set(list, i); if (!bset) return isl_mat_free(mat); for (j = 0; j < bset->n_eq; ++j) { ineq[n_ineq++] = mat->row[n_eq]; ineq[n_ineq++] = bset->eq[j]; isl_seq_neg(mat->row[n_eq++], bset->eq[j], mat->n_col); } for (j = 0; j < bset->n_ineq; ++j) ineq[n_ineq++] = bset->ineq[j]; isl_basic_set_free(bset); } return mat; } /* Comparison routine for use as an isl_sort callback. * * Constraints with the same linear part are sorted together and * among constraints with the same linear part, those with smaller * constant term are sorted first. */ static int cmp_ineq(const void *a, const void *b, void *arg) { unsigned dim = *(unsigned *) arg; isl_int * const *ineq1 = a; isl_int * const *ineq2 = b; int cmp; cmp = isl_seq_cmp((*ineq1) + 1, (*ineq2) + 1, dim); if (cmp != 0) return cmp; return isl_int_cmp((*ineq1)[0], (*ineq2)[0]); } /* Compute a superset of the convex hull of "set" that is described * by only constraints in the elements of "list", where "set" has * no parameters or integer divisions. * * We collect all the constraints in those elements and then * sort the constraints such that constraints with the same linear part * are sorted together and that those with smaller constant term are * sorted first. */ static __isl_give isl_basic_set *uset_unshifted_simple_hull_from_basic_set_list( __isl_take isl_set *set, __isl_take isl_basic_set_list *list) { int i, n, n_eq, n_ineq; unsigned dim; isl_ctx *ctx; isl_mat *mat = NULL; isl_int **ineq = NULL; isl_basic_set *hull; if (!set) goto error; ctx = isl_set_get_ctx(set); n_eq = 0; n_ineq = 0; n = isl_basic_set_list_n_basic_set(list); for (i = 0; i < n; ++i) { isl_basic_set *bset; bset = isl_basic_set_list_get_basic_set(list, i); if (!bset) goto error; n_eq += bset->n_eq; n_ineq += 2 * bset->n_eq + bset->n_ineq; isl_basic_set_free(bset); } ineq = isl_alloc_array(ctx, isl_int *, n_ineq); if (n_ineq > 0 && !ineq) goto error; dim = isl_set_dim(set, isl_dim_set); mat = isl_mat_alloc(ctx, n_eq, 1 + dim); mat = collect_inequalities(mat, list, ineq); if (!mat) goto error; if (isl_sort(ineq, n_ineq, sizeof(ineq[0]), &cmp_ineq, &dim) < 0) goto error; hull = uset_unshifted_simple_hull_from_constraints(set, n_ineq, ineq); isl_mat_free(mat); free(ineq); isl_basic_set_list_free(list); return hull; error: isl_mat_free(mat); free(ineq); isl_set_free(set); isl_basic_set_list_free(list); return NULL; } /* Compute a superset of the convex hull of "map" that is described * by only constraints in the elements of "list". * * If the list is empty, then we can only describe the universe set. * If the input map is empty, then all constraints are valid, so * we return the intersection of the elements in "list". * * Otherwise, we align all divs and temporarily treat them * as regular variables, computing the unshifted simple hull in * uset_unshifted_simple_hull_from_basic_set_list. */ static __isl_give isl_basic_map *map_unshifted_simple_hull_from_basic_map_list( __isl_take isl_map *map, __isl_take isl_basic_map_list *list) { isl_basic_map *model; isl_basic_map *hull; isl_set *set; isl_basic_set_list *bset_list; if (!map || !list) goto error; if (isl_basic_map_list_n_basic_map(list) == 0) { isl_space *space; space = isl_map_get_space(map); isl_map_free(map); isl_basic_map_list_free(list); return isl_basic_map_universe(space); } if (isl_map_plain_is_empty(map)) { isl_map_free(map); return isl_basic_map_list_intersect(list); } map = isl_map_align_divs_to_basic_map_list(map, list); if (!map) goto error; list = isl_basic_map_list_align_divs_to_basic_map(list, map->p[0]); model = isl_basic_map_list_get_basic_map(list, 0); set = isl_map_underlying_set(map); bset_list = isl_basic_map_list_underlying_set(list); hull = uset_unshifted_simple_hull_from_basic_set_list(set, bset_list); hull = isl_basic_map_overlying_set(hull, model); return hull; error: isl_map_free(map); isl_basic_map_list_free(list); return NULL; } /* Return a sequence of the basic maps that make up the maps in "list". */ static __isl_give isl_basic_set_list *collect_basic_maps( __isl_take isl_map_list *list) { int i, n; isl_ctx *ctx; isl_basic_map_list *bmap_list; if (!list) return NULL; n = isl_map_list_n_map(list); ctx = isl_map_list_get_ctx(list); bmap_list = isl_basic_map_list_alloc(ctx, 0); for (i = 0; i < n; ++i) { isl_map *map; isl_basic_map_list *list_i; map = isl_map_list_get_map(list, i); map = isl_map_compute_divs(map); list_i = isl_map_get_basic_map_list(map); isl_map_free(map); bmap_list = isl_basic_map_list_concat(bmap_list, list_i); } isl_map_list_free(list); return bmap_list; } /* Compute a superset of the convex hull of "map" that is described * by only constraints in the elements of "list". * * If "map" is the universe, then the convex hull (and therefore * any superset of the convexhull) is the universe as well. * * Otherwise, we collect all the basic maps in the map list and * continue with map_unshifted_simple_hull_from_basic_map_list. */ __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list( __isl_take isl_map *map, __isl_take isl_map_list *list) { isl_basic_map_list *bmap_list; int is_universe; is_universe = isl_map_plain_is_universe(map); if (is_universe < 0) map = isl_map_free(map); if (is_universe < 0 || is_universe) { isl_map_list_free(list); return isl_map_unshifted_simple_hull(map); } bmap_list = collect_basic_maps(list); return map_unshifted_simple_hull_from_basic_map_list(map, bmap_list); } /* Compute a superset of the convex hull of "set" that is described * by only constraints in the elements of "list". */ __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list( __isl_take isl_set *set, __isl_take isl_set_list *list) { return isl_map_unshifted_simple_hull_from_map_list(set, list); } /* Given a set "set", return parametric bounds on the dimension "dim". */ static struct isl_basic_set *set_bounds(struct isl_set *set, int dim) { unsigned set_dim = isl_set_dim(set, isl_dim_set); set = isl_set_copy(set); set = isl_set_eliminate_dims(set, dim + 1, set_dim - (dim + 1)); set = isl_set_eliminate_dims(set, 0, dim); return isl_set_convex_hull(set); } /* Computes a "simple hull" and then check if each dimension in the * resulting hull is bounded by a symbolic constant. If not, the * hull is intersected with the corresponding bounds on the whole set. */ struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set) { int i, j; struct isl_basic_set *hull; unsigned nparam, left; int removed_divs = 0; hull = isl_set_simple_hull(isl_set_copy(set)); if (!hull) goto error; nparam = isl_basic_set_dim(hull, isl_dim_param); for (i = 0; i < isl_basic_set_dim(hull, isl_dim_set); ++i) { int lower = 0, upper = 0; struct isl_basic_set *bounds; left = isl_basic_set_total_dim(hull) - nparam - i - 1; for (j = 0; j < hull->n_eq; ++j) { if (isl_int_is_zero(hull->eq[j][1 + nparam + i])) continue; if (isl_seq_first_non_zero(hull->eq[j]+1+nparam+i+1, left) == -1) break; } if (j < hull->n_eq) continue; for (j = 0; j < hull->n_ineq; ++j) { if (isl_int_is_zero(hull->ineq[j][1 + nparam + i])) continue; if (isl_seq_first_non_zero(hull->ineq[j]+1+nparam+i+1, left) != -1 || isl_seq_first_non_zero(hull->ineq[j]+1+nparam, i) != -1) continue; if (isl_int_is_pos(hull->ineq[j][1 + nparam + i])) lower = 1; else upper = 1; if (lower && upper) break; } if (lower && upper) continue; if (!removed_divs) { set = isl_set_remove_divs(set); if (!set) goto error; removed_divs = 1; } bounds = set_bounds(set, i); hull = isl_basic_set_intersect(hull, bounds); if (!hull) goto error; } isl_set_free(set); return hull; error: isl_set_free(set); return NULL; } isl-0.16.1/codegen.c0000664000175000017500000001522612645737060011101 00000000000000/* * Copyright 2012,2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ /* This program prints an AST that scans the domain elements of * the domain of a given schedule in the order specified by * the schedule tree or by their image(s) in the schedule map. * * The input consists of either a schedule tree or * a sequence of three sets/relations. * - a schedule map * - a context * - a relation describing AST generation options */ #include #include #include #include #include #include #include #include #include #include struct options { struct isl_options *isl; unsigned atomic; unsigned separate; }; ISL_ARGS_START(struct options, options_args) ISL_ARG_CHILD(struct options, isl, "isl", &isl_options_args, "isl options") ISL_ARG_BOOL(struct options, atomic, 0, "atomic", 0, "globally set the atomic option") ISL_ARG_BOOL(struct options, separate, 0, "separate", 0, "globally set the separate option") ISL_ARGS_END ISL_ARG_DEF(cg_options, struct options, options_args) ISL_ARG_CTX_DEF(cg_options, struct options, options_args) /* Return a universal, 1-dimensional set with the given name. */ static __isl_give isl_union_set *universe(isl_ctx *ctx, const char *name) { isl_space *space; space = isl_space_set_alloc(ctx, 0, 1); space = isl_space_set_tuple_name(space, isl_dim_set, name); return isl_union_set_from_set(isl_set_universe(space)); } /* Set the "name" option for the entire schedule domain. */ static __isl_give isl_union_map *set_universe(__isl_take isl_union_map *opt, __isl_keep isl_union_map *schedule, const char *name) { isl_ctx *ctx; isl_union_set *domain, *target; isl_union_map *option; ctx = isl_union_map_get_ctx(opt); domain = isl_union_map_range(isl_union_map_copy(schedule)); domain = isl_union_set_universe(domain); target = universe(ctx, name); option = isl_union_map_from_domain_and_range(domain, target); opt = isl_union_map_union(opt, option); return opt; } /* Update the build options based on the user-specified options. * * If the --separate or --atomic options were specified, then * we clear any separate or atomic options that may already exist in "opt". */ static __isl_give isl_ast_build *set_options(__isl_take isl_ast_build *build, __isl_take isl_union_map *opt, struct options *options, __isl_keep isl_union_map *schedule) { if (options->separate || options->atomic) { isl_ctx *ctx; isl_union_set *target; ctx = isl_union_map_get_ctx(schedule); target = universe(ctx, "separate"); opt = isl_union_map_subtract_range(opt, target); target = universe(ctx, "atomic"); opt = isl_union_map_subtract_range(opt, target); } if (options->separate) opt = set_universe(opt, schedule, "separate"); if (options->atomic) opt = set_universe(opt, schedule, "atomic"); build = isl_ast_build_set_options(build, opt); return build; } /* Construct an AST in case the schedule is specified by a union map. * * We read the context and the options from "s" and construct the AST. */ static __isl_give isl_ast_node *construct_ast_from_union_map( __isl_take isl_union_map *schedule, __isl_keep isl_stream *s) { isl_set *context; isl_union_map *options_map; isl_ast_build *build; isl_ast_node *tree; struct options *options; options = isl_ctx_peek_cg_options(isl_stream_get_ctx(s)); context = isl_stream_read_set(s); options_map = isl_stream_read_union_map(s); build = isl_ast_build_from_context(context); build = set_options(build, options_map, options, schedule); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); return tree; } /* If "node" is a band node, then replace the AST build options * by "options". */ static __isl_give isl_schedule_node *node_set_options( __isl_take isl_schedule_node *node, void *user) { enum isl_ast_loop_type *type = user; int i, n; if (isl_schedule_node_get_type(node) != isl_schedule_node_band) return node; n = isl_schedule_node_band_n_member(node); for (i = 0; i < n; ++i) node = isl_schedule_node_band_member_set_ast_loop_type(node, i, *type); return node; } /* Replace the AST build options on all band nodes if requested * by the user. */ static __isl_give isl_schedule *schedule_set_options( __isl_take isl_schedule *schedule, struct options *options) { enum isl_ast_loop_type type; if (!options->separate && !options->atomic) return schedule; type = options->separate ? isl_ast_loop_separate : isl_ast_loop_atomic; schedule = isl_schedule_map_schedule_node_bottom_up(schedule, &node_set_options, &type); return schedule; } /* Construct an AST in case the schedule is specified by a schedule tree. */ static __isl_give isl_ast_node *construct_ast_from_schedule( __isl_take isl_schedule *schedule) { isl_ast_build *build; isl_ast_node *tree; struct options *options; options = isl_ctx_peek_cg_options(isl_schedule_get_ctx(schedule)); build = isl_ast_build_alloc(isl_schedule_get_ctx(schedule)); schedule = schedule_set_options(schedule, options); tree = isl_ast_build_node_from_schedule(build, schedule); isl_ast_build_free(build); return tree; } /* Read an object from stdin. * If it is a (union) map, then assume an input specified by * schedule map, context and options and construct an AST from * those elements * If it is a schedule object, then construct the AST from the schedule. */ int main(int argc, char **argv) { isl_ctx *ctx; isl_stream *s; isl_ast_node *tree = NULL; struct options *options; isl_printer *p; struct isl_obj obj; int r = EXIT_SUCCESS; options = cg_options_new_with_defaults(); assert(options); argc = cg_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&options_args, options); s = isl_stream_new_file(ctx, stdin); obj = isl_stream_read_obj(s); if (obj.v == NULL) { r = EXIT_FAILURE; } else if (obj.type == isl_obj_map) { isl_union_map *umap; umap = isl_union_map_from_map(obj.v); tree = construct_ast_from_union_map(umap, s); } else if (obj.type == isl_obj_union_map) { tree = construct_ast_from_union_map(obj.v, s); } else if (obj.type == isl_obj_schedule) { tree = construct_ast_from_schedule(obj.v); } else { obj.type->free(obj.v); isl_die(ctx, isl_error_invalid, "unknown input", r = EXIT_FAILURE); } isl_stream_free(s); p = isl_printer_to_file(ctx, stdout); p = isl_printer_set_output_format(p, ISL_FORMAT_C); p = isl_printer_print_ast_node(p, tree); isl_printer_free(p); isl_ast_node_free(tree); isl_ctx_free(ctx); return r; } isl-0.16.1/isl_set_list.c0000664000175000017500000000065212645737061012170 00000000000000#include #include #undef EL #define EL isl_basic_set #include #undef EL #define EL isl_set #include #undef EL #define EL isl_union_set #include #undef BASE #define BASE basic_set #include #undef BASE #define BASE set #include #undef BASE #define BASE union_set #include isl-0.16.1/isl_schedule_band.h0000664000175000017500000001217512645737061013132 00000000000000#ifndef ISL_SCHEDULE_BAND_H #define ISL_SCHEDULE_BAND_H #include #include #include /* Information about a band within a schedule. * * n is the number of scheduling dimensions within the band. * coincident is an array of length n, indicating whether a scheduling dimension * satisfies the coincidence constraints in the sense that * the corresponding dependence distances are zero. * permutable is set if the band is permutable. * mupa is the partial schedule corresponding to this band. The dimension * of mupa is equal to n. * loop_type contains the loop AST generation types for the members * in the band. It may be NULL, if all members are * of type isl_ast_loop_default. * isolate_loop_type contains the loop AST generation types for the members * in the band for the isolated part. It may be NULL, if all members are * of type isl_ast_loop_default. * ast_build_options are the remaining AST build options associated * to the band. * anchored is set if the node depends on its position in the schedule tree. * In particular, it is set if the AST build options include * an isolate option. */ struct isl_schedule_band { int ref; int n; int *coincident; int permutable; isl_multi_union_pw_aff *mupa; int anchored; isl_union_set *ast_build_options; enum isl_ast_loop_type *loop_type; enum isl_ast_loop_type *isolate_loop_type; }; typedef struct isl_schedule_band isl_schedule_band; __isl_give isl_schedule_band *isl_schedule_band_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_schedule_band *isl_schedule_band_copy( __isl_keep isl_schedule_band *band); __isl_null isl_schedule_band *isl_schedule_band_free( __isl_take isl_schedule_band *band); isl_ctx *isl_schedule_band_get_ctx(__isl_keep isl_schedule_band *band); isl_bool isl_schedule_band_plain_is_equal(__isl_keep isl_schedule_band *band1, __isl_keep isl_schedule_band *band2); int isl_schedule_band_is_anchored(__isl_keep isl_schedule_band *band); __isl_give isl_space *isl_schedule_band_get_space( __isl_keep isl_schedule_band *band); __isl_give isl_schedule_band *isl_schedule_band_intersect_domain( __isl_take isl_schedule_band *band, __isl_take isl_union_set *domain); __isl_give isl_multi_union_pw_aff *isl_schedule_band_get_partial_schedule( __isl_keep isl_schedule_band *band); __isl_give isl_schedule_band *isl_schedule_band_set_partial_schedule( __isl_take isl_schedule_band *band, __isl_take isl_multi_union_pw_aff *schedule); enum isl_ast_loop_type isl_schedule_band_member_get_ast_loop_type( __isl_keep isl_schedule_band *band, int pos); __isl_give isl_schedule_band *isl_schedule_band_member_set_ast_loop_type( __isl_take isl_schedule_band *band, int pos, enum isl_ast_loop_type type); enum isl_ast_loop_type isl_schedule_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_band *band, int pos); __isl_give isl_schedule_band * isl_schedule_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_band *band, int pos, enum isl_ast_loop_type type); __isl_give isl_union_set *isl_schedule_band_get_ast_build_options( __isl_keep isl_schedule_band *band); __isl_give isl_schedule_band *isl_schedule_band_set_ast_build_options( __isl_take isl_schedule_band *band, __isl_take isl_union_set *options); int isl_schedule_band_n_member(__isl_keep isl_schedule_band *band); isl_bool isl_schedule_band_member_get_coincident( __isl_keep isl_schedule_band *band, int pos); __isl_give isl_schedule_band *isl_schedule_band_member_set_coincident( __isl_take isl_schedule_band *band, int pos, int coincident); isl_bool isl_schedule_band_get_permutable(__isl_keep isl_schedule_band *band); __isl_give isl_schedule_band *isl_schedule_band_set_permutable( __isl_take isl_schedule_band *band, int permutable); __isl_give isl_schedule_band *isl_schedule_band_scale( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv); __isl_give isl_schedule_band *isl_schedule_band_scale_down( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv); __isl_give isl_schedule_band *isl_schedule_band_mod( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv); __isl_give isl_schedule_band *isl_schedule_band_tile( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *sizes); __isl_give isl_schedule_band *isl_schedule_band_point( __isl_take isl_schedule_band *band, __isl_keep isl_schedule_band *tile, __isl_take isl_multi_val *sizes); __isl_give isl_schedule_band *isl_schedule_band_shift( __isl_take isl_schedule_band *band, __isl_take isl_multi_union_pw_aff *shift); __isl_give isl_schedule_band *isl_schedule_band_drop( __isl_take isl_schedule_band *band, int pos, int n); __isl_give isl_schedule_band *isl_schedule_band_gist( __isl_take isl_schedule_band *band, __isl_take isl_union_set *context); __isl_give isl_schedule_band *isl_schedule_band_reset_user( __isl_take isl_schedule_band *band); __isl_give isl_schedule_band *isl_schedule_band_align_params( __isl_take isl_schedule_band *band, __isl_take isl_space *space); __isl_give isl_schedule_band *isl_schedule_band_pullback_union_pw_multi_aff( __isl_take isl_schedule_band *band, __isl_take isl_union_pw_multi_aff *upma); #endif isl-0.16.1/isl_mat.c0000664000175000017500000011605612645737235011134 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat) { return mat ? mat->ctx : NULL; } struct isl_mat *isl_mat_alloc(struct isl_ctx *ctx, unsigned n_row, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = NULL; mat->block = isl_blk_alloc(ctx, n_row * n_col); if (isl_blk_is_error(mat->block)) goto error; mat->row = isl_alloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; for (i = 0; i < n_row; ++i) mat->row[i] = mat->block.data + i * n_col; mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->max_col = n_col; mat->flags = 0; return mat; error: isl_blk_free(ctx, mat->block); free(mat); return NULL; } struct isl_mat *isl_mat_extend(struct isl_mat *mat, unsigned n_row, unsigned n_col) { int i; isl_int *old; isl_int **row; if (!mat) return NULL; if (mat->max_col >= n_col && mat->n_row >= n_row) { if (mat->n_col < n_col) mat->n_col = n_col; return mat; } if (mat->max_col < n_col) { struct isl_mat *new_mat; if (n_row < mat->n_row) n_row = mat->n_row; new_mat = isl_mat_alloc(mat->ctx, n_row, n_col); if (!new_mat) goto error; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(new_mat->row[i], mat->row[i], mat->n_col); isl_mat_free(mat); return new_mat; } mat = isl_mat_cow(mat); if (!mat) goto error; old = mat->block.data; mat->block = isl_blk_extend(mat->ctx, mat->block, n_row * mat->max_col); if (isl_blk_is_error(mat->block)) goto error; row = isl_realloc_array(mat->ctx, mat->row, isl_int *, n_row); if (n_row && !row) goto error; mat->row = row; for (i = 0; i < mat->n_row; ++i) mat->row[i] = mat->block.data + (mat->row[i] - old); for (i = mat->n_row; i < n_row; ++i) mat->row[i] = mat->block.data + i * mat->max_col; mat->n_row = n_row; if (mat->n_col < n_col) mat->n_col = n_col; return mat; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc6(isl_ctx *ctx, isl_int **row, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { int i; struct isl_mat *mat; mat = isl_alloc_type(ctx, struct isl_mat); if (!mat) return NULL; mat->row = isl_alloc_array(ctx, isl_int *, n_row); if (n_row && !mat->row) goto error; for (i = 0; i < n_row; ++i) mat->row[i] = row[first_row+i] + first_col; mat->ctx = ctx; isl_ctx_ref(ctx); mat->ref = 1; mat->n_row = n_row; mat->n_col = n_col; mat->block = isl_blk_empty(); mat->flags = ISL_MAT_BORROWED; return mat; error: free(mat); return NULL; } __isl_give isl_mat *isl_mat_sub_alloc(__isl_keep isl_mat *mat, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col) { if (!mat) return NULL; return isl_mat_sub_alloc6(mat->ctx, mat->row, first_row, n_row, first_col, n_col); } void isl_mat_sub_copy(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_cpy(dst[i]+dst_col, src[i]+src_col, n_col); } void isl_mat_sub_neg(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col) { int i; for (i = 0; i < n_row; ++i) isl_seq_neg(dst[i]+dst_col, src[i]+src_col, n_col); } struct isl_mat *isl_mat_copy(struct isl_mat *mat) { if (!mat) return NULL; mat->ref++; return mat; } struct isl_mat *isl_mat_dup(struct isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!mat2) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_cpy(mat2->row[i], mat->row[i], mat->n_col); return mat2; } struct isl_mat *isl_mat_cow(struct isl_mat *mat) { struct isl_mat *mat2; if (!mat) return NULL; if (mat->ref == 1 && !ISL_F_ISSET(mat, ISL_MAT_BORROWED)) return mat; mat2 = isl_mat_dup(mat); isl_mat_free(mat); return mat2; } __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat) { if (!mat) return NULL; if (--mat->ref > 0) return NULL; if (!ISL_F_ISSET(mat, ISL_MAT_BORROWED)) isl_blk_free(mat->ctx, mat->block); isl_ctx_deref(mat->ctx); free(mat->row); free(mat); return NULL; } int isl_mat_rows(__isl_keep isl_mat *mat) { return mat ? mat->n_row : -1; } int isl_mat_cols(__isl_keep isl_mat *mat) { return mat ? mat->n_col : -1; } int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v) { if (!mat) return -1; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", return -1); if (col < 0 || col >= mat->n_col) isl_die(mat->ctx, isl_error_invalid, "column out of range", return -1); isl_int_set(*v, mat->row[row][col]); return 0; } /* Extract the element at row "row", oolumn "col" of "mat". */ __isl_give isl_val *isl_mat_get_element_val(__isl_keep isl_mat *mat, int row, int col) { isl_ctx *ctx; if (!mat) return NULL; ctx = isl_mat_get_ctx(mat); if (row < 0 || row >= mat->n_row) isl_die(ctx, isl_error_invalid, "row out of range", return NULL); if (col < 0 || col >= mat->n_col) isl_die(ctx, isl_error_invalid, "column out of range", return NULL); return isl_val_int_from_isl_int(ctx, mat->row[row][col]); } __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v) { mat = isl_mat_cow(mat); if (!mat) return NULL; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", goto error); if (col < 0 || col >= mat->n_col) isl_die(mat->ctx, isl_error_invalid, "column out of range", goto error); isl_int_set(mat->row[row][col], v); return mat; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v) { mat = isl_mat_cow(mat); if (!mat) return NULL; if (row < 0 || row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", goto error); if (col < 0 || col >= mat->n_col) isl_die(mat->ctx, isl_error_invalid, "column out of range", goto error); isl_int_set_si(mat->row[row][col], v); return mat; error: isl_mat_free(mat); return NULL; } /* Replace the element at row "row", column "col" of "mat" by "v". */ __isl_give isl_mat *isl_mat_set_element_val(__isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v) { if (!v) return isl_mat_free(mat); if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); mat = isl_mat_set_element(mat, row, col, v->n); isl_val_free(v); return mat; error: isl_val_free(v); return isl_mat_free(mat); } __isl_give isl_mat *isl_mat_diag(isl_ctx *ctx, unsigned n_row, isl_int d) { int i; struct isl_mat *mat; mat = isl_mat_alloc(ctx, n_row, n_row); if (!mat) return NULL; for (i = 0; i < n_row; ++i) { isl_seq_clr(mat->row[i], i); isl_int_set(mat->row[i][i], d); isl_seq_clr(mat->row[i]+i+1, n_row-(i+1)); } return mat; } __isl_give isl_mat *isl_mat_identity(isl_ctx *ctx, unsigned n_row) { if (!ctx) return NULL; return isl_mat_diag(ctx, n_row, ctx->one); } /* Is "mat" a (possibly scaled) identity matrix? */ int isl_mat_is_scaled_identity(__isl_keep isl_mat *mat) { int i; if (!mat) return -1; if (mat->n_row != mat->n_col) return 0; for (i = 0; i < mat->n_row; ++i) { if (isl_seq_first_non_zero(mat->row[i], i) != -1) return 0; if (isl_int_ne(mat->row[0][0], mat->row[i][i])) return 0; if (isl_seq_first_non_zero(mat->row[i] + i + 1, mat->n_col - (i + 1)) != -1) return 0; } return 1; } struct isl_vec *isl_mat_vec_product(struct isl_mat *mat, struct isl_vec *vec) { int i; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_col == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_row); if (!prod) goto error; for (i = 0; i < prod->size; ++i) isl_seq_inner_product(mat->row[i], vec->el, vec->size, &prod->block.data[i]); isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_mat_vec_inverse_product(__isl_take isl_mat *mat, __isl_take isl_vec *vec) { struct isl_mat *vec_mat; int i; if (!mat || !vec) goto error; vec_mat = isl_mat_alloc(vec->ctx, vec->size, 1); if (!vec_mat) goto error; for (i = 0; i < vec->size; ++i) isl_int_set(vec_mat->row[i][0], vec->el[i]); vec_mat = isl_mat_inverse_product(mat, vec_mat); isl_vec_free(vec); if (!vec_mat) return NULL; vec = isl_vec_alloc(vec_mat->ctx, vec_mat->n_row); if (vec) for (i = 0; i < vec->size; ++i) isl_int_set(vec->el[i], vec_mat->row[i][0]); isl_mat_free(vec_mat); return vec; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } struct isl_vec *isl_vec_mat_product(struct isl_vec *vec, struct isl_mat *mat) { int i, j; struct isl_vec *prod; if (!mat || !vec) goto error; isl_assert(mat->ctx, mat->n_row == vec->size, goto error); prod = isl_vec_alloc(mat->ctx, mat->n_col); if (!prod) goto error; for (i = 0; i < prod->size; ++i) { isl_int_set_si(prod->el[i], 0); for (j = 0; j < vec->size; ++j) isl_int_addmul(prod->el[i], vec->el[j], mat->row[j][i]); } isl_mat_free(mat); isl_vec_free(vec); return prod; error: isl_mat_free(mat); isl_vec_free(vec); return NULL; } struct isl_mat *isl_mat_aff_direct_sum(struct isl_mat *left, struct isl_mat *right) { int i; struct isl_mat *sum; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == right->n_row, goto error); isl_assert(left->ctx, left->n_row >= 1, goto error); isl_assert(left->ctx, left->n_col >= 1, goto error); isl_assert(left->ctx, right->n_col >= 1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(left->row[0]+1, left->n_col-1) == -1, goto error); isl_assert(left->ctx, isl_seq_first_non_zero(right->row[0]+1, right->n_col-1) == -1, goto error); sum = isl_mat_alloc(left->ctx, left->n_row, left->n_col + right->n_col - 1); if (!sum) goto error; isl_int_lcm(sum->row[0][0], left->row[0][0], right->row[0][0]); isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_seq_clr(sum->row[0]+1, sum->n_col-1); for (i = 1; i < sum->n_row; ++i) { isl_int_mul(sum->row[i][0], left->row[0][0], left->row[i][0]); isl_int_addmul(sum->row[i][0], right->row[0][0], right->row[i][0]); isl_seq_scale(sum->row[i]+1, left->row[i]+1, left->row[0][0], left->n_col-1); isl_seq_scale(sum->row[i]+left->n_col, right->row[i]+1, right->row[0][0], right->n_col-1); } isl_int_divexact(left->row[0][0], sum->row[0][0], left->row[0][0]); isl_int_divexact(right->row[0][0], sum->row[0][0], right->row[0][0]); isl_mat_free(left); isl_mat_free(right); return sum; error: isl_mat_free(left); isl_mat_free(right); return NULL; } static void exchange(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned i, unsigned j) { int r; for (r = row; r < M->n_row; ++r) isl_int_swap(M->row[r][i], M->row[r][j]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_swap((*U)->row[r][i], (*U)->row[r][j]); } if (Q) isl_mat_swap_rows(*Q, i, j); } static void subtract(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned i, unsigned j, isl_int m) { int r; for (r = row; r < M->n_row; ++r) isl_int_submul(M->row[r][j], m, M->row[r][i]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_submul((*U)->row[r][j], m, (*U)->row[r][i]); } if (Q) { for (r = 0; r < (*Q)->n_col; ++r) isl_int_addmul((*Q)->row[i][r], m, (*Q)->row[j][r]); } } static void oppose(struct isl_mat *M, struct isl_mat **U, struct isl_mat **Q, unsigned row, unsigned col) { int r; for (r = row; r < M->n_row; ++r) isl_int_neg(M->row[r][col], M->row[r][col]); if (U) { for (r = 0; r < (*U)->n_row; ++r) isl_int_neg((*U)->row[r][col], (*U)->row[r][col]); } if (Q) isl_seq_neg((*Q)->row[col], (*Q)->row[col], (*Q)->n_col); } /* Given matrix M, compute * * M U = H * M = H Q * * with U and Q unimodular matrices and H a matrix in column echelon form * such that on each echelon row the entries in the non-echelon column * are non-negative (if neg == 0) or non-positive (if neg == 1) * and strictly smaller (in absolute value) than the entries in the echelon * column. * If U or Q are NULL, then these matrices are not computed. */ struct isl_mat *isl_mat_left_hermite(struct isl_mat *M, int neg, struct isl_mat **U, struct isl_mat **Q) { isl_int c; int row, col; if (U) *U = NULL; if (Q) *Q = NULL; if (!M) goto error; M = isl_mat_cow(M); if (!M) goto error; if (U) { *U = isl_mat_identity(M->ctx, M->n_col); if (!*U) goto error; } if (Q) { *Q = isl_mat_identity(M->ctx, M->n_col); if (!*Q) goto error; } col = 0; isl_int_init(c); for (row = 0; row < M->n_row; ++row) { int first, i, off; first = isl_seq_abs_min_non_zero(M->row[row]+col, M->n_col-col); if (first == -1) continue; first += col; if (first != col) exchange(M, U, Q, row, first, col); if (isl_int_is_neg(M->row[row][col])) oppose(M, U, Q, row, col); first = col+1; while ((off = isl_seq_first_non_zero(M->row[row]+first, M->n_col-first)) != -1) { first += off; isl_int_fdiv_q(c, M->row[row][first], M->row[row][col]); subtract(M, U, Q, row, col, first, c); if (!isl_int_is_zero(M->row[row][first])) exchange(M, U, Q, row, first, col); else ++first; } for (i = 0; i < col; ++i) { if (isl_int_is_zero(M->row[row][i])) continue; if (neg) isl_int_cdiv_q(c, M->row[row][i], M->row[row][col]); else isl_int_fdiv_q(c, M->row[row][i], M->row[row][col]); if (isl_int_is_zero(c)) continue; subtract(M, U, Q, row, col, i, c); } ++col; } isl_int_clear(c); return M; error: if (Q) { isl_mat_free(*Q); *Q = NULL; } if (U) { isl_mat_free(*U); *U = NULL; } isl_mat_free(M); return NULL; } struct isl_mat *isl_mat_right_kernel(struct isl_mat *mat) { int i, rank; struct isl_mat *U = NULL; struct isl_mat *K; mat = isl_mat_left_hermite(mat, 0, &U, NULL); if (!mat || !U) goto error; for (i = 0, rank = 0; rank < mat->n_col; ++rank) { while (i < mat->n_row && isl_int_is_zero(mat->row[i][rank])) ++i; if (i >= mat->n_row) break; } K = isl_mat_alloc(U->ctx, U->n_row, U->n_col - rank); if (!K) goto error; isl_mat_sub_copy(K->ctx, K->row, U->row, U->n_row, 0, rank, U->n_col-rank); isl_mat_free(mat); isl_mat_free(U); return K; error: isl_mat_free(mat); isl_mat_free(U); return NULL; } struct isl_mat *isl_mat_lin_to_aff(struct isl_mat *mat) { int i; struct isl_mat *mat2; if (!mat) return NULL; mat2 = isl_mat_alloc(mat->ctx, 1+mat->n_row, 1+mat->n_col); if (!mat2) goto error; isl_int_set_si(mat2->row[0][0], 1); isl_seq_clr(mat2->row[0]+1, mat->n_col); for (i = 0; i < mat->n_row; ++i) { isl_int_set_si(mat2->row[1+i][0], 0); isl_seq_cpy(mat2->row[1+i]+1, mat->row[i], mat->n_col); } isl_mat_free(mat); return mat2; error: isl_mat_free(mat); return NULL; } /* Given two matrices M1 and M2, return the block matrix * * [ M1 0 ] * [ 0 M2 ] */ __isl_give isl_mat *isl_mat_diagonal(__isl_take isl_mat *mat1, __isl_take isl_mat *mat2) { int i; isl_mat *mat; if (!mat1 || !mat2) goto error; mat = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row, mat1->n_col + mat2->n_col); if (!mat) goto error; for (i = 0; i < mat1->n_row; ++i) { isl_seq_cpy(mat->row[i], mat1->row[i], mat1->n_col); isl_seq_clr(mat->row[i] + mat1->n_col, mat2->n_col); } for (i = 0; i < mat2->n_row; ++i) { isl_seq_clr(mat->row[mat1->n_row + i], mat1->n_col); isl_seq_cpy(mat->row[mat1->n_row + i] + mat1->n_col, mat2->row[i], mat2->n_col); } isl_mat_free(mat1); isl_mat_free(mat2); return mat; error: isl_mat_free(mat1); isl_mat_free(mat2); return NULL; } static int row_first_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i; for (i = 0; i < n_row; ++i) if (!isl_int_is_zero(row[i][col])) return i; return -1; } static int row_abs_min_non_zero(isl_int **row, unsigned n_row, unsigned col) { int i, min = row_first_non_zero(row, n_row, col); if (min < 0) return -1; for (i = min + 1; i < n_row; ++i) { if (isl_int_is_zero(row[i][col])) continue; if (isl_int_abs_lt(row[i][col], row[min][col])) min = i; } return min; } static void inv_exchange(struct isl_mat *left, struct isl_mat *right, unsigned i, unsigned j) { left = isl_mat_swap_rows(left, i, j); right = isl_mat_swap_rows(right, i, j); } static void inv_oppose( struct isl_mat *left, struct isl_mat *right, unsigned row) { isl_seq_neg(left->row[row]+row, left->row[row]+row, left->n_col-row); isl_seq_neg(right->row[row], right->row[row], right->n_col); } static void inv_subtract(struct isl_mat *left, struct isl_mat *right, unsigned row, unsigned i, isl_int m) { isl_int_neg(m, m); isl_seq_combine(left->row[i]+row, left->ctx->one, left->row[i]+row, m, left->row[row]+row, left->n_col-row); isl_seq_combine(right->row[i], right->ctx->one, right->row[i], m, right->row[row], right->n_col); } /* Compute inv(left)*right */ struct isl_mat *isl_mat_inverse_product(struct isl_mat *left, struct isl_mat *right) { int row; isl_int a, b; if (!left || !right) goto error; isl_assert(left->ctx, left->n_row == left->n_col, goto error); isl_assert(left->ctx, left->n_row == right->n_row, goto error); if (left->n_row == 0) { isl_mat_free(left); return right; } left = isl_mat_cow(left); right = isl_mat_cow(right); if (!left || !right) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < left->n_row; ++row) { int pivot, first, i, off; pivot = row_abs_min_non_zero(left->row+row, left->n_row-row, row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(left->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) inv_exchange(left, right, pivot, row); if (isl_int_is_neg(left->row[row][row])) inv_oppose(left, right, row); first = row+1; while ((off = row_first_non_zero(left->row+first, left->n_row-first, row)) != -1) { first += off; isl_int_fdiv_q(a, left->row[first][row], left->row[row][row]); inv_subtract(left, right, row, first, a); if (!isl_int_is_zero(left->row[first][row])) inv_exchange(left, right, row, first); else ++first; } for (i = 0; i < row; ++i) { if (isl_int_is_zero(left->row[i][row])) continue; isl_int_gcd(a, left->row[row][row], left->row[i][row]); isl_int_divexact(b, left->row[i][row], a); isl_int_divexact(a, left->row[row][row], a); isl_int_neg(b, b); isl_seq_combine(left->row[i] + i, a, left->row[i] + i, b, left->row[row] + i, left->n_col - i); isl_seq_combine(right->row[i], a, right->row[i], b, right->row[row], right->n_col); } } isl_int_clear(b); isl_int_set(a, left->row[0][0]); for (row = 1; row < left->n_row; ++row) isl_int_lcm(a, a, left->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); isl_assert(left->ctx, 0, goto error); } for (row = 0; row < left->n_row; ++row) { isl_int_divexact(left->row[row][row], a, left->row[row][row]); if (isl_int_is_one(left->row[row][row])) continue; isl_seq_scale(right->row[row], right->row[row], left->row[row][row], right->n_col); } isl_int_clear(a); isl_mat_free(left); return right; error: isl_mat_free(left); isl_mat_free(right); return NULL; } void isl_mat_col_scale(struct isl_mat *mat, unsigned col, isl_int m) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][col], mat->row[i][col], m); } void isl_mat_col_combine(struct isl_mat *mat, unsigned dst, isl_int m1, unsigned src1, isl_int m2, unsigned src2) { int i; isl_int tmp; isl_int_init(tmp); for (i = 0; i < mat->n_row; ++i) { isl_int_mul(tmp, m1, mat->row[i][src1]); isl_int_addmul(tmp, m2, mat->row[i][src2]); isl_int_set(mat->row[i][dst], tmp); } isl_int_clear(tmp); } struct isl_mat *isl_mat_right_inverse(struct isl_mat *mat) { struct isl_mat *inv; int row; isl_int a, b; mat = isl_mat_cow(mat); if (!mat) return NULL; inv = isl_mat_identity(mat->ctx, mat->n_col); inv = isl_mat_cow(inv); if (!inv) goto error; isl_int_init(a); isl_int_init(b); for (row = 0; row < mat->n_row; ++row) { int pivot, first, i, off; pivot = isl_seq_abs_min_non_zero(mat->row[row]+row, mat->n_col-row); if (pivot < 0) { isl_int_clear(a); isl_int_clear(b); isl_assert(mat->ctx, pivot >= 0, goto error); } pivot += row; if (pivot != row) exchange(mat, &inv, NULL, row, pivot, row); if (isl_int_is_neg(mat->row[row][row])) oppose(mat, &inv, NULL, row, row); first = row+1; while ((off = isl_seq_first_non_zero(mat->row[row]+first, mat->n_col-first)) != -1) { first += off; isl_int_fdiv_q(a, mat->row[row][first], mat->row[row][row]); subtract(mat, &inv, NULL, row, row, first, a); if (!isl_int_is_zero(mat->row[row][first])) exchange(mat, &inv, NULL, row, row, first); else ++first; } for (i = 0; i < row; ++i) { if (isl_int_is_zero(mat->row[row][i])) continue; isl_int_gcd(a, mat->row[row][row], mat->row[row][i]); isl_int_divexact(b, mat->row[row][i], a); isl_int_divexact(a, mat->row[row][row], a); isl_int_neg(a, a); isl_mat_col_combine(mat, i, a, i, b, row); isl_mat_col_combine(inv, i, a, i, b, row); } } isl_int_clear(b); isl_int_set(a, mat->row[0][0]); for (row = 1; row < mat->n_row; ++row) isl_int_lcm(a, a, mat->row[row][row]); if (isl_int_is_zero(a)){ isl_int_clear(a); goto error; } for (row = 0; row < mat->n_row; ++row) { isl_int_divexact(mat->row[row][row], a, mat->row[row][row]); if (isl_int_is_one(mat->row[row][row])) continue; isl_mat_col_scale(inv, row, mat->row[row][row]); } isl_int_clear(a); isl_mat_free(mat); return inv; error: isl_mat_free(mat); isl_mat_free(inv); return NULL; } struct isl_mat *isl_mat_transpose(struct isl_mat *mat) { struct isl_mat *transpose = NULL; int i, j; if (!mat) return NULL; if (mat->n_col == mat->n_row) { mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) for (j = i + 1; j < mat->n_col; ++j) isl_int_swap(mat->row[i][j], mat->row[j][i]); return mat; } transpose = isl_mat_alloc(mat->ctx, mat->n_col, mat->n_row); if (!transpose) goto error; for (i = 0; i < mat->n_row; ++i) for (j = 0; j < mat->n_col; ++j) isl_int_set(transpose->row[j][i], mat->row[i][j]); isl_mat_free(mat); return transpose; error: isl_mat_free(mat); return NULL; } struct isl_mat *isl_mat_swap_cols(struct isl_mat *mat, unsigned i, unsigned j) { int r; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_assert(mat->ctx, i < mat->n_col, goto error); isl_assert(mat->ctx, j < mat->n_col, goto error); for (r = 0; r < mat->n_row; ++r) isl_int_swap(mat->row[r][i], mat->row[r][j]); return mat; error: isl_mat_free(mat); return NULL; } struct isl_mat *isl_mat_swap_rows(struct isl_mat *mat, unsigned i, unsigned j) { isl_int *t; if (!mat) return NULL; mat = isl_mat_cow(mat); if (!mat) return NULL; t = mat->row[i]; mat->row[i] = mat->row[j]; mat->row[j] = t; return mat; } /* Calculate the product of two matrices. * * This function is optimized for operand matrices that contain many zeros and * skips multiplications where we know one of the operands is zero. */ __isl_give isl_mat *isl_mat_product(__isl_take isl_mat *left, __isl_take isl_mat *right) { int i, j, k; struct isl_mat *prod; if (!left || !right) goto error; isl_assert(left->ctx, left->n_col == right->n_row, goto error); prod = isl_mat_alloc(left->ctx, left->n_row, right->n_col); if (!prod) goto error; if (left->n_col == 0) { for (i = 0; i < prod->n_row; ++i) isl_seq_clr(prod->row[i], prod->n_col); isl_mat_free(left); isl_mat_free(right); return prod; } for (i = 0; i < prod->n_row; ++i) { for (j = 0; j < prod->n_col; ++j) isl_int_mul(prod->row[i][j], left->row[i][0], right->row[0][j]); for (k = 1; k < left->n_col; ++k) { if (isl_int_is_zero(left->row[i][k])) continue; for (j = 0; j < prod->n_col; ++j) isl_int_addmul(prod->row[i][j], left->row[i][k], right->row[k][j]); } } isl_mat_free(left); isl_mat_free(right); return prod; error: isl_mat_free(left); isl_mat_free(right); return NULL; } /* Replace the variables x in the rows q by x' given by x = M x', * with M the matrix mat. * * If the number of new variables is greater than the original * number of variables, then the rows q have already been * preextended. If the new number is smaller, then the coefficients * of the divs, which are not changed, need to be shifted down. * The row q may be the equalities, the inequalities or the * div expressions. In the latter case, has_div is true and * we need to take into account the extra denominator column. */ static int preimage(struct isl_ctx *ctx, isl_int **q, unsigned n, unsigned n_div, int has_div, struct isl_mat *mat) { int i; struct isl_mat *t; int e; if (mat->n_col >= mat->n_row) e = 0; else e = mat->n_row - mat->n_col; if (has_div) for (i = 0; i < n; ++i) isl_int_mul(q[i][0], q[i][0], mat->row[0][0]); t = isl_mat_sub_alloc6(mat->ctx, q, 0, n, has_div, mat->n_row); t = isl_mat_product(t, mat); if (!t) return -1; for (i = 0; i < n; ++i) { isl_seq_swp_or_cpy(q[i] + has_div, t->row[i], t->n_col); isl_seq_cpy(q[i] + has_div + t->n_col, q[i] + has_div + t->n_col + e, n_div); isl_seq_clr(q[i] + has_div + t->n_col + n_div, e); } isl_mat_free(t); return 0; } /* Replace the variables x in bset by x' given by x = M x', with * M the matrix mat. * * If there are fewer variables x' then there are x, then we perform * the transformation in place, which means that, in principle, * this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_set *isl_basic_set_preimage(struct isl_basic_set *bset, struct isl_mat *mat) { struct isl_ctx *ctx; if (!bset || !mat) goto error; ctx = bset->ctx; bset = isl_basic_set_cow(bset); if (!bset) goto error; isl_assert(ctx, bset->dim->nparam == 0, goto error); isl_assert(ctx, 1+bset->dim->n_out == mat->n_row, goto error); isl_assert(ctx, mat->n_col > 0, goto error); if (mat->n_col > mat->n_row) { bset = isl_basic_set_extend(bset, 0, mat->n_col-1, 0, 0, 0); if (!bset) goto error; } else if (mat->n_col < mat->n_row) { bset->dim = isl_space_cow(bset->dim); if (!bset->dim) goto error; bset->dim->n_out -= mat->n_row - mat->n_col; } if (preimage(ctx, bset->eq, bset->n_eq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->ineq, bset->n_ineq, bset->n_div, 0, isl_mat_copy(mat)) < 0) goto error; if (preimage(ctx, bset->div, bset->n_div, bset->n_div, 1, mat) < 0) goto error2; ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_CLR(bset, ISL_BASIC_SET_NO_REDUNDANT); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED_DIVS); ISL_F_CLR(bset, ISL_BASIC_SET_ALL_EQUALITIES); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); return bset; error: isl_mat_free(mat); error2: isl_basic_set_free(bset); return NULL; } struct isl_set *isl_set_preimage(struct isl_set *set, struct isl_mat *mat) { int i; set = isl_set_cow(set); if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_preimage(set->p[i], isl_mat_copy(mat)); if (!set->p[i]) goto error; } if (mat->n_col != mat->n_row) { set->dim = isl_space_cow(set->dim); if (!set->dim) goto error; set->dim->n_out += mat->n_col; set->dim->n_out -= mat->n_row; } isl_mat_free(mat); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); isl_mat_free(mat); return NULL; } /* Replace the variables x starting at pos in the rows q * by x' with x = M x' with M the matrix mat. * That is, replace the corresponding coefficients c by c M. */ static int transform(isl_ctx *ctx, isl_int **q, unsigned n, unsigned pos, __isl_take isl_mat *mat) { int i; isl_mat *t; t = isl_mat_sub_alloc6(ctx, q, 0, n, pos, mat->n_row); t = isl_mat_product(t, mat); if (!t) return -1; for (i = 0; i < n; ++i) isl_seq_swp_or_cpy(q[i] + pos, t->row[i], t->n_col); isl_mat_free(t); return 0; } /* Replace the variables x of type "type" starting at "first" in "bset" * by x' with x = M x' with M the matrix trans. * That is, replace the corresponding coefficients c by c M. * * The transformation matrix should be a square matrix. */ __isl_give isl_basic_set *isl_basic_set_transform_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, __isl_take isl_mat *trans) { isl_ctx *ctx; unsigned pos; bset = isl_basic_set_cow(bset); if (!bset || !trans) goto error; ctx = isl_basic_set_get_ctx(bset); if (trans->n_row != trans->n_col) isl_die(trans->ctx, isl_error_invalid, "expecting square transformation matrix", goto error); if (first + trans->n_row > isl_basic_set_dim(bset, type)) isl_die(trans->ctx, isl_error_invalid, "oversized transformation matrix", goto error); pos = isl_basic_set_offset(bset, type) + first; if (transform(ctx, bset->eq, bset->n_eq, pos, isl_mat_copy(trans)) < 0) goto error; if (transform(ctx, bset->ineq, bset->n_ineq, pos, isl_mat_copy(trans)) < 0) goto error; if (transform(ctx, bset->div, bset->n_div, 1 + pos, isl_mat_copy(trans)) < 0) goto error; ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED); ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED_DIVS); isl_mat_free(trans); return bset; error: isl_mat_free(trans); isl_basic_set_free(bset); return NULL; } void isl_mat_print_internal(__isl_keep isl_mat *mat, FILE *out, int indent) { int i, j; if (!mat) { fprintf(out, "%*snull mat\n", indent, ""); return; } if (mat->n_row == 0) fprintf(out, "%*s[]\n", indent, ""); for (i = 0; i < mat->n_row; ++i) { if (!i) fprintf(out, "%*s[[", indent, ""); else fprintf(out, "%*s[", indent+1, ""); for (j = 0; j < mat->n_col; ++j) { if (j) fprintf(out, ","); isl_int_print(out, mat->row[i][j], 0); } if (i == mat->n_row-1) fprintf(out, "]]\n"); else fprintf(out, "]\n"); } } void isl_mat_dump(__isl_keep isl_mat *mat) { isl_mat_print_internal(mat, stderr, 0); } struct isl_mat *isl_mat_drop_cols(struct isl_mat *mat, unsigned col, unsigned n) { int r; if (n == 0) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; if (col != mat->n_col-n) { for (r = 0; r < mat->n_row; ++r) isl_seq_cpy(mat->row[r]+col, mat->row[r]+col+n, mat->n_col - col - n); } mat->n_col -= n; return mat; } struct isl_mat *isl_mat_drop_rows(struct isl_mat *mat, unsigned row, unsigned n) { int r; mat = isl_mat_cow(mat); if (!mat) return NULL; for (r = row; r+n < mat->n_row; ++r) mat->row[r] = mat->row[r+n]; mat->n_row -= n; return mat; } __isl_give isl_mat *isl_mat_insert_cols(__isl_take isl_mat *mat, unsigned col, unsigned n) { isl_mat *ext; if (!mat) return NULL; if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col + n); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, 0, 0, col); isl_mat_sub_copy(mat->ctx, ext->row, mat->row, mat->n_row, col + n, col, mat->n_col - col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_insert_zero_cols(__isl_take isl_mat *mat, unsigned first, unsigned n) { int i; if (!mat) return NULL; mat = isl_mat_insert_cols(mat, first, n); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_clr(mat->row[i] + first, n); return mat; } __isl_give isl_mat *isl_mat_add_zero_cols(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_cols(mat, mat->n_col, n); } __isl_give isl_mat *isl_mat_insert_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { isl_mat *ext; if (!mat) return NULL; if (n == 0) return mat; ext = isl_mat_alloc(mat->ctx, mat->n_row + n, mat->n_col); if (!ext) goto error; isl_mat_sub_copy(mat->ctx, ext->row, mat->row, row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, ext->row + row + n, mat->row + row, mat->n_row - row, 0, 0, mat->n_col); isl_mat_free(mat); return ext; error: isl_mat_free(mat); return NULL; } __isl_give isl_mat *isl_mat_add_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_rows(mat, mat->n_row, n); } __isl_give isl_mat *isl_mat_insert_zero_rows(__isl_take isl_mat *mat, unsigned row, unsigned n) { int i; mat = isl_mat_insert_rows(mat, row, n); if (!mat) return NULL; for (i = 0; i < n; ++i) isl_seq_clr(mat->row[row + i], mat->n_col); return mat; } __isl_give isl_mat *isl_mat_add_zero_rows(__isl_take isl_mat *mat, unsigned n) { if (!mat) return NULL; return isl_mat_insert_zero_rows(mat, mat->n_row, n); } void isl_mat_col_submul(struct isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_submul(mat->row[i][dst_col], f, mat->row[i][src_col]); } void isl_mat_col_add(__isl_keep isl_mat *mat, int dst_col, int src_col) { int i; if (!mat) return; for (i = 0; i < mat->n_row; ++i) isl_int_add(mat->row[i][dst_col], mat->row[i][dst_col], mat->row[i][src_col]); } void isl_mat_col_mul(struct isl_mat *mat, int dst_col, isl_int f, int src_col) { int i; for (i = 0; i < mat->n_row; ++i) isl_int_mul(mat->row[i][dst_col], f, mat->row[i][src_col]); } struct isl_mat *isl_mat_unimodular_complete(struct isl_mat *M, int row) { int r; struct isl_mat *H = NULL, *Q = NULL; if (!M) return NULL; isl_assert(M->ctx, M->n_row == M->n_col, goto error); M->n_row = row; H = isl_mat_left_hermite(isl_mat_copy(M), 0, NULL, &Q); M->n_row = M->n_col; if (!H) goto error; for (r = 0; r < row; ++r) isl_assert(M->ctx, isl_int_is_one(H->row[r][r]), goto error); for (r = row; r < M->n_row; ++r) isl_seq_cpy(M->row[r], Q->row[r], M->n_col); isl_mat_free(H); isl_mat_free(Q); return M; error: isl_mat_free(H); isl_mat_free(Q); isl_mat_free(M); return NULL; } __isl_give isl_mat *isl_mat_concat(__isl_take isl_mat *top, __isl_take isl_mat *bot) { struct isl_mat *mat; if (!top || !bot) goto error; isl_assert(top->ctx, top->n_col == bot->n_col, goto error); if (top->n_row == 0) { isl_mat_free(top); return bot; } if (bot->n_row == 0) { isl_mat_free(bot); return top; } mat = isl_mat_alloc(top->ctx, top->n_row + bot->n_row, top->n_col); if (!mat) goto error; isl_mat_sub_copy(mat->ctx, mat->row, top->row, top->n_row, 0, 0, mat->n_col); isl_mat_sub_copy(mat->ctx, mat->row + top->n_row, bot->row, bot->n_row, 0, 0, mat->n_col); isl_mat_free(top); isl_mat_free(bot); return mat; error: isl_mat_free(top); isl_mat_free(bot); return NULL; } int isl_mat_is_equal(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2) { int i; if (!mat1 || !mat2) return -1; if (mat1->n_row != mat2->n_row) return 0; if (mat1->n_col != mat2->n_col) return 0; for (i = 0; i < mat1->n_row; ++i) if (!isl_seq_eq(mat1->row[i], mat2->row[i], mat1->n_col)) return 0; return 1; } __isl_give isl_mat *isl_mat_from_row_vec(__isl_take isl_vec *vec) { struct isl_mat *mat; if (!vec) return NULL; mat = isl_mat_alloc(vec->ctx, 1, vec->size); if (!mat) goto error; isl_seq_cpy(mat->row[0], vec->el, vec->size); isl_vec_free(vec); return mat; error: isl_vec_free(vec); return NULL; } /* Return a copy of row "row" of "mat" as an isl_vec. */ __isl_give isl_vec *isl_mat_get_row(__isl_keep isl_mat *mat, unsigned row) { isl_vec *v; if (!mat) return NULL; if (row >= mat->n_row) isl_die(mat->ctx, isl_error_invalid, "row out of range", return NULL); v = isl_vec_alloc(isl_mat_get_ctx(mat), mat->n_col); if (!v) return NULL; isl_seq_cpy(v->el, mat->row[row], mat->n_col); return v; } __isl_give isl_mat *isl_mat_vec_concat(__isl_take isl_mat *top, __isl_take isl_vec *bot) { return isl_mat_concat(top, isl_mat_from_row_vec(bot)); } __isl_give isl_mat *isl_mat_move_cols(__isl_take isl_mat *mat, unsigned dst_col, unsigned src_col, unsigned n) { isl_mat *res; if (!mat) return NULL; if (n == 0 || dst_col == src_col) return mat; res = isl_mat_alloc(mat->ctx, mat->n_row, mat->n_col); if (!res) goto error; if (dst_col < src_col) { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col, src_col - dst_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col + n, src_col + n, res->n_col - src_col - n); } else { isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, 0, 0, src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, src_col, src_col + n, dst_col - src_col); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col, src_col, n); isl_mat_sub_copy(res->ctx, res->row, mat->row, mat->n_row, dst_col + n, dst_col + n, res->n_col - dst_col - n); } isl_mat_free(mat); return res; error: isl_mat_free(mat); return NULL; } void isl_mat_gcd(__isl_keep isl_mat *mat, isl_int *gcd) { int i; isl_int g; isl_int_set_si(*gcd, 0); if (!mat) return; isl_int_init(g); for (i = 0; i < mat->n_row; ++i) { isl_seq_gcd(mat->row[i], mat->n_col, &g); isl_int_gcd(*gcd, *gcd, g); } isl_int_clear(g); } __isl_give isl_mat *isl_mat_scale_down(__isl_take isl_mat *mat, isl_int m) { int i; if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; for (i = 0; i < mat->n_row; ++i) isl_seq_scale_down(mat->row[i], mat->row[i], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_scale_down_row(__isl_take isl_mat *mat, int row, isl_int m) { if (isl_int_is_one(m)) return mat; mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_scale_down(mat->row[row], mat->row[row], m, mat->n_col); return mat; } __isl_give isl_mat *isl_mat_normalize(__isl_take isl_mat *mat) { isl_int gcd; if (!mat) return NULL; isl_int_init(gcd); isl_mat_gcd(mat, &gcd); mat = isl_mat_scale_down(mat, gcd); isl_int_clear(gcd); return mat; } __isl_give isl_mat *isl_mat_normalize_row(__isl_take isl_mat *mat, int row) { mat = isl_mat_cow(mat); if (!mat) return NULL; isl_seq_normalize(mat->ctx, mat->row[row], mat->n_col); return mat; } /* Number of initial non-zero columns. */ int isl_mat_initial_non_zero_cols(__isl_keep isl_mat *mat) { int i; if (!mat) return -1; for (i = 0; i < mat->n_col; ++i) if (row_first_non_zero(mat->row, mat->n_row, i) < 0) break; return i; } isl-0.16.1/isl_sort.h0000664000175000017500000000030512645737061011331 00000000000000#ifndef ISL_SORT_H #define ISL_SORT_H #include int isl_sort(void *const pbase, size_t total_elems, size_t size, int (*cmp)(const void *, const void *, void *arg), void *arg); #endif isl-0.16.1/isl_vec.c0000664000175000017500000002714712645737061011127 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec) { return vec ? vec->ctx : NULL; } struct isl_vec *isl_vec_alloc(struct isl_ctx *ctx, unsigned size) { struct isl_vec *vec; vec = isl_alloc_type(ctx, struct isl_vec); if (!vec) return NULL; vec->block = isl_blk_alloc(ctx, size); if (isl_blk_is_error(vec->block)) goto error; vec->ctx = ctx; isl_ctx_ref(ctx); vec->ref = 1; vec->size = size; vec->el = vec->block.data; return vec; error: isl_blk_free(ctx, vec->block); return NULL; } __isl_give isl_vec *isl_vec_extend(__isl_take isl_vec *vec, unsigned size) { if (!vec) return NULL; if (size <= vec->size) return vec; vec = isl_vec_cow(vec); if (!vec) return NULL; vec->block = isl_blk_extend(vec->ctx, vec->block, size); if (!vec->block.data) goto error; vec->size = size; vec->el = vec->block.data; return vec; error: isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_vec_zero_extend(__isl_take isl_vec *vec, unsigned size) { int extra; if (!vec) return NULL; if (size <= vec->size) return vec; vec = isl_vec_cow(vec); if (!vec) return NULL; extra = size - vec->size; vec = isl_vec_extend(vec, size); if (!vec) return NULL; isl_seq_clr(vec->el + size - extra, extra); return vec; } /* Return a vector containing the elements of "vec1" followed by * those of "vec2". */ __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2) { if (!vec1 || !vec2) goto error; if (vec2->size == 0) { isl_vec_free(vec2); return vec1; } if (vec1->size == 0) { isl_vec_free(vec1); return vec2; } vec1 = isl_vec_extend(vec1, vec1->size + vec2->size); if (!vec1) goto error; isl_seq_cpy(vec1->el + vec1->size - vec2->size, vec2->el, vec2->size); isl_vec_free(vec2); return vec1; error: isl_vec_free(vec1); isl_vec_free(vec2); return NULL; } struct isl_vec *isl_vec_copy(struct isl_vec *vec) { if (!vec) return NULL; vec->ref++; return vec; } struct isl_vec *isl_vec_dup(struct isl_vec *vec) { struct isl_vec *vec2; if (!vec) return NULL; vec2 = isl_vec_alloc(vec->ctx, vec->size); if (!vec2) return NULL; isl_seq_cpy(vec2->el, vec->el, vec->size); return vec2; } struct isl_vec *isl_vec_cow(struct isl_vec *vec) { struct isl_vec *vec2; if (!vec) return NULL; if (vec->ref == 1) return vec; vec2 = isl_vec_dup(vec); isl_vec_free(vec); return vec2; } __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec) { if (!vec) return NULL; if (--vec->ref > 0) return NULL; isl_ctx_deref(vec->ctx); isl_blk_free(vec->ctx, vec->block); free(vec); return NULL; } int isl_vec_size(__isl_keep isl_vec *vec) { return vec ? vec->size : -1; } int isl_vec_get_element(__isl_keep isl_vec *vec, int pos, isl_int *v) { if (!vec) return -1; if (pos < 0 || pos >= vec->size) isl_die(vec->ctx, isl_error_invalid, "position out of range", return -1); isl_int_set(*v, vec->el[pos]); return 0; } /* Extract the element at position "pos" of "vec". */ __isl_give isl_val *isl_vec_get_element_val(__isl_keep isl_vec *vec, int pos) { isl_ctx *ctx; if (!vec) return NULL; ctx = isl_vec_get_ctx(vec); if (pos < 0 || pos >= vec->size) isl_die(ctx, isl_error_invalid, "position out of range", return NULL); return isl_val_int_from_isl_int(ctx, vec->el[pos]); } __isl_give isl_vec *isl_vec_set_element(__isl_take isl_vec *vec, int pos, isl_int v) { vec = isl_vec_cow(vec); if (!vec) return NULL; if (pos < 0 || pos >= vec->size) isl_die(vec->ctx, isl_error_invalid, "position out of range", goto error); isl_int_set(vec->el[pos], v); return vec; error: isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_vec_set_element_si(__isl_take isl_vec *vec, int pos, int v) { vec = isl_vec_cow(vec); if (!vec) return NULL; if (pos < 0 || pos >= vec->size) isl_die(vec->ctx, isl_error_invalid, "position out of range", goto error); isl_int_set_si(vec->el[pos], v); return vec; error: isl_vec_free(vec); return NULL; } /* Replace the element at position "pos" of "vec" by "v". */ __isl_give isl_vec *isl_vec_set_element_val(__isl_take isl_vec *vec, int pos, __isl_take isl_val *v) { if (!v) return isl_vec_free(vec); if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); vec = isl_vec_set_element(vec, pos, v->n); isl_val_free(v); return vec; error: isl_val_free(v); return isl_vec_free(vec); } /* Compare the elements of "vec1" and "vec2" at position "pos". */ int isl_vec_cmp_element(__isl_keep isl_vec *vec1, __isl_keep isl_vec *vec2, int pos) { if (!vec1 || !vec2) return 0; if (pos < 0 || pos >= vec1->size || pos >= vec2->size) isl_die(isl_vec_get_ctx(vec1), isl_error_invalid, "position out of range", return 0); return isl_int_cmp(vec1->el[pos], vec2->el[pos]); } isl_bool isl_vec_is_equal(__isl_keep isl_vec *vec1, __isl_keep isl_vec *vec2) { if (!vec1 || !vec2) return isl_bool_error; if (vec1->size != vec2->size) return isl_bool_false; return isl_seq_eq(vec1->el, vec2->el, vec1->size); } __isl_give isl_printer *isl_printer_print_vec(__isl_take isl_printer *printer, __isl_keep isl_vec *vec) { int i; if (!printer || !vec) goto error; printer = isl_printer_print_str(printer, "["); for (i = 0; i < vec->size; ++i) { if (i) printer = isl_printer_print_str(printer, ","); printer = isl_printer_print_isl_int(printer, vec->el[i]); } printer = isl_printer_print_str(printer, "]"); return printer; error: isl_printer_free(printer); return NULL; } void isl_vec_dump(struct isl_vec *vec) { isl_printer *printer; if (!vec) return; printer = isl_printer_to_file(vec->ctx, stderr); printer = isl_printer_print_vec(printer, vec); printer = isl_printer_end_line(printer); isl_printer_free(printer); } __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec, isl_int v) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_set(vec->el, v, vec->size); return vec; } __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec, int v) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_set_si(vec->el, v, vec->size); return vec; } /* Replace all elements of "vec" by "v". */ __isl_give isl_vec *isl_vec_set_val(__isl_take isl_vec *vec, __isl_take isl_val *v) { vec = isl_vec_cow(vec); if (!vec || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); isl_seq_set(vec->el, v->n, vec->size); isl_val_free(v); return vec; error: isl_vec_free(vec); isl_val_free(v); return NULL; } __isl_give isl_vec *isl_vec_clr(__isl_take isl_vec *vec) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_clr(vec->el, vec->size); return vec; } void isl_vec_lcm(struct isl_vec *vec, isl_int *lcm) { isl_seq_lcm(vec->block.data, vec->size, lcm); } /* Given a rational vector, with the denominator in the first element * of the vector, round up all coordinates. */ struct isl_vec *isl_vec_ceil(struct isl_vec *vec) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_cdiv_q(vec->el + 1, vec->el + 1, vec->el[0], vec->size - 1); isl_int_set_si(vec->el[0], 1); return vec; } struct isl_vec *isl_vec_normalize(struct isl_vec *vec) { if (!vec) return NULL; isl_seq_normalize(vec->ctx, vec->el, vec->size); return vec; } __isl_give isl_vec *isl_vec_neg(__isl_take isl_vec *vec) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_neg(vec->el, vec->el, vec->size); return vec; } __isl_give isl_vec *isl_vec_scale(__isl_take isl_vec *vec, isl_int m) { if (isl_int_is_one(m)) return vec; vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_scale(vec->el, vec->el, m, vec->size); return vec; } /* Reduce the elements of "vec" modulo "m". */ __isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec, isl_int m) { vec = isl_vec_cow(vec); if (!vec) return NULL; isl_seq_fdiv_r(vec->el, vec->el, m, vec->size); return vec; } __isl_give isl_vec *isl_vec_add(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2) { vec1 = isl_vec_cow(vec1); if (!vec1 || !vec2) goto error; isl_assert(vec1->ctx, vec1->size == vec2->size, goto error); isl_seq_combine(vec1->el, vec1->ctx->one, vec1->el, vec1->ctx->one, vec2->el, vec1->size); isl_vec_free(vec2); return vec1; error: isl_vec_free(vec1); isl_vec_free(vec2); return NULL; } static int qsort_int_cmp(const void *p1, const void *p2) { const isl_int *i1 = (const isl_int *) p1; const isl_int *i2 = (const isl_int *) p2; return isl_int_cmp(*i1, *i2); } __isl_give isl_vec *isl_vec_sort(__isl_take isl_vec *vec) { if (!vec) return NULL; qsort(vec->el, vec->size, sizeof(*vec->el), &qsort_int_cmp); return vec; } __isl_give isl_vec *isl_vec_drop_els(__isl_take isl_vec *vec, unsigned pos, unsigned n) { if (n == 0) return vec; vec = isl_vec_cow(vec); if (!vec) return NULL; if (pos + n > vec->size) isl_die(vec->ctx, isl_error_invalid, "range out of bounds", goto error); if (pos + n != vec->size) isl_seq_cpy(vec->el + pos, vec->el + pos + n, vec->size - pos - n); vec->size -= n; return vec; error: isl_vec_free(vec); return NULL; } __isl_give isl_vec *isl_vec_insert_els(__isl_take isl_vec *vec, unsigned pos, unsigned n) { isl_vec *ext = NULL; if (n == 0) return vec; if (!vec) return NULL; if (pos > vec->size) isl_die(vec->ctx, isl_error_invalid, "position out of bounds", goto error); ext = isl_vec_alloc(vec->ctx, vec->size + n); if (!ext) goto error; isl_seq_cpy(ext->el, vec->el, pos); isl_seq_cpy(ext->el + pos + n, vec->el + pos, vec->size - pos); isl_vec_free(vec); return ext; error: isl_vec_free(vec); isl_vec_free(ext); return NULL; } __isl_give isl_vec *isl_vec_insert_zero_els(__isl_take isl_vec *vec, unsigned pos, unsigned n) { vec = isl_vec_insert_els(vec, pos, n); if (!vec) return NULL; isl_seq_clr(vec->el + pos, n); return vec; } /* Move the "n" elements starting as "src_pos" of "vec" * to "dst_pos". The elements originally at "dst_pos" are moved * up or down depending on whether "dst_pos" is smaller or greater * than "src_pos". */ __isl_give isl_vec *isl_vec_move_els(__isl_take isl_vec *vec, unsigned dst_pos, unsigned src_pos, unsigned n) { isl_vec *res; if (!vec) return NULL; if (src_pos + n > vec->size) isl_die(vec->ctx, isl_error_invalid, "source range out of bounds", return isl_vec_free(vec)); if (dst_pos + n > vec->size) isl_die(vec->ctx, isl_error_invalid, "destination range out of bounds", return isl_vec_free(vec)); if (n == 0 || dst_pos == src_pos) return vec; res = isl_vec_alloc(vec->ctx, vec->size); if (!res) return isl_vec_free(vec); if (dst_pos < src_pos) { isl_seq_cpy(res->el, vec->el, dst_pos); isl_seq_cpy(res->el + dst_pos, vec->el + src_pos, n); isl_seq_cpy(res->el + dst_pos + n, vec->el + dst_pos, src_pos - dst_pos); isl_seq_cpy(res->el + src_pos + n, vec->el + src_pos + n, res->size - src_pos - n); } else { isl_seq_cpy(res->el, vec->el, src_pos); isl_seq_cpy(res->el + src_pos, vec->el + src_pos + n, dst_pos - src_pos); isl_seq_cpy(res->el + dst_pos, vec->el + src_pos, n); isl_seq_cpy(res->el + dst_pos + n, vec->el + dst_pos + n, res->size - dst_pos - n); } isl_vec_free(vec); return res; } isl-0.16.1/polyhedron_sample.c0000664000175000017500000000162112645737061013214 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_sample.h" #include int main(int argc, char **argv) { struct isl_ctx *ctx = isl_ctx_alloc(); struct isl_basic_set *bset; struct isl_vec *sample; isl_printer *p; bset = isl_basic_set_read_from_file(ctx, stdin); sample = isl_basic_set_sample_vec(isl_basic_set_copy(bset)); p = isl_printer_to_file(ctx, stdout); p = isl_printer_print_vec(p, sample); p = isl_printer_end_line(p); isl_printer_free(p); assert(sample); if (isl_vec_size(sample) > 0) assert(isl_basic_set_contains(bset, sample)); isl_basic_set_free(bset); isl_vec_free(sample); isl_ctx_free(ctx); return 0; } isl-0.16.1/isl_equalities.h0000664000175000017500000000152112645737060012507 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_EQUALITIES_H #define ISL_EQUALITIES_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, __isl_give isl_mat **T2); struct isl_mat *isl_mat_parameter_compression( struct isl_mat *B, struct isl_vec *d); __isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, __isl_take isl_mat *A); struct isl_basic_set *isl_basic_set_remove_equalities( struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2); #if defined(__cplusplus) } #endif #endif isl-0.16.1/polytope_scan.c0000664000175000017500000000454512645737061012357 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_equalities.h" #include #include "isl_scan.h" #include #include /* The input of this program is the same as that of the "polytope_scan" * program from the barvinok distribution. * * Constraints of set is PolyLib format. * * The input set is assumed to be bounded. */ struct scan_samples { struct isl_scan_callback callback; struct isl_mat *samples; }; static isl_stat scan_samples_add_sample(struct isl_scan_callback *cb, __isl_take isl_vec *sample) { struct scan_samples *ss = (struct scan_samples *)cb; ss->samples = isl_mat_extend(ss->samples, ss->samples->n_row + 1, ss->samples->n_col); if (!ss->samples) goto error; isl_seq_cpy(ss->samples->row[ss->samples->n_row - 1], sample->el, sample->size); isl_vec_free(sample); return isl_stat_ok; error: isl_vec_free(sample); return isl_stat_error; } static struct isl_mat *isl_basic_set_scan_samples(struct isl_basic_set *bset) { isl_ctx *ctx; unsigned dim; struct scan_samples ss; ctx = isl_basic_set_get_ctx(bset); dim = isl_basic_set_total_dim(bset); ss.callback.add = scan_samples_add_sample; ss.samples = isl_mat_alloc(ctx, 0, 1 + dim); if (!ss.samples) goto error; if (isl_basic_set_scan(bset, &ss.callback) < 0) { isl_mat_free(ss.samples); return NULL; } return ss.samples; error: isl_basic_set_free(bset); return NULL; } static struct isl_mat *isl_basic_set_samples(struct isl_basic_set *bset) { struct isl_mat *T; struct isl_mat *samples; if (!bset) return NULL; if (bset->n_eq == 0) return isl_basic_set_scan_samples(bset); bset = isl_basic_set_remove_equalities(bset, &T, NULL); samples = isl_basic_set_scan_samples(bset); return isl_mat_product(samples, isl_mat_transpose(T)); } int main(int argc, char **argv) { struct isl_ctx *ctx = isl_ctx_alloc(); struct isl_basic_set *bset; struct isl_mat *samples; bset = isl_basic_set_read_from_file(ctx, stdin); samples = isl_basic_set_samples(bset); isl_mat_print_internal(samples, stdout, 0); isl_mat_free(samples); isl_ctx_free(ctx); return 0; } isl-0.16.1/isl_vertices_private.h0000664000175000017500000000255412645737061013730 00000000000000#include #include #if defined(__cplusplus) extern "C" { #endif struct isl_morph; /* A parametric vertex. "vertex" contains the actual description * of the vertex as a singleton parametric set. "dom" is the projection * of "vertex" onto the parameter space, i.e., the activity domain * of the vertex. */ struct isl_vertex { isl_basic_set *dom; isl_basic_set *vertex; }; /* A chamber in the chamber decomposition. The indices of the "n_vertices" * active vertices are stored in "vertices". */ struct isl_chamber { int n_vertices; int *vertices; isl_basic_set *dom; }; struct isl_vertices { int ref; /* The rational basic set spanned by the vertices. */ isl_basic_set *bset; int n_vertices; struct isl_vertex *v; int n_chambers; struct isl_chamber *c; }; struct isl_cell { int n_vertices; int *ids; isl_vertices *vertices; isl_basic_set *dom; }; struct isl_external_vertex { isl_vertices *vertices; int id; }; int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices, int (*fn)(__isl_take isl_cell *cell, void *user), void *user); int isl_cell_foreach_simplex(__isl_take isl_cell *cell, int (*fn)(__isl_take isl_cell *simplex, void *user), void *user); __isl_give isl_vertices *isl_morph_vertices(__isl_take struct isl_morph *morph, __isl_take isl_vertices *vertices); #if defined(__cplusplus) } #endif isl-0.16.1/test-driver0000755000175000017500000000761112315033215011505 00000000000000#! /bin/sh # test-driver - basic testsuite driver script. scriptversion=2012-06-27.10; # UTC # Copyright (C) 2011-2013 Free Software Foundation, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . # Make unconditional expansion of undefined variables an error. This # helps a lot in preventing typo-related bugs. set -u usage_error () { echo "$0: $*" >&2 print_usage >&2 exit 2 } print_usage () { cat <$log_file 2>&1 estatus=$? if test $enable_hard_errors = no && test $estatus -eq 99; then estatus=1 fi case $estatus:$expect_failure in 0:yes) col=$red res=XPASS recheck=yes gcopy=yes;; 0:*) col=$grn res=PASS recheck=no gcopy=no;; 77:*) col=$blu res=SKIP recheck=no gcopy=yes;; 99:*) col=$mgn res=ERROR recheck=yes gcopy=yes;; *:yes) col=$lgn res=XFAIL recheck=no gcopy=yes;; *:*) col=$red res=FAIL recheck=yes gcopy=yes;; esac # Report outcome to console. echo "${col}${res}${std}: $test_name" # Register the test result, and other relevant metadata. echo ":test-result: $res" > $trs_file echo ":global-test-result: $res" >> $trs_file echo ":recheck: $recheck" >> $trs_file echo ":copy-in-global-log: $gcopy" >> $trs_file # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: isl-0.16.1/config.sub0000755000175000017500000010541212264500076011277 00000000000000#! /bin/sh # Configuration validation subroutine script. # Copyright 1992-2013 Free Software Foundation, Inc. timestamp='2013-10-01' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # Please send patches with a ChangeLog entry to config-patches@gnu.org. # # Configuration subroutine to validate and canonicalize a configuration type. # Supply the specified configuration type as an argument. # If it is invalid, we print an error message on stderr and exit with code 1. # Otherwise, we print the canonical config type on stdout and succeed. # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD # This file is supposed to be the same for all GNU packages # and recognize all the CPU types, system types and aliases # that are meaningful with *any* GNU software. # Each package is responsible for reporting which valid configurations # it does not support. The user should be able to distinguish # a failure to support a valid configuration from a meaningless # configuration. # The goal of this file is to map all the various variations of a given # machine specification into a single specification in the form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM # or in some cases, the newer four-part form: # CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM # It is wrong to echo any other type of specification. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] CPU-MFR-OPSYS $0 [OPTION] ALIAS Canonicalize a configuration name. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.sub ($timestamp) Copyright 1992-2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" exit 1 ;; *local*) # First pass through any local machine types. echo $1 exit ;; * ) break ;; esac done case $# in 0) echo "$me: missing argument$help" >&2 exit 1;; 1) ;; *) echo "$me: too many arguments$help" >&2 exit 1;; esac # Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any). # Here we must recognize all the valid KERNEL-OS combinations. maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'` case $maybe_os in nto-qnx* | linux-gnu* | linux-android* | linux-dietlibc | linux-newlib* | \ linux-musl* | linux-uclibc* | uclinux-uclibc* | uclinux-gnu* | kfreebsd*-gnu* | \ knetbsd*-gnu* | netbsd*-gnu* | \ kopensolaris*-gnu* | \ storm-chaos* | os2-emx* | rtmk-nova*) os=-$maybe_os basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'` ;; android-linux) os=-linux-android basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`-unknown ;; *) basic_machine=`echo $1 | sed 's/-[^-]*$//'` if [ $basic_machine != $1 ] then os=`echo $1 | sed 's/.*-/-/'` else os=; fi ;; esac ### Let's recognize common machines as not being operating systems so ### that things like config.sub decstation-3100 work. We also ### recognize some manufacturers as not being operating systems, so we ### can provide default operating systems below. case $os in -sun*os*) # Prevent following clause from handling this invalid input. ;; -dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \ -att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \ -unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \ -convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\ -c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \ -harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \ -apple | -axis | -knuth | -cray | -microblaze*) os= basic_machine=$1 ;; -bluegene*) os=-cnk ;; -sim | -cisco | -oki | -wec | -winbond) os= basic_machine=$1 ;; -scout) ;; -wrs) os=-vxworks basic_machine=$1 ;; -chorusos*) os=-chorusos basic_machine=$1 ;; -chorusrdb) os=-chorusrdb basic_machine=$1 ;; -hiux*) os=-hiuxwe2 ;; -sco6) os=-sco5v6 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5) os=-sco3.2v5 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco4) os=-sco3.2v4 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2.[4-9]*) os=`echo $os | sed -e 's/sco3.2./sco3.2v/'` basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco3.2v[4-9]*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco5v6*) # Don't forget version if it is 3.2v4 or newer. basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -sco*) os=-sco3.2v2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -udk*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -isc) os=-isc2.2 basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -clix*) basic_machine=clipper-intergraph ;; -isc*) basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'` ;; -lynx*178) os=-lynxos178 ;; -lynx*5) os=-lynxos5 ;; -lynx*) os=-lynxos ;; -ptx*) basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'` ;; -windowsnt*) os=`echo $os | sed -e 's/windowsnt/winnt/'` ;; -psos*) os=-psos ;; -mint | -mint[0-9]*) basic_machine=m68k-atari os=-mint ;; esac # Decode aliases for certain CPU-COMPANY combinations. case $basic_machine in # Recognize the basic CPU types without company name. # Some are omitted here because they have special meanings below. 1750a | 580 \ | a29k \ | aarch64 | aarch64_be \ | alpha | alphaev[4-8] | alphaev56 | alphaev6[78] | alphapca5[67] \ | alpha64 | alpha64ev[4-8] | alpha64ev56 | alpha64ev6[78] | alpha64pca5[67] \ | am33_2.0 \ | arc | arceb \ | arm | arm[bl]e | arme[lb] | armv[2-8] | armv[3-8][lb] | armv7[arm] \ | avr | avr32 \ | be32 | be64 \ | bfin \ | c4x | c8051 | clipper \ | d10v | d30v | dlx | dsp16xx \ | epiphany \ | fido | fr30 | frv \ | h8300 | h8500 | hppa | hppa1.[01] | hppa2.0 | hppa2.0[nw] | hppa64 \ | hexagon \ | i370 | i860 | i960 | ia64 \ | ip2k | iq2000 \ | k1om \ | le32 | le64 \ | lm32 \ | m32c | m32r | m32rle | m68000 | m68k | m88k \ | maxq | mb | microblaze | microblazeel | mcore | mep | metag \ | mips | mipsbe | mipseb | mipsel | mipsle \ | mips16 \ | mips64 | mips64el \ | mips64octeon | mips64octeonel \ | mips64orion | mips64orionel \ | mips64r5900 | mips64r5900el \ | mips64vr | mips64vrel \ | mips64vr4100 | mips64vr4100el \ | mips64vr4300 | mips64vr4300el \ | mips64vr5000 | mips64vr5000el \ | mips64vr5900 | mips64vr5900el \ | mipsisa32 | mipsisa32el \ | mipsisa32r2 | mipsisa32r2el \ | mipsisa64 | mipsisa64el \ | mipsisa64r2 | mipsisa64r2el \ | mipsisa64sb1 | mipsisa64sb1el \ | mipsisa64sr71k | mipsisa64sr71kel \ | mipsr5900 | mipsr5900el \ | mipstx39 | mipstx39el \ | mn10200 | mn10300 \ | moxie \ | mt \ | msp430 \ | nds32 | nds32le | nds32be \ | nios | nios2 | nios2eb | nios2el \ | ns16k | ns32k \ | open8 \ | or1k | or32 \ | pdp10 | pdp11 | pj | pjl \ | powerpc | powerpc64 | powerpc64le | powerpcle \ | pyramid \ | rl78 | rx \ | score \ | sh | sh[1234] | sh[24]a | sh[24]aeb | sh[23]e | sh[34]eb | sheb | shbe | shle | sh[1234]le | sh3ele \ | sh64 | sh64le \ | sparc | sparc64 | sparc64b | sparc64v | sparc86x | sparclet | sparclite \ | sparcv8 | sparcv9 | sparcv9b | sparcv9v \ | spu \ | tahoe | tic4x | tic54x | tic55x | tic6x | tic80 | tron \ | ubicom32 \ | v850 | v850e | v850e1 | v850e2 | v850es | v850e2v3 \ | we32k \ | x86 | xc16x | xstormy16 | xtensa \ | z8k | z80) basic_machine=$basic_machine-unknown ;; c54x) basic_machine=tic54x-unknown ;; c55x) basic_machine=tic55x-unknown ;; c6x) basic_machine=tic6x-unknown ;; m6811 | m68hc11 | m6812 | m68hc12 | m68hcs12x | nvptx | picochip) basic_machine=$basic_machine-unknown os=-none ;; m88110 | m680[12346]0 | m683?2 | m68360 | m5200 | v70 | w65 | z8k) ;; ms1) basic_machine=mt-unknown ;; strongarm | thumb | xscale) basic_machine=arm-unknown ;; xgate) basic_machine=$basic_machine-unknown os=-none ;; xscaleeb) basic_machine=armeb-unknown ;; xscaleel) basic_machine=armel-unknown ;; # We use `pc' rather than `unknown' # because (1) that's what they normally are, and # (2) the word "unknown" tends to confuse beginning users. i*86 | x86_64) basic_machine=$basic_machine-pc ;; # Object if more than one company name word. *-*-*) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; # Recognize the basic CPU types with company name. 580-* \ | a29k-* \ | aarch64-* | aarch64_be-* \ | alpha-* | alphaev[4-8]-* | alphaev56-* | alphaev6[78]-* \ | alpha64-* | alpha64ev[4-8]-* | alpha64ev56-* | alpha64ev6[78]-* \ | alphapca5[67]-* | alpha64pca5[67]-* | arc-* | arceb-* \ | arm-* | armbe-* | armle-* | armeb-* | armv*-* \ | avr-* | avr32-* \ | be32-* | be64-* \ | bfin-* | bs2000-* \ | c[123]* | c30-* | [cjt]90-* | c4x-* \ | c8051-* | clipper-* | craynv-* | cydra-* \ | d10v-* | d30v-* | dlx-* \ | elxsi-* \ | f30[01]-* | f700-* | fido-* | fr30-* | frv-* | fx80-* \ | h8300-* | h8500-* \ | hppa-* | hppa1.[01]-* | hppa2.0-* | hppa2.0[nw]-* | hppa64-* \ | hexagon-* \ | i*86-* | i860-* | i960-* | ia64-* \ | ip2k-* | iq2000-* \ | k1om-* \ | le32-* | le64-* \ | lm32-* \ | m32c-* | m32r-* | m32rle-* \ | m68000-* | m680[012346]0-* | m68360-* | m683?2-* | m68k-* \ | m88110-* | m88k-* | maxq-* | mcore-* | metag-* \ | microblaze-* | microblazeel-* \ | mips-* | mipsbe-* | mipseb-* | mipsel-* | mipsle-* \ | mips16-* \ | mips64-* | mips64el-* \ | mips64octeon-* | mips64octeonel-* \ | mips64orion-* | mips64orionel-* \ | mips64r5900-* | mips64r5900el-* \ | mips64vr-* | mips64vrel-* \ | mips64vr4100-* | mips64vr4100el-* \ | mips64vr4300-* | mips64vr4300el-* \ | mips64vr5000-* | mips64vr5000el-* \ | mips64vr5900-* | mips64vr5900el-* \ | mipsisa32-* | mipsisa32el-* \ | mipsisa32r2-* | mipsisa32r2el-* \ | mipsisa64-* | mipsisa64el-* \ | mipsisa64r2-* | mipsisa64r2el-* \ | mipsisa64sb1-* | mipsisa64sb1el-* \ | mipsisa64sr71k-* | mipsisa64sr71kel-* \ | mipsr5900-* | mipsr5900el-* \ | mipstx39-* | mipstx39el-* \ | mmix-* \ | mt-* \ | msp430-* \ | nds32-* | nds32le-* | nds32be-* \ | nios-* | nios2-* | nios2eb-* | nios2el-* \ | none-* | np1-* | ns16k-* | ns32k-* \ | open8-* \ | orion-* \ | pdp10-* | pdp11-* | pj-* | pjl-* | pn-* | power-* \ | powerpc-* | powerpc64-* | powerpc64le-* | powerpcle-* \ | pyramid-* \ | rl78-* | romp-* | rs6000-* | rx-* \ | sh-* | sh[1234]-* | sh[24]a-* | sh[24]aeb-* | sh[23]e-* | sh[34]eb-* | sheb-* | shbe-* \ | shle-* | sh[1234]le-* | sh3ele-* | sh64-* | sh64le-* \ | sparc-* | sparc64-* | sparc64b-* | sparc64v-* | sparc86x-* | sparclet-* \ | sparclite-* \ | sparcv8-* | sparcv9-* | sparcv9b-* | sparcv9v-* | sv1-* | sx?-* \ | tahoe-* \ | tic30-* | tic4x-* | tic54x-* | tic55x-* | tic6x-* | tic80-* \ | tile*-* \ | tron-* \ | ubicom32-* \ | v850-* | v850e-* | v850e1-* | v850es-* | v850e2-* | v850e2v3-* \ | vax-* \ | we32k-* \ | x86-* | x86_64-* | xc16x-* | xps100-* \ | xstormy16-* | xtensa*-* \ | ymp-* \ | z8k-* | z80-*) ;; # Recognize the basic CPU types without company name, with glob match. xtensa*) basic_machine=$basic_machine-unknown ;; # Recognize the various machine names and aliases which stand # for a CPU type and a company and sometimes even an OS. 386bsd) basic_machine=i386-unknown os=-bsd ;; 3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc) basic_machine=m68000-att ;; 3b*) basic_machine=we32k-att ;; a29khif) basic_machine=a29k-amd os=-udi ;; abacus) basic_machine=abacus-unknown ;; adobe68k) basic_machine=m68010-adobe os=-scout ;; alliant | fx80) basic_machine=fx80-alliant ;; altos | altos3068) basic_machine=m68k-altos ;; am29k) basic_machine=a29k-none os=-bsd ;; amd64) basic_machine=x86_64-pc ;; amd64-*) basic_machine=x86_64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; amdahl) basic_machine=580-amdahl os=-sysv ;; amiga | amiga-*) basic_machine=m68k-unknown ;; amigaos | amigados) basic_machine=m68k-unknown os=-amigaos ;; amigaunix | amix) basic_machine=m68k-unknown os=-sysv4 ;; apollo68) basic_machine=m68k-apollo os=-sysv ;; apollo68bsd) basic_machine=m68k-apollo os=-bsd ;; aros) basic_machine=i386-pc os=-aros ;; aux) basic_machine=m68k-apple os=-aux ;; balance) basic_machine=ns32k-sequent os=-dynix ;; blackfin) basic_machine=bfin-unknown os=-linux ;; blackfin-*) basic_machine=bfin-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; bluegene*) basic_machine=powerpc-ibm os=-cnk ;; c54x-*) basic_machine=tic54x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c55x-*) basic_machine=tic55x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c6x-*) basic_machine=tic6x-`echo $basic_machine | sed 's/^[^-]*-//'` ;; c90) basic_machine=c90-cray os=-unicos ;; cegcc) basic_machine=arm-unknown os=-cegcc ;; convex-c1) basic_machine=c1-convex os=-bsd ;; convex-c2) basic_machine=c2-convex os=-bsd ;; convex-c32) basic_machine=c32-convex os=-bsd ;; convex-c34) basic_machine=c34-convex os=-bsd ;; convex-c38) basic_machine=c38-convex os=-bsd ;; cray | j90) basic_machine=j90-cray os=-unicos ;; craynv) basic_machine=craynv-cray os=-unicosmp ;; cr16 | cr16-*) basic_machine=cr16-unknown os=-elf ;; crds | unos) basic_machine=m68k-crds ;; crisv32 | crisv32-* | etraxfs*) basic_machine=crisv32-axis ;; cris | cris-* | etrax*) basic_machine=cris-axis ;; crx) basic_machine=crx-unknown os=-elf ;; da30 | da30-*) basic_machine=m68k-da30 ;; decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn) basic_machine=mips-dec ;; decsystem10* | dec10*) basic_machine=pdp10-dec os=-tops10 ;; decsystem20* | dec20*) basic_machine=pdp10-dec os=-tops20 ;; delta | 3300 | motorola-3300 | motorola-delta \ | 3300-motorola | delta-motorola) basic_machine=m68k-motorola ;; delta88) basic_machine=m88k-motorola os=-sysv3 ;; dicos) basic_machine=i686-pc os=-dicos ;; djgpp) basic_machine=i586-pc os=-msdosdjgpp ;; dpx20 | dpx20-*) basic_machine=rs6000-bull os=-bosx ;; dpx2* | dpx2*-bull) basic_machine=m68k-bull os=-sysv3 ;; ebmon29k) basic_machine=a29k-amd os=-ebmon ;; elxsi) basic_machine=elxsi-elxsi os=-bsd ;; encore | umax | mmax) basic_machine=ns32k-encore ;; es1800 | OSE68k | ose68k | ose | OSE) basic_machine=m68k-ericsson os=-ose ;; fx2800) basic_machine=i860-alliant ;; genix) basic_machine=ns32k-ns ;; gmicro) basic_machine=tron-gmicro os=-sysv ;; go32) basic_machine=i386-pc os=-go32 ;; h3050r* | hiux*) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; h8300hms) basic_machine=h8300-hitachi os=-hms ;; h8300xray) basic_machine=h8300-hitachi os=-xray ;; h8500hms) basic_machine=h8500-hitachi os=-hms ;; harris) basic_machine=m88k-harris os=-sysv3 ;; hp300-*) basic_machine=m68k-hp ;; hp300bsd) basic_machine=m68k-hp os=-bsd ;; hp300hpux) basic_machine=m68k-hp os=-hpux ;; hp3k9[0-9][0-9] | hp9[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k2[0-9][0-9] | hp9k31[0-9]) basic_machine=m68000-hp ;; hp9k3[2-9][0-9]) basic_machine=m68k-hp ;; hp9k6[0-9][0-9] | hp6[0-9][0-9]) basic_machine=hppa1.0-hp ;; hp9k7[0-79][0-9] | hp7[0-79][0-9]) basic_machine=hppa1.1-hp ;; hp9k78[0-9] | hp78[0-9]) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[67]1 | hp8[67]1 | hp9k80[24] | hp80[24] | hp9k8[78]9 | hp8[78]9 | hp9k893 | hp893) # FIXME: really hppa2.0-hp basic_machine=hppa1.1-hp ;; hp9k8[0-9][13679] | hp8[0-9][13679]) basic_machine=hppa1.1-hp ;; hp9k8[0-9][0-9] | hp8[0-9][0-9]) basic_machine=hppa1.0-hp ;; hppa-next) os=-nextstep3 ;; hppaosf) basic_machine=hppa1.1-hp os=-osf ;; hppro) basic_machine=hppa1.1-hp os=-proelf ;; i370-ibm* | ibm*) basic_machine=i370-ibm ;; i*86v32) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv32 ;; i*86v4*) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv4 ;; i*86v) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-sysv ;; i*86sol2) basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'` os=-solaris2 ;; i386mach) basic_machine=i386-mach os=-mach ;; i386-vsta | vsta) basic_machine=i386-unknown os=-vsta ;; iris | iris4d) basic_machine=mips-sgi case $os in -irix*) ;; *) os=-irix4 ;; esac ;; isi68 | isi) basic_machine=m68k-isi os=-sysv ;; m68knommu) basic_machine=m68k-unknown os=-linux ;; m68knommu-*) basic_machine=m68k-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; m88k-omron*) basic_machine=m88k-omron ;; magnum | m3230) basic_machine=mips-mips os=-sysv ;; merlin) basic_machine=ns32k-utek os=-sysv ;; microblaze*) basic_machine=microblaze-xilinx ;; mingw64) basic_machine=x86_64-pc os=-mingw64 ;; mingw32) basic_machine=i686-pc os=-mingw32 ;; mingw32ce) basic_machine=arm-unknown os=-mingw32ce ;; miniframe) basic_machine=m68000-convergent ;; *mint | -mint[0-9]* | *MiNT | *MiNT[0-9]*) basic_machine=m68k-atari os=-mint ;; mips3*-*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'` ;; mips3*) basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown ;; monitor) basic_machine=m68k-rom68k os=-coff ;; morphos) basic_machine=powerpc-unknown os=-morphos ;; msdos) basic_machine=i386-pc os=-msdos ;; ms1-*) basic_machine=`echo $basic_machine | sed -e 's/ms1-/mt-/'` ;; msys) basic_machine=i686-pc os=-msys ;; mvs) basic_machine=i370-ibm os=-mvs ;; nacl) basic_machine=le32-unknown os=-nacl ;; ncr3000) basic_machine=i486-ncr os=-sysv4 ;; netbsd386) basic_machine=i386-unknown os=-netbsd ;; netwinder) basic_machine=armv4l-rebel os=-linux ;; news | news700 | news800 | news900) basic_machine=m68k-sony os=-newsos ;; news1000) basic_machine=m68030-sony os=-newsos ;; news-3600 | risc-news) basic_machine=mips-sony os=-newsos ;; necv70) basic_machine=v70-nec os=-sysv ;; next | m*-next ) basic_machine=m68k-next case $os in -nextstep* ) ;; -ns2*) os=-nextstep2 ;; *) os=-nextstep3 ;; esac ;; nh3000) basic_machine=m68k-harris os=-cxux ;; nh[45]000) basic_machine=m88k-harris os=-cxux ;; nindy960) basic_machine=i960-intel os=-nindy ;; mon960) basic_machine=i960-intel os=-mon960 ;; nonstopux) basic_machine=mips-compaq os=-nonstopux ;; np1) basic_machine=np1-gould ;; neo-tandem) basic_machine=neo-tandem ;; nse-tandem) basic_machine=nse-tandem ;; nsr-tandem) basic_machine=nsr-tandem ;; op50n-* | op60c-*) basic_machine=hppa1.1-oki os=-proelf ;; openrisc | openrisc-*) basic_machine=or32-unknown ;; os400) basic_machine=powerpc-ibm os=-os400 ;; OSE68000 | ose68000) basic_machine=m68000-ericsson os=-ose ;; os68k) basic_machine=m68k-none os=-os68k ;; pa-hitachi) basic_machine=hppa1.1-hitachi os=-hiuxwe2 ;; paragon) basic_machine=i860-intel os=-osf ;; parisc) basic_machine=hppa-unknown os=-linux ;; parisc-*) basic_machine=hppa-`echo $basic_machine | sed 's/^[^-]*-//'` os=-linux ;; pbd) basic_machine=sparc-tti ;; pbb) basic_machine=m68k-tti ;; pc532 | pc532-*) basic_machine=ns32k-pc532 ;; pc98) basic_machine=i386-pc ;; pc98-*) basic_machine=i386-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium | p5 | k5 | k6 | nexgen | viac3) basic_machine=i586-pc ;; pentiumpro | p6 | 6x86 | athlon | athlon_*) basic_machine=i686-pc ;; pentiumii | pentium2 | pentiumiii | pentium3) basic_machine=i686-pc ;; pentium4) basic_machine=i786-pc ;; pentium-* | p5-* | k5-* | k6-* | nexgen-* | viac3-*) basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumpro-* | p6-* | 6x86-* | athlon-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentiumii-* | pentium2-* | pentiumiii-* | pentium3-*) basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pentium4-*) basic_machine=i786-`echo $basic_machine | sed 's/^[^-]*-//'` ;; pn) basic_machine=pn-gould ;; power) basic_machine=power-ibm ;; ppc | ppcbe) basic_machine=powerpc-unknown ;; ppc-* | ppcbe-*) basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppcle | powerpclittle | ppc-le | powerpc-little) basic_machine=powerpcle-unknown ;; ppcle-* | powerpclittle-*) basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64) basic_machine=powerpc64-unknown ;; ppc64-*) basic_machine=powerpc64-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ppc64le | powerpc64little | ppc64-le | powerpc64-little) basic_machine=powerpc64le-unknown ;; ppc64le-* | powerpc64little-*) basic_machine=powerpc64le-`echo $basic_machine | sed 's/^[^-]*-//'` ;; ps2) basic_machine=i386-ibm ;; pw32) basic_machine=i586-unknown os=-pw32 ;; rdos | rdos64) basic_machine=x86_64-pc os=-rdos ;; rdos32) basic_machine=i386-pc os=-rdos ;; rom68k) basic_machine=m68k-rom68k os=-coff ;; rm[46]00) basic_machine=mips-siemens ;; rtpc | rtpc-*) basic_machine=romp-ibm ;; s390 | s390-*) basic_machine=s390-ibm ;; s390x | s390x-*) basic_machine=s390x-ibm ;; sa29200) basic_machine=a29k-amd os=-udi ;; sb1) basic_machine=mipsisa64sb1-unknown ;; sb1el) basic_machine=mipsisa64sb1el-unknown ;; sde) basic_machine=mipsisa32-sde os=-elf ;; sei) basic_machine=mips-sei os=-seiux ;; sequent) basic_machine=i386-sequent ;; sh) basic_machine=sh-hitachi os=-hms ;; sh5el) basic_machine=sh5le-unknown ;; sh64) basic_machine=sh64-unknown ;; sparclite-wrs | simso-wrs) basic_machine=sparclite-wrs os=-vxworks ;; sps7) basic_machine=m68k-bull os=-sysv2 ;; spur) basic_machine=spur-unknown ;; st2000) basic_machine=m68k-tandem ;; stratus) basic_machine=i860-stratus os=-sysv4 ;; strongarm-* | thumb-*) basic_machine=arm-`echo $basic_machine | sed 's/^[^-]*-//'` ;; sun2) basic_machine=m68000-sun ;; sun2os3) basic_machine=m68000-sun os=-sunos3 ;; sun2os4) basic_machine=m68000-sun os=-sunos4 ;; sun3os3) basic_machine=m68k-sun os=-sunos3 ;; sun3os4) basic_machine=m68k-sun os=-sunos4 ;; sun4os3) basic_machine=sparc-sun os=-sunos3 ;; sun4os4) basic_machine=sparc-sun os=-sunos4 ;; sun4sol2) basic_machine=sparc-sun os=-solaris2 ;; sun3 | sun3-*) basic_machine=m68k-sun ;; sun4) basic_machine=sparc-sun ;; sun386 | sun386i | roadrunner) basic_machine=i386-sun ;; sv1) basic_machine=sv1-cray os=-unicos ;; symmetry) basic_machine=i386-sequent os=-dynix ;; t3e) basic_machine=alphaev5-cray os=-unicos ;; t90) basic_machine=t90-cray os=-unicos ;; tile*) basic_machine=$basic_machine-unknown os=-linux-gnu ;; tx39) basic_machine=mipstx39-unknown ;; tx39el) basic_machine=mipstx39el-unknown ;; toad1) basic_machine=pdp10-xkl os=-tops20 ;; tower | tower-32) basic_machine=m68k-ncr ;; tpf) basic_machine=s390x-ibm os=-tpf ;; udi29k) basic_machine=a29k-amd os=-udi ;; ultra3) basic_machine=a29k-nyu os=-sym1 ;; v810 | necv810) basic_machine=v810-nec os=-none ;; vaxv) basic_machine=vax-dec os=-sysv ;; vms) basic_machine=vax-dec os=-vms ;; vpp*|vx|vx-*) basic_machine=f301-fujitsu ;; vxworks960) basic_machine=i960-wrs os=-vxworks ;; vxworks68) basic_machine=m68k-wrs os=-vxworks ;; vxworks29k) basic_machine=a29k-wrs os=-vxworks ;; w65*) basic_machine=w65-wdc os=-none ;; w89k-*) basic_machine=hppa1.1-winbond os=-proelf ;; xbox) basic_machine=i686-pc os=-mingw32 ;; xps | xps100) basic_machine=xps100-honeywell ;; xscale-* | xscalee[bl]-*) basic_machine=`echo $basic_machine | sed 's/^xscale/arm/'` ;; ymp) basic_machine=ymp-cray os=-unicos ;; z8k-*-coff) basic_machine=z8k-unknown os=-sim ;; z80-*-coff) basic_machine=z80-unknown os=-sim ;; none) basic_machine=none-none os=-none ;; # Here we handle the default manufacturer of certain CPU types. It is in # some cases the only manufacturer, in others, it is the most popular. w89k) basic_machine=hppa1.1-winbond ;; op50n) basic_machine=hppa1.1-oki ;; op60c) basic_machine=hppa1.1-oki ;; romp) basic_machine=romp-ibm ;; mmix) basic_machine=mmix-knuth ;; rs6000) basic_machine=rs6000-ibm ;; vax) basic_machine=vax-dec ;; pdp10) # there are many clones, so DEC is not a safe bet basic_machine=pdp10-unknown ;; pdp11) basic_machine=pdp11-dec ;; we32k) basic_machine=we32k-att ;; sh[1234] | sh[24]a | sh[24]aeb | sh[34]eb | sh[1234]le | sh[23]ele) basic_machine=sh-unknown ;; sparc | sparcv8 | sparcv9 | sparcv9b | sparcv9v) basic_machine=sparc-sun ;; cydra) basic_machine=cydra-cydrome ;; orion) basic_machine=orion-highlevel ;; orion105) basic_machine=clipper-highlevel ;; mac | mpw | mac-mpw) basic_machine=m68k-apple ;; pmac | pmac-mpw) basic_machine=powerpc-apple ;; *-unknown) # Make sure to match an already-canonicalized machine name. ;; *) echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2 exit 1 ;; esac # Here we canonicalize certain aliases for manufacturers. case $basic_machine in *-digital*) basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'` ;; *-commodore*) basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'` ;; *) ;; esac # Decode manufacturer-specific aliases for certain operating systems. if [ x"$os" != x"" ] then case $os in # First match some system type aliases # that might get confused with valid system types. # -solaris* is a basic system type, with this one exception. -auroraux) os=-auroraux ;; -solaris1 | -solaris1.*) os=`echo $os | sed -e 's|solaris1|sunos4|'` ;; -solaris) os=-solaris2 ;; -svr4*) os=-sysv4 ;; -unixware*) os=-sysv4.2uw ;; -gnu/linux*) os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'` ;; # First accept the basic system types. # The portable systems comes first. # Each alternative MUST END IN A *, to match a version number. # -sysv* is not here because it comes later, after sysvr4. -gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \ | -*vms* | -sco* | -esix* | -isc* | -aix* | -cnk* | -sunos | -sunos[34]*\ | -hpux* | -unos* | -osf* | -luna* | -dgux* | -auroraux* | -solaris* \ | -sym* | -kopensolaris* | -plan9* \ | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \ | -aos* | -aros* \ | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \ | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \ | -hiux* | -386bsd* | -knetbsd* | -mirbsd* | -netbsd* \ | -bitrig* | -openbsd* | -solidbsd* \ | -ekkobsd* | -kfreebsd* | -freebsd* | -riscix* | -lynxos* \ | -bosx* | -nextstep* | -cxux* | -aout* | -elf* | -oabi* \ | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \ | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \ | -chorusos* | -chorusrdb* | -cegcc* \ | -cygwin* | -msys* | -pe* | -psos* | -moss* | -proelf* | -rtems* \ | -mingw32* | -mingw64* | -linux-gnu* | -linux-android* \ | -linux-newlib* | -linux-musl* | -linux-uclibc* \ | -uxpv* | -beos* | -mpeix* | -udk* \ | -interix* | -uwin* | -mks* | -rhapsody* | -darwin* | -opened* \ | -openstep* | -oskit* | -conix* | -pw32* | -nonstopux* \ | -storm-chaos* | -tops10* | -tenex* | -tops20* | -its* \ | -os2* | -vos* | -palmos* | -uclinux* | -nucleus* \ | -morphos* | -superux* | -rtmk* | -rtmk-nova* | -windiss* \ | -powermax* | -dnix* | -nx6 | -nx7 | -sei* | -dragonfly* \ | -skyos* | -haiku* | -rdos* | -toppers* | -drops* | -es*) # Remember, each alternative MUST END IN *, to match a version number. ;; -qnx*) case $basic_machine in x86-* | i*86-*) ;; *) os=-nto$os ;; esac ;; -nto-qnx*) ;; -nto*) os=`echo $os | sed -e 's|nto|nto-qnx|'` ;; -sim | -es1800* | -hms* | -xray | -os68k* | -none* | -v88r* \ | -windows* | -osx | -abug | -netware* | -os9* | -beos* | -haiku* \ | -macos* | -mpw* | -magic* | -mmixware* | -mon960* | -lnews*) ;; -mac*) os=`echo $os | sed -e 's|mac|macos|'` ;; -linux-dietlibc) os=-linux-dietlibc ;; -linux*) os=`echo $os | sed -e 's|linux|linux-gnu|'` ;; -sunos5*) os=`echo $os | sed -e 's|sunos5|solaris2|'` ;; -sunos6*) os=`echo $os | sed -e 's|sunos6|solaris3|'` ;; -opened*) os=-openedition ;; -os400*) os=-os400 ;; -wince*) os=-wince ;; -osfrose*) os=-osfrose ;; -osf*) os=-osf ;; -utek*) os=-bsd ;; -dynix*) os=-bsd ;; -acis*) os=-aos ;; -atheos*) os=-atheos ;; -syllable*) os=-syllable ;; -386bsd) os=-bsd ;; -ctix* | -uts*) os=-sysv ;; -nova*) os=-rtmk-nova ;; -ns2 ) os=-nextstep2 ;; -nsk*) os=-nsk ;; # Preserve the version number of sinix5. -sinix5.*) os=`echo $os | sed -e 's|sinix|sysv|'` ;; -sinix*) os=-sysv4 ;; -tpf*) os=-tpf ;; -triton*) os=-sysv3 ;; -oss*) os=-sysv3 ;; -svr4) os=-sysv4 ;; -svr3) os=-sysv3 ;; -sysvr4) os=-sysv4 ;; # This must come after -sysvr4. -sysv*) ;; -ose*) os=-ose ;; -es1800*) os=-ose ;; -xenix) os=-xenix ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) os=-mint ;; -aros*) os=-aros ;; -zvmoe) os=-zvmoe ;; -dicos*) os=-dicos ;; -nacl*) ;; -none) ;; *) # Get rid of the `-' at the beginning of $os. os=`echo $os | sed 's/[^-]*-//'` echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2 exit 1 ;; esac else # Here we handle the default operating systems that come with various machines. # The value should be what the vendor currently ships out the door with their # machine or put another way, the most popular os provided with the machine. # Note that if you're going to try to match "-MANUFACTURER" here (say, # "-sun"), then you have to tell the case statement up towards the top # that MANUFACTURER isn't an operating system. Otherwise, code above # will signal an error saying that MANUFACTURER isn't an operating # system, and we'll never get to this point. case $basic_machine in score-*) os=-elf ;; spu-*) os=-elf ;; *-acorn) os=-riscix1.2 ;; arm*-rebel) os=-linux ;; arm*-semi) os=-aout ;; c4x-* | tic4x-*) os=-coff ;; c8051-*) os=-elf ;; hexagon-*) os=-elf ;; tic54x-*) os=-coff ;; tic55x-*) os=-coff ;; tic6x-*) os=-coff ;; # This must come before the *-dec entry. pdp10-*) os=-tops20 ;; pdp11-*) os=-none ;; *-dec | vax-*) os=-ultrix4.2 ;; m68*-apollo) os=-domain ;; i386-sun) os=-sunos4.0.2 ;; m68000-sun) os=-sunos3 ;; m68*-cisco) os=-aout ;; mep-*) os=-elf ;; mips*-cisco) os=-elf ;; mips*-*) os=-elf ;; or1k-*) os=-elf ;; or32-*) os=-coff ;; *-tti) # must be before sparc entry or we get the wrong os. os=-sysv3 ;; sparc-* | *-sun) os=-sunos4.1.1 ;; *-be) os=-beos ;; *-haiku) os=-haiku ;; *-ibm) os=-aix ;; *-knuth) os=-mmixware ;; *-wec) os=-proelf ;; *-winbond) os=-proelf ;; *-oki) os=-proelf ;; *-hp) os=-hpux ;; *-hitachi) os=-hiux ;; i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent) os=-sysv ;; *-cbm) os=-amigaos ;; *-dg) os=-dgux ;; *-dolphin) os=-sysv3 ;; m68k-ccur) os=-rtu ;; m88k-omron*) os=-luna ;; *-next ) os=-nextstep ;; *-sequent) os=-ptx ;; *-crds) os=-unos ;; *-ns) os=-genix ;; i370-*) os=-mvs ;; *-next) os=-nextstep3 ;; *-gould) os=-sysv ;; *-highlevel) os=-bsd ;; *-encore) os=-bsd ;; *-sgi) os=-irix ;; *-siemens) os=-sysv4 ;; *-masscomp) os=-rtu ;; f30[01]-fujitsu | f700-fujitsu) os=-uxpv ;; *-rom68k) os=-coff ;; *-*bug) os=-coff ;; *-apple) os=-macos ;; *-atari*) os=-mint ;; *) os=-none ;; esac fi # Here we handle the case where we know the os, and the CPU type, but not the # manufacturer. We pick the logical manufacturer. vendor=unknown case $basic_machine in *-unknown) case $os in -riscix*) vendor=acorn ;; -sunos*) vendor=sun ;; -cnk*|-aix*) vendor=ibm ;; -beos*) vendor=be ;; -hpux*) vendor=hp ;; -mpeix*) vendor=hp ;; -hiux*) vendor=hitachi ;; -unos*) vendor=crds ;; -dgux*) vendor=dg ;; -luna*) vendor=omron ;; -genix*) vendor=ns ;; -mvs* | -opened*) vendor=ibm ;; -os400*) vendor=ibm ;; -ptx*) vendor=sequent ;; -tpf*) vendor=ibm ;; -vxsim* | -vxworks* | -windiss*) vendor=wrs ;; -aux*) vendor=apple ;; -hms*) vendor=hitachi ;; -mpw* | -macos*) vendor=apple ;; -*mint | -mint[0-9]* | -*MiNT | -MiNT[0-9]*) vendor=atari ;; -vos*) vendor=stratus ;; esac basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"` ;; esac echo $basic_machine$os exit # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: isl-0.16.1/isl_power_templ.c0000664000175000017500000000342212645737061012675 00000000000000#include #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) /* Compute the given non-zero power of "map" and return the result. * If the exponent "exp" is negative, then the -exp th power of the inverse * relation is computed. */ __isl_give TYPE *FN(TYPE,fixed_power)(__isl_take TYPE *map, isl_int exp) { isl_ctx *ctx; TYPE *res = NULL; isl_int r; if (!map) return NULL; ctx = FN(TYPE,get_ctx)(map); if (isl_int_is_zero(exp)) isl_die(ctx, isl_error_invalid, "expecting non-zero exponent", goto error); if (isl_int_is_neg(exp)) { isl_int_neg(exp, exp); map = FN(TYPE,reverse)(map); return FN(TYPE,fixed_power)(map, exp); } isl_int_init(r); for (;;) { isl_int_fdiv_r(r, exp, ctx->two); if (!isl_int_is_zero(r)) { if (!res) res = FN(TYPE,copy)(map); else { res = FN(TYPE,apply_range)(res, FN(TYPE,copy)(map)); res = FN(TYPE,coalesce)(res); } if (!res) break; } isl_int_fdiv_q(exp, exp, ctx->two); if (isl_int_is_zero(exp)) break; map = FN(TYPE,apply_range)(map, FN(TYPE,copy)(map)); map = FN(TYPE,coalesce)(map); } isl_int_clear(r); FN(TYPE,free)(map); return res; error: FN(TYPE,free)(map); return NULL; } /* Compute the given non-zero power of "map" and return the result. * If the exponent "exp" is negative, then the -exp th power of the inverse * relation is computed. */ __isl_give TYPE *FN(TYPE,fixed_power_val)(__isl_take TYPE *map, __isl_take isl_val *exp) { if (!map || !exp) goto error; if (!isl_val_is_int(exp)) isl_die(FN(TYPE,get_ctx)(map), isl_error_invalid, "expecting integer exponent", goto error); map = FN(TYPE,fixed_power)(map, exp->n); isl_val_free(exp); return map; error: FN(TYPE,free)(map); isl_val_free(exp); return NULL; } isl-0.16.1/isl_schedule_read.c0000664000175000017500000004522312645737061013134 00000000000000#include #include #include #include #include /* An enumeration of the various keys that may appear in a YAML mapping * of a schedule. */ enum isl_schedule_key { isl_schedule_key_error = -1, isl_schedule_key_child, isl_schedule_key_coincident, isl_schedule_key_context, isl_schedule_key_contraction, isl_schedule_key_domain, isl_schedule_key_expansion, isl_schedule_key_extension, isl_schedule_key_filter, isl_schedule_key_guard, isl_schedule_key_leaf, isl_schedule_key_mark, isl_schedule_key_options, isl_schedule_key_permutable, isl_schedule_key_schedule, isl_schedule_key_sequence, isl_schedule_key_set }; /* Extract a mapping key from the token "tok". * Return isl_schedule_key_error on error, i.e., if "tok" does not * correspond to any known key. */ static enum isl_schedule_key extract_key(__isl_keep isl_stream *s, struct isl_token *tok) { int type; char *name; enum isl_schedule_key key; isl_ctx *ctx; ctx = isl_stream_get_ctx(s); type = isl_token_get_type(tok); if (type != ISL_TOKEN_IDENT && type != ISL_TOKEN_STRING) { isl_stream_error(s, tok, "expecting key"); return isl_schedule_key_error; } name = isl_token_get_str(ctx, tok); if (!strcmp(name, "child")) key = isl_schedule_key_child; else if (!strcmp(name, "coincident")) key = isl_schedule_key_coincident; else if (!strcmp(name, "context")) key = isl_schedule_key_context; else if (!strcmp(name, "contraction")) key = isl_schedule_key_contraction; else if (!strcmp(name, "domain")) key = isl_schedule_key_domain; else if (!strcmp(name, "expansion")) key = isl_schedule_key_expansion; else if (!strcmp(name, "extension")) key = isl_schedule_key_extension; else if (!strcmp(name, "filter")) key = isl_schedule_key_filter; else if (!strcmp(name, "guard")) key = isl_schedule_key_guard; else if (!strcmp(name, "leaf")) key = isl_schedule_key_leaf; else if (!strcmp(name, "mark")) key = isl_schedule_key_mark; else if (!strcmp(name, "options")) key = isl_schedule_key_options; else if (!strcmp(name, "schedule")) key = isl_schedule_key_schedule; else if (!strcmp(name, "sequence")) key = isl_schedule_key_sequence; else if (!strcmp(name, "set")) key = isl_schedule_key_set; else if (!strcmp(name, "permutable")) key = isl_schedule_key_permutable; else isl_die(ctx, isl_error_invalid, "unknown key", key = isl_schedule_key_error); free(name); return key; } /* Read a key from "s" and return the corresponding enum. * Return isl_schedule_key_error on error, i.e., if the first token * on the stream does not correspond to any known key. */ static enum isl_schedule_key get_key(__isl_keep isl_stream *s) { struct isl_token *tok; enum isl_schedule_key key; tok = isl_stream_next_token(s); key = extract_key(s, tok); isl_token_free(tok); return key; } static __isl_give isl_schedule_tree *isl_stream_read_schedule_tree( __isl_keep isl_stream *s); /* Read a subtree with context root node from "s". */ static __isl_give isl_schedule_tree *read_context(__isl_keep isl_stream *s) { isl_set *context = NULL; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); context = isl_set_read_from_str(ctx, str); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { tree = isl_schedule_tree_from_context(context); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_context(tree, context); } return tree; error: isl_set_free(context); return NULL; } /* Read a subtree with domain root node from "s". */ static __isl_give isl_schedule_tree *read_domain(__isl_keep isl_stream *s) { isl_union_set *domain = NULL; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); domain = isl_union_set_read_from_str(ctx, str); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { tree = isl_schedule_tree_from_domain(domain); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_domain(tree, domain); } return tree; error: isl_union_set_free(domain); return NULL; } /* Read a subtree with expansion root node from "s". */ static __isl_give isl_schedule_tree *read_expansion(isl_stream *s) { isl_ctx *ctx; isl_union_pw_multi_aff *contraction = NULL; isl_union_map *expansion = NULL; isl_schedule_tree *tree = NULL; int more; ctx = isl_stream_get_ctx(s); do { struct isl_token *tok; enum isl_schedule_key key; char *str; key = get_key(s); if (isl_stream_yaml_next(s) < 0) goto error; switch (key) { case isl_schedule_key_contraction: isl_union_pw_multi_aff_free(contraction); tok = isl_stream_next_token(s); str = isl_token_get_str(ctx, tok); contraction = isl_union_pw_multi_aff_read_from_str(ctx, str); free(str); isl_token_free(tok); if (!contraction) goto error; break; case isl_schedule_key_expansion: isl_union_map_free(expansion); tok = isl_stream_next_token(s); str = isl_token_get_str(ctx, tok); expansion = isl_union_map_read_from_str(ctx, str); free(str); isl_token_free(tok); if (!expansion) goto error; break; case isl_schedule_key_child: isl_schedule_tree_free(tree); tree = isl_stream_read_schedule_tree(s); if (!tree) goto error; break; default: isl_die(ctx, isl_error_invalid, "unexpected key", goto error); } } while ((more = isl_stream_yaml_next(s)) > 0); if (more < 0) goto error; if (!contraction) isl_die(ctx, isl_error_invalid, "missing contraction", goto error); if (!expansion) isl_die(ctx, isl_error_invalid, "missing expansion", goto error); if (!tree) return isl_schedule_tree_from_expansion(contraction, expansion); return isl_schedule_tree_insert_expansion(tree, contraction, expansion); error: isl_schedule_tree_free(tree); isl_union_pw_multi_aff_free(contraction); isl_union_map_free(expansion); return NULL; } /* Read a subtree with extension root node from "s". */ static __isl_give isl_schedule_tree *read_extension(isl_stream *s) { isl_union_map *extension = NULL; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); extension = isl_union_map_read_from_str(ctx, str); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { tree = isl_schedule_tree_from_extension(extension); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_extension(tree, extension); } return tree; error: isl_union_map_free(extension); return NULL; } /* Read a subtree with filter root node from "s". */ static __isl_give isl_schedule_tree *read_filter(__isl_keep isl_stream *s) { isl_union_set *filter = NULL; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); filter = isl_union_set_read_from_str(ctx, str); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { tree = isl_schedule_tree_from_filter(filter); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_filter(tree, filter); } return tree; error: isl_union_set_free(filter); return NULL; } /* Read a subtree with guard root node from "s". */ static __isl_give isl_schedule_tree *read_guard(isl_stream *s) { isl_set *guard = NULL; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); guard = isl_set_read_from_str(ctx, str); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { tree = isl_schedule_tree_from_guard(guard); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_guard(tree, guard); } return tree; error: isl_set_free(guard); return NULL; } /* Read a subtree with mark root node from "s". */ static __isl_give isl_schedule_tree *read_mark(isl_stream *s) { isl_id *mark; isl_schedule_tree *tree; isl_ctx *ctx; struct isl_token *tok; enum isl_schedule_key key; char *str; int more; ctx = isl_stream_get_ctx(s); key = get_key(s); if (isl_stream_yaml_next(s) < 0) return NULL; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } str = isl_token_get_str(ctx, tok); mark = isl_id_alloc(ctx, str, NULL); free(str); isl_token_free(tok); more = isl_stream_yaml_next(s); if (more < 0) goto error; if (!more) { isl_die(ctx, isl_error_invalid, "expecting child", goto error); } else { key = get_key(s); if (key != isl_schedule_key_child) isl_die(ctx, isl_error_invalid, "expecting child", goto error); if (isl_stream_yaml_next(s) < 0) goto error; tree = isl_stream_read_schedule_tree(s); tree = isl_schedule_tree_insert_mark(tree, mark); } return tree; error: isl_id_free(mark); return NULL; } /* Read a sequence of integers from "s" (representing the coincident * property of a band node). */ static __isl_give isl_val_list *read_coincident(__isl_keep isl_stream *s) { isl_ctx *ctx; isl_val_list *list; int more; ctx = isl_stream_get_ctx(s); if (isl_stream_yaml_read_start_sequence(s) < 0) return NULL; list = isl_val_list_alloc(ctx, 0); while ((more = isl_stream_yaml_next(s)) > 0) { isl_val *val; val = isl_stream_read_val(s); list = isl_val_list_add(list, val); } if (more < 0 || isl_stream_yaml_read_end_sequence(s)) list = isl_val_list_free(list); return list; } /* Set the (initial) coincident properties of "band" according to * the (initial) elements of "coincident". */ static __isl_give isl_schedule_band *set_coincident( __isl_take isl_schedule_band *band, __isl_take isl_val_list *coincident) { int i; int n, m; n = isl_schedule_band_n_member(band); m = isl_val_list_n_val(coincident); for (i = 0; i < n && i < m; ++i) { isl_val *v; v = isl_val_list_get_val(coincident, i); if (!v) band = isl_schedule_band_free(band); band = isl_schedule_band_member_set_coincident(band, i, !isl_val_is_zero(v)); isl_val_free(v); } isl_val_list_free(coincident); return band; } /* Read a subtree with band root node from "s". */ static __isl_give isl_schedule_tree *read_band(isl_stream *s) { isl_multi_union_pw_aff *schedule = NULL; isl_schedule_tree *tree = NULL; isl_val_list *coincident = NULL; isl_union_set *options = NULL; isl_ctx *ctx; isl_schedule_band *band; int permutable = 0; int more; ctx = isl_stream_get_ctx(s); do { struct isl_token *tok; enum isl_schedule_key key; char *str; isl_val *v; key = get_key(s); if (isl_stream_yaml_next(s) < 0) goto error; switch (key) { case isl_schedule_key_schedule: isl_multi_union_pw_aff_free(schedule); tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } str = isl_token_get_str(ctx, tok); schedule = isl_multi_union_pw_aff_read_from_str(ctx, str); free(str); isl_token_free(tok); if (!schedule) goto error; break; case isl_schedule_key_coincident: coincident = read_coincident(s); if (!coincident) goto error; break; case isl_schedule_key_permutable: v = isl_stream_read_val(s); permutable = !isl_val_is_zero(v); isl_val_free(v); break; case isl_schedule_key_options: isl_union_set_free(options); tok = isl_stream_next_token(s); str = isl_token_get_str(ctx, tok); options = isl_union_set_read_from_str(ctx, str); free(str); isl_token_free(tok); if (!options) goto error; break; case isl_schedule_key_child: isl_schedule_tree_free(tree); tree = isl_stream_read_schedule_tree(s); if (!tree) goto error; break; default: isl_die(ctx, isl_error_invalid, "unexpected key", goto error); } } while ((more = isl_stream_yaml_next(s)) > 0); if (more < 0) goto error; if (!schedule) isl_die(ctx, isl_error_invalid, "missing schedule", goto error); band = isl_schedule_band_from_multi_union_pw_aff(schedule); band = isl_schedule_band_set_permutable(band, permutable); if (coincident) band = set_coincident(band, coincident); if (options) band = isl_schedule_band_set_ast_build_options(band, options); if (tree) tree = isl_schedule_tree_insert_band(tree, band); else tree = isl_schedule_tree_from_band(band); return tree; error: isl_val_list_free(coincident); isl_union_set_free(options); isl_schedule_tree_free(tree); isl_multi_union_pw_aff_free(schedule); return NULL; } /* Read a subtree with root node of type "type" from "s". * The node is represented by a sequence of children. */ static __isl_give isl_schedule_tree *read_children(isl_stream *s, enum isl_schedule_node_type type) { isl_ctx *ctx; isl_schedule_tree_list *list; int more; ctx = isl_stream_get_ctx(s); isl_token_free(isl_stream_next_token(s)); if (isl_stream_yaml_next(s) < 0) return NULL; if (isl_stream_yaml_read_start_sequence(s)) return NULL; list = isl_schedule_tree_list_alloc(ctx, 0); while ((more = isl_stream_yaml_next(s)) > 0) { isl_schedule_tree *tree; tree = isl_stream_read_schedule_tree(s); list = isl_schedule_tree_list_add(list, tree); } if (more < 0 || isl_stream_yaml_read_end_sequence(s)) list = isl_schedule_tree_list_free(list); return isl_schedule_tree_from_children(type, list); } /* Read a subtree with sequence root node from "s". */ static __isl_give isl_schedule_tree *read_sequence(isl_stream *s) { return read_children(s, isl_schedule_node_sequence); } /* Read a subtree with set root node from "s". */ static __isl_give isl_schedule_tree *read_set(isl_stream *s) { return read_children(s, isl_schedule_node_set); } /* Read a schedule (sub)tree from "s". * * We first determine the type of the root node based on the first * mapping key and then hand over to a function tailored to reading * nodes of this type. */ static __isl_give isl_schedule_tree *isl_stream_read_schedule_tree( struct isl_stream *s) { enum isl_schedule_key key; struct isl_token *tok; isl_schedule_tree *tree = NULL; int more; if (isl_stream_yaml_read_start_mapping(s)) return NULL; more = isl_stream_yaml_next(s); if (more < 0) return NULL; if (!more) { isl_stream_error(s, NULL, "missing key"); return NULL; } tok = isl_stream_next_token(s); key = extract_key(s, tok); isl_stream_push_token(s, tok); if (key < 0) return NULL; switch (key) { case isl_schedule_key_context: tree = read_context(s); break; case isl_schedule_key_domain: tree = read_domain(s); break; case isl_schedule_key_contraction: case isl_schedule_key_expansion: tree = read_expansion(s); break; case isl_schedule_key_extension: tree = read_extension(s); break; case isl_schedule_key_filter: tree = read_filter(s); break; case isl_schedule_key_guard: tree = read_guard(s); break; case isl_schedule_key_leaf: isl_token_free(isl_stream_next_token(s)); tree = isl_schedule_tree_leaf(isl_stream_get_ctx(s)); break; case isl_schedule_key_mark: tree = read_mark(s); break; case isl_schedule_key_sequence: tree = read_sequence(s); break; case isl_schedule_key_set: tree = read_set(s); break; case isl_schedule_key_schedule: case isl_schedule_key_coincident: case isl_schedule_key_options: case isl_schedule_key_permutable: tree = read_band(s); break; case isl_schedule_key_child: isl_die(isl_stream_get_ctx(s), isl_error_unsupported, "cannot identity node type", return NULL); case isl_schedule_key_error: return NULL; } if (isl_stream_yaml_read_end_mapping(s) < 0) { isl_stream_error(s, NULL, "unexpected extra elements"); return isl_schedule_tree_free(tree); } return tree; } /* Read an isl_schedule from "s". */ __isl_give isl_schedule *isl_stream_read_schedule(isl_stream *s) { isl_ctx *ctx; isl_schedule_tree *tree; if (!s) return NULL; ctx = isl_stream_get_ctx(s); tree = isl_stream_read_schedule_tree(s); return isl_schedule_from_schedule_tree(ctx, tree); } /* Read an isl_schedule from "input". */ __isl_give isl_schedule *isl_schedule_read_from_file(isl_ctx *ctx, FILE *input) { struct isl_stream *s; isl_schedule *schedule; s = isl_stream_new_file(ctx, input); if (!s) return NULL; schedule = isl_stream_read_schedule(s); isl_stream_free(s); return schedule; } /* Read an isl_schedule from "str". */ __isl_give isl_schedule *isl_schedule_read_from_str(isl_ctx *ctx, const char *str) { struct isl_stream *s; isl_schedule *schedule; s = isl_stream_new_str(ctx, str); if (!s) return NULL; schedule = isl_stream_read_schedule(s); isl_stream_free(s); return schedule; } isl-0.16.1/isl_farkas.c0000664000175000017500000002466412645737060011621 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include #include /* * Let C be a cone and define * * C' := { y | forall x in C : y x >= 0 } * * C' contains the coefficients of all linear constraints * that are valid for C. * Furthermore, C'' = C. * * If C is defined as { x | A x >= 0 } * then any element in C' must be a non-negative combination * of the rows of A, i.e., y = t A with t >= 0. That is, * * C' = { y | exists t >= 0 : y = t A } * * If any of the rows in A actually represents an equality, then * also negative combinations of this row are allowed and so the * non-negativity constraint on the corresponding element of t * can be dropped. * * A polyhedron P = { x | b + A x >= 0 } can be represented * in homogeneous coordinates by the cone * C = { [z,x] | b z + A x >= and z >= 0 } * The valid linear constraints on C correspond to the valid affine * constraints on P. * This is essentially Farkas' lemma. * * Since * [ 1 0 ] * [ w y ] = [t_0 t] [ b A ] * * we have * * C' = { w, y | exists t_0, t >= 0 : y = t A and w = t_0 + t b } * or * * C' = { w, y | exists t >= 0 : y = t A and w - t b >= 0 } * * In practice, we introduce an extra variable (w), shifting all * other variables to the right, and an extra inequality * (w - t b >= 0) corresponding to the positivity constraint on * the homogeneous coordinate. * * When going back from coefficients to solutions, we immediately * plug in 1 for z, which corresponds to shifting all variables * to the left, with the leftmost ending up in the constant position. */ /* Add the given prefix to all named isl_dim_set dimensions in "dim". */ static __isl_give isl_space *isl_space_prefix(__isl_take isl_space *dim, const char *prefix) { int i; isl_ctx *ctx; unsigned nvar; size_t prefix_len = strlen(prefix); if (!dim) return NULL; ctx = isl_space_get_ctx(dim); nvar = isl_space_dim(dim, isl_dim_set); for (i = 0; i < nvar; ++i) { const char *name; char *prefix_name; name = isl_space_get_dim_name(dim, isl_dim_set, i); if (!name) continue; prefix_name = isl_alloc_array(ctx, char, prefix_len + strlen(name) + 1); if (!prefix_name) goto error; memcpy(prefix_name, prefix, prefix_len); strcpy(prefix_name + prefix_len, name); dim = isl_space_set_dim_name(dim, isl_dim_set, i, prefix_name); free(prefix_name); } return dim; error: isl_space_free(dim); return NULL; } /* Given a dimension specification of the solutions space, construct * a dimension specification for the space of coefficients. * * In particular transform * * [params] -> { S } * * to * * { coefficients[[cst, params] -> S] } * * and prefix each dimension name with "c_". */ static __isl_give isl_space *isl_space_coefficients(__isl_take isl_space *dim) { isl_space *dim_param; unsigned nvar; unsigned nparam; nvar = isl_space_dim(dim, isl_dim_set); nparam = isl_space_dim(dim, isl_dim_param); dim_param = isl_space_copy(dim); dim_param = isl_space_drop_dims(dim_param, isl_dim_set, 0, nvar); dim_param = isl_space_move_dims(dim_param, isl_dim_set, 0, isl_dim_param, 0, nparam); dim_param = isl_space_prefix(dim_param, "c_"); dim_param = isl_space_insert_dims(dim_param, isl_dim_set, 0, 1); dim_param = isl_space_set_dim_name(dim_param, isl_dim_set, 0, "c_cst"); dim = isl_space_drop_dims(dim, isl_dim_param, 0, nparam); dim = isl_space_prefix(dim, "c_"); dim = isl_space_join(isl_space_from_domain(dim_param), isl_space_from_range(dim)); dim = isl_space_wrap(dim); dim = isl_space_set_tuple_name(dim, isl_dim_set, "coefficients"); return dim; } /* Drop the given prefix from all named dimensions of type "type" in "dim". */ static __isl_give isl_space *isl_space_unprefix(__isl_take isl_space *dim, enum isl_dim_type type, const char *prefix) { int i; unsigned n; size_t prefix_len = strlen(prefix); n = isl_space_dim(dim, type); for (i = 0; i < n; ++i) { const char *name; name = isl_space_get_dim_name(dim, type, i); if (!name) continue; if (strncmp(name, prefix, prefix_len)) continue; dim = isl_space_set_dim_name(dim, type, i, name + prefix_len); } return dim; } /* Given a dimension specification of the space of coefficients, construct * a dimension specification for the space of solutions. * * In particular transform * * { coefficients[[cst, params] -> S] } * * to * * [params] -> { S } * * and drop the "c_" prefix from the dimension names. */ static __isl_give isl_space *isl_space_solutions(__isl_take isl_space *dim) { unsigned nparam; dim = isl_space_unwrap(dim); dim = isl_space_drop_dims(dim, isl_dim_in, 0, 1); dim = isl_space_unprefix(dim, isl_dim_in, "c_"); dim = isl_space_unprefix(dim, isl_dim_out, "c_"); nparam = isl_space_dim(dim, isl_dim_in); dim = isl_space_move_dims(dim, isl_dim_param, 0, isl_dim_in, 0, nparam); dim = isl_space_range(dim); return dim; } /* Return the rational universe basic set in the given space. */ static __isl_give isl_basic_set *rational_universe(__isl_take isl_space *space) { isl_basic_set *bset; bset = isl_basic_set_universe(space); bset = isl_basic_set_set_rational(bset); return bset; } /* Compute the dual of "bset" by applying Farkas' lemma. * As explained above, we add an extra dimension to represent * the coefficient of the constant term when going from solutions * to coefficients (shift == 1) and we drop the extra dimension when going * in the opposite direction (shift == -1). "dim" is the space in which * the dual should be created. * * If "bset" is (obviously) empty, then the way this emptiness * is represented by the constraints does not allow for the application * of the standard farkas algorithm. We therefore handle this case * specifically and return the universe basic set. */ static __isl_give isl_basic_set *farkas(__isl_take isl_space *space, __isl_take isl_basic_set *bset, int shift) { int i, j, k; isl_basic_set *dual = NULL; unsigned total; if (isl_basic_set_plain_is_empty(bset)) { isl_basic_set_free(bset); return rational_universe(space); } total = isl_basic_set_total_dim(bset); dual = isl_basic_set_alloc_space(space, bset->n_eq + bset->n_ineq, total, bset->n_ineq + (shift > 0)); dual = isl_basic_set_set_rational(dual); for (i = 0; i < bset->n_eq + bset->n_ineq; ++i) { k = isl_basic_set_alloc_div(dual); if (k < 0) goto error; isl_int_set_si(dual->div[k][0], 0); } for (i = 0; i < total; ++i) { k = isl_basic_set_alloc_equality(dual); if (k < 0) goto error; isl_seq_clr(dual->eq[k], 1 + shift + total); isl_int_set_si(dual->eq[k][1 + shift + i], -1); for (j = 0; j < bset->n_eq; ++j) isl_int_set(dual->eq[k][1 + shift + total + j], bset->eq[j][1 + i]); for (j = 0; j < bset->n_ineq; ++j) isl_int_set(dual->eq[k][1 + shift + total + bset->n_eq + j], bset->ineq[j][1 + i]); } for (i = 0; i < bset->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(dual); if (k < 0) goto error; isl_seq_clr(dual->ineq[k], 1 + shift + total + bset->n_eq + bset->n_ineq); isl_int_set_si(dual->ineq[k][1 + shift + total + bset->n_eq + i], 1); } if (shift > 0) { k = isl_basic_set_alloc_inequality(dual); if (k < 0) goto error; isl_seq_clr(dual->ineq[k], 2 + total); isl_int_set_si(dual->ineq[k][1], 1); for (j = 0; j < bset->n_eq; ++j) isl_int_neg(dual->ineq[k][2 + total + j], bset->eq[j][0]); for (j = 0; j < bset->n_ineq; ++j) isl_int_neg(dual->ineq[k][2 + total + bset->n_eq + j], bset->ineq[j][0]); } dual = isl_basic_set_remove_divs(dual); isl_basic_set_simplify(dual); isl_basic_set_finalize(dual); isl_basic_set_free(bset); return dual; error: isl_basic_set_free(bset); isl_basic_set_free(dual); return NULL; } /* Construct a basic set containing the tuples of coefficients of all * valid affine constraints on the given basic set. */ __isl_give isl_basic_set *isl_basic_set_coefficients( __isl_take isl_basic_set *bset) { isl_space *dim; if (!bset) return NULL; if (bset->n_div) isl_die(bset->ctx, isl_error_invalid, "input set not allowed to have local variables", goto error); dim = isl_basic_set_get_space(bset); dim = isl_space_coefficients(dim); return farkas(dim, bset, 1); error: isl_basic_set_free(bset); return NULL; } /* Construct a basic set containing the elements that satisfy all * affine constraints whose coefficient tuples are * contained in the given basic set. */ __isl_give isl_basic_set *isl_basic_set_solutions( __isl_take isl_basic_set *bset) { isl_space *dim; if (!bset) return NULL; if (bset->n_div) isl_die(bset->ctx, isl_error_invalid, "input set not allowed to have local variables", goto error); dim = isl_basic_set_get_space(bset); dim = isl_space_solutions(dim); return farkas(dim, bset, -1); error: isl_basic_set_free(bset); return NULL; } /* Construct a basic set containing the tuples of coefficients of all * valid affine constraints on the given set. */ __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set) { int i; isl_basic_set *coeff; if (!set) return NULL; if (set->n == 0) { isl_space *space = isl_set_get_space(set); space = isl_space_coefficients(space); isl_set_free(set); return rational_universe(space); } coeff = isl_basic_set_coefficients(isl_basic_set_copy(set->p[0])); for (i = 1; i < set->n; ++i) { isl_basic_set *bset, *coeff_i; bset = isl_basic_set_copy(set->p[i]); coeff_i = isl_basic_set_coefficients(bset); coeff = isl_basic_set_intersect(coeff, coeff_i); } isl_set_free(set); return coeff; } /* Construct a basic set containing the elements that satisfy all * affine constraints whose coefficient tuples are * contained in the given set. */ __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set) { int i; isl_basic_set *sol; if (!set) return NULL; if (set->n == 0) { isl_space *space = isl_set_get_space(set); space = isl_space_solutions(space); isl_set_free(set); return rational_universe(space); } sol = isl_basic_set_solutions(isl_basic_set_copy(set->p[0])); for (i = 1; i < set->n; ++i) { isl_basic_set *bset, *sol_i; bset = isl_basic_set_copy(set->p[i]); sol_i = isl_basic_set_solutions(bset); sol = isl_basic_set_intersect(sol, sol_i); } isl_set_free(set); return sol; } isl-0.16.1/isl_vec_private.h0000664000175000017500000000072112645737061012653 00000000000000#ifndef ISL_VEC_PRIVATE_H #define ISL_VEC_PRIVATE_H #include #include struct isl_vec { int ref; struct isl_ctx *ctx; unsigned size; isl_int *el; struct isl_blk block; }; __isl_give isl_vec *isl_vec_cow(__isl_take isl_vec *vec); void isl_vec_lcm(struct isl_vec *vec, isl_int *lcm); int isl_vec_get_element(__isl_keep isl_vec *vec, int pos, isl_int *v); __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec, isl_int v); #endif isl-0.16.1/isl_aff_private.h0000664000175000017500000001143712645737060012637 00000000000000#ifndef ISL_AFF_PRIVATE_H #define ISL_AFF_PRIVATE_H #include #include #include #include #include #include /* ls represents the domain space. * * If the first two elements of "v" (the denominator and the constant term) * are zero, then the isl_aff represents NaN. */ struct isl_aff { int ref; isl_local_space *ls; isl_vec *v; }; #undef EL #define EL isl_aff #include struct isl_pw_aff_piece { struct isl_set *set; struct isl_aff *aff; }; struct isl_pw_aff { int ref; isl_space *dim; int n; size_t size; struct isl_pw_aff_piece p[1]; }; #undef EL #define EL isl_pw_aff #include struct isl_pw_multi_aff_piece { isl_set *set; isl_multi_aff *maff; }; struct isl_pw_multi_aff { int ref; isl_space *dim; int n; size_t size; struct isl_pw_multi_aff_piece p[1]; }; __isl_give isl_aff *isl_aff_alloc_vec(__isl_take isl_local_space *ls, __isl_take isl_vec *v); __isl_give isl_aff *isl_aff_alloc(__isl_take isl_local_space *ls); __isl_give isl_aff *isl_aff_reset_space_and_domain(__isl_take isl_aff *aff, __isl_take isl_space *space, __isl_take isl_space *domain); __isl_give isl_aff *isl_aff_reset_domain_space(__isl_take isl_aff *aff, __isl_take isl_space *dim); __isl_give isl_aff *isl_aff_realign_domain(__isl_take isl_aff *aff, __isl_take isl_reordering *r); int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v); __isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_normalize(__isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_expand_divs( __isl_take isl_aff *aff, __isl_take isl_mat *div, int *exp); __isl_give isl_pw_aff *isl_pw_aff_alloc_size(__isl_take isl_space *space, int n); __isl_give isl_pw_aff *isl_pw_aff_reset_space(__isl_take isl_pw_aff *pwaff, __isl_take isl_space *dim); __isl_give isl_pw_aff *isl_pw_aff_reset_domain_space( __isl_take isl_pw_aff *pwaff, __isl_take isl_space *space); __isl_give isl_pw_aff *isl_pw_aff_add_disjoint( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2, int max); __isl_give isl_pw_aff *isl_pw_aff_set_rational(__isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff_list *isl_pw_aff_list_set_rational( __isl_take isl_pw_aff_list *list); __isl_give isl_pw_aff *isl_pw_aff_scale(__isl_take isl_pw_aff *pwaff, isl_int f); __isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff, isl_int f); int isl_aff_matching_params(__isl_keep isl_aff *aff, __isl_keep isl_space *space); int isl_aff_check_match_domain_space(__isl_keep isl_aff *aff, __isl_keep isl_space *space); #undef BASE #define BASE aff #include __isl_give isl_multi_aff *isl_multi_aff_dup(__isl_keep isl_multi_aff *multi); __isl_give isl_multi_aff *isl_multi_aff_align_divs( __isl_take isl_multi_aff *maff); __isl_give isl_multi_aff *isl_multi_aff_from_basic_set_equalities( __isl_take isl_basic_set *bset); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_domain_space( __isl_take isl_pw_multi_aff *pwmaff, __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_space( __isl_take isl_pw_multi_aff *pwmaff, __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add_disjoint( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_out( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned first, unsigned n); void isl_seq_substitute(isl_int *p, int pos, isl_int *subs, int p_len, int subs_len, isl_int v); void isl_seq_preimage(isl_int *dst, isl_int *src, __isl_keep isl_multi_aff *ma, int n_before, int n_after, int n_div_ma, int n_div_bmap, isl_int f, isl_int c1, isl_int c2, isl_int g, int has_denom); __isl_give isl_aff *isl_aff_substitute_equalities(__isl_take isl_aff *aff, __isl_take isl_basic_set *eq); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_substitute( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos, __isl_keep isl_pw_aff *subs); int isl_pw_aff_matching_params(__isl_keep isl_pw_aff *pa, __isl_keep isl_space *space); int isl_pw_aff_check_match_domain_space(__isl_keep isl_pw_aff *pa, __isl_keep isl_space *space); #undef BASE #define BASE pw_aff #include #undef EL #define EL isl_union_pw_aff #include #undef BASE #define BASE union_pw_aff #include #undef EL #define EL isl_union_pw_multi_aff #include #endif isl-0.16.1/isl_map_subtract.c0000664000175000017500000005441512645737061013034 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include "isl_tab.h" #include #include /* Expand the constraint "c" into "v". The initial "dim" dimensions * are the same, but "v" may have more divs than "c" and the divs of "c" * may appear in different positions in "v". * The number of divs in "c" is given by "n_div" and the mapping * of divs in "c" to divs in "v" is given by "div_map". * * Although it shouldn't happen in practice, it is theoretically * possible that two or more divs in "c" are mapped to the same div in "v". * These divs are then necessarily the same, so we simply add their * coefficients. */ static void expand_constraint(isl_vec *v, unsigned dim, isl_int *c, int *div_map, unsigned n_div) { int i; isl_seq_cpy(v->el, c, 1 + dim); isl_seq_clr(v->el + 1 + dim, v->size - (1 + dim)); for (i = 0; i < n_div; ++i) { int pos = 1 + dim + div_map[i]; isl_int_add(v->el[pos], v->el[pos], c[1 + dim + i]); } } /* Add all constraints of bmap to tab. The equalities of bmap * are added as a pair of inequalities. */ static int tab_add_constraints(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int *div_map) { int i; unsigned dim; unsigned tab_total; unsigned bmap_total; isl_vec *v; if (!tab || !bmap) return -1; tab_total = isl_basic_map_total_dim(tab->bmap); bmap_total = isl_basic_map_total_dim(bmap); dim = isl_space_dim(tab->bmap->dim, isl_dim_all); if (isl_tab_extend_cons(tab, 2 * bmap->n_eq + bmap->n_ineq) < 0) return -1; v = isl_vec_alloc(bmap->ctx, 1 + tab_total); if (!v) return -1; for (i = 0; i < bmap->n_eq; ++i) { expand_constraint(v, dim, bmap->eq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; isl_seq_neg(bmap->eq[i], bmap->eq[i], 1 + bmap_total); expand_constraint(v, dim, bmap->eq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; isl_seq_neg(bmap->eq[i], bmap->eq[i], 1 + bmap_total); if (tab->empty) break; } for (i = 0; i < bmap->n_ineq; ++i) { expand_constraint(v, dim, bmap->ineq[i], div_map, bmap->n_div); if (isl_tab_add_ineq(tab, v->el) < 0) goto error; if (tab->empty) break; } isl_vec_free(v); return 0; error: isl_vec_free(v); return -1; } /* Add a specific constraint of bmap (or its opposite) to tab. * The position of the constraint is specified by "c", where * the equalities of bmap are counted twice, once for the inequality * that is equal to the equality, and once for its negation. */ static int tab_add_constraint(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int *div_map, int c, int oppose) { unsigned dim; unsigned tab_total; unsigned bmap_total; isl_vec *v; int r; if (!tab || !bmap) return -1; tab_total = isl_basic_map_total_dim(tab->bmap); bmap_total = isl_basic_map_total_dim(bmap); dim = isl_space_dim(tab->bmap->dim, isl_dim_all); v = isl_vec_alloc(bmap->ctx, 1 + tab_total); if (!v) return -1; if (c < 2 * bmap->n_eq) { if ((c % 2) != oppose) isl_seq_neg(bmap->eq[c/2], bmap->eq[c/2], 1 + bmap_total); if (oppose) isl_int_sub_ui(bmap->eq[c/2][0], bmap->eq[c/2][0], 1); expand_constraint(v, dim, bmap->eq[c/2], div_map, bmap->n_div); r = isl_tab_add_ineq(tab, v->el); if (oppose) isl_int_add_ui(bmap->eq[c/2][0], bmap->eq[c/2][0], 1); if ((c % 2) != oppose) isl_seq_neg(bmap->eq[c/2], bmap->eq[c/2], 1 + bmap_total); } else { c -= 2 * bmap->n_eq; if (oppose) { isl_seq_neg(bmap->ineq[c], bmap->ineq[c], 1 + bmap_total); isl_int_sub_ui(bmap->ineq[c][0], bmap->ineq[c][0], 1); } expand_constraint(v, dim, bmap->ineq[c], div_map, bmap->n_div); r = isl_tab_add_ineq(tab, v->el); if (oppose) { isl_int_add_ui(bmap->ineq[c][0], bmap->ineq[c][0], 1); isl_seq_neg(bmap->ineq[c], bmap->ineq[c], 1 + bmap_total); } } isl_vec_free(v); return r; } static int tab_add_divs(struct isl_tab *tab, __isl_keep isl_basic_map *bmap, int **div_map) { int i, j; struct isl_vec *vec; unsigned total; unsigned dim; if (!bmap) return -1; if (!bmap->n_div) return 0; if (!*div_map) *div_map = isl_alloc_array(bmap->ctx, int, bmap->n_div); if (!*div_map) return -1; total = isl_basic_map_total_dim(tab->bmap); dim = total - tab->bmap->n_div; vec = isl_vec_alloc(bmap->ctx, 2 + total + bmap->n_div); if (!vec) return -1; for (i = 0; i < bmap->n_div; ++i) { isl_seq_cpy(vec->el, bmap->div[i], 2 + dim); isl_seq_clr(vec->el + 2 + dim, tab->bmap->n_div); for (j = 0; j < i; ++j) isl_int_set(vec->el[2 + dim + (*div_map)[j]], bmap->div[i][2 + dim + j]); for (j = 0; j < tab->bmap->n_div; ++j) if (isl_seq_eq(tab->bmap->div[j], vec->el, 2 + dim + tab->bmap->n_div)) break; (*div_map)[i] = j; if (j == tab->bmap->n_div) { vec->size = 2 + dim + tab->bmap->n_div; if (isl_tab_add_div(tab, vec, NULL, NULL) < 0) goto error; } } isl_vec_free(vec); return 0; error: isl_vec_free(vec); return -1; } /* Freeze all constraints of tableau tab. */ static int tab_freeze_constraints(struct isl_tab *tab) { int i; for (i = 0; i < tab->n_con; ++i) if (isl_tab_freeze_constraint(tab, i) < 0) return -1; return 0; } /* Check for redundant constraints starting at offset. * Put the indices of the redundant constraints in index * and return the number of redundant constraints. */ static int n_non_redundant(isl_ctx *ctx, struct isl_tab *tab, int offset, int **index) { int i, n; int n_test = tab->n_con - offset; if (isl_tab_detect_redundant(tab) < 0) return -1; if (n_test == 0) return 0; if (!*index) *index = isl_alloc_array(ctx, int, n_test); if (!*index) return -1; for (n = 0, i = 0; i < n_test; ++i) { int r; r = isl_tab_is_redundant(tab, offset + i); if (r < 0) return -1; if (r) continue; (*index)[n++] = i; } return n; } /* basic_map_collect_diff calls add on each of the pieces of * the set difference between bmap and map until the add method * return a negative value. */ struct isl_diff_collector { int (*add)(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap); }; /* Compute the set difference between bmap and map and call * dc->add on each of the piece until this function returns * a negative value. * Return 0 on success and -1 on error. dc->add returning * a negative value is treated as an error, but the calling * function can interpret the results based on the state of dc. * * Assumes that map has known divs. * * The difference is computed by a backtracking algorithm. * Each level corresponds to a basic map in "map". * When a node in entered for the first time, we check * if the corresonding basic map intersects the current piece * of "bmap". If not, we move to the next level. * Otherwise, we split the current piece into as many * pieces as there are non-redundant constraints of the current * basic map in the intersection. Each of these pieces is * handled by a child of the current node. * In particular, if there are n non-redundant constraints, * then for each 0 <= i < n, a piece is cut off by adding * constraints 0 <= j < i and adding the opposite of constraint i. * If there are no non-redundant constraints, meaning that the current * piece is a subset of the current basic map, then we simply backtrack. * * In the leaves, we check if the remaining piece has any integer points * and if so, pass it along to dc->add. As a special case, if nothing * has been removed when we end up in a leaf, we simply pass along * the original basic map. */ static isl_stat basic_map_collect_diff(__isl_take isl_basic_map *bmap, __isl_take isl_map *map, struct isl_diff_collector *dc) { int i; int modified; int level; int init; isl_bool empty; isl_ctx *ctx; struct isl_tab *tab = NULL; struct isl_tab_undo **snap = NULL; int *k = NULL; int *n = NULL; int **index = NULL; int **div_map = NULL; empty = isl_basic_map_is_empty(bmap); if (empty) { isl_basic_map_free(bmap); isl_map_free(map); return empty < 0 ? isl_stat_error : isl_stat_ok; } bmap = isl_basic_map_cow(bmap); map = isl_map_cow(map); if (!bmap || !map) goto error; ctx = map->ctx; snap = isl_alloc_array(map->ctx, struct isl_tab_undo *, map->n); k = isl_alloc_array(map->ctx, int, map->n); n = isl_alloc_array(map->ctx, int, map->n); index = isl_calloc_array(map->ctx, int *, map->n); div_map = isl_calloc_array(map->ctx, int *, map->n); if (!snap || !k || !n || !index || !div_map) goto error; bmap = isl_basic_map_order_divs(bmap); map = isl_map_order_divs(map); tab = isl_tab_from_basic_map(bmap, 1); if (!tab) goto error; modified = 0; level = 0; init = 1; while (level >= 0) { if (level >= map->n) { int empty; struct isl_basic_map *bm; if (!modified) { if (dc->add(dc, isl_basic_map_copy(bmap)) < 0) goto error; break; } bm = isl_basic_map_copy(tab->bmap); bm = isl_basic_map_cow(bm); bm = isl_basic_map_update_from_tab(bm, tab); bm = isl_basic_map_simplify(bm); bm = isl_basic_map_finalize(bm); empty = isl_basic_map_is_empty(bm); if (empty) isl_basic_map_free(bm); else if (dc->add(dc, bm) < 0) goto error; if (empty < 0) goto error; level--; init = 0; continue; } if (init) { int offset; struct isl_tab_undo *snap2; snap2 = isl_tab_snap(tab); if (tab_add_divs(tab, map->p[level], &div_map[level]) < 0) goto error; offset = tab->n_con; snap[level] = isl_tab_snap(tab); if (tab_freeze_constraints(tab) < 0) goto error; if (tab_add_constraints(tab, map->p[level], div_map[level]) < 0) goto error; k[level] = 0; n[level] = 0; if (tab->empty) { if (isl_tab_rollback(tab, snap2) < 0) goto error; level++; continue; } modified = 1; n[level] = n_non_redundant(ctx, tab, offset, &index[level]); if (n[level] < 0) goto error; if (n[level] == 0) { level--; init = 0; continue; } if (isl_tab_rollback(tab, snap[level]) < 0) goto error; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][0], 1) < 0) goto error; level++; continue; } else { if (k[level] + 1 >= n[level]) { level--; continue; } if (isl_tab_rollback(tab, snap[level]) < 0) goto error; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][k[level]], 0) < 0) goto error; snap[level] = isl_tab_snap(tab); k[level]++; if (tab_add_constraint(tab, map->p[level], div_map[level], index[level][k[level]], 1) < 0) goto error; level++; init = 1; continue; } } isl_tab_free(tab); free(snap); free(n); free(k); for (i = 0; index && i < map->n; ++i) free(index[i]); free(index); for (i = 0; div_map && i < map->n; ++i) free(div_map[i]); free(div_map); isl_basic_map_free(bmap); isl_map_free(map); return isl_stat_ok; error: isl_tab_free(tab); free(snap); free(n); free(k); for (i = 0; index && i < map->n; ++i) free(index[i]); free(index); for (i = 0; div_map && i < map->n; ++i) free(div_map[i]); free(div_map); isl_basic_map_free(bmap); isl_map_free(map); return isl_stat_error; } /* A diff collector that actually collects all parts of the * set difference in the field diff. */ struct isl_subtract_diff_collector { struct isl_diff_collector dc; struct isl_map *diff; }; /* isl_subtract_diff_collector callback. */ static int basic_map_subtract_add(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap) { struct isl_subtract_diff_collector *sdc; sdc = (struct isl_subtract_diff_collector *)dc; sdc->diff = isl_map_union_disjoint(sdc->diff, isl_map_from_basic_map(bmap)); return sdc->diff ? 0 : -1; } /* Return the set difference between bmap and map. */ static __isl_give isl_map *basic_map_subtract(__isl_take isl_basic_map *bmap, __isl_take isl_map *map) { struct isl_subtract_diff_collector sdc; sdc.dc.add = &basic_map_subtract_add; sdc.diff = isl_map_empty(isl_basic_map_get_space(bmap)); if (basic_map_collect_diff(bmap, map, &sdc.dc) < 0) { isl_map_free(sdc.diff); sdc.diff = NULL; } return sdc.diff; } /* Return an empty map living in the same space as "map1" and "map2". */ static __isl_give isl_map *replace_pair_by_empty( __isl_take isl_map *map1, __isl_take isl_map *map2) { isl_space *space; space = isl_map_get_space(map1); isl_map_free(map1); isl_map_free(map2); return isl_map_empty(space); } /* Return the set difference between map1 and map2. * (U_i A_i) \ (U_j B_j) is computed as U_i (A_i \ (U_j B_j)) * * If "map1" and "map2" are obviously equal to each other, * then return an empty map in the same space. * * If "map1" and "map2" are disjoint, then simply return "map1". */ static __isl_give isl_map *map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2) { int i; int equal, disjoint; struct isl_map *diff; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); equal = isl_map_plain_is_equal(map1, map2); if (equal < 0) goto error; if (equal) return replace_pair_by_empty(map1, map2); disjoint = isl_map_is_disjoint(map1, map2); if (disjoint < 0) goto error; if (disjoint) { isl_map_free(map2); return map1; } map1 = isl_map_compute_divs(map1); map2 = isl_map_compute_divs(map2); if (!map1 || !map2) goto error; map1 = isl_map_remove_empty_parts(map1); map2 = isl_map_remove_empty_parts(map2); diff = isl_map_empty(isl_map_get_space(map1)); for (i = 0; i < map1->n; ++i) { struct isl_map *d; d = basic_map_subtract(isl_basic_map_copy(map1->p[i]), isl_map_copy(map2)); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT)) diff = isl_map_union_disjoint(diff, d); else diff = isl_map_union(diff, d); } isl_map_free(map1); isl_map_free(map2); return diff; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_subtract); } struct isl_set *isl_set_subtract(struct isl_set *set1, struct isl_set *set2) { return (struct isl_set *) isl_map_subtract( (struct isl_map *)set1, (struct isl_map *)set2); } /* Remove the elements of "dom" from the domain of "map". */ static __isl_give isl_map *map_subtract_domain(__isl_take isl_map *map, __isl_take isl_set *dom) { isl_map *ext_dom; if (!isl_map_compatible_domain(map, dom)) isl_die(isl_set_get_ctx(dom), isl_error_invalid, "incompatible spaces", goto error); ext_dom = isl_map_universe(isl_map_get_space(map)); ext_dom = isl_map_intersect_domain(ext_dom, dom); return isl_map_subtract(map, ext_dom); error: isl_map_free(map); isl_set_free(dom); return NULL; } __isl_give isl_map *isl_map_subtract_domain(__isl_take isl_map *map, __isl_take isl_set *dom) { return isl_map_align_params_map_map_and(map, dom, &map_subtract_domain); } /* Remove the elements of "dom" from the range of "map". */ static __isl_give isl_map *map_subtract_range(__isl_take isl_map *map, __isl_take isl_set *dom) { isl_map *ext_dom; if (!isl_map_compatible_range(map, dom)) isl_die(isl_set_get_ctx(dom), isl_error_invalid, "incompatible spaces", goto error); ext_dom = isl_map_universe(isl_map_get_space(map)); ext_dom = isl_map_intersect_range(ext_dom, dom); return isl_map_subtract(map, ext_dom); error: isl_map_free(map); isl_set_free(dom); return NULL; } __isl_give isl_map *isl_map_subtract_range(__isl_take isl_map *map, __isl_take isl_set *dom) { return isl_map_align_params_map_map_and(map, dom, &map_subtract_range); } /* A diff collector that aborts as soon as its add function is called, * setting empty to 0. */ struct isl_is_empty_diff_collector { struct isl_diff_collector dc; isl_bool empty; }; /* isl_is_empty_diff_collector callback. */ static int basic_map_is_empty_add(struct isl_diff_collector *dc, __isl_take isl_basic_map *bmap) { struct isl_is_empty_diff_collector *edc; edc = (struct isl_is_empty_diff_collector *)dc; edc->empty = 0; isl_basic_map_free(bmap); return -1; } /* Check if bmap \ map is empty by computing this set difference * and breaking off as soon as the difference is known to be non-empty. */ static isl_bool basic_map_diff_is_empty(__isl_keep isl_basic_map *bmap, __isl_keep isl_map *map) { isl_bool empty; isl_stat r; struct isl_is_empty_diff_collector edc; empty = isl_basic_map_plain_is_empty(bmap); if (empty) return empty; edc.dc.add = &basic_map_is_empty_add; edc.empty = isl_bool_true; r = basic_map_collect_diff(isl_basic_map_copy(bmap), isl_map_copy(map), &edc.dc); if (!edc.empty) return isl_bool_false; return r < 0 ? isl_bool_error : isl_bool_true; } /* Check if map1 \ map2 is empty by checking if the set difference is empty * for each of the basic maps in map1. */ static isl_bool map_diff_is_empty(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; isl_bool is_empty = isl_bool_true; if (!map1 || !map2) return isl_bool_error; for (i = 0; i < map1->n; ++i) { is_empty = basic_map_diff_is_empty(map1->p[i], map2); if (is_empty < 0 || !is_empty) break; } return is_empty; } /* Return 1 if "bmap" contains a single element. */ int isl_basic_map_plain_is_singleton(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; if (bmap->n_div) return 0; if (bmap->n_ineq) return 0; return bmap->n_eq == isl_basic_map_total_dim(bmap); } /* Return 1 if "map" contains a single element. */ int isl_map_plain_is_singleton(__isl_keep isl_map *map) { if (!map) return -1; if (map->n != 1) return 0; return isl_basic_map_plain_is_singleton(map->p[0]); } /* Given a singleton basic map, extract the single element * as an isl_point. */ static __isl_give isl_point *singleton_extract_point( __isl_keep isl_basic_map *bmap) { int j; unsigned dim; struct isl_vec *point; isl_int m; if (!bmap) return NULL; dim = isl_basic_map_total_dim(bmap); isl_assert(bmap->ctx, bmap->n_eq == dim, return NULL); point = isl_vec_alloc(bmap->ctx, 1 + dim); if (!point) return NULL; isl_int_init(m); isl_int_set_si(point->el[0], 1); for (j = 0; j < bmap->n_eq; ++j) { int i = dim - 1 - j; isl_assert(bmap->ctx, isl_seq_first_non_zero(bmap->eq[j] + 1, i) == -1, goto error); isl_assert(bmap->ctx, isl_int_is_one(bmap->eq[j][1 + i]) || isl_int_is_negone(bmap->eq[j][1 + i]), goto error); isl_assert(bmap->ctx, isl_seq_first_non_zero(bmap->eq[j]+1+i+1, dim-i-1) == -1, goto error); isl_int_gcd(m, point->el[0], bmap->eq[j][1 + i]); isl_int_divexact(m, bmap->eq[j][1 + i], m); isl_int_abs(m, m); isl_seq_scale(point->el, point->el, m, 1 + i); isl_int_divexact(m, point->el[0], bmap->eq[j][1 + i]); isl_int_neg(m, m); isl_int_mul(point->el[1 + i], m, bmap->eq[j][0]); } isl_int_clear(m); return isl_point_alloc(isl_basic_map_get_space(bmap), point); error: isl_int_clear(m); isl_vec_free(point); return NULL; } /* Return isl_bool_true if the singleton map "map1" is a subset of "map2", * i.e., if the single element of "map1" is also an element of "map2". * Assumes "map2" has known divs. */ static isl_bool map_is_singleton_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; isl_bool is_subset = isl_bool_false; struct isl_point *point; if (!map1 || !map2) return isl_bool_error; if (map1->n != 1) isl_die(isl_map_get_ctx(map1), isl_error_invalid, "expecting single-disjunct input", return isl_bool_error); point = singleton_extract_point(map1->p[0]); if (!point) return isl_bool_error; for (i = 0; i < map2->n; ++i) { is_subset = isl_basic_map_contains_point(map2->p[i], point); if (is_subset) break; } isl_point_free(point); return is_subset; } static isl_bool map_is_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool is_subset = isl_bool_false; isl_bool empty; int rat1, rat2; if (!map1 || !map2) return isl_bool_error; if (!isl_map_has_equal_space(map1, map2)) return isl_bool_false; empty = isl_map_is_empty(map1); if (empty < 0) return isl_bool_error; if (empty) return isl_bool_true; empty = isl_map_is_empty(map2); if (empty < 0) return isl_bool_error; if (empty) return isl_bool_false; rat1 = isl_map_has_rational(map1); rat2 = isl_map_has_rational(map2); if (rat1 < 0 || rat2 < 0) return isl_bool_error; if (rat1 && !rat2) return isl_bool_false; if (isl_map_plain_is_universe(map2)) return isl_bool_true; map2 = isl_map_compute_divs(isl_map_copy(map2)); if (isl_map_plain_is_singleton(map1)) { is_subset = map_is_singleton_subset(map1, map2); isl_map_free(map2); return is_subset; } is_subset = map_diff_is_empty(map1, map2); isl_map_free(map2); return is_subset; } isl_bool isl_map_is_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { return isl_map_align_params_map_map_and_test(map1, map2, &map_is_subset); } isl_bool isl_set_is_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_subset( (struct isl_map *)set1, (struct isl_map *)set2); } __isl_give isl_map *isl_map_make_disjoint(__isl_take isl_map *map) { int i; struct isl_subtract_diff_collector sdc; sdc.dc.add = &basic_map_subtract_add; if (!map) return NULL; if (ISL_F_ISSET(map, ISL_MAP_DISJOINT)) return map; if (map->n <= 1) return map; map = isl_map_compute_divs(map); map = isl_map_remove_empty_parts(map); if (!map || map->n <= 1) return map; sdc.diff = isl_map_from_basic_map(isl_basic_map_copy(map->p[0])); for (i = 1; i < map->n; ++i) { struct isl_basic_map *bmap = isl_basic_map_copy(map->p[i]); struct isl_map *copy = isl_map_copy(sdc.diff); if (basic_map_collect_diff(bmap, copy, &sdc.dc) < 0) { isl_map_free(sdc.diff); sdc.diff = NULL; break; } } isl_map_free(map); return sdc.diff; } __isl_give isl_set *isl_set_make_disjoint(__isl_take isl_set *set) { return (struct isl_set *)isl_map_make_disjoint((struct isl_map *)set); } __isl_give isl_map *isl_map_complement(__isl_take isl_map *map) { isl_map *universe; if (!map) return NULL; universe = isl_map_universe(isl_map_get_space(map)); return isl_map_subtract(universe, map); } __isl_give isl_set *isl_set_complement(__isl_take isl_set *set) { return isl_map_complement(set); } isl-0.16.1/isl_basis_reduction.h0000664000175000017500000000103412645737060013516 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_BASIS_REDUCTION_H #define ISL_BASIS_REDUCTION_H #include #include #include "isl_tab.h" #if defined(__cplusplus) extern "C" { #endif struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab); #if defined(__cplusplus) } #endif #endif isl-0.16.1/interface/0000775000175000017500000000000012645755215011345 500000000000000isl-0.16.1/interface/python.cc0000664000175000017500000005667112645737234013135 00000000000000/* * Copyright 2011,2015 Sven Verdoolaege. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as * representing official policies, either expressed or implied, of * Sven Verdoolaege. */ #include "isl_config.h" #include #include #include #include #include #include "extract_interface.h" #include "python.h" /* Return a sequence of the types of which the given type declaration is * marked as being a subtype. */ static vector find_superclasses(RecordDecl *decl) { vector super; if (!decl->hasAttrs()) return super; string sub = "isl_subclass"; size_t len = sub.length(); AttrVec attrs = decl->getAttrs(); for (AttrVec::const_iterator i = attrs.begin() ; i != attrs.end(); ++i) { const AnnotateAttr *ann = dyn_cast(*i); if (!ann) continue; string s = ann->getAnnotation().str(); if (s.substr(0, len) == sub) { s = s.substr(len + 1, s.length() - len - 2); super.push_back(s); } } return super; } /* Is decl marked as being part of an overloaded method? */ static bool is_overload(Decl *decl) { return has_annotation(decl, "isl_overload"); } /* Is decl marked as a constructor? */ static bool is_constructor(Decl *decl) { return has_annotation(decl, "isl_constructor"); } /* Is decl marked as consuming a reference? */ static bool takes(Decl *decl) { return has_annotation(decl, "isl_take"); } /* isl_class collects all constructors and methods for an isl "class". * "name" is the name of the class. * "type" is the declaration that introduces the type. * "methods" contains the set of methods, grouped by method name. */ struct isl_class { string name; RecordDecl *type; set constructors; map > methods; bool is_static(FunctionDecl *method); void print(map &classes, set &done); void print_constructor(FunctionDecl *method); void print_method(FunctionDecl *method, vector super); void print_method_overload(FunctionDecl *method, vector super); void print_method(const string &fullname, const set &methods, vector super); }; /* Return the class that has a name that matches the initial part * of the name of function "fd" or NULL if no such class could be found. */ static isl_class *method2class(map &classes, FunctionDecl *fd) { string best; map::iterator ci; string name = fd->getNameAsString(); for (ci = classes.begin(); ci != classes.end(); ++ci) { if (name.substr(0, ci->first.length()) == ci->first) best = ci->first; } if (classes.find(best) == classes.end()) { cerr << "Unable to find class of " << name << endl; return NULL; } return &classes[best]; } /* Is "type" the type "isl_ctx *"? */ static bool is_isl_ctx(QualType type) { if (!type->isPointerType()) return 0; type = type->getPointeeType(); if (type.getAsString() != "isl_ctx") return false; return true; } /* Is the first argument of "fd" of type "isl_ctx *"? */ static bool first_arg_is_isl_ctx(FunctionDecl *fd) { ParmVarDecl *param; if (fd->getNumParams() < 1) return false; param = fd->getParamDecl(0); return is_isl_ctx(param->getOriginalType()); } /* Is "type" that of a pointer to an isl_* structure? */ static bool is_isl_type(QualType type) { if (type->isPointerType()) { string s; type = type->getPointeeType(); if (type->isFunctionType()) return false; s = type.getAsString(); return s.substr(0, 4) == "isl_"; } return false; } /* Is "type" the type isl_bool? */ static bool is_isl_bool(QualType type) { string s; if (type->isPointerType()) return false; s = type.getAsString(); return s == "isl_bool"; } /* Is "type" that of a pointer to a function? */ static bool is_callback(QualType type) { if (!type->isPointerType()) return false; type = type->getPointeeType(); return type->isFunctionType(); } /* Is "type" that of "char *" of "const char *"? */ static bool is_string(QualType type) { if (type->isPointerType()) { string s = type->getPointeeType().getAsString(); return s == "const char" || s == "char"; } return false; } /* Return the name of the type that "type" points to. * The input "type" is assumed to be a pointer type. */ static string extract_type(QualType type) { if (type->isPointerType()) return type->getPointeeType().getAsString(); assert(0); } /* Drop the "isl_" initial part of the type name "name". */ static string type2python(string name) { return name.substr(4); } /* If "method" is overloaded, then drop the suffix of "name" * corresponding to the type of the final argument and * return the modified name (or the original name if * no modifications were made). */ static string drop_type_suffix(string name, FunctionDecl *method) { int num_params; ParmVarDecl *param; string type; size_t name_len, type_len; if (!is_overload(method)) return name; num_params = method->getNumParams(); param = method->getParamDecl(num_params - 1); type = extract_type(param->getOriginalType()); type = type.substr(4); name_len = name.length(); type_len = type.length(); if (name_len > type_len && name.substr(name_len - type_len) == type) name = name.substr(0, name_len - type_len - 1); return name; } /* Should "method" be considered to be a static method? * That is, is the first argument something other than * an instance of the class? */ bool isl_class::is_static(FunctionDecl *method) { ParmVarDecl *param = method->getParamDecl(0); QualType type = param->getOriginalType(); if (!is_isl_type(type)) return true; return extract_type(type) != name; } /* Print the header of the method "name" with "n_arg" arguments. * If "is_static" is set, then mark the python method as static. * * If the method is called "from", then rename it to "convert_from" * because "from" is a python keyword. */ static void print_method_header(bool is_static, const string &name, int n_arg) { const char *s; if (is_static) printf(" @staticmethod\n"); s = name.c_str(); if (name == "from") s = "convert_from"; printf(" def %s(", s); for (int i = 0; i < n_arg; ++i) { if (i) printf(", "); printf("arg%d", i); } printf("):\n"); } /* Construct a wrapper for a callback argument (at position "arg"). * Assign the wrapper to "cb". We assume here that a function call * has at most one callback argument. * * The wrapper converts the arguments of the callback to python types. * If any exception is thrown, the wrapper keeps track of it in exc_info[0] * and returns -1. Otherwise the wrapper returns 0. */ static void print_callback(QualType type, int arg) { const FunctionProtoType *fn = type->getAs(); unsigned n_arg = fn->getNumArgs(); printf(" exc_info = [None]\n"); printf(" fn = CFUNCTYPE(c_int"); for (int i = 0; i < n_arg - 1; ++i) { QualType arg_type = fn->getArgType(i); assert(is_isl_type(arg_type)); printf(", c_void_p"); } printf(", c_void_p)\n"); printf(" def cb_func("); for (int i = 0; i < n_arg; ++i) { if (i) printf(", "); printf("cb_arg%d", i); } printf("):\n"); for (int i = 0; i < n_arg - 1; ++i) { string arg_type; arg_type = type2python(extract_type(fn->getArgType(i))); printf(" cb_arg%d = %s(ctx=arg0.ctx, " "ptr=cb_arg%d)\n", i, arg_type.c_str(), i); } printf(" try:\n"); printf(" arg%d(", arg); for (int i = 0; i < n_arg - 1; ++i) { if (i) printf(", "); printf("cb_arg%d", i); } printf(")\n"); printf(" except:\n"); printf(" import sys\n"); printf(" exc_info[0] = sys.exc_info()\n"); printf(" return -1\n"); printf(" return 0\n"); printf(" cb = fn(cb_func)\n"); } /* Print the argument at position "arg" in call to "fd". * "skip" is the number of initial arguments of "fd" that are * skipped in the Python method. * * If the argument is a callback, then print a reference to * the callback wrapper "cb". * Otherwise, if the argument is marked as consuming a reference, * then pass a copy of the the pointer stored in the corresponding * argument passed to the Python method. * Otherwise, if the argument is a pointer, then pass this pointer itself. * Otherwise, pass the argument directly. */ static void print_arg_in_call(FunctionDecl *fd, int arg, int skip) { ParmVarDecl *param = fd->getParamDecl(arg); QualType type = param->getOriginalType(); if (is_callback(type)) { printf("cb"); } else if (takes(param)) { string type_s = extract_type(type); printf("isl.%s_copy(arg%d.ptr)", type_s.c_str(), arg - skip); } else if (type->isPointerType()) { printf("arg%d.ptr", arg - skip); } else { printf("arg%d", arg - skip); } } /* Print a python method corresponding to the C function "method". * "super" contains the superclasses of the class to which the method belongs. * * If the first argument of "method" is something other than an instance * of the class, then mark the python method as static. * If, moreover, this first argument is an isl_ctx, then remove * it from the arguments of the Python method. * * If the function has a callback argument, then it also has a "user" * argument. Since Python has closures, there is no need for such * a user argument in the Python interface, so we simply drop it. * We also create a wrapper ("cb") for the callback. * * For each argument of the function that refers to an isl structure, * including the object on which the method is called, * we check if the corresponding actual argument is of the right type. * If not, we try to convert it to the right type. * It that doesn't work and if subclass is set, we try to convert self * to the type of the first superclass in "super" and * call the corresponding method. * * If the function consumes a reference, then we pass it a copy of * the actual argument. * * If the return type is isl_bool, then convert the result to * a Python boolean, raising an error on isl_bool_error. */ void isl_class::print_method(FunctionDecl *method, vector super) { string fullname = method->getName(); string cname = fullname.substr(name.length() + 1); int num_params = method->getNumParams(); int drop_user = 0; int drop_ctx = first_arg_is_isl_ctx(method); for (int i = 1; i < num_params; ++i) { ParmVarDecl *param = method->getParamDecl(i); QualType type = param->getOriginalType(); if (is_callback(type)) drop_user = 1; } print_method_header(is_static(method), cname, num_params - drop_ctx - drop_user); for (int i = drop_ctx; i < num_params; ++i) { ParmVarDecl *param = method->getParamDecl(i); string type; if (!is_isl_type(param->getOriginalType())) continue; type = type2python(extract_type(param->getOriginalType())); printf(" try:\n"); printf(" if not arg%d.__class__ is %s:\n", i - drop_ctx, type.c_str()); printf(" arg%d = %s(arg%d)\n", i - drop_ctx, type.c_str(), i - drop_ctx); printf(" except:\n"); if (!drop_ctx && i > 0 && super.size() > 0) { printf(" return %s(arg0).%s(", type2python(super[0]).c_str(), cname.c_str()); for (int i = 1; i < num_params - drop_user; ++i) { if (i != 1) printf(", "); printf("arg%d", i); } printf(")\n"); } else printf(" raise\n"); } for (int i = 1; i < num_params; ++i) { ParmVarDecl *param = method->getParamDecl(i); QualType type = param->getOriginalType(); if (!is_callback(type)) continue; print_callback(type->getPointeeType(), i - drop_ctx); } if (drop_ctx) printf(" ctx = Context.getDefaultInstance()\n"); else printf(" ctx = arg0.ctx\n"); printf(" res = isl.%s(", fullname.c_str()); if (drop_ctx) printf("ctx"); else print_arg_in_call(method, 0, 0); for (int i = 1; i < num_params - drop_user; ++i) { printf(", "); print_arg_in_call(method, i, drop_ctx); } if (drop_user) printf(", None"); printf(")\n"); if (is_isl_type(method->getReturnType())) { string type; type = type2python(extract_type(method->getReturnType())); printf(" return %s(ctx=ctx, ptr=res)\n", type.c_str()); } else { if (drop_user) { printf(" if exc_info[0] != None:\n"); printf(" raise exc_info[0][0], " "exc_info[0][1], exc_info[0][2]\n"); } if (is_isl_bool(method->getReturnType())) { printf(" if res < 0:\n"); printf(" raise\n"); printf(" return bool(res)\n"); } else { printf(" return res\n"); } } } /* Print part of an overloaded python method corresponding to the C function * "method". * "super" contains the superclasses of the class to which the method belongs. * * In particular, print code to test whether the arguments passed to * the python method correspond to the arguments expected by "method" * and to call "method" if they do. */ void isl_class::print_method_overload(FunctionDecl *method, vector super) { string fullname = method->getName(); int num_params = method->getNumParams(); int first; string type; first = is_static(method) ? 0 : 1; printf(" if "); for (int i = first; i < num_params; ++i) { if (i > first) printf(" and "); ParmVarDecl *param = method->getParamDecl(i); if (is_isl_type(param->getOriginalType())) { string type; type = extract_type(param->getOriginalType()); type = type2python(type); printf("arg%d.__class__ is %s", i, type.c_str()); } else printf("type(arg%d) == str", i); } printf(":\n"); printf(" res = isl.%s(", fullname.c_str()); print_arg_in_call(method, 0, 0); for (int i = 1; i < num_params; ++i) { printf(", "); print_arg_in_call(method, i, 0); } printf(")\n"); type = type2python(extract_type(method->getReturnType())); printf(" return %s(ctx=arg0.ctx, ptr=res)\n", type.c_str()); } /* Print a python method with a name derived from "fullname" * corresponding to the C functions "methods". * "super" contains the superclasses of the class to which the method belongs. * * If "methods" consists of a single element that is not marked overloaded, * the use print_method to print the method. * Otherwise, print an overloaded method with pieces corresponding * to each function in "methods". */ void isl_class::print_method(const string &fullname, const set &methods, vector super) { string cname; set::const_iterator it; int num_params; FunctionDecl *any_method; any_method = *methods.begin(); if (methods.size() == 1 && !is_overload(any_method)) { print_method(any_method, super); return; } cname = fullname.substr(name.length() + 1); num_params = any_method->getNumParams(); print_method_header(is_static(any_method), cname, num_params); for (it = methods.begin(); it != methods.end(); ++it) print_method_overload(*it, super); } /* Print part of the constructor for this isl_class. * * In particular, check if the actual arguments correspond to the * formal arguments of "cons" and if so call "cons" and put the * result in self.ptr and a reference to the default context in self.ctx. * * If the function consumes a reference, then we pass it a copy of * the actual argument. */ void isl_class::print_constructor(FunctionDecl *cons) { string fullname = cons->getName(); string cname = fullname.substr(name.length() + 1); int num_params = cons->getNumParams(); int drop_ctx = first_arg_is_isl_ctx(cons); printf(" if len(args) == %d", num_params - drop_ctx); for (int i = drop_ctx; i < num_params; ++i) { ParmVarDecl *param = cons->getParamDecl(i); QualType type = param->getOriginalType(); if (is_isl_type(type)) { string s; s = type2python(extract_type(type)); printf(" and args[%d].__class__ is %s", i - drop_ctx, s.c_str()); } else if (type->isPointerType()) { printf(" and type(args[%d]) == str", i - drop_ctx); } else { printf(" and type(args[%d]) == int", i - drop_ctx); } } printf(":\n"); printf(" self.ctx = Context.getDefaultInstance()\n"); printf(" self.ptr = isl.%s(", fullname.c_str()); if (drop_ctx) printf("self.ctx"); for (int i = drop_ctx; i < num_params; ++i) { ParmVarDecl *param = cons->getParamDecl(i); if (i) printf(", "); if (is_isl_type(param->getOriginalType())) { if (takes(param)) { string type; type = extract_type(param->getOriginalType()); printf("isl.%s_copy(args[%d].ptr)", type.c_str(), i - drop_ctx); } else printf("args[%d].ptr", i - drop_ctx); } else printf("args[%d]", i - drop_ctx); } printf(")\n"); printf(" return\n"); } /* Print the header of the class "name" with superclasses "super". */ static void print_class_header(const string &name, const vector &super) { printf("class %s", name.c_str()); if (super.size() > 0) { printf("("); for (int i = 0; i < super.size(); ++i) { if (i > 0) printf(", "); printf("%s", type2python(super[i]).c_str()); } printf(")"); } printf(":\n"); } /* Tell ctypes about the return type of "fd". * In particular, if "fd" returns a pointer to an isl object, * then tell ctypes it returns a "c_void_p". * Similarly, if "fd" returns an isl_bool, * then tell ctypes it returns a "c_bool". */ static void print_restype(FunctionDecl *fd) { string fullname = fd->getName(); QualType type = fd->getReturnType(); if (is_isl_type(type)) printf("isl.%s.restype = c_void_p\n", fullname.c_str()); else if (is_isl_bool(type)) printf("isl.%s.restype = c_bool\n", fullname.c_str()); } /* Tell ctypes about the types of the arguments of the function "fd". */ static void print_argtypes(FunctionDecl *fd) { string fullname = fd->getName(); int n = fd->getNumParams(); int drop_user = 0; printf("isl.%s.argtypes = [", fullname.c_str()); for (int i = 0; i < n - drop_user; ++i) { ParmVarDecl *param = fd->getParamDecl(i); QualType type = param->getOriginalType(); if (is_callback(type)) drop_user = 1; if (i) printf(", "); if (is_isl_ctx(type)) printf("Context"); else if (is_isl_type(type) || is_callback(type)) printf("c_void_p"); else if (is_string(type)) printf("c_char_p"); else printf("c_int"); } if (drop_user) printf(", c_void_p"); printf("]\n"); } /* Print out the definition of this isl_class. * * We first check if this isl_class is a subclass of one or more other classes. * If it is, we make sure those superclasses are printed out first. * * Then we print a constructor with several cases, one for constructing * a Python object from a return value and one for each function that * was marked as a constructor. * * Next, we print out some common methods and the methods corresponding * to functions that are not marked as constructors. * * Finally, we tell ctypes about the types of the arguments of the * constructor functions and the return types of those function returning * an isl object. */ void isl_class::print(map &classes, set &done) { string p_name = type2python(name); set::iterator in; map >::iterator it; vector super = find_superclasses(type); for (int i = 0; i < super.size(); ++i) if (done.find(super[i]) == done.end()) classes[super[i]].print(classes, done); done.insert(name); printf("\n"); print_class_header(p_name, super); printf(" def __init__(self, *args, **keywords):\n"); printf(" if \"ptr\" in keywords:\n"); printf(" self.ctx = keywords[\"ctx\"]\n"); printf(" self.ptr = keywords[\"ptr\"]\n"); printf(" return\n"); for (in = constructors.begin(); in != constructors.end(); ++in) print_constructor(*in); printf(" raise Error\n"); printf(" def __del__(self):\n"); printf(" if hasattr(self, 'ptr'):\n"); printf(" isl.%s_free(self.ptr)\n", name.c_str()); printf(" def __str__(self):\n"); printf(" ptr = isl.%s_to_str(self.ptr)\n", name.c_str()); printf(" res = str(cast(ptr, c_char_p).value)\n"); printf(" libc.free(ptr)\n"); printf(" return res\n"); printf(" def __repr__(self):\n"); printf(" s = str(self)\n"); printf(" if '\"' in s:\n"); printf(" return 'isl.%s(\"\"\"%%s\"\"\")' %% s\n", p_name.c_str()); printf(" else:\n"); printf(" return 'isl.%s(\"%%s\")' %% s\n", p_name.c_str()); for (it = methods.begin(); it != methods.end(); ++it) print_method(it->first, it->second, super); printf("\n"); for (in = constructors.begin(); in != constructors.end(); ++in) { print_restype(*in); print_argtypes(*in); } for (it = methods.begin(); it != methods.end(); ++it) for (in = it->second.begin(); in != it->second.end(); ++in) { print_restype(*in); print_argtypes(*in); } printf("isl.%s_free.argtypes = [c_void_p]\n", name.c_str()); printf("isl.%s_to_str.argtypes = [c_void_p]\n", name.c_str()); printf("isl.%s_to_str.restype = POINTER(c_char)\n", name.c_str()); } /* Generate a python interface based on the extracted types and functions. * We first collect all functions that belong to a certain type, * separating constructors from regular methods. If there are any * overloaded functions, then they are grouped based on their name * after removing the argument type suffix. * * Then we print out each class in turn. If one of these is a subclass * of some other class, it will make sure the superclass is printed out first. */ void generate_python(set &types, set functions) { map classes; map::iterator ci; set done; set::iterator it; for (it = types.begin(); it != types.end(); ++it) { RecordDecl *decl = *it; string name = decl->getName(); classes[name].name = name; classes[name].type = decl; } set::iterator in; for (in = functions.begin(); in != functions.end(); ++in) { isl_class *c = method2class(classes, *in); if (!c) continue; if (is_constructor(*in)) { c->constructors.insert(*in); } else { FunctionDecl *method = *in; string fullname = method->getName(); fullname = drop_type_suffix(fullname, method); c->methods[fullname].insert(method); } } for (ci = classes.begin(); ci != classes.end(); ++ci) { if (done.find(ci->first) == done.end()) ci->second.print(classes, done); } } isl-0.16.1/interface/extract_interface.h0000664000175000017500000000012712645737060015126 00000000000000#include bool has_annotation(clang::Decl *decl, const char *name); isl-0.16.1/interface/extract_interface.cc0000664000175000017500000002654012645737234015276 00000000000000/* * Copyright 2011 Sven Verdoolaege. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY SVEN VERDOOLAEGE ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SVEN VERDOOLAEGE OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as * representing official policies, either expressed or implied, of * Sven Verdoolaege. */ #include "isl_config.h" #include #include #ifdef HAVE_ADT_OWNINGPTR_H #include #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_BASIC_DIAGNOSTICOPTIONS_H #include #else #include #endif #include #include #include #include #include #include #include "extract_interface.h" #include "python.h" using namespace std; using namespace clang; using namespace clang::driver; #ifdef HAVE_ADT_OWNINGPTR_H #define unique_ptr llvm::OwningPtr #endif static llvm::cl::opt InputFilename(llvm::cl::Positional, llvm::cl::Required, llvm::cl::desc("")); static llvm::cl::list Includes("I", llvm::cl::desc("Header search path"), llvm::cl::value_desc("path"), llvm::cl::Prefix); static const char *ResourceDir = CLANG_PREFIX "/lib/clang/" CLANG_VERSION_STRING; /* Does decl have an attribute of the following form? * * __attribute__((annotate("name"))) */ bool has_annotation(Decl *decl, const char *name) { if (!decl->hasAttrs()) return false; AttrVec attrs = decl->getAttrs(); for (AttrVec::const_iterator i = attrs.begin() ; i != attrs.end(); ++i) { const AnnotateAttr *ann = dyn_cast(*i); if (!ann) continue; if (ann->getAnnotation().str() == name) return true; } return false; } /* Is decl marked as exported? */ static bool is_exported(Decl *decl) { return has_annotation(decl, "isl_export"); } /* Collect all types and functions that are annotated "isl_export" * in "types" and "function". * * We currently only consider single declarations. */ struct MyASTConsumer : public ASTConsumer { set types; set functions; virtual HandleTopLevelDeclReturn HandleTopLevelDecl(DeclGroupRef D) { Decl *decl; if (!D.isSingleDecl()) return HandleTopLevelDeclContinue; decl = D.getSingleDecl(); if (!is_exported(decl)) return HandleTopLevelDeclContinue; switch (decl->getKind()) { case Decl::Record: types.insert(cast(decl)); break; case Decl::Function: functions.insert(cast(decl)); break; default: break; } return HandleTopLevelDeclContinue; } }; #ifdef USE_ARRAYREF #ifdef HAVE_CXXISPRODUCTION static Driver *construct_driver(const char *binary, DiagnosticsEngine &Diags) { return new Driver(binary, llvm::sys::getDefaultTargetTriple(), "", false, false, Diags); } #elif defined(HAVE_ISPRODUCTION) static Driver *construct_driver(const char *binary, DiagnosticsEngine &Diags) { return new Driver(binary, llvm::sys::getDefaultTargetTriple(), "", false, Diags); } #elif defined(DRIVER_CTOR_TAKES_DEFAULTIMAGENAME) static Driver *construct_driver(const char *binary, DiagnosticsEngine &Diags) { return new Driver(binary, llvm::sys::getDefaultTargetTriple(), "", Diags); } #else static Driver *construct_driver(const char *binary, DiagnosticsEngine &Diags) { return new Driver(binary, llvm::sys::getDefaultTargetTriple(), Diags); } #endif namespace clang { namespace driver { class Job; } } /* Clang changed its API from 3.5 to 3.6 and once more in 3.7. * We fix this with a simple overloaded function here. */ struct ClangAPI { static Job *command(Job *J) { return J; } static Job *command(Job &J) { return &J; } static Command *command(Command &C) { return &C; } }; /* Create a CompilerInvocation object that stores the command line * arguments constructed by the driver. * The arguments are mainly useful for setting up the system include * paths on newer clangs and on some platforms. */ static CompilerInvocation *construct_invocation(const char *filename, DiagnosticsEngine &Diags) { const char *binary = CLANG_PREFIX"/bin/clang"; const unique_ptr driver(construct_driver(binary, Diags)); std::vector Argv; Argv.push_back(binary); Argv.push_back(filename); const unique_ptr compilation( driver->BuildCompilation(llvm::ArrayRef(Argv))); JobList &Jobs = compilation->getJobs(); Command *cmd = cast(ClangAPI::command(*Jobs.begin())); if (strcmp(cmd->getCreator().getName(), "clang")) return NULL; const ArgStringList *args = &cmd->getArguments(); CompilerInvocation *invocation = new CompilerInvocation; CompilerInvocation::CreateFromArgs(*invocation, args->data() + 1, args->data() + args->size(), Diags); return invocation; } #else static CompilerInvocation *construct_invocation(const char *filename, DiagnosticsEngine &Diags) { return NULL; } #endif #ifdef HAVE_BASIC_DIAGNOSTICOPTIONS_H static TextDiagnosticPrinter *construct_printer(void) { return new TextDiagnosticPrinter(llvm::errs(), new DiagnosticOptions()); } #else static TextDiagnosticPrinter *construct_printer(void) { DiagnosticOptions DO; return new TextDiagnosticPrinter(llvm::errs(), DO); } #endif #ifdef CREATETARGETINFO_TAKES_SHARED_PTR static TargetInfo *create_target_info(CompilerInstance *Clang, DiagnosticsEngine &Diags) { shared_ptr TO = Clang->getInvocation().TargetOpts; TO->Triple = llvm::sys::getDefaultTargetTriple(); return TargetInfo::CreateTargetInfo(Diags, TO); } #elif defined(CREATETARGETINFO_TAKES_POINTER) static TargetInfo *create_target_info(CompilerInstance *Clang, DiagnosticsEngine &Diags) { TargetOptions &TO = Clang->getTargetOpts(); TO.Triple = llvm::sys::getDefaultTargetTriple(); return TargetInfo::CreateTargetInfo(Diags, &TO); } #else static TargetInfo *create_target_info(CompilerInstance *Clang, DiagnosticsEngine &Diags) { TargetOptions &TO = Clang->getTargetOpts(); TO.Triple = llvm::sys::getDefaultTargetTriple(); return TargetInfo::CreateTargetInfo(Diags, TO); } #endif #ifdef CREATEDIAGNOSTICS_TAKES_ARG static void create_diagnostics(CompilerInstance *Clang) { Clang->createDiagnostics(0, NULL, construct_printer()); } #else static void create_diagnostics(CompilerInstance *Clang) { Clang->createDiagnostics(construct_printer()); } #endif #ifdef CREATEPREPROCESSOR_TAKES_TUKIND static void create_preprocessor(CompilerInstance *Clang) { Clang->createPreprocessor(TU_Complete); } #else static void create_preprocessor(CompilerInstance *Clang) { Clang->createPreprocessor(); } #endif #ifdef ADDPATH_TAKES_4_ARGUMENTS void add_path(HeaderSearchOptions &HSO, string Path) { HSO.AddPath(Path, frontend::Angled, false, false); } #else void add_path(HeaderSearchOptions &HSO, string Path) { HSO.AddPath(Path, frontend::Angled, true, false, false); } #endif #ifdef HAVE_SETMAINFILEID static void create_main_file_id(SourceManager &SM, const FileEntry *file) { SM.setMainFileID(SM.createFileID(file, SourceLocation(), SrcMgr::C_User)); } #else static void create_main_file_id(SourceManager &SM, const FileEntry *file) { SM.createMainFileID(file); } #endif int main(int argc, char *argv[]) { llvm::cl::ParseCommandLineOptions(argc, argv); CompilerInstance *Clang = new CompilerInstance(); create_diagnostics(Clang); DiagnosticsEngine &Diags = Clang->getDiagnostics(); Diags.setSuppressSystemWarnings(true); CompilerInvocation *invocation = construct_invocation(InputFilename.c_str(), Diags); if (invocation) Clang->setInvocation(invocation); Clang->createFileManager(); Clang->createSourceManager(Clang->getFileManager()); TargetInfo *target = create_target_info(Clang, Diags); Clang->setTarget(target); CompilerInvocation::setLangDefaults(Clang->getLangOpts(), IK_C, LangStandard::lang_unspecified); HeaderSearchOptions &HSO = Clang->getHeaderSearchOpts(); LangOptions &LO = Clang->getLangOpts(); PreprocessorOptions &PO = Clang->getPreprocessorOpts(); HSO.ResourceDir = ResourceDir; for (int i = 0; i < Includes.size(); ++i) add_path(HSO, Includes[i]); PO.addMacroDef("__isl_give=__attribute__((annotate(\"isl_give\")))"); PO.addMacroDef("__isl_keep=__attribute__((annotate(\"isl_keep\")))"); PO.addMacroDef("__isl_take=__attribute__((annotate(\"isl_take\")))"); PO.addMacroDef("__isl_export=__attribute__((annotate(\"isl_export\")))"); PO.addMacroDef("__isl_overload=" "__attribute__((annotate(\"isl_overload\"))) " "__attribute__((annotate(\"isl_export\")))"); PO.addMacroDef("__isl_subclass(super)=__attribute__((annotate(\"isl_subclass(\" #super \")\"))) __attribute__((annotate(\"isl_export\")))"); PO.addMacroDef("__isl_constructor=__attribute__((annotate(\"isl_constructor\"))) __attribute__((annotate(\"isl_export\")))"); PO.addMacroDef("__isl_subclass(super)=__attribute__((annotate(\"isl_subclass(\" #super \")\"))) __attribute__((annotate(\"isl_export\")))"); create_preprocessor(Clang); Preprocessor &PP = Clang->getPreprocessor(); PP.getBuiltinInfo().initializeBuiltins(PP.getIdentifierTable(), LO); const FileEntry *file = Clang->getFileManager().getFile(InputFilename); assert(file); create_main_file_id(Clang->getSourceManager(), file); Clang->createASTContext(); MyASTConsumer consumer; Sema *sema = new Sema(PP, Clang->getASTContext(), consumer); Diags.getClient()->BeginSourceFile(LO, &PP); ParseAST(*sema); Diags.getClient()->EndSourceFile(); generate_python(consumer.types, consumer.functions); delete sema; delete Clang; llvm::llvm_shutdown(); return 0; } isl-0.16.1/interface/Makefile.am0000664000175000017500000000154712645737060013326 00000000000000AUTOMAKE_OPTIONS = nostdinc noinst_PROGRAMS = extract_interface AM_CXXFLAGS = $(CLANG_CXXFLAGS) AM_LDFLAGS = $(CLANG_LDFLAGS) includes = -I$(top_builddir) -I$(top_srcdir) \ -I$(top_builddir)/include -I$(top_srcdir)/include extract_interface_CPPFLAGS = $(includes) extract_interface_SOURCES = \ python.h \ python.cc \ extract_interface.h \ extract_interface.cc extract_interface_LDADD = \ -lclangFrontend -lclangSerialization -lclangParse -lclangSema \ $(LIB_CLANG_EDIT) \ -lclangAnalysis -lclangAST -lclangLex -lclangBasic -lclangDriver \ $(CLANG_LIBS) $(CLANG_LDFLAGS) CLEANFILES = isl.py test: extract_interface ./extract_interface$(EXEEXT) $(includes) $(srcdir)/all.h isl.py: extract_interface isl.py.top (cat $(srcdir)/isl.py.top; \ ./extract_interface$(EXEEXT) $(includes) $(srcdir)/all.h) \ > isl.py dist-hook: isl.py cp isl.py $(distdir)/ isl-0.16.1/interface/isl.py0000664000175000017500000043222412645755215012435 00000000000000from ctypes import * isl = cdll.LoadLibrary("libisl.so") libc = cdll.LoadLibrary("libc.so.6") class Error(Exception): pass class Context: defaultInstance = None def __init__(self): ptr = isl.isl_ctx_alloc() self.ptr = ptr def __del__(self): isl.isl_ctx_free(self) def from_param(self): return self.ptr @staticmethod def getDefaultInstance(): if Context.defaultInstance == None: Context.defaultInstance = Context() return Context.defaultInstance isl.isl_ctx_alloc.restype = c_void_p isl.isl_ctx_free.argtypes = [Context] class union_pw_multi_aff: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is union_pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_pw_multi_aff_from_union_pw_aff(isl.isl_union_pw_aff_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is pw_multi_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_pw_multi_aff_from_pw_multi_aff(isl.isl_pw_multi_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_pw_multi_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_pw_multi_aff_free(self.ptr) def __str__(self): ptr = isl.isl_union_pw_multi_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_pw_multi_aff("""%s""")' % s else: return 'isl.union_pw_multi_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is union_pw_multi_aff: arg0 = union_pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is union_pw_multi_aff: arg1 = union_pw_multi_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_pw_multi_aff_add(isl.isl_union_pw_multi_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return union_pw_multi_aff(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is union_pw_multi_aff: arg0 = union_pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is union_pw_multi_aff: arg1 = union_pw_multi_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_pw_multi_aff_flat_range_product(isl.isl_union_pw_multi_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return union_pw_multi_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is union_pw_multi_aff: res = isl.isl_union_pw_multi_aff_pullback_union_pw_multi_aff(isl.isl_union_pw_multi_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return union_pw_multi_aff(ctx=arg0.ctx, ptr=res) def union_add(arg0, arg1): try: if not arg0.__class__ is union_pw_multi_aff: arg0 = union_pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is union_pw_multi_aff: arg1 = union_pw_multi_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_pw_multi_aff_union_add(isl.isl_union_pw_multi_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return union_pw_multi_aff(ctx=ctx, ptr=res) isl.isl_union_pw_multi_aff_from_union_pw_aff.restype = c_void_p isl.isl_union_pw_multi_aff_from_union_pw_aff.argtypes = [c_void_p] isl.isl_union_pw_multi_aff_from_pw_multi_aff.restype = c_void_p isl.isl_union_pw_multi_aff_from_pw_multi_aff.argtypes = [c_void_p] isl.isl_union_pw_multi_aff_read_from_str.restype = c_void_p isl.isl_union_pw_multi_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_union_pw_multi_aff_add.restype = c_void_p isl.isl_union_pw_multi_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_multi_aff_flat_range_product.restype = c_void_p isl.isl_union_pw_multi_aff_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_multi_aff_pullback_union_pw_multi_aff.restype = c_void_p isl.isl_union_pw_multi_aff_pullback_union_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_multi_aff_union_add.restype = c_void_p isl.isl_union_pw_multi_aff_union_add.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_multi_aff_free.argtypes = [c_void_p] isl.isl_union_pw_multi_aff_to_str.argtypes = [c_void_p] isl.isl_union_pw_multi_aff_to_str.restype = POINTER(c_char) class multi_union_pw_aff: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is union_pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_union_pw_aff_from_union_pw_aff(isl.isl_union_pw_aff_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is multi_pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_union_pw_aff_from_multi_pw_aff(isl.isl_multi_pw_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_union_pw_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_multi_union_pw_aff_free(self.ptr) def __str__(self): ptr = isl.isl_multi_union_pw_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.multi_union_pw_aff("""%s""")' % s else: return 'isl.multi_union_pw_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is multi_union_pw_aff: arg0 = multi_union_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_union_pw_aff: arg1 = multi_union_pw_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_union_pw_aff_add(isl.isl_multi_union_pw_aff_copy(arg0.ptr), isl.isl_multi_union_pw_aff_copy(arg1.ptr)) return multi_union_pw_aff(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is multi_union_pw_aff: arg0 = multi_union_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_union_pw_aff: arg1 = multi_union_pw_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_union_pw_aff_flat_range_product(isl.isl_multi_union_pw_aff_copy(arg0.ptr), isl.isl_multi_union_pw_aff_copy(arg1.ptr)) return multi_union_pw_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is union_pw_multi_aff: res = isl.isl_multi_union_pw_aff_pullback_union_pw_multi_aff(isl.isl_multi_union_pw_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return multi_union_pw_aff(ctx=arg0.ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is multi_union_pw_aff: arg0 = multi_union_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_union_pw_aff: arg1 = multi_union_pw_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_union_pw_aff_range_product(isl.isl_multi_union_pw_aff_copy(arg0.ptr), isl.isl_multi_union_pw_aff_copy(arg1.ptr)) return multi_union_pw_aff(ctx=ctx, ptr=res) def union_add(arg0, arg1): try: if not arg0.__class__ is multi_union_pw_aff: arg0 = multi_union_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_union_pw_aff: arg1 = multi_union_pw_aff(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_union_pw_aff_union_add(isl.isl_multi_union_pw_aff_copy(arg0.ptr), isl.isl_multi_union_pw_aff_copy(arg1.ptr)) return multi_union_pw_aff(ctx=ctx, ptr=res) isl.isl_multi_union_pw_aff_from_union_pw_aff.restype = c_void_p isl.isl_multi_union_pw_aff_from_union_pw_aff.argtypes = [c_void_p] isl.isl_multi_union_pw_aff_from_multi_pw_aff.restype = c_void_p isl.isl_multi_union_pw_aff_from_multi_pw_aff.argtypes = [c_void_p] isl.isl_multi_union_pw_aff_read_from_str.restype = c_void_p isl.isl_multi_union_pw_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_multi_union_pw_aff_add.restype = c_void_p isl.isl_multi_union_pw_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_multi_union_pw_aff_flat_range_product.restype = c_void_p isl.isl_multi_union_pw_aff_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_union_pw_aff_pullback_union_pw_multi_aff.restype = c_void_p isl.isl_multi_union_pw_aff_pullback_union_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_multi_union_pw_aff_range_product.restype = c_void_p isl.isl_multi_union_pw_aff_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_union_pw_aff_union_add.restype = c_void_p isl.isl_multi_union_pw_aff_union_add.argtypes = [c_void_p, c_void_p] isl.isl_multi_union_pw_aff_free.argtypes = [c_void_p] isl.isl_multi_union_pw_aff_to_str.argtypes = [c_void_p] isl.isl_multi_union_pw_aff_to_str.restype = POINTER(c_char) class union_pw_aff(union_pw_multi_aff, multi_union_pw_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_pw_aff_from_pw_aff(isl.isl_pw_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_pw_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_pw_aff_free(self.ptr) def __str__(self): ptr = isl.isl_union_pw_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_pw_aff("""%s""")' % s else: return 'isl.union_pw_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is union_pw_aff: arg0 = union_pw_aff(arg0) except: raise try: if not arg1.__class__ is union_pw_aff: arg1 = union_pw_aff(arg1) except: return union_pw_multi_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_union_pw_aff_add(isl.isl_union_pw_aff_copy(arg0.ptr), isl.isl_union_pw_aff_copy(arg1.ptr)) return union_pw_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is union_pw_multi_aff: res = isl.isl_union_pw_aff_pullback_union_pw_multi_aff(isl.isl_union_pw_aff_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return union_pw_aff(ctx=arg0.ctx, ptr=res) def union_add(arg0, arg1): try: if not arg0.__class__ is union_pw_aff: arg0 = union_pw_aff(arg0) except: raise try: if not arg1.__class__ is union_pw_aff: arg1 = union_pw_aff(arg1) except: return union_pw_multi_aff(arg0).union_add(arg1) ctx = arg0.ctx res = isl.isl_union_pw_aff_union_add(isl.isl_union_pw_aff_copy(arg0.ptr), isl.isl_union_pw_aff_copy(arg1.ptr)) return union_pw_aff(ctx=ctx, ptr=res) isl.isl_union_pw_aff_from_pw_aff.restype = c_void_p isl.isl_union_pw_aff_from_pw_aff.argtypes = [c_void_p] isl.isl_union_pw_aff_read_from_str.restype = c_void_p isl.isl_union_pw_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_union_pw_aff_add.restype = c_void_p isl.isl_union_pw_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_aff_pullback_union_pw_multi_aff.restype = c_void_p isl.isl_union_pw_aff_pullback_union_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_aff_union_add.restype = c_void_p isl.isl_union_pw_aff_union_add.argtypes = [c_void_p, c_void_p] isl.isl_union_pw_aff_free.argtypes = [c_void_p] isl.isl_union_pw_aff_to_str.argtypes = [c_void_p] isl.isl_union_pw_aff_to_str.restype = POINTER(c_char) class multi_pw_aff(multi_union_pw_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is pw_multi_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_pw_aff_from_pw_multi_aff(isl.isl_pw_multi_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_pw_aff_read_from_str(self.ctx, args[0]) return if len(args) == 1 and args[0].__class__ is multi_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_pw_aff_from_multi_aff(isl.isl_multi_aff_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_pw_aff_from_pw_aff(isl.isl_pw_aff_copy(args[0].ptr)) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_multi_pw_aff_free(self.ptr) def __str__(self): ptr = isl.isl_multi_pw_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.multi_pw_aff("""%s""")' % s else: return 'isl.multi_pw_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is multi_pw_aff: arg0 = multi_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_pw_aff: arg1 = multi_pw_aff(arg1) except: return multi_union_pw_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_multi_pw_aff_add(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is multi_pw_aff: arg0 = multi_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_pw_aff: arg1 = multi_pw_aff(arg1) except: return multi_union_pw_aff(arg0).flat_range_product(arg1) ctx = arg0.ctx res = isl.isl_multi_pw_aff_flat_range_product(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=ctx, ptr=res) def product(arg0, arg1): try: if not arg0.__class__ is multi_pw_aff: arg0 = multi_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_pw_aff: arg1 = multi_pw_aff(arg1) except: return multi_union_pw_aff(arg0).product(arg1) ctx = arg0.ctx res = isl.isl_multi_pw_aff_product(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is multi_aff: res = isl.isl_multi_pw_aff_pullback_multi_aff(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=arg0.ctx, ptr=res) if arg1.__class__ is pw_multi_aff: res = isl.isl_multi_pw_aff_pullback_pw_multi_aff(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=arg0.ctx, ptr=res) if arg1.__class__ is multi_pw_aff: res = isl.isl_multi_pw_aff_pullback_multi_pw_aff(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=arg0.ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is multi_pw_aff: arg0 = multi_pw_aff(arg0) except: raise try: if not arg1.__class__ is multi_pw_aff: arg1 = multi_pw_aff(arg1) except: return multi_union_pw_aff(arg0).range_product(arg1) ctx = arg0.ctx res = isl.isl_multi_pw_aff_range_product(isl.isl_multi_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return multi_pw_aff(ctx=ctx, ptr=res) isl.isl_multi_pw_aff_from_pw_multi_aff.restype = c_void_p isl.isl_multi_pw_aff_from_pw_multi_aff.argtypes = [c_void_p] isl.isl_multi_pw_aff_read_from_str.restype = c_void_p isl.isl_multi_pw_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_multi_pw_aff_from_multi_aff.restype = c_void_p isl.isl_multi_pw_aff_from_multi_aff.argtypes = [c_void_p] isl.isl_multi_pw_aff_from_pw_aff.restype = c_void_p isl.isl_multi_pw_aff_from_pw_aff.argtypes = [c_void_p] isl.isl_multi_pw_aff_add.restype = c_void_p isl.isl_multi_pw_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_flat_range_product.restype = c_void_p isl.isl_multi_pw_aff_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_product.restype = c_void_p isl.isl_multi_pw_aff_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_pullback_multi_aff.restype = c_void_p isl.isl_multi_pw_aff_pullback_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_pullback_pw_multi_aff.restype = c_void_p isl.isl_multi_pw_aff_pullback_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_pullback_multi_pw_aff.restype = c_void_p isl.isl_multi_pw_aff_pullback_multi_pw_aff.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_range_product.restype = c_void_p isl.isl_multi_pw_aff_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_pw_aff_free.argtypes = [c_void_p] isl.isl_multi_pw_aff_to_str.argtypes = [c_void_p] isl.isl_multi_pw_aff_to_str.restype = POINTER(c_char) class pw_multi_aff(multi_pw_aff, union_pw_multi_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is multi_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_pw_multi_aff_from_multi_aff(isl.isl_multi_aff_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is pw_aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_pw_multi_aff_from_pw_aff(isl.isl_pw_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_pw_multi_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_pw_multi_aff_free(self.ptr) def __str__(self): ptr = isl.isl_pw_multi_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.pw_multi_aff("""%s""")' % s else: return 'isl.pw_multi_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is pw_multi_aff: arg0 = pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is pw_multi_aff: arg1 = pw_multi_aff(arg1) except: return multi_pw_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_pw_multi_aff_add(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is pw_multi_aff: arg0 = pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is pw_multi_aff: arg1 = pw_multi_aff(arg1) except: return multi_pw_aff(arg0).flat_range_product(arg1) ctx = arg0.ctx res = isl.isl_pw_multi_aff_flat_range_product(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=ctx, ptr=res) def product(arg0, arg1): try: if not arg0.__class__ is pw_multi_aff: arg0 = pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is pw_multi_aff: arg1 = pw_multi_aff(arg1) except: return multi_pw_aff(arg0).product(arg1) ctx = arg0.ctx res = isl.isl_pw_multi_aff_product(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is multi_aff: res = isl.isl_pw_multi_aff_pullback_multi_aff(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=arg0.ctx, ptr=res) if arg1.__class__ is pw_multi_aff: res = isl.isl_pw_multi_aff_pullback_pw_multi_aff(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=arg0.ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is pw_multi_aff: arg0 = pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is pw_multi_aff: arg1 = pw_multi_aff(arg1) except: return multi_pw_aff(arg0).range_product(arg1) ctx = arg0.ctx res = isl.isl_pw_multi_aff_range_product(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=ctx, ptr=res) def union_add(arg0, arg1): try: if not arg0.__class__ is pw_multi_aff: arg0 = pw_multi_aff(arg0) except: raise try: if not arg1.__class__ is pw_multi_aff: arg1 = pw_multi_aff(arg1) except: return multi_pw_aff(arg0).union_add(arg1) ctx = arg0.ctx res = isl.isl_pw_multi_aff_union_add(isl.isl_pw_multi_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_multi_aff(ctx=ctx, ptr=res) isl.isl_pw_multi_aff_from_multi_aff.restype = c_void_p isl.isl_pw_multi_aff_from_multi_aff.argtypes = [c_void_p] isl.isl_pw_multi_aff_from_pw_aff.restype = c_void_p isl.isl_pw_multi_aff_from_pw_aff.argtypes = [c_void_p] isl.isl_pw_multi_aff_read_from_str.restype = c_void_p isl.isl_pw_multi_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_pw_multi_aff_add.restype = c_void_p isl.isl_pw_multi_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_flat_range_product.restype = c_void_p isl.isl_pw_multi_aff_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_product.restype = c_void_p isl.isl_pw_multi_aff_product.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_pullback_multi_aff.restype = c_void_p isl.isl_pw_multi_aff_pullback_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_pullback_pw_multi_aff.restype = c_void_p isl.isl_pw_multi_aff_pullback_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_range_product.restype = c_void_p isl.isl_pw_multi_aff_range_product.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_union_add.restype = c_void_p isl.isl_pw_multi_aff_union_add.argtypes = [c_void_p, c_void_p] isl.isl_pw_multi_aff_free.argtypes = [c_void_p] isl.isl_pw_multi_aff_to_str.argtypes = [c_void_p] isl.isl_pw_multi_aff_to_str.restype = POINTER(c_char) class pw_aff(union_pw_aff, multi_pw_aff, pw_multi_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_pw_aff_from_aff(isl.isl_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_pw_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_pw_aff_free(self.ptr) def __str__(self): ptr = isl.isl_pw_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.pw_aff("""%s""")' % s else: return 'isl.pw_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is pw_aff: arg0 = pw_aff(arg0) except: raise try: if not arg1.__class__ is pw_aff: arg1 = pw_aff(arg1) except: return union_pw_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_pw_aff_add(isl.isl_pw_aff_copy(arg0.ptr), isl.isl_pw_aff_copy(arg1.ptr)) return pw_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is multi_aff: res = isl.isl_pw_aff_pullback_multi_aff(isl.isl_pw_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return pw_aff(ctx=arg0.ctx, ptr=res) if arg1.__class__ is pw_multi_aff: res = isl.isl_pw_aff_pullback_pw_multi_aff(isl.isl_pw_aff_copy(arg0.ptr), isl.isl_pw_multi_aff_copy(arg1.ptr)) return pw_aff(ctx=arg0.ctx, ptr=res) if arg1.__class__ is multi_pw_aff: res = isl.isl_pw_aff_pullback_multi_pw_aff(isl.isl_pw_aff_copy(arg0.ptr), isl.isl_multi_pw_aff_copy(arg1.ptr)) return pw_aff(ctx=arg0.ctx, ptr=res) def union_add(arg0, arg1): try: if not arg0.__class__ is pw_aff: arg0 = pw_aff(arg0) except: raise try: if not arg1.__class__ is pw_aff: arg1 = pw_aff(arg1) except: return union_pw_aff(arg0).union_add(arg1) ctx = arg0.ctx res = isl.isl_pw_aff_union_add(isl.isl_pw_aff_copy(arg0.ptr), isl.isl_pw_aff_copy(arg1.ptr)) return pw_aff(ctx=ctx, ptr=res) isl.isl_pw_aff_from_aff.restype = c_void_p isl.isl_pw_aff_from_aff.argtypes = [c_void_p] isl.isl_pw_aff_read_from_str.restype = c_void_p isl.isl_pw_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_pw_aff_add.restype = c_void_p isl.isl_pw_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_pw_aff_pullback_multi_aff.restype = c_void_p isl.isl_pw_aff_pullback_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_pw_aff_pullback_pw_multi_aff.restype = c_void_p isl.isl_pw_aff_pullback_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_pw_aff_pullback_multi_pw_aff.restype = c_void_p isl.isl_pw_aff_pullback_multi_pw_aff.argtypes = [c_void_p, c_void_p] isl.isl_pw_aff_union_add.restype = c_void_p isl.isl_pw_aff_union_add.argtypes = [c_void_p, c_void_p] isl.isl_pw_aff_free.argtypes = [c_void_p] isl.isl_pw_aff_to_str.argtypes = [c_void_p] isl.isl_pw_aff_to_str.restype = POINTER(c_char) class multi_aff(multi_pw_aff, pw_multi_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is aff: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_aff_from_aff(isl.isl_aff_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_multi_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_multi_aff_free(self.ptr) def __str__(self): ptr = isl.isl_multi_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.multi_aff("""%s""")' % s else: return 'isl.multi_aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is multi_aff: arg0 = multi_aff(arg0) except: raise try: if not arg1.__class__ is multi_aff: arg1 = multi_aff(arg1) except: return multi_pw_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_multi_aff_add(isl.isl_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_aff(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is multi_aff: arg0 = multi_aff(arg0) except: raise try: if not arg1.__class__ is multi_aff: arg1 = multi_aff(arg1) except: return multi_pw_aff(arg0).flat_range_product(arg1) ctx = arg0.ctx res = isl.isl_multi_aff_flat_range_product(isl.isl_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_aff(ctx=ctx, ptr=res) def product(arg0, arg1): try: if not arg0.__class__ is multi_aff: arg0 = multi_aff(arg0) except: raise try: if not arg1.__class__ is multi_aff: arg1 = multi_aff(arg1) except: return multi_pw_aff(arg0).product(arg1) ctx = arg0.ctx res = isl.isl_multi_aff_product(isl.isl_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is multi_aff: res = isl.isl_multi_aff_pullback_multi_aff(isl.isl_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_aff(ctx=arg0.ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is multi_aff: arg0 = multi_aff(arg0) except: raise try: if not arg1.__class__ is multi_aff: arg1 = multi_aff(arg1) except: return multi_pw_aff(arg0).range_product(arg1) ctx = arg0.ctx res = isl.isl_multi_aff_range_product(isl.isl_multi_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return multi_aff(ctx=ctx, ptr=res) isl.isl_multi_aff_from_aff.restype = c_void_p isl.isl_multi_aff_from_aff.argtypes = [c_void_p] isl.isl_multi_aff_read_from_str.restype = c_void_p isl.isl_multi_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_multi_aff_add.restype = c_void_p isl.isl_multi_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_multi_aff_flat_range_product.restype = c_void_p isl.isl_multi_aff_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_aff_product.restype = c_void_p isl.isl_multi_aff_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_aff_pullback_multi_aff.restype = c_void_p isl.isl_multi_aff_pullback_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_multi_aff_range_product.restype = c_void_p isl.isl_multi_aff_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_aff_free.argtypes = [c_void_p] isl.isl_multi_aff_to_str.argtypes = [c_void_p] isl.isl_multi_aff_to_str.restype = POINTER(c_char) class aff(pw_aff, multi_aff): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_aff_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_aff_free(self.ptr) def __str__(self): ptr = isl.isl_aff_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.aff("""%s""")' % s else: return 'isl.aff("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is aff: arg0 = aff(arg0) except: raise try: if not arg1.__class__ is aff: arg1 = aff(arg1) except: return pw_aff(arg0).add(arg1) ctx = arg0.ctx res = isl.isl_aff_add(isl.isl_aff_copy(arg0.ptr), isl.isl_aff_copy(arg1.ptr)) return aff(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is multi_aff: res = isl.isl_aff_pullback_multi_aff(isl.isl_aff_copy(arg0.ptr), isl.isl_multi_aff_copy(arg1.ptr)) return aff(ctx=arg0.ctx, ptr=res) isl.isl_aff_read_from_str.restype = c_void_p isl.isl_aff_read_from_str.argtypes = [Context, c_char_p] isl.isl_aff_add.restype = c_void_p isl.isl_aff_add.argtypes = [c_void_p, c_void_p] isl.isl_aff_pullback_multi_aff.restype = c_void_p isl.isl_aff_pullback_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_aff_free.argtypes = [c_void_p] isl.isl_aff_to_str.argtypes = [c_void_p] isl.isl_aff_to_str.restype = POINTER(c_char) class union_map: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is basic_map: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_map_from_basic_map(isl.isl_basic_map_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is map: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_map_from_map(isl.isl_map_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_map_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_map_free(self.ptr) def __str__(self): ptr = isl.isl_union_map_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_map("""%s""")' % s else: return 'isl.union_map("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_affine_hull(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def apply_domain(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_apply_domain(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def apply_range(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_apply_range(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def coalesce(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_coalesce(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def compute_divs(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_compute_divs(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def deltas(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_deltas(isl.isl_union_map_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_detect_equalities(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def domain(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain(isl.isl_union_map_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def domain_factor_domain(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain_factor_domain(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def domain_factor_range(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain_factor_range(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def domain_map(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain_map(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def domain_map_union_pw_multi_aff(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain_map_union_pw_multi_aff(isl.isl_union_map_copy(arg0.ptr)) return union_pw_multi_aff(ctx=ctx, ptr=res) def domain_product(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_domain_product(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def factor_domain(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_factor_domain(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def factor_range(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_factor_range(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def fixed_power(arg0, arg1): if arg1.__class__ is val: res = isl.isl_union_map_fixed_power_val(isl.isl_union_map_copy(arg0.ptr), isl.isl_val_copy(arg1.ptr)) return union_map(ctx=arg0.ctx, ptr=res) def foreach_map(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise exc_info = [None] fn = CFUNCTYPE(c_int, c_void_p, c_void_p) def cb_func(cb_arg0, cb_arg1): cb_arg0 = map(ctx=arg0.ctx, ptr=cb_arg0) try: arg1(cb_arg0) except: import sys exc_info[0] = sys.exc_info() return -1 return 0 cb = fn(cb_func) ctx = arg0.ctx res = isl.isl_union_map_foreach_map(arg0.ptr, cb, None) if exc_info[0] != None: raise exc_info[0][0], exc_info[0][1], exc_info[0][2] return res @staticmethod def convert_from(arg0): if arg0.__class__ is union_pw_multi_aff: res = isl.isl_union_map_from_union_pw_multi_aff(isl.isl_union_pw_multi_aff_copy(arg0.ptr)) return union_map(ctx=arg0.ctx, ptr=res) if arg0.__class__ is multi_union_pw_aff: res = isl.isl_union_map_from_multi_union_pw_aff(isl.isl_multi_union_pw_aff_copy(arg0.ptr)) return union_map(ctx=arg0.ctx, ptr=res) @staticmethod def from_domain_and_range(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_from_domain_and_range(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def gist(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_gist(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def gist_domain(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_gist_domain(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def gist_params(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_gist_params(isl.isl_union_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def gist_range(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_gist_range(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_intersect(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def intersect_domain(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_intersect_domain(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def intersect_params(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_intersect_params(isl.isl_union_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def intersect_range(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_intersect_range(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def is_bijective(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_bijective(arg0.ptr) if res < 0: raise return bool(res) def is_empty(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_injective(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_injective(arg0.ptr) if res < 0: raise return bool(res) def is_single_valued(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_single_valued(arg0.ptr) if res < 0: raise return bool(res) def is_strict_subset(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_strict_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_lexmax(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_lexmin(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def polyhedral_hull(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_polyhedral_hull(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def product(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_product(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def range(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_range(isl.isl_union_map_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def range_factor_domain(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_range_factor_domain(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def range_factor_range(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_range_factor_range(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def range_map(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_range_map(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_range_product(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def reverse(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_reverse(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def subtract(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_subtract(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def subtract_domain(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_subtract_domain(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def subtract_range(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_subtract_range(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_map_union(isl.isl_union_map_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_map(ctx=ctx, ptr=res) def wrap(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_wrap(isl.isl_union_map_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def zip(arg0): try: if not arg0.__class__ is union_map: arg0 = union_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_map_zip(isl.isl_union_map_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) isl.isl_union_map_from_basic_map.restype = c_void_p isl.isl_union_map_from_basic_map.argtypes = [c_void_p] isl.isl_union_map_from_map.restype = c_void_p isl.isl_union_map_from_map.argtypes = [c_void_p] isl.isl_union_map_read_from_str.restype = c_void_p isl.isl_union_map_read_from_str.argtypes = [Context, c_char_p] isl.isl_union_map_affine_hull.restype = c_void_p isl.isl_union_map_affine_hull.argtypes = [c_void_p] isl.isl_union_map_apply_domain.restype = c_void_p isl.isl_union_map_apply_domain.argtypes = [c_void_p, c_void_p] isl.isl_union_map_apply_range.restype = c_void_p isl.isl_union_map_apply_range.argtypes = [c_void_p, c_void_p] isl.isl_union_map_coalesce.restype = c_void_p isl.isl_union_map_coalesce.argtypes = [c_void_p] isl.isl_union_map_compute_divs.restype = c_void_p isl.isl_union_map_compute_divs.argtypes = [c_void_p] isl.isl_union_map_deltas.restype = c_void_p isl.isl_union_map_deltas.argtypes = [c_void_p] isl.isl_union_map_detect_equalities.restype = c_void_p isl.isl_union_map_detect_equalities.argtypes = [c_void_p] isl.isl_union_map_domain.restype = c_void_p isl.isl_union_map_domain.argtypes = [c_void_p] isl.isl_union_map_domain_factor_domain.restype = c_void_p isl.isl_union_map_domain_factor_domain.argtypes = [c_void_p] isl.isl_union_map_domain_factor_range.restype = c_void_p isl.isl_union_map_domain_factor_range.argtypes = [c_void_p] isl.isl_union_map_domain_map.restype = c_void_p isl.isl_union_map_domain_map.argtypes = [c_void_p] isl.isl_union_map_domain_map_union_pw_multi_aff.restype = c_void_p isl.isl_union_map_domain_map_union_pw_multi_aff.argtypes = [c_void_p] isl.isl_union_map_domain_product.restype = c_void_p isl.isl_union_map_domain_product.argtypes = [c_void_p, c_void_p] isl.isl_union_map_factor_domain.restype = c_void_p isl.isl_union_map_factor_domain.argtypes = [c_void_p] isl.isl_union_map_factor_range.restype = c_void_p isl.isl_union_map_factor_range.argtypes = [c_void_p] isl.isl_union_map_fixed_power_val.restype = c_void_p isl.isl_union_map_fixed_power_val.argtypes = [c_void_p, c_void_p] isl.isl_union_map_foreach_map.argtypes = [c_void_p, c_void_p, c_void_p] isl.isl_union_map_from_union_pw_multi_aff.restype = c_void_p isl.isl_union_map_from_union_pw_multi_aff.argtypes = [c_void_p] isl.isl_union_map_from_multi_union_pw_aff.restype = c_void_p isl.isl_union_map_from_multi_union_pw_aff.argtypes = [c_void_p] isl.isl_union_map_from_domain_and_range.restype = c_void_p isl.isl_union_map_from_domain_and_range.argtypes = [c_void_p, c_void_p] isl.isl_union_map_gist.restype = c_void_p isl.isl_union_map_gist.argtypes = [c_void_p, c_void_p] isl.isl_union_map_gist_domain.restype = c_void_p isl.isl_union_map_gist_domain.argtypes = [c_void_p, c_void_p] isl.isl_union_map_gist_params.restype = c_void_p isl.isl_union_map_gist_params.argtypes = [c_void_p, c_void_p] isl.isl_union_map_gist_range.restype = c_void_p isl.isl_union_map_gist_range.argtypes = [c_void_p, c_void_p] isl.isl_union_map_intersect.restype = c_void_p isl.isl_union_map_intersect.argtypes = [c_void_p, c_void_p] isl.isl_union_map_intersect_domain.restype = c_void_p isl.isl_union_map_intersect_domain.argtypes = [c_void_p, c_void_p] isl.isl_union_map_intersect_params.restype = c_void_p isl.isl_union_map_intersect_params.argtypes = [c_void_p, c_void_p] isl.isl_union_map_intersect_range.restype = c_void_p isl.isl_union_map_intersect_range.argtypes = [c_void_p, c_void_p] isl.isl_union_map_is_bijective.restype = c_bool isl.isl_union_map_is_bijective.argtypes = [c_void_p] isl.isl_union_map_is_empty.restype = c_bool isl.isl_union_map_is_empty.argtypes = [c_void_p] isl.isl_union_map_is_equal.restype = c_bool isl.isl_union_map_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_union_map_is_injective.restype = c_bool isl.isl_union_map_is_injective.argtypes = [c_void_p] isl.isl_union_map_is_single_valued.restype = c_bool isl.isl_union_map_is_single_valued.argtypes = [c_void_p] isl.isl_union_map_is_strict_subset.restype = c_bool isl.isl_union_map_is_strict_subset.argtypes = [c_void_p, c_void_p] isl.isl_union_map_is_subset.restype = c_bool isl.isl_union_map_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_union_map_lexmax.restype = c_void_p isl.isl_union_map_lexmax.argtypes = [c_void_p] isl.isl_union_map_lexmin.restype = c_void_p isl.isl_union_map_lexmin.argtypes = [c_void_p] isl.isl_union_map_polyhedral_hull.restype = c_void_p isl.isl_union_map_polyhedral_hull.argtypes = [c_void_p] isl.isl_union_map_product.restype = c_void_p isl.isl_union_map_product.argtypes = [c_void_p, c_void_p] isl.isl_union_map_range.restype = c_void_p isl.isl_union_map_range.argtypes = [c_void_p] isl.isl_union_map_range_factor_domain.restype = c_void_p isl.isl_union_map_range_factor_domain.argtypes = [c_void_p] isl.isl_union_map_range_factor_range.restype = c_void_p isl.isl_union_map_range_factor_range.argtypes = [c_void_p] isl.isl_union_map_range_map.restype = c_void_p isl.isl_union_map_range_map.argtypes = [c_void_p] isl.isl_union_map_range_product.restype = c_void_p isl.isl_union_map_range_product.argtypes = [c_void_p, c_void_p] isl.isl_union_map_reverse.restype = c_void_p isl.isl_union_map_reverse.argtypes = [c_void_p] isl.isl_union_map_subtract.restype = c_void_p isl.isl_union_map_subtract.argtypes = [c_void_p, c_void_p] isl.isl_union_map_subtract_domain.restype = c_void_p isl.isl_union_map_subtract_domain.argtypes = [c_void_p, c_void_p] isl.isl_union_map_subtract_range.restype = c_void_p isl.isl_union_map_subtract_range.argtypes = [c_void_p, c_void_p] isl.isl_union_map_union.restype = c_void_p isl.isl_union_map_union.argtypes = [c_void_p, c_void_p] isl.isl_union_map_wrap.restype = c_void_p isl.isl_union_map_wrap.argtypes = [c_void_p] isl.isl_union_map_zip.restype = c_void_p isl.isl_union_map_zip.argtypes = [c_void_p] isl.isl_union_map_free.argtypes = [c_void_p] isl.isl_union_map_to_str.argtypes = [c_void_p] isl.isl_union_map_to_str.restype = POINTER(c_char) class map(union_map): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is basic_map: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_map_from_basic_map(isl.isl_basic_map_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_map_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_map_free(self.ptr) def __str__(self): ptr = isl.isl_map_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.map("""%s""")' % s else: return 'isl.map("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_affine_hull(isl.isl_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def apply_domain(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).apply_domain(arg1) ctx = arg0.ctx res = isl.isl_map_apply_domain(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def apply_range(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).apply_range(arg1) ctx = arg0.ctx res = isl.isl_map_apply_range(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def coalesce(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_coalesce(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def complement(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_complement(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def deltas(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_deltas(isl.isl_map_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_detect_equalities(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def flatten(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_flatten(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def flatten_domain(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_flatten_domain(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def flatten_range(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_flatten_range(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def foreach_basic_map(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise exc_info = [None] fn = CFUNCTYPE(c_int, c_void_p, c_void_p) def cb_func(cb_arg0, cb_arg1): cb_arg0 = basic_map(ctx=arg0.ctx, ptr=cb_arg0) try: arg1(cb_arg0) except: import sys exc_info[0] = sys.exc_info() return -1 return 0 cb = fn(cb_func) ctx = arg0.ctx res = isl.isl_map_foreach_basic_map(arg0.ptr, cb, None) if exc_info[0] != None: raise exc_info[0][0], exc_info[0][1], exc_info[0][2] return res def gist(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).gist(arg1) ctx = arg0.ctx res = isl.isl_map_gist(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def gist_domain(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_map(arg0).gist_domain(arg1) ctx = arg0.ctx res = isl.isl_map_gist_domain(isl.isl_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).intersect(arg1) ctx = arg0.ctx res = isl.isl_map_intersect(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def intersect_domain(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_map(arg0).intersect_domain(arg1) ctx = arg0.ctx res = isl.isl_map_intersect_domain(isl.isl_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def intersect_params(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_map(arg0).intersect_params(arg1) ctx = arg0.ctx res = isl.isl_map_intersect_params(isl.isl_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def intersect_range(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_map(arg0).intersect_range(arg1) ctx = arg0.ctx res = isl.isl_map_intersect_range(isl.isl_map_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def is_bijective(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_is_bijective(arg0.ptr) if res < 0: raise return bool(res) def is_disjoint(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).is_disjoint(arg1) ctx = arg0.ctx res = isl.isl_map_is_disjoint(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_empty(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).is_equal(arg1) ctx = arg0.ctx res = isl.isl_map_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_injective(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_is_injective(arg0.ptr) if res < 0: raise return bool(res) def is_single_valued(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_is_single_valued(arg0.ptr) if res < 0: raise return bool(res) def is_strict_subset(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).is_strict_subset(arg1) ctx = arg0.ctx res = isl.isl_map_is_strict_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).is_subset(arg1) ctx = arg0.ctx res = isl.isl_map_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_lexmax(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_lexmin(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def polyhedral_hull(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_polyhedral_hull(isl.isl_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def reverse(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_reverse(isl.isl_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def sample(arg0): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise ctx = arg0.ctx res = isl.isl_map_sample(isl.isl_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def subtract(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).subtract(arg1) ctx = arg0.ctx res = isl.isl_map_subtract(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is map: arg0 = map(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_map(arg0).union(arg1) ctx = arg0.ctx res = isl.isl_map_union(isl.isl_map_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) isl.isl_map_from_basic_map.restype = c_void_p isl.isl_map_from_basic_map.argtypes = [c_void_p] isl.isl_map_read_from_str.restype = c_void_p isl.isl_map_read_from_str.argtypes = [Context, c_char_p] isl.isl_map_affine_hull.restype = c_void_p isl.isl_map_affine_hull.argtypes = [c_void_p] isl.isl_map_apply_domain.restype = c_void_p isl.isl_map_apply_domain.argtypes = [c_void_p, c_void_p] isl.isl_map_apply_range.restype = c_void_p isl.isl_map_apply_range.argtypes = [c_void_p, c_void_p] isl.isl_map_coalesce.restype = c_void_p isl.isl_map_coalesce.argtypes = [c_void_p] isl.isl_map_complement.restype = c_void_p isl.isl_map_complement.argtypes = [c_void_p] isl.isl_map_deltas.restype = c_void_p isl.isl_map_deltas.argtypes = [c_void_p] isl.isl_map_detect_equalities.restype = c_void_p isl.isl_map_detect_equalities.argtypes = [c_void_p] isl.isl_map_flatten.restype = c_void_p isl.isl_map_flatten.argtypes = [c_void_p] isl.isl_map_flatten_domain.restype = c_void_p isl.isl_map_flatten_domain.argtypes = [c_void_p] isl.isl_map_flatten_range.restype = c_void_p isl.isl_map_flatten_range.argtypes = [c_void_p] isl.isl_map_foreach_basic_map.argtypes = [c_void_p, c_void_p, c_void_p] isl.isl_map_gist.restype = c_void_p isl.isl_map_gist.argtypes = [c_void_p, c_void_p] isl.isl_map_gist_domain.restype = c_void_p isl.isl_map_gist_domain.argtypes = [c_void_p, c_void_p] isl.isl_map_intersect.restype = c_void_p isl.isl_map_intersect.argtypes = [c_void_p, c_void_p] isl.isl_map_intersect_domain.restype = c_void_p isl.isl_map_intersect_domain.argtypes = [c_void_p, c_void_p] isl.isl_map_intersect_params.restype = c_void_p isl.isl_map_intersect_params.argtypes = [c_void_p, c_void_p] isl.isl_map_intersect_range.restype = c_void_p isl.isl_map_intersect_range.argtypes = [c_void_p, c_void_p] isl.isl_map_is_bijective.restype = c_bool isl.isl_map_is_bijective.argtypes = [c_void_p] isl.isl_map_is_disjoint.restype = c_bool isl.isl_map_is_disjoint.argtypes = [c_void_p, c_void_p] isl.isl_map_is_empty.restype = c_bool isl.isl_map_is_empty.argtypes = [c_void_p] isl.isl_map_is_equal.restype = c_bool isl.isl_map_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_map_is_injective.restype = c_bool isl.isl_map_is_injective.argtypes = [c_void_p] isl.isl_map_is_single_valued.restype = c_bool isl.isl_map_is_single_valued.argtypes = [c_void_p] isl.isl_map_is_strict_subset.restype = c_bool isl.isl_map_is_strict_subset.argtypes = [c_void_p, c_void_p] isl.isl_map_is_subset.restype = c_bool isl.isl_map_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_map_lexmax.restype = c_void_p isl.isl_map_lexmax.argtypes = [c_void_p] isl.isl_map_lexmin.restype = c_void_p isl.isl_map_lexmin.argtypes = [c_void_p] isl.isl_map_polyhedral_hull.restype = c_void_p isl.isl_map_polyhedral_hull.argtypes = [c_void_p] isl.isl_map_reverse.restype = c_void_p isl.isl_map_reverse.argtypes = [c_void_p] isl.isl_map_sample.restype = c_void_p isl.isl_map_sample.argtypes = [c_void_p] isl.isl_map_subtract.restype = c_void_p isl.isl_map_subtract.argtypes = [c_void_p, c_void_p] isl.isl_map_union.restype = c_void_p isl.isl_map_union.argtypes = [c_void_p, c_void_p] isl.isl_map_free.argtypes = [c_void_p] isl.isl_map_to_str.argtypes = [c_void_p] isl.isl_map_to_str.restype = POINTER(c_char) class basic_map(map): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_basic_map_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_basic_map_free(self.ptr) def __str__(self): ptr = isl.isl_basic_map_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.basic_map("""%s""")' % s else: return 'isl.basic_map("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_affine_hull(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def apply_domain(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).apply_domain(arg1) ctx = arg0.ctx res = isl.isl_basic_map_apply_domain(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def apply_range(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).apply_range(arg1) ctx = arg0.ctx res = isl.isl_basic_map_apply_range(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def deltas(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_deltas(isl.isl_basic_map_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_detect_equalities(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def flatten(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_flatten(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def flatten_domain(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_flatten_domain(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def flatten_range(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_flatten_range(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def gist(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).gist(arg1) ctx = arg0.ctx res = isl.isl_basic_map_gist(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).intersect(arg1) ctx = arg0.ctx res = isl.isl_basic_map_intersect(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def intersect_domain(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return map(arg0).intersect_domain(arg1) ctx = arg0.ctx res = isl.isl_basic_map_intersect_domain(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def intersect_range(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return map(arg0).intersect_range(arg1) ctx = arg0.ctx res = isl.isl_basic_map_intersect_range(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return basic_map(ctx=ctx, ptr=res) def is_empty(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).is_equal(arg1) ctx = arg0.ctx res = isl.isl_basic_map_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).is_subset(arg1) ctx = arg0.ctx res = isl.isl_basic_map_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_lexmax(isl.isl_basic_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_lexmin(isl.isl_basic_map_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def reverse(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_reverse(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def sample(arg0): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_map_sample(isl.isl_basic_map_copy(arg0.ptr)) return basic_map(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is basic_map: arg0 = basic_map(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return map(arg0).union(arg1) ctx = arg0.ctx res = isl.isl_basic_map_union(isl.isl_basic_map_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return map(ctx=ctx, ptr=res) isl.isl_basic_map_read_from_str.restype = c_void_p isl.isl_basic_map_read_from_str.argtypes = [Context, c_char_p] isl.isl_basic_map_affine_hull.restype = c_void_p isl.isl_basic_map_affine_hull.argtypes = [c_void_p] isl.isl_basic_map_apply_domain.restype = c_void_p isl.isl_basic_map_apply_domain.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_apply_range.restype = c_void_p isl.isl_basic_map_apply_range.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_deltas.restype = c_void_p isl.isl_basic_map_deltas.argtypes = [c_void_p] isl.isl_basic_map_detect_equalities.restype = c_void_p isl.isl_basic_map_detect_equalities.argtypes = [c_void_p] isl.isl_basic_map_flatten.restype = c_void_p isl.isl_basic_map_flatten.argtypes = [c_void_p] isl.isl_basic_map_flatten_domain.restype = c_void_p isl.isl_basic_map_flatten_domain.argtypes = [c_void_p] isl.isl_basic_map_flatten_range.restype = c_void_p isl.isl_basic_map_flatten_range.argtypes = [c_void_p] isl.isl_basic_map_gist.restype = c_void_p isl.isl_basic_map_gist.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_intersect.restype = c_void_p isl.isl_basic_map_intersect.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_intersect_domain.restype = c_void_p isl.isl_basic_map_intersect_domain.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_intersect_range.restype = c_void_p isl.isl_basic_map_intersect_range.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_is_empty.restype = c_bool isl.isl_basic_map_is_empty.argtypes = [c_void_p] isl.isl_basic_map_is_equal.restype = c_bool isl.isl_basic_map_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_is_subset.restype = c_bool isl.isl_basic_map_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_lexmax.restype = c_void_p isl.isl_basic_map_lexmax.argtypes = [c_void_p] isl.isl_basic_map_lexmin.restype = c_void_p isl.isl_basic_map_lexmin.argtypes = [c_void_p] isl.isl_basic_map_reverse.restype = c_void_p isl.isl_basic_map_reverse.argtypes = [c_void_p] isl.isl_basic_map_sample.restype = c_void_p isl.isl_basic_map_sample.argtypes = [c_void_p] isl.isl_basic_map_union.restype = c_void_p isl.isl_basic_map_union.argtypes = [c_void_p, c_void_p] isl.isl_basic_map_free.argtypes = [c_void_p] isl.isl_basic_map_to_str.argtypes = [c_void_p] isl.isl_basic_map_to_str.restype = POINTER(c_char) class union_set: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is basic_set: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_set_from_basic_set(isl.isl_basic_set_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is set: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_set_from_set(isl.isl_set_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is point: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_set_from_point(isl.isl_point_copy(args[0].ptr)) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_set_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_set_free(self.ptr) def __str__(self): ptr = isl.isl_union_set_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_set("""%s""")' % s else: return 'isl.union_set("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_affine_hull(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def apply(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_apply(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def coalesce(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_coalesce(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def compute_divs(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_compute_divs(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_detect_equalities(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def foreach_point(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise exc_info = [None] fn = CFUNCTYPE(c_int, c_void_p, c_void_p) def cb_func(cb_arg0, cb_arg1): cb_arg0 = point(ctx=arg0.ctx, ptr=cb_arg0) try: arg1(cb_arg0) except: import sys exc_info[0] = sys.exc_info() return -1 return 0 cb = fn(cb_func) ctx = arg0.ctx res = isl.isl_union_set_foreach_point(arg0.ptr, cb, None) if exc_info[0] != None: raise exc_info[0][0], exc_info[0][1], exc_info[0][2] return res def foreach_set(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise exc_info = [None] fn = CFUNCTYPE(c_int, c_void_p, c_void_p) def cb_func(cb_arg0, cb_arg1): cb_arg0 = set(ctx=arg0.ctx, ptr=cb_arg0) try: arg1(cb_arg0) except: import sys exc_info[0] = sys.exc_info() return -1 return 0 cb = fn(cb_func) ctx = arg0.ctx res = isl.isl_union_set_foreach_set(arg0.ptr, cb, None) if exc_info[0] != None: raise exc_info[0][0], exc_info[0][1], exc_info[0][2] return res def gist(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_gist(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def gist_params(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_gist_params(isl.isl_union_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def identity(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_identity(isl.isl_union_set_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_intersect(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def intersect_params(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_intersect_params(isl.isl_union_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def is_empty(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_strict_subset(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_is_strict_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_lexmax(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_lexmin(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def polyhedral_hull(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_polyhedral_hull(isl.isl_union_set_copy(arg0.ptr)) return union_set(ctx=ctx, ptr=res) def sample_point(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_sample_point(isl.isl_union_set_copy(arg0.ptr)) return point(ctx=ctx, ptr=res) def subtract(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_subtract(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise try: if not arg1.__class__ is union_set: arg1 = union_set(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_set_union(isl.isl_union_set_copy(arg0.ptr), isl.isl_union_set_copy(arg1.ptr)) return union_set(ctx=ctx, ptr=res) def unwrap(arg0): try: if not arg0.__class__ is union_set: arg0 = union_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_set_unwrap(isl.isl_union_set_copy(arg0.ptr)) return union_map(ctx=ctx, ptr=res) isl.isl_union_set_from_basic_set.restype = c_void_p isl.isl_union_set_from_basic_set.argtypes = [c_void_p] isl.isl_union_set_from_set.restype = c_void_p isl.isl_union_set_from_set.argtypes = [c_void_p] isl.isl_union_set_from_point.restype = c_void_p isl.isl_union_set_from_point.argtypes = [c_void_p] isl.isl_union_set_read_from_str.restype = c_void_p isl.isl_union_set_read_from_str.argtypes = [Context, c_char_p] isl.isl_union_set_affine_hull.restype = c_void_p isl.isl_union_set_affine_hull.argtypes = [c_void_p] isl.isl_union_set_apply.restype = c_void_p isl.isl_union_set_apply.argtypes = [c_void_p, c_void_p] isl.isl_union_set_coalesce.restype = c_void_p isl.isl_union_set_coalesce.argtypes = [c_void_p] isl.isl_union_set_compute_divs.restype = c_void_p isl.isl_union_set_compute_divs.argtypes = [c_void_p] isl.isl_union_set_detect_equalities.restype = c_void_p isl.isl_union_set_detect_equalities.argtypes = [c_void_p] isl.isl_union_set_foreach_point.argtypes = [c_void_p, c_void_p, c_void_p] isl.isl_union_set_foreach_set.argtypes = [c_void_p, c_void_p, c_void_p] isl.isl_union_set_gist.restype = c_void_p isl.isl_union_set_gist.argtypes = [c_void_p, c_void_p] isl.isl_union_set_gist_params.restype = c_void_p isl.isl_union_set_gist_params.argtypes = [c_void_p, c_void_p] isl.isl_union_set_identity.restype = c_void_p isl.isl_union_set_identity.argtypes = [c_void_p] isl.isl_union_set_intersect.restype = c_void_p isl.isl_union_set_intersect.argtypes = [c_void_p, c_void_p] isl.isl_union_set_intersect_params.restype = c_void_p isl.isl_union_set_intersect_params.argtypes = [c_void_p, c_void_p] isl.isl_union_set_is_empty.restype = c_bool isl.isl_union_set_is_empty.argtypes = [c_void_p] isl.isl_union_set_is_equal.restype = c_bool isl.isl_union_set_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_union_set_is_strict_subset.restype = c_bool isl.isl_union_set_is_strict_subset.argtypes = [c_void_p, c_void_p] isl.isl_union_set_is_subset.restype = c_bool isl.isl_union_set_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_union_set_lexmax.restype = c_void_p isl.isl_union_set_lexmax.argtypes = [c_void_p] isl.isl_union_set_lexmin.restype = c_void_p isl.isl_union_set_lexmin.argtypes = [c_void_p] isl.isl_union_set_polyhedral_hull.restype = c_void_p isl.isl_union_set_polyhedral_hull.argtypes = [c_void_p] isl.isl_union_set_sample_point.restype = c_void_p isl.isl_union_set_sample_point.argtypes = [c_void_p] isl.isl_union_set_subtract.restype = c_void_p isl.isl_union_set_subtract.argtypes = [c_void_p, c_void_p] isl.isl_union_set_union.restype = c_void_p isl.isl_union_set_union.argtypes = [c_void_p, c_void_p] isl.isl_union_set_unwrap.restype = c_void_p isl.isl_union_set_unwrap.argtypes = [c_void_p] isl.isl_union_set_free.argtypes = [c_void_p] isl.isl_union_set_to_str.argtypes = [c_void_p] isl.isl_union_set_to_str.restype = POINTER(c_char) class set(union_set): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_set_read_from_str(self.ctx, args[0]) return if len(args) == 1 and args[0].__class__ is basic_set: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_set_from_basic_set(isl.isl_basic_set_copy(args[0].ptr)) return if len(args) == 1 and args[0].__class__ is point: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_set_from_point(isl.isl_point_copy(args[0].ptr)) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_set_free(self.ptr) def __str__(self): ptr = isl.isl_set_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.set("""%s""")' % s else: return 'isl.set("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_affine_hull(isl.isl_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def apply(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is map: arg1 = map(arg1) except: return union_set(arg0).apply(arg1) ctx = arg0.ctx res = isl.isl_set_apply(isl.isl_set_copy(arg0.ptr), isl.isl_map_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) def coalesce(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_coalesce(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def complement(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_complement(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_detect_equalities(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def flatten(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_flatten(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def foreach_basic_set(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise exc_info = [None] fn = CFUNCTYPE(c_int, c_void_p, c_void_p) def cb_func(cb_arg0, cb_arg1): cb_arg0 = basic_set(ctx=arg0.ctx, ptr=cb_arg0) try: arg1(cb_arg0) except: import sys exc_info[0] = sys.exc_info() return -1 return 0 cb = fn(cb_func) ctx = arg0.ctx res = isl.isl_set_foreach_basic_set(arg0.ptr, cb, None) if exc_info[0] != None: raise exc_info[0][0], exc_info[0][1], exc_info[0][2] return res def gist(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).gist(arg1) ctx = arg0.ctx res = isl.isl_set_gist(isl.isl_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) def identity(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_identity(isl.isl_set_copy(arg0.ptr)) return map(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).intersect(arg1) ctx = arg0.ctx res = isl.isl_set_intersect(isl.isl_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) def intersect_params(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).intersect_params(arg1) ctx = arg0.ctx res = isl.isl_set_intersect_params(isl.isl_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) def is_disjoint(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).is_disjoint(arg1) ctx = arg0.ctx res = isl.isl_set_is_disjoint(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_empty(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).is_equal(arg1) ctx = arg0.ctx res = isl.isl_set_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_strict_subset(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).is_strict_subset(arg1) ctx = arg0.ctx res = isl.isl_set_is_strict_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).is_subset(arg1) ctx = arg0.ctx res = isl.isl_set_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_wrapping(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_is_wrapping(arg0.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_lexmax(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_lexmin(isl.isl_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def polyhedral_hull(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_polyhedral_hull(isl.isl_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def sample(arg0): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise ctx = arg0.ctx res = isl.isl_set_sample(isl.isl_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def subtract(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).subtract(arg1) ctx = arg0.ctx res = isl.isl_set_subtract(isl.isl_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is set: arg0 = set(arg0) except: raise try: if not arg1.__class__ is set: arg1 = set(arg1) except: return union_set(arg0).union(arg1) ctx = arg0.ctx res = isl.isl_set_union(isl.isl_set_copy(arg0.ptr), isl.isl_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) isl.isl_set_read_from_str.restype = c_void_p isl.isl_set_read_from_str.argtypes = [Context, c_char_p] isl.isl_set_from_basic_set.restype = c_void_p isl.isl_set_from_basic_set.argtypes = [c_void_p] isl.isl_set_from_point.restype = c_void_p isl.isl_set_from_point.argtypes = [c_void_p] isl.isl_set_affine_hull.restype = c_void_p isl.isl_set_affine_hull.argtypes = [c_void_p] isl.isl_set_apply.restype = c_void_p isl.isl_set_apply.argtypes = [c_void_p, c_void_p] isl.isl_set_coalesce.restype = c_void_p isl.isl_set_coalesce.argtypes = [c_void_p] isl.isl_set_complement.restype = c_void_p isl.isl_set_complement.argtypes = [c_void_p] isl.isl_set_detect_equalities.restype = c_void_p isl.isl_set_detect_equalities.argtypes = [c_void_p] isl.isl_set_flatten.restype = c_void_p isl.isl_set_flatten.argtypes = [c_void_p] isl.isl_set_foreach_basic_set.argtypes = [c_void_p, c_void_p, c_void_p] isl.isl_set_gist.restype = c_void_p isl.isl_set_gist.argtypes = [c_void_p, c_void_p] isl.isl_set_identity.restype = c_void_p isl.isl_set_identity.argtypes = [c_void_p] isl.isl_set_intersect.restype = c_void_p isl.isl_set_intersect.argtypes = [c_void_p, c_void_p] isl.isl_set_intersect_params.restype = c_void_p isl.isl_set_intersect_params.argtypes = [c_void_p, c_void_p] isl.isl_set_is_disjoint.restype = c_bool isl.isl_set_is_disjoint.argtypes = [c_void_p, c_void_p] isl.isl_set_is_empty.restype = c_bool isl.isl_set_is_empty.argtypes = [c_void_p] isl.isl_set_is_equal.restype = c_bool isl.isl_set_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_set_is_strict_subset.restype = c_bool isl.isl_set_is_strict_subset.argtypes = [c_void_p, c_void_p] isl.isl_set_is_subset.restype = c_bool isl.isl_set_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_set_is_wrapping.restype = c_bool isl.isl_set_is_wrapping.argtypes = [c_void_p] isl.isl_set_lexmax.restype = c_void_p isl.isl_set_lexmax.argtypes = [c_void_p] isl.isl_set_lexmin.restype = c_void_p isl.isl_set_lexmin.argtypes = [c_void_p] isl.isl_set_polyhedral_hull.restype = c_void_p isl.isl_set_polyhedral_hull.argtypes = [c_void_p] isl.isl_set_sample.restype = c_void_p isl.isl_set_sample.argtypes = [c_void_p] isl.isl_set_subtract.restype = c_void_p isl.isl_set_subtract.argtypes = [c_void_p, c_void_p] isl.isl_set_union.restype = c_void_p isl.isl_set_union.argtypes = [c_void_p, c_void_p] isl.isl_set_free.argtypes = [c_void_p] isl.isl_set_to_str.argtypes = [c_void_p] isl.isl_set_to_str.restype = POINTER(c_char) class basic_set(set): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_basic_set_read_from_str(self.ctx, args[0]) return if len(args) == 1 and args[0].__class__ is point: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_basic_set_from_point(isl.isl_point_copy(args[0].ptr)) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_basic_set_free(self.ptr) def __str__(self): ptr = isl.isl_basic_set_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.basic_set("""%s""")' % s else: return 'isl.basic_set("%s")' % s def affine_hull(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_affine_hull(isl.isl_basic_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def apply(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_map: arg1 = basic_map(arg1) except: return set(arg0).apply(arg1) ctx = arg0.ctx res = isl.isl_basic_set_apply(isl.isl_basic_set_copy(arg0.ptr), isl.isl_basic_map_copy(arg1.ptr)) return basic_set(ctx=ctx, ptr=res) def detect_equalities(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_detect_equalities(isl.isl_basic_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def flatten(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_flatten(isl.isl_basic_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def gist(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).gist(arg1) ctx = arg0.ctx res = isl.isl_basic_set_gist(isl.isl_basic_set_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return basic_set(ctx=ctx, ptr=res) def intersect(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).intersect(arg1) ctx = arg0.ctx res = isl.isl_basic_set_intersect(isl.isl_basic_set_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return basic_set(ctx=ctx, ptr=res) def intersect_params(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).intersect_params(arg1) ctx = arg0.ctx res = isl.isl_basic_set_intersect_params(isl.isl_basic_set_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return basic_set(ctx=ctx, ptr=res) def is_empty(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_is_empty(arg0.ptr) if res < 0: raise return bool(res) def is_equal(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).is_equal(arg1) ctx = arg0.ctx res = isl.isl_basic_set_is_equal(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_subset(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).is_subset(arg1) ctx = arg0.ctx res = isl.isl_basic_set_is_subset(arg0.ptr, arg1.ptr) if res < 0: raise return bool(res) def is_wrapping(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_is_wrapping(arg0.ptr) if res < 0: raise return bool(res) def lexmax(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_lexmax(isl.isl_basic_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def lexmin(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_lexmin(isl.isl_basic_set_copy(arg0.ptr)) return set(ctx=ctx, ptr=res) def sample(arg0): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise ctx = arg0.ctx res = isl.isl_basic_set_sample(isl.isl_basic_set_copy(arg0.ptr)) return basic_set(ctx=ctx, ptr=res) def union(arg0, arg1): try: if not arg0.__class__ is basic_set: arg0 = basic_set(arg0) except: raise try: if not arg1.__class__ is basic_set: arg1 = basic_set(arg1) except: return set(arg0).union(arg1) ctx = arg0.ctx res = isl.isl_basic_set_union(isl.isl_basic_set_copy(arg0.ptr), isl.isl_basic_set_copy(arg1.ptr)) return set(ctx=ctx, ptr=res) isl.isl_basic_set_read_from_str.restype = c_void_p isl.isl_basic_set_read_from_str.argtypes = [Context, c_char_p] isl.isl_basic_set_from_point.restype = c_void_p isl.isl_basic_set_from_point.argtypes = [c_void_p] isl.isl_basic_set_affine_hull.restype = c_void_p isl.isl_basic_set_affine_hull.argtypes = [c_void_p] isl.isl_basic_set_apply.restype = c_void_p isl.isl_basic_set_apply.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_detect_equalities.restype = c_void_p isl.isl_basic_set_detect_equalities.argtypes = [c_void_p] isl.isl_basic_set_flatten.restype = c_void_p isl.isl_basic_set_flatten.argtypes = [c_void_p] isl.isl_basic_set_gist.restype = c_void_p isl.isl_basic_set_gist.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_intersect.restype = c_void_p isl.isl_basic_set_intersect.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_intersect_params.restype = c_void_p isl.isl_basic_set_intersect_params.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_is_empty.restype = c_bool isl.isl_basic_set_is_empty.argtypes = [c_void_p] isl.isl_basic_set_is_equal.restype = c_bool isl.isl_basic_set_is_equal.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_is_subset.restype = c_bool isl.isl_basic_set_is_subset.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_is_wrapping.restype = c_bool isl.isl_basic_set_is_wrapping.argtypes = [c_void_p] isl.isl_basic_set_lexmax.restype = c_void_p isl.isl_basic_set_lexmax.argtypes = [c_void_p] isl.isl_basic_set_lexmin.restype = c_void_p isl.isl_basic_set_lexmin.argtypes = [c_void_p] isl.isl_basic_set_sample.restype = c_void_p isl.isl_basic_set_sample.argtypes = [c_void_p] isl.isl_basic_set_union.restype = c_void_p isl.isl_basic_set_union.argtypes = [c_void_p, c_void_p] isl.isl_basic_set_free.argtypes = [c_void_p] isl.isl_basic_set_to_str.argtypes = [c_void_p] isl.isl_basic_set_to_str.restype = POINTER(c_char) class multi_val: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_multi_val_free(self.ptr) def __str__(self): ptr = isl.isl_multi_val_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.multi_val("""%s""")' % s else: return 'isl.multi_val("%s")' % s def add(arg0, arg1): try: if not arg0.__class__ is multi_val: arg0 = multi_val(arg0) except: raise try: if not arg1.__class__ is multi_val: arg1 = multi_val(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_val_add(isl.isl_multi_val_copy(arg0.ptr), isl.isl_multi_val_copy(arg1.ptr)) return multi_val(ctx=ctx, ptr=res) def flat_range_product(arg0, arg1): try: if not arg0.__class__ is multi_val: arg0 = multi_val(arg0) except: raise try: if not arg1.__class__ is multi_val: arg1 = multi_val(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_val_flat_range_product(isl.isl_multi_val_copy(arg0.ptr), isl.isl_multi_val_copy(arg1.ptr)) return multi_val(ctx=ctx, ptr=res) def product(arg0, arg1): try: if not arg0.__class__ is multi_val: arg0 = multi_val(arg0) except: raise try: if not arg1.__class__ is multi_val: arg1 = multi_val(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_val_product(isl.isl_multi_val_copy(arg0.ptr), isl.isl_multi_val_copy(arg1.ptr)) return multi_val(ctx=ctx, ptr=res) def range_product(arg0, arg1): try: if not arg0.__class__ is multi_val: arg0 = multi_val(arg0) except: raise try: if not arg1.__class__ is multi_val: arg1 = multi_val(arg1) except: raise ctx = arg0.ctx res = isl.isl_multi_val_range_product(isl.isl_multi_val_copy(arg0.ptr), isl.isl_multi_val_copy(arg1.ptr)) return multi_val(ctx=ctx, ptr=res) isl.isl_multi_val_add.restype = c_void_p isl.isl_multi_val_add.argtypes = [c_void_p, c_void_p] isl.isl_multi_val_flat_range_product.restype = c_void_p isl.isl_multi_val_flat_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_val_product.restype = c_void_p isl.isl_multi_val_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_val_range_product.restype = c_void_p isl.isl_multi_val_range_product.argtypes = [c_void_p, c_void_p] isl.isl_multi_val_free.argtypes = [c_void_p] isl.isl_multi_val_to_str.argtypes = [c_void_p] isl.isl_multi_val_to_str.restype = POINTER(c_char) class point(basic_set): def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_point_free(self.ptr) def __str__(self): ptr = isl.isl_point_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.point("""%s""")' % s else: return 'isl.point("%s")' % s isl.isl_point_free.argtypes = [c_void_p] isl.isl_point_to_str.argtypes = [c_void_p] isl.isl_point_to_str.restype = POINTER(c_char) class schedule: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_schedule_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_schedule_free(self.ptr) def __str__(self): ptr = isl.isl_schedule_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.schedule("""%s""")' % s else: return 'isl.schedule("%s")' % s def get_map(arg0): try: if not arg0.__class__ is schedule: arg0 = schedule(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_get_map(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_root(arg0): try: if not arg0.__class__ is schedule: arg0 = schedule(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_get_root(arg0.ptr) return schedule_node(ctx=ctx, ptr=res) def pullback(arg0, arg1): if arg1.__class__ is union_pw_multi_aff: res = isl.isl_schedule_pullback_union_pw_multi_aff(isl.isl_schedule_copy(arg0.ptr), isl.isl_union_pw_multi_aff_copy(arg1.ptr)) return schedule(ctx=arg0.ctx, ptr=res) isl.isl_schedule_read_from_str.restype = c_void_p isl.isl_schedule_read_from_str.argtypes = [Context, c_char_p] isl.isl_schedule_get_map.restype = c_void_p isl.isl_schedule_get_map.argtypes = [c_void_p] isl.isl_schedule_get_root.restype = c_void_p isl.isl_schedule_get_root.argtypes = [c_void_p] isl.isl_schedule_pullback_union_pw_multi_aff.restype = c_void_p isl.isl_schedule_pullback_union_pw_multi_aff.argtypes = [c_void_p, c_void_p] isl.isl_schedule_free.argtypes = [c_void_p] isl.isl_schedule_to_str.argtypes = [c_void_p] isl.isl_schedule_to_str.restype = POINTER(c_char) class schedule_node: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_schedule_node_free(self.ptr) def __str__(self): ptr = isl.isl_schedule_node_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.schedule_node("""%s""")' % s else: return 'isl.schedule_node("%s")' % s def band_member_get_coincident(arg0, arg1): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_band_member_get_coincident(arg0.ptr, arg1) if res < 0: raise return bool(res) def band_member_set_coincident(arg0, arg1, arg2): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_band_member_set_coincident(isl.isl_schedule_node_copy(arg0.ptr), arg1, arg2) return schedule_node(ctx=ctx, ptr=res) def child(arg0, arg1): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_child(isl.isl_schedule_node_copy(arg0.ptr), arg1) return schedule_node(ctx=ctx, ptr=res) def get_prefix_schedule_multi_union_pw_aff(arg0): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(arg0.ptr) return multi_union_pw_aff(ctx=ctx, ptr=res) def get_prefix_schedule_union_map(arg0): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_get_prefix_schedule_union_map(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_prefix_schedule_union_pw_multi_aff(arg0): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(arg0.ptr) return union_pw_multi_aff(ctx=ctx, ptr=res) def get_schedule(arg0): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_get_schedule(arg0.ptr) return schedule(ctx=ctx, ptr=res) def parent(arg0): try: if not arg0.__class__ is schedule_node: arg0 = schedule_node(arg0) except: raise ctx = arg0.ctx res = isl.isl_schedule_node_parent(isl.isl_schedule_node_copy(arg0.ptr)) return schedule_node(ctx=ctx, ptr=res) isl.isl_schedule_node_band_member_get_coincident.restype = c_bool isl.isl_schedule_node_band_member_get_coincident.argtypes = [c_void_p, c_int] isl.isl_schedule_node_band_member_set_coincident.restype = c_void_p isl.isl_schedule_node_band_member_set_coincident.argtypes = [c_void_p, c_int, c_int] isl.isl_schedule_node_child.restype = c_void_p isl.isl_schedule_node_child.argtypes = [c_void_p, c_int] isl.isl_schedule_node_get_prefix_schedule_multi_union_pw_aff.restype = c_void_p isl.isl_schedule_node_get_prefix_schedule_multi_union_pw_aff.argtypes = [c_void_p] isl.isl_schedule_node_get_prefix_schedule_union_map.restype = c_void_p isl.isl_schedule_node_get_prefix_schedule_union_map.argtypes = [c_void_p] isl.isl_schedule_node_get_prefix_schedule_union_pw_multi_aff.restype = c_void_p isl.isl_schedule_node_get_prefix_schedule_union_pw_multi_aff.argtypes = [c_void_p] isl.isl_schedule_node_get_schedule.restype = c_void_p isl.isl_schedule_node_get_schedule.argtypes = [c_void_p] isl.isl_schedule_node_parent.restype = c_void_p isl.isl_schedule_node_parent.argtypes = [c_void_p] isl.isl_schedule_node_free.argtypes = [c_void_p] isl.isl_schedule_node_to_str.argtypes = [c_void_p] isl.isl_schedule_node_to_str.restype = POINTER(c_char) class union_access_info: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and args[0].__class__ is union_map: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_union_access_info_from_sink(isl.isl_union_map_copy(args[0].ptr)) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_access_info_free(self.ptr) def __str__(self): ptr = isl.isl_union_access_info_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_access_info("""%s""")' % s else: return 'isl.union_access_info("%s")' % s def compute_flow(arg0): try: if not arg0.__class__ is union_access_info: arg0 = union_access_info(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_access_info_compute_flow(isl.isl_union_access_info_copy(arg0.ptr)) return union_flow(ctx=ctx, ptr=res) def set_may_source(arg0, arg1): try: if not arg0.__class__ is union_access_info: arg0 = union_access_info(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_access_info_set_may_source(isl.isl_union_access_info_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_access_info(ctx=ctx, ptr=res) def set_must_source(arg0, arg1): try: if not arg0.__class__ is union_access_info: arg0 = union_access_info(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_access_info_set_must_source(isl.isl_union_access_info_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_access_info(ctx=ctx, ptr=res) def set_schedule(arg0, arg1): try: if not arg0.__class__ is union_access_info: arg0 = union_access_info(arg0) except: raise try: if not arg1.__class__ is schedule: arg1 = schedule(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_access_info_set_schedule(isl.isl_union_access_info_copy(arg0.ptr), isl.isl_schedule_copy(arg1.ptr)) return union_access_info(ctx=ctx, ptr=res) def set_schedule_map(arg0, arg1): try: if not arg0.__class__ is union_access_info: arg0 = union_access_info(arg0) except: raise try: if not arg1.__class__ is union_map: arg1 = union_map(arg1) except: raise ctx = arg0.ctx res = isl.isl_union_access_info_set_schedule_map(isl.isl_union_access_info_copy(arg0.ptr), isl.isl_union_map_copy(arg1.ptr)) return union_access_info(ctx=ctx, ptr=res) isl.isl_union_access_info_from_sink.restype = c_void_p isl.isl_union_access_info_from_sink.argtypes = [c_void_p] isl.isl_union_access_info_compute_flow.restype = c_void_p isl.isl_union_access_info_compute_flow.argtypes = [c_void_p] isl.isl_union_access_info_set_may_source.restype = c_void_p isl.isl_union_access_info_set_may_source.argtypes = [c_void_p, c_void_p] isl.isl_union_access_info_set_must_source.restype = c_void_p isl.isl_union_access_info_set_must_source.argtypes = [c_void_p, c_void_p] isl.isl_union_access_info_set_schedule.restype = c_void_p isl.isl_union_access_info_set_schedule.argtypes = [c_void_p, c_void_p] isl.isl_union_access_info_set_schedule_map.restype = c_void_p isl.isl_union_access_info_set_schedule_map.argtypes = [c_void_p, c_void_p] isl.isl_union_access_info_free.argtypes = [c_void_p] isl.isl_union_access_info_to_str.argtypes = [c_void_p] isl.isl_union_access_info_to_str.restype = POINTER(c_char) class union_flow: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_union_flow_free(self.ptr) def __str__(self): ptr = isl.isl_union_flow_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.union_flow("""%s""")' % s else: return 'isl.union_flow("%s")' % s def get_full_may_dependence(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_full_may_dependence(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_full_must_dependence(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_full_must_dependence(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_may_dependence(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_may_dependence(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_may_no_source(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_may_no_source(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_must_dependence(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_must_dependence(arg0.ptr) return union_map(ctx=ctx, ptr=res) def get_must_no_source(arg0): try: if not arg0.__class__ is union_flow: arg0 = union_flow(arg0) except: raise ctx = arg0.ctx res = isl.isl_union_flow_get_must_no_source(arg0.ptr) return union_map(ctx=ctx, ptr=res) isl.isl_union_flow_get_full_may_dependence.restype = c_void_p isl.isl_union_flow_get_full_may_dependence.argtypes = [c_void_p] isl.isl_union_flow_get_full_must_dependence.restype = c_void_p isl.isl_union_flow_get_full_must_dependence.argtypes = [c_void_p] isl.isl_union_flow_get_may_dependence.restype = c_void_p isl.isl_union_flow_get_may_dependence.argtypes = [c_void_p] isl.isl_union_flow_get_may_no_source.restype = c_void_p isl.isl_union_flow_get_may_no_source.argtypes = [c_void_p] isl.isl_union_flow_get_must_dependence.restype = c_void_p isl.isl_union_flow_get_must_dependence.argtypes = [c_void_p] isl.isl_union_flow_get_must_no_source.restype = c_void_p isl.isl_union_flow_get_must_no_source.argtypes = [c_void_p] isl.isl_union_flow_free.argtypes = [c_void_p] isl.isl_union_flow_to_str.argtypes = [c_void_p] isl.isl_union_flow_to_str.restype = POINTER(c_char) class val: def __init__(self, *args, **keywords): if "ptr" in keywords: self.ctx = keywords["ctx"] self.ptr = keywords["ptr"] return if len(args) == 1 and type(args[0]) == int: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_val_int_from_si(self.ctx, args[0]) return if len(args) == 1 and type(args[0]) == str: self.ctx = Context.getDefaultInstance() self.ptr = isl.isl_val_read_from_str(self.ctx, args[0]) return raise Error def __del__(self): if hasattr(self, 'ptr'): isl.isl_val_free(self.ptr) def __str__(self): ptr = isl.isl_val_to_str(self.ptr) res = str(cast(ptr, c_char_p).value) libc.free(ptr) return res def __repr__(self): s = str(self) if '"' in s: return 'isl.val("""%s""")' % s else: return 'isl.val("%s")' % s @staticmethod def infty(): ctx = Context.getDefaultInstance() res = isl.isl_val_infty(ctx) return val(ctx=ctx, ptr=res) @staticmethod def nan(): ctx = Context.getDefaultInstance() res = isl.isl_val_nan(ctx) return val(ctx=ctx, ptr=res) @staticmethod def neginfty(): ctx = Context.getDefaultInstance() res = isl.isl_val_neginfty(ctx) return val(ctx=ctx, ptr=res) @staticmethod def negone(): ctx = Context.getDefaultInstance() res = isl.isl_val_negone(ctx) return val(ctx=ctx, ptr=res) @staticmethod def one(): ctx = Context.getDefaultInstance() res = isl.isl_val_one(ctx) return val(ctx=ctx, ptr=res) @staticmethod def zero(): ctx = Context.getDefaultInstance() res = isl.isl_val_zero(ctx) return val(ctx=ctx, ptr=res) isl.isl_val_int_from_si.restype = c_void_p isl.isl_val_int_from_si.argtypes = [Context, c_int] isl.isl_val_read_from_str.restype = c_void_p isl.isl_val_read_from_str.argtypes = [Context, c_char_p] isl.isl_val_infty.restype = c_void_p isl.isl_val_infty.argtypes = [Context] isl.isl_val_nan.restype = c_void_p isl.isl_val_nan.argtypes = [Context] isl.isl_val_neginfty.restype = c_void_p isl.isl_val_neginfty.argtypes = [Context] isl.isl_val_negone.restype = c_void_p isl.isl_val_negone.argtypes = [Context] isl.isl_val_one.restype = c_void_p isl.isl_val_one.argtypes = [Context] isl.isl_val_zero.restype = c_void_p isl.isl_val_zero.argtypes = [Context] isl.isl_val_free.argtypes = [c_void_p] isl.isl_val_to_str.argtypes = [c_void_p] isl.isl_val_to_str.restype = POINTER(c_char) isl-0.16.1/interface/isl.py.top0000664000175000017500000000115012645737060013222 00000000000000from ctypes import * isl = cdll.LoadLibrary("libisl.so") libc = cdll.LoadLibrary("libc.so.6") class Error(Exception): pass class Context: defaultInstance = None def __init__(self): ptr = isl.isl_ctx_alloc() self.ptr = ptr def __del__(self): isl.isl_ctx_free(self) def from_param(self): return self.ptr @staticmethod def getDefaultInstance(): if Context.defaultInstance == None: Context.defaultInstance = Context() return Context.defaultInstance isl.isl_ctx_alloc.restype = c_void_p isl.isl_ctx_free.argtypes = [Context] isl-0.16.1/interface/all.h0000664000175000017500000000033112645737414012204 00000000000000#include #include #include #include #include #include #include #include #include isl-0.16.1/interface/Makefile.in0000664000175000017500000006031412645755062013336 00000000000000# Makefile.in generated by automake 1.14.1 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ noinst_PROGRAMS = extract_interface$(EXEEXT) subdir = interface DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/depcomp ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/m4/ax_c___attribute__.m4 \ $(top_srcdir)/m4/ax_cc_maxopt.m4 \ $(top_srcdir)/m4/ax_check_compiler_flags.m4 \ $(top_srcdir)/m4/ax_compiler_vendor.m4 \ $(top_srcdir)/m4/ax_create_pkgconfig_info.m4 \ $(top_srcdir)/m4/ax_create_stdint_h.m4 \ $(top_srcdir)/m4/ax_detect_git_head.m4 \ $(top_srcdir)/m4/ax_detect_gmp.m4 \ $(top_srcdir)/m4/ax_detect_imath.m4 \ $(top_srcdir)/m4/ax_gcc_archflag.m4 \ $(top_srcdir)/m4/ax_gcc_warn_unused_result.m4 \ $(top_srcdir)/m4/ax_gcc_x86_cpuid.m4 \ $(top_srcdir)/m4/ax_set_warning_flags.m4 \ $(top_srcdir)/m4/ax_submodule.m4 $(top_srcdir)/m4/libtool.m4 \ $(top_srcdir)/m4/ltoptions.m4 $(top_srcdir)/m4/ltsugar.m4 \ $(top_srcdir)/m4/ltversion.m4 $(top_srcdir)/m4/lt~obsolete.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(install_sh) -d CONFIG_HEADER = $(top_builddir)/isl_config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = PROGRAMS = $(noinst_PROGRAMS) am_extract_interface_OBJECTS = extract_interface-python.$(OBJEXT) \ extract_interface-extract_interface.$(OBJEXT) extract_interface_OBJECTS = $(am_extract_interface_OBJECTS) am__DEPENDENCIES_1 = extract_interface_DEPENDENCIES = $(am__DEPENDENCIES_1) \ $(am__DEPENDENCIES_1) $(am__DEPENDENCIES_1) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f CXXCOMPILE = $(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) \ $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) LTCXXCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CXX $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CXX) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CXXFLAGS) $(CXXFLAGS) AM_V_CXX = $(am__v_CXX_@AM_V@) am__v_CXX_ = $(am__v_CXX_@AM_DEFAULT_V@) am__v_CXX_0 = @echo " CXX " $@; am__v_CXX_1 = CXXLD = $(CXX) CXXLINK = $(LIBTOOL) $(AM_V_lt) --tag=CXX $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CXXLD) $(AM_CXXFLAGS) \ $(CXXFLAGS) $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CXXLD = $(am__v_CXXLD_@AM_V@) am__v_CXXLD_ = $(am__v_CXXLD_@AM_DEFAULT_V@) am__v_CXXLD_0 = @echo " CXXLD " $@; am__v_CXXLD_1 = COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(extract_interface_SOURCES) DIST_SOURCES = $(extract_interface_SOURCES) am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CLANG_CXXFLAGS = @CLANG_CXXFLAGS@ CLANG_LDFLAGS = @CLANG_LDFLAGS@ CLANG_LIBS = @CLANG_LIBS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CXX = @CXX@ CXXCPP = @CXXCPP@ CXXDEPMODE = @CXXDEPMODE@ CXXFLAGS = @CXXFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GIT_HEAD = @GIT_HEAD@ GIT_HEAD_ID = @GIT_HEAD_ID@ GIT_HEAD_VERSION = @GIT_HEAD_VERSION@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIB_CLANG_EDIT = @LIB_CLANG_EDIT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ MP_CPPFLAGS = @MP_CPPFLAGS@ MP_LDFLAGS = @MP_LDFLAGS@ MP_LIBS = @MP_LIBS@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PDFLATEX = @PDFLATEX@ PERL = @PERL@ POD2HTML = @POD2HTML@ PRTDIAG = @PRTDIAG@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ WARNING_FLAGS = @WARNING_FLAGS@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_CXX = @ac_ct_CXX@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ llvm_config_found = @llvm_config_found@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ pkgconfig_libdir = @pkgconfig_libdir@ pkgconfig_libfile = @pkgconfig_libfile@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ versioninfo = @versioninfo@ AUTOMAKE_OPTIONS = nostdinc AM_CXXFLAGS = $(CLANG_CXXFLAGS) AM_LDFLAGS = $(CLANG_LDFLAGS) includes = -I$(top_builddir) -I$(top_srcdir) \ -I$(top_builddir)/include -I$(top_srcdir)/include extract_interface_CPPFLAGS = $(includes) extract_interface_SOURCES = \ python.h \ python.cc \ extract_interface.h \ extract_interface.cc extract_interface_LDADD = \ -lclangFrontend -lclangSerialization -lclangParse -lclangSema \ $(LIB_CLANG_EDIT) \ -lclangAnalysis -lclangAST -lclangLex -lclangBasic -lclangDriver \ $(CLANG_LIBS) $(CLANG_LDFLAGS) CLEANFILES = isl.py all: all-am .SUFFIXES: .SUFFIXES: .cc .lo .o .obj $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign interface/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign interface/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): clean-noinstPROGRAMS: @list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list extract_interface$(EXEEXT): $(extract_interface_OBJECTS) $(extract_interface_DEPENDENCIES) $(EXTRA_extract_interface_DEPENDENCIES) @rm -f extract_interface$(EXEEXT) $(AM_V_CXXLD)$(CXXLINK) $(extract_interface_OBJECTS) $(extract_interface_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/extract_interface-extract_interface.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/extract_interface-python.Po@am__quote@ .cc.o: @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXXCOMPILE) -c -o $@ $< .cc.obj: @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ `$(CYGPATH_W) '$<'` @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXXCOMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .cc.lo: @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(LTCXXCOMPILE) -MT $@ -MD -MP -MF $(DEPDIR)/$*.Tpo -c -o $@ $< @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/$*.Tpo $(DEPDIR)/$*.Plo @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(LTCXXCOMPILE) -c -o $@ $< extract_interface-python.o: python.cc @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -MT extract_interface-python.o -MD -MP -MF $(DEPDIR)/extract_interface-python.Tpo -c -o extract_interface-python.o `test -f 'python.cc' || echo '$(srcdir)/'`python.cc @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/extract_interface-python.Tpo $(DEPDIR)/extract_interface-python.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='python.cc' object='extract_interface-python.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -c -o extract_interface-python.o `test -f 'python.cc' || echo '$(srcdir)/'`python.cc extract_interface-python.obj: python.cc @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -MT extract_interface-python.obj -MD -MP -MF $(DEPDIR)/extract_interface-python.Tpo -c -o extract_interface-python.obj `if test -f 'python.cc'; then $(CYGPATH_W) 'python.cc'; else $(CYGPATH_W) '$(srcdir)/python.cc'; fi` @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/extract_interface-python.Tpo $(DEPDIR)/extract_interface-python.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='python.cc' object='extract_interface-python.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -c -o extract_interface-python.obj `if test -f 'python.cc'; then $(CYGPATH_W) 'python.cc'; else $(CYGPATH_W) '$(srcdir)/python.cc'; fi` extract_interface-extract_interface.o: extract_interface.cc @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -MT extract_interface-extract_interface.o -MD -MP -MF $(DEPDIR)/extract_interface-extract_interface.Tpo -c -o extract_interface-extract_interface.o `test -f 'extract_interface.cc' || echo '$(srcdir)/'`extract_interface.cc @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/extract_interface-extract_interface.Tpo $(DEPDIR)/extract_interface-extract_interface.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='extract_interface.cc' object='extract_interface-extract_interface.o' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -c -o extract_interface-extract_interface.o `test -f 'extract_interface.cc' || echo '$(srcdir)/'`extract_interface.cc extract_interface-extract_interface.obj: extract_interface.cc @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -MT extract_interface-extract_interface.obj -MD -MP -MF $(DEPDIR)/extract_interface-extract_interface.Tpo -c -o extract_interface-extract_interface.obj `if test -f 'extract_interface.cc'; then $(CYGPATH_W) 'extract_interface.cc'; else $(CYGPATH_W) '$(srcdir)/extract_interface.cc'; fi` @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/extract_interface-extract_interface.Tpo $(DEPDIR)/extract_interface-extract_interface.Po @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='extract_interface.cc' object='extract_interface-extract_interface.obj' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(extract_interface_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS) -c -o extract_interface-extract_interface.obj `if test -f 'extract_interface.cc'; then $(CYGPATH_W) 'extract_interface.cc'; else $(CYGPATH_W) '$(srcdir)/extract_interface.cc'; fi` mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-am TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-am CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscopelist: cscopelist-am cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$(top_distdir)" distdir="$(distdir)" \ dist-hook check-am: all-am check: check-am all-am: Makefile $(PROGRAMS) installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool clean-noinstPROGRAMS \ mostlyclean-am distclean: distclean-am -rm -rf ./$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-tags dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -rf ./$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: install-am install-strip .PHONY: CTAGS GTAGS TAGS all all-am check check-am clean clean-generic \ clean-libtool clean-noinstPROGRAMS cscopelist-am ctags \ ctags-am dist-hook distclean distclean-compile \ distclean-generic distclean-libtool distclean-tags distdir dvi \ dvi-am html html-am info info-am install install-am \ install-data install-data-am install-dvi install-dvi-am \ install-exec install-exec-am install-html install-html-am \ install-info install-info-am install-man install-pdf \ install-pdf-am install-ps install-ps-am install-strip \ installcheck installcheck-am installdirs maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags tags-am uninstall uninstall-am test: extract_interface ./extract_interface$(EXEEXT) $(includes) $(srcdir)/all.h isl.py: extract_interface isl.py.top (cat $(srcdir)/isl.py.top; \ ./extract_interface$(EXEEXT) $(includes) $(srcdir)/all.h) \ > isl.py dist-hook: isl.py cp isl.py $(distdir)/ # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: isl-0.16.1/interface/python.h0000664000175000017500000000025012645737060012752 00000000000000#include #include using namespace std; using namespace clang; void generate_python(set &types, set functions); isl-0.16.1/isl_yaml.h0000664000175000017500000000052212645737061011305 00000000000000#ifndef ISL_YAML_H #define ISL_YAML_H #define ISL_YAML_INDENT_FLOW -1 enum isl_yaml_state { isl_yaml_none, isl_yaml_mapping_first_key_start, isl_yaml_mapping_key_start, isl_yaml_mapping_key, isl_yaml_mapping_val_start, isl_yaml_mapping_val, isl_yaml_sequence_first_start, isl_yaml_sequence_start, isl_yaml_sequence }; #endif isl-0.16.1/GIT_HEAD_ID0000664000175000017500000000001312645755215011022 00000000000000isl-0.16.1 isl-0.16.1/isl_tarjan.h0000664000175000017500000000215212645737061011623 00000000000000#ifndef ISL_TARJAN_H #define ISL_TARJAN_H /* Structure for representing the nodes in the graph being traversed * using Tarjan's algorithm. * index represents the order in which nodes are visited. * min_index is the index of the root of a (sub)component. * on_stack indicates whether the node is currently on the stack. */ struct isl_tarjan_node { int index; int min_index; int on_stack; }; /* Structure for representing the graph being traversed * using Tarjan's algorithm. * len is the number of nodes * node is an array of nodes * stack contains the nodes on the path from the root to the current node * sp is the stack pointer * index is the index of the last node visited * order contains the elements of the components separated by -1 * op represents the current position in order */ struct isl_tarjan_graph { int len; struct isl_tarjan_node *node; int *stack; int sp; int index; int *order; int op; }; struct isl_tarjan_graph *isl_tarjan_graph_init(isl_ctx *ctx, int len, isl_bool (*follows)(int i, int j, void *user), void *user); void isl_tarjan_graph_free(struct isl_tarjan_graph *g); #endif isl-0.16.1/imath_wrap/0000775000175000017500000000000012645755104011535 500000000000000isl-0.16.1/imath_wrap/wrap.h0000664000175000017500000001506412645737060012606 00000000000000#ifndef ISL_IMATH_WRAP #define ISL_IMATH_WRAP #define MP_BADARG ISL_MP_BADARG #define MP_FALSE ISL_MP_FALSE #define MP_MEMORY ISL_MP_MEMORY #define MP_MINERR ISL_MP_MINERR #define MP_NEG ISL_MP_NEG #define MP_OK ISL_MP_OK #define MP_RANGE ISL_MP_RANGE #define MP_TRUE ISL_MP_TRUE #define MP_TRUNC ISL_MP_TRUNC #define MP_UNDEF ISL_MP_UNDEF #define MP_ZPOS ISL_MP_ZPOS #define impq_canonicalize isl_impq_canonicalize #define impq_clear isl_impq_clear #define impq_cmp isl_impq_cmp #define impq_denref isl_impq_denref #define impq_get_str isl_impq_get_str #define impq_init isl_impq_init #define impq_mul isl_impq_mul #define impq_numref isl_impq_numref #define impq_set isl_impq_set #define impq_set_str isl_impq_set_str #define impq_set_ui isl_impq_set_ui #define impq_sgn isl_impq_sgn #define impz_abs isl_impz_abs #define impz_add isl_impz_add #define impz_addmul isl_impz_addmul #define impz_add_ui isl_impz_add_ui #define impz_cdiv_q isl_impz_cdiv_q #define impz_clear isl_impz_clear #define impz_cmp isl_impz_cmp #define impz_cmpabs isl_impz_cmpabs #define impz_cmp_si isl_impz_cmp_si #define impz_divexact isl_impz_divexact #define impz_divexact_ui isl_impz_divexact_ui #define impz_divisible_p isl_impz_divisible_p #define impz_export isl_impz_export #define impz_fdiv_q isl_impz_fdiv_q #define impz_fdiv_q_ui isl_impz_fdiv_q_ui #define impz_fdiv_r isl_impz_fdiv_r #define impz_gcd isl_impz_gcd #define impz_get_si isl_impz_get_si #define impz_get_str isl_impz_get_str #define impz_get_ui isl_impz_get_ui #define impz_import isl_impz_import #define impz_init isl_impz_init #define impz_lcm isl_impz_lcm #define impz_mul isl_impz_mul #define impz_mul_2exp isl_impz_mul_2exp #define impz_mul_ui isl_impz_mul_ui #define impz_neg isl_impz_neg #define impz_pow_ui isl_impz_pow_ui #define impz_set isl_impz_set #define impz_set_si isl_impz_set_si #define impz_set_str isl_impz_set_str #define impz_set_ui isl_impz_set_ui #define impz_sgn isl_impz_sgn #define impz_sizeinbase isl_impz_sizeinbase #define impz_sub isl_impz_sub #define impz_submul isl_impz_submul #define impz_sub_ui isl_impz_sub_ui #define impz_swap isl_impz_swap #define impz_tdiv_q isl_impz_tdiv_q #define mp_error_string isl_mp_error_string #define mp_int_abs isl_mp_int_abs #define mp_int_add isl_mp_int_add #define mp_int_add_value isl_mp_int_add_value #define mp_int_alloc isl_mp_int_alloc #define mp_int_binary_len isl_mp_int_binary_len #define mp_int_clear isl_mp_int_clear #define mp_int_compare isl_mp_int_compare #define mp_int_compare_unsigned isl_mp_int_compare_unsigned #define mp_int_compare_uvalue isl_mp_int_compare_uvalue #define mp_int_compare_value isl_mp_int_compare_value #define mp_int_compare_zero isl_mp_int_compare_zero #define mp_int_copy isl_mp_int_copy #define mp_int_count_bits isl_mp_int_count_bits #define mp_int_div isl_mp_int_div #define mp_int_divisible_value isl_mp_int_divisible_value #define mp_int_div_pow2 isl_mp_int_div_pow2 #define mp_int_div_value isl_mp_int_div_value #define mp_int_egcd isl_mp_int_egcd #define mp_int_expt isl_mp_int_expt #define mp_int_expt_full isl_mp_int_expt_full #define mp_int_exptmod isl_mp_int_exptmod #define mp_int_exptmod_bvalue isl_mp_int_exptmod_bvalue #define mp_int_exptmod_evalue isl_mp_int_exptmod_evalue #define mp_int_exptmod_known isl_mp_int_exptmod_known #define mp_int_expt_value isl_mp_int_expt_value #define mp_int_free isl_mp_int_free #define mp_int_gcd isl_mp_int_gcd #define mp_int_init isl_mp_int_init #define mp_int_init_copy isl_mp_int_init_copy #define mp_int_init_size isl_mp_int_init_size #define mp_int_init_uvalue isl_mp_int_init_uvalue #define mp_int_init_value isl_mp_int_init_value #define mp_int_invmod isl_mp_int_invmod #define mp_int_is_pow2 isl_mp_int_is_pow2 #define mp_int_lcm isl_mp_int_lcm #define mp_int_mod isl_mp_int_mod #define mp_int_mul isl_mp_int_mul #define mp_int_mul_pow2 isl_mp_int_mul_pow2 #define mp_int_mul_value isl_mp_int_mul_value #define mp_int_neg isl_mp_int_neg #define mp_int_read_binary isl_mp_int_read_binary #define mp_int_read_cstring isl_mp_int_read_cstring #define mp_int_read_string isl_mp_int_read_string #define mp_int_read_unsigned isl_mp_int_read_unsigned #define mp_int_redux_const isl_mp_int_redux_const #define mp_int_root isl_mp_int_root #define mp_int_set_uvalue isl_mp_int_set_uvalue #define mp_int_set_value isl_mp_int_set_value #define mp_int_sqr isl_mp_int_sqr #define mp_int_string_len isl_mp_int_string_len #define mp_int_sub isl_mp_int_sub #define mp_int_sub_value isl_mp_int_sub_value #define mp_int_swap isl_mp_int_swap #define mp_int_to_binary isl_mp_int_to_binary #define mp_int_to_int isl_mp_int_to_int #define mp_int_to_string isl_mp_int_to_string #define mp_int_to_uint isl_mp_int_to_uint #define mp_int_to_unsigned isl_mp_int_to_unsigned #define mp_int_unsigned_len isl_mp_int_unsigned_len #define mp_int_zero isl_mp_int_zero #define mp_rat_abs isl_mp_rat_abs #define mp_rat_add isl_mp_rat_add #define mp_rat_add_int isl_mp_rat_add_int #define mp_rat_alloc isl_mp_rat_alloc #define mp_rat_clear isl_mp_rat_clear #define mp_rat_compare isl_mp_rat_compare #define mp_rat_compare_unsigned isl_mp_rat_compare_unsigned #define mp_rat_compare_value isl_mp_rat_compare_value #define mp_rat_compare_zero isl_mp_rat_compare_zero #define mp_rat_copy isl_mp_rat_copy #define mp_rat_decimal_len isl_mp_rat_decimal_len #define mp_rat_denom isl_mp_rat_denom #define mp_rat_denom_ref isl_mp_rat_denom_ref #define mp_rat_div isl_mp_rat_div #define mp_rat_div_int isl_mp_rat_div_int #define mp_rat_expt isl_mp_rat_expt #define mp_rat_free isl_mp_rat_free #define mp_rat_init isl_mp_rat_init #define mp_rat_init_copy isl_mp_rat_init_copy #define mp_rat_init_size isl_mp_rat_init_size #define mp_rat_is_integer isl_mp_rat_is_integer #define mp_rat_mul isl_mp_rat_mul #define mp_rat_mul_int isl_mp_rat_mul_int #define mp_rat_neg isl_mp_rat_neg #define mp_rat_numer isl_mp_rat_numer #define mp_rat_numer_ref isl_mp_rat_numer_ref #define mp_rat_read_cdecimal isl_mp_rat_read_cdecimal #define mp_rat_read_cstring isl_mp_rat_read_cstring #define mp_rat_read_decimal isl_mp_rat_read_decimal #define mp_rat_read_string isl_mp_rat_read_string #define mp_rat_read_ustring isl_mp_rat_read_ustring #define mp_rat_recip isl_mp_rat_recip #define mp_rat_reduce isl_mp_rat_reduce #define mp_rat_set_uvalue isl_mp_rat_set_uvalue #define mp_rat_set_value isl_mp_rat_set_value #define mp_rat_sign isl_mp_rat_sign #define mp_rat_string_len isl_mp_rat_string_len #define mp_rat_sub isl_mp_rat_sub #define mp_rat_sub_int isl_mp_rat_sub_int #define mp_rat_to_decimal isl_mp_rat_to_decimal #define mp_rat_to_ints isl_mp_rat_to_ints #define mp_rat_to_string isl_mp_rat_to_string #define mp_rat_zero isl_mp_rat_zero #endif isl-0.16.1/imath_wrap/imrat.c0000664000175000017500000000005612645737060012737 00000000000000#include "wrap.h" #include "../imath/imrat.c" isl-0.16.1/imath_wrap/gmp_compat.c0000664000175000017500000000006312645737060013747 00000000000000#include "wrap.h" #include "../imath/gmp_compat.c" isl-0.16.1/imath_wrap/imrat.h0000664000175000017500000000005612645737060012744 00000000000000#include "wrap.h" #include "../imath/imrat.h" isl-0.16.1/imath_wrap/imath.c0000664000175000017500000000005612645737060012725 00000000000000#include "wrap.h" #include "../imath/imath.c" isl-0.16.1/imath_wrap/imath.h0000664000175000017500000000005612645737060012732 00000000000000#include "wrap.h" #include "../imath/imath.h" isl-0.16.1/imath_wrap/gmp_compat.h0000664000175000017500000000006312645737060013754 00000000000000#include "wrap.h" #include "../imath/gmp_compat.h" isl-0.16.1/isl_schedule_band.c0000664000175000017500000007745212645737061013136 00000000000000/* * Copyright 2013-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include isl_ctx *isl_schedule_band_get_ctx(__isl_keep isl_schedule_band *band) { return band ? isl_multi_union_pw_aff_get_ctx(band->mupa) : NULL; } /* Return a new uninitialized isl_schedule_band. */ static __isl_give isl_schedule_band *isl_schedule_band_alloc(isl_ctx *ctx) { isl_schedule_band *band; band = isl_calloc_type(ctx, isl_schedule_band); if (!band) return NULL; band->ref = 1; return band; } /* Return a new isl_schedule_band with partial schedule "mupa". * First replace "mupa" by its greatest integer part to ensure * that the schedule is always integral. * The band is not marked permutable, the dimensions are not * marked coincident and the AST build options are empty. * Since there are no build options, the node is not anchored. */ __isl_give isl_schedule_band *isl_schedule_band_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa) { isl_ctx *ctx; isl_schedule_band *band; isl_space *space; mupa = isl_multi_union_pw_aff_floor(mupa); if (!mupa) return NULL; ctx = isl_multi_union_pw_aff_get_ctx(mupa); band = isl_schedule_band_alloc(ctx); if (!band) goto error; band->n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); band->coincident = isl_calloc_array(ctx, int, band->n); band->mupa = mupa; space = isl_space_params_alloc(ctx, 0); band->ast_build_options = isl_union_set_empty(space); band->anchored = 0; if ((band->n && !band->coincident) || !band->ast_build_options) return isl_schedule_band_free(band); return band; error: isl_multi_union_pw_aff_free(mupa); return NULL; } /* Create a duplicate of the given isl_schedule_band. */ __isl_give isl_schedule_band *isl_schedule_band_dup( __isl_keep isl_schedule_band *band) { int i; isl_ctx *ctx; isl_schedule_band *dup; if (!band) return NULL; ctx = isl_schedule_band_get_ctx(band); dup = isl_schedule_band_alloc(ctx); if (!dup) return NULL; dup->n = band->n; dup->coincident = isl_alloc_array(ctx, int, band->n); if (band->n && !dup->coincident) return isl_schedule_band_free(dup); for (i = 0; i < band->n; ++i) dup->coincident[i] = band->coincident[i]; dup->permutable = band->permutable; dup->mupa = isl_multi_union_pw_aff_copy(band->mupa); dup->ast_build_options = isl_union_set_copy(band->ast_build_options); if (!dup->mupa || !dup->ast_build_options) return isl_schedule_band_free(dup); if (band->loop_type) { dup->loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !dup->loop_type) return isl_schedule_band_free(dup); for (i = 0; i < band->n; ++i) dup->loop_type[i] = band->loop_type[i]; } if (band->isolate_loop_type) { dup->isolate_loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !dup->isolate_loop_type) return isl_schedule_band_free(dup); for (i = 0; i < band->n; ++i) dup->isolate_loop_type[i] = band->isolate_loop_type[i]; } return dup; } /* Return an isl_schedule_band that is equal to "band" and that has only * a single reference. */ __isl_give isl_schedule_band *isl_schedule_band_cow( __isl_take isl_schedule_band *band) { if (!band) return NULL; if (band->ref == 1) return band; band->ref--; return isl_schedule_band_dup(band); } /* Return a new reference to "band". */ __isl_give isl_schedule_band *isl_schedule_band_copy( __isl_keep isl_schedule_band *band) { if (!band) return NULL; band->ref++; return band; } /* Free a reference to "band" and return NULL. */ __isl_null isl_schedule_band *isl_schedule_band_free( __isl_take isl_schedule_band *band) { if (!band) return NULL; if (--band->ref > 0) return NULL; isl_multi_union_pw_aff_free(band->mupa); isl_union_set_free(band->ast_build_options); free(band->loop_type); free(band->isolate_loop_type); free(band->coincident); free(band); return NULL; } /* Are "band1" and "band2" obviously equal? */ isl_bool isl_schedule_band_plain_is_equal(__isl_keep isl_schedule_band *band1, __isl_keep isl_schedule_band *band2) { int i; isl_bool equal; if (!band1 || !band2) return isl_bool_error; if (band1 == band2) return isl_bool_true; if (band1->n != band2->n) return isl_bool_false; for (i = 0; i < band1->n; ++i) if (band1->coincident[i] != band2->coincident[i]) return isl_bool_false; if (band1->permutable != band2->permutable) return isl_bool_false; equal = isl_multi_union_pw_aff_plain_is_equal(band1->mupa, band2->mupa); if (equal < 0 || !equal) return equal; if (!band1->loop_type != !band2->loop_type) return isl_bool_false; if (band1->loop_type) for (i = 0; i < band1->n; ++i) if (band1->loop_type[i] != band2->loop_type[i]) return isl_bool_false; if (!band1->isolate_loop_type != !band2->isolate_loop_type) return isl_bool_false; if (band1->isolate_loop_type) for (i = 0; i < band1->n; ++i) if (band1->isolate_loop_type[i] != band2->isolate_loop_type[i]) return isl_bool_false; return isl_union_set_is_equal(band1->ast_build_options, band2->ast_build_options); } /* Return the number of scheduling dimensions in the band. */ int isl_schedule_band_n_member(__isl_keep isl_schedule_band *band) { return band ? band->n : 0; } /* Is the given scheduling dimension coincident within the band and * with respect to the coincidence constraints? */ isl_bool isl_schedule_band_member_get_coincident( __isl_keep isl_schedule_band *band, int pos) { if (!band) return isl_bool_error; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", return isl_bool_error); return band->coincident[pos]; } /* Mark the given scheduling dimension as being coincident or not * according to "coincident". */ __isl_give isl_schedule_band *isl_schedule_band_member_set_coincident( __isl_take isl_schedule_band *band, int pos, int coincident) { if (!band) return NULL; if (isl_schedule_band_member_get_coincident(band, pos) == coincident) return band; band = isl_schedule_band_cow(band); if (!band) return NULL; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", isl_schedule_band_free(band)); band->coincident[pos] = coincident; return band; } /* Is the schedule band mark permutable? */ isl_bool isl_schedule_band_get_permutable(__isl_keep isl_schedule_band *band) { if (!band) return isl_bool_error; return band->permutable; } /* Mark the schedule band permutable or not according to "permutable"? */ __isl_give isl_schedule_band *isl_schedule_band_set_permutable( __isl_take isl_schedule_band *band, int permutable) { if (!band) return NULL; if (band->permutable == permutable) return band; band = isl_schedule_band_cow(band); if (!band) return NULL; band->permutable = permutable; return band; } /* Is the band node "node" anchored? That is, does it reference * the outer band nodes? */ int isl_schedule_band_is_anchored(__isl_keep isl_schedule_band *band) { return band ? band->anchored : -1; } /* Return the schedule space of the band. */ __isl_give isl_space *isl_schedule_band_get_space( __isl_keep isl_schedule_band *band) { if (!band) return NULL; return isl_multi_union_pw_aff_get_space(band->mupa); } /* Intersect the domain of the band schedule of "band" with "domain". */ __isl_give isl_schedule_band *isl_schedule_band_intersect_domain( __isl_take isl_schedule_band *band, __isl_take isl_union_set *domain) { band = isl_schedule_band_cow(band); if (!band || !domain) goto error; band->mupa = isl_multi_union_pw_aff_intersect_domain(band->mupa, domain); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_union_set_free(domain); return NULL; } /* Return the schedule of the band in isolation. */ __isl_give isl_multi_union_pw_aff *isl_schedule_band_get_partial_schedule( __isl_keep isl_schedule_band *band) { return band ? isl_multi_union_pw_aff_copy(band->mupa) : NULL; } /* Replace the schedule of "band" by "schedule". */ __isl_give isl_schedule_band *isl_schedule_band_set_partial_schedule( __isl_take isl_schedule_band *band, __isl_take isl_multi_union_pw_aff *schedule) { band = isl_schedule_band_cow(band); if (!band || !schedule) goto error; isl_multi_union_pw_aff_free(band->mupa); band->mupa = schedule; return band; error: isl_schedule_band_free(band); isl_multi_union_pw_aff_free(schedule); return NULL; } /* Return the loop AST generation type for the band member of "band" * at position "pos". */ enum isl_ast_loop_type isl_schedule_band_member_get_ast_loop_type( __isl_keep isl_schedule_band *band, int pos) { if (!band) return isl_ast_loop_error; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", return -1); if (!band->loop_type) return isl_ast_loop_default; return band->loop_type[pos]; } /* Set the loop AST generation type for the band member of "band" * at position "pos" to "type". */ __isl_give isl_schedule_band *isl_schedule_band_member_set_ast_loop_type( __isl_take isl_schedule_band *band, int pos, enum isl_ast_loop_type type) { if (!band) return NULL; if (isl_schedule_band_member_get_ast_loop_type(band, pos) == type) return band; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", isl_schedule_band_free(band)); band = isl_schedule_band_cow(band); if (!band) return isl_schedule_band_free(band); if (!band->loop_type) { isl_ctx *ctx; ctx = isl_schedule_band_get_ctx(band); band->loop_type = isl_calloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !band->loop_type) return isl_schedule_band_free(band); } band->loop_type[pos] = type; return band; } /* Return the loop AST generation type for the band member of "band" * at position "pos" for the part that has been isolated by the isolate option. */ enum isl_ast_loop_type isl_schedule_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_band *band, int pos) { if (!band) return isl_ast_loop_error; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", return -1); if (!band->isolate_loop_type) return isl_ast_loop_default; return band->isolate_loop_type[pos]; } /* Set the loop AST generation type for the band member of "band" * at position "pos" to "type" for the part that has been isolated * by the isolate option. */ __isl_give isl_schedule_band * isl_schedule_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_band *band, int pos, enum isl_ast_loop_type type) { if (!band) return NULL; if (isl_schedule_band_member_get_isolate_ast_loop_type(band, pos) == type) return band; if (pos < 0 || pos >= band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "invalid member position", isl_schedule_band_free(band)); band = isl_schedule_band_cow(band); if (!band) return isl_schedule_band_free(band); if (!band->isolate_loop_type) { isl_ctx *ctx; ctx = isl_schedule_band_get_ctx(band); band->isolate_loop_type = isl_calloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !band->isolate_loop_type) return isl_schedule_band_free(band); } band->isolate_loop_type[pos] = type; return band; } static const char *option_str[] = { [isl_ast_loop_atomic] = "atomic", [isl_ast_loop_unroll] = "unroll", [isl_ast_loop_separate] = "separate" }; /* Given a parameter space "space", extend it to a set space * * { type[x] } * * or * * { [isolate[] -> type[x]] } * * depending on whether "isolate" is set. * These can be used to encode loop AST generation options of the given type. */ static __isl_give isl_space *loop_type_space(__isl_take isl_space *space, enum isl_ast_loop_type type, int isolate) { const char *name; name = option_str[type]; space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, 1); space = isl_space_set_tuple_name(space, isl_dim_set, name); if (!isolate) return space; space = isl_space_from_range(space); space = isl_space_set_tuple_name(space, isl_dim_in, "isolate"); space = isl_space_wrap(space); return space; } /* Add encodings of the "n" loop AST generation options "type" to "options". * If "isolate" is set, then these options refer to the isolated part. * * In particular, for each sequence of consecutive identical types "t", * different from the default, add an option * * { t[x] : first <= x <= last } * * or * * { [isolate[] -> t[x]] : first <= x <= last } */ static __isl_give isl_union_set *add_loop_types( __isl_take isl_union_set *options, int n, enum isl_ast_loop_type *type, int isolate) { int i; isl_ctx *ctx; if (!type) return options; if (!options) return NULL; ctx = isl_union_set_get_ctx(options); for (i = 0; i < n; ++i) { int first; isl_space *space; isl_set *option; if (type[i] == isl_ast_loop_default) continue; first = i; while (i + 1 < n && type[i + 1] == type[i]) ++i; space = isl_union_set_get_space(options); space = loop_type_space(space, type[i], isolate); option = isl_set_universe(space); option = isl_set_lower_bound_si(option, isl_dim_set, 0, first); option = isl_set_upper_bound_si(option, isl_dim_set, 0, i); options = isl_union_set_add_set(options, option); } return options; } /* Return the AST build options associated to "band". */ __isl_give isl_union_set *isl_schedule_band_get_ast_build_options( __isl_keep isl_schedule_band *band) { isl_union_set *options; if (!band) return NULL; options = isl_union_set_copy(band->ast_build_options); options = add_loop_types(options, band->n, band->loop_type, 0); options = add_loop_types(options, band->n, band->isolate_loop_type, 1); return options; } /* Does "uset" contain any set that satisfies "is"? * "is" is assumed to set its integer argument to 1 if it is satisfied. */ static int has_any(__isl_keep isl_union_set *uset, isl_stat (*is)(__isl_take isl_set *set, void *user)) { int found = 0; if (isl_union_set_foreach_set(uset, is, &found) < 0 && !found) return -1; return found; } /* Does "set" live in a space of the form * * isolate[[...] -> [...]] * * ? * * If so, set *found and abort the search. */ static isl_stat is_isolate(__isl_take isl_set *set, void *user) { int *found = user; if (isl_set_has_tuple_name(set)) { const char *name; name = isl_set_get_tuple_name(set); if (isl_set_is_wrapping(set) && !strcmp(name, "isolate")) *found = 1; } isl_set_free(set); return *found ? isl_stat_error : isl_stat_ok; } /* Does "options" include an option of the ofrm * * isolate[[...] -> [...]] * * ? */ static int has_isolate_option(__isl_keep isl_union_set *options) { return has_any(options, &is_isolate); } /* Does "set" encode a loop AST generation option? */ static isl_stat is_loop_type_option(__isl_take isl_set *set, void *user) { int *found = user; if (isl_set_dim(set, isl_dim_set) == 1 && isl_set_has_tuple_name(set)) { const char *name; enum isl_ast_loop_type type; name = isl_set_get_tuple_name(set); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { if (strcmp(name, option_str[type])) continue; *found = 1; break; } } isl_set_free(set); return *found ? isl_stat_error : isl_stat_ok; } /* Does "set" encode a loop AST generation option for the isolated part? * That is, is of the form * * { [isolate[] -> t[x]] } * * with t equal to "atomic", "unroll" or "separate"? */ static isl_stat is_isolate_loop_type_option(__isl_take isl_set *set, void *user) { int *found = user; const char *name; enum isl_ast_loop_type type; isl_map *map; if (!isl_set_is_wrapping(set)) { isl_set_free(set); return isl_stat_ok; } map = isl_set_unwrap(set); if (!isl_map_has_tuple_name(map, isl_dim_in) || !isl_map_has_tuple_name(map, isl_dim_out)) { isl_map_free(map); return isl_stat_ok; } name = isl_map_get_tuple_name(map, isl_dim_in); if (!strcmp(name, "isolate")) { name = isl_map_get_tuple_name(map, isl_dim_out); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { if (strcmp(name, option_str[type])) continue; *found = 1; break; } } isl_map_free(map); return *found ? isl_stat_error : isl_stat_ok; } /* Does "options" encode any loop AST generation options * for the isolated part? */ static int has_isolate_loop_type_options(__isl_keep isl_union_set *options) { return has_any(options, &is_isolate_loop_type_option); } /* Does "options" encode any loop AST generation options? */ static int has_loop_type_options(__isl_keep isl_union_set *options) { return has_any(options, &is_loop_type_option); } /* Extract the loop AST generation type for the band member * at position "pos" from "options". * If "isolate" is set, then extract the loop types for the isolated part. */ static enum isl_ast_loop_type extract_loop_type( __isl_keep isl_union_set *options, int pos, int isolate) { isl_ctx *ctx; enum isl_ast_loop_type type, res = isl_ast_loop_default; ctx = isl_union_set_get_ctx(options); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { isl_space *space; isl_set *option; int empty; space = isl_union_set_get_space(options); space = loop_type_space(space, type, isolate); option = isl_union_set_extract_set(options, space); option = isl_set_fix_si(option, isl_dim_set, 0, pos); empty = isl_set_is_empty(option); isl_set_free(option); if (empty < 0) return isl_ast_loop_error; if (empty) continue; if (res != isl_ast_loop_default) isl_die(ctx, isl_error_invalid, "conflicting loop type options", return isl_ast_loop_error); res = type; } return res; } /* Extract the loop AST generation types for the members of "band" * from "options" and store them in band->loop_type. * Return -1 on error. */ static int extract_loop_types(__isl_keep isl_schedule_band *band, __isl_keep isl_union_set *options) { int i; if (!band->loop_type) { isl_ctx *ctx = isl_schedule_band_get_ctx(band); band->loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !band->loop_type) return -1; } for (i = 0; i < band->n; ++i) { band->loop_type[i] = extract_loop_type(options, i, 0); if (band->loop_type[i] == isl_ast_loop_error) return -1; } return 0; } /* Extract the loop AST generation types for the members of "band" * from "options" for the isolated part and * store them in band->isolate_loop_type. * Return -1 on error. */ static int extract_isolate_loop_types(__isl_keep isl_schedule_band *band, __isl_keep isl_union_set *options) { int i; if (!band->isolate_loop_type) { isl_ctx *ctx = isl_schedule_band_get_ctx(band); band->isolate_loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, band->n); if (band->n && !band->isolate_loop_type) return -1; } for (i = 0; i < band->n; ++i) { band->isolate_loop_type[i] = extract_loop_type(options, i, 1); if (band->isolate_loop_type[i] == isl_ast_loop_error) return -1; } return 0; } /* Construct universe sets of the spaces that encode loop AST generation * types (for the isolated part if "isolate" is set). That is, construct * * { atomic[x]; separate[x]; unroll[x] } * * or * * { [isolate[] -> atomic[x]]; [isolate[] -> separate[x]]; * [isolate[] -> unroll[x]] } */ static __isl_give isl_union_set *loop_types(__isl_take isl_space *space, int isolate) { enum isl_ast_loop_type type; isl_union_set *types; types = isl_union_set_empty(space); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { isl_set *set; space = isl_union_set_get_space(types); space = loop_type_space(space, type, isolate); set = isl_set_universe(space); types = isl_union_set_add_set(types, set); } return types; } /* Remove all elements from spaces that encode loop AST generation types * from "options". */ static __isl_give isl_union_set *clear_loop_types( __isl_take isl_union_set *options) { isl_union_set *types; types = loop_types(isl_union_set_get_space(options), 0); options = isl_union_set_subtract(options, types); return options; } /* Remove all elements from spaces that encode loop AST generation types * for the isolated part from "options". */ static __isl_give isl_union_set *clear_isolate_loop_types( __isl_take isl_union_set *options) { isl_union_set *types; types = loop_types(isl_union_set_get_space(options), 1); options = isl_union_set_subtract(options, types); return options; } /* Replace the AST build options associated to "band" by "options". * If there are any loop AST generation type options, then they * are extracted and stored in band->loop_type. Otherwise, * band->loop_type is removed to indicate that the default applies * to all members. Similarly for the loop AST generation type options * for the isolated part, which are stored in band->isolate_loop_type. * The remaining options are stored in band->ast_build_options. * * Set anchored if the options include an isolate option since the * domain of the wrapped map references the outer band node schedules. */ __isl_give isl_schedule_band *isl_schedule_band_set_ast_build_options( __isl_take isl_schedule_band *band, __isl_take isl_union_set *options) { int has_isolate, has_loop_type, has_isolate_loop_type; band = isl_schedule_band_cow(band); if (!band || !options) goto error; has_isolate = has_isolate_option(options); if (has_isolate < 0) goto error; has_loop_type = has_loop_type_options(options); if (has_loop_type < 0) goto error; has_isolate_loop_type = has_isolate_loop_type_options(options); if (has_isolate_loop_type < 0) goto error; if (!has_loop_type) { free(band->loop_type); band->loop_type = NULL; } else { if (extract_loop_types(band, options) < 0) goto error; options = clear_loop_types(options); if (!options) goto error; } if (!has_isolate_loop_type) { free(band->isolate_loop_type); band->isolate_loop_type = NULL; } else { if (extract_isolate_loop_types(band, options) < 0) goto error; options = clear_isolate_loop_types(options); if (!options) goto error; } isl_union_set_free(band->ast_build_options); band->ast_build_options = options; band->anchored = has_isolate; return band; error: isl_schedule_band_free(band); isl_union_set_free(options); return NULL; } /* Multiply the partial schedule of "band" with the factors in "mv". * Replace the result by its greatest integer part to ensure * that the schedule is always integral. */ __isl_give isl_schedule_band *isl_schedule_band_scale( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv) { band = isl_schedule_band_cow(band); if (!band || !mv) goto error; band->mupa = isl_multi_union_pw_aff_scale_multi_val(band->mupa, mv); band->mupa = isl_multi_union_pw_aff_floor(band->mupa); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_val_free(mv); return NULL; } /* Divide the partial schedule of "band" by the factors in "mv". * Replace the result by its greatest integer part to ensure * that the schedule is always integral. */ __isl_give isl_schedule_band *isl_schedule_band_scale_down( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv) { band = isl_schedule_band_cow(band); if (!band || !mv) goto error; band->mupa = isl_multi_union_pw_aff_scale_down_multi_val(band->mupa, mv); band->mupa = isl_multi_union_pw_aff_floor(band->mupa); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_val_free(mv); return NULL; } /* Reduce the partial schedule of "band" modulo the factors in "mv". */ __isl_give isl_schedule_band *isl_schedule_band_mod( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *mv) { band = isl_schedule_band_cow(band); if (!band || !mv) goto error; band->mupa = isl_multi_union_pw_aff_mod_multi_val(band->mupa, mv); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_val_free(mv); return NULL; } /* Shift the partial schedule of "band" by "shift" after checking * that the domain of the partial schedule would not be affected * by this shift. */ __isl_give isl_schedule_band *isl_schedule_band_shift( __isl_take isl_schedule_band *band, __isl_take isl_multi_union_pw_aff *shift) { isl_union_set *dom1, *dom2; isl_bool subset; band = isl_schedule_band_cow(band); if (!band || !shift) goto error; dom1 = isl_multi_union_pw_aff_domain( isl_multi_union_pw_aff_copy(band->mupa)); dom2 = isl_multi_union_pw_aff_domain( isl_multi_union_pw_aff_copy(shift)); subset = isl_union_set_is_subset(dom1, dom2); isl_union_set_free(dom1); isl_union_set_free(dom2); if (subset < 0) goto error; if (!subset) isl_die(isl_schedule_band_get_ctx(band), isl_error_invalid, "domain of shift needs to include domain of " "partial schedule", goto error); band->mupa = isl_multi_union_pw_aff_add(band->mupa, shift); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_union_pw_aff_free(shift); return NULL; } /* Given the schedule of a band, construct the corresponding * schedule for the tile loops based on the given tile sizes * and return the result. * * If the scale tile loops options is set, then the tile loops * are scaled by the tile sizes. * * That is replace each schedule dimension "i" by either * "floor(i/s)" or "s * floor(i/s)". */ static isl_multi_union_pw_aff *isl_multi_union_pw_aff_tile( __isl_take isl_multi_union_pw_aff *sched, __isl_take isl_multi_val *sizes) { isl_ctx *ctx; int i, n; isl_val *v; int scale; ctx = isl_multi_val_get_ctx(sizes); scale = isl_options_get_tile_scale_tile_loops(ctx); n = isl_multi_union_pw_aff_dim(sched, isl_dim_set); for (i = 0; i < n; ++i) { isl_union_pw_aff *upa; upa = isl_multi_union_pw_aff_get_union_pw_aff(sched, i); v = isl_multi_val_get_val(sizes, i); upa = isl_union_pw_aff_scale_down_val(upa, isl_val_copy(v)); upa = isl_union_pw_aff_floor(upa); if (scale) upa = isl_union_pw_aff_scale_val(upa, isl_val_copy(v)); isl_val_free(v); sched = isl_multi_union_pw_aff_set_union_pw_aff(sched, i, upa); } isl_multi_val_free(sizes); return sched; } /* Replace "band" by a band corresponding to the tile loops of a tiling * with the given tile sizes. */ __isl_give isl_schedule_band *isl_schedule_band_tile( __isl_take isl_schedule_band *band, __isl_take isl_multi_val *sizes) { band = isl_schedule_band_cow(band); if (!band || !sizes) goto error; band->mupa = isl_multi_union_pw_aff_tile(band->mupa, sizes); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_val_free(sizes); return NULL; } /* Replace "band" by a band corresponding to the point loops of a tiling * with the given tile sizes. * "tile" is the corresponding tile loop band. * * If the shift point loops option is set, then the point loops * are shifted to start at zero. That is, each schedule dimension "i" * is replaced by "i - s * floor(i/s)". * The expression "floor(i/s)" (or "s * floor(i/s)") is extracted from * the tile band. * * Otherwise, the band is left untouched. */ __isl_give isl_schedule_band *isl_schedule_band_point( __isl_take isl_schedule_band *band, __isl_keep isl_schedule_band *tile, __isl_take isl_multi_val *sizes) { isl_ctx *ctx; isl_multi_union_pw_aff *scaled; if (!band || !sizes) goto error; ctx = isl_schedule_band_get_ctx(band); if (!isl_options_get_tile_shift_point_loops(ctx)) { isl_multi_val_free(sizes); return band; } band = isl_schedule_band_cow(band); if (!band) goto error; scaled = isl_schedule_band_get_partial_schedule(tile); if (!isl_options_get_tile_scale_tile_loops(ctx)) scaled = isl_multi_union_pw_aff_scale_multi_val(scaled, sizes); else isl_multi_val_free(sizes); band->mupa = isl_multi_union_pw_aff_sub(band->mupa, scaled); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_schedule_band_free(band); isl_multi_val_free(sizes); return NULL; } /* Drop the "n" dimensions starting at "pos" from "band". * * We apply the transformation even if "n" is zero to ensure consistent * behavior with respect to changes in the schedule space. * * The loop AST generation types for the isolated part become * meaningless after dropping dimensions, so we remove them. */ __isl_give isl_schedule_band *isl_schedule_band_drop( __isl_take isl_schedule_band *band, int pos, int n) { int i; if (pos < 0 || n < 0 || pos + n > band->n) isl_die(isl_schedule_band_get_ctx(band), isl_error_internal, "range out of bounds", return isl_schedule_band_free(band)); band = isl_schedule_band_cow(band); if (!band) return NULL; band->mupa = isl_multi_union_pw_aff_drop_dims(band->mupa, isl_dim_set, pos, n); if (!band->mupa) return isl_schedule_band_free(band); for (i = pos + n; i < band->n; ++i) band->coincident[i - n] = band->coincident[i]; if (band->loop_type) for (i = pos + n; i < band->n; ++i) band->loop_type[i - n] = band->loop_type[i]; free(band->isolate_loop_type); band->isolate_loop_type = NULL; band->n -= n; return band; } /* Reset the user pointer on all identifiers of parameters and tuples * in "band". */ __isl_give isl_schedule_band *isl_schedule_band_reset_user( __isl_take isl_schedule_band *band) { band = isl_schedule_band_cow(band); if (!band) return NULL; band->mupa = isl_multi_union_pw_aff_reset_user(band->mupa); band->ast_build_options = isl_union_set_reset_user(band->ast_build_options); if (!band->mupa || !band->ast_build_options) return isl_schedule_band_free(band); return band; } /* Align the parameters of "band" to those of "space". */ __isl_give isl_schedule_band *isl_schedule_band_align_params( __isl_take isl_schedule_band *band, __isl_take isl_space *space) { band = isl_schedule_band_cow(band); if (!band || !space) goto error; band->mupa = isl_multi_union_pw_aff_align_params(band->mupa, isl_space_copy(space)); band->ast_build_options = isl_union_set_align_params(band->ast_build_options, space); if (!band->mupa || !band->ast_build_options) return isl_schedule_band_free(band); return band; error: isl_space_free(space); isl_schedule_band_free(band); return NULL; } /* Compute the pullback of "band" by the function represented by "upma". * In other words, plug in "upma" in the iteration domains of "band". */ __isl_give isl_schedule_band *isl_schedule_band_pullback_union_pw_multi_aff( __isl_take isl_schedule_band *band, __isl_take isl_union_pw_multi_aff *upma) { band = isl_schedule_band_cow(band); if (!band || !upma) goto error; band->mupa = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(band->mupa, upma); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_union_pw_multi_aff_free(upma); isl_schedule_band_free(band); return NULL; } /* Compute the gist of "band" with respect to "context". * In particular, compute the gist of the associated partial schedule. */ __isl_give isl_schedule_band *isl_schedule_band_gist( __isl_take isl_schedule_band *band, __isl_take isl_union_set *context) { if (!band || !context) goto error; if (band->n == 0) { isl_union_set_free(context); return band; } band = isl_schedule_band_cow(band); if (!band) goto error; band->mupa = isl_multi_union_pw_aff_gist(band->mupa, context); if (!band->mupa) return isl_schedule_band_free(band); return band; error: isl_union_set_free(context); isl_schedule_band_free(band); return NULL; } isl-0.16.1/compile0000755000175000017500000001624512423122200010661 00000000000000#! /bin/sh # Wrapper for compilers which do not understand '-c -o'. scriptversion=2012-10-14.11; # UTC # Copyright (C) 1999-2013 Free Software Foundation, Inc. # Written by Tom Tromey . # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # This file is maintained in Automake, please report # bugs to or send patches to # . nl=' ' # We need space, tab and new line, in precisely that order. Quoting is # there to prevent tools from complaining about whitespace usage. IFS=" "" $nl" file_conv= # func_file_conv build_file lazy # Convert a $build file to $host form and store it in $file # Currently only supports Windows hosts. If the determined conversion # type is listed in (the comma separated) LAZY, no conversion will # take place. func_file_conv () { file=$1 case $file in / | /[!/]*) # absolute file, and not a UNC file if test -z "$file_conv"; then # lazily determine how to convert abs files case `uname -s` in MINGW*) file_conv=mingw ;; CYGWIN*) file_conv=cygwin ;; *) file_conv=wine ;; esac fi case $file_conv/,$2, in *,$file_conv,*) ;; mingw/*) file=`cmd //C echo "$file " | sed -e 's/"\(.*\) " *$/\1/'` ;; cygwin/*) file=`cygpath -m "$file" || echo "$file"` ;; wine/*) file=`winepath -w "$file" || echo "$file"` ;; esac ;; esac } # func_cl_dashL linkdir # Make cl look for libraries in LINKDIR func_cl_dashL () { func_file_conv "$1" if test -z "$lib_path"; then lib_path=$file else lib_path="$lib_path;$file" fi linker_opts="$linker_opts -LIBPATH:$file" } # func_cl_dashl library # Do a library search-path lookup for cl func_cl_dashl () { lib=$1 found=no save_IFS=$IFS IFS=';' for dir in $lib_path $LIB do IFS=$save_IFS if $shared && test -f "$dir/$lib.dll.lib"; then found=yes lib=$dir/$lib.dll.lib break fi if test -f "$dir/$lib.lib"; then found=yes lib=$dir/$lib.lib break fi if test -f "$dir/lib$lib.a"; then found=yes lib=$dir/lib$lib.a break fi done IFS=$save_IFS if test "$found" != yes; then lib=$lib.lib fi } # func_cl_wrapper cl arg... # Adjust compile command to suit cl func_cl_wrapper () { # Assume a capable shell lib_path= shared=: linker_opts= for arg do if test -n "$eat"; then eat= else case $1 in -o) # configure might choose to run compile as 'compile cc -o foo foo.c'. eat=1 case $2 in *.o | *.[oO][bB][jJ]) func_file_conv "$2" set x "$@" -Fo"$file" shift ;; *) func_file_conv "$2" set x "$@" -Fe"$file" shift ;; esac ;; -I) eat=1 func_file_conv "$2" mingw set x "$@" -I"$file" shift ;; -I*) func_file_conv "${1#-I}" mingw set x "$@" -I"$file" shift ;; -l) eat=1 func_cl_dashl "$2" set x "$@" "$lib" shift ;; -l*) func_cl_dashl "${1#-l}" set x "$@" "$lib" shift ;; -L) eat=1 func_cl_dashL "$2" ;; -L*) func_cl_dashL "${1#-L}" ;; -static) shared=false ;; -Wl,*) arg=${1#-Wl,} save_ifs="$IFS"; IFS=',' for flag in $arg; do IFS="$save_ifs" linker_opts="$linker_opts $flag" done IFS="$save_ifs" ;; -Xlinker) eat=1 linker_opts="$linker_opts $2" ;; -*) set x "$@" "$1" shift ;; *.cc | *.CC | *.cxx | *.CXX | *.[cC]++) func_file_conv "$1" set x "$@" -Tp"$file" shift ;; *.c | *.cpp | *.CPP | *.lib | *.LIB | *.Lib | *.OBJ | *.obj | *.[oO]) func_file_conv "$1" mingw set x "$@" "$file" shift ;; *) set x "$@" "$1" shift ;; esac fi shift done if test -n "$linker_opts"; then linker_opts="-link$linker_opts" fi exec "$@" $linker_opts exit 1 } eat= case $1 in '') echo "$0: No command. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: compile [--help] [--version] PROGRAM [ARGS] Wrapper for compilers which do not understand '-c -o'. Remove '-o dest.o' from ARGS, run PROGRAM with the remaining arguments, and rename the output as expected. If you are trying to build a whole package this is not the right script to run: please start by reading the file 'INSTALL'. Report bugs to . EOF exit $? ;; -v | --v*) echo "compile $scriptversion" exit $? ;; cl | *[/\\]cl | cl.exe | *[/\\]cl.exe ) func_cl_wrapper "$@" # Doesn't return... ;; esac ofile= cfile= for arg do if test -n "$eat"; then eat= else case $1 in -o) # configure might choose to run compile as 'compile cc -o foo foo.c'. # So we strip '-o arg' only if arg is an object. eat=1 case $2 in *.o | *.obj) ofile=$2 ;; *) set x "$@" -o "$2" shift ;; esac ;; *.c) cfile=$1 set x "$@" "$1" shift ;; *) set x "$@" "$1" shift ;; esac fi shift done if test -z "$ofile" || test -z "$cfile"; then # If no '-o' option was seen then we might have been invoked from a # pattern rule where we don't need one. That is ok -- this is a # normal compilation that the losing compiler can handle. If no # '.c' file was seen then we are probably linking. That is also # ok. exec "$@" fi # Name of file we expect compiler to create. cofile=`echo "$cfile" | sed 's|^.*[\\/]||; s|^[a-zA-Z]:||; s/\.c$/.o/'` # Create the lock directory. # Note: use '[/\\:.-]' here to ensure that we don't use the same name # that we are using for the .o file. Also, base the name on the expected # object file name, since that is what matters with a parallel build. lockdir=`echo "$cofile" | sed -e 's|[/\\:.-]|_|g'`.d while true; do if mkdir "$lockdir" >/dev/null 2>&1; then break fi sleep 1 done # FIXME: race condition here if user kills between mkdir and trap. trap "rmdir '$lockdir'; exit 1" 1 2 15 # Run the compile. "$@" ret=$? if test -f "$cofile"; then test "$cofile" = "$ofile" || mv "$cofile" "$ofile" elif test -f "${cofile}bj"; then test "${cofile}bj" = "$ofile" || mv "${cofile}bj" "$ofile" fi rmdir "$lockdir" exit $ret # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: isl-0.16.1/isl_imath.h0000664000175000017500000000046612645737060011453 00000000000000#include #include uint32_t isl_imath_hash(mp_int v, uint32_t hash); int isl_imath_fits_ulong_p(mp_int op); int isl_imath_fits_slong_p(mp_int op); void isl_imath_addmul_ui(mp_int rop, mp_int op1, unsigned long op2); void isl_imath_submul_ui(mp_int rop, mp_int op1, unsigned long op2); isl-0.16.1/depcomp0000755000175000017500000005601612423122201010661 00000000000000#! /bin/sh # depcomp - compile a program generating dependencies as side-effects scriptversion=2013-05-30.07; # UTC # Copyright (C) 1999-2013 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. # Originally written by Alexandre Oliva . case $1 in '') echo "$0: No command. Try '$0 --help' for more information." 1>&2 exit 1; ;; -h | --h*) cat <<\EOF Usage: depcomp [--help] [--version] PROGRAM [ARGS] Run PROGRAMS ARGS to compile a file, generating dependencies as side-effects. Environment variables: depmode Dependency tracking mode. source Source file read by 'PROGRAMS ARGS'. object Object file output by 'PROGRAMS ARGS'. DEPDIR directory where to store dependencies. depfile Dependency file to output. tmpdepfile Temporary file to use when outputting dependencies. libtool Whether libtool is used (yes/no). Report bugs to . EOF exit $? ;; -v | --v*) echo "depcomp $scriptversion" exit $? ;; esac # Get the directory component of the given path, and save it in the # global variables '$dir'. Note that this directory component will # be either empty or ending with a '/' character. This is deliberate. set_dir_from () { case $1 in */*) dir=`echo "$1" | sed -e 's|/[^/]*$|/|'`;; *) dir=;; esac } # Get the suffix-stripped basename of the given path, and save it the # global variable '$base'. set_base_from () { base=`echo "$1" | sed -e 's|^.*/||' -e 's/\.[^.]*$//'` } # If no dependency file was actually created by the compiler invocation, # we still have to create a dummy depfile, to avoid errors with the # Makefile "include basename.Plo" scheme. make_dummy_depfile () { echo "#dummy" > "$depfile" } # Factor out some common post-processing of the generated depfile. # Requires the auxiliary global variable '$tmpdepfile' to be set. aix_post_process_depfile () { # If the compiler actually managed to produce a dependency file, # post-process it. if test -f "$tmpdepfile"; then # Each line is of the form 'foo.o: dependency.h'. # Do two passes, one to just change these to # $object: dependency.h # and one to simply output # dependency.h: # which is needed to avoid the deleted-header problem. { sed -e "s,^.*\.[$lower]*:,$object:," < "$tmpdepfile" sed -e "s,^.*\.[$lower]*:[$tab ]*,," -e 's,$,:,' < "$tmpdepfile" } > "$depfile" rm -f "$tmpdepfile" else make_dummy_depfile fi } # A tabulation character. tab=' ' # A newline character. nl=' ' # Character ranges might be problematic outside the C locale. # These definitions help. upper=ABCDEFGHIJKLMNOPQRSTUVWXYZ lower=abcdefghijklmnopqrstuvwxyz digits=0123456789 alpha=${upper}${lower} if test -z "$depmode" || test -z "$source" || test -z "$object"; then echo "depcomp: Variables source, object and depmode must be set" 1>&2 exit 1 fi # Dependencies for sub/bar.o or sub/bar.obj go into sub/.deps/bar.Po. depfile=${depfile-`echo "$object" | sed 's|[^\\/]*$|'${DEPDIR-.deps}'/&|;s|\.\([^.]*\)$|.P\1|;s|Pobj$|Po|'`} tmpdepfile=${tmpdepfile-`echo "$depfile" | sed 's/\.\([^.]*\)$/.T\1/'`} rm -f "$tmpdepfile" # Avoid interferences from the environment. gccflag= dashmflag= # Some modes work just like other modes, but use different flags. We # parameterize here, but still list the modes in the big case below, # to make depend.m4 easier to write. Note that we *cannot* use a case # here, because this file can only contain one case statement. if test "$depmode" = hp; then # HP compiler uses -M and no extra arg. gccflag=-M depmode=gcc fi if test "$depmode" = dashXmstdout; then # This is just like dashmstdout with a different argument. dashmflag=-xM depmode=dashmstdout fi cygpath_u="cygpath -u -f -" if test "$depmode" = msvcmsys; then # This is just like msvisualcpp but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvisualcpp fi if test "$depmode" = msvc7msys; then # This is just like msvc7 but w/o cygpath translation. # Just convert the backslash-escaped backslashes to single forward # slashes to satisfy depend.m4 cygpath_u='sed s,\\\\,/,g' depmode=msvc7 fi if test "$depmode" = xlc; then # IBM C/C++ Compilers xlc/xlC can output gcc-like dependency information. gccflag=-qmakedep=gcc,-MF depmode=gcc fi case "$depmode" in gcc3) ## gcc 3 implements dependency tracking that does exactly what ## we want. Yay! Note: for some reason libtool 1.4 doesn't like ## it if -MD -MP comes after the -MF stuff. Hmm. ## Unfortunately, FreeBSD c89 acceptance of flags depends upon ## the command line argument order; so add the flags where they ## appear in depend2.am. Note that the slowdown incurred here ## affects only configure: in makefiles, %FASTDEP% shortcuts this. for arg do case $arg in -c) set fnord "$@" -MT "$object" -MD -MP -MF "$tmpdepfile" "$arg" ;; *) set fnord "$@" "$arg" ;; esac shift # fnord shift # $arg done "$@" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi mv "$tmpdepfile" "$depfile" ;; gcc) ## Note that this doesn't just cater to obsosete pre-3.x GCC compilers. ## but also to in-use compilers like IMB xlc/xlC and the HP C compiler. ## (see the conditional assignment to $gccflag above). ## There are various ways to get dependency output from gcc. Here's ## why we pick this rather obscure method: ## - Don't want to use -MD because we'd like the dependencies to end ## up in a subdir. Having to rename by hand is ugly. ## (We might end up doing this anyway to support other compilers.) ## - The DEPENDENCIES_OUTPUT environment variable makes gcc act like ## -MM, not -M (despite what the docs say). Also, it might not be ## supported by the other compilers which use the 'gcc' depmode. ## - Using -M directly means running the compiler twice (even worse ## than renaming). if test -z "$gccflag"; then gccflag=-MD, fi "$@" -Wp,"$gccflag$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The second -e expression handles DOS-style file names with drive # letters. sed -e 's/^[^:]*: / /' \ -e 's/^['$alpha']:\/[^:]*: / /' < "$tmpdepfile" >> "$depfile" ## This next piece of magic avoids the "deleted header file" problem. ## The problem is that when a header file which appears in a .P file ## is deleted, the dependency causes make to die (because there is ## typically no way to rebuild the header). We avoid this by adding ## dummy dependencies for each header file. Too bad gcc doesn't do ## this for us directly. ## Some versions of gcc put a space before the ':'. On the theory ## that the space means something, we add a space to the output as ## well. hp depmode also adds that space, but also prefixes the VPATH ## to the object. Take care to not repeat it in the output. ## Some versions of the HPUX 10.20 sed can't process this invocation ## correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e "s|.*$object$||" -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; sgi) if test "$libtool" = yes; then "$@" "-Wp,-MDupdate,$tmpdepfile" else "$@" -MDupdate "$tmpdepfile" fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" if test -f "$tmpdepfile"; then # yes, the sourcefile depend on other files echo "$object : \\" > "$depfile" # Clip off the initial element (the dependent). Don't try to be # clever and replace this with sed code, as IRIX sed won't handle # lines with more than a fixed number of characters (4096 in # IRIX 6.2 sed, 8192 in IRIX 6.5). We also remove comment lines; # the IRIX cc adds comments like '#:fec' to the end of the # dependency line. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' \ | tr "$nl" ' ' >> "$depfile" echo >> "$depfile" # The second pass generates a dummy entry for each header file. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^.*\.o://' -e 's/#.*$//' -e '/^$/ d' -e 's/$/:/' \ >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" ;; xlc) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; aix) # The C for AIX Compiler uses -M and outputs the dependencies # in a .u file. In older versions, this file always lives in the # current directory. Also, the AIX compiler puts '$object:' at the # start of each line; $object doesn't have directory information. # Version 6 uses the directory in both cases. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.u tmpdepfile2=$base.u tmpdepfile3=$dir.libs/$base.u "$@" -Wc,-M else tmpdepfile1=$dir$base.u tmpdepfile2=$dir$base.u tmpdepfile3=$dir$base.u "$@" -M fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done aix_post_process_depfile ;; tcc) # tcc (Tiny C Compiler) understand '-MD -MF file' since version 0.9.26 # FIXME: That version still under development at the moment of writing. # Make that this statement remains true also for stable, released # versions. # It will wrap lines (doesn't matter whether long or short) with a # trailing '\', as in: # # foo.o : \ # foo.c \ # foo.h \ # # It will put a trailing '\' even on the last line, and will use leading # spaces rather than leading tabs (at least since its commit 0394caf7 # "Emit spaces for -MD"). "$@" -MD -MF "$tmpdepfile" stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each non-empty line is of the form 'foo.o : \' or ' dep.h \'. # We have to change lines of the first kind to '$object: \'. sed -e "s|.*:|$object :|" < "$tmpdepfile" > "$depfile" # And for each line of the second kind, we have to emit a 'dep.h:' # dummy dependency, to avoid the deleted-header problem. sed -n -e 's|^ *\(.*\) *\\$|\1:|p' < "$tmpdepfile" >> "$depfile" rm -f "$tmpdepfile" ;; ## The order of this option in the case statement is important, since the ## shell code in configure will try each of these formats in the order ## listed in this file. A plain '-MD' option would be understood by many ## compilers, so we must ensure this comes after the gcc and icc options. pgcc) # Portland's C compiler understands '-MD'. # Will always output deps to 'file.d' where file is the root name of the # source file under compilation, even if file resides in a subdirectory. # The object file name does not affect the name of the '.d' file. # pgcc 10.2 will output # foo.o: sub/foo.c sub/foo.h # and will wrap long lines using '\' : # foo.o: sub/foo.c ... \ # sub/foo.h ... \ # ... set_dir_from "$object" # Use the source, not the object, to determine the base name, since # that's sadly what pgcc will do too. set_base_from "$source" tmpdepfile=$base.d # For projects that build the same source file twice into different object # files, the pgcc approach of using the *source* file root name can cause # problems in parallel builds. Use a locking strategy to avoid stomping on # the same $tmpdepfile. lockdir=$base.d-lock trap " echo '$0: caught signal, cleaning up...' >&2 rmdir '$lockdir' exit 1 " 1 2 13 15 numtries=100 i=$numtries while test $i -gt 0; do # mkdir is a portable test-and-set. if mkdir "$lockdir" 2>/dev/null; then # This process acquired the lock. "$@" -MD stat=$? # Release the lock. rmdir "$lockdir" break else # If the lock is being held by a different process, wait # until the winning process is done or we timeout. while test -d "$lockdir" && test $i -gt 0; do sleep 1 i=`expr $i - 1` done fi i=`expr $i - 1` done trap - 1 2 13 15 if test $i -le 0; then echo "$0: failed to acquire lock after $numtries attempts" >&2 echo "$0: check lockdir '$lockdir'" >&2 exit 1 fi if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" # Each line is of the form `foo.o: dependent.h', # or `foo.o: dep1.h dep2.h \', or ` dep3.h dep4.h \'. # Do two passes, one to just change these to # `$object: dependent.h' and one to simply `dependent.h:'. sed "s,^[^:]*:,$object :," < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this invocation # correctly. Breaking it into two sed invocations is a workaround. sed 's,^[^:]*: \(.*\)$,\1,;s/^\\$//;/^$/d;/:$/d' < "$tmpdepfile" \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; hp2) # The "hp" stanza above does not work with aCC (C++) and HP's ia64 # compilers, which have integrated preprocessors. The correct option # to use with these is +Maked; it writes dependencies to a file named # 'foo.d', which lands next to the object file, wherever that # happens to be. # Much of this is similar to the tru64 case; see comments there. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then tmpdepfile1=$dir$base.d tmpdepfile2=$dir.libs/$base.d "$@" -Wc,+Maked else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d "$@" +Maked fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" do test -f "$tmpdepfile" && break done if test -f "$tmpdepfile"; then sed -e "s,^.*\.[$lower]*:,$object:," "$tmpdepfile" > "$depfile" # Add 'dependent.h:' lines. sed -ne '2,${ s/^ *// s/ \\*$// s/$/:/ p }' "$tmpdepfile" >> "$depfile" else make_dummy_depfile fi rm -f "$tmpdepfile" "$tmpdepfile2" ;; tru64) # The Tru64 compiler uses -MD to generate dependencies as a side # effect. 'cc -MD -o foo.o ...' puts the dependencies into 'foo.o.d'. # At least on Alpha/Redhat 6.1, Compaq CCC V6.2-504 seems to put # dependencies in 'foo.d' instead, so we check for that too. # Subdirectories are respected. set_dir_from "$object" set_base_from "$object" if test "$libtool" = yes; then # Libtool generates 2 separate objects for the 2 libraries. These # two compilations output dependencies in $dir.libs/$base.o.d and # in $dir$base.o.d. We have to check for both files, because # one of the two compilations can be disabled. We should prefer # $dir$base.o.d over $dir.libs/$base.o.d because the latter is # automatically cleaned when .libs/ is deleted, while ignoring # the former would cause a distcleancheck panic. tmpdepfile1=$dir$base.o.d # libtool 1.5 tmpdepfile2=$dir.libs/$base.o.d # Likewise. tmpdepfile3=$dir.libs/$base.d # Compaq CCC V6.2-504 "$@" -Wc,-MD else tmpdepfile1=$dir$base.d tmpdepfile2=$dir$base.d tmpdepfile3=$dir$base.d "$@" -MD fi stat=$? if test $stat -ne 0; then rm -f "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" exit $stat fi for tmpdepfile in "$tmpdepfile1" "$tmpdepfile2" "$tmpdepfile3" do test -f "$tmpdepfile" && break done # Same post-processing that is required for AIX mode. aix_post_process_depfile ;; msvc7) if test "$libtool" = yes; then showIncludes=-Wc,-showIncludes else showIncludes=-showIncludes fi "$@" $showIncludes > "$tmpdepfile" stat=$? grep -v '^Note: including file: ' "$tmpdepfile" if test $stat -ne 0; then rm -f "$tmpdepfile" exit $stat fi rm -f "$depfile" echo "$object : \\" > "$depfile" # The first sed program below extracts the file names and escapes # backslashes for cygpath. The second sed program outputs the file # name when reading, but also accumulates all include files in the # hold buffer in order to output them again at the end. This only # works with sed implementations that can handle large buffers. sed < "$tmpdepfile" -n ' /^Note: including file: *\(.*\)/ { s//\1/ s/\\/\\\\/g p }' | $cygpath_u | sort -u | sed -n ' s/ /\\ /g s/\(.*\)/'"$tab"'\1 \\/p s/.\(.*\) \\/\1:/ H $ { s/.*/'"$tab"'/ G p }' >> "$depfile" echo >> "$depfile" # make sure the fragment doesn't end with a backslash rm -f "$tmpdepfile" ;; msvc7msys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; #nosideeffect) # This comment above is used by automake to tell side-effect # dependency tracking mechanisms from slower ones. dashmstdout) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout, regardless of -o. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done test -z "$dashmflag" && dashmflag=-M # Require at least two characters before searching for ':' # in the target name. This is to cope with DOS-style filenames: # a dependency such as 'c:/foo/bar' could be seen as target 'c' otherwise. "$@" $dashmflag | sed "s|^[$tab ]*[^:$tab ][^:][^:]*:[$tab ]*|$object: |" > "$tmpdepfile" rm -f "$depfile" cat < "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process this sed invocation # correctly. Breaking it into two sed invocations is a workaround. tr ' ' "$nl" < "$tmpdepfile" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; dashXmstdout) # This case only exists to satisfy depend.m4. It is never actually # run, as this mode is specially recognized in the preamble. exit 1 ;; makedepend) "$@" || exit $? # Remove any Libtool call if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # X makedepend shift cleared=no eat=no for arg do case $cleared in no) set ""; shift cleared=yes ;; esac if test $eat = yes; then eat=no continue fi case "$arg" in -D*|-I*) set fnord "$@" "$arg"; shift ;; # Strip any option that makedepend may not understand. Remove # the object too, otherwise makedepend will parse it as a source file. -arch) eat=yes ;; -*|$object) ;; *) set fnord "$@" "$arg"; shift ;; esac done obj_suffix=`echo "$object" | sed 's/^.*\././'` touch "$tmpdepfile" ${MAKEDEPEND-makedepend} -o"$obj_suffix" -f"$tmpdepfile" "$@" rm -f "$depfile" # makedepend may prepend the VPATH from the source file name to the object. # No need to regex-escape $object, excess matching of '.' is harmless. sed "s|^.*\($object *:\)|\1|" "$tmpdepfile" > "$depfile" # Some versions of the HPUX 10.20 sed can't process the last invocation # correctly. Breaking it into two sed invocations is a workaround. sed '1,2d' "$tmpdepfile" \ | tr ' ' "$nl" \ | sed -e 's/^\\$//' -e '/^$/d' -e '/:$/d' \ | sed -e 's/$/ :/' >> "$depfile" rm -f "$tmpdepfile" "$tmpdepfile".bak ;; cpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi # Remove '-o $object'. IFS=" " for arg do case $arg in -o) shift ;; $object) shift ;; *) set fnord "$@" "$arg" shift # fnord shift # $arg ;; esac done "$@" -E \ | sed -n -e '/^# [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ -e '/^#line [0-9][0-9]* "\([^"]*\)".*/ s:: \1 \\:p' \ | sed '$ s: \\$::' > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" cat < "$tmpdepfile" >> "$depfile" sed < "$tmpdepfile" '/^$/d;s/^ //;s/ \\$//;s/$/ :/' >> "$depfile" rm -f "$tmpdepfile" ;; msvisualcpp) # Important note: in order to support this mode, a compiler *must* # always write the preprocessed file to stdout. "$@" || exit $? # Remove the call to Libtool. if test "$libtool" = yes; then while test "X$1" != 'X--mode=compile'; do shift done shift fi IFS=" " for arg do case "$arg" in -o) shift ;; $object) shift ;; "-Gm"|"/Gm"|"-Gi"|"/Gi"|"-ZI"|"/ZI") set fnord "$@" shift shift ;; *) set fnord "$@" "$arg" shift shift ;; esac done "$@" -E 2>/dev/null | sed -n '/^#line [0-9][0-9]* "\([^"]*\)"/ s::\1:p' | $cygpath_u | sort -u > "$tmpdepfile" rm -f "$depfile" echo "$object : \\" > "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::'"$tab"'\1 \\:p' >> "$depfile" echo "$tab" >> "$depfile" sed < "$tmpdepfile" -n -e 's% %\\ %g' -e '/^\(.*\)$/ s::\1\::p' >> "$depfile" rm -f "$tmpdepfile" ;; msvcmsys) # This case exists only to let depend.m4 do its work. It works by # looking at the text of this script. This case will never be run, # since it is checked for above. exit 1 ;; none) exec "$@" ;; *) echo "Unknown depmode $depmode" 1>&2 exit 1 ;; esac exit 0 # Local Variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: isl-0.16.1/isl_union_single.c0000664000175000017500000001233712645737061013036 00000000000000/* * Copyright 2010 INRIA Saclay * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include /* A union of expressions defined over different domain spaces. * "space" describes the parameters. * The entries of "table" are keyed on the domain space of the entry. */ struct UNION { int ref; #ifdef HAS_TYPE enum isl_fold type; #endif isl_space *space; struct isl_hash_table table; }; /* Return the number of base expressions in "u". */ int FN(FN(UNION,n),PARTS)(__isl_keep UNION *u) { return u ? u->table.n : 0; } S(UNION,foreach_data) { isl_stat (*fn)(__isl_take PART *part, void *user); void *user; }; static isl_stat FN(UNION,call_on_copy)(void **entry, void *user) { PART *part = *entry; S(UNION,foreach_data) *data = (S(UNION,foreach_data) *)user; part = FN(PART,copy)(part); if (!part) return isl_stat_error; return data->fn(part, data->user); } isl_stat FN(FN(UNION,foreach),PARTS)(__isl_keep UNION *u, isl_stat (*fn)(__isl_take PART *part, void *user), void *user) { S(UNION,foreach_data) data = { fn, user }; if (!u) return isl_stat_error; return isl_hash_table_foreach(u->space->ctx, &u->table, &FN(UNION,call_on_copy), &data); } /* Is the domain space of "entry" equal to the domain of "space"? */ static int FN(UNION,has_same_domain_space)(const void *entry, const void *val) { PART *part = (PART *)entry; isl_space *space = (isl_space *) val; if (isl_space_is_set(space)) return isl_space_is_set(part->dim); return isl_space_tuple_is_equal(part->dim, isl_dim_in, space, isl_dim_in); } /* Return the entry, if any, in "u" that lives in "space". * If "reserve" is set, then an entry is created if it does not exist yet. * Return NULL on error and isl_hash_table_entry_none if no entry was found. * Note that when "reserve" is set, the function will never return * isl_hash_table_entry_none. * * First look for the entry (if any) with the same domain space. * If it exists, then check if the range space also matches. */ static struct isl_hash_table_entry *FN(UNION,find_part_entry)( __isl_keep UNION *u, __isl_keep isl_space *space, int reserve) { isl_ctx *ctx; uint32_t hash; struct isl_hash_table_entry *entry; isl_bool equal; PART *part; if (!u || !space) return NULL; ctx = FN(UNION,get_ctx)(u); hash = isl_space_get_domain_hash(space); entry = isl_hash_table_find(ctx, &u->table, hash, &FN(UNION,has_same_domain_space), space, reserve); if (!entry) return reserve ? NULL : isl_hash_table_entry_none; if (reserve && !entry->data) return entry; part = entry->data; equal = isl_space_tuple_is_equal(part->dim, isl_dim_out, space, isl_dim_out); if (equal < 0) return NULL; if (equal) return entry; if (!reserve) return isl_hash_table_entry_none; isl_die(FN(UNION,get_ctx)(u), isl_error_invalid, "union expression can only contain a single " "expression over a given domain", return NULL); } /* Remove "part_entry" from the hash table of "u". */ static __isl_give UNION *FN(UNION,remove_part_entry)(__isl_take UNION *u, struct isl_hash_table_entry *part_entry) { isl_ctx *ctx; if (!u || !part_entry) return FN(UNION,free)(u); ctx = FN(UNION,get_ctx)(u); isl_hash_table_remove(ctx, &u->table, part_entry); FN(PART,free)(part_entry->data); return u; } /* Check that the domain of "part" is disjoint from the domain of the entries * in "u" that are defined on the same domain space, but have a different * target space. * Since a UNION with a single entry per domain space is not allowed * to contain two entries with the same domain space, there cannot be * any such other entry. */ static isl_stat FN(UNION,check_disjoint_domain_other)(__isl_keep UNION *u, __isl_keep PART *part) { return isl_stat_ok; } /* Check that the domain of "part1" is disjoint from the domain of "part2". * This check is performed before "part2" is added to a UNION to ensure * that the UNION expression remains a function. * Since a UNION with a single entry per domain space is not allowed * to contain two entries with the same domain space, fail unconditionally. */ static isl_stat FN(UNION,check_disjoint_domain)(__isl_keep PART *part1, __isl_keep PART *part2) { isl_die(FN(PART,get_ctx)(part1), isl_error_invalid, "additional part should live on separate space", return isl_stat_error); } /* Call "fn" on each part entry of "u". */ static isl_stat FN(UNION,foreach_inplace)(__isl_keep UNION *u, isl_stat (*fn)(void **part, void *user), void *user) { isl_ctx *ctx; if (!u) return isl_stat_error; ctx = FN(UNION,get_ctx)(u); return isl_hash_table_foreach(ctx, &u->table, fn, user); } /* Does "u" have a single reference? * That is, can we change "u" inplace? */ static isl_bool FN(UNION,has_single_reference)(__isl_keep UNION *u) { if (!u) return isl_bool_error; return u->ref == 1; } static isl_stat FN(UNION,free_u_entry)(void **entry, void *user) { PART *part = *entry; FN(PART,free)(part); return isl_stat_ok; } #include isl-0.16.1/isl_ast_build.c0000664000175000017500000022042012645737060012304 00000000000000/* * Copyright 2012-2013 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include #include #include #include /* Construct a map that isolates the current dimension. * * Essentially, the current dimension of "set" is moved to the single output * dimension in the result, with the current dimension in the domain replaced * by an unconstrained variable. */ __isl_give isl_map *isl_ast_build_map_to_iterator( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { isl_map *map; map = isl_map_from_domain(set); map = isl_map_add_dims(map, isl_dim_out, 1); if (!build) return isl_map_free(map); map = isl_map_equate(map, isl_dim_in, build->depth, isl_dim_out, 0); map = isl_map_eliminate(map, isl_dim_in, build->depth, 1); return map; } /* Initialize the information derived during the AST generation to default * values for a schedule domain in "space". * * We also check that the remaining fields are not NULL so that * the calling functions don't have to perform this test. */ static __isl_give isl_ast_build *isl_ast_build_init_derived( __isl_take isl_ast_build *build, __isl_take isl_space *space) { isl_ctx *ctx; isl_vec *strides; build = isl_ast_build_cow(build); if (!build || !build->domain) goto error; ctx = isl_ast_build_get_ctx(build); strides = isl_vec_alloc(ctx, isl_space_dim(space, isl_dim_set)); strides = isl_vec_set_si(strides, 1); isl_vec_free(build->strides); build->strides = strides; space = isl_space_map_from_set(space); isl_multi_aff_free(build->offsets); build->offsets = isl_multi_aff_zero(isl_space_copy(space)); isl_multi_aff_free(build->values); build->values = isl_multi_aff_identity(isl_space_copy(space)); isl_multi_aff_free(build->internal2input); build->internal2input = isl_multi_aff_identity(space); if (!build->iterators || !build->domain || !build->generated || !build->pending || !build->values || !build->internal2input || !build->strides || !build->offsets || !build->options) return isl_ast_build_free(build); return build; error: isl_space_free(space); return isl_ast_build_free(build); } /* Return an isl_id called "c%d", with "%d" set to "i". * If an isl_id with such a name already appears among the parameters * in build->domain, then adjust the name to "c%d_%d". */ static __isl_give isl_id *generate_name(isl_ctx *ctx, int i, __isl_keep isl_ast_build *build) { int j; char name[16]; isl_set *dom = build->domain; snprintf(name, sizeof(name), "c%d", i); j = 0; while (isl_set_find_dim_by_name(dom, isl_dim_param, name) >= 0) snprintf(name, sizeof(name), "c%d_%d", i, j++); return isl_id_alloc(ctx, name, NULL); } /* Create an isl_ast_build with "set" as domain. * * The input set is usually a parameter domain, but we currently allow it to * be any kind of set. We set the domain of the returned isl_ast_build * to "set" and initialize all the other fields to default values. */ __isl_give isl_ast_build *isl_ast_build_from_context(__isl_take isl_set *set) { int i, n; isl_ctx *ctx; isl_space *space; isl_ast_build *build; set = isl_set_compute_divs(set); if (!set) return NULL; ctx = isl_set_get_ctx(set); build = isl_calloc_type(ctx, isl_ast_build); if (!build) goto error; build->ref = 1; build->domain = set; build->generated = isl_set_copy(build->domain); build->pending = isl_set_universe(isl_set_get_space(build->domain)); build->options = isl_union_map_empty(isl_space_params_alloc(ctx, 0)); n = isl_set_dim(set, isl_dim_set); build->depth = n; build->iterators = isl_id_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_id *id; if (isl_set_has_dim_id(set, isl_dim_set, i)) id = isl_set_get_dim_id(set, isl_dim_set, i); else id = generate_name(ctx, i, build); build->iterators = isl_id_list_add(build->iterators, id); } space = isl_set_get_space(set); if (isl_space_is_params(space)) space = isl_space_set_from_params(space); return isl_ast_build_init_derived(build, space); error: isl_set_free(set); return NULL; } /* Create an isl_ast_build with a universe (parametric) context. */ __isl_give isl_ast_build *isl_ast_build_alloc(isl_ctx *ctx) { isl_space *space; isl_set *context; space = isl_space_params_alloc(ctx, 0); context = isl_set_universe(space); return isl_ast_build_from_context(context); } __isl_give isl_ast_build *isl_ast_build_copy(__isl_keep isl_ast_build *build) { if (!build) return NULL; build->ref++; return build; } __isl_give isl_ast_build *isl_ast_build_dup(__isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_ast_build *dup; if (!build) return NULL; ctx = isl_ast_build_get_ctx(build); dup = isl_calloc_type(ctx, isl_ast_build); if (!dup) return NULL; dup->ref = 1; dup->outer_pos = build->outer_pos; dup->depth = build->depth; dup->iterators = isl_id_list_copy(build->iterators); dup->domain = isl_set_copy(build->domain); dup->generated = isl_set_copy(build->generated); dup->pending = isl_set_copy(build->pending); dup->values = isl_multi_aff_copy(build->values); dup->internal2input = isl_multi_aff_copy(build->internal2input); dup->value = isl_pw_aff_copy(build->value); dup->strides = isl_vec_copy(build->strides); dup->offsets = isl_multi_aff_copy(build->offsets); dup->executed = isl_union_map_copy(build->executed); dup->single_valued = build->single_valued; dup->options = isl_union_map_copy(build->options); dup->at_each_domain = build->at_each_domain; dup->at_each_domain_user = build->at_each_domain_user; dup->before_each_for = build->before_each_for; dup->before_each_for_user = build->before_each_for_user; dup->after_each_for = build->after_each_for; dup->after_each_for_user = build->after_each_for_user; dup->before_each_mark = build->before_each_mark; dup->before_each_mark_user = build->before_each_mark_user; dup->after_each_mark = build->after_each_mark; dup->after_each_mark_user = build->after_each_mark_user; dup->create_leaf = build->create_leaf; dup->create_leaf_user = build->create_leaf_user; dup->node = isl_schedule_node_copy(build->node); if (build->loop_type) { int i; dup->n = build->n; dup->loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, dup->n); if (dup->n && !dup->loop_type) return isl_ast_build_free(dup); for (i = 0; i < dup->n; ++i) dup->loop_type[i] = build->loop_type[i]; } if (!dup->iterators || !dup->domain || !dup->generated || !dup->pending || !dup->values || !dup->strides || !dup->offsets || !dup->options || (build->internal2input && !dup->internal2input) || (build->executed && !dup->executed) || (build->value && !dup->value) || (build->node && !dup->node)) return isl_ast_build_free(dup); return dup; } /* Align the parameters of "build" to those of "model", introducing * additional parameters if needed. */ __isl_give isl_ast_build *isl_ast_build_align_params( __isl_take isl_ast_build *build, __isl_take isl_space *model) { build = isl_ast_build_cow(build); if (!build) goto error; build->domain = isl_set_align_params(build->domain, isl_space_copy(model)); build->generated = isl_set_align_params(build->generated, isl_space_copy(model)); build->pending = isl_set_align_params(build->pending, isl_space_copy(model)); build->values = isl_multi_aff_align_params(build->values, isl_space_copy(model)); build->offsets = isl_multi_aff_align_params(build->offsets, isl_space_copy(model)); build->options = isl_union_map_align_params(build->options, isl_space_copy(model)); if (build->internal2input) { build->internal2input = isl_multi_aff_align_params(build->internal2input, model); if (!build->internal2input) return isl_ast_build_free(build); } else { isl_space_free(model); } if (!build->domain || !build->values || !build->offsets || !build->options) return isl_ast_build_free(build); return build; error: isl_space_free(model); return NULL; } __isl_give isl_ast_build *isl_ast_build_cow(__isl_take isl_ast_build *build) { if (!build) return NULL; if (build->ref == 1) return build; build->ref--; return isl_ast_build_dup(build); } __isl_null isl_ast_build *isl_ast_build_free( __isl_take isl_ast_build *build) { if (!build) return NULL; if (--build->ref > 0) return NULL; isl_id_list_free(build->iterators); isl_set_free(build->domain); isl_set_free(build->generated); isl_set_free(build->pending); isl_multi_aff_free(build->values); isl_multi_aff_free(build->internal2input); isl_pw_aff_free(build->value); isl_vec_free(build->strides); isl_multi_aff_free(build->offsets); isl_multi_aff_free(build->schedule_map); isl_union_map_free(build->executed); isl_union_map_free(build->options); isl_schedule_node_free(build->node); free(build->loop_type); isl_set_free(build->isolated); free(build); return NULL; } isl_ctx *isl_ast_build_get_ctx(__isl_keep isl_ast_build *build) { return build ? isl_set_get_ctx(build->domain) : NULL; } /* Replace build->options by "options". */ __isl_give isl_ast_build *isl_ast_build_set_options( __isl_take isl_ast_build *build, __isl_take isl_union_map *options) { build = isl_ast_build_cow(build); if (!build || !options) goto error; isl_union_map_free(build->options); build->options = options; return build; error: isl_union_map_free(options); return isl_ast_build_free(build); } /* Set the iterators for the next code generation. * * If we still have some iterators left from the previous code generation * (if any) or if iterators have already been set by a previous * call to this function, then we remove them first. */ __isl_give isl_ast_build *isl_ast_build_set_iterators( __isl_take isl_ast_build *build, __isl_take isl_id_list *iterators) { int dim, n_it; build = isl_ast_build_cow(build); if (!build) goto error; dim = isl_set_dim(build->domain, isl_dim_set); n_it = isl_id_list_n_id(build->iterators); if (n_it < dim) isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "isl_ast_build in inconsistent state", goto error); if (n_it > dim) build->iterators = isl_id_list_drop(build->iterators, dim, n_it - dim); build->iterators = isl_id_list_concat(build->iterators, iterators); if (!build->iterators) return isl_ast_build_free(build); return build; error: isl_id_list_free(iterators); return isl_ast_build_free(build); } /* Set the "at_each_domain" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_at_each_domain( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->at_each_domain = fn; build->at_each_domain_user = user; return build; } /* Set the "before_each_for" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_before_each_for( __isl_take isl_ast_build *build, __isl_give isl_id *(*fn)(__isl_keep isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->before_each_for = fn; build->before_each_for_user = user; return build; } /* Set the "after_each_for" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_after_each_for( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->after_each_for = fn; build->after_each_for_user = user; return build; } /* Set the "before_each_mark" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_before_each_mark( __isl_take isl_ast_build *build, isl_stat (*fn)(__isl_keep isl_id *mark, __isl_keep isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->before_each_mark = fn; build->before_each_mark_user = user; return build; } /* Set the "after_each_mark" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_after_each_mark( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->after_each_mark = fn; build->after_each_mark_user = user; return build; } /* Set the "create_leaf" callback of "build" to "fn". */ __isl_give isl_ast_build *isl_ast_build_set_create_leaf( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_build *build, void *user), void *user) { build = isl_ast_build_cow(build); if (!build) return NULL; build->create_leaf = fn; build->create_leaf_user = user; return build; } /* Clear all information that is specific to this code generation * and that is (probably) not meaningful to any nested code generation. */ __isl_give isl_ast_build *isl_ast_build_clear_local_info( __isl_take isl_ast_build *build) { isl_space *space; build = isl_ast_build_cow(build); if (!build) return NULL; space = isl_union_map_get_space(build->options); isl_union_map_free(build->options); build->options = isl_union_map_empty(space); build->at_each_domain = NULL; build->at_each_domain_user = NULL; build->before_each_for = NULL; build->before_each_for_user = NULL; build->after_each_for = NULL; build->after_each_for_user = NULL; build->before_each_mark = NULL; build->before_each_mark_user = NULL; build->after_each_mark = NULL; build->after_each_mark_user = NULL; build->create_leaf = NULL; build->create_leaf_user = NULL; if (!build->options) return isl_ast_build_free(build); return build; } /* Have any loops been eliminated? * That is, do any of the original schedule dimensions have a fixed * value that has been substituted? */ static int any_eliminated(isl_ast_build *build) { int i; for (i = 0; i < build->depth; ++i) if (isl_ast_build_has_affine_value(build, i)) return 1; return 0; } /* Clear build->schedule_map. * This function should be called whenever anything that might affect * the result of isl_ast_build_get_schedule_map_multi_aff changes. * In particular, it should be called when the depth is changed or * when an iterator is determined to have a fixed value. */ static void isl_ast_build_reset_schedule_map(__isl_keep isl_ast_build *build) { if (!build) return; isl_multi_aff_free(build->schedule_map); build->schedule_map = NULL; } /* Do we need a (non-trivial) schedule map? * That is, is the internal schedule space different from * the external schedule space? * * The internal and external schedule spaces are only the same * if code has been generated for the entire schedule and if none * of the loops have been eliminated. */ __isl_give int isl_ast_build_need_schedule_map(__isl_keep isl_ast_build *build) { int dim; if (!build) return -1; dim = isl_set_dim(build->domain, isl_dim_set); return build->depth != dim || any_eliminated(build); } /* Return a mapping from the internal schedule space to the external * schedule space in the form of an isl_multi_aff. * The internal schedule space originally corresponds to that of the * input schedule. This may change during the code generation if * if isl_ast_build_insert_dim is ever called. * The external schedule space corresponds to the * loops that have been generated. * * Currently, the only difference between the internal schedule domain * and the external schedule domain is that some dimensions are projected * out in the external schedule domain. In particular, the dimensions * for which no code has been generated yet and the dimensions that correspond * to eliminated loops. * * We cache a copy of the schedule_map in build->schedule_map. * The cache is cleared through isl_ast_build_reset_schedule_map * whenever anything changes that might affect the result of this function. */ __isl_give isl_multi_aff *isl_ast_build_get_schedule_map_multi_aff( __isl_keep isl_ast_build *build) { isl_space *space; isl_multi_aff *ma; if (!build) return NULL; if (build->schedule_map) return isl_multi_aff_copy(build->schedule_map); space = isl_ast_build_get_space(build, 1); space = isl_space_map_from_set(space); ma = isl_multi_aff_identity(space); if (isl_ast_build_need_schedule_map(build)) { int i; int dim = isl_set_dim(build->domain, isl_dim_set); ma = isl_multi_aff_drop_dims(ma, isl_dim_out, build->depth, dim - build->depth); for (i = build->depth - 1; i >= 0; --i) if (isl_ast_build_has_affine_value(build, i)) ma = isl_multi_aff_drop_dims(ma, isl_dim_out, i, 1); } build->schedule_map = ma; return isl_multi_aff_copy(build->schedule_map); } /* Return a mapping from the internal schedule space to the external * schedule space in the form of an isl_map. */ __isl_give isl_map *isl_ast_build_get_schedule_map( __isl_keep isl_ast_build *build) { isl_multi_aff *ma; ma = isl_ast_build_get_schedule_map_multi_aff(build); return isl_map_from_multi_aff(ma); } /* Return the position of the dimension in build->domain for which * an AST node is currently being generated. */ int isl_ast_build_get_depth(__isl_keep isl_ast_build *build) { return build ? build->depth : -1; } /* Prepare for generating code for the next level. * In particular, increase the depth and reset any information * that is local to the current depth. */ __isl_give isl_ast_build *isl_ast_build_increase_depth( __isl_take isl_ast_build *build) { build = isl_ast_build_cow(build); if (!build) return NULL; build->depth++; isl_ast_build_reset_schedule_map(build); build->value = isl_pw_aff_free(build->value); return build; } void isl_ast_build_dump(__isl_keep isl_ast_build *build) { if (!build) return; fprintf(stderr, "domain: "); isl_set_dump(build->domain); fprintf(stderr, "generated: "); isl_set_dump(build->generated); fprintf(stderr, "pending: "); isl_set_dump(build->pending); fprintf(stderr, "iterators: "); isl_id_list_dump(build->iterators); fprintf(stderr, "values: "); isl_multi_aff_dump(build->values); if (build->value) { fprintf(stderr, "value: "); isl_pw_aff_dump(build->value); } fprintf(stderr, "strides: "); isl_vec_dump(build->strides); fprintf(stderr, "offsets: "); isl_multi_aff_dump(build->offsets); fprintf(stderr, "internal2input: "); isl_multi_aff_dump(build->internal2input); } /* Initialize "build" for AST construction in schedule space "space" * in the case that build->domain is a parameter set. * * build->iterators is assumed to have been updated already. */ static __isl_give isl_ast_build *isl_ast_build_init( __isl_take isl_ast_build *build, __isl_take isl_space *space) { isl_set *set; build = isl_ast_build_cow(build); if (!build) goto error; set = isl_set_universe(isl_space_copy(space)); build->domain = isl_set_intersect_params(isl_set_copy(set), build->domain); build->pending = isl_set_intersect_params(isl_set_copy(set), build->pending); build->generated = isl_set_intersect_params(set, build->generated); return isl_ast_build_init_derived(build, space); error: isl_ast_build_free(build); isl_space_free(space); return NULL; } /* Assign "aff" to *user and return -1, effectively extracting * the first (and presumably only) affine expression in the isl_pw_aff * on which this function is used. */ static isl_stat extract_single_piece(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user) { isl_aff **p = user; *p = aff; isl_set_free(set); return isl_stat_error; } /* Intersect "set" with the stride constraint of "build", if any. */ static __isl_give isl_set *intersect_stride_constraint(__isl_take isl_set *set, __isl_keep isl_ast_build *build) { isl_set *stride; if (!build) return isl_set_free(set); if (!isl_ast_build_has_stride(build, build->depth)) return set; stride = isl_ast_build_get_stride_constraint(build); return isl_set_intersect(set, stride); } /* Check if the given bounds on the current dimension (together with * the stride constraint, if any) imply that * this current dimension attains only a single value (in terms of * parameters and outer dimensions). * If so, we record it in build->value. * If, moreover, this value can be represented as a single affine expression, * then we also update build->values, effectively marking the current * dimension as "eliminated". * * When computing the gist of the fixed value that can be represented * as a single affine expression, it is important to only take into * account the domain constraints in the original AST build and * not the domain of the affine expression itself. * Otherwise, a [i/3] is changed into a i/3 because we know that i * is a multiple of 3, but then we end up not expressing anywhere * in the context that i is a multiple of 3. */ static __isl_give isl_ast_build *update_values( __isl_take isl_ast_build *build, __isl_take isl_basic_set *bounds) { int sv; isl_pw_multi_aff *pma; isl_aff *aff = NULL; isl_map *it_map; isl_set *set; set = isl_set_from_basic_set(bounds); set = isl_set_intersect(set, isl_set_copy(build->domain)); set = intersect_stride_constraint(set, build); it_map = isl_ast_build_map_to_iterator(build, set); sv = isl_map_is_single_valued(it_map); if (sv < 0) build = isl_ast_build_free(build); if (!build || !sv) { isl_map_free(it_map); return build; } pma = isl_pw_multi_aff_from_map(it_map); build->value = isl_pw_multi_aff_get_pw_aff(pma, 0); build->value = isl_ast_build_compute_gist_pw_aff(build, build->value); build->value = isl_pw_aff_coalesce(build->value); isl_pw_multi_aff_free(pma); if (!build->value) return isl_ast_build_free(build); if (isl_pw_aff_n_piece(build->value) != 1) return build; isl_pw_aff_foreach_piece(build->value, &extract_single_piece, &aff); build->values = isl_multi_aff_set_aff(build->values, build->depth, aff); if (!build->values) return isl_ast_build_free(build); isl_ast_build_reset_schedule_map(build); return build; } /* Update the AST build based on the given loop bounds for * the current dimension and the stride information available in the build. * * We first make sure that the bounds do not refer to any iterators * that have already been eliminated. * Then, we check if the bounds imply that the current iterator * has a fixed value. * If they do and if this fixed value can be expressed as a single * affine expression, we eliminate the iterators from the bounds. * Note that we cannot simply plug in this single value using * isl_basic_set_preimage_multi_aff as the single value may only * be defined on a subset of the domain. Plugging in the value * would restrict the build domain to this subset, while this * restriction may not be reflected in the generated code. * Finally, we intersect build->domain with the updated bounds. * We also add the stride constraint unless we have been able * to find a fixed value expressed as a single affine expression. * * Note that the check for a fixed value in update_values requires * us to intersect the bounds with the current build domain. * When we intersect build->domain with the updated bounds in * the final step, we make sure that these updated bounds have * not been intersected with the old build->domain. * Otherwise, we would indirectly intersect the build domain with itself, * which can lead to inefficiencies, in particular if the build domain * contains any unknown divs. * * The pending and generated sets are not updated by this function to * match the updated domain. * The caller still needs to call isl_ast_build_set_pending_generated. */ __isl_give isl_ast_build *isl_ast_build_set_loop_bounds( __isl_take isl_ast_build *build, __isl_take isl_basic_set *bounds) { isl_set *set; build = isl_ast_build_cow(build); if (!build) goto error; build = update_values(build, isl_basic_set_copy(bounds)); if (!build) goto error; set = isl_set_from_basic_set(bounds); if (isl_ast_build_has_affine_value(build, build->depth)) { set = isl_set_eliminate(set, isl_dim_set, build->depth, 1); set = isl_set_compute_divs(set); build->pending = isl_set_intersect(build->pending, isl_set_copy(set)); build->domain = isl_set_intersect(build->domain, set); } else { build->domain = isl_set_intersect(build->domain, set); build = isl_ast_build_include_stride(build); if (!build) goto error; } if (!build->domain || !build->pending || !build->generated) return isl_ast_build_free(build); return build; error: isl_ast_build_free(build); isl_basic_set_free(bounds); return NULL; } /* Update the pending and generated sets of "build" according to "bounds". * If the build has an affine value at the current depth, * then isl_ast_build_set_loop_bounds has already set the pending set. * Otherwise, do it here. */ __isl_give isl_ast_build *isl_ast_build_set_pending_generated( __isl_take isl_ast_build *build, __isl_take isl_basic_set *bounds) { isl_basic_set *generated, *pending; if (!build) goto error; if (isl_ast_build_has_affine_value(build, build->depth)) { isl_basic_set_free(bounds); return build; } build = isl_ast_build_cow(build); if (!build) goto error; pending = isl_basic_set_copy(bounds); pending = isl_basic_set_drop_constraints_involving_dims(pending, isl_dim_set, build->depth, 1); build->pending = isl_set_intersect(build->pending, isl_set_from_basic_set(pending)); generated = bounds; generated = isl_basic_set_drop_constraints_not_involving_dims( generated, isl_dim_set, build->depth, 1); build->generated = isl_set_intersect(build->generated, isl_set_from_basic_set(generated)); if (!build->pending || !build->generated) return isl_ast_build_free(build); return build; error: isl_ast_build_free(build); isl_basic_set_free(bounds); return NULL; } /* Intersect build->domain with "set", where "set" is specified * in terms of the internal schedule domain. */ static __isl_give isl_ast_build *isl_ast_build_restrict_internal( __isl_take isl_ast_build *build, __isl_take isl_set *set) { build = isl_ast_build_cow(build); if (!build) goto error; set = isl_set_compute_divs(set); build->domain = isl_set_intersect(build->domain, set); build->domain = isl_set_coalesce(build->domain); if (!build->domain) return isl_ast_build_free(build); return build; error: isl_ast_build_free(build); isl_set_free(set); return NULL; } /* Intersect build->generated and build->domain with "set", * where "set" is specified in terms of the internal schedule domain. */ __isl_give isl_ast_build *isl_ast_build_restrict_generated( __isl_take isl_ast_build *build, __isl_take isl_set *set) { set = isl_set_compute_divs(set); build = isl_ast_build_restrict_internal(build, isl_set_copy(set)); build = isl_ast_build_cow(build); if (!build) goto error; build->generated = isl_set_intersect(build->generated, set); build->generated = isl_set_coalesce(build->generated); if (!build->generated) return isl_ast_build_free(build); return build; error: isl_ast_build_free(build); isl_set_free(set); return NULL; } /* Replace the set of pending constraints by "guard", which is then * no longer considered as pending. * That is, add "guard" to the generated constraints and clear all pending * constraints, making the domain equal to the generated constraints. */ __isl_give isl_ast_build *isl_ast_build_replace_pending_by_guard( __isl_take isl_ast_build *build, __isl_take isl_set *guard) { build = isl_ast_build_restrict_generated(build, guard); build = isl_ast_build_cow(build); if (!build) return NULL; isl_set_free(build->domain); build->domain = isl_set_copy(build->generated); isl_set_free(build->pending); build->pending = isl_set_universe(isl_set_get_space(build->domain)); if (!build->pending) return isl_ast_build_free(build); return build; } /* Intersect build->domain with "set", where "set" is specified * in terms of the external schedule domain. */ __isl_give isl_ast_build *isl_ast_build_restrict( __isl_take isl_ast_build *build, __isl_take isl_set *set) { if (isl_set_is_params(set)) return isl_ast_build_restrict_generated(build, set); if (isl_ast_build_need_schedule_map(build)) { isl_multi_aff *ma; ma = isl_ast_build_get_schedule_map_multi_aff(build); set = isl_set_preimage_multi_aff(set, ma); } return isl_ast_build_restrict_generated(build, set); } /* Replace build->executed by "executed". */ __isl_give isl_ast_build *isl_ast_build_set_executed( __isl_take isl_ast_build *build, __isl_take isl_union_map *executed) { build = isl_ast_build_cow(build); if (!build) goto error; isl_union_map_free(build->executed); build->executed = executed; return build; error: isl_ast_build_free(build); isl_union_map_free(executed); return NULL; } /* Does "build" point to a band node? * That is, are we currently handling a band node inside a schedule tree? */ int isl_ast_build_has_schedule_node(__isl_keep isl_ast_build *build) { if (!build) return -1; return build->node != NULL; } /* Return a copy of the band node that "build" refers to. */ __isl_give isl_schedule_node *isl_ast_build_get_schedule_node( __isl_keep isl_ast_build *build) { if (!build) return NULL; return isl_schedule_node_copy(build->node); } /* Extract the loop AST generation types for the members of build->node * and store them in build->loop_type. */ static __isl_give isl_ast_build *extract_loop_types( __isl_take isl_ast_build *build) { int i; isl_ctx *ctx; isl_schedule_node *node; if (!build) return NULL; ctx = isl_ast_build_get_ctx(build); if (!build->node) isl_die(ctx, isl_error_internal, "missing AST node", return isl_ast_build_free(build)); free(build->loop_type); build->n = isl_schedule_node_band_n_member(build->node); build->loop_type = isl_alloc_array(ctx, enum isl_ast_loop_type, build->n); if (build->n && !build->loop_type) return isl_ast_build_free(build); node = build->node; for (i = 0; i < build->n; ++i) build->loop_type[i] = isl_schedule_node_band_member_get_ast_loop_type(node, i); return build; } /* Replace the band node that "build" refers to by "node" and * extract the corresponding loop AST generation types. */ __isl_give isl_ast_build *isl_ast_build_set_schedule_node( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node) { build = isl_ast_build_cow(build); if (!build || !node) goto error; isl_schedule_node_free(build->node); build->node = node; build = extract_loop_types(build); return build; error: isl_ast_build_free(build); isl_schedule_node_free(node); return NULL; } /* Remove any reference to a band node from "build". */ __isl_give isl_ast_build *isl_ast_build_reset_schedule_node( __isl_take isl_ast_build *build) { build = isl_ast_build_cow(build); if (!build) return NULL; isl_schedule_node_free(build->node); build->node = NULL; return build; } /* Return a copy of the current schedule domain. */ __isl_give isl_set *isl_ast_build_get_domain(__isl_keep isl_ast_build *build) { return build ? isl_set_copy(build->domain) : NULL; } /* Return a copy of the set of pending constraints. */ __isl_give isl_set *isl_ast_build_get_pending( __isl_keep isl_ast_build *build) { return build ? isl_set_copy(build->pending) : NULL; } /* Return a copy of the set of generated constraints. */ __isl_give isl_set *isl_ast_build_get_generated( __isl_keep isl_ast_build *build) { return build ? isl_set_copy(build->generated) : NULL; } /* Return a copy of the map from the internal schedule domain * to the original input schedule domain. */ __isl_give isl_multi_aff *isl_ast_build_get_internal2input( __isl_keep isl_ast_build *build) { return build ? isl_multi_aff_copy(build->internal2input) : NULL; } /* Return the number of variables of the given type * in the (internal) schedule space. */ unsigned isl_ast_build_dim(__isl_keep isl_ast_build *build, enum isl_dim_type type) { if (!build) return 0; return isl_set_dim(build->domain, type); } /* Return the (schedule) space of "build". * * If "internal" is set, then this space is the space of the internal * representation of the entire schedule, including those parts for * which no code has been generated yet. * * If "internal" is not set, then this space is the external representation * of the loops generated so far. */ __isl_give isl_space *isl_ast_build_get_space(__isl_keep isl_ast_build *build, int internal) { int i; int dim; isl_space *space; if (!build) return NULL; space = isl_set_get_space(build->domain); if (internal) return space; if (!isl_ast_build_need_schedule_map(build)) return space; dim = isl_set_dim(build->domain, isl_dim_set); space = isl_space_drop_dims(space, isl_dim_set, build->depth, dim - build->depth); for (i = build->depth - 1; i >= 0; --i) if (isl_ast_build_has_affine_value(build, i)) space = isl_space_drop_dims(space, isl_dim_set, i, 1); return space; } /* Return the external representation of the schedule space of "build", * i.e., a space with a dimension for each loop generated so far, * with the names of the dimensions set to the loop iterators. */ __isl_give isl_space *isl_ast_build_get_schedule_space( __isl_keep isl_ast_build *build) { isl_space *space; int i, skip; if (!build) return NULL; space = isl_ast_build_get_space(build, 0); skip = 0; for (i = 0; i < build->depth; ++i) { isl_id *id; if (isl_ast_build_has_affine_value(build, i)) { skip++; continue; } id = isl_ast_build_get_iterator_id(build, i); space = isl_space_set_dim_id(space, isl_dim_set, i - skip, id); } return space; } /* Return the current schedule, as stored in build->executed, in terms * of the external schedule domain. */ __isl_give isl_union_map *isl_ast_build_get_schedule( __isl_keep isl_ast_build *build) { isl_union_map *executed; isl_union_map *schedule; if (!build) return NULL; executed = isl_union_map_copy(build->executed); if (isl_ast_build_need_schedule_map(build)) { isl_map *proj = isl_ast_build_get_schedule_map(build); executed = isl_union_map_apply_domain(executed, isl_union_map_from_map(proj)); } schedule = isl_union_map_reverse(executed); return schedule; } /* Return the iterator attached to the internal schedule dimension "pos". */ __isl_give isl_id *isl_ast_build_get_iterator_id( __isl_keep isl_ast_build *build, int pos) { if (!build) return NULL; return isl_id_list_get_id(build->iterators, pos); } /* Set the stride and offset of the current dimension to the given * value and expression. * * If we had already found a stride before, then the two strides * are combined into a single stride. * * In particular, if the new stride information is of the form * * i = f + s (...) * * and the old stride information is of the form * * i = f2 + s2 (...) * * then we compute the extended gcd of s and s2 * * a s + b s2 = g, * * with g = gcd(s,s2), multiply the first equation with t1 = b s2/g * and the second with t2 = a s1/g. * This results in * * i = (b s2 + a s1)/g i = t1 f + t2 f2 + (s s2)/g (...) * * so that t1 f + t2 f2 is the combined offset and (s s2)/g = lcm(s,s2) * is the combined stride. */ static __isl_give isl_ast_build *set_stride(__isl_take isl_ast_build *build, __isl_take isl_val *stride, __isl_take isl_aff *offset) { int pos; build = isl_ast_build_cow(build); if (!build || !stride || !offset) goto error; pos = build->depth; if (isl_ast_build_has_stride(build, pos)) { isl_val *stride2, *a, *b, *g; isl_aff *offset2; stride2 = isl_vec_get_element_val(build->strides, pos); g = isl_val_gcdext(isl_val_copy(stride), isl_val_copy(stride2), &a, &b); a = isl_val_mul(a, isl_val_copy(stride)); a = isl_val_div(a, isl_val_copy(g)); stride2 = isl_val_div(stride2, g); b = isl_val_mul(b, isl_val_copy(stride2)); stride = isl_val_mul(stride, stride2); offset2 = isl_multi_aff_get_aff(build->offsets, pos); offset2 = isl_aff_scale_val(offset2, a); offset = isl_aff_scale_val(offset, b); offset = isl_aff_add(offset, offset2); } build->strides = isl_vec_set_element_val(build->strides, pos, stride); build->offsets = isl_multi_aff_set_aff(build->offsets, pos, offset); if (!build->strides || !build->offsets) return isl_ast_build_free(build); return build; error: isl_val_free(stride); isl_aff_free(offset); return isl_ast_build_free(build); } /* Return a set expressing the stride constraint at the current depth. * * In particular, if the current iterator (i) is known to attain values * * f + s a * * where f is the offset and s is the stride, then the returned set * expresses the constraint * * (f - i) mod s = 0 */ __isl_give isl_set *isl_ast_build_get_stride_constraint( __isl_keep isl_ast_build *build) { isl_aff *aff; isl_set *set; isl_val *stride; int pos; if (!build) return NULL; pos = build->depth; if (!isl_ast_build_has_stride(build, pos)) return isl_set_universe(isl_ast_build_get_space(build, 1)); stride = isl_ast_build_get_stride(build, pos); aff = isl_ast_build_get_offset(build, pos); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, pos, -1); aff = isl_aff_mod_val(aff, stride); set = isl_set_from_basic_set(isl_aff_zero_basic_set(aff)); return set; } /* Return the expansion implied by the stride and offset at the current * depth. * * That is, return the mapping * * [i_0, ..., i_{d-1}, i_d, i_{d+1}, ...] * -> [i_0, ..., i_{d-1}, s * i_d + offset(i), i_{d+1}, ...] * * where s is the stride at the current depth d and offset(i) is * the corresponding offset. */ __isl_give isl_multi_aff *isl_ast_build_get_stride_expansion( __isl_keep isl_ast_build *build) { isl_space *space; isl_multi_aff *ma; int pos; isl_aff *aff, *offset; isl_val *stride; if (!build) return NULL; pos = isl_ast_build_get_depth(build); space = isl_ast_build_get_space(build, 1); space = isl_space_map_from_set(space); ma = isl_multi_aff_identity(space); if (!isl_ast_build_has_stride(build, pos)) return ma; offset = isl_ast_build_get_offset(build, pos); stride = isl_ast_build_get_stride(build, pos); aff = isl_multi_aff_get_aff(ma, pos); aff = isl_aff_scale_val(aff, stride); aff = isl_aff_add(aff, offset); ma = isl_multi_aff_set_aff(ma, pos, aff); return ma; } /* Add constraints corresponding to any previously detected * stride on the current dimension to build->domain. */ __isl_give isl_ast_build *isl_ast_build_include_stride( __isl_take isl_ast_build *build) { isl_set *set; if (!build) return NULL; if (!isl_ast_build_has_stride(build, build->depth)) return build; build = isl_ast_build_cow(build); if (!build) return NULL; set = isl_ast_build_get_stride_constraint(build); build->domain = isl_set_intersect(build->domain, isl_set_copy(set)); build->generated = isl_set_intersect(build->generated, set); if (!build->domain || !build->generated) return isl_ast_build_free(build); return build; } /* Information used inside detect_stride. * * "build" may be updated by detect_stride to include stride information. * "pos" is equal to build->depth. */ struct isl_detect_stride_data { isl_ast_build *build; int pos; }; /* Check if constraint "c" imposes any stride on dimension data->pos * and, if so, update the stride information in data->build. * * In order to impose a stride on the dimension, "c" needs to be an equality * and it needs to involve the dimension. Note that "c" may also be * a div constraint and thus an inequality that we cannot use. * * Let c be of the form * * h(p) + g * v * i + g * stride * f(alpha) = 0 * * with h(p) an expression in terms of the parameters and outer dimensions * and f(alpha) an expression in terms of the existentially quantified * variables. Note that the inner dimensions have been eliminated so * they do not appear in "c". * * If "stride" is not zero and not one, then it represents a non-trivial stride * on "i". We compute a and b such that * * a v + b stride = 1 * * We have * * g v i = -h(p) + g stride f(alpha) * * a g v i = -a h(p) + g stride f(alpha) * * a g v i + b g stride i = -a h(p) + g stride * (...) * * g i = -a h(p) + g stride * (...) * * i = -a h(p)/g + stride * (...) * * The expression "-a h(p)/g" can therefore be used as offset. */ static isl_stat detect_stride(__isl_take isl_constraint *c, void *user) { struct isl_detect_stride_data *data = user; int i, n_div; isl_ctx *ctx; isl_val *v, *stride, *m; if (!isl_constraint_is_equality(c) || !isl_constraint_involves_dims(c, isl_dim_set, data->pos, 1)) { isl_constraint_free(c); return isl_stat_ok; } ctx = isl_constraint_get_ctx(c); stride = isl_val_zero(ctx); n_div = isl_constraint_dim(c, isl_dim_div); for (i = 0; i < n_div; ++i) { v = isl_constraint_get_coefficient_val(c, isl_dim_div, i); stride = isl_val_gcd(stride, v); } v = isl_constraint_get_coefficient_val(c, isl_dim_set, data->pos); m = isl_val_gcd(isl_val_copy(stride), isl_val_copy(v)); stride = isl_val_div(stride, isl_val_copy(m)); v = isl_val_div(v, isl_val_copy(m)); if (!isl_val_is_zero(stride) && !isl_val_is_one(stride)) { isl_aff *aff; isl_val *gcd, *a, *b; gcd = isl_val_gcdext(v, isl_val_copy(stride), &a, &b); isl_val_free(gcd); isl_val_free(b); aff = isl_constraint_get_aff(c); for (i = 0; i < n_div; ++i) aff = isl_aff_set_coefficient_si(aff, isl_dim_div, i, 0); aff = isl_aff_set_coefficient_si(aff, isl_dim_in, data->pos, 0); a = isl_val_neg(a); aff = isl_aff_scale_val(aff, a); aff = isl_aff_scale_down_val(aff, m); data->build = set_stride(data->build, stride, aff); } else { isl_val_free(stride); isl_val_free(m); isl_val_free(v); } isl_constraint_free(c); return isl_stat_ok; } /* Check if the constraints in "set" imply any stride on the current * dimension and, if so, record the stride information in "build" * and return the updated "build". * * We compute the affine hull and then check if any of the constraints * in the hull imposes any stride on the current dimension. * * We assume that inner dimensions have been eliminated from "set" * by the caller. This is needed because the common stride * may be imposed by different inner dimensions on different parts of * the domain. */ __isl_give isl_ast_build *isl_ast_build_detect_strides( __isl_take isl_ast_build *build, __isl_take isl_set *set) { isl_basic_set *hull; struct isl_detect_stride_data data; if (!build) goto error; data.build = build; data.pos = isl_ast_build_get_depth(build); hull = isl_set_affine_hull(set); if (isl_basic_set_foreach_constraint(hull, &detect_stride, &data) < 0) data.build = isl_ast_build_free(data.build); isl_basic_set_free(hull); return data.build; error: isl_set_free(set); return NULL; } struct isl_ast_build_involves_data { int depth; int involves; }; /* Check if "map" involves the input dimension data->depth. */ static isl_stat involves_depth(__isl_take isl_map *map, void *user) { struct isl_ast_build_involves_data *data = user; data->involves = isl_map_involves_dims(map, isl_dim_in, data->depth, 1); isl_map_free(map); if (data->involves < 0 || data->involves) return isl_stat_error; return isl_stat_ok; } /* Do any options depend on the value of the dimension at the current depth? */ int isl_ast_build_options_involve_depth(__isl_keep isl_ast_build *build) { struct isl_ast_build_involves_data data; if (!build) return -1; data.depth = build->depth; data.involves = 0; if (isl_union_map_foreach_map(build->options, &involves_depth, &data) < 0) { if (data.involves < 0 || !data.involves) return -1; } return data.involves; } /* Construct the map * * { [i] -> [i] : i < pos; [i] -> [i + 1] : i >= pos } * * with "space" the parameter space of the constructed map. */ static __isl_give isl_map *construct_insertion_map(__isl_take isl_space *space, int pos) { isl_constraint *c; isl_basic_map *bmap1, *bmap2; space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, 1); space = isl_space_map_from_set(space); c = isl_constraint_alloc_equality(isl_local_space_from_space(space)); c = isl_constraint_set_coefficient_si(c, isl_dim_in, 0, 1); c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, -1); bmap1 = isl_basic_map_from_constraint(isl_constraint_copy(c)); c = isl_constraint_set_constant_si(c, 1); bmap2 = isl_basic_map_from_constraint(c); bmap1 = isl_basic_map_upper_bound_si(bmap1, isl_dim_in, 0, pos - 1); bmap2 = isl_basic_map_lower_bound_si(bmap2, isl_dim_in, 0, pos); return isl_basic_map_union(bmap1, bmap2); } static const char *option_str[] = { [isl_ast_loop_atomic] = "atomic", [isl_ast_loop_unroll] = "unroll", [isl_ast_loop_separate] = "separate" }; /* Update the "options" to reflect the insertion of a dimension * at position "pos" in the schedule domain space. * "space" is the original domain space before the insertion and * may be named and/or structured. * * The (relevant) input options all have "space" as domain, which * has to be mapped to the extended space. * The values of the ranges also refer to the schedule domain positions * and they therefore also need to be adjusted. In particular, values * smaller than pos do not need to change, while values greater than or * equal to pos need to be incremented. * That is, we need to apply the following map. * * { atomic[i] -> atomic[i] : i < pos; [i] -> [i + 1] : i >= pos; * unroll[i] -> unroll[i] : i < pos; [i] -> [i + 1] : i >= pos; * separate[i] -> separate[i] : i < pos; [i] -> [i + 1] : i >= pos; * separation_class[[i] -> [c]] * -> separation_class[[i] -> [c]] : i < pos; * separation_class[[i] -> [c]] * -> separation_class[[i + 1] -> [c]] : i >= pos } */ static __isl_give isl_union_map *options_insert_dim( __isl_take isl_union_map *options, __isl_take isl_space *space, int pos) { isl_map *map; isl_union_map *insertion; enum isl_ast_loop_type type; const char *name = "separation_class"; space = isl_space_map_from_set(space); map = isl_map_identity(space); map = isl_map_insert_dims(map, isl_dim_out, pos, 1); options = isl_union_map_apply_domain(options, isl_union_map_from_map(map)); if (!options) return NULL; map = construct_insertion_map(isl_union_map_get_space(options), pos); insertion = isl_union_map_empty(isl_union_map_get_space(options)); for (type = isl_ast_loop_atomic; type <= isl_ast_loop_separate; ++type) { isl_map *map_type = isl_map_copy(map); const char *name = option_str[type]; map_type = isl_map_set_tuple_name(map_type, isl_dim_in, name); map_type = isl_map_set_tuple_name(map_type, isl_dim_out, name); insertion = isl_union_map_add_map(insertion, map_type); } map = isl_map_product(map, isl_map_identity(isl_map_get_space(map))); map = isl_map_set_tuple_name(map, isl_dim_in, name); map = isl_map_set_tuple_name(map, isl_dim_out, name); insertion = isl_union_map_add_map(insertion, map); options = isl_union_map_apply_range(options, insertion); return options; } /* If we are generating an AST from a schedule tree (build->node is set), * then update the loop AST generation types * to reflect the insertion of a dimension at (global) position "pos" * in the schedule domain space. * We do not need to adjust any isolate option since we would not be inserting * any dimensions if there were any isolate option. */ static __isl_give isl_ast_build *node_insert_dim( __isl_take isl_ast_build *build, int pos) { int i; int local_pos; enum isl_ast_loop_type *loop_type; isl_ctx *ctx; build = isl_ast_build_cow(build); if (!build) return NULL; if (!build->node) return build; ctx = isl_ast_build_get_ctx(build); local_pos = pos - build->outer_pos; loop_type = isl_realloc_array(ctx, build->loop_type, enum isl_ast_loop_type, build->n + 1); if (!loop_type) return isl_ast_build_free(build); build->loop_type = loop_type; for (i = build->n - 1; i >= local_pos; --i) loop_type[i + 1] = loop_type[i]; loop_type[local_pos] = isl_ast_loop_default; build->n++; return build; } /* Insert a single dimension in the schedule domain at position "pos". * The new dimension is given an isl_id with the empty string as name. * * The main difficulty is updating build->options to reflect the * extra dimension. This is handled in options_insert_dim. * * Note that because of the dimension manipulations, the resulting * schedule domain space will always be unnamed and unstructured. * However, the original schedule domain space may be named and/or * structured, so we have to take this possibility into account * while performing the transformations. * * Since the inserted schedule dimension is used by the caller * to differentiate between different domain spaces, there is * no longer a uniform mapping from the internal schedule space * to the input schedule space. The internal2input mapping is * therefore removed. */ __isl_give isl_ast_build *isl_ast_build_insert_dim( __isl_take isl_ast_build *build, int pos) { isl_ctx *ctx; isl_space *space, *ma_space; isl_id *id; isl_multi_aff *ma; build = isl_ast_build_cow(build); if (!build) return NULL; ctx = isl_ast_build_get_ctx(build); id = isl_id_alloc(ctx, "", NULL); if (!build->node) space = isl_ast_build_get_space(build, 1); build->iterators = isl_id_list_insert(build->iterators, pos, id); build->domain = isl_set_insert_dims(build->domain, isl_dim_set, pos, 1); build->generated = isl_set_insert_dims(build->generated, isl_dim_set, pos, 1); build->pending = isl_set_insert_dims(build->pending, isl_dim_set, pos, 1); build->strides = isl_vec_insert_els(build->strides, pos, 1); build->strides = isl_vec_set_element_si(build->strides, pos, 1); ma_space = isl_space_params(isl_multi_aff_get_space(build->offsets)); ma_space = isl_space_set_from_params(ma_space); ma_space = isl_space_add_dims(ma_space, isl_dim_set, 1); ma_space = isl_space_map_from_set(ma_space); ma = isl_multi_aff_zero(isl_space_copy(ma_space)); build->offsets = isl_multi_aff_splice(build->offsets, pos, pos, ma); ma = isl_multi_aff_identity(ma_space); build->values = isl_multi_aff_splice(build->values, pos, pos, ma); if (!build->node) build->options = options_insert_dim(build->options, space, pos); build->internal2input = isl_multi_aff_free(build->internal2input); if (!build->iterators || !build->domain || !build->generated || !build->pending || !build->values || !build->strides || !build->offsets || !build->options) return isl_ast_build_free(build); build = node_insert_dim(build, pos); return build; } /* Scale down the current dimension by a factor of "m". * "umap" is an isl_union_map that implements the scaling down. * That is, it is of the form * * { [.... i ....] -> [.... i' ....] : i = m i' } * * This function is called right after the strides have been * detected, but before any constraints on the current dimension * have been included in build->domain. * We therefore only need to update stride, offset, the options and * the mapping from internal schedule space to the original schedule * space, if we are still keeping track of such a mapping. * The latter mapping is updated by plugging in * { [... i ...] -> [... m i ... ] }. */ __isl_give isl_ast_build *isl_ast_build_scale_down( __isl_take isl_ast_build *build, __isl_take isl_val *m, __isl_take isl_union_map *umap) { isl_aff *aff; isl_val *v; int depth; build = isl_ast_build_cow(build); if (!build || !umap || !m) goto error; depth = build->depth; if (build->internal2input) { isl_space *space; isl_multi_aff *ma; isl_aff *aff; space = isl_multi_aff_get_space(build->internal2input); space = isl_space_map_from_set(isl_space_domain(space)); ma = isl_multi_aff_identity(space); aff = isl_multi_aff_get_aff(ma, depth); aff = isl_aff_scale_val(aff, isl_val_copy(m)); ma = isl_multi_aff_set_aff(ma, depth, aff); build->internal2input = isl_multi_aff_pullback_multi_aff(build->internal2input, ma); if (!build->internal2input) goto error; } v = isl_vec_get_element_val(build->strides, depth); v = isl_val_div(v, isl_val_copy(m)); build->strides = isl_vec_set_element_val(build->strides, depth, v); aff = isl_multi_aff_get_aff(build->offsets, depth); aff = isl_aff_scale_down_val(aff, m); build->offsets = isl_multi_aff_set_aff(build->offsets, depth, aff); build->options = isl_union_map_apply_domain(build->options, umap); if (!build->strides || !build->offsets || !build->options) return isl_ast_build_free(build); return build; error: isl_val_free(m); isl_union_map_free(umap); return isl_ast_build_free(build); } /* Return a list of "n" isl_ids called "c%d", with "%d" starting at "first". * If an isl_id with such a name already appears among the parameters * in build->domain, then adjust the name to "c%d_%d". */ static __isl_give isl_id_list *generate_names(isl_ctx *ctx, int n, int first, __isl_keep isl_ast_build *build) { int i; isl_id_list *names; names = isl_id_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_id *id; id = generate_name(ctx, first + i, build); names = isl_id_list_add(names, id); } return names; } /* Embed "options" into the given isl_ast_build space. * * This function is called from within a nested call to * isl_ast_build_node_from_schedule_map. * "options" refers to the additional schedule, * while space refers to both the space of the outer isl_ast_build and * that of the additional schedule. * Specifically, space is of the form * * [I -> S] * * while options lives in the space(s) * * S -> * * * We compute * * [I -> S] -> S * * and compose this with options, to obtain the new options * living in the space(s) * * [I -> S] -> * */ static __isl_give isl_union_map *embed_options( __isl_take isl_union_map *options, __isl_take isl_space *space) { isl_map *map; map = isl_map_universe(isl_space_unwrap(space)); map = isl_map_range_map(map); options = isl_union_map_apply_range( isl_union_map_from_map(map), options); return options; } /* Update "build" for use in a (possibly nested) code generation. That is, * extend "build" from an AST build on some domain O to an AST build * on domain [O -> S], with S corresponding to "space". * If the original domain is a parameter domain, then the new domain is * simply S. * "iterators" is a list of iterators for S, but the number of elements * may be smaller or greater than the number of set dimensions of S. * If "keep_iterators" is set, then any extra ids in build->iterators * are reused for S. Otherwise, these extra ids are dropped. * * We first update build->outer_pos to the current depth. * This depth is zero in case this is the outermost code generation. * * We then add additional ids such that the number of iterators is at least * equal to the dimension of the new build domain. * * If the original domain is parametric, then we are constructing * an isl_ast_build for the outer code generation and we pass control * to isl_ast_build_init. * * Otherwise, we adjust the fields of "build" to include "space". */ __isl_give isl_ast_build *isl_ast_build_product( __isl_take isl_ast_build *build, __isl_take isl_space *space) { isl_ctx *ctx; isl_vec *strides; isl_set *set; isl_multi_aff *embedding; int dim, n_it; build = isl_ast_build_cow(build); if (!build) goto error; build->outer_pos = build->depth; ctx = isl_ast_build_get_ctx(build); dim = isl_set_dim(build->domain, isl_dim_set); dim += isl_space_dim(space, isl_dim_set); n_it = isl_id_list_n_id(build->iterators); if (n_it < dim) { isl_id_list *l; l = generate_names(ctx, dim - n_it, n_it, build); build->iterators = isl_id_list_concat(build->iterators, l); } if (isl_set_is_params(build->domain)) return isl_ast_build_init(build, space); set = isl_set_universe(isl_space_copy(space)); build->domain = isl_set_product(build->domain, isl_set_copy(set)); build->pending = isl_set_product(build->pending, isl_set_copy(set)); build->generated = isl_set_product(build->generated, set); strides = isl_vec_alloc(ctx, isl_space_dim(space, isl_dim_set)); strides = isl_vec_set_si(strides, 1); build->strides = isl_vec_concat(build->strides, strides); space = isl_space_map_from_set(space); build->offsets = isl_multi_aff_align_params(build->offsets, isl_space_copy(space)); build->offsets = isl_multi_aff_product(build->offsets, isl_multi_aff_zero(isl_space_copy(space))); build->values = isl_multi_aff_align_params(build->values, isl_space_copy(space)); embedding = isl_multi_aff_identity(space); build->values = isl_multi_aff_product(build->values, isl_multi_aff_copy(embedding)); if (build->internal2input) { build->internal2input = isl_multi_aff_product(build->internal2input, embedding); build->internal2input = isl_multi_aff_flatten_range(build->internal2input); if (!build->internal2input) return isl_ast_build_free(build); } else { isl_multi_aff_free(embedding); } space = isl_ast_build_get_space(build, 1); build->options = embed_options(build->options, space); if (!build->iterators || !build->domain || !build->generated || !build->pending || !build->values || !build->strides || !build->offsets || !build->options) return isl_ast_build_free(build); return build; error: isl_ast_build_free(build); isl_space_free(space); return NULL; } /* Does "aff" only attain non-negative values over build->domain? * That is, does it not attain any negative values? */ int isl_ast_build_aff_is_nonneg(__isl_keep isl_ast_build *build, __isl_keep isl_aff *aff) { isl_set *test; int empty; if (!build) return -1; aff = isl_aff_copy(aff); test = isl_set_from_basic_set(isl_aff_neg_basic_set(aff)); test = isl_set_intersect(test, isl_set_copy(build->domain)); empty = isl_set_is_empty(test); isl_set_free(test); return empty; } /* Does the dimension at (internal) position "pos" have a non-trivial stride? */ int isl_ast_build_has_stride(__isl_keep isl_ast_build *build, int pos) { isl_val *v; int has_stride; if (!build) return -1; v = isl_vec_get_element_val(build->strides, pos); if (!v) return -1; has_stride = !isl_val_is_one(v); isl_val_free(v); return has_stride; } /* Given that the dimension at position "pos" takes on values * * f + s a * * with a an integer, return s through *stride. */ __isl_give isl_val *isl_ast_build_get_stride(__isl_keep isl_ast_build *build, int pos) { if (!build) return NULL; return isl_vec_get_element_val(build->strides, pos); } /* Given that the dimension at position "pos" takes on values * * f + s a * * with a an integer, return f. */ __isl_give isl_aff *isl_ast_build_get_offset( __isl_keep isl_ast_build *build, int pos) { if (!build) return NULL; return isl_multi_aff_get_aff(build->offsets, pos); } /* Is the dimension at position "pos" known to attain only a single * value that, moreover, can be described by a single affine expression * in terms of the outer dimensions and parameters? * * If not, then the corresponding affine expression in build->values * is set to be equal to the same input dimension. * Otherwise, it is set to the requested expression in terms of * outer dimensions and parameters. */ int isl_ast_build_has_affine_value(__isl_keep isl_ast_build *build, int pos) { isl_aff *aff; int involves; if (!build) return -1; aff = isl_multi_aff_get_aff(build->values, pos); involves = isl_aff_involves_dims(aff, isl_dim_in, pos, 1); isl_aff_free(aff); if (involves < 0) return -1; return !involves; } /* Plug in the known values (fixed affine expressions in terms of * parameters and outer loop iterators) of all loop iterators * in the domain of "umap". * * We simply precompose "umap" with build->values. */ __isl_give isl_union_map *isl_ast_build_substitute_values_union_map_domain( __isl_keep isl_ast_build *build, __isl_take isl_union_map *umap) { isl_multi_aff *values; if (!build) return isl_union_map_free(umap); values = isl_multi_aff_copy(build->values); umap = isl_union_map_preimage_domain_multi_aff(umap, values); return umap; } /* Is the current dimension known to attain only a single value? */ int isl_ast_build_has_value(__isl_keep isl_ast_build *build) { if (!build) return -1; return build->value != NULL; } /* Simplify the basic set "bset" based on what we know about * the iterators of already generated loops. * * "bset" is assumed to live in the (internal) schedule domain. */ __isl_give isl_basic_set *isl_ast_build_compute_gist_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset) { if (!build) goto error; bset = isl_basic_set_preimage_multi_aff(bset, isl_multi_aff_copy(build->values)); bset = isl_basic_set_gist(bset, isl_set_simple_hull(isl_set_copy(build->domain))); return bset; error: isl_basic_set_free(bset); return NULL; } /* Simplify the set "set" based on what we know about * the iterators of already generated loops. * * "set" is assumed to live in the (internal) schedule domain. */ __isl_give isl_set *isl_ast_build_compute_gist( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { if (!build) goto error; if (!isl_set_is_params(set)) set = isl_set_preimage_multi_aff(set, isl_multi_aff_copy(build->values)); set = isl_set_gist(set, isl_set_copy(build->domain)); return set; error: isl_set_free(set); return NULL; } /* Include information about what we know about the iterators of * already generated loops to "set". * * We currently only plug in the known affine values of outer loop * iterators. * In principle we could also introduce equalities or even other * constraints implied by the intersection of "set" and build->domain. */ __isl_give isl_set *isl_ast_build_specialize(__isl_keep isl_ast_build *build, __isl_take isl_set *set) { if (!build) return isl_set_free(set); return isl_set_preimage_multi_aff(set, isl_multi_aff_copy(build->values)); } /* Plug in the known affine values of outer loop iterators in "bset". */ __isl_give isl_basic_set *isl_ast_build_specialize_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset) { if (!build) return isl_basic_set_free(bset); return isl_basic_set_preimage_multi_aff(bset, isl_multi_aff_copy(build->values)); } /* Simplify the map "map" based on what we know about * the iterators of already generated loops. * * The domain of "map" is assumed to live in the (internal) schedule domain. */ __isl_give isl_map *isl_ast_build_compute_gist_map_domain( __isl_keep isl_ast_build *build, __isl_take isl_map *map) { if (!build) goto error; map = isl_map_gist_domain(map, isl_set_copy(build->domain)); return map; error: isl_map_free(map); return NULL; } /* Simplify the affine expression "aff" based on what we know about * the iterators of already generated loops. * * The domain of "aff" is assumed to live in the (internal) schedule domain. */ __isl_give isl_aff *isl_ast_build_compute_gist_aff( __isl_keep isl_ast_build *build, __isl_take isl_aff *aff) { if (!build) goto error; aff = isl_aff_gist(aff, isl_set_copy(build->domain)); return aff; error: isl_aff_free(aff); return NULL; } /* Simplify the piecewise affine expression "aff" based on what we know about * the iterators of already generated loops. * * The domain of "pa" is assumed to live in the (internal) schedule domain. */ __isl_give isl_pw_aff *isl_ast_build_compute_gist_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa) { if (!build) goto error; if (!isl_set_is_params(build->domain)) pa = isl_pw_aff_pullback_multi_aff(pa, isl_multi_aff_copy(build->values)); pa = isl_pw_aff_gist(pa, isl_set_copy(build->domain)); return pa; error: isl_pw_aff_free(pa); return NULL; } /* Simplify the piecewise multi-affine expression "aff" based on what * we know about the iterators of already generated loops. * * The domain of "pma" is assumed to live in the (internal) schedule domain. */ __isl_give isl_pw_multi_aff *isl_ast_build_compute_gist_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma) { if (!build) goto error; pma = isl_pw_multi_aff_pullback_multi_aff(pma, isl_multi_aff_copy(build->values)); pma = isl_pw_multi_aff_gist(pma, isl_set_copy(build->domain)); return pma; error: isl_pw_multi_aff_free(pma); return NULL; } /* Extract the schedule domain of the given type from build->options * at the current depth. * * In particular, find the subset of build->options that is of * the following form * * schedule_domain -> type[depth] * * and return the corresponding domain, after eliminating inner dimensions * and divs that depend on the current dimension. * * Note that the domain of build->options has been reformulated * in terms of the internal build space in embed_options, * but the position is still that within the current code generation. */ __isl_give isl_set *isl_ast_build_get_option_domain( __isl_keep isl_ast_build *build, enum isl_ast_loop_type type) { const char *name; isl_space *space; isl_map *option; isl_set *domain; int local_pos; if (!build) return NULL; name = option_str[type]; local_pos = build->depth - build->outer_pos; space = isl_ast_build_get_space(build, 1); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); space = isl_space_set_tuple_name(space, isl_dim_out, name); option = isl_union_map_extract_map(build->options, space); option = isl_map_fix_si(option, isl_dim_out, 0, local_pos); domain = isl_map_domain(option); domain = isl_ast_build_eliminate(build, domain); return domain; } /* How does the user want the current schedule dimension to be generated? * These choices have been extracted from the schedule node * in extract_loop_types and stored in build->loop_type. * They have been updated to reflect any dimension insertion in * node_insert_dim. * Return isl_ast_domain_error on error. * * If "isolated" is set, then we get the loop AST generation type * directly from the band node since node_insert_dim cannot have been * called on a band with the isolate option. */ enum isl_ast_loop_type isl_ast_build_get_loop_type( __isl_keep isl_ast_build *build, int isolated) { int local_pos; isl_ctx *ctx; if (!build) return isl_ast_loop_error; ctx = isl_ast_build_get_ctx(build); if (!build->node) isl_die(ctx, isl_error_internal, "only works for schedule tree based AST generation", return isl_ast_loop_error); local_pos = build->depth - build->outer_pos; if (!isolated) return build->loop_type[local_pos]; return isl_schedule_node_band_member_get_isolate_ast_loop_type( build->node, local_pos); } /* Extract the isolated set from the isolate option, if any, * and store in the build. * If there is no isolate option, then the isolated set is * set to the empty set. * * The isolate option is of the form * * isolate[[outer bands] -> current_band] * * We flatten this set and then map it back to the internal * schedule space. * * If we have already extracted the isolated set * or if internal2input is no longer set, then we do not * need to do anything. In the latter case, we know * that the current band cannot have any isolate option. */ __isl_give isl_ast_build *isl_ast_build_extract_isolated( __isl_take isl_ast_build *build) { isl_space *space, *space2; isl_union_set *options; int n, n2; isl_set *isolated; if (!build) return NULL; if (!build->internal2input) return build; if (build->isolated) return build; build = isl_ast_build_cow(build); if (!build) return NULL; options = isl_schedule_node_band_get_ast_build_options(build->node); space = isl_multi_aff_get_space(build->internal2input); space = isl_space_range(space); space2 = isl_set_get_space(build->domain); if (isl_space_is_wrapping(space2)) space2 = isl_space_range(isl_space_unwrap(space2)); n2 = isl_space_dim(space2, isl_dim_set); n = isl_space_dim(space, isl_dim_set); if (n < n2) isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "total input space dimension cannot be smaller " "than dimension of innermost band", space = isl_space_free(space)); space = isl_space_drop_dims(space, isl_dim_set, n - n2, n2); space = isl_space_map_from_domain_and_range(space, space2); space = isl_space_wrap(space); space = isl_space_set_tuple_name(space, isl_dim_set, "isolate"); isolated = isl_union_set_extract_set(options, space); isl_union_set_free(options); isolated = isl_set_flatten(isolated); isolated = isl_set_preimage_multi_aff(isolated, isl_multi_aff_copy(build->internal2input)); build->isolated = isolated; if (!build->isolated) return isl_ast_build_free(build); return build; } /* Does "build" have a non-empty isolated set? * * The caller is assumed to have called isl_ast_build_extract_isolated first. */ int isl_ast_build_has_isolated(__isl_keep isl_ast_build *build) { int empty; if (!build) return -1; if (!build->internal2input) return 0; if (!build->isolated) isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "isolated set not extracted yet", return -1); empty = isl_set_plain_is_empty(build->isolated); return empty < 0 ? -1 : !empty; } /* Return a copy of the isolated set of "build". * * The caller is assume to have called isl_ast_build_has_isolated first, * with this function returning true. * In particular, this function should not be called if we are no * longer keeping track of internal2input (and there therefore could * not possibly be any isolated set). */ __isl_give isl_set *isl_ast_build_get_isolated(__isl_keep isl_ast_build *build) { if (!build) return NULL; if (!build->internal2input) isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "build cannot have isolated set", return NULL); return isl_set_copy(build->isolated); } /* Extract the separation class mapping at the current depth. * * In particular, find and return the subset of build->options that is of * the following form * * schedule_domain -> separation_class[[depth] -> [class]] * * The caller is expected to eliminate inner dimensions from the domain. * * Note that the domain of build->options has been reformulated * in terms of the internal build space in embed_options, * but the position is still that within the current code generation. */ __isl_give isl_map *isl_ast_build_get_separation_class( __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_space *space_sep, *space; isl_map *res; int local_pos; if (!build) return NULL; local_pos = build->depth - build->outer_pos; ctx = isl_ast_build_get_ctx(build); space_sep = isl_space_alloc(ctx, 0, 1, 1); space_sep = isl_space_wrap(space_sep); space_sep = isl_space_set_tuple_name(space_sep, isl_dim_set, "separation_class"); space = isl_ast_build_get_space(build, 1); space_sep = isl_space_align_params(space_sep, isl_space_copy(space)); space = isl_space_map_from_domain_and_range(space, space_sep); res = isl_union_map_extract_map(build->options, space); res = isl_map_fix_si(res, isl_dim_out, 0, local_pos); res = isl_map_coalesce(res); return res; } /* Eliminate dimensions inner to the current dimension. */ __isl_give isl_set *isl_ast_build_eliminate_inner( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { int dim; int depth; if (!build) return isl_set_free(set); dim = isl_set_dim(set, isl_dim_set); depth = build->depth; set = isl_set_detect_equalities(set); set = isl_set_eliminate(set, isl_dim_set, depth + 1, dim - (depth + 1)); return set; } /* Eliminate unknown divs and divs that depend on the current dimension. * * Note that during the elimination of unknown divs, we may discover * an explicit representation of some other unknown divs, which may * depend on the current dimension. We therefore need to eliminate * unknown divs first. */ __isl_give isl_set *isl_ast_build_eliminate_divs( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { int depth; if (!build) return isl_set_free(set); set = isl_set_remove_unknown_divs(set); depth = build->depth; set = isl_set_remove_divs_involving_dims(set, isl_dim_set, depth, 1); return set; } /* Eliminate dimensions inner to the current dimension as well as * unknown divs and divs that depend on the current dimension. * The result then consists only of constraints that are independent * of the current dimension and upper and lower bounds on the current * dimension. */ __isl_give isl_set *isl_ast_build_eliminate( __isl_keep isl_ast_build *build, __isl_take isl_set *domain) { domain = isl_ast_build_eliminate_inner(build, domain); domain = isl_ast_build_eliminate_divs(build, domain); return domain; } /* Replace build->single_valued by "sv". */ __isl_give isl_ast_build *isl_ast_build_set_single_valued( __isl_take isl_ast_build *build, int sv) { if (!build) return build; if (build->single_valued == sv) return build; build = isl_ast_build_cow(build); if (!build) return build; build->single_valued = sv; return build; } isl-0.16.1/isl_fold.c0000664000175000017500000011663112645737060011272 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include #include #include enum isl_fold isl_fold_type_negate(enum isl_fold type) { switch (type) { case isl_fold_min: return isl_fold_max; case isl_fold_max: return isl_fold_min; case isl_fold_list: return isl_fold_list; } isl_die(NULL, isl_error_internal, "unhandled isl_fold type", abort()); } static __isl_give isl_qpolynomial_fold *qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_space *dim, int n) { isl_qpolynomial_fold *fold; if (!dim) goto error; isl_assert(dim->ctx, n >= 0, goto error); fold = isl_calloc(dim->ctx, struct isl_qpolynomial_fold, sizeof(struct isl_qpolynomial_fold) + (n - 1) * sizeof(struct isl_qpolynomial *)); if (!fold) goto error; fold->ref = 1; fold->size = n; fold->n = 0; fold->type = type; fold->dim = dim; return fold; error: isl_space_free(dim); return NULL; } isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold) { return fold ? fold->dim->ctx : NULL; } __isl_give isl_space *isl_qpolynomial_fold_get_domain_space( __isl_keep isl_qpolynomial_fold *fold) { return fold ? isl_space_copy(fold->dim) : NULL; } __isl_give isl_space *isl_qpolynomial_fold_get_space( __isl_keep isl_qpolynomial_fold *fold) { isl_space *space; if (!fold) return NULL; space = isl_space_copy(fold->dim); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); return space; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold || !dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_reset_domain_space(fold->qp[i], isl_space_copy(dim)); if (!fold->qp[i]) goto error; } isl_space_free(fold->dim); fold->dim = dim; return fold; error: isl_qpolynomial_fold_free(fold); isl_space_free(dim); return NULL; } /* Reset the space of "fold". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space, __isl_take isl_space *domain) { isl_space_free(space); return isl_qpolynomial_fold_reset_domain_space(fold, domain); } int isl_qpolynomial_fold_involves_dims(__isl_keep isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!fold) return -1; if (fold->n == 0 || n == 0) return 0; for (i = 0; i < fold->n; ++i) { int involves = isl_qpolynomial_involves_dims(fold->qp[i], type, first, n); if (involves < 0 || involves) return involves; } return 0; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_set_dim_name( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned pos, const char *s) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_set_dim_name(fold->dim, type, pos, s); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_set_dim_name(fold->qp[i], type, pos, s); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_drop_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!fold) return NULL; if (n == 0) return fold; set_type = type == isl_dim_in ? isl_dim_set : type; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_drop_dims(fold->dim, set_type, first, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_drop_dims(fold->qp[i], type, first, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_insert_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!fold) return NULL; if (n == 0 && !isl_space_is_named_or_nested(fold->dim, type)) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_insert_dims(fold->dim, type, first, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_insert_dims(fold->qp[i], type, first, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } /* Determine the sign of the constant quasipolynomial "qp". * * Return * -1 if qp <= 0 * 1 if qp >= 0 * 0 if unknown * * For qp == 0, we can return either -1 or 1. In practice, we return 1. * For qp == NaN, the sign is undefined, so we return 0. */ static int isl_qpolynomial_cst_sign(__isl_keep isl_qpolynomial *qp) { struct isl_upoly_cst *cst; if (isl_qpolynomial_is_nan(qp)) return 0; cst = isl_upoly_as_cst(qp->upoly); if (!cst) return 0; return isl_int_sgn(cst->n) < 0 ? -1 : 1; } static int isl_qpolynomial_aff_sign(__isl_keep isl_set *set, __isl_keep isl_qpolynomial *qp) { enum isl_lp_result res; isl_vec *aff; isl_int opt; int sgn = 0; aff = isl_qpolynomial_extract_affine(qp); if (!aff) return 0; isl_int_init(opt); res = isl_set_solve_lp(set, 0, aff->el + 1, aff->el[0], &opt, NULL, NULL); if (res == isl_lp_error) goto done; if (res == isl_lp_empty || (res == isl_lp_ok && !isl_int_is_neg(opt))) { sgn = 1; goto done; } res = isl_set_solve_lp(set, 1, aff->el + 1, aff->el[0], &opt, NULL, NULL); if (res == isl_lp_ok && !isl_int_is_pos(opt)) sgn = -1; done: isl_int_clear(opt); isl_vec_free(aff); return sgn; } /* Determine, if possible, the sign of the quasipolynomial "qp" on * the domain "set". * * If qp is a constant, then the problem is trivial. * If qp is linear, then we check if the minimum of the corresponding * affine constraint is non-negative or if the maximum is non-positive. * * Otherwise, we check if the outermost variable "v" has a lower bound "l" * in "set". If so, we write qp(v,v') as * * q(v,v') * (v - l) + r(v') * * if q(v,v') and r(v') have the same known sign, then the original * quasipolynomial has the same sign as well. * * Return * -1 if qp <= 0 * 1 if qp >= 0 * 0 if unknown */ static int isl_qpolynomial_sign(__isl_keep isl_set *set, __isl_keep isl_qpolynomial *qp) { int d; int i; int is; struct isl_upoly_rec *rec; isl_vec *v; isl_int l; enum isl_lp_result res; int sgn = 0; is = isl_qpolynomial_is_cst(qp, NULL, NULL); if (is < 0) return 0; if (is) return isl_qpolynomial_cst_sign(qp); is = isl_qpolynomial_is_affine(qp); if (is < 0) return 0; if (is) return isl_qpolynomial_aff_sign(set, qp); if (qp->div->n_row > 0) return 0; rec = isl_upoly_as_rec(qp->upoly); if (!rec) return 0; d = isl_space_dim(qp->dim, isl_dim_all); v = isl_vec_alloc(set->ctx, 2 + d); if (!v) return 0; isl_seq_clr(v->el + 1, 1 + d); isl_int_set_si(v->el[0], 1); isl_int_set_si(v->el[2 + qp->upoly->var], 1); isl_int_init(l); res = isl_set_solve_lp(set, 0, v->el + 1, v->el[0], &l, NULL, NULL); if (res == isl_lp_ok) { isl_qpolynomial *min; isl_qpolynomial *base; isl_qpolynomial *r, *q; isl_qpolynomial *t; min = isl_qpolynomial_cst_on_domain(isl_space_copy(qp->dim), l); base = isl_qpolynomial_var_pow_on_domain(isl_space_copy(qp->dim), qp->upoly->var, 1); r = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, isl_upoly_copy(rec->p[rec->n - 1])); q = isl_qpolynomial_copy(r); for (i = rec->n - 2; i >= 0; --i) { r = isl_qpolynomial_mul(r, isl_qpolynomial_copy(min)); t = isl_qpolynomial_alloc(isl_space_copy(qp->dim), 0, isl_upoly_copy(rec->p[i])); r = isl_qpolynomial_add(r, t); if (i == 0) break; q = isl_qpolynomial_mul(q, isl_qpolynomial_copy(base)); q = isl_qpolynomial_add(q, isl_qpolynomial_copy(r)); } if (isl_qpolynomial_is_zero(q)) sgn = isl_qpolynomial_sign(set, r); else if (isl_qpolynomial_is_zero(r)) sgn = isl_qpolynomial_sign(set, q); else { int sgn_q, sgn_r; sgn_r = isl_qpolynomial_sign(set, r); sgn_q = isl_qpolynomial_sign(set, q); if (sgn_r == sgn_q) sgn = sgn_r; } isl_qpolynomial_free(min); isl_qpolynomial_free(base); isl_qpolynomial_free(q); isl_qpolynomial_free(r); } isl_int_clear(l); isl_vec_free(v); return sgn; } /* Combine "fold1" and "fold2" into a single reduction, eliminating * those elements of one reduction that are already covered by the other * reduction on "set". * * If "fold1" or "fold2" is an empty reduction, then return * the other reduction. * If "fold1" or "fold2" is a NaN, then return this NaN. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain( __isl_keep isl_set *set, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i, j; int n1; struct isl_qpolynomial_fold *res = NULL; int better; if (!fold1 || !fold2) goto error; isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), goto error); better = fold1->type == isl_fold_max ? -1 : 1; if (isl_qpolynomial_fold_is_empty(fold1) || isl_qpolynomial_fold_is_nan(fold2)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2) || isl_qpolynomial_fold_is_nan(fold1)) { isl_qpolynomial_fold_free(fold2); return fold1; } res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), fold1->n + fold2->n); if (!res) goto error; for (i = 0; i < fold1->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } n1 = res->n; for (i = 0; i < fold2->n; ++i) { for (j = n1 - 1; j >= 0; --j) { isl_qpolynomial *d; int sgn, equal; equal = isl_qpolynomial_plain_is_equal(res->qp[j], fold2->qp[i]); if (equal < 0) goto error; if (equal) break; d = isl_qpolynomial_sub( isl_qpolynomial_copy(res->qp[j]), isl_qpolynomial_copy(fold2->qp[i])); sgn = isl_qpolynomial_sign(set, d); isl_qpolynomial_free(d); if (sgn == 0) continue; if (sgn != better) break; isl_qpolynomial_free(res->qp[j]); if (j != n1 - 1) res->qp[j] = res->qp[n1 - 1]; n1--; if (n1 != res->n - 1) res->qp[n1] = res->qp[res->n - 1]; res->n--; } if (j >= 0) continue; res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_qpolynomial( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_qpolynomial *qp) { int i; if (!fold || !qp) goto error; if (isl_qpolynomial_is_zero(qp)) { isl_qpolynomial_free(qp); return fold; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_add(fold->qp[i], isl_qpolynomial_copy(qp)); if (!fold->qp[i]) goto error; } isl_qpolynomial_free(qp); return fold; error: isl_qpolynomial_fold_free(fold); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain( __isl_keep isl_set *dom, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i; isl_qpolynomial_fold *res = NULL; if (!fold1 || !fold2) goto error; if (isl_qpolynomial_fold_is_empty(fold1)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2)) { isl_qpolynomial_fold_free(fold2); return fold1; } if (fold1->n == 1 && fold2->n != 1) return isl_qpolynomial_fold_add_on_domain(dom, fold2, fold1); if (fold2->n == 1) { res = isl_qpolynomial_fold_add_qpolynomial(fold1, isl_qpolynomial_copy(fold2->qp[0])); isl_qpolynomial_fold_free(fold2); return res; } res = isl_qpolynomial_fold_add_qpolynomial( isl_qpolynomial_fold_copy(fold1), isl_qpolynomial_copy(fold2->qp[0])); for (i = 1; i < fold2->n; ++i) { isl_qpolynomial_fold *res_i; res_i = isl_qpolynomial_fold_add_qpolynomial( isl_qpolynomial_fold_copy(fold1), isl_qpolynomial_copy(fold2->qp[i])); res = isl_qpolynomial_fold_fold_on_domain(dom, res, res_i); } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq) { int i; if (!fold || !eq) goto error; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_substitute_equalities(fold->qp[i], isl_basic_set_copy(eq)); if (!fold->qp[i]) goto error; } isl_basic_set_free(eq); return fold; error: isl_basic_set_free(eq); isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) { int i; if (!fold || !context) goto error; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_gist(fold->qp[i], isl_set_copy(context)); if (!fold->qp[i]) goto error; } isl_set_free(context); return fold; error: isl_set_free(context); isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context) { isl_space *space = isl_qpolynomial_fold_get_domain_space(fold); isl_set *dom_context = isl_set_universe(space); dom_context = isl_set_intersect_params(dom_context, context); return isl_qpolynomial_fold_gist(fold, dom_context); } #define HAS_TYPE #undef PW #define PW isl_pw_qpolynomial_fold #undef EL #define EL isl_qpolynomial_fold #undef EL_IS_ZERO #define EL_IS_ZERO is_empty #undef ZERO #define ZERO zero #undef IS_ZERO #define IS_ZERO is_zero #undef FIELD #define FIELD fold #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 1 #define NO_NEG #define NO_SUB #define NO_PULLBACK #include #undef UNION #define UNION isl_union_pw_qpolynomial_fold #undef PART #define PART isl_pw_qpolynomial_fold #undef PARTS #define PARTS pw_qpolynomial_fold #define NO_SUB #include #include __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type, __isl_take isl_space *dim) { return qpolynomial_fold_alloc(type, dim, 0); } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_qpolynomial *qp) { isl_qpolynomial_fold *fold; if (!qp) return NULL; fold = qpolynomial_fold_alloc(type, isl_space_copy(qp->dim), 1); if (!fold) goto error; fold->qp[0] = qp; fold->n++; return fold; error: isl_qpolynomial_fold_free(fold); isl_qpolynomial_free(qp); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy( __isl_keep isl_qpolynomial_fold *fold) { if (!fold) return NULL; fold->ref++; return fold; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup( __isl_keep isl_qpolynomial_fold *fold) { int i; isl_qpolynomial_fold *dup; if (!fold) return NULL; dup = qpolynomial_fold_alloc(fold->type, isl_space_copy(fold->dim), fold->n); if (!dup) return NULL; dup->n = fold->n; for (i = 0; i < fold->n; ++i) { dup->qp[i] = isl_qpolynomial_copy(fold->qp[i]); if (!dup->qp[i]) goto error; } return dup; error: isl_qpolynomial_fold_free(dup); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow( __isl_take isl_qpolynomial_fold *fold) { if (!fold) return NULL; if (fold->ref == 1) return fold; fold->ref--; return isl_qpolynomial_fold_dup(fold); } void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold) { int i; if (!fold) return; if (--fold->ref > 0) return; for (i = 0; i < fold->n; ++i) isl_qpolynomial_free(fold->qp[i]); isl_space_free(fold->dim); free(fold); } int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return -1; return fold->n == 0; } /* Does "fold" represent max(NaN) or min(NaN)? */ isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return isl_bool_error; if (fold->n != 1) return isl_bool_false; return isl_qpolynomial_is_nan(fold->qp[0]); } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold( __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2) { int i; struct isl_qpolynomial_fold *res = NULL; if (!fold1 || !fold2) goto error; isl_assert(fold1->dim->ctx, fold1->type == fold2->type, goto error); isl_assert(fold1->dim->ctx, isl_space_is_equal(fold1->dim, fold2->dim), goto error); if (isl_qpolynomial_fold_is_empty(fold1)) { isl_qpolynomial_fold_free(fold1); return fold2; } if (isl_qpolynomial_fold_is_empty(fold2)) { isl_qpolynomial_fold_free(fold2); return fold1; } res = qpolynomial_fold_alloc(fold1->type, isl_space_copy(fold1->dim), fold1->n + fold2->n); if (!res) goto error; for (i = 0; i < fold1->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold1->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } for (i = 0; i < fold2->n; ++i) { res->qp[res->n] = isl_qpolynomial_copy(fold2->qp[i]); if (!res->qp[res->n]) goto error; res->n++; } isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return res; error: isl_qpolynomial_fold_free(res); isl_qpolynomial_fold_free(fold1); isl_qpolynomial_fold_free(fold2); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( __isl_take isl_pw_qpolynomial_fold *pw1, __isl_take isl_pw_qpolynomial_fold *pw2) { int i, j, n; struct isl_pw_qpolynomial_fold *res; isl_set *set; if (!pw1 || !pw2) goto error; isl_assert(pw1->dim->ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error); if (isl_pw_qpolynomial_fold_is_zero(pw1)) { isl_pw_qpolynomial_fold_free(pw1); return pw2; } if (isl_pw_qpolynomial_fold_is_zero(pw2)) { isl_pw_qpolynomial_fold_free(pw2); return pw1; } if (pw1->type != pw2->type) isl_die(pw1->dim->ctx, isl_error_invalid, "fold types don't match", goto error); n = (pw1->n + 1) * (pw2->n + 1); res = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pw1->dim), pw1->type, n); for (i = 0; i < pw1->n; ++i) { set = isl_set_copy(pw1->p[i].set); for (j = 0; j < pw2->n; ++j) { struct isl_set *common; isl_qpolynomial_fold *sum; set = isl_set_subtract(set, isl_set_copy(pw2->p[j].set)); common = isl_set_intersect(isl_set_copy(pw1->p[i].set), isl_set_copy(pw2->p[j].set)); if (isl_set_plain_is_empty(common)) { isl_set_free(common); continue; } sum = isl_qpolynomial_fold_fold_on_domain(common, isl_qpolynomial_fold_copy(pw1->p[i].fold), isl_qpolynomial_fold_copy(pw2->p[j].fold)); res = isl_pw_qpolynomial_fold_add_piece(res, common, sum); } res = isl_pw_qpolynomial_fold_add_piece(res, set, isl_qpolynomial_fold_copy(pw1->p[i].fold)); } for (j = 0; j < pw2->n; ++j) { set = isl_set_copy(pw2->p[j].set); for (i = 0; i < pw1->n; ++i) set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set)); res = isl_pw_qpolynomial_fold_add_piece(res, set, isl_qpolynomial_fold_copy(pw2->p[j].fold)); } isl_pw_qpolynomial_fold_free(pw1); isl_pw_qpolynomial_fold_free(pw2); return res; error: isl_pw_qpolynomial_fold_free(pw1); isl_pw_qpolynomial_fold_free(pw2); return NULL; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( __isl_take isl_union_pw_qpolynomial_fold *u, __isl_take isl_pw_qpolynomial_fold *part) { struct isl_hash_table_entry *entry; u = isl_union_pw_qpolynomial_fold_cow(u); if (!part || !u) goto error; isl_assert(u->space->ctx, isl_space_match(part->dim, isl_dim_param, u->space, isl_dim_param), goto error); entry = isl_union_pw_qpolynomial_fold_find_part_entry(u, part->dim, 1); if (!entry) goto error; if (!entry->data) entry->data = part; else { entry->data = isl_pw_qpolynomial_fold_fold(entry->data, isl_pw_qpolynomial_fold_copy(part)); if (!entry->data) goto error; isl_pw_qpolynomial_fold_free(part); } return u; error: isl_pw_qpolynomial_fold_free(part); isl_union_pw_qpolynomial_fold_free(u); return NULL; } static isl_stat fold_part(__isl_take isl_pw_qpolynomial_fold *part, void *user) { isl_union_pw_qpolynomial_fold **u; u = (isl_union_pw_qpolynomial_fold **)user; *u = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(*u, part); return isl_stat_ok; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold( __isl_take isl_union_pw_qpolynomial_fold *u1, __isl_take isl_union_pw_qpolynomial_fold *u2) { u1 = isl_union_pw_qpolynomial_fold_cow(u1); if (!u1 || !u2) goto error; if (isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(u2, &fold_part, &u1) < 0) goto error; isl_union_pw_qpolynomial_fold_free(u2); return u1; error: isl_union_pw_qpolynomial_fold_free(u1); isl_union_pw_qpolynomial_fold_free(u2); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial( enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp) { int i; isl_pw_qpolynomial_fold *pwf; if (!pwqp) return NULL; pwf = isl_pw_qpolynomial_fold_alloc_size(isl_space_copy(pwqp->dim), type, pwqp->n); for (i = 0; i < pwqp->n; ++i) pwf = isl_pw_qpolynomial_fold_add_piece(pwf, isl_set_copy(pwqp->p[i].set), isl_qpolynomial_fold_alloc(type, isl_qpolynomial_copy(pwqp->p[i].qp))); isl_pw_qpolynomial_free(pwqp); return pwf; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2) { return isl_pw_qpolynomial_fold_union_add_(pwf1, pwf2); } int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2) { int i; if (!fold1 || !fold2) return -1; if (fold1->n != fold2->n) return 0; /* We probably want to sort the qps first... */ for (i = 0; i < fold1->n; ++i) { int eq = isl_qpolynomial_plain_is_equal(fold1->qp[i], fold2->qp[i]); if (eq < 0 || !eq) return eq; } return 1; } __isl_give isl_val *isl_qpolynomial_fold_eval( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt) { isl_ctx *ctx; isl_val *v; if (!fold || !pnt) goto error; ctx = isl_point_get_ctx(pnt); isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, fold->dim), goto error); isl_assert(pnt->dim->ctx, fold->type == isl_fold_max || fold->type == isl_fold_min, goto error); if (fold->n == 0) v = isl_val_zero(ctx); else { int i; v = isl_qpolynomial_eval(isl_qpolynomial_copy(fold->qp[0]), isl_point_copy(pnt)); for (i = 1; i < fold->n; ++i) { isl_val *v_i; v_i = isl_qpolynomial_eval( isl_qpolynomial_copy(fold->qp[i]), isl_point_copy(pnt)); if (fold->type == isl_fold_max) v = isl_val_max(v, v_i); else v = isl_val_min(v, v_i); } } isl_qpolynomial_fold_free(fold); isl_point_free(pnt); return v; error: isl_qpolynomial_fold_free(fold); isl_point_free(pnt); return NULL; } size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf) { int i; size_t n = 0; for (i = 0; i < pwf->n; ++i) n += pwf->p[i].fold->n; return n; } __isl_give isl_val *isl_qpolynomial_fold_opt_on_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max) { int i; isl_val *opt; if (!set || !fold) goto error; if (fold->n == 0) { opt = isl_val_zero(isl_set_get_ctx(set)); isl_set_free(set); isl_qpolynomial_fold_free(fold); return opt; } opt = isl_qpolynomial_opt_on_domain(isl_qpolynomial_copy(fold->qp[0]), isl_set_copy(set), max); for (i = 1; i < fold->n; ++i) { isl_val *opt_i; opt_i = isl_qpolynomial_opt_on_domain( isl_qpolynomial_copy(fold->qp[i]), isl_set_copy(set), max); if (max) opt = isl_val_max(opt, opt_i); else opt = isl_val_min(opt, opt_i); } isl_set_free(set); isl_qpolynomial_fold_free(fold); return opt; error: isl_set_free(set); isl_qpolynomial_fold_free(fold); return NULL; } /* Check whether for each quasi-polynomial in "fold2" there is * a quasi-polynomial in "fold1" that dominates it on "set". */ static int qpolynomial_fold_covers_on_domain(__isl_keep isl_set *set, __isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2) { int i, j; int covers; if (!set || !fold1 || !fold2) return -1; covers = fold1->type == isl_fold_max ? 1 : -1; for (i = 0; i < fold2->n; ++i) { for (j = 0; j < fold1->n; ++j) { isl_qpolynomial *d; int sgn; d = isl_qpolynomial_sub( isl_qpolynomial_copy(fold1->qp[j]), isl_qpolynomial_copy(fold2->qp[i])); sgn = isl_qpolynomial_sign(set, d); isl_qpolynomial_free(d); if (sgn == covers) break; } if (j >= fold1->n) return 0; } return 1; } /* Check whether "pwf1" dominated "pwf2", i.e., the domain of "pwf1" contains * that of "pwf2" and on each cell, the corresponding fold from pwf1 dominates * that of pwf2. */ int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1, __isl_keep isl_pw_qpolynomial_fold *pwf2) { int i, j; isl_set *dom1, *dom2; int is_subset; if (!pwf1 || !pwf2) return -1; if (pwf2->n == 0) return 1; if (pwf1->n == 0) return 0; dom1 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf1)); dom2 = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf2)); is_subset = isl_set_is_subset(dom2, dom1); isl_set_free(dom1); isl_set_free(dom2); if (is_subset < 0 || !is_subset) return is_subset; for (i = 0; i < pwf2->n; ++i) { for (j = 0; j < pwf1->n; ++j) { int is_empty; isl_set *common; int covers; common = isl_set_intersect(isl_set_copy(pwf1->p[j].set), isl_set_copy(pwf2->p[i].set)); is_empty = isl_set_is_empty(common); if (is_empty < 0 || is_empty) { isl_set_free(common); if (is_empty < 0) return -1; continue; } covers = qpolynomial_fold_covers_on_domain(common, pwf1->p[j].fold, pwf2->p[i].fold); isl_set_free(common); if (covers < 0 || !covers) return covers; } } return 1; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph) { int i; isl_ctx *ctx; if (!fold || !morph) goto error; ctx = fold->dim->ctx; isl_assert(ctx, isl_space_is_equal(fold->dim, morph->dom->dim), goto error); fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; isl_space_free(fold->dim); fold->dim = isl_space_copy(morph->ran->dim); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_morph_domain(fold->qp[i], isl_morph_copy(morph)); if (!fold->qp[i]) goto error; } isl_morph_free(morph); return fold; error: isl_qpolynomial_fold_free(fold); isl_morph_free(morph); return NULL; } enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold) { if (!fold) return isl_fold_list; return fold->type; } enum isl_fold isl_union_pw_qpolynomial_fold_get_type( __isl_keep isl_union_pw_qpolynomial_fold *upwf) { if (!upwf) return isl_fold_list; return upwf->type; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim) { int i; if (!fold || !dim) goto error; if (isl_space_is_equal(fold->dim, dim)) { isl_space_free(dim); return fold; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; isl_space_free(fold->dim); fold->dim = isl_space_copy(dim); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_lift(fold->qp[i], isl_space_copy(dim)); if (!fold->qp[i]) goto error; } isl_space_free(dim); return fold; error: isl_qpolynomial_fold_free(fold); isl_space_free(dim); return NULL; } isl_stat isl_qpolynomial_fold_foreach_qpolynomial( __isl_keep isl_qpolynomial_fold *fold, isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user) { int i; if (!fold) return isl_stat_error; for (i = 0; i < fold->n; ++i) if (fn(isl_qpolynomial_copy(fold->qp[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (n == 0) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; fold->dim = isl_space_move_dims(fold->dim, dst_type, dst_pos, src_type, src_pos, n); if (!fold->dim) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_move_dims(fold->qp[i], dst_type, dst_pos, src_type, src_pos, n); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } /* For each 0 <= i < "n", replace variable "first" + i of type "type" * in fold->qp[k] by subs[i]. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs) { int i; if (n == 0) return fold; fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_substitute(fold->qp[i], type, first, n, subs); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } static isl_stat add_pwqp(__isl_take isl_pw_qpolynomial *pwqp, void *user) { isl_ctx *ctx; isl_pw_qpolynomial_fold *pwf; isl_union_pw_qpolynomial_fold **upwf; struct isl_hash_table_entry *entry; upwf = (isl_union_pw_qpolynomial_fold **)user; ctx = pwqp->dim->ctx; entry = isl_union_pw_qpolynomial_fold_find_part_entry(*upwf, pwqp->dim, 1); if (!entry) goto error; pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial((*upwf)->type, pwqp); if (!entry->data) entry->data = pwf; else { entry->data = isl_pw_qpolynomial_fold_add(entry->data, pwf); if (!entry->data) return isl_stat_error; if (isl_pw_qpolynomial_fold_is_zero(entry->data)) *upwf = isl_union_pw_qpolynomial_fold_remove_part_entry( *upwf, entry); } return isl_stat_ok; error: isl_pw_qpolynomial_free(pwqp); return isl_stat_error; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_pw_qpolynomial *upwqp) { upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, isl_union_pw_qpolynomial_get_space(upwqp)); upwqp = isl_union_pw_qpolynomial_align_params(upwqp, isl_union_pw_qpolynomial_fold_get_space(upwf)); upwf = isl_union_pw_qpolynomial_fold_cow(upwf); if (!upwf || !upwqp) goto error; if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &add_pwqp, &upwf) < 0) goto error; isl_union_pw_qpolynomial_free(upwqp); return upwf; error: isl_union_pw_qpolynomial_fold_free(upwf); isl_union_pw_qpolynomial_free(upwqp); return NULL; } static int join_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2) { int m; m = isl_space_match(dim1, isl_dim_param, dim2, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(dim1, isl_dim_out, dim2, isl_dim_in); } /* Compute the intersection of the range of the map and the domain * of the piecewise quasipolynomial reduction and then compute a bound * on the associated quasipolynomial reduction over all elements * in this intersection. * * We first introduce some unconstrained dimensions in the * piecewise quasipolynomial, intersect the resulting domain * with the wrapped map and the compute the sum. */ __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold( __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight) { isl_ctx *ctx; isl_set *dom; isl_space *map_dim; isl_space *pwf_dim; unsigned n_in; int ok; ctx = isl_map_get_ctx(map); if (!ctx) goto error; map_dim = isl_map_get_space(map); pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); ok = join_compatible(map_dim, pwf_dim); isl_space_free(map_dim); isl_space_free(pwf_dim); if (!ok) isl_die(ctx, isl_error_invalid, "incompatible dimensions", goto error); n_in = isl_map_dim(map, isl_dim_in); pwf = isl_pw_qpolynomial_fold_insert_dims(pwf, isl_dim_in, 0, n_in); dom = isl_map_wrap(map); pwf = isl_pw_qpolynomial_fold_reset_domain_space(pwf, isl_set_get_space(dom)); pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, dom); pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); return pwf; error: isl_map_free(map); isl_pw_qpolynomial_fold_free(pwf); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold( __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight) { return isl_map_apply_pw_qpolynomial_fold(set, pwf, tight); } struct isl_apply_fold_data { isl_union_pw_qpolynomial_fold *upwf; isl_union_pw_qpolynomial_fold *res; isl_map *map; int tight; }; static isl_stat pw_qpolynomial_fold_apply( __isl_take isl_pw_qpolynomial_fold *pwf, void *user) { isl_space *map_dim; isl_space *pwf_dim; struct isl_apply_fold_data *data = user; int ok; map_dim = isl_map_get_space(data->map); pwf_dim = isl_pw_qpolynomial_fold_get_space(pwf); ok = join_compatible(map_dim, pwf_dim); isl_space_free(map_dim); isl_space_free(pwf_dim); if (ok) { pwf = isl_map_apply_pw_qpolynomial_fold(isl_map_copy(data->map), pwf, data->tight ? &data->tight : NULL); data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( data->res, pwf); } else isl_pw_qpolynomial_fold_free(pwf); return isl_stat_ok; } static isl_stat map_apply(__isl_take isl_map *map, void *user) { struct isl_apply_fold_data *data = user; isl_stat r; data->map = map; r = isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( data->upwf, &pw_qpolynomial_fold_apply, data); isl_map_free(map); return r; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold( __isl_take isl_union_map *umap, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) { isl_space *dim; enum isl_fold type; struct isl_apply_fold_data data; upwf = isl_union_pw_qpolynomial_fold_align_params(upwf, isl_union_map_get_space(umap)); umap = isl_union_map_align_params(umap, isl_union_pw_qpolynomial_fold_get_space(upwf)); data.upwf = upwf; data.tight = tight ? 1 : 0; dim = isl_union_pw_qpolynomial_fold_get_space(upwf); type = isl_union_pw_qpolynomial_fold_get_type(upwf); data.res = isl_union_pw_qpolynomial_fold_zero(dim, type); if (isl_union_map_foreach_map(umap, &map_apply, &data) < 0) goto error; isl_union_map_free(umap); isl_union_pw_qpolynomial_fold_free(upwf); if (tight) *tight = data.tight; return data.res; error: isl_union_map_free(umap); isl_union_pw_qpolynomial_fold_free(upwf); isl_union_pw_qpolynomial_fold_free(data.res); return NULL; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold( __isl_take isl_union_set *uset, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight) { return isl_union_map_apply_union_pw_qpolynomial_fold(uset, upwf, tight); } /* Reorder the dimension of "fold" according to the given reordering. */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r) { int i; fold = isl_qpolynomial_fold_cow(fold); if (!fold || !r) goto error; for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_realign_domain(fold->qp[i], isl_reordering_copy(r)); if (!fold->qp[i]) goto error; } fold = isl_qpolynomial_fold_reset_domain_space(fold, isl_space_copy(r->dim)); isl_reordering_free(r); return fold; error: isl_qpolynomial_fold_free(fold); isl_reordering_free(r); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int( __isl_take isl_qpolynomial_fold *fold, isl_int v) { int i; if (isl_int_is_one(v)) return fold; if (fold && isl_int_is_zero(v)) { isl_qpolynomial_fold *zero; isl_space *dim = isl_space_copy(fold->dim); zero = isl_qpolynomial_fold_empty(fold->type, dim); isl_qpolynomial_fold_free(fold); return zero; } fold = isl_qpolynomial_fold_cow(fold); if (!fold) return NULL; if (isl_int_is_neg(v)) fold->type = isl_fold_type_negate(fold->type); for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_mul_isl_int(fold->qp[i], v); if (!fold->qp[i]) goto error; } return fold; error: isl_qpolynomial_fold_free(fold); return NULL; } __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale( __isl_take isl_qpolynomial_fold *fold, isl_int v) { return isl_qpolynomial_fold_mul_isl_int(fold, v); } /* Multiply "fold" by "v". */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v) { int i; if (!fold || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return fold; } if (isl_val_is_zero(v)) { isl_qpolynomial_fold *zero; isl_space *space = isl_qpolynomial_fold_get_domain_space(fold); zero = isl_qpolynomial_fold_empty(fold->type, space); isl_qpolynomial_fold_free(fold); isl_val_free(v); return zero; } if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid, "expecting rational factor", goto error); fold = isl_qpolynomial_fold_cow(fold); if (!fold) goto error; if (isl_val_is_neg(v)) fold->type = isl_fold_type_negate(fold->type); for (i = 0; i < fold->n; ++i) { fold->qp[i] = isl_qpolynomial_scale_val(fold->qp[i], isl_val_copy(v)); if (!fold->qp[i]) goto error; } isl_val_free(v); return fold; error: isl_val_free(v); isl_qpolynomial_fold_free(fold); return NULL; } /* Divide "fold" by "v". */ __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v) { if (!fold || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return fold; } if (!isl_val_is_rat(v)) isl_die(isl_qpolynomial_fold_get_ctx(fold), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); return isl_qpolynomial_fold_scale_val(fold, isl_val_inv(v)); error: isl_val_free(v); isl_qpolynomial_fold_free(fold); return NULL; } isl-0.16.1/pip_test.sh.in0000775000175000017500000000114712645737061012122 00000000000000#!/bin/sh EXEEXT=@EXEEXT@ PIP_TESTS="\ boulet.pip \ brisebarre.pip \ cg1.pip \ esced.pip \ ex2.pip \ ex.pip \ fimmel.pip \ max.pip \ negative.pip \ seghir-vd.pip \ small.pip \ sor1d.pip \ square.pip \ sven.pip \ tobi.pip" for i in $PIP_TESTS; do echo $i; ./isl_pip$EXEEXT --format=set --context=gbr -T < $srcdir/test_inputs/$i || exit ./isl_pip$EXEEXT --format=set --context=lexmin -T < $srcdir/test_inputs/$i || exit ./isl_pip$EXEEXT --format=affine --context=gbr -T < $srcdir/test_inputs/$i || exit ./isl_pip$EXEEXT --format=affine --context=lexmin -T < $srcdir/test_inputs/$i || exit done isl-0.16.1/Makefile.am0000664000175000017500000002076012645737234011367 00000000000000if HAVE_CLANG MAYBE_INTERFACE = interface endif SUBDIRS = . $(MAYBE_INTERFACE) doc DIST_SUBDIRS = $(MAYBE_INTERFACE) doc ACLOCAL_AMFLAGS = -I m4 AUTOMAKE_OPTIONS = nostdinc subdir-objects lib_LTLIBRARIES = libisl.la noinst_PROGRAMS = isl_test isl_polyhedron_sample isl_pip \ isl_polyhedron_minimize isl_polytope_scan \ isl_polyhedron_detect_equalities isl_cat \ isl_closure isl_bound isl_codegen isl_test_int TESTS = isl_test codegen_test.sh pip_test.sh bound_test.sh isl_test_int if IMATH_FOR_MP MP_SRC = \ isl_hide_deprecated.h \ isl_imath.c \ isl_imath.h \ isl_int_imath.h \ imath_wrap/gmp_compat.h \ imath_wrap/imath.h \ imath_wrap/imrat.h \ imath_wrap/wrap.h \ imath_wrap/gmp_compat.c \ imath_wrap/imath.c \ imath_wrap/imrat.c noinst_PROGRAMS += isl_test_imath TESTS += isl_test_imath if SMALL_INT_OPT MP_SRC += isl_int_sioimath.h \ isl_int_sioimath.c \ isl_val_sioimath.c else MP_SRC += isl_val_imath.c endif DEPRECATED_SRC = MP_INCLUDE_H = endif if GMP_FOR_MP if NEED_GET_MEMORY_FUNCTIONS GET_MEMORY_FUNCTIONS=mp_get_memory_functions.c endif MP_SRC = \ $(GET_MEMORY_FUNCTIONS) \ isl_int_gmp.h \ isl_gmp.c \ isl_val_gmp.c DEPRECATED_SRC = isl_ast_int.c MP_INCLUDE_H = include/isl/val_gmp.h endif AM_CPPFLAGS = -I. -I$(srcdir) -I$(srcdir)/include -Iinclude/ @MP_CPPFLAGS@ AM_CFLAGS = @WARNING_FLAGS@ libisl_la_SOURCES = \ $(MP_SRC) \ $(DEPRECATED_SRC) \ isl_aff.c \ isl_aff_private.h \ isl_affine_hull.c \ isl_arg.c \ isl_ast.c \ isl_ast_private.h \ isl_ast_build.c \ isl_ast_build_private.h \ isl_ast_build_expr.c \ isl_ast_build_expr.h \ isl_ast_codegen.c \ isl_ast_graft.c \ isl_ast_graft_private.h \ isl_band.c \ isl_band_private.h \ isl_basis_reduction.h \ basis_reduction_tab.c \ isl_bernstein.c \ isl_bernstein.h \ isl_blk.c \ isl_blk.h \ isl_bound.c \ isl_bound.h \ isl_coalesce.c \ isl_constraint.c \ isl_constraint_private.h \ isl_convex_hull.c \ isl_ctx.c \ isl_ctx_private.h \ isl_deprecated.c \ isl_dim_map.h \ isl_dim_map.c \ isl_equalities.c \ isl_equalities.h \ isl_factorization.c \ isl_factorization.h \ isl_farkas.c \ isl_ffs.c \ isl_flow.c \ isl_fold.c \ isl_hash.c \ isl_hash_private.h \ isl_id_to_ast_expr.c \ isl_id_to_pw_aff.c \ isl_ilp.c \ isl_ilp_private.h \ isl_input.c \ isl_int.h \ isl_local_space_private.h \ isl_local_space.c \ isl_lp.c \ isl_lp_private.h \ isl_map.c \ isl_map_list.c \ isl_map_simplify.c \ isl_map_subtract.c \ isl_map_private.h \ isl_map_to_basic_set.c \ isl_mat.c \ isl_mat_private.h \ isl_morph.c \ isl_morph.h \ isl_id.c \ isl_id_private.h \ isl_obj.c \ isl_options.c \ isl_options_private.h \ isl_output.c \ isl_output_private.h \ isl_point_private.h \ isl_point.c \ isl_polynomial_private.h \ isl_polynomial.c \ isl_printer_private.h \ isl_printer.c \ print.c \ isl_range.c \ isl_range.h \ isl_reordering.c \ isl_reordering.h \ isl_sample.h \ isl_sample.c \ isl_scan.c \ isl_scan.h \ isl_schedule.c \ isl_schedule_band.c \ isl_schedule_band.h \ isl_schedule_node.c \ isl_schedule_node_private.h \ isl_schedule_read.c \ isl_schedule_tree.c \ isl_schedule_tree.h \ isl_schedule_private.h \ isl_scheduler.c \ isl_set_list.c \ isl_sort.c \ isl_sort.h \ isl_space.c \ isl_space_private.h \ isl_stream.c \ isl_stream_private.h \ isl_seq.c \ isl_seq.h \ isl_tab.c \ isl_tab.h \ isl_tab_pip.c \ isl_tarjan.c \ isl_tarjan.h \ isl_transitive_closure.c \ isl_union_map.c \ isl_union_map_private.h \ isl_val.c \ isl_val_private.h \ isl_vec_private.h \ isl_vec.c \ isl_version.c \ isl_vertices_private.h \ isl_vertices.c \ isl_yaml.h libisl_la_LIBADD = @MP_LIBS@ libisl_la_LDFLAGS = -version-info @versioninfo@ \ @MP_LDFLAGS@ isl_test_LDFLAGS = @MP_LDFLAGS@ isl_test_LDADD = libisl.la @MP_LIBS@ isl_test_int_LDFLAGS = @MP_LDFLAGS@ isl_test_int_LDADD = libisl.la @MP_LIBS@ if IMATH_FOR_MP isl_test_imath_LDFLAGS = @MP_LDFLAGS@ isl_test_imath_LDADD = libisl.la @MP_LIBS@ endif isl_polyhedron_sample_LDADD = libisl.la isl_polyhedron_sample_SOURCES = \ polyhedron_sample.c isl_pip_LDFLAGS = @MP_LDFLAGS@ isl_pip_LDADD = libisl.la @MP_LIBS@ isl_pip_SOURCES = \ pip.c isl_codegen_LDFLAGS = @MP_LDFLAGS@ isl_codegen_LDADD = libisl.la @MP_LIBS@ isl_codegen_SOURCES = \ codegen.c isl_bound_LDFLAGS = @MP_LDFLAGS@ isl_bound_LDADD = libisl.la @MP_LIBS@ isl_bound_SOURCES = \ bound.c isl_polyhedron_minimize_LDFLAGS = @MP_LDFLAGS@ isl_polyhedron_minimize_LDADD = libisl.la @MP_LIBS@ isl_polyhedron_minimize_SOURCES = \ polyhedron_minimize.c isl_polytope_scan_LDADD = libisl.la isl_polytope_scan_SOURCES = \ polytope_scan.c isl_polyhedron_detect_equalities_LDADD = libisl.la isl_polyhedron_detect_equalities_SOURCES = \ polyhedron_detect_equalities.c isl_cat_LDADD = libisl.la isl_cat_SOURCES = \ cat.c isl_closure_LDADD = libisl.la isl_closure_SOURCES = \ closure.c nodist_pkginclude_HEADERS = \ include/isl/stdint.h pkginclude_HEADERS = \ $(MP_INCLUDE_H) \ include/isl/aff.h \ include/isl/aff_type.h \ include/isl/arg.h \ include/isl/ast.h \ include/isl/ast_type.h \ include/isl/ast_build.h \ include/isl/band.h \ include/isl/constraint.h \ include/isl/ctx.h \ include/isl/flow.h \ include/isl/id.h \ include/isl/id_to_ast_expr.h \ include/isl/id_to_pw_aff.h \ include/isl/ilp.h \ include/isl/hash.h \ include/isl/hmap.h \ include/isl/list.h \ include/isl/local_space.h \ include/isl/lp.h \ include/isl/mat.h \ include/isl/map.h \ include/isl/map_to_basic_set.h \ include/isl/map_type.h \ include/isl/multi.h \ include/isl/obj.h \ include/isl/options.h \ include/isl/point.h \ include/isl/polynomial.h \ include/isl/polynomial_type.h \ include/isl/printer.h \ include/isl/schedule.h \ include/isl/schedule_node.h \ include/isl/schedule_type.h \ include/isl/set.h \ include/isl/set_type.h \ include/isl/space.h \ include/isl/stream.h \ include/isl/union_map.h \ include/isl/union_map_type.h \ include/isl/union_set.h \ include/isl/union_set_type.h \ include/isl/val.h \ include/isl/vec.h \ include/isl/version.h \ include/isl/vertices.h deprecateddir = $(pkgincludedir)/deprecated deprecated_HEADERS = \ include/isl/deprecated/int.h \ include/isl/deprecated/aff_int.h \ include/isl/deprecated/ast_int.h \ include/isl/deprecated/constraint_int.h \ include/isl/deprecated/ilp_int.h \ include/isl/deprecated/map_int.h \ include/isl/deprecated/mat_int.h \ include/isl/deprecated/point_int.h \ include/isl/deprecated/polynomial_int.h \ include/isl/deprecated/set_int.h \ include/isl/deprecated/union_map_int.h \ include/isl/deprecated/val_int.h \ include/isl/deprecated/vec_int.h BUILT_SOURCES = gitversion.h CLEANFILES = \ gitversion.h DISTCLEANFILES = \ isl-uninstalled.sh \ isl-uninstalled.pc \ isl.pc \ isl.pc.in \ include/isl/stdint.h EXTRA_DIST = \ LICENSE \ isl_config_post.h \ basis_reduction_templ.c \ isl_hmap_templ.c \ isl_list_templ.c \ isl_list_templ.h \ isl_map_lexopt_templ.c \ isl_multi_macro.h \ isl_multi_templ.c \ isl_multi_templ.h \ isl_multi_apply_templ.c \ isl_multi_apply_set.c \ isl_multi_apply_union_set.c \ isl_multi_coalesce.c \ isl_multi_floor.c \ isl_multi_gist.c \ isl_multi_intersect.c \ print_templ.c \ isl_power_templ.c \ isl_pw_templ.c \ isl_union_macro.h \ isl_union_templ.c \ isl_union_single.c \ isl_union_multi.c \ isl_union_eval.c \ isl_union_neg.c \ isl.py \ doc/CodingStyle \ doc/SubmittingPatches \ doc/chicago.bst \ doc/chicago.sty \ doc/implementation.tex \ doc/isl.bib \ doc/mypod2latex \ doc/manual.tex \ doc/user.pod \ imath/gmp_compat.c \ imath/gmp_compat.h \ imath/imath.c \ imath/imath.h \ imath/imrat.c \ imath/imrat.h \ interface/all.h \ interface/isl.py.top \ test_inputs dist-hook: echo @GIT_HEAD_VERSION@ > $(distdir)/GIT_HEAD_ID (cd doc; make manual.pdf) cp doc/manual.pdf $(distdir)/doc/ pkgconfigdir=$(pkgconfig_libdir) pkgconfig_DATA = $(pkgconfig_libfile) gitversion.h: @GIT_HEAD@ $(AM_V_GEN)echo '#define GIT_HEAD_ID "'@GIT_HEAD_VERSION@'"' > $@ install-data-local: $(srcdir)/isl.py @libisl=`sed -ne "/^library_names=/{s/.*='//;s/'$$//;s/ .*//;p;}" \ $(builddir)/libisl.la`; \ case $$libisl in \ '') echo Cannot find isl library name. GDB bindings not installed.;; \ *) echo $(INSTALL_DATA) $(srcdir)/isl.py \ $(DESTDIR)$(libdir)/$$libisl-gdb.py; \ test -z "$(libdir)" || $(MKDIR_P) "$(DESTDIR)$(libdir)"; \ $(INSTALL_DATA) $(srcdir)/isl.py $(DESTDIR)$(libdir)/$$libisl-gdb.py; esac uninstall-local: @libisl=`sed -ne "/^library_names=/{s/.*='//;s/'$$//;s/ .*//;p;}" \ $(builddir)/libisl.la`; \ if test -n "$${libisl}"; then \ rm -f $(DESTDIR)$(libdir)/$$libisl-gdb.py; \ fi isl-0.16.1/isl_stream_private.h0000664000175000017500000000320612645737061013372 00000000000000#include #include #include struct isl_token { int type; unsigned int on_new_line : 1; unsigned is_keyword : 1; int line; int col; union { isl_int v; char *s; isl_map *map; isl_pw_aff *pwaff; } u; }; struct isl_token *isl_token_new(isl_ctx *ctx, int line, int col, unsigned on_new_line); /* An input stream that may be either a file or a string. * * line and col are the line and column number of the next character (1-based). * start_line and start_col are set by isl_stream_getc to point * to the position of the returned character. * last_line is the line number of the previous token. * * yaml_state and yaml_indent keep track of the currently active YAML * elements. yaml_size is the size of these arrays, while yaml_depth * is the number of elements currently in use. * yaml_state and yaml_indent may be NULL if no YAML parsing is being * performed. * yaml_state keeps track of what is expected next at each level. * yaml_indent keeps track of the indentation at each level, with * ISL_YAML_INDENT_FLOW meaning that the element is in flow format * (such that the indentation is not relevant). */ struct isl_stream { struct isl_ctx *ctx; FILE *file; const char *str; int line; int col; int start_line; int start_col; int last_line; int eof; char *buffer; size_t size; size_t len; int c; int un[5]; int n_un; struct isl_token *tokens[5]; int n_token; struct isl_hash_table *keywords; enum isl_token_type next_type; int yaml_depth; int yaml_size; enum isl_yaml_state *yaml_state; int *yaml_indent; }; isl-0.16.1/isl_ilp.c0000664000175000017500000004052612645737060011131 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include "isl_sample.h" #include #include "isl_equalities.h" #include #include #include #include #include #include #include #include /* Given a basic set "bset", construct a basic set U such that for * each element x in U, the whole unit box positioned at x is inside * the given basic set. * Note that U may not contain all points that satisfy this property. * * We simply add the sum of all negative coefficients to the constant * term. This ensures that if x satisfies the resulting constraints, * then x plus any sum of unit vectors satisfies the original constraints. */ static struct isl_basic_set *unit_box_base_points(struct isl_basic_set *bset) { int i, j, k; struct isl_basic_set *unit_box = NULL; unsigned total; if (!bset) goto error; if (bset->n_eq != 0) { isl_space *space = isl_basic_set_get_space(bset); isl_basic_set_free(bset); return isl_basic_set_empty(space); } total = isl_basic_set_total_dim(bset); unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset), 0, 0, bset->n_ineq); for (i = 0; i < bset->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(unit_box); if (k < 0) goto error; isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total); for (j = 0; j < total; ++j) { if (isl_int_is_nonneg(unit_box->ineq[k][1 + j])) continue; isl_int_add(unit_box->ineq[k][0], unit_box->ineq[k][0], unit_box->ineq[k][1 + j]); } } isl_basic_set_free(bset); return unit_box; error: isl_basic_set_free(bset); isl_basic_set_free(unit_box); return NULL; } /* Find an integer point in "bset", preferably one that is * close to minimizing "f". * * We first check if we can easily put unit boxes inside bset. * If so, we take the best base point of any of the unit boxes we can find * and round it up to the nearest integer. * If not, we simply pick any integer point in "bset". */ static struct isl_vec *initial_solution(struct isl_basic_set *bset, isl_int *f) { enum isl_lp_result res; struct isl_basic_set *unit_box; struct isl_vec *sol; unit_box = unit_box_base_points(isl_basic_set_copy(bset)); res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one, NULL, NULL, &sol); if (res == isl_lp_ok) { isl_basic_set_free(unit_box); return isl_vec_ceil(sol); } isl_basic_set_free(unit_box); return isl_basic_set_sample_vec(isl_basic_set_copy(bset)); } /* Restrict "bset" to those points with values for f in the interval [l, u]. */ static struct isl_basic_set *add_bounds(struct isl_basic_set *bset, isl_int *f, isl_int l, isl_int u) { int k; unsigned total; total = isl_basic_set_total_dim(bset); bset = isl_basic_set_extend_constraints(bset, 0, 2); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_cpy(bset->ineq[k], f, 1 + total); isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_neg(bset->ineq[k], f, 1 + total); isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u); return bset; error: isl_basic_set_free(bset); return NULL; } /* Find an integer point in "bset" that minimizes f (in any) such that * the value of f lies inside the interval [l, u]. * Return this integer point if it can be found. * Otherwise, return sol. * * We perform a number of steps until l > u. * In each step, we look for an integer point with value in either * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)]. * The choice depends on whether we have found an integer point in the * previous step. If so, we look for the next point in half of the remaining * interval. * If we find a point, the current solution is updated and u is set * to its value minus 1. * If no point can be found, we update l to the upper bound of the interval * we checked (u or l+floor(u-l-1/2)) plus 1. */ static struct isl_vec *solve_ilp_search(struct isl_basic_set *bset, isl_int *f, isl_int *opt, struct isl_vec *sol, isl_int l, isl_int u) { isl_int tmp; int divide = 1; isl_int_init(tmp); while (isl_int_le(l, u)) { struct isl_basic_set *slice; struct isl_vec *sample; if (!divide) isl_int_set(tmp, u); else { isl_int_sub(tmp, u, l); isl_int_fdiv_q_ui(tmp, tmp, 2); isl_int_add(tmp, tmp, l); } slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp); sample = isl_basic_set_sample_vec(slice); if (!sample) { isl_vec_free(sol); sol = NULL; break; } if (sample->size > 0) { isl_vec_free(sol); sol = sample; isl_seq_inner_product(f, sol->el, sol->size, opt); isl_int_sub_ui(u, *opt, 1); divide = 1; } else { isl_vec_free(sample); if (!divide) break; isl_int_add_ui(l, tmp, 1); divide = 0; } } isl_int_clear(tmp); return sol; } /* Find an integer point in "bset" that minimizes f (if any). * If sol_p is not NULL then the integer point is returned in *sol_p. * The optimal value of f is returned in *opt. * * The algorithm maintains a currently best solution and an interval [l, u] * of values of f for which integer solutions could potentially still be found. * The initial value of the best solution so far is any solution. * The initial value of l is minimal value of f over the rationals * (rounded up to the nearest integer). * The initial value of u is the value of f at the initial solution minus 1. * * We then call solve_ilp_search to perform a binary search on the interval. */ static enum isl_lp_result solve_ilp(struct isl_basic_set *bset, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { enum isl_lp_result res; isl_int l, u; struct isl_vec *sol; res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one, opt, NULL, &sol); if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) { if (sol_p) *sol_p = sol; else isl_vec_free(sol); return isl_lp_ok; } isl_vec_free(sol); if (res == isl_lp_error || res == isl_lp_empty) return res; sol = initial_solution(bset, f); if (!sol) return isl_lp_error; if (sol->size == 0) { isl_vec_free(sol); return isl_lp_empty; } if (res == isl_lp_unbounded) { isl_vec_free(sol); return isl_lp_unbounded; } isl_int_init(l); isl_int_init(u); isl_int_set(l, *opt); isl_seq_inner_product(f, sol->el, sol->size, opt); isl_int_sub_ui(u, *opt, 1); sol = solve_ilp_search(bset, f, opt, sol, l, u); if (!sol) res = isl_lp_error; isl_int_clear(l); isl_int_clear(u); if (sol_p) *sol_p = sol; else isl_vec_free(sol); return res; } static enum isl_lp_result solve_ilp_with_eq(struct isl_basic_set *bset, int max, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { unsigned dim; enum isl_lp_result res; struct isl_mat *T = NULL; struct isl_vec *v; bset = isl_basic_set_copy(bset); dim = isl_basic_set_total_dim(bset); v = isl_vec_alloc(bset->ctx, 1 + dim); if (!v) goto error; isl_seq_cpy(v->el, f, 1 + dim); bset = isl_basic_set_remove_equalities(bset, &T, NULL); v = isl_vec_mat_product(v, isl_mat_copy(T)); if (!v) goto error; res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p); isl_vec_free(v); if (res == isl_lp_ok && sol_p) { *sol_p = isl_mat_vec_product(T, *sol_p); if (!*sol_p) res = isl_lp_error; } else isl_mat_free(T); isl_basic_set_free(bset); return res; error: isl_mat_free(T); isl_basic_set_free(bset); return isl_lp_error; } /* Find an integer point in "bset" that minimizes (or maximizes if max is set) * f (if any). * If sol_p is not NULL then the integer point is returned in *sol_p. * The optimal value of f is returned in *opt. * * If there is any equality among the points in "bset", then we first * project it out. Otherwise, we continue with solve_ilp above. */ enum isl_lp_result isl_basic_set_solve_ilp(struct isl_basic_set *bset, int max, isl_int *f, isl_int *opt, struct isl_vec **sol_p) { unsigned dim; enum isl_lp_result res; if (!bset) return isl_lp_error; if (sol_p) *sol_p = NULL; isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); if (isl_basic_set_plain_is_empty(bset)) return isl_lp_empty; if (bset->n_eq) return solve_ilp_with_eq(bset, max, f, opt, sol_p); dim = isl_basic_set_total_dim(bset); if (max) isl_seq_neg(f, f, 1 + dim); res = solve_ilp(bset, f, opt, sol_p); if (max) { isl_seq_neg(f, f, 1 + dim); isl_int_neg(*opt, *opt); } return res; error: isl_basic_set_free(bset); return isl_lp_error; } static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj, isl_int *opt) { enum isl_lp_result res; if (!obj) return isl_lp_error; bset = isl_basic_set_copy(bset); bset = isl_basic_set_underlying_set(bset); res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL); isl_basic_set_free(bset); return res; } static __isl_give isl_mat *extract_divs(__isl_keep isl_basic_set *bset) { int i; isl_ctx *ctx = isl_basic_set_get_ctx(bset); isl_mat *div; div = isl_mat_alloc(ctx, bset->n_div, 1 + 1 + isl_basic_set_total_dim(bset)); if (!div) return NULL; for (i = 0; i < bset->n_div; ++i) isl_seq_cpy(div->row[i], bset->div[i], div->n_col); return div; } enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj, isl_int *opt) { int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; isl_mat *bset_div = NULL; isl_mat *div = NULL; enum isl_lp_result res; int bset_n_div, obj_n_div; if (!bset || !obj) return isl_lp_error; ctx = isl_aff_get_ctx(obj); if (!isl_space_is_equal(bset->dim, obj->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", return isl_lp_error); if (!isl_int_is_one(obj->v->el[0])) isl_die(ctx, isl_error_unsupported, "expecting integer affine expression", return isl_lp_error); bset_n_div = isl_basic_set_dim(bset, isl_dim_div); obj_n_div = isl_aff_dim(obj, isl_dim_div); if (bset_n_div == 0 && obj_n_div == 0) return basic_set_opt(bset, max, obj, opt); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset_div = extract_divs(bset); exp1 = isl_alloc_array(ctx, int, bset_n_div); exp2 = isl_alloc_array(ctx, int, obj_n_div); if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2)) goto error; div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2); bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1); obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2); res = basic_set_opt(bset, max, obj, opt); isl_mat_free(bset_div); isl_mat_free(div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return res; error: isl_mat_free(div); isl_mat_free(bset_div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return isl_lp_error; } /* Compute the minimum (maximum if max is set) of the integer affine * expression obj over the points in set and put the result in *opt. * * The parameters are assumed to have been aligned. */ static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj, isl_int *opt) { int i; enum isl_lp_result res; int empty = 1; isl_int opt_i; if (!set || !obj) return isl_lp_error; if (set->n == 0) return isl_lp_empty; res = isl_basic_set_opt(set->p[0], max, obj, opt); if (res == isl_lp_error || res == isl_lp_unbounded) return res; if (set->n == 1) return res; if (res == isl_lp_ok) empty = 0; isl_int_init(opt_i); for (i = 1; i < set->n; ++i) { res = isl_basic_set_opt(set->p[i], max, obj, &opt_i); if (res == isl_lp_error || res == isl_lp_unbounded) { isl_int_clear(opt_i); return res; } if (res == isl_lp_ok) empty = 0; if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt)) isl_int_set(*opt, opt_i); } isl_int_clear(opt_i); return empty ? isl_lp_empty : isl_lp_ok; } /* Compute the minimum (maximum if max is set) of the integer affine * expression obj over the points in set and put the result in *opt. */ enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj, isl_int *opt) { enum isl_lp_result res; if (!set || !obj) return isl_lp_error; if (isl_space_match(set->dim, isl_dim_param, obj->ls->dim, isl_dim_param)) return isl_set_opt_aligned(set, max, obj, opt); set = isl_set_copy(set); obj = isl_aff_copy(obj); set = isl_set_align_params(set, isl_aff_get_domain_space(obj)); obj = isl_aff_align_params(obj, isl_set_get_space(set)); res = isl_set_opt_aligned(set, max, obj, opt); isl_set_free(set); isl_aff_free(obj); return res; } enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj, isl_int *opt) { return isl_basic_set_opt(bset, 1, obj, opt); } enum isl_lp_result isl_set_max(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt) { return isl_set_opt(set, 1, obj, opt); } enum isl_lp_result isl_set_min(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt) { return isl_set_opt(set, 0, obj, opt); } /* Convert the result of a function that returns an isl_lp_result * to an isl_val. The numerator of "v" is set to the optimal value * if lp_res is isl_lp_ok. "max" is set if a maximum was computed. * * Return "v" with denominator set to 1 if lp_res is isl_lp_ok. * Return NULL on error. * Return a NaN if lp_res is isl_lp_empty. * Return infinity or negative infinity if lp_res is isl_lp_unbounded, * depending on "max". */ static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res, __isl_take isl_val *v, int max) { isl_ctx *ctx; if (lp_res == isl_lp_ok) { isl_int_set_si(v->d, 1); return isl_val_normalize(v); } ctx = isl_val_get_ctx(v); isl_val_free(v); if (lp_res == isl_lp_error) return NULL; if (lp_res == isl_lp_empty) return isl_val_nan(ctx); if (max) return isl_val_infty(ctx); else return isl_val_neginfty(ctx); } /* Return the minimum (maximum if max is set) of the integer affine * expression "obj" over the points in "bset". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Call isl_basic_set_opt and translate the results. */ __isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_basic_set_opt(bset, max, obj, &res->n); return convert_lp_result(lp_res, res, max); } /* Return the maximum of the integer affine * expression "obj" over the points in "bset". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_val(bset, 1, obj); } /* Return the minimum (maximum if max is set) of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Call isl_set_opt and translate the results. */ __isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!set || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_set_opt(set, max, obj, &res->n); return convert_lp_result(lp_res, res, max); } /* Return the minimum of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj) { return isl_set_opt_val(set, 0, obj); } /* Return the maximum of the integer affine * expression "obj" over the points in "set". * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj) { return isl_set_opt_val(set, 1, obj); } isl-0.16.1/isl_options.c0000664000175000017500000003070612645737061012040 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include #include #include #include struct isl_arg_choice isl_pip_context_choice[] = { {"gbr", ISL_CONTEXT_GBR}, {"lexmin", ISL_CONTEXT_LEXMIN}, {0} }; struct isl_arg_choice isl_gbr_choice[] = { {"never", ISL_GBR_NEVER}, {"once", ISL_GBR_ONCE}, {"always", ISL_GBR_ALWAYS}, {0} }; struct isl_arg_choice isl_closure_choice[] = { {"isl", ISL_CLOSURE_ISL}, {"box", ISL_CLOSURE_BOX}, {0} }; static struct isl_arg_choice bound[] = { {"bernstein", ISL_BOUND_BERNSTEIN}, {"range", ISL_BOUND_RANGE}, {0} }; static struct isl_arg_choice on_error[] = { {"warn", ISL_ON_ERROR_WARN}, {"continue", ISL_ON_ERROR_CONTINUE}, {"abort", ISL_ON_ERROR_ABORT}, {0} }; static struct isl_arg_choice isl_schedule_algorithm_choice[] = { {"isl", ISL_SCHEDULE_ALGORITHM_ISL}, {"feautrier", ISL_SCHEDULE_ALGORITHM_FEAUTRIER}, {0} }; static struct isl_arg_flags bernstein_recurse[] = { {"none", ISL_BERNSTEIN_FACTORS | ISL_BERNSTEIN_INTERVALS, 0}, {"factors", ISL_BERNSTEIN_FACTORS | ISL_BERNSTEIN_INTERVALS, ISL_BERNSTEIN_FACTORS}, {"intervals", ISL_BERNSTEIN_FACTORS | ISL_BERNSTEIN_INTERVALS, ISL_BERNSTEIN_INTERVALS}, {"full", ISL_BERNSTEIN_FACTORS | ISL_BERNSTEIN_INTERVALS, ISL_BERNSTEIN_FACTORS | ISL_BERNSTEIN_INTERVALS}, {0} }; static struct isl_arg_choice convex[] = { {"wrap", ISL_CONVEX_HULL_WRAP}, {"fm", ISL_CONVEX_HULL_FM}, {0} }; #define ISL_SCHEDULE_FUSE_MAX 0 #define ISL_SCHEDULE_FUSE_MIN 1 static struct isl_arg_choice fuse[] = { {"max", ISL_SCHEDULE_FUSE_MAX}, {"min", ISL_SCHEDULE_FUSE_MIN}, {0} }; /* Callback for setting the "schedule-fuse" option. * This (now hidden) option tries to mimic an option that was * replaced by the schedule-serialize-sccs option. * Setting the old option to ISL_SCHEDULE_FUSE_MIN is now * expressed by turning on the schedule-serialize-sccs option. */ static int set_fuse(void *opt, unsigned val) { struct isl_options *options = opt; options->schedule_serialize_sccs = (val == ISL_SCHEDULE_FUSE_MIN); return 0; } static struct isl_arg_choice separation_bounds[] = { {"explicit", ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT}, {"implicit", ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT}, {0} }; static void print_version(void) { printf("%s", isl_version()); } ISL_ARGS_START(struct isl_options, isl_options_args) ISL_ARG_CHOICE(struct isl_options, context, 0, "context", \ isl_pip_context_choice, ISL_CONTEXT_GBR, "how to handle the pip context tableau") ISL_ARG_CHOICE(struct isl_options, gbr, 0, "gbr", \ isl_gbr_choice, ISL_GBR_ALWAYS, "how often to use generalized basis reduction") ISL_ARG_CHOICE(struct isl_options, closure, 0, "closure", \ isl_closure_choice, ISL_CLOSURE_ISL, "closure operation to use") ISL_ARG_BOOL(struct isl_options, gbr_only_first, 0, "gbr-only-first", 0, "only perform basis reduction in first direction") ISL_ARG_CHOICE(struct isl_options, bound, 0, "bound", bound, ISL_BOUND_BERNSTEIN, "algorithm to use for computing bounds") ISL_ARG_CHOICE(struct isl_options, on_error, 0, "on-error", on_error, ISL_ON_ERROR_WARN, "how to react if an error is detected") ISL_ARG_FLAGS(struct isl_options, bernstein_recurse, 0, "bernstein-recurse", bernstein_recurse, ISL_BERNSTEIN_FACTORS, NULL) ISL_ARG_BOOL(struct isl_options, bernstein_triangulate, 0, "bernstein-triangulate", 1, "triangulate domains during Bernstein expansion") ISL_ARG_BOOL(struct isl_options, pip_symmetry, 0, "pip-symmetry", 1, "detect simple symmetries in PIP input") ISL_ARG_CHOICE(struct isl_options, convex, 0, "convex-hull", \ convex, ISL_CONVEX_HULL_WRAP, "convex hull algorithm to use") ISL_ARG_BOOL(struct isl_options, coalesce_bounded_wrapping, 0, "coalesce-bounded-wrapping", 1, "bound wrapping during coalescing") ISL_ARG_INT(struct isl_options, schedule_max_coefficient, 0, "schedule-max-coefficient", "limit", -1, "Only consider schedules " "where the coefficients of the variable and parameter dimensions " "do not exceed . A value of -1 allows arbitrary coefficients.") ISL_ARG_INT(struct isl_options, schedule_max_constant_term, 0, "schedule-max-constant-term", "limit", -1, "Only consider schedules " "where the coefficients of the constant dimension do not exceed " ". A value of -1 allows arbitrary coefficients.") ISL_ARG_BOOL(struct isl_options, schedule_parametric, 0, "schedule-parametric", 1, "construct possibly parametric schedules") ISL_ARG_BOOL(struct isl_options, schedule_outer_coincidence, 0, "schedule-outer-coincidence", 0, "try to construct schedules where the outer member of each band " "satisfies the coincidence constraints") ISL_ARG_BOOL(struct isl_options, schedule_maximize_band_depth, 0, "schedule-maximize-band-depth", 0, "maximize the number of scheduling dimensions in a band") ISL_ARG_BOOL(struct isl_options, schedule_split_scaled, 0, "schedule-split-scaled", 1, "split non-tilable bands with scaled schedules") ISL_ARG_BOOL(struct isl_options, schedule_separate_components, 0, "schedule-separate-components", 1, "separate components in dependence graph") ISL_ARG_CHOICE(struct isl_options, schedule_algorithm, 0, "schedule-algorithm", isl_schedule_algorithm_choice, ISL_SCHEDULE_ALGORITHM_ISL, "scheduling algorithm to use") ISL_ARG_BOOL(struct isl_options, schedule_serialize_sccs, 0, "schedule-serialize-sccs", 0, "serialize strongly connected components in dependence graph") ISL_ARG_PHANTOM_USER_CHOICE_F(0, "schedule-fuse", fuse, &set_fuse, ISL_SCHEDULE_FUSE_MAX, "level of fusion during scheduling", ISL_ARG_HIDDEN) ISL_ARG_BOOL(struct isl_options, tile_scale_tile_loops, 0, "tile-scale-tile-loops", 1, "scale tile loops") ISL_ARG_BOOL(struct isl_options, tile_shift_point_loops, 0, "tile-shift-point-loops", 1, "shift point loops to start at zero") ISL_ARG_STR(struct isl_options, ast_iterator_type, 0, "ast-iterator-type", "type", "int", "type used for iterators during printing of AST") ISL_ARG_BOOL(struct isl_options, ast_always_print_block, 0, "ast-always-print-block", 0, "print for and if bodies as a block " "regardless of the number of statements in the body") ISL_ARG_BOOL(struct isl_options, ast_build_atomic_upper_bound, 0, "ast-build-atomic-upper-bound", 1, "generate atomic upper bounds") ISL_ARG_BOOL(struct isl_options, ast_build_prefer_pdiv, 0, "ast-build-prefer-pdiv", 1, "prefer pdiv operation over fdiv") ISL_ARG_BOOL(struct isl_options, ast_build_exploit_nested_bounds, 0, "ast-build-exploit-nested-bounds", 1, "simplify conditions based on bounds of nested for loops") ISL_ARG_BOOL(struct isl_options, ast_build_group_coscheduled, 0, "ast-build-group-coscheduled", 0, "keep coscheduled domain elements together") ISL_ARG_CHOICE(struct isl_options, ast_build_separation_bounds, 0, "ast-build-separation-bounds", separation_bounds, ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT, "bounds to use during separation") ISL_ARG_BOOL(struct isl_options, ast_build_scale_strides, 0, "ast-build-scale-strides", 1, "allow iterators of strided loops to be scaled down") ISL_ARG_BOOL(struct isl_options, ast_build_allow_else, 0, "ast-build-allow-else", 1, "generate if statements with else branches") ISL_ARG_BOOL(struct isl_options, ast_build_allow_or, 0, "ast-build-allow-or", 1, "generate if conditions with disjunctions") ISL_ARG_BOOL(struct isl_options, print_stats, 0, "print-stats", 0, "print statistics for every isl_ctx") ISL_ARG_ULONG(struct isl_options, max_operations, 0, "max-operations", 0, "default number of maximal operations per isl_ctx") ISL_ARG_VERSION(print_version) ISL_ARGS_END ISL_ARG_DEF(isl_options, struct isl_options, isl_options_args) ISL_ARG_CTX_DEF(isl_options, struct isl_options, isl_options_args) ISL_CTX_SET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, bound) ISL_CTX_GET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, bound) ISL_CTX_SET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, on_error) ISL_CTX_GET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, on_error) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, coalesce_bounded_wrapping) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, coalesce_bounded_wrapping) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, gbr_only_first) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, gbr_only_first) ISL_CTX_SET_INT_DEF(isl_options, struct isl_options, isl_options_args, schedule_max_coefficient) ISL_CTX_GET_INT_DEF(isl_options, struct isl_options, isl_options_args, schedule_max_coefficient) ISL_CTX_SET_INT_DEF(isl_options, struct isl_options, isl_options_args, schedule_max_constant_term) ISL_CTX_GET_INT_DEF(isl_options, struct isl_options, isl_options_args, schedule_max_constant_term) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_maximize_band_depth) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_maximize_band_depth) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_split_scaled) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_split_scaled) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_separate_components) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_separate_components) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_outer_coincidence) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_outer_coincidence) ISL_CTX_SET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, schedule_algorithm) ISL_CTX_GET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, schedule_algorithm) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_serialize_sccs) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, schedule_serialize_sccs) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, tile_scale_tile_loops) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, tile_scale_tile_loops) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, tile_shift_point_loops) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, tile_shift_point_loops) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_atomic_upper_bound) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_atomic_upper_bound) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_prefer_pdiv) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_prefer_pdiv) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_exploit_nested_bounds) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_exploit_nested_bounds) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_group_coscheduled) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_group_coscheduled) ISL_CTX_SET_STR_DEF(isl_options, struct isl_options, isl_options_args, ast_iterator_type) ISL_CTX_GET_STR_DEF(isl_options, struct isl_options, isl_options_args, ast_iterator_type) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_always_print_block) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_always_print_block) ISL_CTX_SET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, ast_build_separation_bounds) ISL_CTX_GET_CHOICE_DEF(isl_options, struct isl_options, isl_options_args, ast_build_separation_bounds) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_scale_strides) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_scale_strides) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_allow_else) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_allow_else) ISL_CTX_SET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_allow_or) ISL_CTX_GET_BOOL_DEF(isl_options, struct isl_options, isl_options_args, ast_build_allow_or) isl-0.16.1/imath/0000775000175000017500000000000012645755104010504 500000000000000isl-0.16.1/imath/imrat.c0000664000175000017500000005625112564135730011712 00000000000000/* Name: imrat.c Purpose: Arbitrary precision rational arithmetic routines. Author: M. J. Fromberger Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "imrat.h" #include #include #include #include #define TEMP(K) (temp + (K)) #define SETUP(E, C) \ do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0) /* Argument checking: Use CHECK() where a return value is required; NRCHECK() elsewhere */ #define CHECK(TEST) assert(TEST) #define NRCHECK(TEST) assert(TEST) /* Reduce the given rational, in place, to lowest terms and canonical form. Zero is represented as 0/1, one as 1/1. Signs are adjusted so that the sign of the numerator is definitive. */ static mp_result s_rat_reduce(mp_rat r); /* Common code for addition and subtraction operations on rationals. */ static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, mp_result (*comb_f)(mp_int, mp_int, mp_int)); mp_result mp_rat_init(mp_rat r) { mp_result res; if ((res = mp_int_init(MP_NUMER_P(r))) != MP_OK) return res; if ((res = mp_int_init(MP_DENOM_P(r))) != MP_OK) { mp_int_clear(MP_NUMER_P(r)); return res; } return mp_int_set_value(MP_DENOM_P(r), 1); } mp_rat mp_rat_alloc(void) { mp_rat out = malloc(sizeof(*out)); if (out != NULL) { if (mp_rat_init(out) != MP_OK) { free(out); return NULL; } } return out; } mp_result mp_rat_reduce(mp_rat r) { return s_rat_reduce(r); } mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec) { mp_result res; if ((res = mp_int_init_size(MP_NUMER_P(r), n_prec)) != MP_OK) return res; if ((res = mp_int_init_size(MP_DENOM_P(r), d_prec)) != MP_OK) { mp_int_clear(MP_NUMER_P(r)); return res; } return mp_int_set_value(MP_DENOM_P(r), 1); } mp_result mp_rat_init_copy(mp_rat r, mp_rat old) { mp_result res; if ((res = mp_int_init_copy(MP_NUMER_P(r), MP_NUMER_P(old))) != MP_OK) return res; if ((res = mp_int_init_copy(MP_DENOM_P(r), MP_DENOM_P(old))) != MP_OK) mp_int_clear(MP_NUMER_P(r)); return res; } mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom) { mp_result res; if (denom == 0) return MP_UNDEF; if ((res = mp_int_set_value(MP_NUMER_P(r), numer)) != MP_OK) return res; if ((res = mp_int_set_value(MP_DENOM_P(r), denom)) != MP_OK) return res; return s_rat_reduce(r); } mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom) { mp_result res; if (denom == 0) return MP_UNDEF; if ((res = mp_int_set_uvalue(MP_NUMER_P(r), numer)) != MP_OK) return res; if ((res = mp_int_set_uvalue(MP_DENOM_P(r), denom)) != MP_OK) return res; return s_rat_reduce(r); } void mp_rat_clear(mp_rat r) { mp_int_clear(MP_NUMER_P(r)); mp_int_clear(MP_DENOM_P(r)); } void mp_rat_free(mp_rat r) { NRCHECK(r != NULL); if (r->num.digits != NULL) mp_rat_clear(r); free(r); } mp_result mp_rat_numer(mp_rat r, mp_int z) { return mp_int_copy(MP_NUMER_P(r), z); } mp_int mp_rat_numer_ref(mp_rat r) { return MP_NUMER_P(r); } mp_result mp_rat_denom(mp_rat r, mp_int z) { return mp_int_copy(MP_DENOM_P(r), z); } mp_int mp_rat_denom_ref(mp_rat r) { return MP_DENOM_P(r); } mp_sign mp_rat_sign(mp_rat r) { return MP_SIGN(MP_NUMER_P(r)); } mp_result mp_rat_copy(mp_rat a, mp_rat c) { mp_result res; if ((res = mp_int_copy(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) return res; res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c)); return res; } void mp_rat_zero(mp_rat r) { mp_int_zero(MP_NUMER_P(r)); mp_int_set_value(MP_DENOM_P(r), 1); } mp_result mp_rat_abs(mp_rat a, mp_rat c) { mp_result res; if ((res = mp_int_abs(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) return res; res = mp_int_abs(MP_DENOM_P(a), MP_DENOM_P(c)); return res; } mp_result mp_rat_neg(mp_rat a, mp_rat c) { mp_result res; if ((res = mp_int_neg(MP_NUMER_P(a), MP_NUMER_P(c))) != MP_OK) return res; res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c)); return res; } mp_result mp_rat_recip(mp_rat a, mp_rat c) { mp_result res; if (mp_rat_compare_zero(a) == 0) return MP_UNDEF; if ((res = mp_rat_copy(a, c)) != MP_OK) return res; mp_int_swap(MP_NUMER_P(c), MP_DENOM_P(c)); /* Restore the signs of the swapped elements */ { mp_sign tmp = MP_SIGN(MP_NUMER_P(c)); MP_SIGN(MP_NUMER_P(c)) = MP_SIGN(MP_DENOM_P(c)); MP_SIGN(MP_DENOM_P(c)) = tmp; } return MP_OK; } mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c) { return s_rat_combine(a, b, c, mp_int_add); } mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c) { return s_rat_combine(a, b, c, mp_int_sub); } mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c) { mp_result res; if ((res = mp_int_mul(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK) return res; if (mp_int_compare_zero(MP_NUMER_P(c)) != 0) { if ((res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c))) != MP_OK) return res; } return s_rat_reduce(c); } mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c) { mp_result res = MP_OK; if (mp_rat_compare_zero(b) == 0) return MP_UNDEF; if (c == a || c == b) { mpz_t tmp; if ((res = mp_int_init(&tmp)) != MP_OK) return res; if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), &tmp)) != MP_OK) goto CLEANUP; if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK) goto CLEANUP; res = mp_int_copy(&tmp, MP_NUMER_P(c)); CLEANUP: mp_int_clear(&tmp); } else { if ((res = mp_int_mul(MP_NUMER_P(a), MP_DENOM_P(b), MP_NUMER_P(c))) != MP_OK) return res; if ((res = mp_int_mul(MP_DENOM_P(a), MP_NUMER_P(b), MP_DENOM_P(c))) != MP_OK) return res; } if (res != MP_OK) return res; else return s_rat_reduce(c); } mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c) { mpz_t tmp; mp_result res; if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) return res; if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) goto CLEANUP; if ((res = mp_rat_copy(a, c)) != MP_OK) goto CLEANUP; if ((res = mp_int_add(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) goto CLEANUP; res = s_rat_reduce(c); CLEANUP: mp_int_clear(&tmp); return res; } mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c) { mpz_t tmp; mp_result res; if ((res = mp_int_init_copy(&tmp, b)) != MP_OK) return res; if ((res = mp_int_mul(&tmp, MP_DENOM_P(a), &tmp)) != MP_OK) goto CLEANUP; if ((res = mp_rat_copy(a, c)) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(MP_NUMER_P(c), &tmp, MP_NUMER_P(c))) != MP_OK) goto CLEANUP; res = s_rat_reduce(c); CLEANUP: mp_int_clear(&tmp); return res; } mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c) { mp_result res; if ((res = mp_rat_copy(a, c)) != MP_OK) return res; if ((res = mp_int_mul(MP_NUMER_P(c), b, MP_NUMER_P(c))) != MP_OK) return res; return s_rat_reduce(c); } mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c) { mp_result res; if (mp_int_compare_zero(b) == 0) return MP_UNDEF; if ((res = mp_rat_copy(a, c)) != MP_OK) return res; if ((res = mp_int_mul(MP_DENOM_P(c), b, MP_DENOM_P(c))) != MP_OK) return res; return s_rat_reduce(c); } mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c) { mp_result res; /* Special cases for easy powers. */ if (b == 0) return mp_rat_set_value(c, 1, 1); else if(b == 1) return mp_rat_copy(a, c); /* Since rationals are always stored in lowest terms, it is not necessary to reduce again when raising to an integer power. */ if ((res = mp_int_expt(MP_NUMER_P(a), b, MP_NUMER_P(c))) != MP_OK) return res; return mp_int_expt(MP_DENOM_P(a), b, MP_DENOM_P(c)); } int mp_rat_compare(mp_rat a, mp_rat b) { /* Quick check for opposite signs. Works because the sign of the numerator is always definitive. */ if (MP_SIGN(MP_NUMER_P(a)) != MP_SIGN(MP_NUMER_P(b))) { if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS) return 1; else return -1; } else { /* Compare absolute magnitudes; if both are positive, the answer stands, otherwise it needs to be reflected about zero. */ int cmp = mp_rat_compare_unsigned(a, b); if (MP_SIGN(MP_NUMER_P(a)) == MP_ZPOS) return cmp; else return -cmp; } } int mp_rat_compare_unsigned(mp_rat a, mp_rat b) { /* If the denominators are equal, we can quickly compare numerators without multiplying. Otherwise, we actually have to do some work. */ if (mp_int_compare_unsigned(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) return mp_int_compare_unsigned(MP_NUMER_P(a), MP_NUMER_P(b)); else { mpz_t temp[2]; mp_result res; int cmp = INT_MAX, last = 0; /* t0 = num(a) * den(b), t1 = num(b) * den(a) */ SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last); SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last); if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK || (res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) goto CLEANUP; cmp = mp_int_compare_unsigned(TEMP(0), TEMP(1)); CLEANUP: while (--last >= 0) mp_int_clear(TEMP(last)); return cmp; } } int mp_rat_compare_zero(mp_rat r) { return mp_int_compare_zero(MP_NUMER_P(r)); } int mp_rat_compare_value(mp_rat r, mp_small n, mp_small d) { mpq_t tmp; mp_result res; int out = INT_MAX; if ((res = mp_rat_init(&tmp)) != MP_OK) return out; if ((res = mp_rat_set_value(&tmp, n, d)) != MP_OK) goto CLEANUP; out = mp_rat_compare(r, &tmp); CLEANUP: mp_rat_clear(&tmp); return out; } int mp_rat_is_integer(mp_rat r) { return (mp_int_compare_value(MP_DENOM_P(r), 1) == 0); } mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den) { mp_result res; if ((res = mp_int_to_int(MP_NUMER_P(r), num)) != MP_OK) return res; res = mp_int_to_int(MP_DENOM_P(r), den); return res; } mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit) { char *start; int len; mp_result res; /* Write the numerator. The sign of the rational number is written by the underlying integer implementation. */ if ((res = mp_int_to_string(MP_NUMER_P(r), radix, str, limit)) != MP_OK) return res; /* If the value is zero, don't bother writing any denominator */ if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) return MP_OK; /* Locate the end of the numerator, and make sure we are not going to exceed the limit by writing a slash. */ len = strlen(str); start = str + len; limit -= len; if(limit == 0) return MP_TRUNC; *start++ = '/'; limit -= 1; res = mp_int_to_string(MP_DENOM_P(r), radix, start, limit); return res; } mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec, mp_round_mode round, char *str, int limit) { mpz_t temp[3]; mp_result res; char *start = str; int len, lead_0, left = limit, last = 0; SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(r)), last); SETUP(mp_int_init(TEMP(last)), last); SETUP(mp_int_init(TEMP(last)), last); /* Get the unsigned integer part by dividing denominator into the absolute value of the numerator. */ mp_int_abs(TEMP(0), TEMP(0)); if ((res = mp_int_div(TEMP(0), MP_DENOM_P(r), TEMP(0), TEMP(1))) != MP_OK) goto CLEANUP; /* Now: T0 = integer portion, unsigned; T1 = remainder, from which fractional part is computed. */ /* Count up leading zeroes after the radix point. */ for (lead_0 = 0; lead_0 < prec && mp_int_compare(TEMP(1), MP_DENOM_P(r)) < 0; ++lead_0) { if ((res = mp_int_mul_value(TEMP(1), radix, TEMP(1))) != MP_OK) goto CLEANUP; } /* Multiply remainder by a power of the radix sufficient to get the right number of significant figures. */ if (prec > lead_0) { if ((res = mp_int_expt_value(radix, prec - lead_0, TEMP(2))) != MP_OK) goto CLEANUP; if ((res = mp_int_mul(TEMP(1), TEMP(2), TEMP(1))) != MP_OK) goto CLEANUP; } if ((res = mp_int_div(TEMP(1), MP_DENOM_P(r), TEMP(1), TEMP(2))) != MP_OK) goto CLEANUP; /* Now: T1 = significant digits of fractional part; T2 = leftovers, to use for rounding. At this point, what we do depends on the rounding mode. The default is MP_ROUND_DOWN, for which everything is as it should be already. */ switch (round) { int cmp; case MP_ROUND_UP: if (mp_int_compare_zero(TEMP(2)) != 0) { if (prec == 0) res = mp_int_add_value(TEMP(0), 1, TEMP(0)); else res = mp_int_add_value(TEMP(1), 1, TEMP(1)); } break; case MP_ROUND_HALF_UP: case MP_ROUND_HALF_DOWN: if ((res = mp_int_mul_pow2(TEMP(2), 1, TEMP(2))) != MP_OK) goto CLEANUP; cmp = mp_int_compare(TEMP(2), MP_DENOM_P(r)); if (round == MP_ROUND_HALF_UP) cmp += 1; if (cmp > 0) { if (prec == 0) res = mp_int_add_value(TEMP(0), 1, TEMP(0)); else res = mp_int_add_value(TEMP(1), 1, TEMP(1)); } break; case MP_ROUND_DOWN: break; /* No action required */ default: return MP_BADARG; /* Invalid rounding specifier */ } /* The sign of the output should be the sign of the numerator, but if all the displayed digits will be zero due to the precision, a negative shouldn't be shown. */ if (MP_SIGN(MP_NUMER_P(r)) == MP_NEG && (mp_int_compare_zero(TEMP(0)) != 0 || mp_int_compare_zero(TEMP(1)) != 0)) { *start++ = '-'; left -= 1; } if ((res = mp_int_to_string(TEMP(0), radix, start, left)) != MP_OK) goto CLEANUP; len = strlen(start); start += len; left -= len; if (prec == 0) goto CLEANUP; *start++ = '.'; left -= 1; if (left < prec + 1) { res = MP_TRUNC; goto CLEANUP; } memset(start, '0', lead_0 - 1); left -= lead_0; start += lead_0 - 1; res = mp_int_to_string(TEMP(1), radix, start, left); CLEANUP: while (--last >= 0) mp_int_clear(TEMP(last)); return res; } mp_result mp_rat_string_len(mp_rat r, mp_size radix) { mp_result n_len, d_len = 0; n_len = mp_int_string_len(MP_NUMER_P(r), radix); if (mp_int_compare_zero(MP_NUMER_P(r)) != 0) d_len = mp_int_string_len(MP_DENOM_P(r), radix); /* Though simplistic, this formula is correct. Space for the sign flag is included in n_len, and the space for the NUL that is counted in n_len counts for the separator here. The space for the NUL counted in d_len counts for the final terminator here. */ return n_len + d_len; } mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec) { int z_len, f_len; z_len = mp_int_string_len(MP_NUMER_P(r), radix); if (prec == 0) f_len = 1; /* terminator only */ else f_len = 1 + prec + 1; /* decimal point, digits, terminator */ return z_len + f_len; } mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str) { return mp_rat_read_cstring(r, radix, str, NULL); } mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, char **end) { mp_result res; char *endp; if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK && (res != MP_TRUNC)) return res; /* Skip whitespace between numerator and (possible) separator */ while (isspace((unsigned char) *endp)) ++endp; /* If there is no separator, we will stop reading at this point. */ if (*endp != '/') { mp_int_set_value(MP_DENOM_P(r), 1); if (end != NULL) *end = endp; return res; } ++endp; /* skip separator */ if ((res = mp_int_read_cstring(MP_DENOM_P(r), radix, endp, end)) != MP_OK) return res; /* Make sure the value is well-defined */ if (mp_int_compare_zero(MP_DENOM_P(r)) == 0) return MP_UNDEF; /* Reduce to lowest terms */ return s_rat_reduce(r); } /* Read a string and figure out what format it's in. The radix may be supplied as zero to use "default" behaviour. This function will accept either a/b notation or decimal notation. */ mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, char **end) { char *endp; mp_result res; if (radix == 0) radix = 10; /* default to decimal input */ if ((res = mp_rat_read_cstring(r, radix, str, &endp)) != MP_OK) { if (res == MP_TRUNC) { if (*endp == '.') res = mp_rat_read_cdecimal(r, radix, str, &endp); } else return res; } if (end != NULL) *end = endp; return res; } mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str) { return mp_rat_read_cdecimal(r, radix, str, NULL); } mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, char **end) { mp_result res; mp_sign osign; char *endp; while (isspace((unsigned char) *str)) ++str; switch (*str) { case '-': osign = MP_NEG; break; default: osign = MP_ZPOS; } if ((res = mp_int_read_cstring(MP_NUMER_P(r), radix, str, &endp)) != MP_OK && (res != MP_TRUNC)) return res; /* This needs to be here. */ (void) mp_int_set_value(MP_DENOM_P(r), 1); if (*endp != '.') { if (end != NULL) *end = endp; return res; } /* If the character following the decimal point is whitespace or a sign flag, we will consider this a truncated value. This special case is because mp_int_read_string() will consider whitespace or sign flags to be valid starting characters for a value, and we do not want them following the decimal point. Once we have done this check, it is safe to read in the value of the fractional piece as a regular old integer. */ ++endp; if (*endp == '\0') { if (end != NULL) *end = endp; return MP_OK; } else if(isspace((unsigned char) *endp) || *endp == '-' || *endp == '+') { return MP_TRUNC; } else { mpz_t frac; mp_result save_res; char *save = endp; int num_lz = 0; /* Make a temporary to hold the part after the decimal point. */ if ((res = mp_int_init(&frac)) != MP_OK) return res; if ((res = mp_int_read_cstring(&frac, radix, endp, &endp)) != MP_OK && (res != MP_TRUNC)) goto CLEANUP; /* Save this response for later. */ save_res = res; if (mp_int_compare_zero(&frac) == 0) goto FINISHED; /* Discard trailing zeroes (somewhat inefficiently) */ while (mp_int_divisible_value(&frac, radix)) if ((res = mp_int_div_value(&frac, radix, &frac, NULL)) != MP_OK) goto CLEANUP; /* Count leading zeros after the decimal point */ while (save[num_lz] == '0') ++num_lz; /* Find the least power of the radix that is at least as large as the significant value of the fractional part, ignoring leading zeroes. */ (void) mp_int_set_value(MP_DENOM_P(r), radix); while (mp_int_compare(MP_DENOM_P(r), &frac) < 0) { if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK) goto CLEANUP; } /* Also shift by enough to account for leading zeroes */ while (num_lz > 0) { if ((res = mp_int_mul_value(MP_DENOM_P(r), radix, MP_DENOM_P(r))) != MP_OK) goto CLEANUP; --num_lz; } /* Having found this power, shift the numerator leftward that many, digits, and add the nonzero significant digits of the fractional part to get the result. */ if ((res = mp_int_mul(MP_NUMER_P(r), MP_DENOM_P(r), MP_NUMER_P(r))) != MP_OK) goto CLEANUP; { /* This addition needs to be unsigned. */ MP_SIGN(MP_NUMER_P(r)) = MP_ZPOS; if ((res = mp_int_add(MP_NUMER_P(r), &frac, MP_NUMER_P(r))) != MP_OK) goto CLEANUP; MP_SIGN(MP_NUMER_P(r)) = osign; } if ((res = s_rat_reduce(r)) != MP_OK) goto CLEANUP; /* At this point, what we return depends on whether reading the fractional part was truncated or not. That information is saved from when we called mp_int_read_string() above. */ FINISHED: res = save_res; if (end != NULL) *end = endp; CLEANUP: mp_int_clear(&frac); return res; } } /* Private functions for internal use. Make unchecked assumptions about format and validity of inputs. */ static mp_result s_rat_reduce(mp_rat r) { mpz_t gcd; mp_result res = MP_OK; if (mp_int_compare_zero(MP_NUMER_P(r)) == 0) { mp_int_set_value(MP_DENOM_P(r), 1); return MP_OK; } /* If the greatest common divisor of the numerator and denominator is greater than 1, divide it out. */ if ((res = mp_int_init(&gcd)) != MP_OK) return res; if ((res = mp_int_gcd(MP_NUMER_P(r), MP_DENOM_P(r), &gcd)) != MP_OK) goto CLEANUP; if (mp_int_compare_value(&gcd, 1) != 0) { if ((res = mp_int_div(MP_NUMER_P(r), &gcd, MP_NUMER_P(r), NULL)) != MP_OK) goto CLEANUP; if ((res = mp_int_div(MP_DENOM_P(r), &gcd, MP_DENOM_P(r), NULL)) != MP_OK) goto CLEANUP; } /* Fix up the signs of numerator and denominator */ if (MP_SIGN(MP_NUMER_P(r)) == MP_SIGN(MP_DENOM_P(r))) MP_SIGN(MP_NUMER_P(r)) = MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS; else { MP_SIGN(MP_NUMER_P(r)) = MP_NEG; MP_SIGN(MP_DENOM_P(r)) = MP_ZPOS; } CLEANUP: mp_int_clear(&gcd); return res; } static mp_result s_rat_combine(mp_rat a, mp_rat b, mp_rat c, mp_result (*comb_f)(mp_int, mp_int, mp_int)) { mp_result res; /* Shortcut when denominators are already common */ if (mp_int_compare(MP_DENOM_P(a), MP_DENOM_P(b)) == 0) { if ((res = (comb_f)(MP_NUMER_P(a), MP_NUMER_P(b), MP_NUMER_P(c))) != MP_OK) return res; if ((res = mp_int_copy(MP_DENOM_P(a), MP_DENOM_P(c))) != MP_OK) return res; return s_rat_reduce(c); } else { mpz_t temp[2]; int last = 0; SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(a)), last); SETUP(mp_int_init_copy(TEMP(last), MP_NUMER_P(b)), last); if ((res = mp_int_mul(TEMP(0), MP_DENOM_P(b), TEMP(0))) != MP_OK) goto CLEANUP; if ((res = mp_int_mul(TEMP(1), MP_DENOM_P(a), TEMP(1))) != MP_OK) goto CLEANUP; if ((res = (comb_f)(TEMP(0), TEMP(1), MP_NUMER_P(c))) != MP_OK) goto CLEANUP; res = mp_int_mul(MP_DENOM_P(a), MP_DENOM_P(b), MP_DENOM_P(c)); CLEANUP: while (--last >= 0) mp_int_clear(TEMP(last)); if (res == MP_OK) return s_rat_reduce(c); else return res; } } /* Here there be dragons */ isl-0.16.1/imath/gmp_compat.c0000664000175000017500000005506212564135730012723 00000000000000/* Name: gmp_compat.c Purpose: Provide GMP compatiable routines for imath library Author: David Peixotto Copyright (c) 2012 Qualcomm Innovation Center, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "gmp_compat.h" #include #include #include #include #ifdef NDEBUG #define CHECK(res) (res) #else #define CHECK(res) assert(((res) == MP_OK) && "expected MP_OK") #endif /************************************************************************* * * Functions with direct translations * *************************************************************************/ /* gmp: mpq_clear */ void GMPQAPI(clear)(mp_rat x) { mp_rat_clear(x); } /* gmp: mpq_cmp */ int GMPQAPI(cmp)(mp_rat op1, mp_rat op2) { return mp_rat_compare(op1, op2); } /* gmp: mpq_init */ void GMPQAPI(init)(mp_rat x) { CHECK(mp_rat_init(x)); } /* gmp: mpq_mul */ void GMPQAPI(mul)(mp_rat product, mp_rat multiplier, mp_rat multiplicand) { CHECK(mp_rat_mul(multiplier, multiplicand, product)); } /* gmp: mpq_set*/ void GMPQAPI(set)(mp_rat rop, mp_rat op) { CHECK(mp_rat_copy(op, rop)); } /* gmp: mpz_abs */ void GMPZAPI(abs)(mp_int rop, mp_int op) { CHECK(mp_int_abs(op, rop)); } /* gmp: mpz_add */ void GMPZAPI(add)(mp_int rop, mp_int op1, mp_int op2) { CHECK(mp_int_add(op1, op2, rop)); } /* gmp: mpz_clear */ void GMPZAPI(clear)(mp_int x) { mp_int_clear(x); } /* gmp: mpz_cmp_si */ int GMPZAPI(cmp_si)(mp_int op1, long op2) { return mp_int_compare_value(op1, op2); } /* gmp: mpz_cmpabs */ int GMPZAPI(cmpabs)(mp_int op1, mp_int op2) { return mp_int_compare_unsigned(op1, op2); } /* gmp: mpz_cmp */ int GMPZAPI(cmp)(mp_int op1, mp_int op2) { return mp_int_compare(op1, op2); } /* gmp: mpz_init */ void GMPZAPI(init)(mp_int x) { CHECK(mp_int_init(x)); } /* gmp: mpz_mul */ void GMPZAPI(mul)(mp_int rop, mp_int op1, mp_int op2) { CHECK(mp_int_mul(op1, op2, rop)); } /* gmp: mpz_neg */ void GMPZAPI(neg)(mp_int rop, mp_int op) { CHECK(mp_int_neg(op, rop)); } /* gmp: mpz_set_si */ void GMPZAPI(set_si)(mp_int rop, long op) { CHECK(mp_int_set_value(rop, op)); } /* gmp: mpz_set */ void GMPZAPI(set)(mp_int rop, mp_int op) { CHECK(mp_int_copy(op, rop)); } /* gmp: mpz_sub */ void GMPZAPI(sub)(mp_int rop, mp_int op1, mp_int op2) { CHECK(mp_int_sub(op1, op2, rop)); } /* gmp: mpz_swap */ void GMPZAPI(swap)(mp_int rop1, mp_int rop2) { mp_int_swap(rop1, rop2); } /* gmp: mpq_sgn */ int GMPQAPI(sgn)(mp_rat op) { return mp_rat_compare_zero(op); } /* gmp: mpz_sgn */ int GMPZAPI(sgn)(mp_int op) { return mp_int_compare_zero(op); } /* gmp: mpq_set_ui */ void GMPQAPI(set_ui)(mp_rat rop, unsigned long op1, unsigned long op2) { CHECK(mp_rat_set_uvalue(rop, op1, op2)); } /* gmp: mpz_set_ui */ void GMPZAPI(set_ui)(mp_int rop, unsigned long op) { CHECK(mp_int_set_uvalue(rop, op)); } /* gmp: mpq_den_ref */ mp_int GMPQAPI(denref)(mp_rat op) { return mp_rat_denom_ref(op); } /* gmp: mpq_num_ref */ mp_int GMPQAPI(numref)(mp_rat op) { return mp_rat_numer_ref(op); } /* gmp: mpq_canonicalize */ void GMPQAPI(canonicalize)(mp_rat op) { CHECK(mp_rat_reduce(op)); } /************************************************************************* * * Functions that can be implemented as a combination of imath functions * *************************************************************************/ /* gmp: mpz_addmul */ /* gmp: rop = rop + (op1 * op2) */ void GMPZAPI(addmul)(mp_int rop, mp_int op1, mp_int op2) { mpz_t tempz; mp_int temp = &tempz; mp_int_init(temp); CHECK(mp_int_mul(op1, op2, temp)); CHECK(mp_int_add(rop, temp, rop)); mp_int_clear(temp); } /* gmp: mpz_divexact */ /* gmp: only produces correct results when d divides n */ void GMPZAPI(divexact)(mp_int q, mp_int n, mp_int d) { CHECK(mp_int_div(n, d, q, NULL)); } /* gmp: mpz_divisible_p */ /* gmp: return 1 if d divides n, 0 otherwise */ /* gmp: 0 is considered to divide 0*/ int GMPZAPI(divisible_p)(mp_int n, mp_int d) { /* variables to hold remainder */ mpz_t rz; mp_int r = &rz; int r_is_zero; /* check for n = 0, d = 0 */ int n_is_zero = mp_int_compare_zero(n) == 0; int d_is_zero = mp_int_compare_zero(d) == 0; if (n_is_zero && d_is_zero) return 1; /* return true if remainder is 0 */ CHECK(mp_int_init(r)); CHECK(mp_int_div(n, d, NULL, r)); r_is_zero = mp_int_compare_zero(r) == 0; mp_int_clear(r); return r_is_zero; } /* gmp: mpz_submul */ /* gmp: rop = rop - (op1 * op2) */ void GMPZAPI(submul)(mp_int rop, mp_int op1, mp_int op2) { mpz_t tempz; mp_int temp = &tempz; mp_int_init(temp); CHECK(mp_int_mul(op1, op2, temp)); CHECK(mp_int_sub(rop, temp, rop)); mp_int_clear(temp); } /* gmp: mpz_add_ui */ void GMPZAPI(add_ui)(mp_int rop, mp_int op1, unsigned long op2) { mpz_t tempz; mp_int temp = &tempz; CHECK(mp_int_init_uvalue(temp, op2)); CHECK(mp_int_add(op1, temp, rop)); mp_int_clear(temp); } /* gmp: mpz_divexact_ui */ /* gmp: only produces correct results when d divides n */ void GMPZAPI(divexact_ui)(mp_int q, mp_int n, unsigned long d) { mpz_t tempz; mp_int temp = &tempz; CHECK(mp_int_init_uvalue(temp, d)); CHECK(mp_int_div(n, temp, q, NULL)); mp_int_clear(temp); } /* gmp: mpz_mul_ui */ void GMPZAPI(mul_ui)(mp_int rop, mp_int op1, unsigned long op2) { mpz_t tempz; mp_int temp = &tempz; CHECK(mp_int_init_uvalue(temp, op2)); CHECK(mp_int_mul(op1, temp, rop)); mp_int_clear(temp); } /* gmp: mpz_pow_ui */ /* gmp: 0^0 = 1 */ void GMPZAPI(pow_ui)(mp_int rop, mp_int base, unsigned long exp) { mpz_t tempz; mp_int temp = &tempz; /* check for 0^0 */ if (exp == 0 && mp_int_compare_zero(base) == 0) { CHECK(mp_int_set_value(rop, 1)); return; } /* rop = base^exp */ CHECK(mp_int_init_uvalue(temp, exp)); CHECK(mp_int_expt_full(base, temp, rop)); mp_int_clear(temp); } /* gmp: mpz_sub_ui */ void GMPZAPI(sub_ui)(mp_int rop, mp_int op1, unsigned long op2) { mpz_t tempz; mp_int temp = &tempz; CHECK(mp_int_init_uvalue(temp, op2)); CHECK(mp_int_sub(op1, temp, rop)); mp_int_clear(temp); } /************************************************************************* * * Functions with different behavior in corner cases * *************************************************************************/ /* gmp: mpz_gcd */ void GMPZAPI(gcd)(mp_int rop, mp_int op1, mp_int op2) { int op1_is_zero = mp_int_compare_zero(op1) == 0; int op2_is_zero = mp_int_compare_zero(op2) == 0; if (op1_is_zero && op2_is_zero) { mp_int_zero(rop); return; } CHECK(mp_int_gcd(op1, op2, rop)); } /* gmp: mpz_get_str */ char* GMPZAPI(get_str)(char *str, int radix, mp_int op) { int i, r, len; /* Support negative radix like gmp */ r = radix; if (r < 0) r = -r; /* Compute the length of the string needed to hold the int */ len = mp_int_string_len(op, r); if (str == NULL) { str = malloc(len); } /* Convert to string using imath function */ CHECK(mp_int_to_string(op, r, str, len)); /* Change case to match gmp */ for (i = 0; i < len - 1; i++) if (radix < 0) str[i] = toupper(str[i]); else str[i] = tolower(str[i]); return str; } /* gmp: mpq_get_str */ char* GMPQAPI(get_str)(char *str, int radix, mp_rat op) { int i, r, len; /* Only print numerator if it is a whole number */ if (mp_int_compare_value(mp_rat_denom_ref(op), 1) == 0) return GMPZAPI(get_str)(str, radix, mp_rat_numer_ref(op)); /* Support negative radix like gmp */ r = radix; if (r < 0) r = -r; /* Compute the length of the string needed to hold the int */ len = mp_rat_string_len(op, r); if (str == NULL) { str = malloc(len); } /* Convert to string using imath function */ CHECK(mp_rat_to_string(op, r, str, len)); /* Change case to match gmp */ for (i = 0; i < len; i++) if (radix < 0) str[i] = toupper(str[i]); else str[i] = tolower(str[i]); return str; } /* gmp: mpz_set_str */ int GMPZAPI(set_str)(mp_int rop, char *str, int base) { mp_result res = mp_int_read_string(rop, base, str); return ((res == MP_OK) ? 0 : -1); } /* gmp: mpq_set_str */ int GMPQAPI(set_str)(mp_rat rop, char *s, int base) { char *slash; char *str; mp_result resN; mp_result resD; int res = 0; /* Copy string to temporary storage so we can modify it below */ str = malloc(strlen(s)+1); strcpy(str, s); /* Properly format the string as an int by terminating at the / */ slash = strchr(str, '/'); if (slash) *slash = '\0'; /* Parse numerator */ resN = mp_int_read_string(mp_rat_numer_ref(rop), base, str); /* Parse denomenator if given or set to 1 if not */ if (slash) resD = mp_int_read_string(mp_rat_denom_ref(rop), base, slash+1); else resD = mp_int_set_uvalue(mp_rat_denom_ref(rop), 1); /* Return failure if either parse failed */ if (resN != MP_OK || resD != MP_OK) res = -1; free(str); return res; } static unsigned long get_long_bits(mp_int op) { /* Deal with integer that does not fit into unsigned long. We want to grab * the least significant digits that will fit into the long. Read the digits * into the long starting at the most significant digit that fits into a * long. The long is shifted over by MP_DIGIT_BIT before each digit is added. * The shift is decomposed into two steps to follow the patten used in the * rest of the imath library. The two step shift is used to accomedate * architectures that don't deal well with 32-bit shifts. */ mp_size num_digits_in_long = sizeof(unsigned long) / sizeof(mp_digit); mp_digit *digits = MP_DIGITS(op); unsigned long out = 0; int i; for (i = num_digits_in_long - 1; i >= 0; i--) { out <<= (MP_DIGIT_BIT/2); out <<= (MP_DIGIT_BIT/2); out |= digits[i]; } return out; } /* gmp: mpz_get_ui */ unsigned long GMPZAPI(get_ui)(mp_int op) { unsigned long out; /* Try a standard conversion that fits into an unsigned long */ mp_result res = mp_int_to_uint(op, &out); if (res == MP_OK) return out; /* Abort the try if we don't have a range error in the conversion. * The range error indicates that the value cannot fit into a long. */ CHECK(res == MP_RANGE ? MP_OK : MP_RANGE); if (res != MP_RANGE) return 0; return get_long_bits(op); } /* gmp: mpz_get_si */ long GMPZAPI(get_si)(mp_int op) { long out; unsigned long uout; int long_msb; /* Try a standard conversion that fits into a long */ mp_result res = mp_int_to_int(op, &out); if (res == MP_OK) return out; /* Abort the try if we don't have a range error in the conversion. * The range error indicates that the value cannot fit into a long. */ CHECK(res == MP_RANGE ? MP_OK : MP_RANGE); if (res != MP_RANGE) return 0; /* get least significant bits into an unsigned long */ uout = get_long_bits(op); /* clear the top bit */ long_msb = (sizeof(unsigned long) * 8) - 1; uout &= (~(1UL << long_msb)); /* convert to negative if needed based on sign of op */ if (MP_SIGN(op) == MP_NEG) uout = 0 - uout; out = (long) uout; return out; } /* gmp: mpz_lcm */ void GMPZAPI(lcm)(mp_int rop, mp_int op1, mp_int op2) { int op1_is_zero = mp_int_compare_zero(op1) == 0; int op2_is_zero = mp_int_compare_zero(op2) == 0; if (op1_is_zero || op2_is_zero) { mp_int_zero(rop); return; } CHECK(mp_int_lcm(op1, op2, rop)); CHECK(mp_int_abs(rop, rop)); } /* gmp: mpz_mul_2exp */ /* gmp: allow big values for op2 when op1 == 0 */ void GMPZAPI(mul_2exp)(mp_int rop, mp_int op1, unsigned long op2) { if (mp_int_compare_zero(op1) == 0) mp_int_zero(rop); else CHECK(mp_int_mul_pow2(op1, op2, rop)); } /************************************************************************* * * Functions needing expanded functionality * *************************************************************************/ /* [Note]Overview of division implementation All division operations (N / D) compute q and r such that N = q * D + r, with 0 <= abs(r) < abs(d) The q and r values are not uniquely specified by N and D. To specify which q and r values should be used, GMP implements three different rounding modes for integer division: ceiling - round q twords +infinity, r has opposite sign as d floor - round q twords -infinity, r has same sign as d truncate - round q twords zero, r has same sign as n The imath library only supports truncate as a rounding mode. We need to implement the other rounding modes in terms of truncating division. We first perform the division in trucate mode and then adjust q accordingly. Once we know q, we can easily compute the correct r according the the formula above by computing: r = N - q * D The main task is to compute q. We can compute the correct q from a trucated version as follows. For ceiling rounding mode, if q is less than 0 then the truncated rounding mode is the same as the ceiling rounding mode. If q is greater than zero then we need to round q up by one because the truncated version was rounded down to zero. If q equals zero then check to see if the result of the divison is positive. A positive result needs to increment q to one. For floor rounding mode, if q is greater than 0 then the trucated rounding mode is the same as the floor rounding mode. If q is less than zero then we need to round q down by one because the trucated mode rounded q up by one twords zero. If q is zero then we need to check to see if the result of the division is negative. A negative result needs to decrement q to negative one. */ /* gmp: mpz_cdiv_q */ void GMPZAPI(cdiv_q)(mp_int q, mp_int n, mp_int d) { mpz_t rz; mp_int r = &rz; int qsign, rsign, nsign, dsign; CHECK(mp_int_init(r)); /* save signs before division because q can alias with n or d */ nsign = mp_int_compare_zero(n); dsign = mp_int_compare_zero(d); /* truncating division */ CHECK(mp_int_div(n, d, q, r)); /* see: [Note]Overview of division implementation */ qsign = mp_int_compare_zero(q); rsign = mp_int_compare_zero(r); if (qsign > 0) { /* q > 0 */ if (rsign != 0) { /* r != 0 */ CHECK(mp_int_add_value(q, 1, q)); } } else if (qsign == 0) { /* q == 0 */ if (rsign != 0) { /* r != 0 */ if ((nsign > 0 && dsign > 0) || (nsign < 0 && dsign < 0)) { CHECK(mp_int_set_value(q, 1)); } } } mp_int_clear(r); } /* gmp: mpz_fdiv_q */ void GMPZAPI(fdiv_q)(mp_int q, mp_int n, mp_int d) { mpz_t rz; mp_int r = &rz; int qsign, rsign, nsign, dsign; CHECK(mp_int_init(r)); /* save signs before division because q can alias with n or d */ nsign = mp_int_compare_zero(n); dsign = mp_int_compare_zero(d); /* truncating division */ CHECK(mp_int_div(n, d, q, r)); /* see: [Note]Overview of division implementation */ qsign = mp_int_compare_zero(q); rsign = mp_int_compare_zero(r); if (qsign < 0) { /* q < 0 */ if (rsign != 0) { /* r != 0 */ CHECK(mp_int_sub_value(q, 1, q)); } } else if (qsign == 0) { /* q == 0 */ if (rsign != 0) { /* r != 0 */ if ((nsign < 0 && dsign > 0) || (nsign > 0 && dsign < 0)) { CHECK(mp_int_set_value(q, -1)); } } } mp_int_clear(r); } /* gmp: mpz_fdiv_r */ void GMPZAPI(fdiv_r)(mp_int r, mp_int n, mp_int d) { mpz_t qz; mpz_t tempz; mpz_t orig_dz; mpz_t orig_nz; mp_int q = &qz; mp_int temp = &tempz; mp_int orig_d = &orig_dz; mp_int orig_n = &orig_nz; CHECK(mp_int_init(q)); CHECK(mp_int_init(temp)); /* Make a copy of n in case n and d in case they overlap with q */ CHECK(mp_int_init_copy(orig_d, d)); CHECK(mp_int_init_copy(orig_n, n)); /* floor division */ GMPZAPI(fdiv_q)(q, n, d); /* see: [Note]Overview of division implementation */ /* n = q * d + r ==> r = n - q * d */ mp_int_mul(q, orig_d, temp); mp_int_sub(orig_n, temp, r); mp_int_clear(q); mp_int_clear(temp); mp_int_clear(orig_d); mp_int_clear(orig_n); } /* gmp: mpz_tdiv_q */ void GMPZAPI(tdiv_q)(mp_int q, mp_int n, mp_int d) { /* truncating division*/ CHECK(mp_int_div(n, d, q, NULL)); } /* gmp: mpz_fdiv_q_ui */ unsigned long GMPZAPI(fdiv_q_ui)(mp_int q, mp_int n, unsigned long d) { mpz_t tempz; mp_int temp = &tempz; mpz_t rz; mp_int r = &rz; mpz_t orig_nz; mp_int orig_n = &orig_nz; unsigned long rl; CHECK(mp_int_init_uvalue(temp, d)); CHECK(mp_int_init(r)); /* Make a copy of n in case n and q overlap */ CHECK(mp_int_init_copy(orig_n, n)); /* use floor division mode to compute q and r */ GMPZAPI(fdiv_q)(q, n, temp); GMPZAPI(fdiv_r)(r, orig_n, temp); CHECK(mp_int_to_uint(r, &rl)); mp_int_clear(temp); mp_int_clear(r); mp_int_clear(orig_n); return rl; } /* gmp: mpz_export */ void* GMPZAPI(export)(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int op) { int i; int num_used_bytes; size_t num_words, num_missing_bytes; unsigned char* dst; unsigned char* src; /* We do not have a complete implementation. Assert to ensure our * restrictions are in place, We do not support big endian output, but do not * check that native endian is little endian. */ assert(nails == 0 && "Do not support non-full words"); assert((endian == 0 || endian == -1) && "Do not support big endian"); /* The gmp API requires that order must be -1 or 1. Not sure how gmp behaves when order is not 1 or -1, so force all non-one values to -1 for now. */ if (order != 1) order = -1; /* Test for zero */ if (mp_int_compare_zero(op) == 0) { if (countp) *countp = 0; return rop; } /* Calculate how many words we need */ num_used_bytes = mp_int_unsigned_len(op); num_words = (num_used_bytes + (size-1)) / size; /* ceil division */ assert(num_used_bytes > 0); /* Check to see if we will have missing bytes in the last word. Missing bytes can only occur when the size of words we output is greater than the size of words used internally by imath. The number of missing bytes is the number of bytes needed to fill out the last word. If this number is greater than the size of a single mp_digit, then we need to pad the word with extra zeros. Otherwise, the missing bytes can be filled directly from the zeros in the last digit in the number. */ num_missing_bytes = (size * num_words) - num_used_bytes; assert(num_missing_bytes < size); /* Allocate space for the result if needed */ if (rop == NULL) { rop = malloc(num_words * size); } /* Initialize dst and src pointers */ dst = (unsigned char *)rop; src = (unsigned char *)MP_DIGITS(op); /* Most significant word first */ if (order == 1) { size_t words_written = 0; src += (num_words-1) * size; /* Handle write of first word specially */ for (i = 0; i < size - num_missing_bytes; i++) dst[i] = src[i]; for (; i < size; i++) dst[i] = 0; dst += size; src -= size; words_written++; for (; words_written < num_words; words_written++) { for (i = 0; i < size; i++) dst[i] = src[i]; dst += size; src -= size; } } /* Least significant word first */ else { size_t words_written = 0; for (; words_written < num_words - 1; words_written++) { for (i = 0; i < size; i++) dst[i] = src[i]; dst += size; src += size; } /* Handle write of last word specially */ for (i = 0; i < size - num_missing_bytes; i++) dst[i] = src[i]; for (; i < size; i++) dst[i] = 0; } if (countp) *countp = num_words; return rop; } /* gmp: mpz_import */ void GMPZAPI(import)(mp_int rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op) { mpz_t tmpz; mp_int tmp = &tmpz; size_t total_size; size_t num_digits; const char *src; char *dst; int i; if (count == 0 || op == NULL) return; /* We do not have a complete implementation. Assert to ensure our * restrictions are in place, We do not support big endian output, but do not * check that native endian is little endian. */ assert(nails == 0 && "Do not support non-full words"); assert((endian == 0 || endian == -1) && "Do not support big endian"); /* Compute number of needed digits by ceil division */ total_size = count * size; num_digits = (total_size + sizeof(mp_digit) - 1) / sizeof(mp_digit); /* Init temporary */ mp_int_init_size(tmp, num_digits); for (i = 0; i < num_digits; i++) tmp->digits[i] = 0; /* Copy bytes */ src = (const char *) op; dst = (char *)MP_DIGITS(tmp); /* Most significant word is first */ if (order == 1) { size_t word; dst += (count - 1) * size; for (word = 0; word < count; word++) { for (i = 0; i < size; i++) dst[i] = src[i]; dst -= size; src += size; } } /* Least significant word is first */ else { size_t word; for (word = 0; word < count; word++) { for (i = 0; i < size; i++) dst[i] = src[i]; dst += size; src += size; } } MP_USED(tmp) = num_digits; /* Remove leading zeros from number */ { mp_size uz_ = MP_USED(tmp); mp_digit *dz_ = MP_DIGITS(tmp) + uz_ -1; while (uz_ > 1 && (*dz_-- == 0)) --uz_; MP_USED(tmp) = uz_; } /* Copy to destination */ mp_int_copy(tmp, rop); mp_int_clear(tmp); } /* gmp: mpz_sizeinbase */ size_t GMPZAPI(sizeinbase)(mp_int op, int base) { mp_result res; size_t size; /* If op == 0, return 1 */ if (mp_int_compare_zero(op) == 0) return 1; /* Compute string length in base */ res = mp_int_string_len(op, base); CHECK((res > 0) == MP_OK); /* Now adjust the final size by getting rid of string artifacts */ size = res; /* subtract one for the null terminator */ size -= 1; /* subtract one for the negative sign */ if (mp_int_compare_zero(op) < 0) size -= 1; return size; } isl-0.16.1/imath/imrat.h0000644000175000017500000001254212341360211011673 00000000000000/* Name: imrat.h Purpose: Arbitrary precision rational arithmetic routines. Author: M. J. Fromberger Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef IMRAT_H_ #define IMRAT_H_ #include "imath.h" #ifdef __cplusplus extern "C" { #endif typedef struct mpq { mpz_t num; /* Numerator */ mpz_t den; /* Denominator, <> 0 */ } mpq_t, *mp_rat; #define MP_NUMER_P(Q) (&((Q)->num)) /* Pointer to numerator */ #define MP_DENOM_P(Q) (&((Q)->den)) /* Pointer to denominator */ /* Rounding constants */ typedef enum { MP_ROUND_DOWN, MP_ROUND_HALF_UP, MP_ROUND_UP, MP_ROUND_HALF_DOWN } mp_round_mode; mp_result mp_rat_init(mp_rat r); mp_rat mp_rat_alloc(void); mp_result mp_rat_reduce(mp_rat r); mp_result mp_rat_init_size(mp_rat r, mp_size n_prec, mp_size d_prec); mp_result mp_rat_init_copy(mp_rat r, mp_rat old); mp_result mp_rat_set_value(mp_rat r, mp_small numer, mp_small denom); mp_result mp_rat_set_uvalue(mp_rat r, mp_usmall numer, mp_usmall denom); void mp_rat_clear(mp_rat r); void mp_rat_free(mp_rat r); mp_result mp_rat_numer(mp_rat r, mp_int z); /* z = num(r) */ mp_int mp_rat_numer_ref(mp_rat r); /* &num(r) */ mp_result mp_rat_denom(mp_rat r, mp_int z); /* z = den(r) */ mp_int mp_rat_denom_ref(mp_rat r); /* &den(r) */ mp_sign mp_rat_sign(mp_rat r); mp_result mp_rat_copy(mp_rat a, mp_rat c); /* c = a */ void mp_rat_zero(mp_rat r); /* r = 0 */ mp_result mp_rat_abs(mp_rat a, mp_rat c); /* c = |a| */ mp_result mp_rat_neg(mp_rat a, mp_rat c); /* c = -a */ mp_result mp_rat_recip(mp_rat a, mp_rat c); /* c = 1 / a */ mp_result mp_rat_add(mp_rat a, mp_rat b, mp_rat c); /* c = a + b */ mp_result mp_rat_sub(mp_rat a, mp_rat b, mp_rat c); /* c = a - b */ mp_result mp_rat_mul(mp_rat a, mp_rat b, mp_rat c); /* c = a * b */ mp_result mp_rat_div(mp_rat a, mp_rat b, mp_rat c); /* c = a / b */ mp_result mp_rat_add_int(mp_rat a, mp_int b, mp_rat c); /* c = a + b */ mp_result mp_rat_sub_int(mp_rat a, mp_int b, mp_rat c); /* c = a - b */ mp_result mp_rat_mul_int(mp_rat a, mp_int b, mp_rat c); /* c = a * b */ mp_result mp_rat_div_int(mp_rat a, mp_int b, mp_rat c); /* c = a / b */ mp_result mp_rat_expt(mp_rat a, mp_small b, mp_rat c); /* c = a ^ b */ int mp_rat_compare(mp_rat a, mp_rat b); /* a <=> b */ int mp_rat_compare_unsigned(mp_rat a, mp_rat b); /* |a| <=> |b| */ int mp_rat_compare_zero(mp_rat r); /* r <=> 0 */ int mp_rat_compare_value(mp_rat r, mp_small n, mp_small d); /* r <=> n/d */ int mp_rat_is_integer(mp_rat r); /* Convert to integers, if representable (returns MP_RANGE if not). */ mp_result mp_rat_to_ints(mp_rat r, mp_small *num, mp_small *den); /* Convert to nul-terminated string with the specified radix, writing at most limit characters including the nul terminator. */ mp_result mp_rat_to_string(mp_rat r, mp_size radix, char *str, int limit); /* Convert to decimal format in the specified radix and precision, writing at most limit characters including a nul terminator. */ mp_result mp_rat_to_decimal(mp_rat r, mp_size radix, mp_size prec, mp_round_mode round, char *str, int limit); /* Return the number of characters required to represent r in the given radix. May over-estimate. */ mp_result mp_rat_string_len(mp_rat r, mp_size radix); /* Return the number of characters required to represent r in decimal format with the given radix and precision. May over-estimate. */ mp_result mp_rat_decimal_len(mp_rat r, mp_size radix, mp_size prec); /* Read zero-terminated string into r */ mp_result mp_rat_read_string(mp_rat r, mp_size radix, const char *str); mp_result mp_rat_read_cstring(mp_rat r, mp_size radix, const char *str, char **end); mp_result mp_rat_read_ustring(mp_rat r, mp_size radix, const char *str, char **end); /* Read zero-terminated string in decimal format into r */ mp_result mp_rat_read_decimal(mp_rat r, mp_size radix, const char *str); mp_result mp_rat_read_cdecimal(mp_rat r, mp_size radix, const char *str, char **end); #ifdef __cplusplus } #endif #endif /* IMRAT_H_ */ isl-0.16.1/imath/imath.c0000664000175000017500000022424212564135730011675 00000000000000/* Name: imath.c Purpose: Arbitrary precision integer arithmetic routines. Author: M. J. Fromberger Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "imath.h" #if DEBUG #include #endif #include #include #include #include #if DEBUG #define STATIC /* public */ #else #define STATIC static #endif const mp_result MP_OK = 0; /* no error, all is well */ const mp_result MP_FALSE = 0; /* boolean false */ const mp_result MP_TRUE = -1; /* boolean true */ const mp_result MP_MEMORY = -2; /* out of memory */ const mp_result MP_RANGE = -3; /* argument out of range */ const mp_result MP_UNDEF = -4; /* result undefined */ const mp_result MP_TRUNC = -5; /* output truncated */ const mp_result MP_BADARG = -6; /* invalid null argument */ const mp_result MP_MINERR = -6; const mp_sign MP_NEG = 1; /* value is strictly negative */ const mp_sign MP_ZPOS = 0; /* value is non-negative */ STATIC const char *s_unknown_err = "unknown result code"; STATIC const char *s_error_msg[] = { "error code 0", "boolean true", "out of memory", "argument out of range", "result undefined", "output truncated", "invalid argument", NULL }; /* Argument checking macros Use CHECK() where a return value is required; NRCHECK() elsewhere */ #define CHECK(TEST) assert(TEST) #define NRCHECK(TEST) assert(TEST) /* The ith entry of this table gives the value of log_i(2). An integer value n requires ceil(log_i(n)) digits to be represented in base i. Since it is easy to compute lg(n), by counting bits, we can compute log_i(n) = lg(n) * log_i(2). The use of this table eliminates a dependency upon linkage against the standard math libraries. If MP_MAX_RADIX is increased, this table should be expanded too. */ STATIC const double s_log2[] = { 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */ 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */ 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */ 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */ 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */ 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */ 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */ 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */ 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */ 0.193426404, /* 36 */ }; /* Return the number of digits needed to represent a static value */ #define MP_VALUE_DIGITS(V) \ ((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit)) /* Round precision P to nearest word boundary */ #define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2))) /* Set array P of S digits to zero */ #define ZERO(P, S) \ do{ \ mp_size i__ = (S) * sizeof(mp_digit); \ mp_digit *p__ = (P); \ memset(p__, 0, i__); \ } while(0) /* Copy S digits from array P to array Q */ #define COPY(P, Q, S) \ do{ \ mp_size i__ = (S) * sizeof(mp_digit); \ mp_digit *p__ = (P), *q__ = (Q); \ memcpy(q__, p__, i__); \ } while(0) /* Reverse N elements of type T in array A */ #define REV(T, A, N) \ do{ \ T *u_ = (A), *v_ = u_ + (N) - 1; \ while (u_ < v_) { \ T xch = *u_; \ *u_++ = *v_; \ *v_-- = xch; \ } \ } while(0) #define CLAMP(Z) \ do{ \ mp_int z_ = (Z); \ mp_size uz_ = MP_USED(z_); \ mp_digit *dz_ = MP_DIGITS(z_) + uz_ -1; \ while (uz_ > 1 && (*dz_-- == 0)) \ --uz_; \ MP_USED(z_) = uz_; \ } while(0) /* Select min/max. Do not provide expressions for which multiple evaluation would be problematic, e.g. x++ */ #define MIN(A, B) ((B)<(A)?(B):(A)) #define MAX(A, B) ((B)>(A)?(B):(A)) /* Exchange lvalues A and B of type T, e.g. SWAP(int, x, y) where x and y are variables of type int. */ #define SWAP(T, A, B) \ do{ \ T t_ = (A); \ A = (B); \ B = t_; \ } while(0) /* Used to set up and access simple temp stacks within functions. */ #define DECLARE_TEMP(N) \ mpz_t temp[(N)]; \ int last__ = 0 #define CLEANUP_TEMP() \ CLEANUP: \ while (--last__ >= 0) \ mp_int_clear(TEMP(last__)) #define TEMP(K) (temp + (K)) #define LAST_TEMP() TEMP(last__) #define SETUP(E) \ do{ \ if ((res = (E)) != MP_OK) \ goto CLEANUP; \ ++(last__); \ } while(0) /* Compare value to zero. */ #define CMPZ(Z) \ (((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1) /* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage preallocated to hold the result. */ #define UMUL(X, Y, Z) \ do{ \ mp_size ua_ = MP_USED(X), ub_ = MP_USED(Y); \ mp_size o_ = ua_ + ub_; \ ZERO(MP_DIGITS(Z), o_); \ (void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_); \ MP_USED(Z) = o_; \ CLAMP(Z); \ } while(0) /* Square X into Z. Requires that Z have enough storage to hold the result. */ #define USQR(X, Z) \ do{ \ mp_size ua_ = MP_USED(X), o_ = ua_ + ua_; \ ZERO(MP_DIGITS(Z), o_); \ (void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_); \ MP_USED(Z) = o_; \ CLAMP(Z); \ } while(0) #define UPPER_HALF(W) ((mp_word)((W) >> MP_DIGIT_BIT)) #define LOWER_HALF(W) ((mp_digit)(W)) #define HIGH_BIT_SET(W) ((W) >> (MP_WORD_BIT - 1)) #define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W)) /* Default number of digits allocated to a new mp_int */ #if IMATH_TEST mp_size default_precision = MP_DEFAULT_PREC; #else STATIC const mp_size default_precision = MP_DEFAULT_PREC; #endif /* Minimum number of digits to invoke recursive multiply */ #if IMATH_TEST mp_size multiply_threshold = MP_MULT_THRESH; #else STATIC const mp_size multiply_threshold = MP_MULT_THRESH; #endif /* Allocate a buffer of (at least) num digits, or return NULL if that couldn't be done. */ STATIC mp_digit *s_alloc(mp_size num); /* Release a buffer of digits allocated by s_alloc(). */ STATIC void s_free(void *ptr); /* Insure that z has at least min digits allocated, resizing if necessary. Returns true if successful, false if out of memory. */ STATIC int s_pad(mp_int z, mp_size min); /* Fill in a "fake" mp_int on the stack with a given value */ STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]); STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]); /* Compare two runs of digits of given length, returns <0, 0, >0 */ STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len); /* Pack the unsigned digits of v into array t */ STATIC int s_uvpack(mp_usmall v, mp_digit t[]); /* Compare magnitudes of a and b, returns <0, 0, >0 */ STATIC int s_ucmp(mp_int a, mp_int b); /* Compare magnitudes of a and v, returns <0, 0, >0 */ STATIC int s_vcmp(mp_int a, mp_small v); STATIC int s_uvcmp(mp_int a, mp_usmall uv); /* Unsigned magnitude addition; assumes dc is big enough. Carry out is returned (no memory allocated). */ STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b); /* Unsigned magnitude subtraction. Assumes dc is big enough. */ STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b); /* Unsigned recursive multiplication. Assumes dc is big enough. */ STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b); /* Unsigned magnitude multiplication. Assumes dc is big enough. */ STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b); /* Unsigned recursive squaring. Assumes dc is big enough. */ STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a); /* Unsigned magnitude squaring. Assumes dc is big enough. */ STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a); /* Single digit addition. Assumes a is big enough. */ STATIC void s_dadd(mp_int a, mp_digit b); /* Single digit multiplication. Assumes a is big enough. */ STATIC void s_dmul(mp_int a, mp_digit b); /* Single digit multiplication on buffers; assumes dc is big enough. */ STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a); /* Single digit division. Replaces a with the quotient, returns the remainder. */ STATIC mp_digit s_ddiv(mp_int a, mp_digit b); /* Quick division by a power of 2, replaces z (no allocation) */ STATIC void s_qdiv(mp_int z, mp_size p2); /* Quick remainder by a power of 2, replaces z (no allocation) */ STATIC void s_qmod(mp_int z, mp_size p2); /* Quick multiplication by a power of 2, replaces z. Allocates if necessary; returns false in case this fails. */ STATIC int s_qmul(mp_int z, mp_size p2); /* Quick subtraction from a power of 2, replaces z. Allocates if necessary; returns false in case this fails. */ STATIC int s_qsub(mp_int z, mp_size p2); /* Return maximum k such that 2^k divides z. */ STATIC int s_dp2k(mp_int z); /* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */ STATIC int s_isp2(mp_int z); /* Set z to 2^k. May allocate; returns false in case this fails. */ STATIC int s_2expt(mp_int z, mp_small k); /* Normalize a and b for division, returns normalization constant */ STATIC int s_norm(mp_int a, mp_int b); /* Compute constant mu for Barrett reduction, given modulus m, result replaces z, m is untouched. */ STATIC mp_result s_brmu(mp_int z, mp_int m); /* Reduce a modulo m, using Barrett's algorithm. */ STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2); /* Modular exponentiation, using Barrett reduction */ STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); /* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries; overwrites a with quotient, b with remainder. */ STATIC mp_result s_udiv_knuth(mp_int a, mp_int b); /* Compute the number of digits in radix r required to represent the given value. Does not account for sign flags, terminators, etc. */ STATIC int s_outlen(mp_int z, mp_size r); /* Guess how many digits of precision will be needed to represent a radix r value of the specified number of digits. Returns a value guaranteed to be no smaller than the actual number required. */ STATIC mp_size s_inlen(int len, mp_size r); /* Convert a character to a digit value in radix r, or -1 if out of range */ STATIC int s_ch2val(char c, int r); /* Convert a digit value to a character */ STATIC char s_val2ch(int v, int caps); /* Take 2's complement of a buffer in place */ STATIC void s_2comp(unsigned char *buf, int len); /* Convert a value to binary, ignoring sign. On input, *limpos is the bound on how many bytes should be written to buf; on output, *limpos is set to the number of bytes actually written. */ STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad); #if DEBUG /* Dump a representation of the mp_int to standard output */ void s_print(char *tag, mp_int z); void s_print_buf(char *tag, mp_digit *buf, mp_size num); #endif mp_result mp_int_init(mp_int z) { if (z == NULL) return MP_BADARG; z->single = 0; z->digits = &(z->single); z->alloc = 1; z->used = 1; z->sign = MP_ZPOS; return MP_OK; } mp_int mp_int_alloc(void) { mp_int out = malloc(sizeof(mpz_t)); if (out != NULL) mp_int_init(out); return out; } mp_result mp_int_init_size(mp_int z, mp_size prec) { CHECK(z != NULL); if (prec == 0) prec = default_precision; else if (prec == 1) return mp_int_init(z); else prec = (mp_size) ROUND_PREC(prec); if ((MP_DIGITS(z) = s_alloc(prec)) == NULL) return MP_MEMORY; z->digits[0] = 0; MP_USED(z) = 1; MP_ALLOC(z) = prec; MP_SIGN(z) = MP_ZPOS; return MP_OK; } mp_result mp_int_init_copy(mp_int z, mp_int old) { mp_result res; mp_size uold; CHECK(z != NULL && old != NULL); uold = MP_USED(old); if (uold == 1) { mp_int_init(z); } else { mp_size target = MAX(uold, default_precision); if ((res = mp_int_init_size(z, target)) != MP_OK) return res; } MP_USED(z) = uold; MP_SIGN(z) = MP_SIGN(old); COPY(MP_DIGITS(old), MP_DIGITS(z), uold); return MP_OK; } mp_result mp_int_init_value(mp_int z, mp_small value) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_init_copy(z, &vtmp); } mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; s_ufake(&vtmp, uvalue, vbuf); return mp_int_init_copy(z, &vtmp); } mp_result mp_int_set_value(mp_int z, mp_small value) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_copy(&vtmp, z); } mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(uvalue)]; s_ufake(&vtmp, uvalue, vbuf); return mp_int_copy(&vtmp, z); } void mp_int_clear(mp_int z) { if (z == NULL) return; if (MP_DIGITS(z) != NULL) { if (MP_DIGITS(z) != &(z->single)) s_free(MP_DIGITS(z)); MP_DIGITS(z) = NULL; } } void mp_int_free(mp_int z) { NRCHECK(z != NULL); mp_int_clear(z); free(z); /* note: NOT s_free() */ } mp_result mp_int_copy(mp_int a, mp_int c) { CHECK(a != NULL && c != NULL); if (a != c) { mp_size ua = MP_USED(a); mp_digit *da, *dc; if (!s_pad(c, ua)) return MP_MEMORY; da = MP_DIGITS(a); dc = MP_DIGITS(c); COPY(da, dc, ua); MP_USED(c) = ua; MP_SIGN(c) = MP_SIGN(a); } return MP_OK; } void mp_int_swap(mp_int a, mp_int c) { if (a != c) { mpz_t tmp = *a; *a = *c; *c = tmp; if (MP_DIGITS(a) == &(c->single)) MP_DIGITS(a) = &(a->single); if (MP_DIGITS(c) == &(a->single)) MP_DIGITS(c) = &(c->single); } } void mp_int_zero(mp_int z) { NRCHECK(z != NULL); z->digits[0] = 0; MP_USED(z) = 1; MP_SIGN(z) = MP_ZPOS; } mp_result mp_int_abs(mp_int a, mp_int c) { mp_result res; CHECK(a != NULL && c != NULL); if ((res = mp_int_copy(a, c)) != MP_OK) return res; MP_SIGN(c) = MP_ZPOS; return MP_OK; } mp_result mp_int_neg(mp_int a, mp_int c) { mp_result res; CHECK(a != NULL && c != NULL); if ((res = mp_int_copy(a, c)) != MP_OK) return res; if (CMPZ(c) != 0) MP_SIGN(c) = 1 - MP_SIGN(a); return MP_OK; } mp_result mp_int_add(mp_int a, mp_int b, mp_int c) { mp_size ua, ub, uc, max; CHECK(a != NULL && b != NULL && c != NULL); ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c); max = MAX(ua, ub); if (MP_SIGN(a) == MP_SIGN(b)) { /* Same sign -- add magnitudes, preserve sign of addends */ mp_digit carry; if (!s_pad(c, max)) return MP_MEMORY; carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub); uc = max; if (carry) { if (!s_pad(c, max + 1)) return MP_MEMORY; c->digits[max] = carry; ++uc; } MP_USED(c) = uc; MP_SIGN(c) = MP_SIGN(a); } else { /* Different signs -- subtract magnitudes, preserve sign of greater */ mp_int x, y; int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */ /* Set x to max(a, b), y to min(a, b) to simplify later code. A special case yields zero for equal magnitudes. */ if (cmp == 0) { mp_int_zero(c); return MP_OK; } else if (cmp < 0) { x = b; y = a; } else { x = a; y = b; } if (!s_pad(c, MP_USED(x))) return MP_MEMORY; /* Subtract smaller from larger */ s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y)); MP_USED(c) = MP_USED(x); CLAMP(c); /* Give result the sign of the larger */ MP_SIGN(c) = MP_SIGN(x); } return MP_OK; } mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_add(a, &vtmp, c); } mp_result mp_int_sub(mp_int a, mp_int b, mp_int c) { mp_size ua, ub, uc, max; CHECK(a != NULL && b != NULL && c != NULL); ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c); max = MAX(ua, ub); if (MP_SIGN(a) != MP_SIGN(b)) { /* Different signs -- add magnitudes and keep sign of a */ mp_digit carry; if (!s_pad(c, max)) return MP_MEMORY; carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub); uc = max; if (carry) { if (!s_pad(c, max + 1)) return MP_MEMORY; c->digits[max] = carry; ++uc; } MP_USED(c) = uc; MP_SIGN(c) = MP_SIGN(a); } else { /* Same signs -- subtract magnitudes */ mp_int x, y; mp_sign osign; int cmp = s_ucmp(a, b); if (!s_pad(c, max)) return MP_MEMORY; if (cmp >= 0) { x = a; y = b; osign = MP_ZPOS; } else { x = b; y = a; osign = MP_NEG; } if (MP_SIGN(a) == MP_NEG && cmp != 0) osign = 1 - osign; s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y)); MP_USED(c) = MP_USED(x); CLAMP(c); MP_SIGN(c) = osign; } return MP_OK; } mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_sub(a, &vtmp, c); } mp_result mp_int_mul(mp_int a, mp_int b, mp_int c) { mp_digit *out; mp_size osize, ua, ub, p = 0; mp_sign osign; CHECK(a != NULL && b != NULL && c != NULL); /* If either input is zero, we can shortcut multiplication */ if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) { mp_int_zero(c); return MP_OK; } /* Output is positive if inputs have same sign, otherwise negative */ osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG; /* If the output is not identical to any of the inputs, we'll write the results directly; otherwise, allocate a temporary space. */ ua = MP_USED(a); ub = MP_USED(b); osize = MAX(ua, ub); osize = 4 * ((osize + 1) / 2); if (c == a || c == b) { p = ROUND_PREC(osize); p = MAX(p, default_precision); if ((out = s_alloc(p)) == NULL) return MP_MEMORY; } else { if (!s_pad(c, osize)) return MP_MEMORY; out = MP_DIGITS(c); } ZERO(out, osize); if (!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub)) return MP_MEMORY; /* If we allocated a new buffer, get rid of whatever memory c was already using, and fix up its fields to reflect that. */ if (out != MP_DIGITS(c)) { if ((void *) MP_DIGITS(c) != (void *) c) s_free(MP_DIGITS(c)); MP_DIGITS(c) = out; MP_ALLOC(c) = p; } MP_USED(c) = osize; /* might not be true, but we'll fix it ... */ CLAMP(c); /* ... right here */ MP_SIGN(c) = osign; return MP_OK; } mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_mul(a, &vtmp, c); } mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c) { mp_result res; CHECK(a != NULL && c != NULL && p2 >= 0); if ((res = mp_int_copy(a, c)) != MP_OK) return res; if (s_qmul(c, (mp_size) p2)) return MP_OK; else return MP_MEMORY; } mp_result mp_int_sqr(mp_int a, mp_int c) { mp_digit *out; mp_size osize, p = 0; CHECK(a != NULL && c != NULL); /* Get a temporary buffer big enough to hold the result */ osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2); if (a == c) { p = ROUND_PREC(osize); p = MAX(p, default_precision); if ((out = s_alloc(p)) == NULL) return MP_MEMORY; } else { if (!s_pad(c, osize)) return MP_MEMORY; out = MP_DIGITS(c); } ZERO(out, osize); s_ksqr(MP_DIGITS(a), out, MP_USED(a)); /* Get rid of whatever memory c was already using, and fix up its fields to reflect the new digit array it's using */ if (out != MP_DIGITS(c)) { if ((void *) MP_DIGITS(c) != (void *) c) s_free(MP_DIGITS(c)); MP_DIGITS(c) = out; MP_ALLOC(c) = p; } MP_USED(c) = osize; /* might not be true, but we'll fix it ... */ CLAMP(c); /* ... right here */ MP_SIGN(c) = MP_ZPOS; return MP_OK; } mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r) { int cmp, lg; mp_result res = MP_OK; mp_int qout, rout; mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b); DECLARE_TEMP(2); CHECK(a != NULL && b != NULL && q != r); if (CMPZ(b) == 0) return MP_UNDEF; else if ((cmp = s_ucmp(a, b)) < 0) { /* If |a| < |b|, no division is required: q = 0, r = a */ if (r && (res = mp_int_copy(a, r)) != MP_OK) return res; if (q) mp_int_zero(q); return MP_OK; } else if (cmp == 0) { /* If |a| = |b|, no division is required: q = 1 or -1, r = 0 */ if (r) mp_int_zero(r); if (q) { mp_int_zero(q); q->digits[0] = 1; if (sa != sb) MP_SIGN(q) = MP_NEG; } return MP_OK; } /* When |a| > |b|, real division is required. We need someplace to store quotient and remainder, but q and r are allowed to be NULL or to overlap with the inputs. */ if ((lg = s_isp2(b)) < 0) { if (q && b != q) { if ((res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP; else qout = q; } else { qout = LAST_TEMP(); SETUP(mp_int_init_copy(LAST_TEMP(), a)); } if (r && a != r) { if ((res = mp_int_copy(b, r)) != MP_OK) goto CLEANUP; else rout = r; } else { rout = LAST_TEMP(); SETUP(mp_int_init_copy(LAST_TEMP(), b)); } if ((res = s_udiv_knuth(qout, rout)) != MP_OK) goto CLEANUP; } else { if (q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP; if (r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP; if (q) s_qdiv(q, (mp_size) lg); qout = q; if (r) s_qmod(r, (mp_size) lg); rout = r; } /* Recompute signs for output */ if (rout) { MP_SIGN(rout) = sa; if (CMPZ(rout) == 0) MP_SIGN(rout) = MP_ZPOS; } if (qout) { MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG; if (CMPZ(qout) == 0) MP_SIGN(qout) = MP_ZPOS; } if (q && (res = mp_int_copy(qout, q)) != MP_OK) goto CLEANUP; if (r && (res = mp_int_copy(rout, r)) != MP_OK) goto CLEANUP; CLEANUP_TEMP(); return res; } mp_result mp_int_mod(mp_int a, mp_int m, mp_int c) { mp_result res; mpz_t tmp; mp_int out; if (m == c) { mp_int_init(&tmp); out = &tmp; } else { out = c; } if ((res = mp_int_div(a, m, NULL, out)) != MP_OK) goto CLEANUP; if (CMPZ(out) < 0) res = mp_int_add(out, m, c); else res = mp_int_copy(out, c); CLEANUP: if (out != c) mp_int_clear(&tmp); return res; } mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r) { mpz_t vtmp, rtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; mp_result res; mp_int_init(&rtmp); s_fake(&vtmp, value, vbuf); if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK) goto CLEANUP; if (r) (void) mp_int_to_int(&rtmp, r); /* can't fail */ CLEANUP: mp_int_clear(&rtmp); return res; } mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r) { mp_result res = MP_OK; CHECK(a != NULL && p2 >= 0 && q != r); if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK) s_qdiv(q, (mp_size) p2); if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK) s_qmod(r, (mp_size) p2); return res; } mp_result mp_int_expt(mp_int a, mp_small b, mp_int c) { mpz_t t; mp_result res; unsigned int v = abs(b); CHECK(c != NULL); if (b < 0) return MP_RANGE; if ((res = mp_int_init_copy(&t, a)) != MP_OK) return res; (void) mp_int_set_value(c, 1); while (v != 0) { if (v & 1) { if ((res = mp_int_mul(c, &t, c)) != MP_OK) goto CLEANUP; } v >>= 1; if (v == 0) break; if ((res = mp_int_sqr(&t, &t)) != MP_OK) goto CLEANUP; } CLEANUP: mp_int_clear(&t); return res; } mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c) { mpz_t t; mp_result res; unsigned int v = abs(b); CHECK(c != NULL); if (b < 0) return MP_RANGE; if ((res = mp_int_init_value(&t, a)) != MP_OK) return res; (void) mp_int_set_value(c, 1); while (v != 0) { if (v & 1) { if ((res = mp_int_mul(c, &t, c)) != MP_OK) goto CLEANUP; } v >>= 1; if (v == 0) break; if ((res = mp_int_sqr(&t, &t)) != MP_OK) goto CLEANUP; } CLEANUP: mp_int_clear(&t); return res; } mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c) { mpz_t t; mp_result res; unsigned ix, jx; CHECK(a != NULL && b != NULL && c != NULL); if (MP_SIGN(b) == MP_NEG) return MP_RANGE; if ((res = mp_int_init_copy(&t, a)) != MP_OK) return res; (void) mp_int_set_value(c, 1); for (ix = 0; ix < MP_USED(b); ++ix) { mp_digit d = b->digits[ix]; for (jx = 0; jx < MP_DIGIT_BIT; ++jx) { if (d & 1) { if ((res = mp_int_mul(c, &t, c)) != MP_OK) goto CLEANUP; } d >>= 1; if (d == 0 && ix + 1 == MP_USED(b)) break; if ((res = mp_int_sqr(&t, &t)) != MP_OK) goto CLEANUP; } } CLEANUP: mp_int_clear(&t); return res; } int mp_int_compare(mp_int a, mp_int b) { mp_sign sa; CHECK(a != NULL && b != NULL); sa = MP_SIGN(a); if (sa == MP_SIGN(b)) { int cmp = s_ucmp(a, b); /* If they're both zero or positive, the normal comparison applies; if both negative, the sense is reversed. */ if (sa == MP_ZPOS) return cmp; else return -cmp; } else { if (sa == MP_ZPOS) return 1; else return -1; } } int mp_int_compare_unsigned(mp_int a, mp_int b) { NRCHECK(a != NULL && b != NULL); return s_ucmp(a, b); } int mp_int_compare_zero(mp_int z) { NRCHECK(z != NULL); if (MP_USED(z) == 1 && z->digits[0] == 0) return 0; else if (MP_SIGN(z) == MP_ZPOS) return 1; else return -1; } int mp_int_compare_value(mp_int z, mp_small value) { mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS; int cmp; CHECK(z != NULL); if (vsign == MP_SIGN(z)) { cmp = s_vcmp(z, value); return (vsign == MP_ZPOS) ? cmp : -cmp; } else { return (value < 0) ? 1 : -1; } } int mp_int_compare_uvalue(mp_int z, mp_usmall uv) { CHECK(z != NULL); if (MP_SIGN(z) == MP_NEG) return -1; else return s_uvcmp(z, uv); } mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c) { mp_result res; mp_size um; mp_int s; DECLARE_TEMP(3); CHECK(a != NULL && b != NULL && c != NULL && m != NULL); /* Zero moduli and negative exponents are not considered. */ if (CMPZ(m) == 0) return MP_UNDEF; if (CMPZ(b) < 0) return MP_RANGE; um = MP_USED(m); SETUP(mp_int_init_size(TEMP(0), 2 * um)); SETUP(mp_int_init_size(TEMP(1), 2 * um)); if (c == b || c == m) { SETUP(mp_int_init_size(TEMP(2), 2 * um)); s = TEMP(2); } else { s = c; } if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP; if ((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP; if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK) goto CLEANUP; res = mp_int_copy(s, c); CLEANUP_TEMP(); return res; } mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_exptmod(a, &vtmp, m, c); } mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c) { mpz_t vtmp; mp_digit vbuf[MP_VALUE_DIGITS(value)]; s_fake(&vtmp, value, vbuf); return mp_int_exptmod(&vtmp, b, m, c); } mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) { mp_result res; mp_size um; mp_int s; DECLARE_TEMP(2); CHECK(a && b && m && c); /* Zero moduli and negative exponents are not considered. */ if (CMPZ(m) == 0) return MP_UNDEF; if (CMPZ(b) < 0) return MP_RANGE; um = MP_USED(m); SETUP(mp_int_init_size(TEMP(0), 2 * um)); if (c == b || c == m) { SETUP(mp_int_init_size(TEMP(1), 2 * um)); s = TEMP(1); } else { s = c; } if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP; if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK) goto CLEANUP; res = mp_int_copy(s, c); CLEANUP_TEMP(); return res; } mp_result mp_int_redux_const(mp_int m, mp_int c) { CHECK(m != NULL && c != NULL && m != c); return s_brmu(c, m); } mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c) { mp_result res; mp_sign sa; DECLARE_TEMP(2); CHECK(a != NULL && m != NULL && c != NULL); if (CMPZ(a) == 0 || CMPZ(m) <= 0) return MP_RANGE; sa = MP_SIGN(a); /* need this for the result later */ for (last__ = 0; last__ < 2; ++last__) mp_int_init(LAST_TEMP()); if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK) goto CLEANUP; if (mp_int_compare_value(TEMP(0), 1) != 0) { res = MP_UNDEF; goto CLEANUP; } /* It is first necessary to constrain the value to the proper range */ if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK) goto CLEANUP; /* Now, if 'a' was originally negative, the value we have is actually the magnitude of the negative representative; to get the positive value we have to subtract from the modulus. Otherwise, the value is okay as it stands. */ if (sa == MP_NEG) res = mp_int_sub(m, TEMP(1), c); else res = mp_int_copy(TEMP(1), c); CLEANUP_TEMP(); return res; } /* Binary GCD algorithm due to Josef Stein, 1961 */ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c) { int ca, cb, k = 0; mpz_t u, v, t; mp_result res; CHECK(a != NULL && b != NULL && c != NULL); ca = CMPZ(a); cb = CMPZ(b); if (ca == 0 && cb == 0) return MP_UNDEF; else if (ca == 0) return mp_int_abs(b, c); else if (cb == 0) return mp_int_abs(a, c); mp_int_init(&t); if ((res = mp_int_init_copy(&u, a)) != MP_OK) goto U; if ((res = mp_int_init_copy(&v, b)) != MP_OK) goto V; MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS; { /* Divide out common factors of 2 from u and v */ int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v); k = MIN(div2_u, div2_v); s_qdiv(&u, (mp_size) k); s_qdiv(&v, (mp_size) k); } if (mp_int_is_odd(&u)) { if ((res = mp_int_neg(&v, &t)) != MP_OK) goto CLEANUP; } else { if ((res = mp_int_copy(&u, &t)) != MP_OK) goto CLEANUP; } for (;;) { s_qdiv(&t, s_dp2k(&t)); if (CMPZ(&t) > 0) { if ((res = mp_int_copy(&t, &u)) != MP_OK) goto CLEANUP; } else { if ((res = mp_int_neg(&t, &v)) != MP_OK) goto CLEANUP; } if ((res = mp_int_sub(&u, &v, &t)) != MP_OK) goto CLEANUP; if (CMPZ(&t) == 0) break; } if ((res = mp_int_abs(&u, c)) != MP_OK) goto CLEANUP; if (!s_qmul(c, (mp_size) k)) res = MP_MEMORY; CLEANUP: mp_int_clear(&v); V: mp_int_clear(&u); U: mp_int_clear(&t); return res; } /* This is the binary GCD algorithm again, but this time we keep track of the elementary matrix operations as we go, so we can get values x and y satisfying c = ax + by. */ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y) { int k, ca, cb; mp_result res; DECLARE_TEMP(8); CHECK(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL)); ca = CMPZ(a); cb = CMPZ(b); if (ca == 0 && cb == 0) return MP_UNDEF; else if (ca == 0) { if ((res = mp_int_abs(b, c)) != MP_OK) return res; mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK; } else if (cb == 0) { if ((res = mp_int_abs(a, c)) != MP_OK) return res; (void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK; } /* Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */ for (last__ = 0; last__ < 4; ++last__) mp_int_init(LAST_TEMP()); TEMP(0)->digits[0] = 1; TEMP(3)->digits[0] = 1; SETUP(mp_int_init_copy(TEMP(4), a)); SETUP(mp_int_init_copy(TEMP(5), b)); /* We will work with absolute values here */ MP_SIGN(TEMP(4)) = MP_ZPOS; MP_SIGN(TEMP(5)) = MP_ZPOS; { /* Divide out common factors of 2 from u and v */ int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5)); k = MIN(div2_u, div2_v); s_qdiv(TEMP(4), k); s_qdiv(TEMP(5), k); } SETUP(mp_int_init_copy(TEMP(6), TEMP(4))); SETUP(mp_int_init_copy(TEMP(7), TEMP(5))); for (;;) { while (mp_int_is_even(TEMP(4))) { s_qdiv(TEMP(4), 1); if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) { if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK) goto CLEANUP; } s_qdiv(TEMP(0), 1); s_qdiv(TEMP(1), 1); } while (mp_int_is_even(TEMP(5))) { s_qdiv(TEMP(5), 1); if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) { if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK) goto CLEANUP; } s_qdiv(TEMP(2), 1); s_qdiv(TEMP(3), 1); } if (mp_int_compare(TEMP(4), TEMP(5)) >= 0) { if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP; } else { if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP; } if (CMPZ(TEMP(4)) == 0) { if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP; if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP; if (c) { if (!s_qmul(TEMP(5), k)) { res = MP_MEMORY; goto CLEANUP; } res = mp_int_copy(TEMP(5), c); } break; } } CLEANUP_TEMP(); return res; } mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c) { mpz_t lcm; mp_result res; CHECK(a != NULL && b != NULL && c != NULL); /* Since a * b = gcd(a, b) * lcm(a, b), we can compute lcm(a, b) = (a / gcd(a, b)) * b. This formulation insures everything works even if the input variables share space. */ if ((res = mp_int_init(&lcm)) != MP_OK) return res; if ((res = mp_int_gcd(a, b, &lcm)) != MP_OK) goto CLEANUP; if ((res = mp_int_div(a, &lcm, &lcm, NULL)) != MP_OK) goto CLEANUP; if ((res = mp_int_mul(&lcm, b, &lcm)) != MP_OK) goto CLEANUP; res = mp_int_copy(&lcm, c); CLEANUP: mp_int_clear(&lcm); return res; } int mp_int_divisible_value(mp_int a, mp_small v) { mp_small rem = 0; if (mp_int_div_value(a, v, NULL, &rem) != MP_OK) return 0; return rem == 0; } int mp_int_is_pow2(mp_int z) { CHECK(z != NULL); return s_isp2(z); } /* Implementation of Newton's root finding method, based loosely on a patch contributed by Hal Finkel modified by M. J. Fromberger. */ mp_result mp_int_root(mp_int a, mp_small b, mp_int c) { mp_result res = MP_OK; int flips = 0; DECLARE_TEMP(5); CHECK(a != NULL && c != NULL && b > 0); if (b == 1) { return mp_int_copy(a, c); } if (MP_SIGN(a) == MP_NEG) { if (b % 2 == 0) return MP_UNDEF; /* root does not exist for negative a with even b */ else flips = 1; } SETUP(mp_int_init_copy(LAST_TEMP(), a)); SETUP(mp_int_init_copy(LAST_TEMP(), a)); SETUP(mp_int_init(LAST_TEMP())); SETUP(mp_int_init(LAST_TEMP())); SETUP(mp_int_init(LAST_TEMP())); (void) mp_int_abs(TEMP(0), TEMP(0)); (void) mp_int_abs(TEMP(1), TEMP(1)); for (;;) { if ((res = mp_int_expt(TEMP(1), b, TEMP(2))) != MP_OK) goto CLEANUP; if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0) break; if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP; if ((res = mp_int_expt(TEMP(1), b - 1, TEMP(3))) != MP_OK) goto CLEANUP; if ((res = mp_int_mul_value(TEMP(3), b, TEMP(3))) != MP_OK) goto CLEANUP; if ((res = mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)) != MP_OK) goto CLEANUP; if ((res = mp_int_sub(TEMP(1), TEMP(4), TEMP(4))) != MP_OK) goto CLEANUP; if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) { if ((res = mp_int_sub_value(TEMP(4), 1, TEMP(4))) != MP_OK) goto CLEANUP; } if ((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK) goto CLEANUP; } if ((res = mp_int_copy(TEMP(1), c)) != MP_OK) goto CLEANUP; /* If the original value of a was negative, flip the output sign. */ if (flips) (void) mp_int_neg(c, c); /* cannot fail */ CLEANUP_TEMP(); return res; } mp_result mp_int_to_int(mp_int z, mp_small *out) { mp_usmall uv = 0; mp_size uz; mp_digit *dz; mp_sign sz; CHECK(z != NULL); /* Make sure the value is representable as a small integer */ sz = MP_SIGN(z); if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) || mp_int_compare_value(z, MP_SMALL_MIN) < 0) return MP_RANGE; uz = MP_USED(z); dz = MP_DIGITS(z) + uz - 1; while (uz > 0) { uv <<= MP_DIGIT_BIT/2; uv = (uv << (MP_DIGIT_BIT/2)) | *dz--; --uz; } if (out) *out = (sz == MP_NEG) ? -(mp_small)uv : (mp_small)uv; return MP_OK; } mp_result mp_int_to_uint(mp_int z, mp_usmall *out) { mp_usmall uv = 0; mp_size uz; mp_digit *dz; mp_sign sz; CHECK(z != NULL); /* Make sure the value is representable as an unsigned small integer */ sz = MP_SIGN(z); if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0) return MP_RANGE; uz = MP_USED(z); dz = MP_DIGITS(z) + uz - 1; while (uz > 0) { uv <<= MP_DIGIT_BIT/2; uv = (uv << (MP_DIGIT_BIT/2)) | *dz--; --uz; } if (out) *out = uv; return MP_OK; } mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit) { mp_result res; int cmp = 0; CHECK(z != NULL && str != NULL && limit >= 2); if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) return MP_RANGE; if (CMPZ(z) == 0) { *str++ = s_val2ch(0, 1); } else { mpz_t tmp; char *h, *t; if ((res = mp_int_init_copy(&tmp, z)) != MP_OK) return res; if (MP_SIGN(z) == MP_NEG) { *str++ = '-'; --limit; } h = str; /* Generate digits in reverse order until finished or limit reached */ for (/* */; limit > 0; --limit) { mp_digit d; if ((cmp = CMPZ(&tmp)) == 0) break; d = s_ddiv(&tmp, (mp_digit)radix); *str++ = s_val2ch(d, 1); } t = str - 1; /* Put digits back in correct output order */ while (h < t) { char tc = *h; *h++ = *t; *t-- = tc; } mp_int_clear(&tmp); } *str = '\0'; if (cmp == 0) return MP_OK; else return MP_TRUNC; } mp_result mp_int_string_len(mp_int z, mp_size radix) { int len; CHECK(z != NULL); if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) return MP_RANGE; len = s_outlen(z, radix) + 1; /* for terminator */ /* Allow for sign marker on negatives */ if (MP_SIGN(z) == MP_NEG) len += 1; return len; } /* Read zero-terminated string into z */ mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str) { return mp_int_read_cstring(z, radix, str, NULL); } mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end) { int ch; CHECK(z != NULL && str != NULL); if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX) return MP_RANGE; /* Skip leading whitespace */ while (isspace((int)*str)) ++str; /* Handle leading sign tag (+/-, positive default) */ switch (*str) { case '-': MP_SIGN(z) = MP_NEG; ++str; break; case '+': ++str; /* fallthrough */ default: MP_SIGN(z) = MP_ZPOS; break; } /* Skip leading zeroes */ while ((ch = s_ch2val(*str, radix)) == 0) ++str; /* Make sure there is enough space for the value */ if (!s_pad(z, s_inlen(strlen(str), radix))) return MP_MEMORY; MP_USED(z) = 1; z->digits[0] = 0; while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) { s_dmul(z, (mp_digit)radix); s_dadd(z, (mp_digit)ch); ++str; } CLAMP(z); /* Override sign for zero, even if negative specified. */ if (CMPZ(z) == 0) MP_SIGN(z) = MP_ZPOS; if (end != NULL) *end = (char *)str; /* Return a truncation error if the string has unprocessed characters remaining, so the caller can tell if the whole string was done */ if (*str != '\0') return MP_TRUNC; else return MP_OK; } mp_result mp_int_count_bits(mp_int z) { mp_size nbits = 0, uz; mp_digit d; CHECK(z != NULL); uz = MP_USED(z); if (uz == 1 && z->digits[0] == 0) return 1; --uz; nbits = uz * MP_DIGIT_BIT; d = z->digits[uz]; while (d != 0) { d >>= 1; ++nbits; } return nbits; } mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit) { static const int PAD_FOR_2C = 1; mp_result res; int limpos = limit; CHECK(z != NULL && buf != NULL); res = s_tobin(z, buf, &limpos, PAD_FOR_2C); if (MP_SIGN(z) == MP_NEG) s_2comp(buf, limpos); return res; } mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len) { mp_size need, i; unsigned char *tmp; mp_digit *dz; CHECK(z != NULL && buf != NULL && len > 0); /* Figure out how many digits are needed to represent this value */ need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; if (!s_pad(z, need)) return MP_MEMORY; mp_int_zero(z); /* If the high-order bit is set, take the 2's complement before reading the value (it will be restored afterward) */ if (buf[0] >> (CHAR_BIT - 1)) { MP_SIGN(z) = MP_NEG; s_2comp(buf, len); } dz = MP_DIGITS(z); for (tmp = buf, i = len; i > 0; --i, ++tmp) { s_qmul(z, (mp_size) CHAR_BIT); *dz |= *tmp; } /* Restore 2's complement if we took it before */ if (MP_SIGN(z) == MP_NEG) s_2comp(buf, len); return MP_OK; } mp_result mp_int_binary_len(mp_int z) { mp_result res = mp_int_count_bits(z); int bytes = mp_int_unsigned_len(z); if (res <= 0) return res; bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT; /* If the highest-order bit falls exactly on a byte boundary, we need to pad with an extra byte so that the sign will be read correctly when reading it back in. */ if (bytes * CHAR_BIT == res) ++bytes; return bytes; } mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit) { static const int NO_PADDING = 0; CHECK(z != NULL && buf != NULL); return s_tobin(z, buf, &limit, NO_PADDING); } mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len) { mp_size need, i; unsigned char *tmp; CHECK(z != NULL && buf != NULL && len > 0); /* Figure out how many digits are needed to represent this value */ need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT; if (!s_pad(z, need)) return MP_MEMORY; mp_int_zero(z); for (tmp = buf, i = len; i > 0; --i, ++tmp) { (void) s_qmul(z, CHAR_BIT); *MP_DIGITS(z) |= *tmp; } return MP_OK; } mp_result mp_int_unsigned_len(mp_int z) { mp_result res = mp_int_count_bits(z); int bytes; if (res <= 0) return res; bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT; return bytes; } const char *mp_error_string(mp_result res) { int ix; if (res > 0) return s_unknown_err; res = -res; for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix) ; if (s_error_msg[ix] != NULL) return s_error_msg[ix]; else return s_unknown_err; } /*------------------------------------------------------------------------*/ /* Private functions for internal use. These make assumptions. */ STATIC mp_digit *s_alloc(mp_size num) { mp_digit *out = malloc(num * sizeof(mp_digit)); assert(out != NULL); /* for debugging */ #if DEBUG > 1 { mp_digit v = (mp_digit) 0xdeadbeef; int ix; for (ix = 0; ix < num; ++ix) out[ix] = v; } #endif return out; } STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize) { #if DEBUG > 1 mp_digit *new = s_alloc(nsize); int ix; for (ix = 0; ix < nsize; ++ix) new[ix] = (mp_digit) 0xdeadbeef; memcpy(new, old, osize * sizeof(mp_digit)); #else mp_digit *new = realloc(old, nsize * sizeof(mp_digit)); assert(new != NULL); /* for debugging */ #endif return new; } STATIC void s_free(void *ptr) { free(ptr); } STATIC int s_pad(mp_int z, mp_size min) { if (MP_ALLOC(z) < min) { mp_size nsize = ROUND_PREC(min); mp_digit *tmp; if ((void *)z->digits == (void *)z) { if ((tmp = s_alloc(nsize)) == NULL) return 0; COPY(MP_DIGITS(z), tmp, MP_USED(z)); } else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL) return 0; MP_DIGITS(z) = tmp; MP_ALLOC(z) = nsize; } return 1; } /* Note: This will not work correctly when value == MP_SMALL_MIN */ STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]) { mp_usmall uv = (mp_usmall) (value < 0) ? -value : value; s_ufake(z, uv, vbuf); if (value < 0) z->sign = MP_NEG; } STATIC void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]) { mp_size ndig = (mp_size) s_uvpack(value, vbuf); z->used = ndig; z->alloc = MP_VALUE_DIGITS(value); z->sign = MP_ZPOS; z->digits = vbuf; } STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len) { mp_digit *dat = da + len - 1, *dbt = db + len - 1; for (/* */; len != 0; --len, --dat, --dbt) { if (*dat > *dbt) return 1; else if (*dat < *dbt) return -1; } return 0; } STATIC int s_uvpack(mp_usmall uv, mp_digit t[]) { int ndig = 0; if (uv == 0) t[ndig++] = 0; else { while (uv != 0) { t[ndig++] = (mp_digit) uv; uv >>= MP_DIGIT_BIT/2; uv >>= MP_DIGIT_BIT/2; } } return ndig; } STATIC int s_ucmp(mp_int a, mp_int b) { mp_size ua = MP_USED(a), ub = MP_USED(b); if (ua > ub) return 1; else if (ub > ua) return -1; else return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua); } STATIC int s_vcmp(mp_int a, mp_small v) { mp_usmall uv = (mp_usmall) (v < 0) ? -v : v; return s_uvcmp(a, uv); } STATIC int s_uvcmp(mp_int a, mp_usmall uv) { mpz_t vtmp; mp_digit vdig[MP_VALUE_DIGITS(uv)]; s_ufake(&vtmp, uv, vdig); return s_ucmp(a, &vtmp); } STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b) { mp_size pos; mp_word w = 0; /* Insure that da is the longer of the two to simplify later code */ if (size_b > size_a) { SWAP(mp_digit *, da, db); SWAP(mp_size, size_a, size_b); } /* Add corresponding digits until the shorter number runs out */ for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { w = w + (mp_word) *da + (mp_word) *db; *dc = LOWER_HALF(w); w = UPPER_HALF(w); } /* Propagate carries as far as necessary */ for (/* */; pos < size_a; ++pos, ++da, ++dc) { w = w + *da; *dc = LOWER_HALF(w); w = UPPER_HALF(w); } /* Return carry out */ return (mp_digit)w; } STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b) { mp_size pos; mp_word w = 0; /* We assume that |a| >= |b| so this should definitely hold */ assert(size_a >= size_b); /* Subtract corresponding digits and propagate borrow */ for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) { w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ (mp_word)*da) - w - (mp_word)*db; *dc = LOWER_HALF(w); w = (UPPER_HALF(w) == 0); } /* Finish the subtraction for remaining upper digits of da */ for (/* */; pos < size_a; ++pos, ++da, ++dc) { w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */ (mp_word)*da) - w; *dc = LOWER_HALF(w); w = (UPPER_HALF(w) == 0); } /* If there is a borrow out at the end, it violates the precondition */ assert(w == 0); } STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b) { mp_size bot_size; /* Make sure b is the smaller of the two input values */ if (size_b > size_a) { SWAP(mp_digit *, da, db); SWAP(mp_size, size_a, size_b); } /* Insure that the bottom is the larger half in an odd-length split; the code below relies on this being true. */ bot_size = (size_a + 1) / 2; /* If the values are big enough to bother with recursion, use the Karatsuba algorithm to compute the product; otherwise use the normal multiplication algorithm */ if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size) { mp_digit *t1, *t2, *t3, carry; mp_digit *a_top = da + bot_size; mp_digit *b_top = db + bot_size; mp_size at_size = size_a - bot_size; mp_size bt_size = size_b - bot_size; mp_size buf_size = 2 * bot_size; /* Do a single allocation for all three temporary buffers needed; each buffer must be big enough to hold the product of two bottom halves, and one buffer needs space for the completed product; twice the space is plenty. */ if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0; t2 = t1 + buf_size; t3 = t2 + buf_size; ZERO(t1, 4 * buf_size); /* t1 and t2 are initially used as temporaries to compute the inner product (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0 */ carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */ t1[bot_size] = carry; carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */ t2[bot_size] = carry; (void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */ /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that we're left with only the pieces we want: t3 = a1b0 + a0b1 */ ZERO(t1, buf_size); ZERO(t2, buf_size); (void) s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */ (void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */ /* Subtract out t1 and t2 to get the inner product */ s_usub(t3, t1, t3, buf_size + 2, buf_size); s_usub(t3, t2, t3, buf_size + 2, buf_size); /* Assemble the output value */ COPY(t1, dc, buf_size); carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size); assert(carry == 0); carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size, buf_size, buf_size); assert(carry == 0); s_free(t1); /* note t2 and t3 are just internal pointers to t1 */ } else { s_umul(da, db, dc, size_a, size_b); } return 1; } STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a, mp_size size_b) { mp_size a, b; mp_word w; for (a = 0; a < size_a; ++a, ++dc, ++da) { mp_digit *dct = dc; mp_digit *dbt = db; if (*da == 0) continue; w = 0; for (b = 0; b < size_b; ++b, ++dbt, ++dct) { w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct; *dct = LOWER_HALF(w); w = UPPER_HALF(w); } *dct = (mp_digit)w; } } STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a) { if (multiply_threshold && size_a > multiply_threshold) { mp_size bot_size = (size_a + 1) / 2; mp_digit *a_top = da + bot_size; mp_digit *t1, *t2, *t3, carry; mp_size at_size = size_a - bot_size; mp_size buf_size = 2 * bot_size; if ((t1 = s_alloc(4 * buf_size)) == NULL) return 0; t2 = t1 + buf_size; t3 = t2 + buf_size; ZERO(t1, 4 * buf_size); (void) s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */ (void) s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */ (void) s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */ /* Quick multiply t3 by 2, shifting left (can't overflow) */ { int i, top = bot_size + at_size; mp_word w, save = 0; for (i = 0; i < top; ++i) { w = t3[i]; w = (w << 1) | save; t3[i] = LOWER_HALF(w); save = UPPER_HALF(w); } t3[i] = LOWER_HALF(save); } /* Assemble the output value */ COPY(t1, dc, 2 * bot_size); carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size); assert(carry == 0); carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size, buf_size, buf_size); assert(carry == 0); s_free(t1); /* note that t2 and t2 are internal pointers only */ } else { s_usqr(da, dc, size_a); } return 1; } STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a) { mp_size i, j; mp_word w; for (i = 0; i < size_a; ++i, dc += 2, ++da) { mp_digit *dct = dc, *dat = da; if (*da == 0) continue; /* Take care of the first digit, no rollover */ w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct; *dct = LOWER_HALF(w); w = UPPER_HALF(w); ++dat; ++dct; for (j = i + 1; j < size_a; ++j, ++dat, ++dct) { mp_word t = (mp_word)*da * (mp_word)*dat; mp_word u = w + (mp_word)*dct, ov = 0; /* Check if doubling t will overflow a word */ if (HIGH_BIT_SET(t)) ov = 1; w = t + t; /* Check if adding u to w will overflow a word */ if (ADD_WILL_OVERFLOW(w, u)) ov = 1; w += u; *dct = LOWER_HALF(w); w = UPPER_HALF(w); if (ov) { w += MP_DIGIT_MAX; /* MP_RADIX */ ++w; } } w = w + *dct; *dct = (mp_digit)w; while ((w = UPPER_HALF(w)) != 0) { ++dct; w = w + *dct; *dct = LOWER_HALF(w); } assert(w == 0); } } STATIC void s_dadd(mp_int a, mp_digit b) { mp_word w = 0; mp_digit *da = MP_DIGITS(a); mp_size ua = MP_USED(a); w = (mp_word)*da + b; *da++ = LOWER_HALF(w); w = UPPER_HALF(w); for (ua -= 1; ua > 0; --ua, ++da) { w = (mp_word)*da + w; *da = LOWER_HALF(w); w = UPPER_HALF(w); } if (w) { *da = (mp_digit)w; MP_USED(a) += 1; } } STATIC void s_dmul(mp_int a, mp_digit b) { mp_word w = 0; mp_digit *da = MP_DIGITS(a); mp_size ua = MP_USED(a); while (ua > 0) { w = (mp_word)*da * b + w; *da++ = LOWER_HALF(w); w = UPPER_HALF(w); --ua; } if (w) { *da = (mp_digit)w; MP_USED(a) += 1; } } STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a) { mp_word w = 0; while (size_a > 0) { w = (mp_word)*da++ * (mp_word)b + w; *dc++ = LOWER_HALF(w); w = UPPER_HALF(w); --size_a; } if (w) *dc = LOWER_HALF(w); } STATIC mp_digit s_ddiv(mp_int a, mp_digit b) { mp_word w = 0, qdigit; mp_size ua = MP_USED(a); mp_digit *da = MP_DIGITS(a) + ua - 1; for (/* */; ua > 0; --ua, --da) { w = (w << MP_DIGIT_BIT) | *da; if (w >= b) { qdigit = w / b; w = w % b; } else { qdigit = 0; } *da = (mp_digit)qdigit; } CLAMP(a); return (mp_digit)w; } STATIC void s_qdiv(mp_int z, mp_size p2) { mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT; mp_size uz = MP_USED(z); if (ndig) { mp_size mark; mp_digit *to, *from; if (ndig >= uz) { mp_int_zero(z); return; } to = MP_DIGITS(z); from = to + ndig; for (mark = ndig; mark < uz; ++mark) *to++ = *from++; MP_USED(z) = uz - ndig; } if (nbits) { mp_digit d = 0, *dz, save; mp_size up = MP_DIGIT_BIT - nbits; uz = MP_USED(z); dz = MP_DIGITS(z) + uz - 1; for (/* */; uz > 0; --uz, --dz) { save = *dz; *dz = (*dz >> nbits) | (d << up); d = save; } CLAMP(z); } if (MP_USED(z) == 1 && z->digits[0] == 0) MP_SIGN(z) = MP_ZPOS; } STATIC void s_qmod(mp_int z, mp_size p2) { mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT; mp_size uz = MP_USED(z); mp_digit mask = (1 << rest) - 1; if (start <= uz) { MP_USED(z) = start; z->digits[start - 1] &= mask; CLAMP(z); } } STATIC int s_qmul(mp_int z, mp_size p2) { mp_size uz, need, rest, extra, i; mp_digit *from, *to, d; if (p2 == 0) return 1; uz = MP_USED(z); need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT; /* Figure out if we need an extra digit at the top end; this occurs if the topmost `rest' bits of the high-order digit of z are not zero, meaning they will be shifted off the end if not preserved */ extra = 0; if (rest != 0) { mp_digit *dz = MP_DIGITS(z) + uz - 1; if ((*dz >> (MP_DIGIT_BIT - rest)) != 0) extra = 1; } if (!s_pad(z, uz + need + extra)) return 0; /* If we need to shift by whole digits, do that in one pass, then to back and shift by partial digits. */ if (need > 0) { from = MP_DIGITS(z) + uz - 1; to = from + need; for (i = 0; i < uz; ++i) *to-- = *from--; ZERO(MP_DIGITS(z), need); uz += need; } if (rest) { d = 0; for (i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) { mp_digit save = *from; *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest)); d = save; } d >>= (MP_DIGIT_BIT - rest); if (d != 0) { *from = d; uz += extra; } } MP_USED(z) = uz; CLAMP(z); return 1; } /* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z| The sign of the result is always zero/positive. */ STATIC int s_qsub(mp_int z, mp_size p2) { mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp; mp_size tdig = (p2 / MP_DIGIT_BIT), pos; mp_word w = 0; if (!s_pad(z, tdig + 1)) return 0; for (pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) { w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp; *zp = LOWER_HALF(w); w = UPPER_HALF(w) ? 0 : 1; } w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp; *zp = LOWER_HALF(w); assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */ MP_SIGN(z) = MP_ZPOS; CLAMP(z); return 1; } STATIC int s_dp2k(mp_int z) { int k = 0; mp_digit *dp = MP_DIGITS(z), d; if (MP_USED(z) == 1 && *dp == 0) return 1; while (*dp == 0) { k += MP_DIGIT_BIT; ++dp; } d = *dp; while ((d & 1) == 0) { d >>= 1; ++k; } return k; } STATIC int s_isp2(mp_int z) { mp_size uz = MP_USED(z), k = 0; mp_digit *dz = MP_DIGITS(z), d; while (uz > 1) { if (*dz++ != 0) return -1; k += MP_DIGIT_BIT; --uz; } d = *dz; while (d > 1) { if (d & 1) return -1; ++k; d >>= 1; } return (int) k; } STATIC int s_2expt(mp_int z, mp_small k) { mp_size ndig, rest; mp_digit *dz; ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT; rest = k % MP_DIGIT_BIT; if (!s_pad(z, ndig)) return 0; dz = MP_DIGITS(z); ZERO(dz, ndig); *(dz + ndig - 1) = (1 << rest); MP_USED(z) = ndig; return 1; } STATIC int s_norm(mp_int a, mp_int b) { mp_digit d = b->digits[MP_USED(b) - 1]; int k = 0; while (d < (mp_digit) (1 << (MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */ d <<= 1; ++k; } /* These multiplications can't fail */ if (k != 0) { (void) s_qmul(a, (mp_size) k); (void) s_qmul(b, (mp_size) k); } return k; } STATIC mp_result s_brmu(mp_int z, mp_int m) { mp_size um = MP_USED(m) * 2; if (!s_pad(z, um)) return MP_MEMORY; s_2expt(z, MP_DIGIT_BIT * um); return mp_int_div(z, m, z, NULL); } STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2) { mp_size um = MP_USED(m), umb_p1, umb_m1; umb_p1 = (um + 1) * MP_DIGIT_BIT; umb_m1 = (um - 1) * MP_DIGIT_BIT; if (mp_int_copy(x, q1) != MP_OK) return 0; /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */ s_qdiv(q1, umb_m1); UMUL(q1, mu, q2); s_qdiv(q2, umb_p1); /* Set x = x mod b^(k+1) */ s_qmod(x, umb_p1); /* Now, q is a guess for the quotient a / m. Compute x - q * m mod b^(k+1), replacing x. This may be off by a factor of 2m, but no more than that. */ UMUL(q2, m, q1); s_qmod(q1, umb_p1); (void) mp_int_sub(x, q1, x); /* can't fail */ /* The result may be < 0; if it is, add b^(k+1) to pin it in the proper range. */ if ((CMPZ(x) < 0) && !s_qsub(x, umb_p1)) return 0; /* If x > m, we need to back it off until it is in range. This will be required at most twice. */ if (mp_int_compare(x, m) >= 0) { (void) mp_int_sub(x, m, x); if (mp_int_compare(x, m) >= 0) (void) mp_int_sub(x, m, x); } /* At this point, x has been properly reduced. */ return 1; } /* Perform modular exponentiation using Barrett's method, where mu is the reduction constant for m. Assumes a < m, b > 0. */ STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c) { mp_digit *db, *dbt, umu, d; mp_result res; DECLARE_TEMP(3); umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1; while (last__ < 3) { SETUP(mp_int_init_size(LAST_TEMP(), 4 * umu)); ZERO(MP_DIGITS(TEMP(last__ - 1)), MP_ALLOC(TEMP(last__ - 1))); } (void) mp_int_set_value(c, 1); /* Take care of low-order digits */ while (db < dbt) { int i; for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) { if (d & 1) { /* The use of a second temporary avoids allocation */ UMUL(c, a, TEMP(0)); if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { res = MP_MEMORY; goto CLEANUP; } mp_int_copy(TEMP(0), c); } USQR(a, TEMP(0)); assert(MP_SIGN(TEMP(0)) == MP_ZPOS); if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { res = MP_MEMORY; goto CLEANUP; } assert(MP_SIGN(TEMP(0)) == MP_ZPOS); mp_int_copy(TEMP(0), a); } ++db; } /* Take care of highest-order digit */ d = *dbt; for (;;) { if (d & 1) { UMUL(c, a, TEMP(0)); if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { res = MP_MEMORY; goto CLEANUP; } mp_int_copy(TEMP(0), c); } d >>= 1; if (!d) break; USQR(a, TEMP(0)); if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) { res = MP_MEMORY; goto CLEANUP; } (void) mp_int_copy(TEMP(0), a); } CLEANUP_TEMP(); return res; } #if 0 /* The s_udiv function produces incorrect results. For example, with test div:11141460315522012760862883825:48318382095:0,230584300062375935 commenting out the function for now and using s_udiv_knuth instead. STATIC mp_result s_udiv(mp_int a, mp_int b); */ /* Precondition: a >= b and b > 0 Postcondition: a' = a / b, b' = a % b */ STATIC mp_result s_udiv(mp_int a, mp_int b) { mpz_t q, r, t; mp_size ua, ub, qpos = 0; mp_digit *da, btop; mp_result res = MP_OK; int k, skip = 0; /* Force signs to positive */ MP_SIGN(a) = MP_ZPOS; MP_SIGN(b) = MP_ZPOS; /* Normalize, per Knuth */ k = s_norm(a, b); ua = MP_USED(a); ub = MP_USED(b); btop = b->digits[ub - 1]; if ((res = mp_int_init_size(&q, ua)) != MP_OK) return res; if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK) goto CLEANUP; da = MP_DIGITS(a); r.digits = da + ua - 1; /* The contents of r are shared with a */ r.used = 1; r.sign = MP_ZPOS; r.alloc = MP_ALLOC(a); ZERO(t.digits, t.alloc); /* Solve for quotient digits, store in q.digits in reverse order */ while (r.digits >= da) { assert(qpos <= q.alloc); if (s_ucmp(b, &r) > 0) { r.digits -= 1; r.used += 1; if (++skip > 1 && qpos > 0) q.digits[qpos++] = 0; CLAMP(&r); } else { mp_word pfx = r.digits[r.used - 1]; mp_word qdigit; if (r.used > 1 && pfx < btop) { pfx <<= MP_DIGIT_BIT / 2; pfx <<= MP_DIGIT_BIT / 2; pfx |= r.digits[r.used - 2]; } qdigit = pfx / btop; if (qdigit > MP_DIGIT_MAX) { qdigit = MP_DIGIT_MAX; } s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub); t.used = ub + 1; CLAMP(&t); while (s_ucmp(&t, &r) > 0) { --qdigit; (void) mp_int_sub(&t, b, &t); /* cannot fail */ } s_usub(r.digits, t.digits, r.digits, r.used, t.used); CLAMP(&r); q.digits[qpos++] = (mp_digit) qdigit; ZERO(t.digits, t.used); skip = 0; } } /* Put quotient digits in the correct order, and discard extra zeroes */ q.used = qpos; REV(mp_digit, q.digits, qpos); CLAMP(&q); /* Denormalize the remainder */ CLAMP(a); if (k != 0) s_qdiv(a, k); mp_int_copy(a, b); /* ok: 0 <= r < b */ mp_int_copy(&q, a); /* ok: q <= a */ mp_int_clear(&t); CLEANUP: mp_int_clear(&q); return res; } #endif /* Division of nonnegative integers This function implements division algorithm for unsigned multi-precision integers. The algorithm is based on Algorithm D from Knuth's "The Art of Computer Programming", 3rd ed. 1998, pg 272-273. We diverge from Knuth's algorithm in that we do not perform the subtraction from the remainder until we have determined that we have the correct quotient digit. This makes our algorithm less efficient that Knuth because we might have to perform multiple multiplication and comparison steps before the subtraction. The advantage is that it is easy to implement and ensure correctness without worrying about underflow from the subtraction. inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT) v a n digit integer in base b (b is 2^MP_DIGIT_BIT) n >= 1 m >= 0 outputs: u / v stored in u u % v stored in v */ STATIC mp_result s_udiv_knuth(mp_int u, mp_int v) { mpz_t q, r, t; mp_result res = MP_OK; int k,j; mp_size m,n; /* Force signs to positive */ MP_SIGN(u) = MP_ZPOS; MP_SIGN(v) = MP_ZPOS; /* Use simple division algorithm when v is only one digit long */ if (MP_USED(v) == 1) { mp_digit d, rem; d = v->digits[0]; rem = s_ddiv(u, d); mp_int_set_value(v, rem); return MP_OK; } /************************************************************/ /* Algorithm D */ /************************************************************/ /* The n and m variables are defined as used by Knuth. u is an n digit number with digits u_{n-1}..u_0. v is an n+m digit number with digits from v_{m+n-1}..v_0. We require that n > 1 and m >= 0 */ n = MP_USED(v); m = MP_USED(u) - n; assert(n > 1); assert(m >= 0); /************************************************************/ /* D1: Normalize. The normalization step provides the necessary condition for Theorem B, which states that the quotient estimate for q_j, call it qhat qhat = u_{j+n}u_{j+n-1} / v_{n-1} is bounded by qhat - 2 <= q_j <= qhat. That is, qhat is always greater than the actual quotient digit q, and it is never more than two larger than the actual quotient digit. */ k = s_norm(u, v); /* Extend size of u by one if needed. The algorithm begins with a value of u that has one more digit of input. The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0. If the multiplication did not increase the number of digits of u, we need to add a leading zero here. */ if (k == 0 || MP_USED(u) != m + n + 1) { if (!s_pad(u, m+n+1)) return MP_MEMORY; u->digits[m+n] = 0; u->used = m+n+1; } /* Add a leading 0 to v. The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need to add the leading zero to v here to ensure that the multiplication will produce the full n+1 digit result. */ if (!s_pad(v, n+1)) return MP_MEMORY; v->digits[n] = 0; /* Initialize temporary variables q and t. q allocates space for m+1 digits to store the quotient digits t allocates space for n+1 digits to hold the result of q_j*v */ if ((res = mp_int_init_size(&q, m + 1)) != MP_OK) return res; if ((res = mp_int_init_size(&t, n + 1)) != MP_OK) goto CLEANUP; /************************************************************/ /* D2: Initialize j */ j = m; r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */ r.used = n + 1; r.sign = MP_ZPOS; r.alloc = MP_ALLOC(u); ZERO(t.digits, t.alloc); /* Calculate the m+1 digits of the quotient result */ for (; j >= 0; j--) { /************************************************************/ /* D3: Calculate q' */ /* r->digits is aligned to position j of the number u */ mp_word pfx, qhat; pfx = r.digits[n]; pfx <<= MP_DIGIT_BIT / 2; pfx <<= MP_DIGIT_BIT / 2; pfx |= r.digits[n-1]; /* pfx = u_{j+n}{j+n-1} */ qhat = pfx / v->digits[n-1]; /* Check to see if qhat > b, and decrease qhat if so. Theorem B guarantess that qhat is at most 2 larger than the actual value, so it is possible that qhat is greater than the maximum value that will fit in a digit */ if (qhat > MP_DIGIT_MAX) qhat = MP_DIGIT_MAX; /************************************************************/ /* D4,D5,D6: Multiply qhat * v and test for a correct value of q We proceed a bit different than the way described by Knuth. This way is simpler but less efficent. Instead of doing the multiply and subtract then checking for underflow, we first do the multiply of qhat * v and see if it is larger than the current remainder r. If it is larger, we decrease qhat by one and try again. We may need to decrease qhat one more time before we get a value that is smaller than r. This way is less efficent than Knuth becuase we do more multiplies, but we do not need to worry about underflow this way. */ /* t = qhat * v */ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1; CLAMP(&t); /* Clamp r for the comparison. Comparisons do not like leading zeros. */ CLAMP(&r); if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */ qhat -= 1; /* try a smaller q */ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1; CLAMP(&t); if (s_ucmp(&t, &r) > 0) { /* would the remainder be negative? */ assert(qhat > 0); qhat -= 1; /* try a smaller q */ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, t.digits, n+1); t.used = n + 1; CLAMP(&t); } assert(s_ucmp(&t, &r) <= 0 && "The mathematics failed us."); } /* Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be n+1 digits long. */ r.used = n + 1; /************************************************************/ /* D4: Multiply and subtract */ /* note: The multiply was completed above so we only need to subtract here. **/ s_usub(r.digits, t.digits, r.digits, r.used, t.used); /************************************************************/ /* D5: Test remainder */ /* note: Not needed because we always check that qhat is the correct value * before performing the subtract. * Value cast to mp_digit to prevent warning, qhat has been clamped to MP_DIGIT_MAX */ q.digits[j] = (mp_digit)qhat; /************************************************************/ /* D6: Add back */ /* note: Not needed because we always check that qhat is the correct value * before performing the subtract. */ /************************************************************/ /* D7: Loop on j */ r.digits--; ZERO(t.digits, t.alloc); } /* Get rid of leading zeros in q */ q.used = m + 1; CLAMP(&q); /* Denormalize the remainder */ CLAMP(u); /* use u here because the r.digits pointer is off-by-one */ if (k != 0) s_qdiv(u, k); mp_int_copy(u, v); /* ok: 0 <= r < v */ mp_int_copy(&q, u); /* ok: q <= u */ mp_int_clear(&t); CLEANUP: mp_int_clear(&q); return res; } STATIC int s_outlen(mp_int z, mp_size r) { mp_result bits; double raw; assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX); bits = mp_int_count_bits(z); raw = (double)bits * s_log2[r]; return (int)(raw + 0.999999); } STATIC mp_size s_inlen(int len, mp_size r) { double raw = (double)len / s_log2[r]; mp_size bits = (mp_size)(raw + 0.5); return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1; } STATIC int s_ch2val(char c, int r) { int out; if (isdigit((unsigned char) c)) out = c - '0'; else if (r > 10 && isalpha((unsigned char) c)) out = toupper(c) - 'A' + 10; else return -1; return (out >= r) ? -1 : out; } STATIC char s_val2ch(int v, int caps) { assert(v >= 0); if (v < 10) return v + '0'; else { char out = (v - 10) + 'a'; if (caps) return toupper(out); else return out; } } STATIC void s_2comp(unsigned char *buf, int len) { int i; unsigned short s = 1; for (i = len - 1; i >= 0; --i) { unsigned char c = ~buf[i]; s = c + s; c = s & UCHAR_MAX; s >>= CHAR_BIT; buf[i] = c; } /* last carry out is ignored */ } STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad) { mp_size uz; mp_digit *dz; int pos = 0, limit = *limpos; uz = MP_USED(z); dz = MP_DIGITS(z); while (uz > 0 && pos < limit) { mp_digit d = *dz++; int i; for (i = sizeof(mp_digit); i > 0 && pos < limit; --i) { buf[pos++] = (unsigned char)d; d >>= CHAR_BIT; /* Don't write leading zeroes */ if (d == 0 && uz == 1) i = 0; /* exit loop without signaling truncation */ } /* Detect truncation (loop exited with pos >= limit) */ if (i > 0) break; --uz; } if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) { if (pos < limit) buf[pos++] = 0; else uz = 1; } /* Digits are in reverse order, fix that */ REV(unsigned char, buf, pos); /* Return the number of bytes actually written */ *limpos = pos; return (uz == 0) ? MP_OK : MP_TRUNC; } #if DEBUG void s_print(char *tag, mp_int z) { int i; fprintf(stderr, "%s: %c ", tag, (MP_SIGN(z) == MP_NEG) ? '-' : '+'); for (i = MP_USED(z) - 1; i >= 0; --i) fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]); fputc('\n', stderr); } void s_print_buf(char *tag, mp_digit *buf, mp_size num) { int i; fprintf(stderr, "%s: ", tag); for (i = num - 1; i >= 0; --i) fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]); fputc('\n', stderr); } #endif /* Here there be dragons */ isl-0.16.1/imath/imath.h0000644000175000017500000002174612341360211011667 00000000000000/* Name: imath.h Purpose: Arbitrary precision integer arithmetic routines. Author: M. J. Fromberger Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef IMATH_H_ #define IMATH_H_ #include #include #ifdef __cplusplus extern "C" { #endif typedef unsigned char mp_sign; typedef unsigned int mp_size; typedef int mp_result; typedef long mp_small; /* must be a signed type */ typedef unsigned long mp_usmall; /* must be an unsigned type */ /* Force building with uint64_t so that the library builds consistently * whether we build from the makefile or by embedding imath in another project. */ #undef USE_64BIT_WORDS #define USE_64BIT_WORDS #ifdef USE_64BIT_WORDS typedef uint32_t mp_digit; typedef uint64_t mp_word; #else typedef uint16_t mp_digit; typedef uint32_t mp_word; #endif typedef struct mpz { mp_digit single; mp_digit *digits; mp_size alloc; mp_size used; mp_sign sign; } mpz_t, *mp_int; #define MP_DIGITS(Z) ((Z)->digits) #define MP_ALLOC(Z) ((Z)->alloc) #define MP_USED(Z) ((Z)->used) #define MP_SIGN(Z) ((Z)->sign) extern const mp_result MP_OK; extern const mp_result MP_FALSE; extern const mp_result MP_TRUE; extern const mp_result MP_MEMORY; extern const mp_result MP_RANGE; extern const mp_result MP_UNDEF; extern const mp_result MP_TRUNC; extern const mp_result MP_BADARG; extern const mp_result MP_MINERR; #define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT) #define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT) #define MP_SMALL_MIN LONG_MIN #define MP_SMALL_MAX LONG_MAX #define MP_USMALL_MIN ULONG_MIN #define MP_USMALL_MAX ULONG_MAX #ifdef USE_64BIT_WORDS # define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1)) # define MP_WORD_MAX (UINT64_MAX) #else # define MP_DIGIT_MAX (UINT16_MAX * 1UL) # define MP_WORD_MAX (UINT32_MAX * 1UL) #endif #define MP_MIN_RADIX 2 #define MP_MAX_RADIX 36 /* Values with fewer than this many significant digits use the standard multiplication algorithm; otherwise, a recursive algorithm is used. Choose a value to suit your platform. */ #define MP_MULT_THRESH 22 #define MP_DEFAULT_PREC 8 /* default memory allocation, in digits */ extern const mp_sign MP_NEG; extern const mp_sign MP_ZPOS; #define mp_int_is_odd(Z) ((Z)->digits[0] & 1) #define mp_int_is_even(Z) !((Z)->digits[0] & 1) mp_result mp_int_init(mp_int z); mp_int mp_int_alloc(void); mp_result mp_int_init_size(mp_int z, mp_size prec); mp_result mp_int_init_copy(mp_int z, mp_int old); mp_result mp_int_init_value(mp_int z, mp_small value); mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue); mp_result mp_int_set_value(mp_int z, mp_small value); mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue); void mp_int_clear(mp_int z); void mp_int_free(mp_int z); mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */ void mp_int_swap(mp_int a, mp_int c); /* swap a, c */ void mp_int_zero(mp_int z); /* z = 0 */ mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */ mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */ mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */ mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c); mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */ mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c); mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */ mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c); mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c); mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */ mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */ mp_int q, mp_int r); /* r = a % b */ mp_result mp_int_div_value(mp_int a, mp_small value, /* q = a / value */ mp_int q, mp_small *r); /* r = a % value */ mp_result mp_int_div_pow2(mp_int a, mp_small p2, /* q = a / 2^p2 */ mp_int q, mp_int r); /* r = q % 2^p2 */ mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */ #define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R)) mp_result mp_int_expt(mp_int a, mp_small b, mp_int c); /* c = a^b */ mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c); /* c = a^b */ mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c); /* c = a^b */ int mp_int_compare(mp_int a, mp_int b); /* a <=> b */ int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */ int mp_int_compare_zero(mp_int z); /* a <=> 0 */ int mp_int_compare_value(mp_int z, mp_small v); /* a <=> v */ int mp_int_compare_uvalue(mp_int z, mp_usmall uv); /* a <=> uv */ /* Returns true if v|a, false otherwise (including errors) */ int mp_int_divisible_value(mp_int a, mp_small v); /* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */ int mp_int_is_pow2(mp_int z); mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c); /* c = a^b (mod m) */ mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c); /* c = a^v (mod m) */ mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c); /* c = v^b (mod m) */ mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c); /* c = a^b (mod m) */ mp_result mp_int_redux_const(mp_int m, mp_int c); mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */ mp_int x, mp_int y); /* c = ax + by */ mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c); /* c = lcm(a, b) */ mp_result mp_int_root(mp_int a, mp_small b, mp_int c); /* c = floor(a^{1/b}) */ #define mp_int_sqrt(a, c) mp_int_root(a, 2, c) /* c = floor(sqrt(a)) */ /* Convert to a small int, if representable; else MP_RANGE */ mp_result mp_int_to_int(mp_int z, mp_small *out); mp_result mp_int_to_uint(mp_int z, mp_usmall *out); /* Convert to nul-terminated string with the specified radix, writing at most limit characters including the nul terminator */ mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit); /* Return the number of characters required to represent z in the given radix. May over-estimate. */ mp_result mp_int_string_len(mp_int z, mp_size radix); /* Read zero-terminated string into z */ mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str); mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end); /* Return the number of significant bits in z */ mp_result mp_int_count_bits(mp_int z); /* Convert z to two's complement binary, writing at most limit bytes */ mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit); /* Read a two's complement binary value into z from the given buffer */ mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len); /* Return the number of bytes required to represent z in binary. */ mp_result mp_int_binary_len(mp_int z); /* Convert z to unsigned binary, writing at most limit bytes */ mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit); /* Read an unsigned binary value into z from the given buffer */ mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len); /* Return the number of bytes required to represent z as unsigned output */ mp_result mp_int_unsigned_len(mp_int z); /* Return a statically allocated string describing error code res */ const char *mp_error_string(mp_result res); #if DEBUG void s_print(char *tag, mp_int z); void s_print_buf(char *tag, mp_digit *buf, mp_size num); #endif #ifdef __cplusplus } #endif #endif /* end IMATH_H_ */ isl-0.16.1/imath/gmp_compat.h0000644000175000017500000001557312341360211012714 00000000000000/* Name: gmp_compat.h Purpose: Provide GMP compatiable routines for imath library Author: David Peixotto Copyright (c) 2012 Qualcomm Innovation Center, Inc. All rights reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef IMATH_GMP_COMPAT_H_ #define IMATH_GMP_COMPAT_H_ #include "imath.h" #include "imrat.h" #include #define GMPZAPI(fun) impz_ ## fun #define GMPQAPI(fun) impq_ ## fun #ifdef __cplusplus extern "C" { #endif /************************************************************************* * * Functions with direct translations * *************************************************************************/ /* gmp: mpq_clear */ void GMPQAPI(clear)(mp_rat x); /* gmp: mpq_cmp */ int GMPQAPI(cmp)(mp_rat op1, mp_rat op2); /* gmp: mpq_init */ void GMPQAPI(init)(mp_rat x); /* gmp: mpq_mul */ void GMPQAPI(mul)(mp_rat product, mp_rat multiplier, mp_rat multiplicand); /* gmp: mpq_set */ void GMPQAPI(set)(mp_rat rop, mp_rat op); /* gmp: mpz_abs */ void GMPZAPI(abs)(mp_int rop, mp_int op); /* gmp: mpz_add */ void GMPZAPI(add)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_clear */ void GMPZAPI(clear)(mp_int x); /* gmp: mpz_cmp_si */ int GMPZAPI(cmp_si)(mp_int op1, long op2); /* gmp: mpz_cmpabs */ int GMPZAPI(cmpabs)(mp_int op1, mp_int op2); /* gmp: mpz_cmp */ int GMPZAPI(cmp)(mp_int op1, mp_int op2); /* gmp: mpz_init */ void GMPZAPI(init)(mp_int x); /* gmp: mpz_mul */ void GMPZAPI(mul)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_neg */ void GMPZAPI(neg)(mp_int rop, mp_int op); /* gmp: mpz_set_si */ void GMPZAPI(set_si)(mp_int rop, long op); /* gmp: mpz_set */ void GMPZAPI(set)(mp_int rop, mp_int op); /* gmp: mpz_sub */ void GMPZAPI(sub)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_swap */ void GMPZAPI(swap)(mp_int rop1, mp_int rop2); /* gmp: mpq_sgn */ int GMPQAPI(sgn)(mp_rat op); /* gmp: mpz_sgn */ int GMPZAPI(sgn)(mp_int op); /* gmp: mpq_set_ui */ void GMPQAPI(set_ui)(mp_rat rop, unsigned long op1, unsigned long op2); /* gmp: mpz_set_ui */ void GMPZAPI(set_ui)(mp_int rop, unsigned long op); /* gmp: mpq_den_ref */ mp_int GMPQAPI(denref)(mp_rat op); /* gmp: mpq_num_ref */ mp_int GMPQAPI(numref)(mp_rat op); /* gmp: mpq_canonicalize */ void GMPQAPI(canonicalize)(mp_rat op); /************************************************************************* * * Functions that can be implemented as a combination of imath functions * *************************************************************************/ /* gmp: mpz_addmul */ void GMPZAPI(addmul)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_divexact */ void GMPZAPI(divexact)(mp_int q, mp_int n, mp_int d); /* gmp: mpz_divisible_p */ int GMPZAPI(divisible_p)(mp_int n, mp_int d); /* gmp: mpz_submul */ void GMPZAPI(submul)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_add_ui */ void GMPZAPI(add_ui)(mp_int rop, mp_int op1, unsigned long op2); /* gmp: mpz_divexact_ui */ void GMPZAPI(divexact_ui)(mp_int q, mp_int n, unsigned long d); /* gmp: mpz_mul_ui */ void GMPZAPI(mul_ui)(mp_int rop, mp_int op1, unsigned long op2); /* gmp: mpz_pow_ui */ void GMPZAPI(pow_ui)(mp_int rop, mp_int base, unsigned long exp); /* gmp: mpz_sub_ui */ void GMPZAPI(sub_ui)(mp_int rop, mp_int op1, unsigned long op2); /* gmp: mpz_fdiv_q_ui */ unsigned long GMPZAPI(fdiv_q_ui)(mp_int q, mp_int n, unsigned long d); /* gmp: mpz_sizeinbase */ size_t GMPZAPI(sizeinbase)(mp_int op, int base); /************************************************************************* * * Functions with different behavior in corner cases * *************************************************************************/ /* gmp: mpz_gcd */ /* gmp: When op1 = 0 and op2 = 0, return 0.*/ void GMPZAPI(gcd)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_get_str */ /* gmp: If str is NULL then allocate space using the default allocator. */ char* GMPZAPI(get_str)(char *str, int radix, mp_int op); /* gmp: mpq_get_str */ /* gmp: If str is NULL then allocate space using the default allocator. */ /* gmp: If value is a whole number do not print denomenator. */ /* TODO: Need to handle 0 values better. GMP prints 0/4 instead of 0.*/ char* GMPQAPI(get_str)(char *str, int radix, mp_rat op); /* gmp: mpz_set_str */ /* gmp: Allow and ignore spaces in string. */ int GMPZAPI(set_str)(mp_int rop, char *str, int base); /* gmp: mpq_set_str */ int GMPQAPI(set_str)(mp_rat rop, char *str, int base); /* gmp: mpz_get_ui */ /* gmp: Return least significant bits if value is too big for a long. */ unsigned long GMPZAPI(get_ui)(mp_int op); /* gmp: mpz_get_si */ /* gmp: Return least significant bits if value is too bit for a long. */ /* gmp: If value is too big for long, return the least significant (8*sizeof(long)-1) bits from the op and set the sign bit according to the sign of the op. */ long GMPZAPI(get_si)(mp_int op); /* gmp: mpz_lcm */ /* gmp: When op1 = 0 or op2 = 0, return 0.*/ /* gmp: The resutl of lcm(a,b) is always positive. */ void GMPZAPI(lcm)(mp_int rop, mp_int op1, mp_int op2); /* gmp: mpz_mul_2exp */ /* gmp: allow big values for op2 when op1 == 0 */ void GMPZAPI(mul_2exp)(mp_int rop, mp_int op1, unsigned long op2); /************************************************************************* * * Functions needing expanded functionality * *************************************************************************/ /* gmp: mpz_cdiv_q */ void GMPZAPI(cdiv_q)(mp_int q, mp_int n, mp_int d); /* gmp: mpz_fdiv_q */ void GMPZAPI(fdiv_q)(mp_int q, mp_int n, mp_int d); /* gmp: mpz_fdiv_r */ void GMPZAPI(fdiv_r)(mp_int r, mp_int n, mp_int d); /* gmp: mpz_tdiv_q */ void GMPZAPI(tdiv_q)(mp_int q, mp_int n, mp_int d); /* gmp: mpz_export */ void* GMPZAPI(export)(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int op); /* gmp: mpz_import */ void GMPZAPI(import)(mp_int rop, size_t count, int order, size_t size, int endian, size_t nails, const void* op); #ifdef __cplusplus } #endif #endif /* end IMATH_GMP_COMPAT_H_ */ isl-0.16.1/closure.c0000664000175000017500000000161412645737060011145 00000000000000#include #include #include int main(int argc, char **argv) { struct isl_ctx *ctx; struct isl_map *map; struct isl_options *options; isl_printer *p; int exact; options = isl_options_new_with_defaults(); assert(options); argc = isl_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&isl_options_args, options); p = isl_printer_to_file(ctx, stdout); map = isl_map_read_from_file(ctx, stdin); map = isl_map_transitive_closure(map, &exact); if (!exact) p = isl_printer_print_str(p, "# NOT exact\n"); p = isl_printer_print_map(p, map); p = isl_printer_end_line(p); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); p = isl_printer_print_str(p, "# coalesced\n"); p = isl_printer_print_map(p, map); p = isl_printer_end_line(p); isl_map_free(map); isl_printer_free(p); isl_ctx_free(ctx); return 0; } isl-0.16.1/isl_sample.c0000664000175000017500000010753312645737061011631 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_sample.h" #include #include #include #include "isl_equalities.h" #include "isl_tab.h" #include "isl_basis_reduction.h" #include #include #include #include static struct isl_vec *empty_sample(struct isl_basic_set *bset) { struct isl_vec *vec; vec = isl_vec_alloc(bset->ctx, 0); isl_basic_set_free(bset); return vec; } /* Construct a zero sample of the same dimension as bset. * As a special case, if bset is zero-dimensional, this * function creates a zero-dimensional sample point. */ static struct isl_vec *zero_sample(struct isl_basic_set *bset) { unsigned dim; struct isl_vec *sample; dim = isl_basic_set_total_dim(bset); sample = isl_vec_alloc(bset->ctx, 1 + dim); if (sample) { isl_int_set_si(sample->el[0], 1); isl_seq_clr(sample->el + 1, dim); } isl_basic_set_free(bset); return sample; } static struct isl_vec *interval_sample(struct isl_basic_set *bset) { int i; isl_int t; struct isl_vec *sample; bset = isl_basic_set_simplify(bset); if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return empty_sample(bset); if (bset->n_eq == 0 && bset->n_ineq == 0) return zero_sample(bset); sample = isl_vec_alloc(bset->ctx, 2); if (!sample) goto error; if (!bset) return NULL; isl_int_set_si(sample->block.data[0], 1); if (bset->n_eq > 0) { isl_assert(bset->ctx, bset->n_eq == 1, goto error); isl_assert(bset->ctx, bset->n_ineq == 0, goto error); if (isl_int_is_one(bset->eq[0][1])) isl_int_neg(sample->el[1], bset->eq[0][0]); else { isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]), goto error); isl_int_set(sample->el[1], bset->eq[0][0]); } isl_basic_set_free(bset); return sample; } isl_int_init(t); if (isl_int_is_one(bset->ineq[0][1])) isl_int_neg(sample->block.data[1], bset->ineq[0][0]); else isl_int_set(sample->block.data[1], bset->ineq[0][0]); for (i = 1; i < bset->n_ineq; ++i) { isl_seq_inner_product(sample->block.data, bset->ineq[i], 2, &t); if (isl_int_is_neg(t)) break; } isl_int_clear(t); if (i < bset->n_ineq) { isl_vec_free(sample); return empty_sample(bset); } isl_basic_set_free(bset); return sample; error: isl_basic_set_free(bset); isl_vec_free(sample); return NULL; } /* Find a sample integer point, if any, in bset, which is known * to have equalities. If bset contains no integer points, then * return a zero-length vector. * We simply remove the known equalities, compute a sample * in the resulting bset, using the specified recurse function, * and then transform the sample back to the original space. */ static struct isl_vec *sample_eq(struct isl_basic_set *bset, struct isl_vec *(*recurse)(struct isl_basic_set *)) { struct isl_mat *T; struct isl_vec *sample; if (!bset) return NULL; bset = isl_basic_set_remove_equalities(bset, &T, NULL); sample = recurse(bset); if (!sample || sample->size == 0) isl_mat_free(T); else sample = isl_mat_vec_product(T, sample); return sample; } /* Return a matrix containing the equalities of the tableau * in constraint form. The tableau is assumed to have * an associated bset that has been kept up-to-date. */ static struct isl_mat *tab_equalities(struct isl_tab *tab) { int i, j; int n_eq; struct isl_mat *eq; struct isl_basic_set *bset; if (!tab) return NULL; bset = isl_tab_peek_bset(tab); isl_assert(tab->mat->ctx, bset, return NULL); n_eq = tab->n_var - tab->n_col + tab->n_dead; if (tab->empty || n_eq == 0) return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var); if (n_eq == tab->n_var) return isl_mat_identity(tab->mat->ctx, tab->n_var); eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var); if (!eq) return NULL; for (i = 0, j = 0; i < tab->n_con; ++i) { if (tab->con[i].is_row) continue; if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead) continue; if (i < bset->n_eq) isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var); else isl_seq_cpy(eq->row[j], bset->ineq[i - bset->n_eq] + 1, tab->n_var); ++j; } isl_assert(bset->ctx, j == n_eq, goto error); return eq; error: isl_mat_free(eq); return NULL; } /* Compute and return an initial basis for the bounded tableau "tab". * * If the tableau is either full-dimensional or zero-dimensional, * the we simply return an identity matrix. * Otherwise, we construct a basis whose first directions correspond * to equalities. */ static struct isl_mat *initial_basis(struct isl_tab *tab) { int n_eq; struct isl_mat *eq; struct isl_mat *Q; tab->n_unbounded = 0; tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead; if (tab->empty || n_eq == 0 || n_eq == tab->n_var) return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var); eq = tab_equalities(tab); eq = isl_mat_left_hermite(eq, 0, NULL, &Q); if (!eq) return NULL; isl_mat_free(eq); Q = isl_mat_lin_to_aff(Q); return Q; } /* Compute the minimum of the current ("level") basis row over "tab" * and store the result in position "level" of "min". */ static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab, __isl_keep isl_vec *min, int level) { return isl_tab_min(tab, tab->basis->row[1 + level], ctx->one, &min->el[level], NULL, 0); } /* Compute the maximum of the current ("level") basis row over "tab" * and store the result in position "level" of "max". */ static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab, __isl_keep isl_vec *max, int level) { enum isl_lp_result res; unsigned dim = tab->n_var; isl_seq_neg(tab->basis->row[1 + level] + 1, tab->basis->row[1 + level] + 1, dim); res = isl_tab_min(tab, tab->basis->row[1 + level], ctx->one, &max->el[level], NULL, 0); isl_seq_neg(tab->basis->row[1 + level] + 1, tab->basis->row[1 + level] + 1, dim); isl_int_neg(max->el[level], max->el[level]); return res; } /* Perform a greedy search for an integer point in the set represented * by "tab", given that the minimal rational value (rounded up to the * nearest integer) at "level" is smaller than the maximal rational * value (rounded down to the nearest integer). * * Return 1 if we have found an integer point (if tab->n_unbounded > 0 * then we may have only found integer values for the bounded dimensions * and it is the responsibility of the caller to extend this solution * to the unbounded dimensions). * Return 0 if greedy search did not result in a solution. * Return -1 if some error occurred. * * We assign a value half-way between the minimum and the maximum * to the current dimension and check if the minimal value of the * next dimension is still smaller than (or equal) to the maximal value. * We continue this process until either * - the minimal value (rounded up) is greater than the maximal value * (rounded down). In this case, greedy search has failed. * - we have exhausted all bounded dimensions, meaning that we have * found a solution. * - the sample value of the tableau is integral. * - some error has occurred. */ static int greedy_search(isl_ctx *ctx, struct isl_tab *tab, __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level) { struct isl_tab_undo *snap; enum isl_lp_result res; snap = isl_tab_snap(tab); do { isl_int_add(tab->basis->row[1 + level][0], min->el[level], max->el[level]); isl_int_fdiv_q_ui(tab->basis->row[1 + level][0], tab->basis->row[1 + level][0], 2); isl_int_neg(tab->basis->row[1 + level][0], tab->basis->row[1 + level][0]); if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) return -1; isl_int_set_si(tab->basis->row[1 + level][0], 0); if (++level >= tab->n_var - tab->n_unbounded) return 1; if (isl_tab_sample_is_integer(tab)) return 1; res = compute_min(ctx, tab, min, level); if (res == isl_lp_error) return -1; if (res != isl_lp_ok) isl_die(ctx, isl_error_internal, "expecting bounded rational solution", return -1); res = compute_max(ctx, tab, max, level); if (res == isl_lp_error) return -1; if (res != isl_lp_ok) isl_die(ctx, isl_error_internal, "expecting bounded rational solution", return -1); } while (isl_int_le(min->el[level], max->el[level])); if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; } /* Given a tableau representing a set, find and return * an integer point in the set, if there is any. * * We perform a depth first search * for an integer point, by scanning all possible values in the range * attained by a basis vector, where an initial basis may have been set * by the calling function. Otherwise an initial basis that exploits * the equalities in the tableau is created. * tab->n_zero is currently ignored and is clobbered by this function. * * The tableau is allowed to have unbounded direction, but then * the calling function needs to set an initial basis, with the * unbounded directions last and with tab->n_unbounded set * to the number of unbounded directions. * Furthermore, the calling functions needs to add shifted copies * of all constraints involving unbounded directions to ensure * that any feasible rational value in these directions can be rounded * up to yield a feasible integer value. * In particular, let B define the given basis x' = B x * and let T be the inverse of B, i.e., X = T x'. * Let a x + c >= 0 be a constraint of the set represented by the tableau, * or a T x' + c >= 0 in terms of the given basis. Assume that * the bounded directions have an integer value, then we can safely * round up the values for the unbounded directions if we make sure * that x' not only satisfies the original constraint, but also * the constraint "a T x' + c + s >= 0" with s the sum of all * negative values in the last n_unbounded entries of "a T". * The calling function therefore needs to add the constraint * a x + c + s >= 0. The current function then scans the first * directions for an integer value and once those have been found, * it can compute "T ceil(B x)" to yield an integer point in the set. * Note that during the search, the first rows of B may be changed * by a basis reduction, but the last n_unbounded rows of B remain * unaltered and are also not mixed into the first rows. * * The search is implemented iteratively. "level" identifies the current * basis vector. "init" is true if we want the first value at the current * level and false if we want the next value. * * At the start of each level, we first check if we can find a solution * using greedy search. If not, we continue with the exhaustive search. * * The initial basis is the identity matrix. If the range in some direction * contains more than one integer value, we perform basis reduction based * on the value of ctx->opt->gbr * - ISL_GBR_NEVER: never perform basis reduction * - ISL_GBR_ONCE: only perform basis reduction the first * time such a range is encountered * - ISL_GBR_ALWAYS: always perform basis reduction when * such a range is encountered * * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis * reduction computation to return early. That is, as soon as it * finds a reasonable first direction. */ struct isl_vec *isl_tab_sample(struct isl_tab *tab) { unsigned dim; unsigned gbr; struct isl_ctx *ctx; struct isl_vec *sample; struct isl_vec *min; struct isl_vec *max; enum isl_lp_result res; int level; int init; int reduced; struct isl_tab_undo **snap; if (!tab) return NULL; if (tab->empty) return isl_vec_alloc(tab->mat->ctx, 0); if (!tab->basis) tab->basis = initial_basis(tab); if (!tab->basis) return NULL; isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1, return NULL); isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1, return NULL); ctx = tab->mat->ctx; dim = tab->n_var; gbr = ctx->opt->gbr; if (tab->n_unbounded == tab->n_var) { sample = isl_tab_get_sample_value(tab); sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample); sample = isl_vec_ceil(sample); sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis), sample); return sample; } if (isl_tab_extend_cons(tab, dim + 1) < 0) return NULL; min = isl_vec_alloc(ctx, dim); max = isl_vec_alloc(ctx, dim); snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim); if (!min || !max || !snap) goto error; level = 0; init = 1; reduced = 0; while (level >= 0) { if (init) { int choice; res = compute_min(ctx, tab, min, level); if (res == isl_lp_error) goto error; if (res != isl_lp_ok) isl_die(ctx, isl_error_internal, "expecting bounded rational solution", goto error); if (isl_tab_sample_is_integer(tab)) break; res = compute_max(ctx, tab, max, level); if (res == isl_lp_error) goto error; if (res != isl_lp_ok) isl_die(ctx, isl_error_internal, "expecting bounded rational solution", goto error); if (isl_tab_sample_is_integer(tab)) break; choice = isl_int_lt(min->el[level], max->el[level]); if (choice) { int g; g = greedy_search(ctx, tab, min, max, level); if (g < 0) goto error; if (g) break; } if (!reduced && choice && ctx->opt->gbr != ISL_GBR_NEVER) { unsigned gbr_only_first; if (ctx->opt->gbr == ISL_GBR_ONCE) ctx->opt->gbr = ISL_GBR_NEVER; tab->n_zero = level; gbr_only_first = ctx->opt->gbr_only_first; ctx->opt->gbr_only_first = ctx->opt->gbr == ISL_GBR_ALWAYS; tab = isl_tab_compute_reduced_basis(tab); ctx->opt->gbr_only_first = gbr_only_first; if (!tab || !tab->basis) goto error; reduced = 1; continue; } reduced = 0; snap[level] = isl_tab_snap(tab); } else isl_int_add_ui(min->el[level], min->el[level], 1); if (isl_int_gt(min->el[level], max->el[level])) { level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } isl_int_neg(tab->basis->row[1 + level][0], min->el[level]); if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0) goto error; isl_int_set_si(tab->basis->row[1 + level][0], 0); if (level + tab->n_unbounded < dim - 1) { ++level; init = 1; continue; } break; } if (level >= 0) { sample = isl_tab_get_sample_value(tab); if (!sample) goto error; if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) { sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample); sample = isl_vec_ceil(sample); sample = isl_mat_vec_inverse_product( isl_mat_copy(tab->basis), sample); } } else sample = isl_vec_alloc(ctx, 0); ctx->opt->gbr = gbr; isl_vec_free(min); isl_vec_free(max); free(snap); return sample; error: ctx->opt->gbr = gbr; isl_vec_free(min); isl_vec_free(max); free(snap); return NULL; } static struct isl_vec *sample_bounded(struct isl_basic_set *bset); /* Compute a sample point of the given basic set, based on the given, * non-trivial factorization. */ static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset, __isl_take isl_factorizer *f) { int i, n; isl_vec *sample = NULL; isl_ctx *ctx; unsigned nparam; unsigned nvar; ctx = isl_basic_set_get_ctx(bset); if (!ctx) goto error; nparam = isl_basic_set_dim(bset, isl_dim_param); nvar = isl_basic_set_dim(bset, isl_dim_set); sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset)); if (!sample) goto error; isl_int_set_si(sample->el[0], 1); bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset); for (i = 0, n = 0; i < f->n_group; ++i) { isl_basic_set *bset_i; isl_vec *sample_i; bset_i = isl_basic_set_copy(bset); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam + n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop_constraints_involving(bset_i, nparam, n); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, n + f->len[i], nvar - n - f->len[i]); bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n); sample_i = sample_bounded(bset_i); if (!sample_i) goto error; if (sample_i->size == 0) { isl_basic_set_free(bset); isl_factorizer_free(f); isl_vec_free(sample); return sample_i; } isl_seq_cpy(sample->el + 1 + nparam + n, sample_i->el + 1, f->len[i]); isl_vec_free(sample_i); n += f->len[i]; } f->morph = isl_morph_inverse(f->morph); sample = isl_morph_vec(isl_morph_copy(f->morph), sample); isl_basic_set_free(bset); isl_factorizer_free(f); return sample; error: isl_basic_set_free(bset); isl_factorizer_free(f); isl_vec_free(sample); return NULL; } /* Given a basic set that is known to be bounded, find and return * an integer point in the basic set, if there is any. * * After handling some trivial cases, we construct a tableau * and then use isl_tab_sample to find a sample, passing it * the identity matrix as initial basis. */ static struct isl_vec *sample_bounded(struct isl_basic_set *bset) { unsigned dim; struct isl_vec *sample; struct isl_tab *tab = NULL; isl_factorizer *f; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return empty_sample(bset); dim = isl_basic_set_total_dim(bset); if (dim == 0) return zero_sample(bset); if (dim == 1) return interval_sample(bset); if (bset->n_eq > 0) return sample_eq(bset, sample_bounded); f = isl_basic_set_factorizer(bset); if (!f) goto error; if (f->n_group != 0) return factored_sample(bset, f); isl_factorizer_free(f); tab = isl_tab_from_basic_set(bset, 1); if (tab && tab->empty) { isl_tab_free(tab); ISL_F_SET(bset, ISL_BASIC_SET_EMPTY); sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0); isl_basic_set_free(bset); return sample; } if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT)) if (isl_tab_detect_implicit_equalities(tab) < 0) goto error; sample = isl_tab_sample(tab); if (!sample) goto error; if (sample->size > 0) { isl_vec_free(bset->sample); bset->sample = isl_vec_copy(sample); } isl_basic_set_free(bset); isl_tab_free(tab); return sample; error: isl_basic_set_free(bset); isl_tab_free(tab); return NULL; } /* Given a basic set "bset" and a value "sample" for the first coordinates * of bset, plug in these values and drop the corresponding coordinates. * * We do this by computing the preimage of the transformation * * [ 1 0 ] * x = [ s 0 ] x' * [ 0 I ] * * where [1 s] is the sample value and I is the identity matrix of the * appropriate dimension. */ static struct isl_basic_set *plug_in(struct isl_basic_set *bset, struct isl_vec *sample) { int i; unsigned total; struct isl_mat *T; if (!bset || !sample) goto error; total = isl_basic_set_total_dim(bset); T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1)); if (!T) goto error; for (i = 0; i < sample->size; ++i) { isl_int_set(T->row[i][0], sample->el[i]); isl_seq_clr(T->row[i] + 1, T->n_col - 1); } for (i = 0; i < T->n_col - 1; ++i) { isl_seq_clr(T->row[sample->size + i], T->n_col); isl_int_set_si(T->row[sample->size + i][1 + i], 1); } isl_vec_free(sample); bset = isl_basic_set_preimage(bset, T); return bset; error: isl_basic_set_free(bset); isl_vec_free(sample); return NULL; } /* Given a basic set "bset", return any (possibly non-integer) point * in the basic set. */ static struct isl_vec *rational_sample(struct isl_basic_set *bset) { struct isl_tab *tab; struct isl_vec *sample; if (!bset) return NULL; tab = isl_tab_from_basic_set(bset, 0); sample = isl_tab_get_sample_value(tab); isl_tab_free(tab); isl_basic_set_free(bset); return sample; } /* Given a linear cone "cone" and a rational point "vec", * construct a polyhedron with shifted copies of the constraints in "cone", * i.e., a polyhedron with "cone" as its recession cone, such that each * point x in this polyhedron is such that the unit box positioned at x * lies entirely inside the affine cone 'vec + cone'. * Any rational point in this polyhedron may therefore be rounded up * to yield an integer point that lies inside said affine cone. * * Denote the constraints of cone by " >= 0" and the rational * point "vec" by v/d. * Let b_i = . Then the affine cone 'vec + cone' is given * by - b/d >= 0. * The polyhedron - ceil{b/d} >= 0 is a subset of this affine cone. * We prefer this polyhedron over the actual affine cone because it doesn't * require a scaling of the constraints. * If each of the vertices of the unit cube positioned at x lies inside * this polyhedron, then the whole unit cube at x lies inside the affine cone. * We therefore impose that x' = x + \sum e_i, for any selection of unit * vectors lies inside the polyhedron, i.e., * * - ceil{b/d} = + sum a_i - ceil{b/d} >= 0 * * The most stringent of these constraints is the one that selects * all negative a_i, so the polyhedron we are looking for has constraints * * + sum_{a_i < 0} a_i - ceil{b/d} >= 0 * * Note that if cone were known to have only non-negative rays * (which can be accomplished by a unimodular transformation), * then we would only have to check the points x' = x + e_i * and we only have to add the smallest negative a_i (if any) * instead of the sum of all negative a_i. */ static struct isl_basic_set *shift_cone(struct isl_basic_set *cone, struct isl_vec *vec) { int i, j, k; unsigned total; struct isl_basic_set *shift = NULL; if (!cone || !vec) goto error; isl_assert(cone->ctx, cone->n_eq == 0, goto error); total = isl_basic_set_total_dim(cone); shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone), 0, 0, cone->n_ineq); for (i = 0; i < cone->n_ineq; ++i) { k = isl_basic_set_alloc_inequality(shift); if (k < 0) goto error; isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total); isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total, &shift->ineq[k][0]); isl_int_cdiv_q(shift->ineq[k][0], shift->ineq[k][0], vec->el[0]); isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]); for (j = 0; j < total; ++j) { if (isl_int_is_nonneg(shift->ineq[k][1 + j])) continue; isl_int_add(shift->ineq[k][0], shift->ineq[k][0], shift->ineq[k][1 + j]); } } isl_basic_set_free(cone); isl_vec_free(vec); return isl_basic_set_finalize(shift); error: isl_basic_set_free(shift); isl_basic_set_free(cone); isl_vec_free(vec); return NULL; } /* Given a rational point vec in a (transformed) basic set, * such that cone is the recession cone of the original basic set, * "round up" the rational point to an integer point. * * We first check if the rational point just happens to be integer. * If not, we transform the cone in the same way as the basic set, * pick a point x in this cone shifted to the rational point such that * the whole unit cube at x is also inside this affine cone. * Then we simply round up the coordinates of x and return the * resulting integer point. */ static struct isl_vec *round_up_in_cone(struct isl_vec *vec, struct isl_basic_set *cone, struct isl_mat *U) { unsigned total; if (!vec || !cone || !U) goto error; isl_assert(vec->ctx, vec->size != 0, goto error); if (isl_int_is_one(vec->el[0])) { isl_mat_free(U); isl_basic_set_free(cone); return vec; } total = isl_basic_set_total_dim(cone); cone = isl_basic_set_preimage(cone, U); cone = isl_basic_set_remove_dims(cone, isl_dim_set, 0, total - (vec->size - 1)); cone = shift_cone(cone, vec); vec = rational_sample(cone); vec = isl_vec_ceil(vec); return vec; error: isl_mat_free(U); isl_vec_free(vec); isl_basic_set_free(cone); return NULL; } /* Concatenate two integer vectors, i.e., two vectors with denominator * (stored in element 0) equal to 1. */ static struct isl_vec *vec_concat(struct isl_vec *vec1, struct isl_vec *vec2) { struct isl_vec *vec; if (!vec1 || !vec2) goto error; isl_assert(vec1->ctx, vec1->size > 0, goto error); isl_assert(vec2->ctx, vec2->size > 0, goto error); isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error); isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error); vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1); if (!vec) goto error; isl_seq_cpy(vec->el, vec1->el, vec1->size); isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1); isl_vec_free(vec1); isl_vec_free(vec2); return vec; error: isl_vec_free(vec1); isl_vec_free(vec2); return NULL; } /* Give a basic set "bset" with recession cone "cone", compute and * return an integer point in bset, if any. * * If the recession cone is full-dimensional, then we know that * bset contains an infinite number of integer points and it is * fairly easy to pick one of them. * If the recession cone is not full-dimensional, then we first * transform bset such that the bounded directions appear as * the first dimensions of the transformed basic set. * We do this by using a unimodular transformation that transforms * the equalities in the recession cone to equalities on the first * dimensions. * * The transformed set is then projected onto its bounded dimensions. * Note that to compute this projection, we can simply drop all constraints * involving any of the unbounded dimensions since these constraints * cannot be combined to produce a constraint on the bounded dimensions. * To see this, assume that there is such a combination of constraints * that produces a constraint on the bounded dimensions. This means * that some combination of the unbounded dimensions has both an upper * bound and a lower bound in terms of the bounded dimensions, but then * this combination would be a bounded direction too and would have been * transformed into a bounded dimensions. * * We then compute a sample value in the bounded dimensions. * If no such value can be found, then the original set did not contain * any integer points and we are done. * Otherwise, we plug in the value we found in the bounded dimensions, * project out these bounded dimensions and end up with a set with * a full-dimensional recession cone. * A sample point in this set is computed by "rounding up" any * rational point in the set. * * The sample points in the bounded and unbounded dimensions are * then combined into a single sample point and transformed back * to the original space. */ __isl_give isl_vec *isl_basic_set_sample_with_cone( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone) { unsigned total; unsigned cone_dim; struct isl_mat *M, *U; struct isl_vec *sample; struct isl_vec *cone_sample; struct isl_ctx *ctx; struct isl_basic_set *bounded; if (!bset || !cone) goto error; ctx = isl_basic_set_get_ctx(bset); total = isl_basic_set_total_dim(cone); cone_dim = total - cone->n_eq; M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M) goto error; isl_mat_free(M); U = isl_mat_lin_to_aff(U); bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); bounded = isl_basic_set_copy(bset); bounded = isl_basic_set_drop_constraints_involving(bounded, total - cone_dim, cone_dim); bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim); sample = sample_bounded(bounded); if (!sample || sample->size == 0) { isl_basic_set_free(bset); isl_basic_set_free(cone); isl_mat_free(U); return sample; } bset = plug_in(bset, isl_vec_copy(sample)); cone_sample = rational_sample(bset); cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U)); sample = vec_concat(sample, cone_sample); sample = isl_mat_vec_product(U, sample); return sample; error: isl_basic_set_free(cone); isl_basic_set_free(bset); return NULL; } static void vec_sum_of_neg(struct isl_vec *v, isl_int *s) { int i; isl_int_set_si(*s, 0); for (i = 0; i < v->size; ++i) if (isl_int_is_neg(v->el[i])) isl_int_add(*s, *s, v->el[i]); } /* Given a tableau "tab", a tableau "tab_cone" that corresponds * to the recession cone and the inverse of a new basis U = inv(B), * with the unbounded directions in B last, * add constraints to "tab" that ensure any rational value * in the unbounded directions can be rounded up to an integer value. * * The new basis is given by x' = B x, i.e., x = U x'. * For any rational value of the last tab->n_unbounded coordinates * in the update tableau, the value that is obtained by rounding * up this value should be contained in the original tableau. * For any constraint "a x + c >= 0", we therefore need to add * a constraint "a x + c + s >= 0", with s the sum of all negative * entries in the last elements of "a U". * * Since we are not interested in the first entries of any of the "a U", * we first drop the columns of U that correpond to bounded directions. */ static int tab_shift_cone(struct isl_tab *tab, struct isl_tab *tab_cone, struct isl_mat *U) { int i; isl_int v; struct isl_basic_set *bset = NULL; if (tab && tab->n_unbounded == 0) { isl_mat_free(U); return 0; } isl_int_init(v); if (!tab || !tab_cone || !U) goto error; bset = isl_tab_peek_bset(tab_cone); U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded); for (i = 0; i < bset->n_ineq; ++i) { int ok; struct isl_vec *row = NULL; if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i)) continue; row = isl_vec_alloc(bset->ctx, tab_cone->n_var); if (!row) goto error; isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var); row = isl_vec_mat_product(row, isl_mat_copy(U)); if (!row) goto error; vec_sum_of_neg(row, &v); isl_vec_free(row); if (isl_int_is_zero(v)) continue; if (isl_tab_extend_cons(tab, 1) < 0) goto error; isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v); ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0; isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v); if (!ok) goto error; } isl_mat_free(U); isl_int_clear(v); return 0; error: isl_mat_free(U); isl_int_clear(v); return -1; } /* Compute and return an initial basis for the possibly * unbounded tableau "tab". "tab_cone" is a tableau * for the corresponding recession cone. * Additionally, add constraints to "tab" that ensure * that any rational value for the unbounded directions * can be rounded up to an integer value. * * If the tableau is bounded, i.e., if the recession cone * is zero-dimensional, then we just use inital_basis. * Otherwise, we construct a basis whose first directions * correspond to equalities, followed by bounded directions, * i.e., equalities in the recession cone. * The remaining directions are then unbounded. */ int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab, struct isl_tab *tab_cone) { struct isl_mat *eq; struct isl_mat *cone_eq; struct isl_mat *U, *Q; if (!tab || !tab_cone) return -1; if (tab_cone->n_col == tab_cone->n_dead) { tab->basis = initial_basis(tab); return tab->basis ? 0 : -1; } eq = tab_equalities(tab); if (!eq) return -1; tab->n_zero = eq->n_row; cone_eq = tab_equalities(tab_cone); eq = isl_mat_concat(eq, cone_eq); if (!eq) return -1; tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero); eq = isl_mat_left_hermite(eq, 0, &U, &Q); if (!eq) return -1; isl_mat_free(eq); tab->basis = isl_mat_lin_to_aff(Q); if (tab_shift_cone(tab, tab_cone, U) < 0) return -1; if (!tab->basis) return -1; return 0; } /* Compute and return a sample point in bset using generalized basis * reduction. We first check if the input set has a non-trivial * recession cone. If so, we perform some extra preprocessing in * sample_with_cone. Otherwise, we directly perform generalized basis * reduction. */ static struct isl_vec *gbr_sample(struct isl_basic_set *bset) { unsigned dim; struct isl_basic_set *cone; dim = isl_basic_set_total_dim(bset); cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); if (!cone) goto error; if (cone->n_eq < dim) return isl_basic_set_sample_with_cone(bset, cone); isl_basic_set_free(cone); return sample_bounded(bset); error: isl_basic_set_free(bset); return NULL; } static struct isl_vec *basic_set_sample(struct isl_basic_set *bset, int bounded) { struct isl_ctx *ctx; unsigned dim; if (!bset) return NULL; ctx = bset->ctx; if (isl_basic_set_plain_is_empty(bset)) return empty_sample(bset); dim = isl_basic_set_n_dim(bset); isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(ctx, bset->n_div == 0, goto error); if (bset->sample && bset->sample->size == 1 + dim) { int contains = isl_basic_set_contains(bset, bset->sample); if (contains < 0) goto error; if (contains) { struct isl_vec *sample = isl_vec_copy(bset->sample); isl_basic_set_free(bset); return sample; } } isl_vec_free(bset->sample); bset->sample = NULL; if (bset->n_eq > 0) return sample_eq(bset, bounded ? isl_basic_set_sample_bounded : isl_basic_set_sample_vec); if (dim == 0) return zero_sample(bset); if (dim == 1) return interval_sample(bset); return bounded ? sample_bounded(bset) : gbr_sample(bset); error: isl_basic_set_free(bset); return NULL; } __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset) { return basic_set_sample(bset, 0); } /* Compute an integer sample in "bset", where the caller guarantees * that "bset" is bounded. */ struct isl_vec *isl_basic_set_sample_bounded(struct isl_basic_set *bset) { return basic_set_sample(bset, 1); } __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec) { int i; int k; struct isl_basic_set *bset = NULL; struct isl_ctx *ctx; unsigned dim; if (!vec) return NULL; ctx = vec->ctx; isl_assert(ctx, vec->size != 0, goto error); bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); if (!bset) goto error; dim = isl_basic_set_n_dim(bset); for (i = dim - 1; i >= 0; --i) { k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_clr(bset->eq[k], 1 + dim); isl_int_neg(bset->eq[k][0], vec->el[1 + i]); isl_int_set(bset->eq[k][1 + i], vec->el[0]); } bset->sample = vec; return bset; error: isl_basic_set_free(bset); isl_vec_free(vec); return NULL; } __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap) { struct isl_basic_set *bset; struct isl_vec *sample_vec; bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); sample_vec = isl_basic_set_sample_vec(bset); if (!sample_vec) goto error; if (sample_vec->size == 0) { isl_vec_free(sample_vec); return isl_basic_map_set_to_empty(bmap); } bset = isl_basic_set_from_vec(sample_vec); return isl_basic_map_overlying_set(bset, bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset) { return isl_basic_map_sample(bset); } __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map) { int i; isl_basic_map *sample = NULL; if (!map) goto error; for (i = 0; i < map->n; ++i) { sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i])); if (!sample) goto error; if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY)) break; isl_basic_map_free(sample); } if (i == map->n) sample = isl_basic_map_empty(isl_map_get_space(map)); isl_map_free(map); return sample; error: isl_map_free(map); return NULL; } __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set) { return (isl_basic_set *) isl_map_sample((isl_map *)set); } __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset) { isl_vec *vec; isl_space *dim; dim = isl_basic_set_get_space(bset); bset = isl_basic_set_underlying_set(bset); vec = isl_basic_set_sample_vec(bset); return isl_point_alloc(dim, vec); } __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set) { int i; isl_point *pnt; if (!set) return NULL; for (i = 0; i < set->n; ++i) { pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i])); if (!pnt) goto error; if (!isl_point_is_void(pnt)) break; isl_point_free(pnt); } if (i == set->n) pnt = isl_point_void(isl_set_get_space(set)); isl_set_free(set); return pnt; error: isl_set_free(set); return NULL; } isl-0.16.1/isl.py0000664000175000017500000000754312645737060010475 00000000000000import gdb import re # GDB Pretty Printers for most isl objects class IslObjectPrinter: """Print an isl object""" def __init__ (self, val, type): self.val = val self.type = type def to_string (self): # Cast val to a void pointer to stop gdb using this pretty # printer for the pointer which would lead to an infinite loop. void_ptr = gdb.lookup_type('void').pointer() value = str(self.val.cast(void_ptr)) printer = gdb.parse_and_eval("isl_printer_to_str(isl_" + str(self.type) + "_get_ctx(" + value + "))") printer = gdb.parse_and_eval("isl_printer_print_" + str(self.type) + "(" + str(printer) + ", " + value + ")") string = gdb.parse_and_eval("(char*)isl_printer_get_str(" + str(printer) + ")") gdb.parse_and_eval("isl_printer_free(" + str(printer) + ")") return string def display_hint (self): return 'string' class IslIntPrinter: """Print an isl_int """ def __init__ (self, val): self.val = val def to_string (self): # Cast val to a void pointer to stop gdb using this pretty # printer for the pointer which would lead to an infinite loop. void_ptr = gdb.lookup_type('void').pointer() value = str(self.val.cast(void_ptr)) context = gdb.parse_and_eval("isl_ctx_alloc()") printer = gdb.parse_and_eval("isl_printer_to_str(" + str(context) + ")") printer = gdb.parse_and_eval("isl_printer_print_isl_int(" + str(printer) + ", " + value + ")") string = gdb.parse_and_eval("(char*)isl_printer_get_str(" + str(printer) + ")") gdb.parse_and_eval("isl_printer_free(" + str(printer) + ")") gdb.parse_and_eval("isl_ctx_free(" + str(context) + ")") return string def display_hint (self): return 'string' class IslPrintCommand (gdb.Command): """Print an isl value.""" def __init__ (self): super (IslPrintCommand, self).__init__ ("islprint", gdb.COMMAND_OBSCURE) def invoke (self, arg, from_tty): arg = gdb.parse_and_eval(arg); printer = str_lookup_function(arg) if printer == None: print "No isl printer for this type" return print printer.to_string() IslPrintCommand() def str_lookup_function (val): if val.type.code != gdb.TYPE_CODE_PTR: if str(val.type) == "isl_int": return IslIntPrinter(val) else: return None lookup_tag = val.type.target() regex = re.compile ("^isl_(.*)$") if lookup_tag == None: return None m = regex.match (str(lookup_tag)) if m: # Those types of printers defined in isl. if m.group(1) in ["basic_set", "set", "union_set", "basic_map", "map", "union_map", "qpolynomial", "pw_qpolynomial", "pw_qpolynomial_fold", "union_pw_qpolynomial", "union_pw_qpolynomial_fold"]: return IslObjectPrinter(val, m.group(1)) return None # Do not register the pretty printer. # gdb.current_objfile().pretty_printers.append(str_lookup_function) isl-0.16.1/isl_dim_map.h0000664000175000017500000000244412645737060011755 00000000000000#ifndef ISL_DIM_MAP_H #define ISL_DIM_MAP_H #include #include #include struct isl_dim_map; typedef struct isl_dim_map isl_dim_map; __isl_give isl_dim_map *isl_dim_map_alloc(isl_ctx *ctx, unsigned len); void isl_dim_map_range(__isl_keep isl_dim_map *dim_map, unsigned dst_pos, unsigned dst_stride, unsigned src_pos, unsigned src_stride, unsigned n, int sign); void isl_dim_map_dim_range(__isl_keep isl_dim_map *dim_map, isl_space *dim, enum isl_dim_type type, unsigned first, unsigned n, unsigned dst_pos); void isl_dim_map_dim(__isl_keep isl_dim_map *dim_map, __isl_keep isl_space *dim, enum isl_dim_type type, unsigned dst_pos); void isl_dim_map_div(__isl_keep isl_dim_map *dim_map, __isl_keep isl_basic_map *bmap, unsigned dst_pos); __isl_give isl_basic_set *isl_basic_set_add_constraints_dim_map( __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src, __isl_take isl_dim_map *dim_map); __isl_give isl_basic_map *isl_basic_map_add_constraints_dim_map( __isl_take isl_basic_map *dst, __isl_take isl_basic_map *src, __isl_take isl_dim_map *dim_map); __isl_give isl_dim_map *isl_dim_map_extend(__isl_keep isl_dim_map *dim_map, __isl_keep isl_basic_map *bmap); __isl_give isl_dim_map *isl_dim_map_from_reordering( __isl_keep isl_reordering *exp); #endif isl-0.16.1/isl_tarjan.c0000664000175000017500000000630512645737061011622 00000000000000/* * Copyright 2010-2011 INRIA Saclay * Copyright 2012 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include void isl_tarjan_graph_free(struct isl_tarjan_graph *g) { if (!g) return; free(g->node); free(g->stack); free(g->order); free(g); } static struct isl_tarjan_graph *isl_tarjan_graph_alloc(isl_ctx *ctx, int len) { struct isl_tarjan_graph *g; int i; g = isl_calloc_type(ctx, struct isl_tarjan_graph); if (!g) return NULL; g->len = len; g->node = isl_alloc_array(ctx, struct isl_tarjan_node, len); if (len && !g->node) goto error; for (i = 0; i < len; ++i) g->node[i].index = -1; g->stack = isl_alloc_array(ctx, int, len); if (len && !g->stack) goto error; g->order = isl_alloc_array(ctx, int, 2 * len); if (len && !g->order) goto error; g->sp = 0; g->index = 0; g->op = 0; return g; error: isl_tarjan_graph_free(g); return NULL; } /* Perform Tarjan's algorithm for computing the strongly connected components * in the graph with g->len nodes and with edges defined by "follows". */ static isl_stat isl_tarjan_components(struct isl_tarjan_graph *g, int i, isl_bool (*follows)(int i, int j, void *user), void *user) { int j; g->node[i].index = g->index; g->node[i].min_index = g->index; g->node[i].on_stack = 1; g->index++; g->stack[g->sp++] = i; for (j = g->len - 1; j >= 0; --j) { isl_bool f; if (j == i) continue; if (g->node[j].index >= 0 && (!g->node[j].on_stack || g->node[j].index > g->node[i].min_index)) continue; f = follows(i, j, user); if (f < 0) return isl_stat_error; if (!f) continue; if (g->node[j].index < 0) { isl_tarjan_components(g, j, follows, user); if (g->node[j].min_index < g->node[i].min_index) g->node[i].min_index = g->node[j].min_index; } else if (g->node[j].index < g->node[i].min_index) g->node[i].min_index = g->node[j].index; } if (g->node[i].index != g->node[i].min_index) return isl_stat_ok; do { j = g->stack[--g->sp]; g->node[j].on_stack = 0; g->order[g->op++] = j; } while (j != i); g->order[g->op++] = -1; return isl_stat_ok; } /* Decompose the graph with "len" nodes and edges defined by "follows" * into strongly connected components (SCCs). * follows(i, j, user) should return 1 if "i" follows "j" and 0 otherwise. * It should return -1 on error. * * If SCC a contains a node i that follows a node j in another SCC b * (i.e., follows(i, j, user) returns 1), then SCC a will appear after SCC b * in the result. */ struct isl_tarjan_graph *isl_tarjan_graph_init(isl_ctx *ctx, int len, isl_bool (*follows)(int i, int j, void *user), void *user) { int i; struct isl_tarjan_graph *g = NULL; g = isl_tarjan_graph_alloc(ctx, len); if (!g) return NULL; for (i = len - 1; i >= 0; --i) { if (g->node[i].index >= 0) continue; if (isl_tarjan_components(g, i, follows, user) < 0) goto error; } return g; error: isl_tarjan_graph_free(g); return NULL; } isl-0.16.1/pip.c0000664000175000017500000002255612645737061010272 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include #include "isl_tab.h" #include "isl_sample.h" #include "isl_scan.h" #include #include #include #include #include #include #include /* The input of this program is the same as that of the "example" program * from the PipLib distribution, except that the "big parameter column" * should always be -1. * * Context constraints in PolyLib format * -1 * Problem constraints in PolyLib format * Optional list of options * * The options are * Maximize compute maximum instead of minimum * Rational compute rational optimum instead of integer optimum * Urs_parms don't assume parameters are non-negative * Urs_unknowns don't assume unknowns are non-negative */ struct options { struct isl_options *isl; unsigned verify; unsigned format; }; #define FORMAT_SET 0 #define FORMAT_AFF 1 struct isl_arg_choice pip_format[] = { {"set", FORMAT_SET}, {"affine", FORMAT_AFF}, {0} }; ISL_ARGS_START(struct options, options_args) ISL_ARG_CHILD(struct options, isl, "isl", &isl_options_args, "isl options") ISL_ARG_BOOL(struct options, verify, 'T', "verify", 0, NULL) ISL_ARG_CHOICE(struct options, format, 0, "format", pip_format, FORMAT_SET, "output format") ISL_ARGS_END ISL_ARG_DEF(options, struct options, options_args) static __isl_give isl_basic_set *set_bounds(__isl_take isl_basic_set *bset) { unsigned nparam; int i, r; isl_point *pt, *pt2; isl_basic_set *box; nparam = isl_basic_set_dim(bset, isl_dim_param); r = nparam >= 8 ? 4 : nparam >= 5 ? 6 : 30; pt = isl_basic_set_sample_point(isl_basic_set_copy(bset)); pt2 = isl_point_copy(pt); for (i = 0; i < nparam; ++i) { pt = isl_point_add_ui(pt, isl_dim_param, i, r); pt2 = isl_point_sub_ui(pt2, isl_dim_param, i, r); } box = isl_basic_set_box_from_points(pt, pt2); return isl_basic_set_intersect(bset, box); } static struct isl_basic_set *to_parameter_domain(struct isl_basic_set *context) { context = isl_basic_set_move_dims(context, isl_dim_param, 0, isl_dim_set, 0, isl_basic_set_dim(context, isl_dim_set)); context = isl_basic_set_params(context); return context; } isl_basic_set *plug_in_parameters(isl_basic_set *bset, struct isl_vec *params) { int i; for (i = 0; i < params->size - 1; ++i) bset = isl_basic_set_fix(bset, isl_dim_param, i, params->el[1 + i]); bset = isl_basic_set_remove_dims(bset, isl_dim_param, 0, params->size - 1); isl_vec_free(params); return bset; } isl_set *set_plug_in_parameters(isl_set *set, struct isl_vec *params) { int i; for (i = 0; i < params->size - 1; ++i) set = isl_set_fix(set, isl_dim_param, i, params->el[1 + i]); set = isl_set_remove_dims(set, isl_dim_param, 0, params->size - 1); isl_vec_free(params); return set; } /* Compute the lexicographically minimal (or maximal if max is set) * element of bset for the given values of the parameters, by * successively solving an ilp problem in each direction. */ struct isl_vec *opt_at(struct isl_basic_set *bset, struct isl_vec *params, int max) { unsigned dim; struct isl_vec *opt; struct isl_vec *obj; int i; dim = isl_basic_set_dim(bset, isl_dim_set); bset = plug_in_parameters(bset, params); if (isl_basic_set_plain_is_empty(bset)) { opt = isl_vec_alloc(bset->ctx, 0); isl_basic_set_free(bset); return opt; } opt = isl_vec_alloc(bset->ctx, 1 + dim); assert(opt); obj = isl_vec_alloc(bset->ctx, 1 + dim); assert(obj); isl_int_set_si(opt->el[0], 1); isl_int_set_si(obj->el[0], 0); for (i = 0; i < dim; ++i) { enum isl_lp_result res; isl_seq_clr(obj->el + 1, dim); isl_int_set_si(obj->el[1 + i], 1); res = isl_basic_set_solve_ilp(bset, max, obj->el, &opt->el[1 + i], NULL); if (res == isl_lp_empty) goto empty; assert(res == isl_lp_ok); bset = isl_basic_set_fix(bset, isl_dim_set, i, opt->el[1 + i]); } isl_basic_set_free(bset); isl_vec_free(obj); return opt; empty: isl_vec_free(opt); opt = isl_vec_alloc(bset->ctx, 0); isl_basic_set_free(bset); isl_vec_free(obj); return opt; } struct isl_scan_pip { struct isl_scan_callback callback; isl_basic_set *bset; isl_set *sol; isl_set *empty; int stride; int n; int max; }; /* Check if the "manually" computed optimum of bset at the "sample" * values of the parameters agrees with the solution of pilp problem * represented by the pair (sol, empty). * In particular, if there is no solution for this value of the parameters, * then it should be an element of the parameter domain "empty". * Otherwise, the optimal solution, should be equal to the result of * plugging in the value of the parameters in "sol". */ static isl_stat scan_one(struct isl_scan_callback *callback, __isl_take isl_vec *sample) { struct isl_scan_pip *sp = (struct isl_scan_pip *)callback; struct isl_vec *opt; sp->n--; opt = opt_at(isl_basic_set_copy(sp->bset), isl_vec_copy(sample), sp->max); assert(opt); if (opt->size == 0) { isl_point *sample_pnt; sample_pnt = isl_point_alloc(isl_set_get_space(sp->empty), sample); assert(isl_set_contains_point(sp->empty, sample_pnt)); isl_point_free(sample_pnt); isl_vec_free(opt); } else { isl_set *sol; isl_set *opt_set; opt_set = isl_set_from_basic_set(isl_basic_set_from_vec(opt)); sol = set_plug_in_parameters(isl_set_copy(sp->sol), sample); assert(isl_set_is_equal(opt_set, sol)); isl_set_free(sol); isl_set_free(opt_set); } if (!(sp->n % sp->stride)) { printf("o"); fflush(stdout); } return sp->n >= 1 ? isl_stat_ok : isl_stat_error; } static void check_solution(isl_basic_set *bset, isl_basic_set *context, isl_set *sol, isl_set *empty, int max) { struct isl_scan_pip sp; isl_int count, count_max; int i, n; int r; context = set_bounds(context); context = isl_basic_set_underlying_set(context); isl_int_init(count); isl_int_init(count_max); isl_int_set_si(count_max, 2000); r = isl_basic_set_count_upto(context, count_max, &count); assert(r >= 0); n = isl_int_get_si(count); isl_int_clear(count_max); isl_int_clear(count); sp.callback.add = scan_one; sp.bset = bset; sp.sol = sol; sp.empty = empty; sp.n = n; sp.stride = n > 70 ? 1 + (n + 1)/70 : 1; sp.max = max; for (i = 0; i < n; i += sp.stride) printf("."); printf("\r"); fflush(stdout); isl_basic_set_scan(context, &sp.callback); printf("\n"); isl_basic_set_free(bset); } int main(int argc, char **argv) { struct isl_ctx *ctx; struct isl_basic_set *context, *bset, *copy, *context_copy; struct isl_set *set = NULL; struct isl_set *empty; isl_pw_multi_aff *pma = NULL; int neg_one; char s[1024]; int urs_parms = 0; int urs_unknowns = 0; int max = 0; int rational = 0; int n; int nparam; struct options *options; options = options_new_with_defaults(); assert(options); argc = options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&options_args, options); context = isl_basic_set_read_from_file(ctx, stdin); assert(context); n = fscanf(stdin, "%d", &neg_one); assert(n == 1); assert(neg_one == -1); bset = isl_basic_set_read_from_file(ctx, stdin); while (fgets(s, sizeof(s), stdin)) { if (strncasecmp(s, "Maximize", 8) == 0) max = 1; if (strncasecmp(s, "Rational", 8) == 0) { rational = 1; bset = isl_basic_set_set_rational(bset); } if (strncasecmp(s, "Urs_parms", 9) == 0) urs_parms = 1; if (strncasecmp(s, "Urs_unknowns", 12) == 0) urs_unknowns = 1; } if (!urs_parms) context = isl_basic_set_intersect(context, isl_basic_set_positive_orthant(isl_basic_set_get_space(context))); context = to_parameter_domain(context); nparam = isl_basic_set_dim(context, isl_dim_param); if (nparam != isl_basic_set_dim(bset, isl_dim_param)) { int dim = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_move_dims(bset, isl_dim_param, 0, isl_dim_set, dim - nparam, nparam); } if (!urs_unknowns) bset = isl_basic_set_intersect(bset, isl_basic_set_positive_orthant(isl_basic_set_get_space(bset))); if (options->verify) { copy = isl_basic_set_copy(bset); context_copy = isl_basic_set_copy(context); } if (options->format == FORMAT_AFF) { if (max) pma = isl_basic_set_partial_lexmax_pw_multi_aff(bset, context, &empty); else pma = isl_basic_set_partial_lexmin_pw_multi_aff(bset, context, &empty); } else { if (max) set = isl_basic_set_partial_lexmax(bset, context, &empty); else set = isl_basic_set_partial_lexmin(bset, context, &empty); } if (options->verify) { assert(!rational); if (options->format == FORMAT_AFF) set = isl_set_from_pw_multi_aff(pma); check_solution(copy, context_copy, set, empty, max); isl_set_free(set); } else { isl_printer *p; p = isl_printer_to_file(ctx, stdout); if (options->format == FORMAT_AFF) p = isl_printer_print_pw_multi_aff(p, pma); else p = isl_printer_print_set(p, set); p = isl_printer_end_line(p); p = isl_printer_print_str(p, "no solution: "); p = isl_printer_print_set(p, empty); p = isl_printer_end_line(p); isl_printer_free(p); isl_set_free(set); isl_pw_multi_aff_free(pma); } isl_set_free(empty); isl_ctx_free(ctx); return 0; } isl-0.16.1/cat.c0000664000175000017500000000324712645737060010244 00000000000000#include #include #include #include #include struct isl_arg_choice cat_format[] = { {"isl", ISL_FORMAT_ISL}, {"omega", ISL_FORMAT_OMEGA}, {"polylib", ISL_FORMAT_POLYLIB}, {"ext-polylib", ISL_FORMAT_EXT_POLYLIB}, {"latex", ISL_FORMAT_LATEX}, {0} }; struct isl_arg_choice cat_yaml_style[] = { { "block", ISL_YAML_STYLE_BLOCK }, { "flow", ISL_YAML_STYLE_FLOW }, { 0 } }; struct cat_options { struct isl_options *isl; unsigned format; unsigned yaml_style; }; ISL_ARGS_START(struct cat_options, cat_options_args) ISL_ARG_CHILD(struct cat_options, isl, "isl", &isl_options_args, "isl options") ISL_ARG_CHOICE(struct cat_options, format, 0, "format", \ cat_format, ISL_FORMAT_ISL, "output format") ISL_ARG_CHOICE(struct cat_options, yaml_style, 0, "yaml-style", \ cat_yaml_style, ISL_YAML_STYLE_BLOCK, "output YAML style") ISL_ARGS_END ISL_ARG_DEF(cat_options, struct cat_options, cat_options_args) int main(int argc, char **argv) { struct isl_ctx *ctx; isl_stream *s; struct isl_obj obj; struct cat_options *options; isl_printer *p; options = cat_options_new_with_defaults(); assert(options); argc = cat_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&cat_options_args, options); s = isl_stream_new_file(ctx, stdin); obj = isl_stream_read_obj(s); isl_stream_free(s); p = isl_printer_to_file(ctx, stdout); p = isl_printer_set_output_format(p, options->format); p = isl_printer_set_yaml_style(p, options->yaml_style); p = obj.type->print(p, obj.v); p = isl_printer_end_line(p); isl_printer_free(p); obj.type->free(obj.v); isl_ctx_free(ctx); return 0; } isl-0.16.1/isl_ctx_private.h0000664000175000017500000000104712645737060012675 00000000000000#include #include struct isl_ctx { int ref; struct isl_stats *stats; int opt_allocated; struct isl_options *opt; void *user_opt; struct isl_args *user_args; isl_int zero; isl_int one; isl_int two; isl_int negone; isl_int normalize_gcd; int n_cached; int n_miss; struct isl_blk cache[ISL_BLK_CACHE_SIZE]; struct isl_hash_table id_table; enum isl_error error; int abort; unsigned long operations; unsigned long max_operations; }; int isl_ctx_next_operation(isl_ctx *ctx); isl-0.16.1/isl_stream.c0000664000175000017500000006664412645737061011652 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include #include #include struct isl_keyword { char *name; enum isl_token_type type; }; static int same_name(const void *entry, const void *val) { const struct isl_keyword *keyword = (const struct isl_keyword *)entry; return !strcmp(keyword->name, val); } enum isl_token_type isl_stream_register_keyword(__isl_keep isl_stream *s, const char *name) { struct isl_hash_table_entry *entry; struct isl_keyword *keyword; uint32_t name_hash; if (!s->keywords) { s->keywords = isl_hash_table_alloc(s->ctx, 10); if (!s->keywords) return ISL_TOKEN_ERROR; s->next_type = ISL_TOKEN_LAST; } name_hash = isl_hash_string(isl_hash_init(), name); entry = isl_hash_table_find(s->ctx, s->keywords, name_hash, same_name, name, 1); if (!entry) return ISL_TOKEN_ERROR; if (entry->data) { keyword = entry->data; return keyword->type; } keyword = isl_calloc_type(s->ctx, struct isl_keyword); if (!keyword) return ISL_TOKEN_ERROR; keyword->type = s->next_type++; keyword->name = strdup(name); if (!keyword->name) { free(keyword); return ISL_TOKEN_ERROR; } entry->data = keyword; return keyword->type; } struct isl_token *isl_token_new(isl_ctx *ctx, int line, int col, unsigned on_new_line) { struct isl_token *tok = isl_alloc_type(ctx, struct isl_token); if (!tok) return NULL; tok->line = line; tok->col = col; tok->on_new_line = on_new_line; tok->is_keyword = 0; tok->u.s = NULL; return tok; } /* Return the type of "tok". */ int isl_token_get_type(struct isl_token *tok) { return tok ? tok->type : ISL_TOKEN_ERROR; } /* Given a token of type ISL_TOKEN_VALUE, return the value it represents. */ __isl_give isl_val *isl_token_get_val(isl_ctx *ctx, struct isl_token *tok) { if (!tok) return NULL; if (tok->type != ISL_TOKEN_VALUE) isl_die(ctx, isl_error_invalid, "not a value token", return NULL); return isl_val_int_from_isl_int(ctx, tok->u.v); } /* Given a token with a string representation, return a copy of this string. */ __isl_give char *isl_token_get_str(isl_ctx *ctx, struct isl_token *tok) { if (!tok) return NULL; if (!tok->u.s) isl_die(ctx, isl_error_invalid, "token does not have a string representation", return NULL); return strdup(tok->u.s); } void isl_token_free(struct isl_token *tok) { if (!tok) return; if (tok->type == ISL_TOKEN_VALUE) isl_int_clear(tok->u.v); else if (tok->type == ISL_TOKEN_MAP) isl_map_free(tok->u.map); else if (tok->type == ISL_TOKEN_AFF) isl_pw_aff_free(tok->u.pwaff); else free(tok->u.s); free(tok); } void isl_stream_error(__isl_keep isl_stream *s, struct isl_token *tok, char *msg) { int line = tok ? tok->line : s->line; int col = tok ? tok->col : s->col; fprintf(stderr, "syntax error (%d, %d): %s\n", line, col, msg); if (tok) { if (tok->type < 256) fprintf(stderr, "got '%c'\n", tok->type); else if (tok->type == ISL_TOKEN_IDENT) fprintf(stderr, "got ident '%s'\n", tok->u.s); else if (tok->is_keyword) fprintf(stderr, "got keyword '%s'\n", tok->u.s); else if (tok->type == ISL_TOKEN_VALUE) { fprintf(stderr, "got value '"); isl_int_print(stderr, tok->u.v, 0); fprintf(stderr, "'\n"); } else if (tok->type == ISL_TOKEN_MAP) { isl_printer *p; fprintf(stderr, "got map '"); p = isl_printer_to_file(s->ctx, stderr); p = isl_printer_print_map(p, tok->u.map); isl_printer_free(p); fprintf(stderr, "'\n"); } else if (tok->type == ISL_TOKEN_AFF) { isl_printer *p; fprintf(stderr, "got affine expression '"); p = isl_printer_to_file(s->ctx, stderr); p = isl_printer_print_pw_aff(p, tok->u.pwaff); isl_printer_free(p); fprintf(stderr, "'\n"); } else if (tok->u.s) fprintf(stderr, "got token '%s'\n", tok->u.s); else fprintf(stderr, "got token type %d\n", tok->type); } } static __isl_give isl_stream* isl_stream_new(struct isl_ctx *ctx) { int i; isl_stream *s = isl_calloc_type(ctx, struct isl_stream); if (!s) return NULL; s->ctx = ctx; isl_ctx_ref(s->ctx); s->file = NULL; s->str = NULL; s->len = 0; s->line = 1; s->col = 1; s->eof = 0; s->last_line = 0; s->c = -1; s->n_un = 0; for (i = 0; i < 5; ++i) s->tokens[i] = NULL; s->n_token = 0; s->keywords = NULL; s->size = 256; s->buffer = isl_alloc_array(ctx, char, s->size); if (!s->buffer) goto error; return s; error: isl_stream_free(s); return NULL; } __isl_give isl_stream* isl_stream_new_file(struct isl_ctx *ctx, FILE *file) { isl_stream *s = isl_stream_new(ctx); if (!s) return NULL; s->file = file; return s; } __isl_give isl_stream* isl_stream_new_str(struct isl_ctx *ctx, const char *str) { isl_stream *s; if (!str) return NULL; s = isl_stream_new(ctx); if (!s) return NULL; s->str = str; return s; } /* Read a character from the stream and advance s->line and s->col * to point to the next character. */ static int stream_getc(__isl_keep isl_stream *s) { int c; if (s->eof) return -1; if (s->n_un) return s->c = s->un[--s->n_un]; if (s->file) c = fgetc(s->file); else { c = *s->str++; if (c == '\0') c = -1; } if (c == -1) s->eof = 1; else if (c == '\n') { s->line++; s->col = 1; } else s->col++; s->c = c; return c; } static void isl_stream_ungetc(__isl_keep isl_stream *s, int c) { isl_assert(s->ctx, s->n_un < 5, return); s->un[s->n_un++] = c; s->c = -1; } /* Read a character from the stream, skipping pairs of '\\' and '\n'. * Set s->start_line and s->start_col to the line and column * of the returned character. */ static int isl_stream_getc(__isl_keep isl_stream *s) { int c; do { s->start_line = s->line; s->start_col = s->col; c = stream_getc(s); if (c != '\\') return c; c = stream_getc(s); } while (c == '\n'); isl_stream_ungetc(s, c); return '\\'; } static int isl_stream_push_char(__isl_keep isl_stream *s, int c) { if (s->len >= s->size) { char *buffer; s->size = (3*s->size)/2; buffer = isl_realloc_array(s->ctx, s->buffer, char, s->size); if (!buffer) return -1; s->buffer = buffer; } s->buffer[s->len++] = c; return 0; } void isl_stream_push_token(__isl_keep isl_stream *s, struct isl_token *tok) { isl_assert(s->ctx, s->n_token < 5, return); s->tokens[s->n_token++] = tok; } static enum isl_token_type check_keywords(__isl_keep isl_stream *s) { struct isl_hash_table_entry *entry; struct isl_keyword *keyword; uint32_t name_hash; if (!strcasecmp(s->buffer, "exists")) return ISL_TOKEN_EXISTS; if (!strcasecmp(s->buffer, "and")) return ISL_TOKEN_AND; if (!strcasecmp(s->buffer, "or")) return ISL_TOKEN_OR; if (!strcasecmp(s->buffer, "implies")) return ISL_TOKEN_IMPLIES; if (!strcasecmp(s->buffer, "not")) return ISL_TOKEN_NOT; if (!strcasecmp(s->buffer, "infty")) return ISL_TOKEN_INFTY; if (!strcasecmp(s->buffer, "infinity")) return ISL_TOKEN_INFTY; if (!strcasecmp(s->buffer, "NaN")) return ISL_TOKEN_NAN; if (!strcasecmp(s->buffer, "min")) return ISL_TOKEN_MIN; if (!strcasecmp(s->buffer, "max")) return ISL_TOKEN_MAX; if (!strcasecmp(s->buffer, "rat")) return ISL_TOKEN_RAT; if (!strcasecmp(s->buffer, "true")) return ISL_TOKEN_TRUE; if (!strcasecmp(s->buffer, "false")) return ISL_TOKEN_FALSE; if (!strcasecmp(s->buffer, "ceild")) return ISL_TOKEN_CEILD; if (!strcasecmp(s->buffer, "floord")) return ISL_TOKEN_FLOORD; if (!strcasecmp(s->buffer, "mod")) return ISL_TOKEN_MOD; if (!strcasecmp(s->buffer, "ceil")) return ISL_TOKEN_CEIL; if (!strcasecmp(s->buffer, "floor")) return ISL_TOKEN_FLOOR; if (!s->keywords) return ISL_TOKEN_IDENT; name_hash = isl_hash_string(isl_hash_init(), s->buffer); entry = isl_hash_table_find(s->ctx, s->keywords, name_hash, same_name, s->buffer, 0); if (entry) { keyword = entry->data; return keyword->type; } return ISL_TOKEN_IDENT; } int isl_stream_skip_line(__isl_keep isl_stream *s) { int c; while ((c = isl_stream_getc(s)) != -1 && c != '\n') /* nothing */ ; return c == -1 ? -1 : 0; } static struct isl_token *next_token(__isl_keep isl_stream *s, int same_line) { int c; struct isl_token *tok = NULL; int line, col; int old_line = s->last_line; if (s->n_token) { if (same_line && s->tokens[s->n_token - 1]->on_new_line) return NULL; return s->tokens[--s->n_token]; } if (same_line && s->c == '\n') return NULL; s->len = 0; /* skip spaces and comment lines */ while ((c = isl_stream_getc(s)) != -1) { if (c == '#') { if (isl_stream_skip_line(s) < 0) break; c = '\n'; if (same_line) break; } else if (!isspace(c) || (same_line && c == '\n')) break; } line = s->start_line; col = s->start_col; if (c == -1 || (same_line && c == '\n')) return NULL; s->last_line = line; if (c == '(' || c == ')' || c == '+' || c == '*' || c == '%' || c == '?' || c == '^' || c == '@' || c == '$' || c == ',' || c == '.' || c == ';' || c == '[' || c == ']' || c == '{' || c == '}') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = (enum isl_token_type)c; return tok; } if (c == '-') { int c; if ((c = isl_stream_getc(s)) == '>') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->u.s = strdup("->"); tok->type = ISL_TOKEN_TO; return tok; } if (c != -1) isl_stream_ungetc(s, c); if (!isdigit(c)) { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = (enum isl_token_type) '-'; return tok; } } if (c == '-' || isdigit(c)) { int minus = c == '-'; tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = ISL_TOKEN_VALUE; isl_int_init(tok->u.v); if (isl_stream_push_char(s, c)) goto error; while ((c = isl_stream_getc(s)) != -1 && isdigit(c)) if (isl_stream_push_char(s, c)) goto error; if (c != -1) isl_stream_ungetc(s, c); isl_stream_push_char(s, '\0'); isl_int_read(tok->u.v, s->buffer); if (minus && isl_int_is_zero(tok->u.v)) { tok->col++; tok->on_new_line = 0; isl_stream_push_token(s, tok); tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = (enum isl_token_type) '-'; } return tok; } if (isalpha(c) || c == '_') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; isl_stream_push_char(s, c); while ((c = isl_stream_getc(s)) != -1 && (isalnum(c) || c == '_')) isl_stream_push_char(s, c); if (c != -1) isl_stream_ungetc(s, c); while ((c = isl_stream_getc(s)) != -1 && c == '\'') isl_stream_push_char(s, c); if (c != -1) isl_stream_ungetc(s, c); isl_stream_push_char(s, '\0'); tok->type = check_keywords(s); if (tok->type != ISL_TOKEN_IDENT) tok->is_keyword = 1; tok->u.s = strdup(s->buffer); if (!tok->u.s) goto error; return tok; } if (c == '"') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = ISL_TOKEN_STRING; tok->u.s = NULL; while ((c = isl_stream_getc(s)) != -1 && c != '"' && c != '\n') isl_stream_push_char(s, c); if (c != '"') { isl_stream_error(s, NULL, "unterminated string"); goto error; } isl_stream_push_char(s, '\0'); tok->u.s = strdup(s->buffer); return tok; } if (c == '=') { int c; tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup("=="); tok->type = ISL_TOKEN_EQ_EQ; return tok; } if (c != -1) isl_stream_ungetc(s, c); tok->type = (enum isl_token_type) '='; return tok; } if (c == ':') { int c; tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup(":="); tok->type = ISL_TOKEN_DEF; return tok; } if (c != -1) isl_stream_ungetc(s, c); tok->type = (enum isl_token_type) ':'; return tok; } if (c == '>') { int c; tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup(">="); tok->type = ISL_TOKEN_GE; return tok; } else if (c == '>') { if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup(">>="); tok->type = ISL_TOKEN_LEX_GE; return tok; } tok->u.s = strdup(">>"); tok->type = ISL_TOKEN_LEX_GT; } else { tok->u.s = strdup(">"); tok->type = ISL_TOKEN_GT; } if (c != -1) isl_stream_ungetc(s, c); return tok; } if (c == '<') { int c; tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup("<="); tok->type = ISL_TOKEN_LE; return tok; } else if (c == '<') { if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup("<<="); tok->type = ISL_TOKEN_LEX_LE; return tok; } tok->u.s = strdup("<<"); tok->type = ISL_TOKEN_LEX_LT; } else { tok->u.s = strdup("<"); tok->type = ISL_TOKEN_LT; } if (c != -1) isl_stream_ungetc(s, c); return tok; } if (c == '&') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = ISL_TOKEN_AND; if ((c = isl_stream_getc(s)) != '&' && c != -1) { tok->u.s = strdup("&"); isl_stream_ungetc(s, c); } else tok->u.s = strdup("&&"); return tok; } if (c == '|') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = ISL_TOKEN_OR; if ((c = isl_stream_getc(s)) != '|' && c != -1) { tok->u.s = strdup("|"); isl_stream_ungetc(s, c); } else tok->u.s = strdup("||"); return tok; } if (c == '/') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) != '\\' && c != -1) { tok->type = (enum isl_token_type) '/'; isl_stream_ungetc(s, c); } else { tok->u.s = strdup("/\\"); tok->type = ISL_TOKEN_AND; } return tok; } if (c == '\\') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) != '/' && c != -1) { tok->type = (enum isl_token_type) '\\'; isl_stream_ungetc(s, c); } else { tok->u.s = strdup("\\/"); tok->type = ISL_TOKEN_OR; } return tok; } if (c == '!') { tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; if ((c = isl_stream_getc(s)) == '=') { tok->u.s = strdup("!="); tok->type = ISL_TOKEN_NE; return tok; } else { tok->type = ISL_TOKEN_NOT; tok->u.s = strdup("!"); } if (c != -1) isl_stream_ungetc(s, c); return tok; } tok = isl_token_new(s->ctx, line, col, old_line != line); if (!tok) return NULL; tok->type = ISL_TOKEN_UNKNOWN; return tok; error: isl_token_free(tok); return NULL; } struct isl_token *isl_stream_next_token(__isl_keep isl_stream *s) { return next_token(s, 0); } struct isl_token *isl_stream_next_token_on_same_line(__isl_keep isl_stream *s) { return next_token(s, 1); } int isl_stream_eat_if_available(__isl_keep isl_stream *s, int type) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type == type) { isl_token_free(tok); return 1; } isl_stream_push_token(s, tok); return 0; } int isl_stream_next_token_is(__isl_keep isl_stream *s, int type) { struct isl_token *tok; int r; tok = isl_stream_next_token(s); if (!tok) return 0; r = tok->type == type; isl_stream_push_token(s, tok); return r; } char *isl_stream_read_ident_if_available(__isl_keep isl_stream *s) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return NULL; if (tok->type == ISL_TOKEN_IDENT) { char *ident = strdup(tok->u.s); isl_token_free(tok); return ident; } isl_stream_push_token(s, tok); return NULL; } int isl_stream_eat(__isl_keep isl_stream *s, int type) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return -1; if (tok->type == type) { isl_token_free(tok); return 0; } isl_stream_error(s, tok, "expecting other token"); isl_stream_push_token(s, tok); return -1; } int isl_stream_is_empty(__isl_keep isl_stream *s) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return 1; isl_stream_push_token(s, tok); return 0; } static isl_stat free_keyword(void **p, void *user) { struct isl_keyword *keyword = *p; free(keyword->name); free(keyword); return isl_stat_ok; } void isl_stream_flush_tokens(__isl_keep isl_stream *s) { int i; if (!s) return; for (i = 0; i < s->n_token; ++i) isl_token_free(s->tokens[i]); s->n_token = 0; } isl_ctx *isl_stream_get_ctx(__isl_keep isl_stream *s) { return s ? s->ctx : NULL; } void isl_stream_free(__isl_take isl_stream *s) { if (!s) return; free(s->buffer); if (s->n_token != 0) { struct isl_token *tok = isl_stream_next_token(s); isl_stream_error(s, tok, "unexpected token"); isl_token_free(tok); } if (s->keywords) { isl_hash_table_foreach(s->ctx, s->keywords, &free_keyword, NULL); isl_hash_table_free(s->ctx, s->keywords); } free(s->yaml_state); free(s->yaml_indent); isl_ctx_deref(s->ctx); free(s); } /* Push "state" onto the stack of currently active YAML elements. * The caller is responsible for setting the corresponding indentation. * Return 0 on success and -1 on failure. */ static int push_state(__isl_keep isl_stream *s, enum isl_yaml_state state) { if (s->yaml_size < s->yaml_depth + 1) { int *indent; enum isl_yaml_state *state; state = isl_realloc_array(s->ctx, s->yaml_state, enum isl_yaml_state, s->yaml_depth + 1); if (!state) return -1; s->yaml_state = state; indent = isl_realloc_array(s->ctx, s->yaml_indent, int, s->yaml_depth + 1); if (!indent) return -1; s->yaml_indent = indent; s->yaml_size = s->yaml_depth + 1; } s->yaml_state[s->yaml_depth] = state; s->yaml_depth++; return 0; } /* Remove the innermost active YAML element from the stack. * Return 0 on success and -1 on failure. */ static int pop_state(__isl_keep isl_stream *s) { if (!s) return -1; if (s->yaml_depth < 1) isl_die(isl_stream_get_ctx(s), isl_error_invalid, "not in YAML construct", return -1); s->yaml_depth--; return 0; } /* Set the state of the innermost active YAML element to "state". * Return 0 on success and -1 on failure. */ static int update_state(__isl_keep isl_stream *s, enum isl_yaml_state state) { if (!s) return -1; if (s->yaml_depth < 1) isl_die(isl_stream_get_ctx(s), isl_error_invalid, "not in YAML construct", return -1); s->yaml_state[s->yaml_depth - 1] = state; return 0; } /* Return the state of the innermost active YAML element. * Return isl_yaml_none if we are not inside any YAML element. */ static enum isl_yaml_state current_state(__isl_keep isl_stream *s) { if (!s) return isl_yaml_none; if (s->yaml_depth < 1) return isl_yaml_none; return s->yaml_state[s->yaml_depth - 1]; } /* Set the indentation of the innermost active YAML element to "indent". * If "indent" is equal to ISL_YAML_INDENT_FLOW, then this means * that the current elemient is in flow format. */ static int set_yaml_indent(__isl_keep isl_stream *s, int indent) { if (s->yaml_depth < 1) isl_die(s->ctx, isl_error_internal, "not in YAML element", return -1); s->yaml_indent[s->yaml_depth - 1] = indent; return 0; } /* Return the indentation of the innermost active YAML element * of -1 on error. */ static int get_yaml_indent(__isl_keep isl_stream *s) { if (s->yaml_depth < 1) isl_die(s->ctx, isl_error_internal, "not in YAML element", return -1); return s->yaml_indent[s->yaml_depth - 1]; } /* Move to the next state at the innermost level. * Return 1 if successful. * Return 0 if we are at the end of the innermost level. * Return -1 on error. * * If we are in state isl_yaml_mapping_key_start, then we have just * started a mapping and we are expecting a key. If the mapping started * with a '{', then we check if the next token is a '}'. If so, * then the mapping is empty and there is no next state at this level. * Otherwise, we assume that there is at least one key (the one from * which we derived the indentation in isl_stream_yaml_read_start_mapping. * * If we are in state isl_yaml_mapping_key, then the we expect a colon * followed by a value, so there is always a next state unless * some error occurs. * * If we are in state isl_yaml_mapping_val, then there may or may * not be a subsequent key in the same mapping. * In flow format, the next key is preceded by a comma. * In block format, the next key has the same indentation as the first key. * If the first token has a smaller indentation, then we have reached * the end of the current mapping. * * If we are in state isl_yaml_sequence_start, then we have just * started a sequence. If the sequence started with a '[', * then we check if the next token is a ']'. If so, then the sequence * is empty and there is no next state at this level. * Otherwise, we assume that there is at least one element in the sequence * (the one from which we derived the indentation in * isl_stream_yaml_read_start_sequence. * * If we are in state isl_yaml_sequence, then there may or may * not be a subsequent element in the same sequence. * In flow format, the next element is preceded by a comma. * In block format, the next element is introduced by a dash with * the same indentation as that of the first element. * If the first token is not a dash or if it has a smaller indentation, * then we have reached the end of the current sequence. */ int isl_stream_yaml_next(__isl_keep isl_stream *s) { struct isl_token *tok; enum isl_yaml_state state; int indent; state = current_state(s); if (state == isl_yaml_none) isl_die(s->ctx, isl_error_invalid, "not in YAML element", return -1); switch (state) { case isl_yaml_mapping_key_start: if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW && isl_stream_next_token_is(s, '}')) return 0; if (update_state(s, isl_yaml_mapping_key) < 0) return -1; return 1; case isl_yaml_mapping_key: tok = isl_stream_next_token(s); if (!tok) { if (s->eof) isl_stream_error(s, NULL, "unexpected EOF"); return -1; } if (tok->type == ':') { isl_token_free(tok); if (update_state(s, isl_yaml_mapping_val) < 0) return -1; return 1; } isl_stream_error(s, tok, "expecting ':'"); isl_stream_push_token(s, tok); return -1; case isl_yaml_mapping_val: if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW) { if (!isl_stream_eat_if_available(s, ',')) return 0; if (update_state(s, isl_yaml_mapping_key) < 0) return -1; return 1; } tok = isl_stream_next_token(s); if (!tok) return 0; indent = tok->col - 1; isl_stream_push_token(s, tok); if (indent < get_yaml_indent(s)) return 0; if (update_state(s, isl_yaml_mapping_key) < 0) return -1; return 1; case isl_yaml_sequence_start: if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW) { if (isl_stream_next_token_is(s, ']')) return 0; if (update_state(s, isl_yaml_sequence) < 0) return -1; return 1; } tok = isl_stream_next_token(s); if (!tok) { if (s->eof) isl_stream_error(s, NULL, "unexpected EOF"); return -1; } if (tok->type == '-') { isl_token_free(tok); if (update_state(s, isl_yaml_sequence) < 0) return -1; return 1; } isl_stream_error(s, tok, "expecting '-'"); isl_stream_push_token(s, tok); return 0; case isl_yaml_sequence: if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW) return isl_stream_eat_if_available(s, ','); tok = isl_stream_next_token(s); if (!tok) return 0; indent = tok->col - 1; if (indent < get_yaml_indent(s) || tok->type != '-') { isl_stream_push_token(s, tok); return 0; } isl_token_free(tok); return 1; default: isl_die(s->ctx, isl_error_internal, "unexpected state", return 0); } } /* Start reading a YAML mapping. * Return 0 on success and -1 on error. * * If the first token on the stream is a '{' then we remove this token * from the stream and keep track of the fact that the mapping * is given in flow format. * Otherwise, we assume the first token is the first key of the mapping and * keep track of its indentation, but keep the token on the stream. * In both cases, the next token we expect is the first key of the mapping. */ int isl_stream_yaml_read_start_mapping(__isl_keep isl_stream *s) { struct isl_token *tok; int indent; if (push_state(s, isl_yaml_mapping_key_start) < 0) return -1; tok = isl_stream_next_token(s); if (!tok) { if (s->eof) isl_stream_error(s, NULL, "unexpected EOF"); return -1; } if (isl_token_get_type(tok) == '{') { isl_token_free(tok); return set_yaml_indent(s, ISL_YAML_INDENT_FLOW); } indent = tok->col - 1; isl_stream_push_token(s, tok); return set_yaml_indent(s, indent); } /* Finish reading a YAML mapping. * Return 0 on success and -1 on error. * * If the mapping started with a '{', then we expect a '}' to close * the mapping. * Otherwise, we double-check that the next token (if any) * has a smaller indentation than that of the current mapping. */ int isl_stream_yaml_read_end_mapping(__isl_keep isl_stream *s) { struct isl_token *tok; int indent; if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW) { if (isl_stream_eat(s, '}') < 0) return -1; return pop_state(s); } tok = isl_stream_next_token(s); if (!tok) return pop_state(s); indent = tok->col - 1; isl_stream_push_token(s, tok); if (indent >= get_yaml_indent(s)) isl_die(isl_stream_get_ctx(s), isl_error_invalid, "mapping not finished", return -1); return pop_state(s); } /* Start reading a YAML sequence. * Return 0 on success and -1 on error. * * If the first token on the stream is a '[' then we remove this token * from the stream and keep track of the fact that the sequence * is given in flow format. * Otherwise, we assume the first token is the dash that introduces * the first element of the sequence and keep track of its indentation, * but keep the token on the stream. * In both cases, the next token we expect is the first element * of the sequence. */ int isl_stream_yaml_read_start_sequence(__isl_keep isl_stream *s) { struct isl_token *tok; int indent; if (push_state(s, isl_yaml_sequence_start) < 0) return -1; tok = isl_stream_next_token(s); if (!tok) { if (s->eof) isl_stream_error(s, NULL, "unexpected EOF"); return -1; } if (isl_token_get_type(tok) == '[') { isl_token_free(tok); return set_yaml_indent(s, ISL_YAML_INDENT_FLOW); } indent = tok->col - 1; isl_stream_push_token(s, tok); return set_yaml_indent(s, indent); } /* Finish reading a YAML sequence. * Return 0 on success and -1 on error. * * If the sequence started with a '[', then we expect a ']' to close * the sequence. * Otherwise, we double-check that the next token (if any) * is not a dash or that it has a smaller indentation than * that of the current sequence. */ int isl_stream_yaml_read_end_sequence(__isl_keep isl_stream *s) { struct isl_token *tok; int indent; int dash; if (get_yaml_indent(s) == ISL_YAML_INDENT_FLOW) { if (isl_stream_eat(s, ']') < 0) return -1; return pop_state(s); } tok = isl_stream_next_token(s); if (!tok) return pop_state(s); indent = tok->col - 1; dash = tok->type == '-'; isl_stream_push_token(s, tok); if (indent >= get_yaml_indent(s) && dash) isl_die(isl_stream_get_ctx(s), isl_error_invalid, "sequence not finished", return -1); return pop_state(s); } isl-0.16.1/isl_scheduler.c0000664000175000017500000040071212645737514012324 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2015 Sven Verdoolaege * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The scheduling algorithm implemented in this file was inspired by * Bondhugula et al., "Automatic Transformations for Communication-Minimized * Parallelization and Locality Optimization in the Polyhedral Model". */ enum isl_edge_type { isl_edge_validity = 0, isl_edge_first = isl_edge_validity, isl_edge_coincidence, isl_edge_condition, isl_edge_conditional_validity, isl_edge_proximity, isl_edge_last = isl_edge_proximity, isl_edge_local }; /* The constraints that need to be satisfied by a schedule on "domain". * * "context" specifies extra constraints on the parameters. * * "validity" constraints map domain elements i to domain elements * that should be scheduled after i. (Hard constraint) * "proximity" constraints map domain elements i to domains elements * that should be scheduled as early as possible after i (or before i). * (Soft constraint) * * "condition" and "conditional_validity" constraints map possibly "tagged" * domain elements i -> s to "tagged" domain elements j -> t. * The elements of the "conditional_validity" constraints, but without the * tags (i.e., the elements i -> j) are treated as validity constraints, * except that during the construction of a tilable band, * the elements of the "conditional_validity" constraints may be violated * provided that all adjacent elements of the "condition" constraints * are local within the band. * A dependence is local within a band if domain and range are mapped * to the same schedule point by the band. */ struct isl_schedule_constraints { isl_union_set *domain; isl_set *context; isl_union_map *constraint[isl_edge_last + 1]; }; __isl_give isl_schedule_constraints *isl_schedule_constraints_copy( __isl_keep isl_schedule_constraints *sc) { isl_ctx *ctx; isl_schedule_constraints *sc_copy; enum isl_edge_type i; ctx = isl_union_set_get_ctx(sc->domain); sc_copy = isl_calloc_type(ctx, struct isl_schedule_constraints); if (!sc_copy) return NULL; sc_copy->domain = isl_union_set_copy(sc->domain); sc_copy->context = isl_set_copy(sc->context); if (!sc_copy->domain || !sc_copy->context) return isl_schedule_constraints_free(sc_copy); for (i = isl_edge_first; i <= isl_edge_last; ++i) { sc_copy->constraint[i] = isl_union_map_copy(sc->constraint[i]); if (!sc_copy->constraint[i]) return isl_schedule_constraints_free(sc_copy); } return sc_copy; } /* Construct an isl_schedule_constraints object for computing a schedule * on "domain". The initial object does not impose any constraints. */ __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain( __isl_take isl_union_set *domain) { isl_ctx *ctx; isl_space *space; isl_schedule_constraints *sc; isl_union_map *empty; enum isl_edge_type i; if (!domain) return NULL; ctx = isl_union_set_get_ctx(domain); sc = isl_calloc_type(ctx, struct isl_schedule_constraints); if (!sc) goto error; space = isl_union_set_get_space(domain); sc->domain = domain; sc->context = isl_set_universe(isl_space_copy(space)); empty = isl_union_map_empty(space); for (i = isl_edge_first; i <= isl_edge_last; ++i) { sc->constraint[i] = isl_union_map_copy(empty); if (!sc->constraint[i]) sc->domain = isl_union_set_free(sc->domain); } isl_union_map_free(empty); if (!sc->domain || !sc->context) return isl_schedule_constraints_free(sc); return sc; error: isl_union_set_free(domain); return NULL; } /* Replace the context of "sc" by "context". */ __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context( __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context) { if (!sc || !context) goto error; isl_set_free(sc->context); sc->context = context; return sc; error: isl_schedule_constraints_free(sc); isl_set_free(context); return NULL; } /* Replace the validity constraints of "sc" by "validity". */ __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *validity) { if (!sc || !validity) goto error; isl_union_map_free(sc->constraint[isl_edge_validity]); sc->constraint[isl_edge_validity] = validity; return sc; error: isl_schedule_constraints_free(sc); isl_union_map_free(validity); return NULL; } /* Replace the coincidence constraints of "sc" by "coincidence". */ __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *coincidence) { if (!sc || !coincidence) goto error; isl_union_map_free(sc->constraint[isl_edge_coincidence]); sc->constraint[isl_edge_coincidence] = coincidence; return sc; error: isl_schedule_constraints_free(sc); isl_union_map_free(coincidence); return NULL; } /* Replace the proximity constraints of "sc" by "proximity". */ __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *proximity) { if (!sc || !proximity) goto error; isl_union_map_free(sc->constraint[isl_edge_proximity]); sc->constraint[isl_edge_proximity] = proximity; return sc; error: isl_schedule_constraints_free(sc); isl_union_map_free(proximity); return NULL; } /* Replace the conditional validity constraints of "sc" by "condition" * and "validity". */ __isl_give isl_schedule_constraints * isl_schedule_constraints_set_conditional_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *condition, __isl_take isl_union_map *validity) { if (!sc || !condition || !validity) goto error; isl_union_map_free(sc->constraint[isl_edge_condition]); sc->constraint[isl_edge_condition] = condition; isl_union_map_free(sc->constraint[isl_edge_conditional_validity]); sc->constraint[isl_edge_conditional_validity] = validity; return sc; error: isl_schedule_constraints_free(sc); isl_union_map_free(condition); isl_union_map_free(validity); return NULL; } __isl_null isl_schedule_constraints *isl_schedule_constraints_free( __isl_take isl_schedule_constraints *sc) { enum isl_edge_type i; if (!sc) return NULL; isl_union_set_free(sc->domain); isl_set_free(sc->context); for (i = isl_edge_first; i <= isl_edge_last; ++i) isl_union_map_free(sc->constraint[i]); free(sc); return NULL; } isl_ctx *isl_schedule_constraints_get_ctx( __isl_keep isl_schedule_constraints *sc) { return sc ? isl_union_set_get_ctx(sc->domain) : NULL; } /* Return the domain of "sc". */ __isl_give isl_union_set *isl_schedule_constraints_get_domain( __isl_keep isl_schedule_constraints *sc) { if (!sc) return NULL; return isl_union_set_copy(sc->domain); } /* Return the validity constraints of "sc". */ __isl_give isl_union_map *isl_schedule_constraints_get_validity( __isl_keep isl_schedule_constraints *sc) { if (!sc) return NULL; return isl_union_map_copy(sc->constraint[isl_edge_validity]); } /* Return the coincidence constraints of "sc". */ __isl_give isl_union_map *isl_schedule_constraints_get_coincidence( __isl_keep isl_schedule_constraints *sc) { if (!sc) return NULL; return isl_union_map_copy(sc->constraint[isl_edge_coincidence]); } /* Return the conditional validity constraints of "sc". */ __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity( __isl_keep isl_schedule_constraints *sc) { if (!sc) return NULL; return isl_union_map_copy(sc->constraint[isl_edge_conditional_validity]); } /* Return the conditions for the conditional validity constraints of "sc". */ __isl_give isl_union_map * isl_schedule_constraints_get_conditional_validity_condition( __isl_keep isl_schedule_constraints *sc) { if (!sc) return NULL; return isl_union_map_copy(sc->constraint[isl_edge_condition]); } void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc) { if (!sc) return; fprintf(stderr, "domain: "); isl_union_set_dump(sc->domain); fprintf(stderr, "context: "); isl_set_dump(sc->context); fprintf(stderr, "validity: "); isl_union_map_dump(sc->constraint[isl_edge_validity]); fprintf(stderr, "proximity: "); isl_union_map_dump(sc->constraint[isl_edge_proximity]); fprintf(stderr, "coincidence: "); isl_union_map_dump(sc->constraint[isl_edge_coincidence]); fprintf(stderr, "condition: "); isl_union_map_dump(sc->constraint[isl_edge_condition]); fprintf(stderr, "conditional_validity: "); isl_union_map_dump(sc->constraint[isl_edge_conditional_validity]); } /* Align the parameters of the fields of "sc". */ static __isl_give isl_schedule_constraints * isl_schedule_constraints_align_params(__isl_take isl_schedule_constraints *sc) { isl_space *space; enum isl_edge_type i; if (!sc) return NULL; space = isl_union_set_get_space(sc->domain); space = isl_space_align_params(space, isl_set_get_space(sc->context)); for (i = isl_edge_first; i <= isl_edge_last; ++i) space = isl_space_align_params(space, isl_union_map_get_space(sc->constraint[i])); for (i = isl_edge_first; i <= isl_edge_last; ++i) { sc->constraint[i] = isl_union_map_align_params( sc->constraint[i], isl_space_copy(space)); if (!sc->constraint[i]) space = isl_space_free(space); } sc->context = isl_set_align_params(sc->context, isl_space_copy(space)); sc->domain = isl_union_set_align_params(sc->domain, space); if (!sc->context || !sc->domain) return isl_schedule_constraints_free(sc); return sc; } /* Return the total number of isl_maps in the constraints of "sc". */ static __isl_give int isl_schedule_constraints_n_map( __isl_keep isl_schedule_constraints *sc) { enum isl_edge_type i; int n = 0; for (i = isl_edge_first; i <= isl_edge_last; ++i) n += isl_union_map_n_map(sc->constraint[i]); return n; } /* Internal information about a node that is used during the construction * of a schedule. * space represents the space in which the domain lives * sched is a matrix representation of the schedule being constructed * for this node; if compressed is set, then this schedule is * defined over the compressed domain space * sched_map is an isl_map representation of the same (partial) schedule * sched_map may be NULL; if compressed is set, then this map * is defined over the uncompressed domain space * rank is the number of linearly independent rows in the linear part * of sched * the columns of cmap represent a change of basis for the schedule * coefficients; the first rank columns span the linear part of * the schedule rows * cinv is the inverse of cmap. * start is the first variable in the LP problem in the sequences that * represents the schedule coefficients of this node * nvar is the dimension of the domain * nparam is the number of parameters or 0 if we are not constructing * a parametric schedule * * If compressed is set, then hull represents the constraints * that were used to derive the compression, while compress and * decompress map the original space to the compressed space and * vice versa. * * scc is the index of SCC (or WCC) this node belongs to * * coincident contains a boolean for each of the rows of the schedule, * indicating whether the corresponding scheduling dimension satisfies * the coincidence constraints in the sense that the corresponding * dependence distances are zero. */ struct isl_sched_node { isl_space *space; int compressed; isl_set *hull; isl_multi_aff *compress; isl_multi_aff *decompress; isl_mat *sched; isl_map *sched_map; int rank; isl_mat *cmap; isl_mat *cinv; int start; int nvar; int nparam; int scc; int *coincident; }; static int node_has_space(const void *entry, const void *val) { struct isl_sched_node *node = (struct isl_sched_node *)entry; isl_space *dim = (isl_space *)val; return isl_space_is_equal(node->space, dim); } static int node_scc_exactly(struct isl_sched_node *node, int scc) { return node->scc == scc; } static int node_scc_at_most(struct isl_sched_node *node, int scc) { return node->scc <= scc; } static int node_scc_at_least(struct isl_sched_node *node, int scc) { return node->scc >= scc; } /* An edge in the dependence graph. An edge may be used to * ensure validity of the generated schedule, to minimize the dependence * distance or both * * map is the dependence relation, with i -> j in the map if j depends on i * tagged_condition and tagged_validity contain the union of all tagged * condition or conditional validity dependence relations that * specialize the dependence relation "map"; that is, * if (i -> a) -> (j -> b) is an element of "tagged_condition" * or "tagged_validity", then i -> j is an element of "map". * If these fields are NULL, then they represent the empty relation. * src is the source node * dst is the sink node * * types is a bit vector containing the types of this edge. * validity is set if the edge is used to ensure correctness * coincidence is used to enforce zero dependence distances * proximity is set if the edge is used to minimize dependence distances * condition is set if the edge represents a condition * for a conditional validity schedule constraint * local can only be set for condition edges and indicates that * the dependence distance over the edge should be zero * conditional_validity is set if the edge is used to conditionally * ensure correctness * * For validity edges, start and end mark the sequence of inequality * constraints in the LP problem that encode the validity constraint * corresponding to this edge. */ struct isl_sched_edge { isl_map *map; isl_union_map *tagged_condition; isl_union_map *tagged_validity; struct isl_sched_node *src; struct isl_sched_node *dst; unsigned types; int start; int end; }; /* Is "edge" marked as being of type "type"? */ static int is_type(struct isl_sched_edge *edge, enum isl_edge_type type) { return ISL_FL_ISSET(edge->types, 1 << type); } /* Mark "edge" as being of type "type". */ static void set_type(struct isl_sched_edge *edge, enum isl_edge_type type) { ISL_FL_SET(edge->types, 1 << type); } /* No longer mark "edge" as being of type "type"? */ static void clear_type(struct isl_sched_edge *edge, enum isl_edge_type type) { ISL_FL_CLR(edge->types, 1 << type); } /* Is "edge" marked as a validity edge? */ static int is_validity(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_validity); } /* Mark "edge" as a validity edge. */ static void set_validity(struct isl_sched_edge *edge) { set_type(edge, isl_edge_validity); } /* Is "edge" marked as a proximity edge? */ static int is_proximity(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_proximity); } /* Is "edge" marked as a local edge? */ static int is_local(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_local); } /* Mark "edge" as a local edge. */ static void set_local(struct isl_sched_edge *edge) { set_type(edge, isl_edge_local); } /* No longer mark "edge" as a local edge. */ static void clear_local(struct isl_sched_edge *edge) { clear_type(edge, isl_edge_local); } /* Is "edge" marked as a coincidence edge? */ static int is_coincidence(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_coincidence); } /* Is "edge" marked as a condition edge? */ static int is_condition(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_condition); } /* Is "edge" marked as a conditional validity edge? */ static int is_conditional_validity(struct isl_sched_edge *edge) { return is_type(edge, isl_edge_conditional_validity); } /* Internal information about the dependence graph used during * the construction of the schedule. * * intra_hmap is a cache, mapping dependence relations to their dual, * for dependences from a node to itself * inter_hmap is a cache, mapping dependence relations to their dual, * for dependences between distinct nodes * if compression is involved then the key for these maps * it the original, uncompressed dependence relation, while * the value is the dual of the compressed dependence relation. * * n is the number of nodes * node is the list of nodes * maxvar is the maximal number of variables over all nodes * max_row is the allocated number of rows in the schedule * n_row is the current (maximal) number of linearly independent * rows in the node schedules * n_total_row is the current number of rows in the node schedules * band_start is the starting row in the node schedules of the current band * root is set if this graph is the original dependence graph, * without any splitting * * sorted contains a list of node indices sorted according to the * SCC to which a node belongs * * n_edge is the number of edges * edge is the list of edges * max_edge contains the maximal number of edges of each type; * in particular, it contains the number of edges in the inital graph. * edge_table contains pointers into the edge array, hashed on the source * and sink spaces; there is one such table for each type; * a given edge may be referenced from more than one table * if the corresponding relation appears in more than one of the * sets of dependences; however, for each type there is only * a single edge between a given pair of source and sink space * in the entire graph * * node_table contains pointers into the node array, hashed on the space * * region contains a list of variable sequences that should be non-trivial * * lp contains the (I)LP problem used to obtain new schedule rows * * src_scc and dst_scc are the source and sink SCCs of an edge with * conflicting constraints * * scc represents the number of components * weak is set if the components are weakly connected */ struct isl_sched_graph { isl_map_to_basic_set *intra_hmap; isl_map_to_basic_set *inter_hmap; struct isl_sched_node *node; int n; int maxvar; int max_row; int n_row; int *sorted; int n_total_row; int band_start; int root; struct isl_sched_edge *edge; int n_edge; int max_edge[isl_edge_last + 1]; struct isl_hash_table *edge_table[isl_edge_last + 1]; struct isl_hash_table *node_table; struct isl_region *region; isl_basic_set *lp; int src_scc; int dst_scc; int scc; int weak; }; /* Initialize node_table based on the list of nodes. */ static int graph_init_table(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; graph->node_table = isl_hash_table_alloc(ctx, graph->n); if (!graph->node_table) return -1; for (i = 0; i < graph->n; ++i) { struct isl_hash_table_entry *entry; uint32_t hash; hash = isl_space_get_hash(graph->node[i].space); entry = isl_hash_table_find(ctx, graph->node_table, hash, &node_has_space, graph->node[i].space, 1); if (!entry) return -1; entry->data = &graph->node[i]; } return 0; } /* Return a pointer to the node that lives within the given space, * or NULL if there is no such node. */ static struct isl_sched_node *graph_find_node(isl_ctx *ctx, struct isl_sched_graph *graph, __isl_keep isl_space *dim) { struct isl_hash_table_entry *entry; uint32_t hash; hash = isl_space_get_hash(dim); entry = isl_hash_table_find(ctx, graph->node_table, hash, &node_has_space, dim, 0); return entry ? entry->data : NULL; } static int edge_has_src_and_dst(const void *entry, const void *val) { const struct isl_sched_edge *edge = entry; const struct isl_sched_edge *temp = val; return edge->src == temp->src && edge->dst == temp->dst; } /* Add the given edge to graph->edge_table[type]. */ static isl_stat graph_edge_table_add(isl_ctx *ctx, struct isl_sched_graph *graph, enum isl_edge_type type, struct isl_sched_edge *edge) { struct isl_hash_table_entry *entry; uint32_t hash; hash = isl_hash_init(); hash = isl_hash_builtin(hash, edge->src); hash = isl_hash_builtin(hash, edge->dst); entry = isl_hash_table_find(ctx, graph->edge_table[type], hash, &edge_has_src_and_dst, edge, 1); if (!entry) return isl_stat_error; entry->data = edge; return isl_stat_ok; } /* Allocate the edge_tables based on the maximal number of edges of * each type. */ static int graph_init_edge_tables(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; for (i = 0; i <= isl_edge_last; ++i) { graph->edge_table[i] = isl_hash_table_alloc(ctx, graph->max_edge[i]); if (!graph->edge_table[i]) return -1; } return 0; } /* If graph->edge_table[type] contains an edge from the given source * to the given destination, then return the hash table entry of this edge. * Otherwise, return NULL. */ static struct isl_hash_table_entry *graph_find_edge_entry( struct isl_sched_graph *graph, enum isl_edge_type type, struct isl_sched_node *src, struct isl_sched_node *dst) { isl_ctx *ctx = isl_space_get_ctx(src->space); uint32_t hash; struct isl_sched_edge temp = { .src = src, .dst = dst }; hash = isl_hash_init(); hash = isl_hash_builtin(hash, temp.src); hash = isl_hash_builtin(hash, temp.dst); return isl_hash_table_find(ctx, graph->edge_table[type], hash, &edge_has_src_and_dst, &temp, 0); } /* If graph->edge_table[type] contains an edge from the given source * to the given destination, then return this edge. * Otherwise, return NULL. */ static struct isl_sched_edge *graph_find_edge(struct isl_sched_graph *graph, enum isl_edge_type type, struct isl_sched_node *src, struct isl_sched_node *dst) { struct isl_hash_table_entry *entry; entry = graph_find_edge_entry(graph, type, src, dst); if (!entry) return NULL; return entry->data; } /* Check whether the dependence graph has an edge of the given type * between the given two nodes. */ static isl_bool graph_has_edge(struct isl_sched_graph *graph, enum isl_edge_type type, struct isl_sched_node *src, struct isl_sched_node *dst) { struct isl_sched_edge *edge; isl_bool empty; edge = graph_find_edge(graph, type, src, dst); if (!edge) return 0; empty = isl_map_plain_is_empty(edge->map); if (empty < 0) return isl_bool_error; return !empty; } /* Look for any edge with the same src, dst and map fields as "model". * * Return the matching edge if one can be found. * Return "model" if no matching edge is found. * Return NULL on error. */ static struct isl_sched_edge *graph_find_matching_edge( struct isl_sched_graph *graph, struct isl_sched_edge *model) { enum isl_edge_type i; struct isl_sched_edge *edge; for (i = isl_edge_first; i <= isl_edge_last; ++i) { int is_equal; edge = graph_find_edge(graph, i, model->src, model->dst); if (!edge) continue; is_equal = isl_map_plain_is_equal(model->map, edge->map); if (is_equal < 0) return NULL; if (is_equal) return edge; } return model; } /* Remove the given edge from all the edge_tables that refer to it. */ static void graph_remove_edge(struct isl_sched_graph *graph, struct isl_sched_edge *edge) { isl_ctx *ctx = isl_map_get_ctx(edge->map); enum isl_edge_type i; for (i = isl_edge_first; i <= isl_edge_last; ++i) { struct isl_hash_table_entry *entry; entry = graph_find_edge_entry(graph, i, edge->src, edge->dst); if (!entry) continue; if (entry->data != edge) continue; isl_hash_table_remove(ctx, graph->edge_table[i], entry); } } /* Check whether the dependence graph has any edge * between the given two nodes. */ static isl_bool graph_has_any_edge(struct isl_sched_graph *graph, struct isl_sched_node *src, struct isl_sched_node *dst) { enum isl_edge_type i; isl_bool r; for (i = isl_edge_first; i <= isl_edge_last; ++i) { r = graph_has_edge(graph, i, src, dst); if (r < 0 || r) return r; } return r; } /* Check whether the dependence graph has a validity edge * between the given two nodes. * * Conditional validity edges are essentially validity edges that * can be ignored if the corresponding condition edges are iteration private. * Here, we are only checking for the presence of validity * edges, so we need to consider the conditional validity edges too. * In particular, this function is used during the detection * of strongly connected components and we cannot ignore * conditional validity edges during this detection. */ static isl_bool graph_has_validity_edge(struct isl_sched_graph *graph, struct isl_sched_node *src, struct isl_sched_node *dst) { isl_bool r; r = graph_has_edge(graph, isl_edge_validity, src, dst); if (r < 0 || r) return r; return graph_has_edge(graph, isl_edge_conditional_validity, src, dst); } static int graph_alloc(isl_ctx *ctx, struct isl_sched_graph *graph, int n_node, int n_edge) { int i; graph->n = n_node; graph->n_edge = n_edge; graph->node = isl_calloc_array(ctx, struct isl_sched_node, graph->n); graph->sorted = isl_calloc_array(ctx, int, graph->n); graph->region = isl_alloc_array(ctx, struct isl_region, graph->n); graph->edge = isl_calloc_array(ctx, struct isl_sched_edge, graph->n_edge); graph->intra_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge); graph->inter_hmap = isl_map_to_basic_set_alloc(ctx, 2 * n_edge); if (!graph->node || !graph->region || (graph->n_edge && !graph->edge) || !graph->sorted) return -1; for(i = 0; i < graph->n; ++i) graph->sorted[i] = i; return 0; } static void graph_free(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; isl_map_to_basic_set_free(graph->intra_hmap); isl_map_to_basic_set_free(graph->inter_hmap); if (graph->node) for (i = 0; i < graph->n; ++i) { isl_space_free(graph->node[i].space); isl_set_free(graph->node[i].hull); isl_multi_aff_free(graph->node[i].compress); isl_multi_aff_free(graph->node[i].decompress); isl_mat_free(graph->node[i].sched); isl_map_free(graph->node[i].sched_map); isl_mat_free(graph->node[i].cmap); isl_mat_free(graph->node[i].cinv); if (graph->root) free(graph->node[i].coincident); } free(graph->node); free(graph->sorted); if (graph->edge) for (i = 0; i < graph->n_edge; ++i) { isl_map_free(graph->edge[i].map); isl_union_map_free(graph->edge[i].tagged_condition); isl_union_map_free(graph->edge[i].tagged_validity); } free(graph->edge); free(graph->region); for (i = 0; i <= isl_edge_last; ++i) isl_hash_table_free(ctx, graph->edge_table[i]); isl_hash_table_free(ctx, graph->node_table); isl_basic_set_free(graph->lp); } /* For each "set" on which this function is called, increment * graph->n by one and update graph->maxvar. */ static isl_stat init_n_maxvar(__isl_take isl_set *set, void *user) { struct isl_sched_graph *graph = user; int nvar = isl_set_dim(set, isl_dim_set); graph->n++; if (nvar > graph->maxvar) graph->maxvar = nvar; isl_set_free(set); return isl_stat_ok; } /* Add the number of basic maps in "map" to *n. */ static isl_stat add_n_basic_map(__isl_take isl_map *map, void *user) { int *n = user; *n += isl_map_n_basic_map(map); isl_map_free(map); return isl_stat_ok; } /* Compute the number of rows that should be allocated for the schedule. * In particular, we need one row for each variable or one row * for each basic map in the dependences. * Note that it is practically impossible to exhaust both * the number of dependences and the number of variables. */ static int compute_max_row(struct isl_sched_graph *graph, __isl_keep isl_schedule_constraints *sc) { enum isl_edge_type i; int n_edge; graph->n = 0; graph->maxvar = 0; if (isl_union_set_foreach_set(sc->domain, &init_n_maxvar, graph) < 0) return -1; n_edge = 0; for (i = isl_edge_first; i <= isl_edge_last; ++i) if (isl_union_map_foreach_map(sc->constraint[i], &add_n_basic_map, &n_edge) < 0) return -1; graph->max_row = n_edge + graph->maxvar; return 0; } /* Does "bset" have any defining equalities for its set variables? */ static int has_any_defining_equality(__isl_keep isl_basic_set *bset) { int i, n; if (!bset) return -1; n = isl_basic_set_dim(bset, isl_dim_set); for (i = 0; i < n; ++i) { int has; has = isl_basic_set_has_defining_equality(bset, isl_dim_set, i, NULL); if (has < 0 || has) return has; } return 0; } /* Add a new node to the graph representing the given space. * "nvar" is the (possibly compressed) number of variables and * may be smaller than then number of set variables in "space" * if "compressed" is set. * If "compressed" is set, then "hull" represents the constraints * that were used to derive the compression, while "compress" and * "decompress" map the original space to the compressed space and * vice versa. * If "compressed" is not set, then "hull", "compress" and "decompress" * should be NULL. */ static isl_stat add_node(struct isl_sched_graph *graph, __isl_take isl_space *space, int nvar, int compressed, __isl_take isl_set *hull, __isl_take isl_multi_aff *compress, __isl_take isl_multi_aff *decompress) { int nparam; isl_ctx *ctx; isl_mat *sched; int *coincident; if (!space) return isl_stat_error; ctx = isl_space_get_ctx(space); nparam = isl_space_dim(space, isl_dim_param); if (!ctx->opt->schedule_parametric) nparam = 0; sched = isl_mat_alloc(ctx, 0, 1 + nparam + nvar); graph->node[graph->n].space = space; graph->node[graph->n].nvar = nvar; graph->node[graph->n].nparam = nparam; graph->node[graph->n].sched = sched; graph->node[graph->n].sched_map = NULL; coincident = isl_calloc_array(ctx, int, graph->max_row); graph->node[graph->n].coincident = coincident; graph->node[graph->n].compressed = compressed; graph->node[graph->n].hull = hull; graph->node[graph->n].compress = compress; graph->node[graph->n].decompress = decompress; graph->n++; if (!space || !sched || (graph->max_row && !coincident)) return isl_stat_error; if (compressed && (!hull || !compress || !decompress)) return isl_stat_error; return isl_stat_ok; } /* Add a new node to the graph representing the given set. * * If any of the set variables is defined by an equality, then * we perform variable compression such that we can perform * the scheduling on the compressed domain. */ static isl_stat extract_node(__isl_take isl_set *set, void *user) { int nvar; int has_equality; isl_space *space; isl_basic_set *hull; isl_set *hull_set; isl_morph *morph; isl_multi_aff *compress, *decompress; struct isl_sched_graph *graph = user; space = isl_set_get_space(set); hull = isl_set_affine_hull(set); hull = isl_basic_set_remove_divs(hull); nvar = isl_space_dim(space, isl_dim_set); has_equality = has_any_defining_equality(hull); if (has_equality < 0) goto error; if (!has_equality) { isl_basic_set_free(hull); return add_node(graph, space, nvar, 0, NULL, NULL, NULL); } morph = isl_basic_set_variable_compression(hull, isl_dim_set); nvar = isl_morph_ran_dim(morph, isl_dim_set); compress = isl_morph_get_var_multi_aff(morph); morph = isl_morph_inverse(morph); decompress = isl_morph_get_var_multi_aff(morph); isl_morph_free(morph); hull_set = isl_set_from_basic_set(hull); return add_node(graph, space, nvar, 1, hull_set, compress, decompress); error: isl_basic_set_free(hull); isl_space_free(space); return isl_stat_error; } struct isl_extract_edge_data { enum isl_edge_type type; struct isl_sched_graph *graph; }; /* Merge edge2 into edge1, freeing the contents of edge2. * Return 0 on success and -1 on failure. * * edge1 and edge2 are assumed to have the same value for the map field. */ static int merge_edge(struct isl_sched_edge *edge1, struct isl_sched_edge *edge2) { edge1->types |= edge2->types; isl_map_free(edge2->map); if (is_condition(edge2)) { if (!edge1->tagged_condition) edge1->tagged_condition = edge2->tagged_condition; else edge1->tagged_condition = isl_union_map_union(edge1->tagged_condition, edge2->tagged_condition); } if (is_conditional_validity(edge2)) { if (!edge1->tagged_validity) edge1->tagged_validity = edge2->tagged_validity; else edge1->tagged_validity = isl_union_map_union(edge1->tagged_validity, edge2->tagged_validity); } if (is_condition(edge2) && !edge1->tagged_condition) return -1; if (is_conditional_validity(edge2) && !edge1->tagged_validity) return -1; return 0; } /* Insert dummy tags in domain and range of "map". * * In particular, if "map" is of the form * * A -> B * * then return * * [A -> dummy_tag] -> [B -> dummy_tag] * * where the dummy_tags are identical and equal to any dummy tags * introduced by any other call to this function. */ static __isl_give isl_map *insert_dummy_tags(__isl_take isl_map *map) { static char dummy; isl_ctx *ctx; isl_id *id; isl_space *space; isl_set *domain, *range; ctx = isl_map_get_ctx(map); id = isl_id_alloc(ctx, NULL, &dummy); space = isl_space_params(isl_map_get_space(map)); space = isl_space_set_from_params(space); space = isl_space_set_tuple_id(space, isl_dim_set, id); space = isl_space_map_from_set(space); domain = isl_map_wrap(map); range = isl_map_wrap(isl_map_universe(space)); map = isl_map_from_domain_and_range(domain, range); map = isl_map_zip(map); return map; } /* Given that at least one of "src" or "dst" is compressed, return * a map between the spaces of these nodes restricted to the affine * hull that was used in the compression. */ static __isl_give isl_map *extract_hull(struct isl_sched_node *src, struct isl_sched_node *dst) { isl_set *dom, *ran; if (src->compressed) dom = isl_set_copy(src->hull); else dom = isl_set_universe(isl_space_copy(src->space)); if (dst->compressed) ran = isl_set_copy(dst->hull); else ran = isl_set_universe(isl_space_copy(dst->space)); return isl_map_from_domain_and_range(dom, ran); } /* Intersect the domains of the nested relations in domain and range * of "tagged" with "map". */ static __isl_give isl_map *map_intersect_domains(__isl_take isl_map *tagged, __isl_keep isl_map *map) { isl_set *set; tagged = isl_map_zip(tagged); set = isl_map_wrap(isl_map_copy(map)); tagged = isl_map_intersect_domain(tagged, set); tagged = isl_map_zip(tagged); return tagged; } /* Return a pointer to the node that lives in the domain space of "map" * or NULL if there is no such node. */ static struct isl_sched_node *find_domain_node(isl_ctx *ctx, struct isl_sched_graph *graph, __isl_keep isl_map *map) { struct isl_sched_node *node; isl_space *space; space = isl_space_domain(isl_map_get_space(map)); node = graph_find_node(ctx, graph, space); isl_space_free(space); return node; } /* Return a pointer to the node that lives in the range space of "map" * or NULL if there is no such node. */ static struct isl_sched_node *find_range_node(isl_ctx *ctx, struct isl_sched_graph *graph, __isl_keep isl_map *map) { struct isl_sched_node *node; isl_space *space; space = isl_space_range(isl_map_get_space(map)); node = graph_find_node(ctx, graph, space); isl_space_free(space); return node; } /* Add a new edge to the graph based on the given map * and add it to data->graph->edge_table[data->type]. * If a dependence relation of a given type happens to be identical * to one of the dependence relations of a type that was added before, * then we don't create a new edge, but instead mark the original edge * as also representing a dependence of the current type. * * Edges of type isl_edge_condition or isl_edge_conditional_validity * may be specified as "tagged" dependence relations. That is, "map" * may contain elements (i -> a) -> (j -> b), where i -> j denotes * the dependence on iterations and a and b are tags. * edge->map is set to the relation containing the elements i -> j, * while edge->tagged_condition and edge->tagged_validity contain * the union of all the "map" relations * for which extract_edge is called that result in the same edge->map. * * If the source or the destination node is compressed, then * intersect both "map" and "tagged" with the constraints that * were used to construct the compression. * This ensures that there are no schedule constraints defined * outside of these domains, while the scheduler no longer has * any control over those outside parts. */ static isl_stat extract_edge(__isl_take isl_map *map, void *user) { isl_ctx *ctx = isl_map_get_ctx(map); struct isl_extract_edge_data *data = user; struct isl_sched_graph *graph = data->graph; struct isl_sched_node *src, *dst; struct isl_sched_edge *edge; isl_map *tagged = NULL; if (data->type == isl_edge_condition || data->type == isl_edge_conditional_validity) { if (isl_map_can_zip(map)) { tagged = isl_map_copy(map); map = isl_set_unwrap(isl_map_domain(isl_map_zip(map))); } else { tagged = insert_dummy_tags(isl_map_copy(map)); } } src = find_domain_node(ctx, graph, map); dst = find_range_node(ctx, graph, map); if (!src || !dst) { isl_map_free(map); isl_map_free(tagged); return isl_stat_ok; } if (src->compressed || dst->compressed) { isl_map *hull; hull = extract_hull(src, dst); if (tagged) tagged = map_intersect_domains(tagged, hull); map = isl_map_intersect(map, hull); } graph->edge[graph->n_edge].src = src; graph->edge[graph->n_edge].dst = dst; graph->edge[graph->n_edge].map = map; graph->edge[graph->n_edge].types = 0; graph->edge[graph->n_edge].tagged_condition = NULL; graph->edge[graph->n_edge].tagged_validity = NULL; set_type(&graph->edge[graph->n_edge], data->type); if (data->type == isl_edge_condition) graph->edge[graph->n_edge].tagged_condition = isl_union_map_from_map(tagged); if (data->type == isl_edge_conditional_validity) graph->edge[graph->n_edge].tagged_validity = isl_union_map_from_map(tagged); edge = graph_find_matching_edge(graph, &graph->edge[graph->n_edge]); if (!edge) { graph->n_edge++; return isl_stat_error; } if (edge == &graph->edge[graph->n_edge]) return graph_edge_table_add(ctx, graph, data->type, &graph->edge[graph->n_edge++]); if (merge_edge(edge, &graph->edge[graph->n_edge]) < 0) return -1; return graph_edge_table_add(ctx, graph, data->type, edge); } /* Initialize the schedule graph "graph" from the schedule constraints "sc". * * The context is included in the domain before the nodes of * the graphs are extracted in order to be able to exploit * any possible additional equalities. * Note that this intersection is only performed locally here. */ static isl_stat graph_init(struct isl_sched_graph *graph, __isl_keep isl_schedule_constraints *sc) { isl_ctx *ctx; isl_union_set *domain; struct isl_extract_edge_data data; enum isl_edge_type i; isl_stat r; if (!sc) return isl_stat_error; ctx = isl_schedule_constraints_get_ctx(sc); domain = isl_schedule_constraints_get_domain(sc); graph->n = isl_union_set_n_set(domain); isl_union_set_free(domain); if (graph_alloc(ctx, graph, graph->n, isl_schedule_constraints_n_map(sc)) < 0) return isl_stat_error; if (compute_max_row(graph, sc) < 0) return isl_stat_error; graph->root = 1; graph->n = 0; domain = isl_schedule_constraints_get_domain(sc); domain = isl_union_set_intersect_params(domain, isl_set_copy(sc->context)); r = isl_union_set_foreach_set(domain, &extract_node, graph); isl_union_set_free(domain); if (r < 0) return isl_stat_error; if (graph_init_table(ctx, graph) < 0) return isl_stat_error; for (i = isl_edge_first; i <= isl_edge_last; ++i) graph->max_edge[i] = isl_union_map_n_map(sc->constraint[i]); if (graph_init_edge_tables(ctx, graph) < 0) return isl_stat_error; graph->n_edge = 0; data.graph = graph; for (i = isl_edge_first; i <= isl_edge_last; ++i) { data.type = i; if (isl_union_map_foreach_map(sc->constraint[i], &extract_edge, &data) < 0) return isl_stat_error; } return isl_stat_ok; } /* Check whether there is any dependence from node[j] to node[i] * or from node[i] to node[j]. */ static isl_bool node_follows_weak(int i, int j, void *user) { isl_bool f; struct isl_sched_graph *graph = user; f = graph_has_any_edge(graph, &graph->node[j], &graph->node[i]); if (f < 0 || f) return f; return graph_has_any_edge(graph, &graph->node[i], &graph->node[j]); } /* Check whether there is a (conditional) validity dependence from node[j] * to node[i], forcing node[i] to follow node[j]. */ static isl_bool node_follows_strong(int i, int j, void *user) { struct isl_sched_graph *graph = user; return graph_has_validity_edge(graph, &graph->node[j], &graph->node[i]); } /* Use Tarjan's algorithm for computing the strongly connected components * in the dependence graph (only validity edges). * If weak is set, we consider the graph to be undirected and * we effectively compute the (weakly) connected components. * Additionally, we also consider other edges when weak is set. */ static int detect_ccs(isl_ctx *ctx, struct isl_sched_graph *graph, int weak) { int i, n; struct isl_tarjan_graph *g = NULL; g = isl_tarjan_graph_init(ctx, graph->n, weak ? &node_follows_weak : &node_follows_strong, graph); if (!g) return -1; graph->weak = weak; graph->scc = 0; i = 0; n = graph->n; while (n) { while (g->order[i] != -1) { graph->node[g->order[i]].scc = graph->scc; --n; ++i; } ++i; graph->scc++; } isl_tarjan_graph_free(g); return 0; } /* Apply Tarjan's algorithm to detect the strongly connected components * in the dependence graph. */ static int detect_sccs(isl_ctx *ctx, struct isl_sched_graph *graph) { return detect_ccs(ctx, graph, 0); } /* Apply Tarjan's algorithm to detect the (weakly) connected components * in the dependence graph. */ static int detect_wccs(isl_ctx *ctx, struct isl_sched_graph *graph) { return detect_ccs(ctx, graph, 1); } static int cmp_scc(const void *a, const void *b, void *data) { struct isl_sched_graph *graph = data; const int *i1 = a; const int *i2 = b; return graph->node[*i1].scc - graph->node[*i2].scc; } /* Sort the elements of graph->sorted according to the corresponding SCCs. */ static int sort_sccs(struct isl_sched_graph *graph) { return isl_sort(graph->sorted, graph->n, sizeof(int), &cmp_scc, graph); } /* Given a dependence relation R from "node" to itself, * construct the set of coefficients of valid constraints for elements * in that dependence relation. * In particular, the result contains tuples of coefficients * c_0, c_n, c_x such that * * c_0 + c_n n + c_x y - c_x x >= 0 for each (x,y) in R * * or, equivalently, * * c_0 + c_n n + c_x d >= 0 for each d in delta R = { y - x | (x,y) in R } * * We choose here to compute the dual of delta R. * Alternatively, we could have computed the dual of R, resulting * in a set of tuples c_0, c_n, c_x, c_y, and then * plugged in (c_0, c_n, c_x, -c_x). * * If "node" has been compressed, then the dependence relation * is also compressed before the set of coefficients is computed. */ static __isl_give isl_basic_set *intra_coefficients( struct isl_sched_graph *graph, struct isl_sched_node *node, __isl_take isl_map *map) { isl_set *delta; isl_map *key; isl_basic_set *coef; if (isl_map_to_basic_set_has(graph->intra_hmap, map)) return isl_map_to_basic_set_get(graph->intra_hmap, map); key = isl_map_copy(map); if (node->compressed) { map = isl_map_preimage_domain_multi_aff(map, isl_multi_aff_copy(node->decompress)); map = isl_map_preimage_range_multi_aff(map, isl_multi_aff_copy(node->decompress)); } delta = isl_set_remove_divs(isl_map_deltas(map)); coef = isl_set_coefficients(delta); graph->intra_hmap = isl_map_to_basic_set_set(graph->intra_hmap, key, isl_basic_set_copy(coef)); return coef; } /* Given a dependence relation R, construct the set of coefficients * of valid constraints for elements in that dependence relation. * In particular, the result contains tuples of coefficients * c_0, c_n, c_x, c_y such that * * c_0 + c_n n + c_x x + c_y y >= 0 for each (x,y) in R * * If the source or destination nodes of "edge" have been compressed, * then the dependence relation is also compressed before * the set of coefficients is computed. */ static __isl_give isl_basic_set *inter_coefficients( struct isl_sched_graph *graph, struct isl_sched_edge *edge, __isl_take isl_map *map) { isl_set *set; isl_map *key; isl_basic_set *coef; if (isl_map_to_basic_set_has(graph->inter_hmap, map)) return isl_map_to_basic_set_get(graph->inter_hmap, map); key = isl_map_copy(map); if (edge->src->compressed) map = isl_map_preimage_domain_multi_aff(map, isl_multi_aff_copy(edge->src->decompress)); if (edge->dst->compressed) map = isl_map_preimage_range_multi_aff(map, isl_multi_aff_copy(edge->dst->decompress)); set = isl_map_wrap(isl_map_remove_divs(map)); coef = isl_set_coefficients(set); graph->inter_hmap = isl_map_to_basic_set_set(graph->inter_hmap, key, isl_basic_set_copy(coef)); return coef; } /* Add constraints to graph->lp that force validity for the given * dependence from a node i to itself. * That is, add constraints that enforce * * (c_i_0 + c_i_n n + c_i_x y) - (c_i_0 + c_i_n n + c_i_x x) * = c_i_x (y - x) >= 0 * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x) * of valid constraints for (y - x) and then plug in (0, 0, c_i_x^+ - c_i_x^-), * where c_i_x = c_i_x^+ - c_i_x^-, with c_i_x^+ and c_i_x^- non-negative. * In graph->lp, the c_i_x^- appear before their c_i_x^+ counterpart. * * Actually, we do not construct constraints for the c_i_x themselves, * but for the coefficients of c_i_x written as a linear combination * of the columns in node->cmap. */ static int add_intra_validity_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge) { unsigned total; isl_map *map = isl_map_copy(edge->map); isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *node = edge->src; coef = intra_coefficients(graph, node, map); dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap)); if (!coef) goto error; total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, -1); isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, 1); graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); isl_space_free(dim); return 0; error: isl_space_free(dim); return -1; } /* Add constraints to graph->lp that force validity for the given * dependence from node i to node j. * That is, add constraints that enforce * * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) >= 0 * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y) * of valid constraints for R and then plug in * (c_j_0 - c_i_0, c_j_n^+ - c_j_n^- - (c_i_n^+ - c_i_n^-), * c_j_x^+ - c_j_x^- - (c_i_x^+ - c_i_x^-)), * where c_* = c_*^+ - c_*^-, with c_*^+ and c_*^- non-negative. * In graph->lp, the c_*^- appear before their c_*^+ counterpart. * * Actually, we do not construct constraints for the c_*_x themselves, * but for the coefficients of c_*_x written as a linear combination * of the columns in node->cmap. */ static int add_inter_validity_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge) { unsigned total; isl_map *map = isl_map_copy(edge->map); isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *src = edge->src; struct isl_sched_node *dst = edge->dst; coef = inter_coefficients(graph, edge, map); dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap)); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set) + src->nvar, isl_mat_copy(dst->cmap)); if (!coef) goto error; total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1); isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1); isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, -1); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, 1); isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1); isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1); isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, 1); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, -1); edge->start = graph->lp->n_ineq; graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); if (!graph->lp) goto error; isl_space_free(dim); edge->end = graph->lp->n_ineq; return 0; error: isl_space_free(dim); return -1; } /* Add constraints to graph->lp that bound the dependence distance for the given * dependence from a node i to itself. * If s = 1, we add the constraint * * c_i_x (y - x) <= m_0 + m_n n * * or * * -c_i_x (y - x) + m_0 + m_n n >= 0 * * for each (x,y) in R. * If s = -1, we add the constraint * * -c_i_x (y - x) <= m_0 + m_n n * * or * * c_i_x (y - x) + m_0 + m_n n >= 0 * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x) * of valid constraints for (y - x) and then plug in (m_0, m_n, -s * c_i_x), * with each coefficient (except m_0) represented as a pair of non-negative * coefficients. * * Actually, we do not construct constraints for the c_i_x themselves, * but for the coefficients of c_i_x written as a linear combination * of the columns in node->cmap. * * * If "local" is set, then we add constraints * * c_i_x (y - x) <= 0 * * or * * -c_i_x (y - x) <= 0 * * instead, forcing the dependence distance to be (less than or) equal to 0. * That is, we plug in (0, 0, -s * c_i_x), * Note that dependences marked local are treated as validity constraints * by add_all_validity_constraints and therefore also have * their distances bounded by 0 from below. */ static int add_intra_proximity_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge, int s, int local) { unsigned total; unsigned nparam; isl_map *map = isl_map_copy(edge->map); isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *node = edge->src; coef = intra_coefficients(graph, node, map); dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set), isl_mat_copy(node->cmap)); if (!coef) goto error; nparam = isl_space_dim(node->space, isl_dim_param); total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); if (!local) { isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1); isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1); isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1); } isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, s); isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, -s); graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); isl_space_free(dim); return 0; error: isl_space_free(dim); return -1; } /* Add constraints to graph->lp that bound the dependence distance for the given * dependence from node i to node j. * If s = 1, we add the constraint * * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) * <= m_0 + m_n n * * or * * -(c_j_0 + c_j_n n + c_j_x y) + (c_i_0 + c_i_n n + c_i_x x) + * m_0 + m_n n >= 0 * * for each (x,y) in R. * If s = -1, we add the constraint * * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) * <= m_0 + m_n n * * or * * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) + * m_0 + m_n n >= 0 * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x, c_y) * of valid constraints for R and then plug in * (m_0 - s*c_j_0 + s*c_i_0, m_n - s*c_j_n + s*c_i_n, * -s*c_j_x+s*c_i_x) * with each coefficient (except m_0, c_j_0 and c_i_0) * represented as a pair of non-negative coefficients. * * Actually, we do not construct constraints for the c_*_x themselves, * but for the coefficients of c_*_x written as a linear combination * of the columns in node->cmap. * * * If "local" is set, then we add constraints * * (c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x) <= 0 * * or * * -((c_j_0 + c_j_n n + c_j_x y) - (c_i_0 + c_i_n n + c_i_x x)) <= 0 * * instead, forcing the dependence distance to be (less than or) equal to 0. * That is, we plug in * (-s*c_j_0 + s*c_i_0, -s*c_j_n + s*c_i_n, -s*c_j_x+s*c_i_x). * Note that dependences marked local are treated as validity constraints * by add_all_validity_constraints and therefore also have * their distances bounded by 0 from below. */ static int add_inter_proximity_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge, int s, int local) { unsigned total; unsigned nparam; isl_map *map = isl_map_copy(edge->map); isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *src = edge->src; struct isl_sched_node *dst = edge->dst; coef = inter_coefficients(graph, edge, map); dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set), isl_mat_copy(src->cmap)); coef = isl_basic_set_transform_dims(coef, isl_dim_set, isl_space_dim(dim, isl_dim_set) + src->nvar, isl_mat_copy(dst->cmap)); if (!coef) goto error; nparam = isl_space_dim(src->space, isl_dim_param); total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); if (!local) { isl_dim_map_range(dim_map, 1, 0, 0, 0, 1, 1); isl_dim_map_range(dim_map, 4, 2, 1, 1, nparam, -1); isl_dim_map_range(dim_map, 5, 2, 1, 1, nparam, 1); } isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, -s); isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, s); isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, -s); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, s); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, -s); isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, s); isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, -s); isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, s); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, -s); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, s); graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); isl_space_free(dim); return 0; error: isl_space_free(dim); return -1; } /* Add all validity constraints to graph->lp. * * An edge that is forced to be local needs to have its dependence * distances equal to zero. We take care of bounding them by 0 from below * here. add_all_proximity_constraints takes care of bounding them by 0 * from above. * * If "use_coincidence" is set, then we treat coincidence edges as local edges. * Otherwise, we ignore them. */ static int add_all_validity_constraints(struct isl_sched_graph *graph, int use_coincidence) { int i; for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge= &graph->edge[i]; int local; local = is_local(edge) || (is_coincidence(edge) && use_coincidence); if (!is_validity(edge) && !local) continue; if (edge->src != edge->dst) continue; if (add_intra_validity_constraints(graph, edge) < 0) return -1; } for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge = &graph->edge[i]; int local; local = is_local(edge) || (is_coincidence(edge) && use_coincidence); if (!is_validity(edge) && !local) continue; if (edge->src == edge->dst) continue; if (add_inter_validity_constraints(graph, edge) < 0) return -1; } return 0; } /* Add constraints to graph->lp that bound the dependence distance * for all dependence relations. * If a given proximity dependence is identical to a validity * dependence, then the dependence distance is already bounded * from below (by zero), so we only need to bound the distance * from above. (This includes the case of "local" dependences * which are treated as validity dependence by add_all_validity_constraints.) * Otherwise, we need to bound the distance both from above and from below. * * If "use_coincidence" is set, then we treat coincidence edges as local edges. * Otherwise, we ignore them. */ static int add_all_proximity_constraints(struct isl_sched_graph *graph, int use_coincidence) { int i; for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge= &graph->edge[i]; int local; local = is_local(edge) || (is_coincidence(edge) && use_coincidence); if (!is_proximity(edge) && !local) continue; if (edge->src == edge->dst && add_intra_proximity_constraints(graph, edge, 1, local) < 0) return -1; if (edge->src != edge->dst && add_inter_proximity_constraints(graph, edge, 1, local) < 0) return -1; if (is_validity(edge) || local) continue; if (edge->src == edge->dst && add_intra_proximity_constraints(graph, edge, -1, 0) < 0) return -1; if (edge->src != edge->dst && add_inter_proximity_constraints(graph, edge, -1, 0) < 0) return -1; } return 0; } /* Compute a basis for the rows in the linear part of the schedule * and extend this basis to a full basis. The remaining rows * can then be used to force linear independence from the rows * in the schedule. * * In particular, given the schedule rows S, we compute * * S = H Q * S U = H * * with H the Hermite normal form of S. That is, all but the * first rank columns of H are zero and so each row in S is * a linear combination of the first rank rows of Q. * The matrix Q is then transposed because we will write the * coefficients of the next schedule row as a column vector s * and express this s as a linear combination s = Q c of the * computed basis. * Similarly, the matrix U is transposed such that we can * compute the coefficients c = U s from a schedule row s. */ static int node_update_cmap(struct isl_sched_node *node) { isl_mat *H, *U, *Q; int n_row = isl_mat_rows(node->sched); H = isl_mat_sub_alloc(node->sched, 0, n_row, 1 + node->nparam, node->nvar); H = isl_mat_left_hermite(H, 0, &U, &Q); isl_mat_free(node->cmap); isl_mat_free(node->cinv); node->cmap = isl_mat_transpose(Q); node->cinv = isl_mat_transpose(U); node->rank = isl_mat_initial_non_zero_cols(H); isl_mat_free(H); if (!node->cmap || !node->cinv || node->rank < 0) return -1; return 0; } /* How many times should we count the constraints in "edge"? * * If carry is set, then we are counting the number of * (validity or conditional validity) constraints that will be added * in setup_carry_lp and we count each edge exactly once. * * Otherwise, we count as follows * validity -> 1 (>= 0) * validity+proximity -> 2 (>= 0 and upper bound) * proximity -> 2 (lower and upper bound) * local(+any) -> 2 (>= 0 and <= 0) * * If an edge is only marked conditional_validity then it counts * as zero since it is only checked afterwards. * * If "use_coincidence" is set, then we treat coincidence edges as local edges. * Otherwise, we ignore them. */ static int edge_multiplicity(struct isl_sched_edge *edge, int carry, int use_coincidence) { if (carry && !is_validity(edge) && !is_conditional_validity(edge)) return 0; if (carry) return 1; if (is_proximity(edge) || is_local(edge)) return 2; if (use_coincidence && is_coincidence(edge)) return 2; if (is_validity(edge)) return 1; return 0; } /* Count the number of equality and inequality constraints * that will be added for the given map. * * "use_coincidence" is set if we should take into account coincidence edges. */ static int count_map_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge, __isl_take isl_map *map, int *n_eq, int *n_ineq, int carry, int use_coincidence) { isl_basic_set *coef; int f = edge_multiplicity(edge, carry, use_coincidence); if (f == 0) { isl_map_free(map); return 0; } if (edge->src == edge->dst) coef = intra_coefficients(graph, edge->src, map); else coef = inter_coefficients(graph, edge, map); if (!coef) return -1; *n_eq += f * coef->n_eq; *n_ineq += f * coef->n_ineq; isl_basic_set_free(coef); return 0; } /* Count the number of equality and inequality constraints * that will be added to the main lp problem. * We count as follows * validity -> 1 (>= 0) * validity+proximity -> 2 (>= 0 and upper bound) * proximity -> 2 (lower and upper bound) * local(+any) -> 2 (>= 0 and <= 0) * * If "use_coincidence" is set, then we treat coincidence edges as local edges. * Otherwise, we ignore them. */ static int count_constraints(struct isl_sched_graph *graph, int *n_eq, int *n_ineq, int use_coincidence) { int i; *n_eq = *n_ineq = 0; for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge= &graph->edge[i]; isl_map *map = isl_map_copy(edge->map); if (count_map_constraints(graph, edge, map, n_eq, n_ineq, 0, use_coincidence) < 0) return -1; } return 0; } /* Count the number of constraints that will be added by * add_bound_coefficient_constraints and increment *n_eq and *n_ineq * accordingly. * * In practice, add_bound_coefficient_constraints only adds inequalities. */ static int count_bound_coefficient_constraints(isl_ctx *ctx, struct isl_sched_graph *graph, int *n_eq, int *n_ineq) { int i; if (ctx->opt->schedule_max_coefficient == -1) return 0; for (i = 0; i < graph->n; ++i) *n_ineq += 2 * graph->node[i].nparam + 2 * graph->node[i].nvar; return 0; } /* Add constraints that bound the values of the variable and parameter * coefficients of the schedule. * * The maximal value of the coefficients is defined by the option * 'schedule_max_coefficient'. */ static int add_bound_coefficient_constraints(isl_ctx *ctx, struct isl_sched_graph *graph) { int i, j, k; int max_coefficient; int total; max_coefficient = ctx->opt->schedule_max_coefficient; if (max_coefficient == -1) return 0; total = isl_basic_set_total_dim(graph->lp); for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; for (j = 0; j < 2 * node->nparam + 2 * node->nvar; ++j) { int dim; k = isl_basic_set_alloc_inequality(graph->lp); if (k < 0) return -1; dim = 1 + node->start + 1 + j; isl_seq_clr(graph->lp->ineq[k], 1 + total); isl_int_set_si(graph->lp->ineq[k][dim], -1); isl_int_set_si(graph->lp->ineq[k][0], max_coefficient); } } return 0; } /* Construct an ILP problem for finding schedule coefficients * that result in non-negative, but small dependence distances * over all dependences. * In particular, the dependence distances over proximity edges * are bounded by m_0 + m_n n and we compute schedule coefficients * with small values (preferably zero) of m_n and m_0. * * All variables of the ILP are non-negative. The actual coefficients * may be negative, so each coefficient is represented as the difference * of two non-negative variables. The negative part always appears * immediately before the positive part. * Other than that, the variables have the following order * * - sum of positive and negative parts of m_n coefficients * - m_0 * - sum of positive and negative parts of all c_n coefficients * (unconstrained when computing non-parametric schedules) * - sum of positive and negative parts of all c_x coefficients * - positive and negative parts of m_n coefficients * - for each node * - c_i_0 * - positive and negative parts of c_i_n (if parametric) * - positive and negative parts of c_i_x * * The c_i_x are not represented directly, but through the columns of * node->cmap. That is, the computed values are for variable t_i_x * such that c_i_x = Q t_i_x with Q equal to node->cmap. * * The constraints are those from the edges plus two or three equalities * to express the sums. * * If "use_coincidence" is set, then we treat coincidence edges as local edges. * Otherwise, we ignore them. */ static int setup_lp(isl_ctx *ctx, struct isl_sched_graph *graph, int use_coincidence) { int i, j; int k; unsigned nparam; unsigned total; isl_space *dim; int parametric; int param_pos; int n_eq, n_ineq; int max_constant_term; max_constant_term = ctx->opt->schedule_max_constant_term; parametric = ctx->opt->schedule_parametric; nparam = isl_space_dim(graph->node[0].space, isl_dim_param); param_pos = 4; total = param_pos + 2 * nparam; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[graph->sorted[i]]; if (node_update_cmap(node) < 0) return -1; node->start = total; total += 1 + 2 * (node->nparam + node->nvar); } if (count_constraints(graph, &n_eq, &n_ineq, use_coincidence) < 0) return -1; if (count_bound_coefficient_constraints(ctx, graph, &n_eq, &n_ineq) < 0) return -1; dim = isl_space_set_alloc(ctx, 0, total); isl_basic_set_free(graph->lp); n_eq += 2 + parametric; if (max_constant_term != -1) n_ineq += graph->n; graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq); k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][1], -1); for (i = 0; i < 2 * nparam; ++i) isl_int_set_si(graph->lp->eq[k][1 + param_pos + i], 1); if (parametric) { k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][3], -1); for (i = 0; i < graph->n; ++i) { int pos = 1 + graph->node[i].start + 1; for (j = 0; j < 2 * graph->node[i].nparam; ++j) isl_int_set_si(graph->lp->eq[k][pos + j], 1); } } k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][4], -1); for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int pos = 1 + node->start + 1 + 2 * node->nparam; for (j = 0; j < 2 * node->nvar; ++j) isl_int_set_si(graph->lp->eq[k][pos + j], 1); } if (max_constant_term != -1) for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; k = isl_basic_set_alloc_inequality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->ineq[k], 1 + total); isl_int_set_si(graph->lp->ineq[k][1 + node->start], -1); isl_int_set_si(graph->lp->ineq[k][0], max_constant_term); } if (add_bound_coefficient_constraints(ctx, graph) < 0) return -1; if (add_all_validity_constraints(graph, use_coincidence) < 0) return -1; if (add_all_proximity_constraints(graph, use_coincidence) < 0) return -1; return 0; } /* Analyze the conflicting constraint found by * isl_tab_basic_set_non_trivial_lexmin. If it corresponds to the validity * constraint of one of the edges between distinct nodes, living, moreover * in distinct SCCs, then record the source and sink SCC as this may * be a good place to cut between SCCs. */ static int check_conflict(int con, void *user) { int i; struct isl_sched_graph *graph = user; if (graph->src_scc >= 0) return 0; con -= graph->lp->n_eq; if (con >= graph->lp->n_ineq) return 0; for (i = 0; i < graph->n_edge; ++i) { if (!is_validity(&graph->edge[i])) continue; if (graph->edge[i].src == graph->edge[i].dst) continue; if (graph->edge[i].src->scc == graph->edge[i].dst->scc) continue; if (graph->edge[i].start > con) continue; if (graph->edge[i].end <= con) continue; graph->src_scc = graph->edge[i].src->scc; graph->dst_scc = graph->edge[i].dst->scc; } return 0; } /* Check whether the next schedule row of the given node needs to be * non-trivial. Lower-dimensional domains may have some trivial rows, * but as soon as the number of remaining required non-trivial rows * is as large as the number or remaining rows to be computed, * all remaining rows need to be non-trivial. */ static int needs_row(struct isl_sched_graph *graph, struct isl_sched_node *node) { return node->nvar - node->rank >= graph->maxvar - graph->n_row; } /* Solve the ILP problem constructed in setup_lp. * For each node such that all the remaining rows of its schedule * need to be non-trivial, we construct a non-triviality region. * This region imposes that the next row is independent of previous rows. * In particular the coefficients c_i_x are represented by t_i_x * variables with c_i_x = Q t_i_x and Q a unimodular matrix such that * its first columns span the rows of the previously computed part * of the schedule. The non-triviality region enforces that at least * one of the remaining components of t_i_x is non-zero, i.e., * that the new schedule row depends on at least one of the remaining * columns of Q. */ static __isl_give isl_vec *solve_lp(struct isl_sched_graph *graph) { int i; isl_vec *sol; isl_basic_set *lp; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int skip = node->rank; graph->region[i].pos = node->start + 1 + 2*(node->nparam+skip); if (needs_row(graph, node)) graph->region[i].len = 2 * (node->nvar - skip); else graph->region[i].len = 0; } lp = isl_basic_set_copy(graph->lp); sol = isl_tab_basic_set_non_trivial_lexmin(lp, 2, graph->n, graph->region, &check_conflict, graph); return sol; } /* Update the schedules of all nodes based on the given solution * of the LP problem. * The new row is added to the current band. * All possibly negative coefficients are encoded as a difference * of two non-negative variables, so we need to perform the subtraction * here. Moreover, if use_cmap is set, then the solution does * not refer to the actual coefficients c_i_x, but instead to variables * t_i_x such that c_i_x = Q t_i_x and Q is equal to node->cmap. * In this case, we then also need to perform this multiplication * to obtain the values of c_i_x. * * If coincident is set, then the caller guarantees that the new * row satisfies the coincidence constraints. */ static int update_schedule(struct isl_sched_graph *graph, __isl_take isl_vec *sol, int use_cmap, int coincident) { int i, j; isl_vec *csol = NULL; if (!sol) goto error; if (sol->size == 0) isl_die(sol->ctx, isl_error_internal, "no solution found", goto error); if (graph->n_total_row >= graph->max_row) isl_die(sol->ctx, isl_error_internal, "too many schedule rows", goto error); for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int pos = node->start; int row = isl_mat_rows(node->sched); isl_vec_free(csol); csol = isl_vec_alloc(sol->ctx, node->nvar); if (!csol) goto error; isl_map_free(node->sched_map); node->sched_map = NULL; node->sched = isl_mat_add_rows(node->sched, 1); if (!node->sched) goto error; node->sched = isl_mat_set_element(node->sched, row, 0, sol->el[1 + pos]); for (j = 0; j < node->nparam + node->nvar; ++j) isl_int_sub(sol->el[1 + pos + 1 + 2 * j + 1], sol->el[1 + pos + 1 + 2 * j + 1], sol->el[1 + pos + 1 + 2 * j]); for (j = 0; j < node->nparam; ++j) node->sched = isl_mat_set_element(node->sched, row, 1 + j, sol->el[1+pos+1+2*j+1]); for (j = 0; j < node->nvar; ++j) isl_int_set(csol->el[j], sol->el[1+pos+1+2*(node->nparam+j)+1]); if (use_cmap) csol = isl_mat_vec_product(isl_mat_copy(node->cmap), csol); if (!csol) goto error; for (j = 0; j < node->nvar; ++j) node->sched = isl_mat_set_element(node->sched, row, 1 + node->nparam + j, csol->el[j]); node->coincident[graph->n_total_row] = coincident; } isl_vec_free(sol); isl_vec_free(csol); graph->n_row++; graph->n_total_row++; return 0; error: isl_vec_free(sol); isl_vec_free(csol); return -1; } /* Convert row "row" of node->sched into an isl_aff living in "ls" * and return this isl_aff. */ static __isl_give isl_aff *extract_schedule_row(__isl_take isl_local_space *ls, struct isl_sched_node *node, int row) { int j; isl_int v; isl_aff *aff; isl_int_init(v); aff = isl_aff_zero_on_domain(ls); isl_mat_get_element(node->sched, row, 0, &v); aff = isl_aff_set_constant(aff, v); for (j = 0; j < node->nparam; ++j) { isl_mat_get_element(node->sched, row, 1 + j, &v); aff = isl_aff_set_coefficient(aff, isl_dim_param, j, v); } for (j = 0; j < node->nvar; ++j) { isl_mat_get_element(node->sched, row, 1 + node->nparam + j, &v); aff = isl_aff_set_coefficient(aff, isl_dim_in, j, v); } isl_int_clear(v); return aff; } /* Convert the "n" rows starting at "first" of node->sched into a multi_aff * and return this multi_aff. * * The result is defined over the uncompressed node domain. */ static __isl_give isl_multi_aff *node_extract_partial_schedule_multi_aff( struct isl_sched_node *node, int first, int n) { int i; isl_space *space; isl_local_space *ls; isl_aff *aff; isl_multi_aff *ma; int nrow; nrow = isl_mat_rows(node->sched); if (node->compressed) space = isl_multi_aff_get_domain_space(node->decompress); else space = isl_space_copy(node->space); ls = isl_local_space_from_space(isl_space_copy(space)); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, n); ma = isl_multi_aff_zero(space); for (i = first; i < first + n; ++i) { aff = extract_schedule_row(isl_local_space_copy(ls), node, i); ma = isl_multi_aff_set_aff(ma, i - first, aff); } isl_local_space_free(ls); if (node->compressed) ma = isl_multi_aff_pullback_multi_aff(ma, isl_multi_aff_copy(node->compress)); return ma; } /* Convert node->sched into a multi_aff and return this multi_aff. * * The result is defined over the uncompressed node domain. */ static __isl_give isl_multi_aff *node_extract_schedule_multi_aff( struct isl_sched_node *node) { int nrow; nrow = isl_mat_rows(node->sched); return node_extract_partial_schedule_multi_aff(node, 0, nrow); } /* Convert node->sched into a map and return this map. * * The result is cached in node->sched_map, which needs to be released * whenever node->sched is updated. * It is defined over the uncompressed node domain. */ static __isl_give isl_map *node_extract_schedule(struct isl_sched_node *node) { if (!node->sched_map) { isl_multi_aff *ma; ma = node_extract_schedule_multi_aff(node); node->sched_map = isl_map_from_multi_aff(ma); } return isl_map_copy(node->sched_map); } /* Construct a map that can be used to update a dependence relation * based on the current schedule. * That is, construct a map expressing that source and sink * are executed within the same iteration of the current schedule. * This map can then be intersected with the dependence relation. * This is not the most efficient way, but this shouldn't be a critical * operation. */ static __isl_give isl_map *specializer(struct isl_sched_node *src, struct isl_sched_node *dst) { isl_map *src_sched, *dst_sched; src_sched = node_extract_schedule(src); dst_sched = node_extract_schedule(dst); return isl_map_apply_range(src_sched, isl_map_reverse(dst_sched)); } /* Intersect the domains of the nested relations in domain and range * of "umap" with "map". */ static __isl_give isl_union_map *intersect_domains( __isl_take isl_union_map *umap, __isl_keep isl_map *map) { isl_union_set *uset; umap = isl_union_map_zip(umap); uset = isl_union_set_from_set(isl_map_wrap(isl_map_copy(map))); umap = isl_union_map_intersect_domain(umap, uset); umap = isl_union_map_zip(umap); return umap; } /* Update the dependence relation of the given edge based * on the current schedule. * If the dependence is carried completely by the current schedule, then * it is removed from the edge_tables. It is kept in the list of edges * as otherwise all edge_tables would have to be recomputed. */ static int update_edge(struct isl_sched_graph *graph, struct isl_sched_edge *edge) { int empty; isl_map *id; id = specializer(edge->src, edge->dst); edge->map = isl_map_intersect(edge->map, isl_map_copy(id)); if (!edge->map) goto error; if (edge->tagged_condition) { edge->tagged_condition = intersect_domains(edge->tagged_condition, id); if (!edge->tagged_condition) goto error; } if (edge->tagged_validity) { edge->tagged_validity = intersect_domains(edge->tagged_validity, id); if (!edge->tagged_validity) goto error; } empty = isl_map_plain_is_empty(edge->map); if (empty < 0) goto error; if (empty) graph_remove_edge(graph, edge); isl_map_free(id); return 0; error: isl_map_free(id); return -1; } /* Does the domain of "umap" intersect "uset"? */ static int domain_intersects(__isl_keep isl_union_map *umap, __isl_keep isl_union_set *uset) { int empty; umap = isl_union_map_copy(umap); umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(uset)); empty = isl_union_map_is_empty(umap); isl_union_map_free(umap); return empty < 0 ? -1 : !empty; } /* Does the range of "umap" intersect "uset"? */ static int range_intersects(__isl_keep isl_union_map *umap, __isl_keep isl_union_set *uset) { int empty; umap = isl_union_map_copy(umap); umap = isl_union_map_intersect_range(umap, isl_union_set_copy(uset)); empty = isl_union_map_is_empty(umap); isl_union_map_free(umap); return empty < 0 ? -1 : !empty; } /* Are the condition dependences of "edge" local with respect to * the current schedule? * * That is, are domain and range of the condition dependences mapped * to the same point? * * In other words, is the condition false? */ static int is_condition_false(struct isl_sched_edge *edge) { isl_union_map *umap; isl_map *map, *sched, *test; int empty, local; empty = isl_union_map_is_empty(edge->tagged_condition); if (empty < 0 || empty) return empty; umap = isl_union_map_copy(edge->tagged_condition); umap = isl_union_map_zip(umap); umap = isl_union_set_unwrap(isl_union_map_domain(umap)); map = isl_map_from_union_map(umap); sched = node_extract_schedule(edge->src); map = isl_map_apply_domain(map, sched); sched = node_extract_schedule(edge->dst); map = isl_map_apply_range(map, sched); test = isl_map_identity(isl_map_get_space(map)); local = isl_map_is_subset(map, test); isl_map_free(map); isl_map_free(test); return local; } /* For each conditional validity constraint that is adjacent * to a condition with domain in condition_source or range in condition_sink, * turn it into an unconditional validity constraint. */ static int unconditionalize_adjacent_validity(struct isl_sched_graph *graph, __isl_take isl_union_set *condition_source, __isl_take isl_union_set *condition_sink) { int i; condition_source = isl_union_set_coalesce(condition_source); condition_sink = isl_union_set_coalesce(condition_sink); for (i = 0; i < graph->n_edge; ++i) { int adjacent; isl_union_map *validity; if (!is_conditional_validity(&graph->edge[i])) continue; if (is_validity(&graph->edge[i])) continue; validity = graph->edge[i].tagged_validity; adjacent = domain_intersects(validity, condition_sink); if (adjacent >= 0 && !adjacent) adjacent = range_intersects(validity, condition_source); if (adjacent < 0) goto error; if (!adjacent) continue; set_validity(&graph->edge[i]); } isl_union_set_free(condition_source); isl_union_set_free(condition_sink); return 0; error: isl_union_set_free(condition_source); isl_union_set_free(condition_sink); return -1; } /* Update the dependence relations of all edges based on the current schedule * and enforce conditional validity constraints that are adjacent * to satisfied condition constraints. * * First check if any of the condition constraints are satisfied * (i.e., not local to the outer schedule) and keep track of * their domain and range. * Then update all dependence relations (which removes the non-local * constraints). * Finally, if any condition constraints turned out to be satisfied, * then turn all adjacent conditional validity constraints into * unconditional validity constraints. */ static int update_edges(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; int any = 0; isl_union_set *source, *sink; source = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); for (i = 0; i < graph->n_edge; ++i) { int local; isl_union_set *uset; isl_union_map *umap; if (!is_condition(&graph->edge[i])) continue; if (is_local(&graph->edge[i])) continue; local = is_condition_false(&graph->edge[i]); if (local < 0) goto error; if (local) continue; any = 1; umap = isl_union_map_copy(graph->edge[i].tagged_condition); uset = isl_union_map_domain(umap); source = isl_union_set_union(source, uset); umap = isl_union_map_copy(graph->edge[i].tagged_condition); uset = isl_union_map_range(umap); sink = isl_union_set_union(sink, uset); } for (i = graph->n_edge - 1; i >= 0; --i) { if (update_edge(graph, &graph->edge[i]) < 0) goto error; } if (any) return unconditionalize_adjacent_validity(graph, source, sink); isl_union_set_free(source); isl_union_set_free(sink); return 0; error: isl_union_set_free(source); isl_union_set_free(sink); return -1; } static void next_band(struct isl_sched_graph *graph) { graph->band_start = graph->n_total_row; } /* Return the union of the universe domains of the nodes in "graph" * that satisfy "pred". */ static __isl_give isl_union_set *isl_sched_graph_domain(isl_ctx *ctx, struct isl_sched_graph *graph, int (*pred)(struct isl_sched_node *node, int data), int data) { int i; isl_set *set; isl_union_set *dom; for (i = 0; i < graph->n; ++i) if (pred(&graph->node[i], data)) break; if (i >= graph->n) isl_die(ctx, isl_error_internal, "empty component", return NULL); set = isl_set_universe(isl_space_copy(graph->node[i].space)); dom = isl_union_set_from_set(set); for (i = i + 1; i < graph->n; ++i) { if (!pred(&graph->node[i], data)) continue; set = isl_set_universe(isl_space_copy(graph->node[i].space)); dom = isl_union_set_union(dom, isl_union_set_from_set(set)); } return dom; } /* Return a list of unions of universe domains, where each element * in the list corresponds to an SCC (or WCC) indexed by node->scc. */ static __isl_give isl_union_set_list *extract_sccs(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; isl_union_set_list *filters; filters = isl_union_set_list_alloc(ctx, graph->scc); for (i = 0; i < graph->scc; ++i) { isl_union_set *dom; dom = isl_sched_graph_domain(ctx, graph, &node_scc_exactly, i); filters = isl_union_set_list_add(filters, dom); } return filters; } /* Return a list of two unions of universe domains, one for the SCCs up * to and including graph->src_scc and another for the other SCCs. */ static __isl_give isl_union_set_list *extract_split(isl_ctx *ctx, struct isl_sched_graph *graph) { isl_union_set *dom; isl_union_set_list *filters; filters = isl_union_set_list_alloc(ctx, 2); dom = isl_sched_graph_domain(ctx, graph, &node_scc_at_most, graph->src_scc); filters = isl_union_set_list_add(filters, dom); dom = isl_sched_graph_domain(ctx, graph, &node_scc_at_least, graph->src_scc + 1); filters = isl_union_set_list_add(filters, dom); return filters; } /* Copy nodes that satisfy node_pred from the src dependence graph * to the dst dependence graph. */ static int copy_nodes(struct isl_sched_graph *dst, struct isl_sched_graph *src, int (*node_pred)(struct isl_sched_node *node, int data), int data) { int i; dst->n = 0; for (i = 0; i < src->n; ++i) { int j; if (!node_pred(&src->node[i], data)) continue; j = dst->n; dst->node[j].space = isl_space_copy(src->node[i].space); dst->node[j].compressed = src->node[i].compressed; dst->node[j].hull = isl_set_copy(src->node[i].hull); dst->node[j].compress = isl_multi_aff_copy(src->node[i].compress); dst->node[j].decompress = isl_multi_aff_copy(src->node[i].decompress); dst->node[j].nvar = src->node[i].nvar; dst->node[j].nparam = src->node[i].nparam; dst->node[j].sched = isl_mat_copy(src->node[i].sched); dst->node[j].sched_map = isl_map_copy(src->node[i].sched_map); dst->node[j].coincident = src->node[i].coincident; dst->n++; if (!dst->node[j].space || !dst->node[j].sched) return -1; if (dst->node[j].compressed && (!dst->node[j].hull || !dst->node[j].compress || !dst->node[j].decompress)) return -1; } return 0; } /* Copy non-empty edges that satisfy edge_pred from the src dependence graph * to the dst dependence graph. * If the source or destination node of the edge is not in the destination * graph, then it must be a backward proximity edge and it should simply * be ignored. */ static int copy_edges(isl_ctx *ctx, struct isl_sched_graph *dst, struct isl_sched_graph *src, int (*edge_pred)(struct isl_sched_edge *edge, int data), int data) { int i; enum isl_edge_type t; dst->n_edge = 0; for (i = 0; i < src->n_edge; ++i) { struct isl_sched_edge *edge = &src->edge[i]; isl_map *map; isl_union_map *tagged_condition; isl_union_map *tagged_validity; struct isl_sched_node *dst_src, *dst_dst; if (!edge_pred(edge, data)) continue; if (isl_map_plain_is_empty(edge->map)) continue; dst_src = graph_find_node(ctx, dst, edge->src->space); dst_dst = graph_find_node(ctx, dst, edge->dst->space); if (!dst_src || !dst_dst) { if (is_validity(edge) || is_conditional_validity(edge)) isl_die(ctx, isl_error_internal, "backward (conditional) validity edge", return -1); continue; } map = isl_map_copy(edge->map); tagged_condition = isl_union_map_copy(edge->tagged_condition); tagged_validity = isl_union_map_copy(edge->tagged_validity); dst->edge[dst->n_edge].src = dst_src; dst->edge[dst->n_edge].dst = dst_dst; dst->edge[dst->n_edge].map = map; dst->edge[dst->n_edge].tagged_condition = tagged_condition; dst->edge[dst->n_edge].tagged_validity = tagged_validity; dst->edge[dst->n_edge].types = edge->types; dst->n_edge++; if (edge->tagged_condition && !tagged_condition) return -1; if (edge->tagged_validity && !tagged_validity) return -1; for (t = isl_edge_first; t <= isl_edge_last; ++t) { if (edge != graph_find_edge(src, t, edge->src, edge->dst)) continue; if (graph_edge_table_add(ctx, dst, t, &dst->edge[dst->n_edge - 1]) < 0) return -1; } } return 0; } /* Compute the maximal number of variables over all nodes. * This is the maximal number of linearly independent schedule * rows that we need to compute. * Just in case we end up in a part of the dependence graph * with only lower-dimensional domains, we make sure we will * compute the required amount of extra linearly independent rows. */ static int compute_maxvar(struct isl_sched_graph *graph) { int i; graph->maxvar = 0; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int nvar; if (node_update_cmap(node) < 0) return -1; nvar = node->nvar + graph->n_row - node->rank; if (nvar > graph->maxvar) graph->maxvar = nvar; } return 0; } static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node, struct isl_sched_graph *graph); static __isl_give isl_schedule_node *compute_schedule_wcc( isl_schedule_node *node, struct isl_sched_graph *graph); /* Compute a schedule for a subgraph of "graph". In particular, for * the graph composed of nodes that satisfy node_pred and edges that * that satisfy edge_pred. * If the subgraph is known to consist of a single component, then wcc should * be set and then we call compute_schedule_wcc on the constructed subgraph. * Otherwise, we call compute_schedule, which will check whether the subgraph * is connected. * * The schedule is inserted at "node" and the updated schedule node * is returned. */ static __isl_give isl_schedule_node *compute_sub_schedule( __isl_take isl_schedule_node *node, isl_ctx *ctx, struct isl_sched_graph *graph, int (*node_pred)(struct isl_sched_node *node, int data), int (*edge_pred)(struct isl_sched_edge *edge, int data), int data, int wcc) { struct isl_sched_graph split = { 0 }; int i, n = 0, n_edge = 0; int t; for (i = 0; i < graph->n; ++i) if (node_pred(&graph->node[i], data)) ++n; for (i = 0; i < graph->n_edge; ++i) if (edge_pred(&graph->edge[i], data)) ++n_edge; if (graph_alloc(ctx, &split, n, n_edge) < 0) goto error; if (copy_nodes(&split, graph, node_pred, data) < 0) goto error; if (graph_init_table(ctx, &split) < 0) goto error; for (t = 0; t <= isl_edge_last; ++t) split.max_edge[t] = graph->max_edge[t]; if (graph_init_edge_tables(ctx, &split) < 0) goto error; if (copy_edges(ctx, &split, graph, edge_pred, data) < 0) goto error; split.n_row = graph->n_row; split.max_row = graph->max_row; split.n_total_row = graph->n_total_row; split.band_start = graph->band_start; if (wcc) node = compute_schedule_wcc(node, &split); else node = compute_schedule(node, &split); graph_free(ctx, &split); return node; error: graph_free(ctx, &split); return isl_schedule_node_free(node); } static int edge_scc_exactly(struct isl_sched_edge *edge, int scc) { return edge->src->scc == scc && edge->dst->scc == scc; } static int edge_dst_scc_at_most(struct isl_sched_edge *edge, int scc) { return edge->dst->scc <= scc; } static int edge_src_scc_at_least(struct isl_sched_edge *edge, int scc) { return edge->src->scc >= scc; } /* Reset the current band by dropping all its schedule rows. */ static int reset_band(struct isl_sched_graph *graph) { int i; int drop; drop = graph->n_total_row - graph->band_start; graph->n_total_row -= drop; graph->n_row -= drop; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; isl_map_free(node->sched_map); node->sched_map = NULL; node->sched = isl_mat_drop_rows(node->sched, graph->band_start, drop); if (!node->sched) return -1; } return 0; } /* Split the current graph into two parts and compute a schedule for each * part individually. In particular, one part consists of all SCCs up * to and including graph->src_scc, while the other part contains the other * SCCs. The split is enforced by a sequence node inserted at position "node" * in the schedule tree. Return the updated schedule node. * If either of these two parts consists of a sequence, then it is spliced * into the sequence containing the two parts. * * The current band is reset. It would be possible to reuse * the previously computed rows as the first rows in the next * band, but recomputing them may result in better rows as we are looking * at a smaller part of the dependence graph. */ static __isl_give isl_schedule_node *compute_split_schedule( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) { int is_seq; isl_ctx *ctx; isl_union_set_list *filters; if (!node) return NULL; if (reset_band(graph) < 0) return isl_schedule_node_free(node); next_band(graph); ctx = isl_schedule_node_get_ctx(node); filters = extract_split(ctx, graph); node = isl_schedule_node_insert_sequence(node, filters); node = isl_schedule_node_child(node, 1); node = isl_schedule_node_child(node, 0); node = compute_sub_schedule(node, ctx, graph, &node_scc_at_least, &edge_src_scc_at_least, graph->src_scc + 1, 0); is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence; node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); if (is_seq) node = isl_schedule_node_sequence_splice_child(node, 1); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_child(node, 0); node = compute_sub_schedule(node, ctx, graph, &node_scc_at_most, &edge_dst_scc_at_most, graph->src_scc, 0); is_seq = isl_schedule_node_get_type(node) == isl_schedule_node_sequence; node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); if (is_seq) node = isl_schedule_node_sequence_splice_child(node, 0); return node; } /* Insert a band node at position "node" in the schedule tree corresponding * to the current band in "graph". Mark the band node permutable * if "permutable" is set. * The partial schedules and the coincidence property are extracted * from the graph nodes. * Return the updated schedule node. */ static __isl_give isl_schedule_node *insert_current_band( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, int permutable) { int i; int start, end, n; isl_multi_aff *ma; isl_multi_pw_aff *mpa; isl_multi_union_pw_aff *mupa; if (!node) return NULL; if (graph->n < 1) isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, "graph should have at least one node", return isl_schedule_node_free(node)); start = graph->band_start; end = graph->n_total_row; n = end - start; ma = node_extract_partial_schedule_multi_aff(&graph->node[0], start, n); mpa = isl_multi_pw_aff_from_multi_aff(ma); mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa); for (i = 1; i < graph->n; ++i) { isl_multi_union_pw_aff *mupa_i; ma = node_extract_partial_schedule_multi_aff(&graph->node[i], start, n); mpa = isl_multi_pw_aff_from_multi_aff(ma); mupa_i = isl_multi_union_pw_aff_from_multi_pw_aff(mpa); mupa = isl_multi_union_pw_aff_union_add(mupa, mupa_i); } node = isl_schedule_node_insert_partial_schedule(node, mupa); for (i = 0; i < n; ++i) node = isl_schedule_node_band_member_set_coincident(node, i, graph->node[0].coincident[start + i]); node = isl_schedule_node_band_set_permutable(node, permutable); return node; } /* Update the dependence relations based on the current schedule, * add the current band to "node" and then continue with the computation * of the next band. * Return the updated schedule node. */ static __isl_give isl_schedule_node *compute_next_band( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, int permutable) { isl_ctx *ctx; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); if (update_edges(ctx, graph) < 0) return isl_schedule_node_free(node); node = insert_current_band(node, graph, permutable); next_band(graph); node = isl_schedule_node_child(node, 0); node = compute_schedule(node, graph); node = isl_schedule_node_parent(node); return node; } /* Add constraints to graph->lp that force the dependence "map" (which * is part of the dependence relation of "edge") * to be respected and attempt to carry it, where the edge is one from * a node j to itself. "pos" is the sequence number of the given map. * That is, add constraints that enforce * * (c_j_0 + c_j_n n + c_j_x y) - (c_j_0 + c_j_n n + c_j_x x) * = c_j_x (y - x) >= e_i * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x) * of valid constraints for (y - x) and then plug in (-e_i, 0, c_j_x), * with each coefficient in c_j_x represented as a pair of non-negative * coefficients. */ static int add_intra_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge, __isl_take isl_map *map, int pos) { unsigned total; isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *node = edge->src; coef = intra_coefficients(graph, node, map); if (!coef) return -1; dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1); isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, -1); isl_dim_map_range(dim_map, node->start + 2 * node->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, node->nvar, 1); graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); isl_space_free(dim); return 0; } /* Add constraints to graph->lp that force the dependence "map" (which * is part of the dependence relation of "edge") * to be respected and attempt to carry it, where the edge is one from * node j to node k. "pos" is the sequence number of the given map. * That is, add constraints that enforce * * (c_k_0 + c_k_n n + c_k_x y) - (c_j_0 + c_j_n n + c_j_x x) >= e_i * * for each (x,y) in R. * We obtain general constraints on coefficients (c_0, c_n, c_x) * of valid constraints for R and then plug in * (-e_i + c_k_0 - c_j_0, c_k_n - c_j_n, c_k_x - c_j_x) * with each coefficient (except e_i, c_k_0 and c_j_0) * represented as a pair of non-negative coefficients. */ static int add_inter_constraints(struct isl_sched_graph *graph, struct isl_sched_edge *edge, __isl_take isl_map *map, int pos) { unsigned total; isl_ctx *ctx = isl_map_get_ctx(map); isl_space *dim; isl_dim_map *dim_map; isl_basic_set *coef; struct isl_sched_node *src = edge->src; struct isl_sched_node *dst = edge->dst; coef = inter_coefficients(graph, edge, map); if (!coef) return -1; dim = isl_space_domain(isl_space_unwrap(isl_basic_set_get_space(coef))); total = isl_basic_set_total_dim(graph->lp); dim_map = isl_dim_map_alloc(ctx, total); isl_dim_map_range(dim_map, 3 + pos, 0, 0, 0, 1, -1); isl_dim_map_range(dim_map, dst->start, 0, 0, 0, 1, 1); isl_dim_map_range(dim_map, dst->start + 1, 2, 1, 1, dst->nparam, -1); isl_dim_map_range(dim_map, dst->start + 2, 2, 1, 1, dst->nparam, 1); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 1, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, -1); isl_dim_map_range(dim_map, dst->start + 2 * dst->nparam + 2, 2, isl_space_dim(dim, isl_dim_set) + src->nvar, 1, dst->nvar, 1); isl_dim_map_range(dim_map, src->start, 0, 0, 0, 1, -1); isl_dim_map_range(dim_map, src->start + 1, 2, 1, 1, src->nparam, 1); isl_dim_map_range(dim_map, src->start + 2, 2, 1, 1, src->nparam, -1); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 1, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, 1); isl_dim_map_range(dim_map, src->start + 2 * src->nparam + 2, 2, isl_space_dim(dim, isl_dim_set), 1, src->nvar, -1); graph->lp = isl_basic_set_extend_constraints(graph->lp, coef->n_eq, coef->n_ineq); graph->lp = isl_basic_set_add_constraints_dim_map(graph->lp, coef, dim_map); isl_space_free(dim); return 0; } /* Add constraints to graph->lp that force all (conditional) validity * dependences to be respected and attempt to carry them. */ static int add_all_constraints(struct isl_sched_graph *graph) { int i, j; int pos; pos = 0; for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge= &graph->edge[i]; if (!is_validity(edge) && !is_conditional_validity(edge)) continue; for (j = 0; j < edge->map->n; ++j) { isl_basic_map *bmap; isl_map *map; bmap = isl_basic_map_copy(edge->map->p[j]); map = isl_map_from_basic_map(bmap); if (edge->src == edge->dst && add_intra_constraints(graph, edge, map, pos) < 0) return -1; if (edge->src != edge->dst && add_inter_constraints(graph, edge, map, pos) < 0) return -1; ++pos; } } return 0; } /* Count the number of equality and inequality constraints * that will be added to the carry_lp problem. * We count each edge exactly once. */ static int count_all_constraints(struct isl_sched_graph *graph, int *n_eq, int *n_ineq) { int i, j; *n_eq = *n_ineq = 0; for (i = 0; i < graph->n_edge; ++i) { struct isl_sched_edge *edge= &graph->edge[i]; for (j = 0; j < edge->map->n; ++j) { isl_basic_map *bmap; isl_map *map; bmap = isl_basic_map_copy(edge->map->p[j]); map = isl_map_from_basic_map(bmap); if (count_map_constraints(graph, edge, map, n_eq, n_ineq, 1, 0) < 0) return -1; } } return 0; } /* Construct an LP problem for finding schedule coefficients * such that the schedule carries as many dependences as possible. * In particular, for each dependence i, we bound the dependence distance * from below by e_i, with 0 <= e_i <= 1 and then maximize the sum * of all e_i's. Dependences with e_i = 0 in the solution are simply * respected, while those with e_i > 0 (in practice e_i = 1) are carried. * Note that if the dependence relation is a union of basic maps, * then we have to consider each basic map individually as it may only * be possible to carry the dependences expressed by some of those * basic maps and not all of them. * Below, we consider each of those basic maps as a separate "edge". * * All variables of the LP are non-negative. The actual coefficients * may be negative, so each coefficient is represented as the difference * of two non-negative variables. The negative part always appears * immediately before the positive part. * Other than that, the variables have the following order * * - sum of (1 - e_i) over all edges * - sum of positive and negative parts of all c_n coefficients * (unconstrained when computing non-parametric schedules) * - sum of positive and negative parts of all c_x coefficients * - for each edge * - e_i * - for each node * - c_i_0 * - positive and negative parts of c_i_n (if parametric) * - positive and negative parts of c_i_x * * The constraints are those from the (validity) edges plus three equalities * to express the sums and n_edge inequalities to express e_i <= 1. */ static int setup_carry_lp(isl_ctx *ctx, struct isl_sched_graph *graph) { int i, j; int k; isl_space *dim; unsigned total; int n_eq, n_ineq; int n_edge; n_edge = 0; for (i = 0; i < graph->n_edge; ++i) n_edge += graph->edge[i].map->n; total = 3 + n_edge; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[graph->sorted[i]]; node->start = total; total += 1 + 2 * (node->nparam + node->nvar); } if (count_all_constraints(graph, &n_eq, &n_ineq) < 0) return -1; dim = isl_space_set_alloc(ctx, 0, total); isl_basic_set_free(graph->lp); n_eq += 3; n_ineq += n_edge; graph->lp = isl_basic_set_alloc_space(dim, 0, n_eq, n_ineq); graph->lp = isl_basic_set_set_rational(graph->lp); k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][0], -n_edge); isl_int_set_si(graph->lp->eq[k][1], 1); for (i = 0; i < n_edge; ++i) isl_int_set_si(graph->lp->eq[k][4 + i], 1); k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][2], -1); for (i = 0; i < graph->n; ++i) { int pos = 1 + graph->node[i].start + 1; for (j = 0; j < 2 * graph->node[i].nparam; ++j) isl_int_set_si(graph->lp->eq[k][pos + j], 1); } k = isl_basic_set_alloc_equality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->eq[k], 1 + total); isl_int_set_si(graph->lp->eq[k][3], -1); for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int pos = 1 + node->start + 1 + 2 * node->nparam; for (j = 0; j < 2 * node->nvar; ++j) isl_int_set_si(graph->lp->eq[k][pos + j], 1); } for (i = 0; i < n_edge; ++i) { k = isl_basic_set_alloc_inequality(graph->lp); if (k < 0) return -1; isl_seq_clr(graph->lp->ineq[k], 1 + total); isl_int_set_si(graph->lp->ineq[k][4 + i], -1); isl_int_set_si(graph->lp->ineq[k][0], 1); } if (add_all_constraints(graph) < 0) return -1; return 0; } static __isl_give isl_schedule_node *compute_component_schedule( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, int wcc); /* Comparison function for sorting the statements based on * the corresponding value in "r". */ static int smaller_value(const void *a, const void *b, void *data) { isl_vec *r = data; const int *i1 = a; const int *i2 = b; return isl_int_cmp(r->el[*i1], r->el[*i2]); } /* If the schedule_split_scaled option is set and if the linear * parts of the scheduling rows for all nodes in the graphs have * a non-trivial common divisor, then split off the remainder of the * constant term modulo this common divisor from the linear part. * Otherwise, insert a band node directly and continue with * the construction of the schedule. * * If a non-trivial common divisor is found, then * the linear part is reduced and the remainder is enforced * by a sequence node with the children placed in the order * of this remainder. * In particular, we assign an scc index based on the remainder and * then rely on compute_component_schedule to insert the sequence and * to continue the schedule construction on each part. */ static __isl_give isl_schedule_node *split_scaled( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) { int i; int row; int scc; isl_ctx *ctx; isl_int gcd, gcd_i; isl_vec *r; int *order; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); if (!ctx->opt->schedule_split_scaled) return compute_next_band(node, graph, 0); if (graph->n <= 1) return compute_next_band(node, graph, 0); isl_int_init(gcd); isl_int_init(gcd_i); isl_int_set_si(gcd, 0); row = isl_mat_rows(graph->node[0].sched) - 1; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int cols = isl_mat_cols(node->sched); isl_seq_gcd(node->sched->row[row] + 1, cols - 1, &gcd_i); isl_int_gcd(gcd, gcd, gcd_i); } isl_int_clear(gcd_i); if (isl_int_cmp_si(gcd, 1) <= 0) { isl_int_clear(gcd); return compute_next_band(node, graph, 0); } r = isl_vec_alloc(ctx, graph->n); order = isl_calloc_array(ctx, int, graph->n); if (!r || !order) goto error; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; order[i] = i; isl_int_fdiv_r(r->el[i], node->sched->row[row][0], gcd); isl_int_fdiv_q(node->sched->row[row][0], node->sched->row[row][0], gcd); isl_int_mul(node->sched->row[row][0], node->sched->row[row][0], gcd); node->sched = isl_mat_scale_down_row(node->sched, row, gcd); if (!node->sched) goto error; } if (isl_sort(order, graph->n, sizeof(order[0]), &smaller_value, r) < 0) goto error; scc = 0; for (i = 0; i < graph->n; ++i) { if (i > 0 && isl_int_ne(r->el[order[i - 1]], r->el[order[i]])) ++scc; graph->node[order[i]].scc = scc; } graph->scc = ++scc; graph->weak = 0; isl_int_clear(gcd); isl_vec_free(r); free(order); if (update_edges(ctx, graph) < 0) return isl_schedule_node_free(node); node = insert_current_band(node, graph, 0); next_band(graph); node = isl_schedule_node_child(node, 0); node = compute_component_schedule(node, graph, 0); node = isl_schedule_node_parent(node); return node; error: isl_vec_free(r); free(order); isl_int_clear(gcd); return isl_schedule_node_free(node); } /* Is the schedule row "sol" trivial on node "node"? * That is, is the solution zero on the dimensions orthogonal to * the previously found solutions? * Return 1 if the solution is trivial, 0 if it is not and -1 on error. * * Each coefficient is represented as the difference between * two non-negative values in "sol". "sol" has been computed * in terms of the original iterators (i.e., without use of cmap). * We construct the schedule row s and write it as a linear * combination of (linear combinations of) previously computed schedule rows. * s = Q c or c = U s. * If the final entries of c are all zero, then the solution is trivial. */ static int is_trivial(struct isl_sched_node *node, __isl_keep isl_vec *sol) { int i; int pos; int trivial; isl_ctx *ctx; isl_vec *node_sol; if (!sol) return -1; if (node->nvar == node->rank) return 0; ctx = isl_vec_get_ctx(sol); node_sol = isl_vec_alloc(ctx, node->nvar); if (!node_sol) return -1; pos = 1 + node->start + 1 + 2 * node->nparam; for (i = 0; i < node->nvar; ++i) isl_int_sub(node_sol->el[i], sol->el[pos + 2 * i + 1], sol->el[pos + 2 * i]); node_sol = isl_mat_vec_product(isl_mat_copy(node->cinv), node_sol); if (!node_sol) return -1; trivial = isl_seq_first_non_zero(node_sol->el + node->rank, node->nvar - node->rank) == -1; isl_vec_free(node_sol); return trivial; } /* Is the schedule row "sol" trivial on any node where it should * not be trivial? * "sol" has been computed in terms of the original iterators * (i.e., without use of cmap). * Return 1 if any solution is trivial, 0 if they are not and -1 on error. */ static int is_any_trivial(struct isl_sched_graph *graph, __isl_keep isl_vec *sol) { int i; for (i = 0; i < graph->n; ++i) { struct isl_sched_node *node = &graph->node[i]; int trivial; if (!needs_row(graph, node)) continue; trivial = is_trivial(node, sol); if (trivial < 0 || trivial) return trivial; } return 0; } /* Construct a schedule row for each node such that as many dependences * as possible are carried and then continue with the next band. * * Note that despite the fact that the problem is solved using a rational * solver, the solution is guaranteed to be integral. * Specifically, the dependence distance lower bounds e_i (and therefore * also their sum) are integers. See Lemma 5 of [1]. * * If the computed schedule row turns out to be trivial on one or * more nodes where it should not be trivial, then we throw it away * and try again on each component separately. * * If there is only one component, then we accept the schedule row anyway, * but we do not consider it as a complete row and therefore do not * increment graph->n_row. Note that the ranks of the nodes that * do get a non-trivial schedule part will get updated regardless and * graph->maxvar is computed based on these ranks. The test for * whether more schedule rows are required in compute_schedule_wcc * is therefore not affected. * * Insert a band corresponding to the schedule row at position "node" * of the schedule tree and continue with the construction of the schedule. * This insertion and the continued construction is performed by split_scaled * after optionally checking for non-trivial common divisors. * * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling * Problem, Part II: Multi-Dimensional Time. * In Intl. Journal of Parallel Programming, 1992. */ static __isl_give isl_schedule_node *carry_dependences( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) { int i; int n_edge; int trivial; isl_ctx *ctx; isl_vec *sol; isl_basic_set *lp; if (!node) return NULL; n_edge = 0; for (i = 0; i < graph->n_edge; ++i) n_edge += graph->edge[i].map->n; ctx = isl_schedule_node_get_ctx(node); if (setup_carry_lp(ctx, graph) < 0) return isl_schedule_node_free(node); lp = isl_basic_set_copy(graph->lp); sol = isl_tab_basic_set_non_neg_lexmin(lp); if (!sol) return isl_schedule_node_free(node); if (sol->size == 0) { isl_vec_free(sol); isl_die(ctx, isl_error_internal, "error in schedule construction", return isl_schedule_node_free(node)); } isl_int_divexact(sol->el[1], sol->el[1], sol->el[0]); if (isl_int_cmp_si(sol->el[1], n_edge) >= 0) { isl_vec_free(sol); isl_die(ctx, isl_error_unknown, "unable to carry dependences", return isl_schedule_node_free(node)); } trivial = is_any_trivial(graph, sol); if (trivial < 0) { sol = isl_vec_free(sol); } else if (trivial && graph->scc > 1) { isl_vec_free(sol); return compute_component_schedule(node, graph, 1); } if (update_schedule(graph, sol, 0, 0) < 0) return isl_schedule_node_free(node); if (trivial) graph->n_row--; return split_scaled(node, graph); } /* Topologically sort statements mapped to the same schedule iteration * and add insert a sequence node in front of "node" * corresponding to this order. * * If it turns out to be impossible to sort the statements apart, * because different dependences impose different orderings * on the statements, then we extend the schedule such that * it carries at least one more dependence. */ static __isl_give isl_schedule_node *sort_statements( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) { isl_ctx *ctx; isl_union_set_list *filters; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); if (graph->n < 1) isl_die(ctx, isl_error_internal, "graph should have at least one node", return isl_schedule_node_free(node)); if (graph->n == 1) return node; if (update_edges(ctx, graph) < 0) return isl_schedule_node_free(node); if (graph->n_edge == 0) return node; if (detect_sccs(ctx, graph) < 0) return isl_schedule_node_free(node); next_band(graph); if (graph->scc < graph->n) return carry_dependences(node, graph); filters = extract_sccs(ctx, graph); node = isl_schedule_node_insert_sequence(node, filters); return node; } /* Are there any (non-empty) (conditional) validity edges in the graph? */ static int has_validity_edges(struct isl_sched_graph *graph) { int i; for (i = 0; i < graph->n_edge; ++i) { int empty; empty = isl_map_plain_is_empty(graph->edge[i].map); if (empty < 0) return -1; if (empty) continue; if (is_validity(&graph->edge[i]) || is_conditional_validity(&graph->edge[i])) return 1; } return 0; } /* Should we apply a Feautrier step? * That is, did the user request the Feautrier algorithm and are * there any validity dependences (left)? */ static int need_feautrier_step(isl_ctx *ctx, struct isl_sched_graph *graph) { if (ctx->opt->schedule_algorithm != ISL_SCHEDULE_ALGORITHM_FEAUTRIER) return 0; return has_validity_edges(graph); } /* Compute a schedule for a connected dependence graph using Feautrier's * multi-dimensional scheduling algorithm and return the updated schedule node. * * The original algorithm is described in [1]. * The main idea is to minimize the number of scheduling dimensions, by * trying to satisfy as many dependences as possible per scheduling dimension. * * [1] P. Feautrier, Some Efficient Solutions to the Affine Scheduling * Problem, Part II: Multi-Dimensional Time. * In Intl. Journal of Parallel Programming, 1992. */ static __isl_give isl_schedule_node *compute_schedule_wcc_feautrier( isl_schedule_node *node, struct isl_sched_graph *graph) { return carry_dependences(node, graph); } /* Turn off the "local" bit on all (condition) edges. */ static void clear_local_edges(struct isl_sched_graph *graph) { int i; for (i = 0; i < graph->n_edge; ++i) if (is_condition(&graph->edge[i])) clear_local(&graph->edge[i]); } /* Does "graph" have both condition and conditional validity edges? */ static int need_condition_check(struct isl_sched_graph *graph) { int i; int any_condition = 0; int any_conditional_validity = 0; for (i = 0; i < graph->n_edge; ++i) { if (is_condition(&graph->edge[i])) any_condition = 1; if (is_conditional_validity(&graph->edge[i])) any_conditional_validity = 1; } return any_condition && any_conditional_validity; } /* Does "graph" contain any coincidence edge? */ static int has_any_coincidence(struct isl_sched_graph *graph) { int i; for (i = 0; i < graph->n_edge; ++i) if (is_coincidence(&graph->edge[i])) return 1; return 0; } /* Extract the final schedule row as a map with the iteration domain * of "node" as domain. */ static __isl_give isl_map *final_row(struct isl_sched_node *node) { isl_local_space *ls; isl_aff *aff; int row; row = isl_mat_rows(node->sched) - 1; ls = isl_local_space_from_space(isl_space_copy(node->space)); aff = extract_schedule_row(ls, node, row); return isl_map_from_aff(aff); } /* Is the conditional validity dependence in the edge with index "edge_index" * violated by the latest (i.e., final) row of the schedule? * That is, is i scheduled after j * for any conditional validity dependence i -> j? */ static int is_violated(struct isl_sched_graph *graph, int edge_index) { isl_map *src_sched, *dst_sched, *map; struct isl_sched_edge *edge = &graph->edge[edge_index]; int empty; src_sched = final_row(edge->src); dst_sched = final_row(edge->dst); map = isl_map_copy(edge->map); map = isl_map_apply_domain(map, src_sched); map = isl_map_apply_range(map, dst_sched); map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0); empty = isl_map_is_empty(map); isl_map_free(map); if (empty < 0) return -1; return !empty; } /* Does "graph" have any satisfied condition edges that * are adjacent to the conditional validity constraint with * domain "conditional_source" and range "conditional_sink"? * * A satisfied condition is one that is not local. * If a condition was forced to be local already (i.e., marked as local) * then there is no need to check if it is in fact local. * * Additionally, mark all adjacent condition edges found as local. */ static int has_adjacent_true_conditions(struct isl_sched_graph *graph, __isl_keep isl_union_set *conditional_source, __isl_keep isl_union_set *conditional_sink) { int i; int any = 0; for (i = 0; i < graph->n_edge; ++i) { int adjacent, local; isl_union_map *condition; if (!is_condition(&graph->edge[i])) continue; if (is_local(&graph->edge[i])) continue; condition = graph->edge[i].tagged_condition; adjacent = domain_intersects(condition, conditional_sink); if (adjacent >= 0 && !adjacent) adjacent = range_intersects(condition, conditional_source); if (adjacent < 0) return -1; if (!adjacent) continue; set_local(&graph->edge[i]); local = is_condition_false(&graph->edge[i]); if (local < 0) return -1; if (!local) any = 1; } return any; } /* Are there any violated conditional validity dependences with * adjacent condition dependences that are not local with respect * to the current schedule? * That is, is the conditional validity constraint violated? * * Additionally, mark all those adjacent condition dependences as local. * We also mark those adjacent condition dependences that were not marked * as local before, but just happened to be local already. This ensures * that they remain local if the schedule is recomputed. * * We first collect domain and range of all violated conditional validity * dependences and then check if there are any adjacent non-local * condition dependences. */ static int has_violated_conditional_constraint(isl_ctx *ctx, struct isl_sched_graph *graph) { int i; int any = 0; isl_union_set *source, *sink; source = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); sink = isl_union_set_empty(isl_space_params_alloc(ctx, 0)); for (i = 0; i < graph->n_edge; ++i) { isl_union_set *uset; isl_union_map *umap; int violated; if (!is_conditional_validity(&graph->edge[i])) continue; violated = is_violated(graph, i); if (violated < 0) goto error; if (!violated) continue; any = 1; umap = isl_union_map_copy(graph->edge[i].tagged_validity); uset = isl_union_map_domain(umap); source = isl_union_set_union(source, uset); source = isl_union_set_coalesce(source); umap = isl_union_map_copy(graph->edge[i].tagged_validity); uset = isl_union_map_range(umap); sink = isl_union_set_union(sink, uset); sink = isl_union_set_coalesce(sink); } if (any) any = has_adjacent_true_conditions(graph, source, sink); isl_union_set_free(source); isl_union_set_free(sink); return any; error: isl_union_set_free(source); isl_union_set_free(sink); return -1; } /* Compute a schedule for a connected dependence graph and return * the updated schedule node. * * We try to find a sequence of as many schedule rows as possible that result * in non-negative dependence distances (independent of the previous rows * in the sequence, i.e., such that the sequence is tilable), with as * many of the initial rows as possible satisfying the coincidence constraints. * If we can't find any more rows we either * - split between SCCs and start over (assuming we found an interesting * pair of SCCs between which to split) * - continue with the next band (assuming the current band has at least * one row) * - try to carry as many dependences as possible and continue with the next * band * In each case, we first insert a band node in the schedule tree * if any rows have been computed. * * If Feautrier's algorithm is selected, we first recursively try to satisfy * as many validity dependences as possible. When all validity dependences * are satisfied we extend the schedule to a full-dimensional schedule. * * If we manage to complete the schedule, we insert a band node * (if any schedule rows were computed) and we finish off by topologically * sorting the statements based on the remaining dependences. * * If ctx->opt->schedule_outer_coincidence is set, then we force the * outermost dimension to satisfy the coincidence constraints. If this * turns out to be impossible, we fall back on the general scheme above * and try to carry as many dependences as possible. * * If "graph" contains both condition and conditional validity dependences, * then we need to check that that the conditional schedule constraint * is satisfied, i.e., there are no violated conditional validity dependences * that are adjacent to any non-local condition dependences. * If there are, then we mark all those adjacent condition dependences * as local and recompute the current band. Those dependences that * are marked local will then be forced to be local. * The initial computation is performed with no dependences marked as local. * If we are lucky, then there will be no violated conditional validity * dependences adjacent to any non-local condition dependences. * Otherwise, we mark some additional condition dependences as local and * recompute. We continue this process until there are no violations left or * until we are no longer able to compute a schedule. * Since there are only a finite number of dependences, * there will only be a finite number of iterations. */ static __isl_give isl_schedule_node *compute_schedule_wcc( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph) { int has_coincidence; int use_coincidence; int force_coincidence = 0; int check_conditional; int insert; isl_ctx *ctx; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); if (detect_sccs(ctx, graph) < 0) return isl_schedule_node_free(node); if (sort_sccs(graph) < 0) return isl_schedule_node_free(node); if (compute_maxvar(graph) < 0) return isl_schedule_node_free(node); if (need_feautrier_step(ctx, graph)) return compute_schedule_wcc_feautrier(node, graph); clear_local_edges(graph); check_conditional = need_condition_check(graph); has_coincidence = has_any_coincidence(graph); if (ctx->opt->schedule_outer_coincidence) force_coincidence = 1; use_coincidence = has_coincidence; while (graph->n_row < graph->maxvar) { isl_vec *sol; int violated; int coincident; graph->src_scc = -1; graph->dst_scc = -1; if (setup_lp(ctx, graph, use_coincidence) < 0) return isl_schedule_node_free(node); sol = solve_lp(graph); if (!sol) return isl_schedule_node_free(node); if (sol->size == 0) { int empty = graph->n_total_row == graph->band_start; isl_vec_free(sol); if (use_coincidence && (!force_coincidence || !empty)) { use_coincidence = 0; continue; } if (!ctx->opt->schedule_maximize_band_depth && !empty) return compute_next_band(node, graph, 1); if (graph->src_scc >= 0) return compute_split_schedule(node, graph); if (!empty) return compute_next_band(node, graph, 1); return carry_dependences(node, graph); } coincident = !has_coincidence || use_coincidence; if (update_schedule(graph, sol, 1, coincident) < 0) return isl_schedule_node_free(node); if (!check_conditional) continue; violated = has_violated_conditional_constraint(ctx, graph); if (violated < 0) return isl_schedule_node_free(node); if (!violated) continue; if (reset_band(graph) < 0) return isl_schedule_node_free(node); use_coincidence = has_coincidence; } insert = graph->n_total_row > graph->band_start; if (insert) { node = insert_current_band(node, graph, 1); node = isl_schedule_node_child(node, 0); } node = sort_statements(node, graph); if (insert) node = isl_schedule_node_parent(node); return node; } /* Compute a schedule for each group of nodes identified by node->scc * separately and then combine them in a sequence node (or as set node * if graph->weak is set) inserted at position "node" of the schedule tree. * Return the updated schedule node. * * If "wcc" is set then each of the groups belongs to a single * weakly connected component in the dependence graph so that * there is no need for compute_sub_schedule to look for weakly * connected components. */ static __isl_give isl_schedule_node *compute_component_schedule( __isl_take isl_schedule_node *node, struct isl_sched_graph *graph, int wcc) { int component; isl_ctx *ctx; isl_union_set_list *filters; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); filters = extract_sccs(ctx, graph); if (graph->weak) node = isl_schedule_node_insert_set(node, filters); else node = isl_schedule_node_insert_sequence(node, filters); for (component = 0; component < graph->scc; ++component) { node = isl_schedule_node_child(node, component); node = isl_schedule_node_child(node, 0); node = compute_sub_schedule(node, ctx, graph, &node_scc_exactly, &edge_scc_exactly, component, wcc); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); } return node; } /* Compute a schedule for the given dependence graph and insert it at "node". * Return the updated schedule node. * * We first check if the graph is connected (through validity and conditional * validity dependences) and, if not, compute a schedule * for each component separately. * If the schedule_serialize_sccs option is set, then we check for strongly * connected components instead and compute a separate schedule for * each such strongly connected component. */ static __isl_give isl_schedule_node *compute_schedule(isl_schedule_node *node, struct isl_sched_graph *graph) { isl_ctx *ctx; if (!node) return NULL; ctx = isl_schedule_node_get_ctx(node); if (isl_options_get_schedule_serialize_sccs(ctx)) { if (detect_sccs(ctx, graph) < 0) return isl_schedule_node_free(node); } else { if (detect_wccs(ctx, graph) < 0) return isl_schedule_node_free(node); } if (graph->scc > 1) return compute_component_schedule(node, graph, 1); return compute_schedule_wcc(node, graph); } /* Compute a schedule on sc->domain that respects the given schedule * constraints. * * In particular, the schedule respects all the validity dependences. * If the default isl scheduling algorithm is used, it tries to minimize * the dependence distances over the proximity dependences. * If Feautrier's scheduling algorithm is used, the proximity dependence * distances are only minimized during the extension to a full-dimensional * schedule. * * If there are any condition and conditional validity dependences, * then the conditional validity dependences may be violated inside * a tilable band, provided they have no adjacent non-local * condition dependences. */ __isl_give isl_schedule *isl_schedule_constraints_compute_schedule( __isl_take isl_schedule_constraints *sc) { isl_ctx *ctx = isl_schedule_constraints_get_ctx(sc); struct isl_sched_graph graph = { 0 }; isl_schedule *sched; isl_schedule_node *node; isl_union_set *domain; sc = isl_schedule_constraints_align_params(sc); domain = isl_schedule_constraints_get_domain(sc); if (isl_union_set_n_set(domain) == 0) { isl_schedule_constraints_free(sc); return isl_schedule_from_domain(domain); } if (graph_init(&graph, sc) < 0) domain = isl_union_set_free(domain); node = isl_schedule_node_from_domain(domain); node = isl_schedule_node_child(node, 0); if (graph.n > 0) node = compute_schedule(node, &graph); sched = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); graph_free(ctx, &graph); isl_schedule_constraints_free(sc); return sched; } /* Compute a schedule for the given union of domains that respects * all the validity dependences and minimizes * the dependence distances over the proximity dependences. * * This function is kept for backward compatibility. */ __isl_give isl_schedule *isl_union_set_compute_schedule( __isl_take isl_union_set *domain, __isl_take isl_union_map *validity, __isl_take isl_union_map *proximity) { isl_schedule_constraints *sc; sc = isl_schedule_constraints_on_domain(domain); sc = isl_schedule_constraints_set_validity(sc, validity); sc = isl_schedule_constraints_set_proximity(sc, proximity); return isl_schedule_constraints_compute_schedule(sc); } isl-0.16.1/isl_union_map.c0000664000175000017500000030116512645737235012335 00000000000000/* * Copyright 2010-2011 INRIA Saclay * Copyright 2013-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include /* Return the number of parameters of "umap", where "type" * is required to be set to isl_dim_param. */ unsigned isl_union_map_dim(__isl_keep isl_union_map *umap, enum isl_dim_type type) { if (!umap) return 0; if (type != isl_dim_param) isl_die(isl_union_map_get_ctx(umap), isl_error_invalid, "can only reference parameters", return 0); return isl_space_dim(umap->dim, type); } /* Return the number of parameters of "uset", where "type" * is required to be set to isl_dim_param. */ unsigned isl_union_set_dim(__isl_keep isl_union_set *uset, enum isl_dim_type type) { return isl_union_map_dim(uset, type); } /* Return the id of the specified dimension. */ __isl_give isl_id *isl_union_map_get_dim_id(__isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned pos) { if (!umap) return NULL; if (type != isl_dim_param) isl_die(isl_union_map_get_ctx(umap), isl_error_invalid, "can only reference parameters", return NULL); return isl_space_get_dim_id(umap->dim, type, pos); } /* Is this union set a parameter domain? */ isl_bool isl_union_set_is_params(__isl_keep isl_union_set *uset) { isl_set *set; isl_bool params; if (!uset) return isl_bool_error; if (uset->table.n != 1) return isl_bool_false; set = isl_set_from_union_set(isl_union_set_copy(uset)); params = isl_set_is_params(set); isl_set_free(set); return params; } static __isl_give isl_union_map *isl_union_map_alloc( __isl_take isl_space *space, int size) { isl_union_map *umap; space = isl_space_params(space); if (!space) return NULL; umap = isl_calloc_type(space->ctx, isl_union_map); if (!umap) { isl_space_free(space); return NULL; } umap->ref = 1; umap->dim = space; if (isl_hash_table_init(space->ctx, &umap->table, size) < 0) return isl_union_map_free(umap); return umap; } __isl_give isl_union_map *isl_union_map_empty(__isl_take isl_space *dim) { return isl_union_map_alloc(dim, 16); } __isl_give isl_union_set *isl_union_set_empty(__isl_take isl_space *dim) { return isl_union_map_empty(dim); } isl_ctx *isl_union_map_get_ctx(__isl_keep isl_union_map *umap) { return umap ? umap->dim->ctx : NULL; } isl_ctx *isl_union_set_get_ctx(__isl_keep isl_union_set *uset) { return uset ? uset->dim->ctx : NULL; } __isl_give isl_space *isl_union_map_get_space(__isl_keep isl_union_map *umap) { if (!umap) return NULL; return isl_space_copy(umap->dim); } /* Return the position of the parameter with the given name * in "umap". * Return -1 if no such dimension can be found. */ int isl_union_map_find_dim_by_name(__isl_keep isl_union_map *umap, enum isl_dim_type type, const char *name) { if (!umap) return -1; return isl_space_find_dim_by_name(umap->dim, type, name); } __isl_give isl_space *isl_union_set_get_space(__isl_keep isl_union_set *uset) { return isl_union_map_get_space(uset); } static isl_stat free_umap_entry(void **entry, void *user) { isl_map *map = *entry; isl_map_free(map); return isl_stat_ok; } static isl_stat add_map(__isl_take isl_map *map, void *user) { isl_union_map **umap = (isl_union_map **)user; *umap = isl_union_map_add_map(*umap, map); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_dup(__isl_keep isl_union_map *umap) { isl_union_map *dup; if (!umap) return NULL; dup = isl_union_map_empty(isl_space_copy(umap->dim)); if (isl_union_map_foreach_map(umap, &add_map, &dup) < 0) goto error; return dup; error: isl_union_map_free(dup); return NULL; } __isl_give isl_union_map *isl_union_map_cow(__isl_take isl_union_map *umap) { if (!umap) return NULL; if (umap->ref == 1) return umap; umap->ref--; return isl_union_map_dup(umap); } struct isl_union_align { isl_reordering *exp; isl_union_map *res; }; static isl_stat align_entry(void **entry, void *user) { isl_map *map = *entry; isl_reordering *exp; struct isl_union_align *data = user; exp = isl_reordering_extend_space(isl_reordering_copy(data->exp), isl_map_get_space(map)); data->res = isl_union_map_add_map(data->res, isl_map_realign(isl_map_copy(map), exp)); return isl_stat_ok; } /* Align the parameters of umap along those of model. * The result has the parameters of model first, in the same order * as they appear in model, followed by any remaining parameters of * umap that do not appear in model. */ __isl_give isl_union_map *isl_union_map_align_params( __isl_take isl_union_map *umap, __isl_take isl_space *model) { struct isl_union_align data = { NULL, NULL }; if (!umap || !model) goto error; if (isl_space_match(umap->dim, isl_dim_param, model, isl_dim_param)) { isl_space_free(model); return umap; } model = isl_space_params(model); data.exp = isl_parameter_alignment_reordering(umap->dim, model); if (!data.exp) goto error; data.res = isl_union_map_alloc(isl_space_copy(data.exp->dim), umap->table.n); if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, &align_entry, &data) < 0) goto error; isl_reordering_free(data.exp); isl_union_map_free(umap); isl_space_free(model); return data.res; error: isl_reordering_free(data.exp); isl_union_map_free(umap); isl_union_map_free(data.res); isl_space_free(model); return NULL; } __isl_give isl_union_set *isl_union_set_align_params( __isl_take isl_union_set *uset, __isl_take isl_space *model) { return isl_union_map_align_params(uset, model); } __isl_give isl_union_map *isl_union_map_union(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); umap1 = isl_union_map_cow(umap1); if (!umap1 || !umap2) goto error; if (isl_union_map_foreach_map(umap2, &add_map, &umap1) < 0) goto error; isl_union_map_free(umap2); return umap1; error: isl_union_map_free(umap1); isl_union_map_free(umap2); return NULL; } __isl_give isl_union_set *isl_union_set_union(__isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return isl_union_map_union(uset1, uset2); } __isl_give isl_union_map *isl_union_map_copy(__isl_keep isl_union_map *umap) { if (!umap) return NULL; umap->ref++; return umap; } __isl_give isl_union_set *isl_union_set_copy(__isl_keep isl_union_set *uset) { return isl_union_map_copy(uset); } __isl_null isl_union_map *isl_union_map_free(__isl_take isl_union_map *umap) { if (!umap) return NULL; if (--umap->ref > 0) return NULL; isl_hash_table_foreach(umap->dim->ctx, &umap->table, &free_umap_entry, NULL); isl_hash_table_clear(&umap->table); isl_space_free(umap->dim); free(umap); return NULL; } __isl_null isl_union_set *isl_union_set_free(__isl_take isl_union_set *uset) { return isl_union_map_free(uset); } static int has_dim(const void *entry, const void *val) { isl_map *map = (isl_map *)entry; isl_space *dim = (isl_space *)val; return isl_space_is_equal(map->dim, dim); } __isl_give isl_union_map *isl_union_map_add_map(__isl_take isl_union_map *umap, __isl_take isl_map *map) { uint32_t hash; struct isl_hash_table_entry *entry; if (!map || !umap) goto error; if (isl_map_plain_is_empty(map)) { isl_map_free(map); return umap; } if (!isl_space_match(map->dim, isl_dim_param, umap->dim, isl_dim_param)) { umap = isl_union_map_align_params(umap, isl_map_get_space(map)); map = isl_map_align_params(map, isl_union_map_get_space(umap)); } umap = isl_union_map_cow(umap); if (!map || !umap) goto error; hash = isl_space_get_hash(map->dim); entry = isl_hash_table_find(umap->dim->ctx, &umap->table, hash, &has_dim, map->dim, 1); if (!entry) goto error; if (!entry->data) entry->data = map; else { entry->data = isl_map_union(entry->data, isl_map_copy(map)); if (!entry->data) goto error; isl_map_free(map); } return umap; error: isl_map_free(map); isl_union_map_free(umap); return NULL; } __isl_give isl_union_set *isl_union_set_add_set(__isl_take isl_union_set *uset, __isl_take isl_set *set) { return isl_union_map_add_map(uset, (isl_map *)set); } __isl_give isl_union_map *isl_union_map_from_map(__isl_take isl_map *map) { isl_space *dim; isl_union_map *umap; if (!map) return NULL; dim = isl_map_get_space(map); dim = isl_space_params(dim); umap = isl_union_map_empty(dim); umap = isl_union_map_add_map(umap, map); return umap; } __isl_give isl_union_set *isl_union_set_from_set(__isl_take isl_set *set) { return isl_union_map_from_map((isl_map *)set); } __isl_give isl_union_map *isl_union_map_from_basic_map( __isl_take isl_basic_map *bmap) { return isl_union_map_from_map(isl_map_from_basic_map(bmap)); } __isl_give isl_union_set *isl_union_set_from_basic_set( __isl_take isl_basic_set *bset) { return isl_union_map_from_basic_map(bset); } struct isl_union_map_foreach_data { isl_stat (*fn)(__isl_take isl_map *map, void *user); void *user; }; static isl_stat call_on_copy(void **entry, void *user) { isl_map *map = *entry; struct isl_union_map_foreach_data *data; data = (struct isl_union_map_foreach_data *)user; return data->fn(isl_map_copy(map), data->user); } int isl_union_map_n_map(__isl_keep isl_union_map *umap) { return umap ? umap->table.n : 0; } int isl_union_set_n_set(__isl_keep isl_union_set *uset) { return uset ? uset->table.n : 0; } isl_stat isl_union_map_foreach_map(__isl_keep isl_union_map *umap, isl_stat (*fn)(__isl_take isl_map *map, void *user), void *user) { struct isl_union_map_foreach_data data = { fn, user }; if (!umap) return isl_stat_error; return isl_hash_table_foreach(umap->dim->ctx, &umap->table, &call_on_copy, &data); } static isl_stat copy_map(void **entry, void *user) { isl_map *map = *entry; isl_map **map_p = user; *map_p = isl_map_copy(map); return isl_stat_error; } __isl_give isl_map *isl_map_from_union_map(__isl_take isl_union_map *umap) { isl_ctx *ctx; isl_map *map = NULL; if (!umap) return NULL; ctx = isl_union_map_get_ctx(umap); if (umap->table.n != 1) isl_die(ctx, isl_error_invalid, "union map needs to contain elements in exactly " "one space", goto error); isl_hash_table_foreach(ctx, &umap->table, ©_map, &map); isl_union_map_free(umap); return map; error: isl_union_map_free(umap); return NULL; } __isl_give isl_set *isl_set_from_union_set(__isl_take isl_union_set *uset) { return isl_map_from_union_map(uset); } /* Extract the map in "umap" that lives in the given space (ignoring * parameters). */ __isl_give isl_map *isl_union_map_extract_map(__isl_keep isl_union_map *umap, __isl_take isl_space *space) { uint32_t hash; struct isl_hash_table_entry *entry; space = isl_space_drop_dims(space, isl_dim_param, 0, isl_space_dim(space, isl_dim_param)); space = isl_space_align_params(space, isl_union_map_get_space(umap)); if (!umap || !space) goto error; hash = isl_space_get_hash(space); entry = isl_hash_table_find(umap->dim->ctx, &umap->table, hash, &has_dim, space, 0); if (!entry) return isl_map_empty(space); isl_space_free(space); return isl_map_copy(entry->data); error: isl_space_free(space); return NULL; } __isl_give isl_set *isl_union_set_extract_set(__isl_keep isl_union_set *uset, __isl_take isl_space *dim) { return (isl_set *)isl_union_map_extract_map(uset, dim); } /* Check if umap contains a map in the given space. */ __isl_give int isl_union_map_contains(__isl_keep isl_union_map *umap, __isl_keep isl_space *dim) { uint32_t hash; struct isl_hash_table_entry *entry; if (!umap || !dim) return -1; hash = isl_space_get_hash(dim); entry = isl_hash_table_find(umap->dim->ctx, &umap->table, hash, &has_dim, dim, 0); return !!entry; } __isl_give int isl_union_set_contains(__isl_keep isl_union_set *uset, __isl_keep isl_space *dim) { return isl_union_map_contains(uset, dim); } isl_stat isl_union_set_foreach_set(__isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_set *set, void *user), void *user) { return isl_union_map_foreach_map(uset, (isl_stat(*)(__isl_take isl_map *, void*))fn, user); } struct isl_union_set_foreach_point_data { isl_stat (*fn)(__isl_take isl_point *pnt, void *user); void *user; }; static isl_stat foreach_point(__isl_take isl_set *set, void *user) { struct isl_union_set_foreach_point_data *data = user; isl_stat r; r = isl_set_foreach_point(set, data->fn, data->user); isl_set_free(set); return r; } isl_stat isl_union_set_foreach_point(__isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user) { struct isl_union_set_foreach_point_data data = { fn, user }; return isl_union_set_foreach_set(uset, &foreach_point, &data); } struct isl_union_map_gen_bin_data { isl_union_map *umap2; isl_union_map *res; }; static isl_stat subtract_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_map *map = *entry; hash = isl_space_get_hash(map->dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, map->dim, 0); map = isl_map_copy(map); if (entry2) { int empty; map = isl_map_subtract(map, isl_map_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } static __isl_give isl_union_map *gen_bin_op(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2, isl_stat (*fn)(void **, void *)) { struct isl_union_map_gen_bin_data data = { NULL, NULL }; umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); if (!umap1 || !umap2) goto error; data.umap2 = umap2; data.res = isl_union_map_alloc(isl_space_copy(umap1->dim), umap1->table.n); if (isl_hash_table_foreach(umap1->dim->ctx, &umap1->table, fn, &data) < 0) goto error; isl_union_map_free(umap1); isl_union_map_free(umap2); return data.res; error: isl_union_map_free(umap1); isl_union_map_free(umap2); isl_union_map_free(data.res); return NULL; } __isl_give isl_union_map *isl_union_map_subtract( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return gen_bin_op(umap1, umap2, &subtract_entry); } __isl_give isl_union_set *isl_union_set_subtract( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return isl_union_map_subtract(uset1, uset2); } struct isl_union_map_gen_bin_set_data { isl_set *set; isl_union_map *res; }; static isl_stat intersect_params_entry(void **entry, void *user) { struct isl_union_map_gen_bin_set_data *data = user; isl_map *map = *entry; int empty; map = isl_map_copy(map); map = isl_map_intersect_params(map, isl_set_copy(data->set)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } static __isl_give isl_union_map *gen_bin_set_op(__isl_take isl_union_map *umap, __isl_take isl_set *set, isl_stat (*fn)(void **, void *)) { struct isl_union_map_gen_bin_set_data data = { NULL, NULL }; umap = isl_union_map_align_params(umap, isl_set_get_space(set)); set = isl_set_align_params(set, isl_union_map_get_space(umap)); if (!umap || !set) goto error; data.set = set; data.res = isl_union_map_alloc(isl_space_copy(umap->dim), umap->table.n); if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, fn, &data) < 0) goto error; isl_union_map_free(umap); isl_set_free(set); return data.res; error: isl_union_map_free(umap); isl_set_free(set); isl_union_map_free(data.res); return NULL; } /* Intersect "umap" with the parameter domain "set". * * If "set" does not have any constraints, then we can return immediately. */ __isl_give isl_union_map *isl_union_map_intersect_params( __isl_take isl_union_map *umap, __isl_take isl_set *set) { int is_universe; is_universe = isl_set_plain_is_universe(set); if (is_universe < 0) goto error; if (is_universe) { isl_set_free(set); return umap; } return gen_bin_set_op(umap, set, &intersect_params_entry); error: isl_union_map_free(umap); isl_set_free(set); return NULL; } __isl_give isl_union_set *isl_union_set_intersect_params( __isl_take isl_union_set *uset, __isl_take isl_set *set) { return isl_union_map_intersect_params(uset, set); } static __isl_give isl_union_map *union_map_intersect_params( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { return isl_union_map_intersect_params(umap, isl_set_from_union_set(uset)); } static __isl_give isl_union_map *union_map_gist_params( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { return isl_union_map_gist_params(umap, isl_set_from_union_set(uset)); } struct isl_union_map_match_bin_data { isl_union_map *umap2; isl_union_map *res; __isl_give isl_map *(*fn)(__isl_take isl_map*, __isl_take isl_map*); }; static isl_stat match_bin_entry(void **entry, void *user) { struct isl_union_map_match_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_map *map = *entry; int empty; hash = isl_space_get_hash(map->dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, map->dim, 0); if (!entry2) return isl_stat_ok; map = isl_map_copy(map); map = data->fn(map, isl_map_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } static __isl_give isl_union_map *match_bin_op(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2, __isl_give isl_map *(*fn)(__isl_take isl_map*, __isl_take isl_map*)) { struct isl_union_map_match_bin_data data = { NULL, NULL, fn }; umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); if (!umap1 || !umap2) goto error; data.umap2 = umap2; data.res = isl_union_map_alloc(isl_space_copy(umap1->dim), umap1->table.n); if (isl_hash_table_foreach(umap1->dim->ctx, &umap1->table, &match_bin_entry, &data) < 0) goto error; isl_union_map_free(umap1); isl_union_map_free(umap2); return data.res; error: isl_union_map_free(umap1); isl_union_map_free(umap2); isl_union_map_free(data.res); return NULL; } __isl_give isl_union_map *isl_union_map_intersect( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return match_bin_op(umap1, umap2, &isl_map_intersect); } /* Compute the intersection of the two union_sets. * As a special case, if exactly one of the two union_sets * is a parameter domain, then intersect the parameter domain * of the other one with this set. */ __isl_give isl_union_set *isl_union_set_intersect( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { int p1, p2; p1 = isl_union_set_is_params(uset1); p2 = isl_union_set_is_params(uset2); if (p1 < 0 || p2 < 0) goto error; if (!p1 && p2) return union_map_intersect_params(uset1, uset2); if (p1 && !p2) return union_map_intersect_params(uset2, uset1); return isl_union_map_intersect(uset1, uset2); error: isl_union_set_free(uset1); isl_union_set_free(uset2); return NULL; } static isl_stat gist_params_entry(void **entry, void *user) { struct isl_union_map_gen_bin_set_data *data = user; isl_map *map = *entry; int empty; map = isl_map_copy(map); map = isl_map_gist_params(map, isl_set_copy(data->set)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_gist_params( __isl_take isl_union_map *umap, __isl_take isl_set *set) { return gen_bin_set_op(umap, set, &gist_params_entry); } __isl_give isl_union_set *isl_union_set_gist_params( __isl_take isl_union_set *uset, __isl_take isl_set *set) { return isl_union_map_gist_params(uset, set); } __isl_give isl_union_map *isl_union_map_gist(__isl_take isl_union_map *umap, __isl_take isl_union_map *context) { return match_bin_op(umap, context, &isl_map_gist); } __isl_give isl_union_set *isl_union_set_gist(__isl_take isl_union_set *uset, __isl_take isl_union_set *context) { if (isl_union_set_is_params(context)) return union_map_gist_params(uset, context); return isl_union_map_gist(uset, context); } static __isl_give isl_map *lex_le_set(__isl_take isl_map *set1, __isl_take isl_map *set2) { return isl_set_lex_le_set((isl_set *)set1, (isl_set *)set2); } static __isl_give isl_map *lex_lt_set(__isl_take isl_map *set1, __isl_take isl_map *set2) { return isl_set_lex_lt_set((isl_set *)set1, (isl_set *)set2); } __isl_give isl_union_map *isl_union_set_lex_lt_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return match_bin_op(uset1, uset2, &lex_lt_set); } __isl_give isl_union_map *isl_union_set_lex_le_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return match_bin_op(uset1, uset2, &lex_le_set); } __isl_give isl_union_map *isl_union_set_lex_gt_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return isl_union_map_reverse(isl_union_set_lex_lt_union_set(uset2, uset1)); } __isl_give isl_union_map *isl_union_set_lex_ge_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return isl_union_map_reverse(isl_union_set_lex_le_union_set(uset2, uset1)); } __isl_give isl_union_map *isl_union_map_lex_gt_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return isl_union_map_reverse(isl_union_map_lex_lt_union_map(umap2, umap1)); } __isl_give isl_union_map *isl_union_map_lex_ge_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return isl_union_map_reverse(isl_union_map_lex_le_union_map(umap2, umap1)); } static isl_stat intersect_domain_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *dim; isl_map *map = *entry; isl_bool empty; dim = isl_map_get_space(map); dim = isl_space_domain(dim); hash = isl_space_get_hash(dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, dim, 0); isl_space_free(dim); if (!entry2) return isl_stat_ok; map = isl_map_copy(map); map = isl_map_intersect_domain(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Intersect the domain of "umap" with "uset". * If "uset" is a parameters domain, then intersect the parameter * domain of "umap" with this set. */ __isl_give isl_union_map *isl_union_map_intersect_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { if (isl_union_set_is_params(uset)) return union_map_intersect_params(umap, uset); return gen_bin_op(umap, uset, &intersect_domain_entry); } /* Remove the elements of data->umap2 from the domain of *entry * and add the result to data->res. */ static isl_stat subtract_domain_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *dim; isl_map *map = *entry; isl_bool empty; dim = isl_map_get_space(map); dim = isl_space_domain(dim); hash = isl_space_get_hash(dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, dim, 0); isl_space_free(dim); map = isl_map_copy(map); if (!entry2) { data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } map = isl_map_subtract_domain(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Remove the elements of "uset" from the domain of "umap". */ __isl_give isl_union_map *isl_union_map_subtract_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom) { return gen_bin_op(umap, dom, &subtract_domain_entry); } /* Remove the elements of data->umap2 from the range of *entry * and add the result to data->res. */ static isl_stat subtract_range_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *space; isl_map *map = *entry; isl_bool empty; space = isl_map_get_space(map); space = isl_space_range(space); hash = isl_space_get_hash(space); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, space, 0); isl_space_free(space); map = isl_map_copy(map); if (!entry2) { data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } map = isl_map_subtract_range(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Remove the elements of "uset" from the range of "umap". */ __isl_give isl_union_map *isl_union_map_subtract_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom) { return gen_bin_op(umap, dom, &subtract_range_entry); } static isl_stat gist_domain_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *dim; isl_map *map = *entry; isl_bool empty; dim = isl_map_get_space(map); dim = isl_space_domain(dim); hash = isl_space_get_hash(dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, dim, 0); isl_space_free(dim); if (!entry2) return isl_stat_ok; map = isl_map_copy(map); map = isl_map_gist_domain(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Compute the gist of "umap" with respect to the domain "uset". * If "uset" is a parameters domain, then compute the gist * with respect to this parameter domain. */ __isl_give isl_union_map *isl_union_map_gist_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { if (isl_union_set_is_params(uset)) return union_map_gist_params(umap, uset); return gen_bin_op(umap, uset, &gist_domain_entry); } static isl_stat gist_range_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *space; isl_map *map = *entry; isl_bool empty; space = isl_map_get_space(map); space = isl_space_range(space); hash = isl_space_get_hash(space); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, space, 0); isl_space_free(space); if (!entry2) return isl_stat_ok; map = isl_map_copy(map); map = isl_map_gist_range(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Compute the gist of "umap" with respect to the range "uset". */ __isl_give isl_union_map *isl_union_map_gist_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { return gen_bin_op(umap, uset, &gist_range_entry); } static isl_stat intersect_range_entry(void **entry, void *user) { struct isl_union_map_gen_bin_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *dim; isl_map *map = *entry; isl_bool empty; dim = isl_map_get_space(map); dim = isl_space_range(dim); hash = isl_space_get_hash(dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, dim, 0); isl_space_free(dim); if (!entry2) return isl_stat_ok; map = isl_map_copy(map); map = isl_map_intersect_range(map, isl_set_copy(entry2->data)); empty = isl_map_is_empty(map); if (empty < 0) { isl_map_free(map); return isl_stat_error; } if (empty) { isl_map_free(map); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_intersect_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset) { return gen_bin_op(umap, uset, &intersect_range_entry); } struct isl_union_map_bin_data { isl_union_map *umap2; isl_union_map *res; isl_map *map; isl_stat (*fn)(void **entry, void *user); }; static isl_stat apply_range_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; isl_bool empty; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_out, map2->dim, isl_dim_in)) return isl_stat_ok; map2 = isl_map_apply_range(isl_map_copy(data->map), isl_map_copy(map2)); empty = isl_map_is_empty(map2); if (empty < 0) { isl_map_free(map2); return isl_stat_error; } if (empty) { isl_map_free(map2); return isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } static isl_stat bin_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map = *entry; data->map = map; if (isl_hash_table_foreach(data->umap2->dim->ctx, &data->umap2->table, data->fn, data) < 0) return isl_stat_error; return isl_stat_ok; } static __isl_give isl_union_map *bin_op(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2, isl_stat (*fn)(void **entry, void *user)) { struct isl_union_map_bin_data data = { NULL, NULL, NULL, fn }; umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); if (!umap1 || !umap2) goto error; data.umap2 = umap2; data.res = isl_union_map_alloc(isl_space_copy(umap1->dim), umap1->table.n); if (isl_hash_table_foreach(umap1->dim->ctx, &umap1->table, &bin_entry, &data) < 0) goto error; isl_union_map_free(umap1); isl_union_map_free(umap2); return data.res; error: isl_union_map_free(umap1); isl_union_map_free(umap2); isl_union_map_free(data.res); return NULL; } __isl_give isl_union_map *isl_union_map_apply_range( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &apply_range_entry); } __isl_give isl_union_map *isl_union_map_apply_domain( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { umap1 = isl_union_map_reverse(umap1); umap1 = isl_union_map_apply_range(umap1, umap2); return isl_union_map_reverse(umap1); } __isl_give isl_union_set *isl_union_set_apply( __isl_take isl_union_set *uset, __isl_take isl_union_map *umap) { return isl_union_map_apply_range(uset, umap); } static isl_stat map_lex_lt_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_out, map2->dim, isl_dim_out)) return isl_stat_ok; map2 = isl_map_lex_lt_map(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_lex_lt_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &map_lex_lt_entry); } static isl_stat map_lex_le_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_out, map2->dim, isl_dim_out)) return isl_stat_ok; map2 = isl_map_lex_le_map(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_lex_le_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &map_lex_le_entry); } static isl_stat product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; map2 = isl_map_product(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_product(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &product_entry); } static isl_stat set_product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_set *set2 = *entry; set2 = isl_set_product(isl_set_copy(data->map), isl_set_copy(set2)); data->res = isl_union_set_add_set(data->res, set2); return isl_stat_ok; } __isl_give isl_union_set *isl_union_set_product(__isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2) { return bin_op(uset1, uset2, &set_product_entry); } static isl_stat domain_product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_out, map2->dim, isl_dim_out)) return isl_stat_ok; map2 = isl_map_domain_product(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } /* Given two maps A -> B and C -> D, construct a map [A -> C] -> (B * D) */ __isl_give isl_union_map *isl_union_map_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &domain_product_entry); } static isl_stat range_product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_in, map2->dim, isl_dim_in)) return isl_stat_ok; map2 = isl_map_range_product(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &range_product_entry); } /* If data->map A -> B and "map2" C -> D have the same range space, * then add (A, C) -> (B * D) to data->res. */ static isl_stat flat_domain_product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_out, map2->dim, isl_dim_out)) return isl_stat_ok; map2 = isl_map_flat_domain_product(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } /* Given two maps A -> B and C -> D, construct a map (A, C) -> (B * D). */ __isl_give isl_union_map *isl_union_map_flat_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &flat_domain_product_entry); } static isl_stat flat_range_product_entry(void **entry, void *user) { struct isl_union_map_bin_data *data = user; isl_map *map2 = *entry; if (!isl_space_tuple_is_equal(data->map->dim, isl_dim_in, map2->dim, isl_dim_in)) return isl_stat_ok; map2 = isl_map_flat_range_product(isl_map_copy(data->map), isl_map_copy(map2)); data->res = isl_union_map_add_map(data->res, map2); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_flat_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2) { return bin_op(umap1, umap2, &flat_range_product_entry); } static __isl_give isl_union_set *cond_un_op(__isl_take isl_union_map *umap, isl_stat (*fn)(void **, void *)) { isl_union_set *res; if (!umap) return NULL; res = isl_union_map_alloc(isl_space_copy(umap->dim), umap->table.n); if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, fn, &res) < 0) goto error; isl_union_map_free(umap); return res; error: isl_union_map_free(umap); isl_union_set_free(res); return NULL; } static isl_stat from_range_entry(void **entry, void *user) { isl_map *set = *entry; isl_union_set **res = user; *res = isl_union_map_add_map(*res, isl_map_from_range(isl_set_copy(set))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_from_range( __isl_take isl_union_set *uset) { return cond_un_op(uset, &from_range_entry); } __isl_give isl_union_map *isl_union_map_from_domain( __isl_take isl_union_set *uset) { return isl_union_map_reverse(isl_union_map_from_range(uset)); } __isl_give isl_union_map *isl_union_map_from_domain_and_range( __isl_take isl_union_set *domain, __isl_take isl_union_set *range) { return isl_union_map_apply_range(isl_union_map_from_domain(domain), isl_union_map_from_range(range)); } static __isl_give isl_union_map *un_op(__isl_take isl_union_map *umap, isl_stat (*fn)(void **, void *)) { umap = isl_union_map_cow(umap); if (!umap) return NULL; if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, fn, NULL) < 0) goto error; return umap; error: isl_union_map_free(umap); return NULL; } static isl_stat affine_entry(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_from_basic_map(isl_map_affine_hull(*map)); return *map ? isl_stat_ok : isl_stat_error; } __isl_give isl_union_map *isl_union_map_affine_hull( __isl_take isl_union_map *umap) { return un_op(umap, &affine_entry); } __isl_give isl_union_set *isl_union_set_affine_hull( __isl_take isl_union_set *uset) { return isl_union_map_affine_hull(uset); } static isl_stat polyhedral_entry(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_from_basic_map(isl_map_polyhedral_hull(*map)); return *map ? isl_stat_ok : isl_stat_error; } __isl_give isl_union_map *isl_union_map_polyhedral_hull( __isl_take isl_union_map *umap) { return un_op(umap, &polyhedral_entry); } __isl_give isl_union_set *isl_union_set_polyhedral_hull( __isl_take isl_union_set *uset) { return isl_union_map_polyhedral_hull(uset); } static isl_stat simple_entry(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_from_basic_map(isl_map_simple_hull(*map)); return *map ? isl_stat_ok : isl_stat_error; } __isl_give isl_union_map *isl_union_map_simple_hull( __isl_take isl_union_map *umap) { return un_op(umap, &simple_entry); } __isl_give isl_union_set *isl_union_set_simple_hull( __isl_take isl_union_set *uset) { return isl_union_map_simple_hull(uset); } static isl_stat inplace_entry(void **entry, void *user) { __isl_give isl_map *(*fn)(__isl_take isl_map *); isl_map **map = (isl_map **)entry; isl_map *copy; fn = *(__isl_give isl_map *(**)(__isl_take isl_map *)) user; copy = fn(isl_map_copy(*map)); if (!copy) return isl_stat_error; isl_map_free(*map); *map = copy; return isl_stat_ok; } static __isl_give isl_union_map *inplace(__isl_take isl_union_map *umap, __isl_give isl_map *(*fn)(__isl_take isl_map *)) { if (!umap) return NULL; if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, &inplace_entry, &fn) < 0) goto error; return umap; error: isl_union_map_free(umap); return NULL; } /* Remove redundant constraints in each of the basic maps of "umap". * Since removing redundant constraints does not change the meaning * or the space, the operation can be performed in-place. */ __isl_give isl_union_map *isl_union_map_remove_redundancies( __isl_take isl_union_map *umap) { return inplace(umap, &isl_map_remove_redundancies); } /* Remove redundant constraints in each of the basic sets of "uset". */ __isl_give isl_union_set *isl_union_set_remove_redundancies( __isl_take isl_union_set *uset) { return isl_union_map_remove_redundancies(uset); } __isl_give isl_union_map *isl_union_map_coalesce( __isl_take isl_union_map *umap) { return inplace(umap, &isl_map_coalesce); } __isl_give isl_union_set *isl_union_set_coalesce( __isl_take isl_union_set *uset) { return isl_union_map_coalesce(uset); } __isl_give isl_union_map *isl_union_map_detect_equalities( __isl_take isl_union_map *umap) { return inplace(umap, &isl_map_detect_equalities); } __isl_give isl_union_set *isl_union_set_detect_equalities( __isl_take isl_union_set *uset) { return isl_union_map_detect_equalities(uset); } __isl_give isl_union_map *isl_union_map_compute_divs( __isl_take isl_union_map *umap) { return inplace(umap, &isl_map_compute_divs); } __isl_give isl_union_set *isl_union_set_compute_divs( __isl_take isl_union_set *uset) { return isl_union_map_compute_divs(uset); } static isl_stat lexmin_entry(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_lexmin(*map); return *map ? isl_stat_ok : isl_stat_error; } __isl_give isl_union_map *isl_union_map_lexmin( __isl_take isl_union_map *umap) { return un_op(umap, &lexmin_entry); } __isl_give isl_union_set *isl_union_set_lexmin( __isl_take isl_union_set *uset) { return isl_union_map_lexmin(uset); } static isl_stat lexmax_entry(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_lexmax(*map); return *map ? isl_stat_ok : isl_stat_error; } __isl_give isl_union_map *isl_union_map_lexmax( __isl_take isl_union_map *umap) { return un_op(umap, &lexmax_entry); } __isl_give isl_union_set *isl_union_set_lexmax( __isl_take isl_union_set *uset) { return isl_union_map_lexmax(uset); } static isl_stat universe_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; map = isl_map_universe(isl_map_get_space(map)); *res = isl_union_map_add_map(*res, map); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_universe(__isl_take isl_union_map *umap) { return cond_un_op(umap, &universe_entry); } __isl_give isl_union_set *isl_union_set_universe(__isl_take isl_union_set *uset) { return isl_union_map_universe(uset); } static isl_stat reverse_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; *res = isl_union_map_add_map(*res, isl_map_reverse(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_reverse(__isl_take isl_union_map *umap) { return cond_un_op(umap, &reverse_entry); } static isl_stat params_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_set_add_set(*res, isl_map_params(isl_map_copy(map))); return isl_stat_ok; } /* Compute the parameter domain of the given union map. */ __isl_give isl_set *isl_union_map_params(__isl_take isl_union_map *umap) { int empty; empty = isl_union_map_is_empty(umap); if (empty < 0) goto error; if (empty) { isl_space *space; space = isl_union_map_get_space(umap); isl_union_map_free(umap); return isl_set_empty(space); } return isl_set_from_union_set(cond_un_op(umap, ¶ms_entry)); error: isl_union_map_free(umap); return NULL; } /* Compute the parameter domain of the given union set. */ __isl_give isl_set *isl_union_set_params(__isl_take isl_union_set *uset) { return isl_union_map_params(uset); } static isl_stat domain_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_set_add_set(*res, isl_map_domain(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_set *isl_union_map_domain(__isl_take isl_union_map *umap) { return cond_un_op(umap, &domain_entry); } static isl_stat range_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_set_add_set(*res, isl_map_range(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_set *isl_union_map_range(__isl_take isl_union_map *umap) { return cond_un_op(umap, &range_entry); } static isl_stat domain_map_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_map_add_map(*res, isl_map_domain_map(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_domain_map( __isl_take isl_union_map *umap) { return cond_un_op(umap, &domain_map_entry); } /* Construct an isl_pw_multi_aff that maps "map" to its domain and * add the result to "res". */ static isl_stat domain_map_upma(__isl_take isl_map *map, void *user) { isl_union_pw_multi_aff **res = user; isl_multi_aff *ma; isl_pw_multi_aff *pma; ma = isl_multi_aff_domain_map(isl_map_get_space(map)); pma = isl_pw_multi_aff_alloc(isl_map_wrap(map), ma); *res = isl_union_pw_multi_aff_add_pw_multi_aff(*res, pma); return *res ? isl_stat_ok : isl_stat_error; } /* Return an isl_union_pw_multi_aff that maps a wrapped copy of "umap" * to its domain. */ __isl_give isl_union_pw_multi_aff *isl_union_map_domain_map_union_pw_multi_aff( __isl_take isl_union_map *umap) { isl_union_pw_multi_aff *res; res = isl_union_pw_multi_aff_empty(isl_union_map_get_space(umap)); if (isl_union_map_foreach_map(umap, &domain_map_upma, &res) < 0) res = isl_union_pw_multi_aff_free(res); isl_union_map_free(umap); return res; } static isl_stat range_map_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_map_add_map(*res, isl_map_range_map(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_range_map( __isl_take isl_union_map *umap) { return cond_un_op(umap, &range_map_entry); } /* Check if "set" is of the form A[B -> C]. * If so, add A[B -> C] -> B to "res". */ static isl_stat wrapped_domain_map_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_set **res = user; int wrapping; wrapping = isl_set_is_wrapping(set); if (wrapping < 0) return isl_stat_error; if (!wrapping) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_set_wrapped_domain_map(isl_set_copy(set))); return isl_stat_ok; } /* Given a collection of wrapped maps of the form A[B -> C], * return the collection of maps A[B -> C] -> B. */ __isl_give isl_union_map *isl_union_set_wrapped_domain_map( __isl_take isl_union_set *uset) { return cond_un_op(uset, &wrapped_domain_map_entry); } static isl_stat deltas_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; if (!isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out)) return isl_stat_ok; *res = isl_union_set_add_set(*res, isl_map_deltas(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_set *isl_union_map_deltas(__isl_take isl_union_map *umap) { return cond_un_op(umap, &deltas_entry); } static isl_stat deltas_map_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_deltas_map(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_deltas_map( __isl_take isl_union_map *umap) { return cond_un_op(umap, &deltas_map_entry); } static isl_stat identity_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_map **res = user; *res = isl_union_map_add_map(*res, isl_set_identity(isl_set_copy(set))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_set_identity(__isl_take isl_union_set *uset) { return cond_un_op(uset, &identity_entry); } /* Construct an identity isl_pw_multi_aff on "set" and add it to *res. */ static isl_stat identity_upma(__isl_take isl_set *set, void *user) { isl_union_pw_multi_aff **res = user; isl_space *space; isl_pw_multi_aff *pma; space = isl_space_map_from_set(isl_set_get_space(set)); pma = isl_pw_multi_aff_identity(space); pma = isl_pw_multi_aff_intersect_domain(pma, set); *res = isl_union_pw_multi_aff_add_pw_multi_aff(*res, pma); return *res ? isl_stat_ok : isl_stat_error; } /* Return an identity function on "uset" in the form * of an isl_union_pw_multi_aff. */ __isl_give isl_union_pw_multi_aff *isl_union_set_identity_union_pw_multi_aff( __isl_take isl_union_set *uset) { isl_union_pw_multi_aff *res; res = isl_union_pw_multi_aff_empty(isl_union_set_get_space(uset)); if (isl_union_set_foreach_set(uset, &identity_upma, &res) < 0) res = isl_union_pw_multi_aff_free(res); isl_union_set_free(uset); return res; } /* If "map" is of the form [A -> B] -> C, then add A -> C to "res". */ static isl_stat domain_factor_domain_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_domain_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_domain_factor_domain(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form [A -> B] -> C, * construct the map A -> C and collect the results. */ __isl_give isl_union_map *isl_union_map_domain_factor_domain( __isl_take isl_union_map *umap) { return cond_un_op(umap, &domain_factor_domain_entry); } /* If "map" is of the form [A -> B] -> C, then add B -> C to "res". */ static isl_stat domain_factor_range_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_domain_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_domain_factor_range(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form [A -> B] -> C, * construct the map B -> C and collect the results. */ __isl_give isl_union_map *isl_union_map_domain_factor_range( __isl_take isl_union_map *umap) { return cond_un_op(umap, &domain_factor_range_entry); } /* If "map" is of the form A -> [B -> C], then add A -> B to "res". */ static isl_stat range_factor_domain_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_range_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_range_factor_domain(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form A -> [B -> C], * construct the map A -> B and collect the results. */ __isl_give isl_union_map *isl_union_map_range_factor_domain( __isl_take isl_union_map *umap) { return cond_un_op(umap, &range_factor_domain_entry); } /* If "map" is of the form A -> [B -> C], then add A -> C to "res". */ static isl_stat range_factor_range_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_range_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_range_factor_range(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form A -> [B -> C], * construct the map A -> C and collect the results. */ __isl_give isl_union_map *isl_union_map_range_factor_range( __isl_take isl_union_map *umap) { return cond_un_op(umap, &range_factor_range_entry); } /* If "map" is of the form [A -> B] -> [C -> D], then add A -> C to "res". */ static isl_stat factor_domain_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_domain_is_wrapping(map) || !isl_map_range_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_factor_domain(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form [A -> B] -> [C -> D], * construct the map A -> C and collect the results. */ __isl_give isl_union_map *isl_union_map_factor_domain( __isl_take isl_union_map *umap) { return cond_un_op(umap, &factor_domain_entry); } /* If "map" is of the form [A -> B] -> [C -> D], then add B -> D to "res". */ static isl_stat factor_range_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_domain_is_wrapping(map) || !isl_map_range_is_wrapping(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_factor_range(isl_map_copy(map))); return *res ? isl_stat_ok : isl_stat_error; } /* For each map in "umap" of the form [A -> B] -> [C -> D], * construct the map B -> D and collect the results. */ __isl_give isl_union_map *isl_union_map_factor_range( __isl_take isl_union_map *umap) { return cond_un_op(umap, &factor_range_entry); } static isl_stat unwrap_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_set **res = user; if (!isl_set_is_wrapping(set)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_set_unwrap(isl_set_copy(set))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_set_unwrap(__isl_take isl_union_set *uset) { return cond_un_op(uset, &unwrap_entry); } static isl_stat wrap_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_set **res = user; *res = isl_union_set_add_set(*res, isl_map_wrap(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_set *isl_union_map_wrap(__isl_take isl_union_map *umap) { return cond_un_op(umap, &wrap_entry); } struct isl_union_map_is_subset_data { isl_union_map *umap2; isl_bool is_subset; }; static isl_stat is_subset_entry(void **entry, void *user) { struct isl_union_map_is_subset_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_map *map = *entry; hash = isl_space_get_hash(map->dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, map->dim, 0); if (!entry2) { int empty = isl_map_is_empty(map); if (empty < 0) return isl_stat_error; if (empty) return isl_stat_ok; data->is_subset = 0; return isl_stat_error; } data->is_subset = isl_map_is_subset(map, entry2->data); if (data->is_subset < 0 || !data->is_subset) return isl_stat_error; return isl_stat_ok; } isl_bool isl_union_map_is_subset(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2) { struct isl_union_map_is_subset_data data = { NULL, isl_bool_true }; umap1 = isl_union_map_copy(umap1); umap2 = isl_union_map_copy(umap2); umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); if (!umap1 || !umap2) goto error; data.umap2 = umap2; if (isl_hash_table_foreach(umap1->dim->ctx, &umap1->table, &is_subset_entry, &data) < 0 && data.is_subset) goto error; isl_union_map_free(umap1); isl_union_map_free(umap2); return data.is_subset; error: isl_union_map_free(umap1); isl_union_map_free(umap2); return isl_bool_error; } isl_bool isl_union_set_is_subset(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2) { return isl_union_map_is_subset(uset1, uset2); } isl_bool isl_union_map_is_equal(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2) { isl_bool is_subset; if (!umap1 || !umap2) return isl_bool_error; is_subset = isl_union_map_is_subset(umap1, umap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_union_map_is_subset(umap2, umap1); return is_subset; } isl_bool isl_union_set_is_equal(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2) { return isl_union_map_is_equal(uset1, uset2); } isl_bool isl_union_map_is_strict_subset(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2) { isl_bool is_subset; if (!umap1 || !umap2) return isl_bool_error; is_subset = isl_union_map_is_subset(umap1, umap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_union_map_is_subset(umap2, umap1); if (is_subset == isl_bool_error) return is_subset; return !is_subset; } isl_bool isl_union_set_is_strict_subset(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2) { return isl_union_map_is_strict_subset(uset1, uset2); } /* Internal data structure for isl_union_map_is_disjoint. * umap2 is the union map with which we are comparing. * is_disjoint is initialized to 1 and is set to 0 as soon * as the union maps turn out not to be disjoint. */ struct isl_union_map_is_disjoint_data { isl_union_map *umap2; isl_bool is_disjoint; }; /* Check if "map" is disjoint from data->umap2 and abort * the search if it is not. */ static isl_stat is_disjoint_entry(void **entry, void *user) { struct isl_union_map_is_disjoint_data *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_map *map = *entry; hash = isl_space_get_hash(map->dim); entry2 = isl_hash_table_find(data->umap2->dim->ctx, &data->umap2->table, hash, &has_dim, map->dim, 0); if (!entry2) return isl_stat_ok; data->is_disjoint = isl_map_is_disjoint(map, entry2->data); if (data->is_disjoint < 0 || !data->is_disjoint) return isl_stat_error; return isl_stat_ok; } /* Are "umap1" and "umap2" disjoint? */ isl_bool isl_union_map_is_disjoint(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2) { struct isl_union_map_is_disjoint_data data = { NULL, isl_bool_true }; umap1 = isl_union_map_copy(umap1); umap2 = isl_union_map_copy(umap2); umap1 = isl_union_map_align_params(umap1, isl_union_map_get_space(umap2)); umap2 = isl_union_map_align_params(umap2, isl_union_map_get_space(umap1)); if (!umap1 || !umap2) goto error; data.umap2 = umap2; if (isl_hash_table_foreach(umap1->dim->ctx, &umap1->table, &is_disjoint_entry, &data) < 0 && data.is_disjoint) goto error; isl_union_map_free(umap1); isl_union_map_free(umap2); return data.is_disjoint; error: isl_union_map_free(umap1); isl_union_map_free(umap2); return isl_bool_error; } /* Are "uset1" and "uset2" disjoint? */ isl_bool isl_union_set_is_disjoint(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2) { return isl_union_map_is_disjoint(uset1, uset2); } static isl_stat sample_entry(void **entry, void *user) { isl_basic_map **sample = (isl_basic_map **)user; isl_map *map = *entry; *sample = isl_map_sample(isl_map_copy(map)); if (!*sample) return isl_stat_error; if (!isl_basic_map_plain_is_empty(*sample)) return isl_stat_error; return isl_stat_ok; } __isl_give isl_basic_map *isl_union_map_sample(__isl_take isl_union_map *umap) { isl_basic_map *sample = NULL; if (!umap) return NULL; if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, &sample_entry, &sample) < 0 && !sample) goto error; if (!sample) sample = isl_basic_map_empty(isl_union_map_get_space(umap)); isl_union_map_free(umap); return sample; error: isl_union_map_free(umap); return NULL; } __isl_give isl_basic_set *isl_union_set_sample(__isl_take isl_union_set *uset) { return (isl_basic_set *)isl_union_map_sample(uset); } /* Return an element in "uset" in the form of an isl_point. * Return a void isl_point if "uset" is empty. */ __isl_give isl_point *isl_union_set_sample_point(__isl_take isl_union_set *uset) { return isl_basic_set_sample_point(isl_union_set_sample(uset)); } struct isl_forall_data { isl_bool res; isl_bool (*fn)(__isl_keep isl_map *map); }; static isl_stat forall_entry(void **entry, void *user) { struct isl_forall_data *data = user; isl_map *map = *entry; data->res = data->fn(map); if (data->res < 0) return isl_stat_error; if (!data->res) return isl_stat_error; return isl_stat_ok; } static isl_bool union_map_forall(__isl_keep isl_union_map *umap, isl_bool (*fn)(__isl_keep isl_map *map)) { struct isl_forall_data data = { isl_bool_true, fn }; if (!umap) return isl_bool_error; if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, &forall_entry, &data) < 0 && data.res) return isl_bool_error; return data.res; } struct isl_forall_user_data { isl_bool res; isl_bool (*fn)(__isl_keep isl_map *map, void *user); void *user; }; static isl_stat forall_user_entry(void **entry, void *user) { struct isl_forall_user_data *data = user; isl_map *map = *entry; data->res = data->fn(map, data->user); if (data->res < 0) return isl_stat_error; if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Check if fn(map, user) returns true for all maps "map" in umap. */ static isl_bool union_map_forall_user(__isl_keep isl_union_map *umap, isl_bool (*fn)(__isl_keep isl_map *map, void *user), void *user) { struct isl_forall_user_data data = { isl_bool_true, fn, user }; if (!umap) return isl_bool_error; if (isl_hash_table_foreach(umap->dim->ctx, &umap->table, &forall_user_entry, &data) < 0 && data.res) return isl_bool_error; return data.res; } isl_bool isl_union_map_is_empty(__isl_keep isl_union_map *umap) { return union_map_forall(umap, &isl_map_is_empty); } isl_bool isl_union_set_is_empty(__isl_keep isl_union_set *uset) { return isl_union_map_is_empty(uset); } static isl_bool is_subset_of_identity(__isl_keep isl_map *map) { isl_bool is_subset; isl_space *dim; isl_map *id; if (!map) return isl_bool_error; if (!isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out)) return isl_bool_false; dim = isl_map_get_space(map); id = isl_map_identity(dim); is_subset = isl_map_is_subset(map, id); isl_map_free(id); return is_subset; } /* Given an isl_union_map that consists of a single map, check * if it is single-valued. */ static isl_bool single_map_is_single_valued(__isl_keep isl_union_map *umap) { isl_map *map; isl_bool sv; umap = isl_union_map_copy(umap); map = isl_map_from_union_map(umap); sv = isl_map_is_single_valued(map); isl_map_free(map); return sv; } /* Internal data structure for single_valued_on_domain. * * "umap" is the union map to be tested. * "sv" is set to 1 as long as "umap" may still be single-valued. */ struct isl_union_map_is_sv_data { isl_union_map *umap; isl_bool sv; }; /* Check if the data->umap is single-valued on "set". * * If data->umap consists of a single map on "set", then test it * as an isl_map. * * Otherwise, compute * * M \circ M^-1 * * check if the result is a subset of the identity mapping and * store the result in data->sv. * * Terminate as soon as data->umap has been determined not to * be single-valued. */ static isl_stat single_valued_on_domain(__isl_take isl_set *set, void *user) { struct isl_union_map_is_sv_data *data = user; isl_union_map *umap, *test; umap = isl_union_map_copy(data->umap); umap = isl_union_map_intersect_domain(umap, isl_union_set_from_set(set)); if (isl_union_map_n_map(umap) == 1) { data->sv = single_map_is_single_valued(umap); isl_union_map_free(umap); } else { test = isl_union_map_reverse(isl_union_map_copy(umap)); test = isl_union_map_apply_range(test, umap); data->sv = union_map_forall(test, &is_subset_of_identity); isl_union_map_free(test); } if (data->sv < 0 || !data->sv) return isl_stat_error; return isl_stat_ok; } /* Check if the given map is single-valued. * * If the union map consists of a single map, then test it as an isl_map. * Otherwise, check if the union map is single-valued on each of its * domain spaces. */ isl_bool isl_union_map_is_single_valued(__isl_keep isl_union_map *umap) { isl_union_map *universe; isl_union_set *domain; struct isl_union_map_is_sv_data data; if (isl_union_map_n_map(umap) == 1) return single_map_is_single_valued(umap); universe = isl_union_map_universe(isl_union_map_copy(umap)); domain = isl_union_map_domain(universe); data.sv = isl_bool_true; data.umap = umap; if (isl_union_set_foreach_set(domain, &single_valued_on_domain, &data) < 0 && data.sv) data.sv = isl_bool_error; isl_union_set_free(domain); return data.sv; } isl_bool isl_union_map_is_injective(__isl_keep isl_union_map *umap) { isl_bool in; umap = isl_union_map_copy(umap); umap = isl_union_map_reverse(umap); in = isl_union_map_is_single_valued(umap); isl_union_map_free(umap); return in; } /* Represents a map that has a fixed value (v) for one of its * range dimensions. * The map in this structure is not reference counted, so it * is only valid while the isl_union_map from which it was * obtained is still alive. */ struct isl_fixed_map { isl_int v; isl_map *map; }; static struct isl_fixed_map *alloc_isl_fixed_map_array(isl_ctx *ctx, int n) { int i; struct isl_fixed_map *v; v = isl_calloc_array(ctx, struct isl_fixed_map, n); if (!v) return NULL; for (i = 0; i < n; ++i) isl_int_init(v[i].v); return v; } static void free_isl_fixed_map_array(struct isl_fixed_map *v, int n) { int i; if (!v) return; for (i = 0; i < n; ++i) isl_int_clear(v[i].v); free(v); } /* Compare the "v" field of two isl_fixed_map structs. */ static int qsort_fixed_map_cmp(const void *p1, const void *p2) { const struct isl_fixed_map *e1 = (const struct isl_fixed_map *) p1; const struct isl_fixed_map *e2 = (const struct isl_fixed_map *) p2; return isl_int_cmp(e1->v, e2->v); } /* Internal data structure used while checking whether all maps * in a union_map have a fixed value for a given output dimension. * v is the list of maps, with the fixed value for the dimension * n is the number of maps considered so far * pos is the output dimension under investigation */ struct isl_fixed_dim_data { struct isl_fixed_map *v; int n; int pos; }; static isl_bool fixed_at_pos(__isl_keep isl_map *map, void *user) { struct isl_fixed_dim_data *data = user; data->v[data->n].map = map; return isl_map_plain_is_fixed(map, isl_dim_out, data->pos, &data->v[data->n++].v); } static isl_bool plain_injective_on_range(__isl_take isl_union_map *umap, int first, int n_range); /* Given a list of the maps, with their fixed values at output dimension "pos", * check whether the ranges of the maps form an obvious partition. * * We first sort the maps according to their fixed values. * If all maps have a different value, then we know the ranges form * a partition. * Otherwise, we collect the maps with the same fixed value and * check whether each such collection is obviously injective * based on later dimensions. */ static int separates(struct isl_fixed_map *v, int n, __isl_take isl_space *dim, int pos, int n_range) { int i; if (!v) goto error; qsort(v, n, sizeof(*v), &qsort_fixed_map_cmp); for (i = 0; i + 1 < n; ++i) { int j, k; isl_union_map *part; int injective; for (j = i + 1; j < n; ++j) if (isl_int_ne(v[i].v, v[j].v)) break; if (j == i + 1) continue; part = isl_union_map_alloc(isl_space_copy(dim), j - i); for (k = i; k < j; ++k) part = isl_union_map_add_map(part, isl_map_copy(v[k].map)); injective = plain_injective_on_range(part, pos + 1, n_range); if (injective < 0) goto error; if (!injective) break; i = j - 1; } isl_space_free(dim); free_isl_fixed_map_array(v, n); return i + 1 >= n; error: isl_space_free(dim); free_isl_fixed_map_array(v, n); return -1; } /* Check whether the maps in umap have obviously distinct ranges. * In particular, check for an output dimension in the range * [first,n_range) for which all maps have a fixed value * and then check if these values, possibly along with fixed values * at later dimensions, entail distinct ranges. */ static isl_bool plain_injective_on_range(__isl_take isl_union_map *umap, int first, int n_range) { isl_ctx *ctx; int n; struct isl_fixed_dim_data data = { NULL }; ctx = isl_union_map_get_ctx(umap); n = isl_union_map_n_map(umap); if (!umap) goto error; if (n <= 1) { isl_union_map_free(umap); return isl_bool_true; } if (first >= n_range) { isl_union_map_free(umap); return isl_bool_false; } data.v = alloc_isl_fixed_map_array(ctx, n); if (!data.v) goto error; for (data.pos = first; data.pos < n_range; ++data.pos) { isl_bool fixed; int injective; isl_space *dim; data.n = 0; fixed = union_map_forall_user(umap, &fixed_at_pos, &data); if (fixed < 0) goto error; if (!fixed) continue; dim = isl_union_map_get_space(umap); injective = separates(data.v, n, dim, data.pos, n_range); isl_union_map_free(umap); return injective; } free_isl_fixed_map_array(data.v, n); isl_union_map_free(umap); return isl_bool_false; error: free_isl_fixed_map_array(data.v, n); isl_union_map_free(umap); return isl_bool_error; } /* Check whether the maps in umap that map to subsets of "ran" * have obviously distinct ranges. */ static isl_bool plain_injective_on_range_wrap(__isl_keep isl_set *ran, void *user) { isl_union_map *umap = user; umap = isl_union_map_copy(umap); umap = isl_union_map_intersect_range(umap, isl_union_set_from_set(isl_set_copy(ran))); return plain_injective_on_range(umap, 0, isl_set_dim(ran, isl_dim_set)); } /* Check if the given union_map is obviously injective. * * In particular, we first check if all individual maps are obviously * injective and then check if all the ranges of these maps are * obviously disjoint. */ isl_bool isl_union_map_plain_is_injective(__isl_keep isl_union_map *umap) { isl_bool in; isl_union_map *univ; isl_union_set *ran; in = union_map_forall(umap, &isl_map_plain_is_injective); if (in < 0) return isl_bool_error; if (!in) return isl_bool_false; univ = isl_union_map_universe(isl_union_map_copy(umap)); ran = isl_union_map_range(univ); in = union_map_forall_user(ran, &plain_injective_on_range_wrap, umap); isl_union_set_free(ran); return in; } isl_bool isl_union_map_is_bijective(__isl_keep isl_union_map *umap) { isl_bool sv; sv = isl_union_map_is_single_valued(umap); if (sv < 0 || !sv) return sv; return isl_union_map_is_injective(umap); } static isl_stat zip_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_can_zip(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_zip(isl_map_copy(map))); return isl_stat_ok; } __isl_give isl_union_map *isl_union_map_zip(__isl_take isl_union_map *umap) { return cond_un_op(umap, &zip_entry); } static isl_stat uncurry_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_can_uncurry(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_uncurry(isl_map_copy(map))); return isl_stat_ok; } /* Given a union map, take the maps of the form A -> (B -> C) and * return the union of the corresponding maps (A -> B) -> C. */ __isl_give isl_union_map *isl_union_map_uncurry(__isl_take isl_union_map *umap) { return cond_un_op(umap, &uncurry_entry); } static isl_stat curry_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_can_curry(map)) return isl_stat_ok; *res = isl_union_map_add_map(*res, isl_map_curry(isl_map_copy(map))); return isl_stat_ok; } /* Given a union map, take the maps of the form (A -> B) -> C and * return the union of the corresponding maps A -> (B -> C). */ __isl_give isl_union_map *isl_union_map_curry(__isl_take isl_union_map *umap) { return cond_un_op(umap, &curry_entry); } /* If *entry is of the form A -> ((B -> C) -> D), then apply * isl_map_range_curry to it and add the result to *res. */ static isl_stat range_curry_entry(void **entry, void *user) { isl_map *map = *entry; isl_union_map **res = user; if (!isl_map_can_range_curry(map)) return isl_stat_ok; map = isl_map_range_curry(isl_map_copy(map)); *res = isl_union_map_add_map(*res, map); return isl_stat_ok; } /* Given a union map, take the maps of the form A -> ((B -> C) -> D) and * return the union of the corresponding maps A -> (B -> (C -> D)). */ __isl_give isl_union_map *isl_union_map_range_curry( __isl_take isl_union_map *umap) { return cond_un_op(umap, &range_curry_entry); } static isl_stat lift_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_set **res = user; *res = isl_union_set_add_set(*res, isl_set_lift(isl_set_copy(set))); return isl_stat_ok; } __isl_give isl_union_set *isl_union_set_lift(__isl_take isl_union_set *uset) { return cond_un_op(uset, &lift_entry); } static isl_stat coefficients_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_set **res = user; set = isl_set_copy(set); set = isl_set_from_basic_set(isl_set_coefficients(set)); *res = isl_union_set_add_set(*res, set); return isl_stat_ok; } __isl_give isl_union_set *isl_union_set_coefficients( __isl_take isl_union_set *uset) { isl_ctx *ctx; isl_space *dim; isl_union_set *res; if (!uset) return NULL; ctx = isl_union_set_get_ctx(uset); dim = isl_space_set_alloc(ctx, 0, 0); res = isl_union_map_alloc(dim, uset->table.n); if (isl_hash_table_foreach(uset->dim->ctx, &uset->table, &coefficients_entry, &res) < 0) goto error; isl_union_set_free(uset); return res; error: isl_union_set_free(uset); isl_union_set_free(res); return NULL; } static isl_stat solutions_entry(void **entry, void *user) { isl_set *set = *entry; isl_union_set **res = user; set = isl_set_copy(set); set = isl_set_from_basic_set(isl_set_solutions(set)); if (!*res) *res = isl_union_set_from_set(set); else *res = isl_union_set_add_set(*res, set); if (!*res) return isl_stat_error; return isl_stat_ok; } __isl_give isl_union_set *isl_union_set_solutions( __isl_take isl_union_set *uset) { isl_union_set *res = NULL; if (!uset) return NULL; if (uset->table.n == 0) { res = isl_union_set_empty(isl_union_set_get_space(uset)); isl_union_set_free(uset); return res; } if (isl_hash_table_foreach(uset->dim->ctx, &uset->table, &solutions_entry, &res) < 0) goto error; isl_union_set_free(uset); return res; error: isl_union_set_free(uset); isl_union_set_free(res); return NULL; } /* Is the domain space of "map" equal to "space"? */ static int domain_match(__isl_keep isl_map *map, __isl_keep isl_space *space) { return isl_space_tuple_is_equal(map->dim, isl_dim_in, space, isl_dim_out); } /* Is the range space of "map" equal to "space"? */ static int range_match(__isl_keep isl_map *map, __isl_keep isl_space *space) { return isl_space_tuple_is_equal(map->dim, isl_dim_out, space, isl_dim_out); } /* Is the set space of "map" equal to "space"? */ static int set_match(__isl_keep isl_map *map, __isl_keep isl_space *space) { return isl_space_tuple_is_equal(map->dim, isl_dim_set, space, isl_dim_out); } /* Internal data structure for preimage_pw_multi_aff. * * "pma" is the function under which the preimage should be taken. * "space" is the space of "pma". * "res" collects the results. * "fn" computes the preimage for a given map. * "match" returns true if "fn" can be called. */ struct isl_union_map_preimage_data { isl_space *space; isl_pw_multi_aff *pma; isl_union_map *res; int (*match)(__isl_keep isl_map *map, __isl_keep isl_space *space); __isl_give isl_map *(*fn)(__isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma); }; /* Call data->fn to compute the preimage of the domain or range of *entry * under the function represented by data->pma, provided the domain/range * space of *entry matches the target space of data->pma * (as given by data->match), and add the result to data->res. */ static isl_stat preimage_entry(void **entry, void *user) { int m; isl_map *map = *entry; struct isl_union_map_preimage_data *data = user; isl_bool empty; m = data->match(map, data->space); if (m < 0) return isl_stat_error; if (!m) return isl_stat_ok; map = isl_map_copy(map); map = data->fn(map, isl_pw_multi_aff_copy(data->pma)); empty = isl_map_is_empty(map); if (empty < 0 || empty) { isl_map_free(map); return empty < 0 ? isl_stat_error : isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Compute the preimage of the domain or range of "umap" under the function * represented by "pma". * In other words, plug in "pma" in the domain or range of "umap". * The function "fn" performs the actual preimage computation on a map, * while "match" determines to which maps the function should be applied. */ static __isl_give isl_union_map *preimage_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma, int (*match)(__isl_keep isl_map *map, __isl_keep isl_space *space), __isl_give isl_map *(*fn)(__isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma)) { isl_ctx *ctx; isl_space *space; struct isl_union_map_preimage_data data; umap = isl_union_map_align_params(umap, isl_pw_multi_aff_get_space(pma)); pma = isl_pw_multi_aff_align_params(pma, isl_union_map_get_space(umap)); if (!umap || !pma) goto error; ctx = isl_union_map_get_ctx(umap); space = isl_union_map_get_space(umap); data.space = isl_pw_multi_aff_get_space(pma); data.pma = pma; data.res = isl_union_map_alloc(space, umap->table.n); data.match = match; data.fn = fn; if (isl_hash_table_foreach(ctx, &umap->table, &preimage_entry, &data) < 0) data.res = isl_union_map_free(data.res); isl_space_free(data.space); isl_union_map_free(umap); isl_pw_multi_aff_free(pma); return data.res; error: isl_union_map_free(umap); isl_pw_multi_aff_free(pma); return NULL; } /* Compute the preimage of the domain of "umap" under the function * represented by "pma". * In other words, plug in "pma" in the domain of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with domain space equal to the target space of "pma", * except that the domain has been replaced by the domain space of "pma". */ __isl_give isl_union_map *isl_union_map_preimage_domain_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma) { return preimage_pw_multi_aff(umap, pma, &domain_match, &isl_map_preimage_domain_pw_multi_aff); } /* Compute the preimage of the range of "umap" under the function * represented by "pma". * In other words, plug in "pma" in the range of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with range space equal to the target space of "pma", * except that the range has been replaced by the domain space of "pma". */ __isl_give isl_union_map *isl_union_map_preimage_range_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma) { return preimage_pw_multi_aff(umap, pma, &range_match, &isl_map_preimage_range_pw_multi_aff); } /* Compute the preimage of "uset" under the function represented by "pma". * In other words, plug in "pma" in "uset". * The result contains sets that live in the same spaces as the sets of "uset" * with space equal to the target space of "pma", * except that the space has been replaced by the domain space of "pma". */ __isl_give isl_union_set *isl_union_set_preimage_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_pw_multi_aff *pma) { return preimage_pw_multi_aff(uset, pma, &set_match, &isl_set_preimage_pw_multi_aff); } /* Compute the preimage of the domain of "umap" under the function * represented by "ma". * In other words, plug in "ma" in the domain of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with domain space equal to the target space of "ma", * except that the domain has been replaced by the domain space of "ma". */ __isl_give isl_union_map *isl_union_map_preimage_domain_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma) { return isl_union_map_preimage_domain_pw_multi_aff(umap, isl_pw_multi_aff_from_multi_aff(ma)); } /* Compute the preimage of the range of "umap" under the function * represented by "ma". * In other words, plug in "ma" in the range of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with range space equal to the target space of "ma", * except that the range has been replaced by the domain space of "ma". */ __isl_give isl_union_map *isl_union_map_preimage_range_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma) { return isl_union_map_preimage_range_pw_multi_aff(umap, isl_pw_multi_aff_from_multi_aff(ma)); } /* Compute the preimage of "uset" under the function represented by "ma". * In other words, plug in "ma" in "uset". * The result contains sets that live in the same spaces as the sets of "uset" * with space equal to the target space of "ma", * except that the space has been replaced by the domain space of "ma". */ __isl_give isl_union_map *isl_union_set_preimage_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_multi_aff *ma) { return isl_union_set_preimage_pw_multi_aff(uset, isl_pw_multi_aff_from_multi_aff(ma)); } /* Internal data structure for preimage_multi_pw_aff. * * "mpa" is the function under which the preimage should be taken. * "space" is the space of "mpa". * "res" collects the results. * "fn" computes the preimage for a given map. * "match" returns true if "fn" can be called. */ struct isl_union_map_preimage_mpa_data { isl_space *space; isl_multi_pw_aff *mpa; isl_union_map *res; int (*match)(__isl_keep isl_map *map, __isl_keep isl_space *space); __isl_give isl_map *(*fn)(__isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa); }; /* Call data->fn to compute the preimage of the domain or range of *entry * under the function represented by data->mpa, provided the domain/range * space of *entry matches the target space of data->mpa * (as given by data->match), and add the result to data->res. */ static isl_stat preimage_mpa_entry(void **entry, void *user) { int m; isl_map *map = *entry; struct isl_union_map_preimage_mpa_data *data = user; isl_bool empty; m = data->match(map, data->space); if (m < 0) return isl_stat_error; if (!m) return isl_stat_ok; map = isl_map_copy(map); map = data->fn(map, isl_multi_pw_aff_copy(data->mpa)); empty = isl_map_is_empty(map); if (empty < 0 || empty) { isl_map_free(map); return empty < 0 ? isl_stat_error : isl_stat_ok; } data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Compute the preimage of the domain or range of "umap" under the function * represented by "mpa". * In other words, plug in "mpa" in the domain or range of "umap". * The function "fn" performs the actual preimage computation on a map, * while "match" determines to which maps the function should be applied. */ static __isl_give isl_union_map *preimage_multi_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_pw_aff *mpa, int (*match)(__isl_keep isl_map *map, __isl_keep isl_space *space), __isl_give isl_map *(*fn)(__isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa)) { isl_ctx *ctx; isl_space *space; struct isl_union_map_preimage_mpa_data data; umap = isl_union_map_align_params(umap, isl_multi_pw_aff_get_space(mpa)); mpa = isl_multi_pw_aff_align_params(mpa, isl_union_map_get_space(umap)); if (!umap || !mpa) goto error; ctx = isl_union_map_get_ctx(umap); space = isl_union_map_get_space(umap); data.space = isl_multi_pw_aff_get_space(mpa); data.mpa = mpa; data.res = isl_union_map_alloc(space, umap->table.n); data.match = match; data.fn = fn; if (isl_hash_table_foreach(ctx, &umap->table, &preimage_mpa_entry, &data) < 0) data.res = isl_union_map_free(data.res); isl_space_free(data.space); isl_union_map_free(umap); isl_multi_pw_aff_free(mpa); return data.res; error: isl_union_map_free(umap); isl_multi_pw_aff_free(mpa); return NULL; } /* Compute the preimage of the domain of "umap" under the function * represented by "mpa". * In other words, plug in "mpa" in the domain of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with domain space equal to the target space of "mpa", * except that the domain has been replaced by the domain space of "mpa". */ __isl_give isl_union_map *isl_union_map_preimage_domain_multi_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_pw_aff *mpa) { return preimage_multi_pw_aff(umap, mpa, &domain_match, &isl_map_preimage_domain_multi_pw_aff); } /* Internal data structure for preimage_upma. * * "umap" is the map of which the preimage should be computed. * "res" collects the results. * "fn" computes the preimage for a given piecewise multi-affine function. */ struct isl_union_map_preimage_upma_data { isl_union_map *umap; isl_union_map *res; __isl_give isl_union_map *(*fn)(__isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma); }; /* Call data->fn to compute the preimage of the domain or range of data->umap * under the function represented by pma and add the result to data->res. */ static isl_stat preimage_upma(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_map_preimage_upma_data *data = user; isl_union_map *umap; umap = isl_union_map_copy(data->umap); umap = data->fn(umap, pma); data->res = isl_union_map_union(data->res, umap); return data->res ? isl_stat_ok : isl_stat_error; } /* Compute the preimage of the domain or range of "umap" under the function * represented by "upma". * In other words, plug in "upma" in the domain or range of "umap". * The function "fn" performs the actual preimage computation * on a piecewise multi-affine function. */ static __isl_give isl_union_map *preimage_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma, __isl_give isl_union_map *(*fn)(__isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma)) { struct isl_union_map_preimage_upma_data data; data.umap = umap; data.res = isl_union_map_empty(isl_union_map_get_space(umap)); data.fn = fn; if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &preimage_upma, &data) < 0) data.res = isl_union_map_free(data.res); isl_union_map_free(umap); isl_union_pw_multi_aff_free(upma); return data.res; } /* Compute the preimage of the domain of "umap" under the function * represented by "upma". * In other words, plug in "upma" in the domain of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with domain space equal to one of the target spaces of "upma", * except that the domain has been replaced by one of the the domain spaces that * corresponds to that target space of "upma". */ __isl_give isl_union_map *isl_union_map_preimage_domain_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma) { return preimage_union_pw_multi_aff(umap, upma, &isl_union_map_preimage_domain_pw_multi_aff); } /* Compute the preimage of the range of "umap" under the function * represented by "upma". * In other words, plug in "upma" in the range of "umap". * The result contains maps that live in the same spaces as the maps of "umap" * with range space equal to one of the target spaces of "upma", * except that the range has been replaced by one of the the domain spaces that * corresponds to that target space of "upma". */ __isl_give isl_union_map *isl_union_map_preimage_range_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma) { return preimage_union_pw_multi_aff(umap, upma, &isl_union_map_preimage_range_pw_multi_aff); } /* Compute the preimage of "uset" under the function represented by "upma". * In other words, plug in "upma" in the range of "uset". * The result contains sets that live in the same spaces as the sets of "uset" * with space equal to one of the target spaces of "upma", * except that the space has been replaced by one of the the domain spaces that * corresponds to that target space of "upma". */ __isl_give isl_union_set *isl_union_set_preimage_union_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_union_pw_multi_aff *upma) { return preimage_union_pw_multi_aff(uset, upma, &isl_union_set_preimage_pw_multi_aff); } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of *entry. */ static isl_stat reset_user(void **entry, void *user) { isl_map **map = (isl_map **)entry; *map = isl_map_reset_user(*map); return *map ? isl_stat_ok : isl_stat_error; } /* Reset the user pointer on all identifiers of parameters and tuples * of the spaces of "umap". */ __isl_give isl_union_map *isl_union_map_reset_user( __isl_take isl_union_map *umap) { umap = isl_union_map_cow(umap); if (!umap) return NULL; umap->dim = isl_space_reset_user(umap->dim); if (!umap->dim) return isl_union_map_free(umap); umap = un_op(umap, &reset_user); return umap; } /* Reset the user pointer on all identifiers of parameters and tuples * of the spaces of "uset". */ __isl_give isl_union_set *isl_union_set_reset_user( __isl_take isl_union_set *uset) { return isl_union_map_reset_user(uset); } /* Internal data structure for isl_union_map_project_out. * "type", "first" and "n" are the arguments for the isl_map_project_out * call. * "res" collects the results. */ struct isl_union_map_project_out_data { enum isl_dim_type type; unsigned first; unsigned n; isl_union_map *res; }; /* Turn the data->n dimensions of type data->type, starting at data->first * into existentially quantified variables and add the result to data->res. */ static isl_stat project_out(__isl_take isl_map *map, void *user) { struct isl_union_map_project_out_data *data = user; map = isl_map_project_out(map, data->type, data->first, data->n); data->res = isl_union_map_add_map(data->res, map); return isl_stat_ok; } /* Turn the "n" dimensions of type "type", starting at "first" * into existentially quantified variables. * Since the space of an isl_union_map only contains parameters, * type is required to be equal to isl_dim_param. */ __isl_give isl_union_map *isl_union_map_project_out( __isl_take isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n) { isl_space *space; struct isl_union_map_project_out_data data = { type, first, n }; if (!umap) return NULL; if (type != isl_dim_param) isl_die(isl_union_map_get_ctx(umap), isl_error_invalid, "can only project out parameters", return isl_union_map_free(umap)); space = isl_union_map_get_space(umap); space = isl_space_drop_dims(space, type, first, n); data.res = isl_union_map_empty(space); if (isl_union_map_foreach_map(umap, &project_out, &data) < 0) data.res = isl_union_map_free(data.res); isl_union_map_free(umap); return data.res; } /* Turn the "n" dimensions of type "type", starting at "first" * into existentially quantified variables. * Since the space of an isl_union_set only contains parameters, * "type" is required to be equal to isl_dim_param. */ __isl_give isl_union_set *isl_union_set_project_out( __isl_take isl_union_set *uset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_union_map_project_out(uset, type, first, n); } /* Internal data structure for isl_union_map_involves_dims. * "first" and "n" are the arguments for the isl_map_involves_dims calls. */ struct isl_union_map_involves_dims_data { unsigned first; unsigned n; }; /* Does "map" _not_ involve the data->n parameters starting at data->first? */ static isl_bool map_excludes(__isl_keep isl_map *map, void *user) { struct isl_union_map_involves_dims_data *data = user; isl_bool involves; involves = isl_map_involves_dims(map, isl_dim_param, data->first, data->n); if (involves < 0) return isl_bool_error; return !involves; } /* Does "umap" involve any of the n parameters starting at first? * "type" is required to be set to isl_dim_param. * * "umap" involves any of those parameters if any of its maps * involve the parameters. In other words, "umap" does not * involve any of the parameters if all its maps to not * involve the parameters. */ isl_bool isl_union_map_involves_dims(__isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n) { struct isl_union_map_involves_dims_data data = { first, n }; isl_bool excludes; if (type != isl_dim_param) isl_die(isl_union_map_get_ctx(umap), isl_error_invalid, "can only reference parameters", return isl_bool_error); excludes = union_map_forall_user(umap, &map_excludes, &data); if (excludes < 0) return isl_bool_error; return !excludes; } /* Internal data structure for isl_union_map_reset_range_space. * "range" is the space from which to set the range space. * "res" collects the results. */ struct isl_union_map_reset_range_space_data { isl_space *range; isl_union_map *res; }; /* Replace the range space of "map" by the range space of data->range and * add the result to data->res. */ static isl_stat reset_range_space(__isl_take isl_map *map, void *user) { struct isl_union_map_reset_range_space_data *data = user; isl_space *space; space = isl_map_get_space(map); space = isl_space_domain(space); space = isl_space_extend_domain_with_range(space, isl_space_copy(data->range)); map = isl_map_reset_space(map, space); data->res = isl_union_map_add_map(data->res, map); return data->res ? isl_stat_ok : isl_stat_error; } /* Replace the range space of all the maps in "umap" by * the range space of "space". * * This assumes that all maps have the same output dimension. * This function should therefore not be made publicly available. * * Since the spaces of the maps change, so do their hash value. * We therefore need to create a new isl_union_map. */ __isl_give isl_union_map *isl_union_map_reset_range_space( __isl_take isl_union_map *umap, __isl_take isl_space *space) { struct isl_union_map_reset_range_space_data data = { space }; data.res = isl_union_map_empty(isl_union_map_get_space(umap)); if (isl_union_map_foreach_map(umap, &reset_range_space, &data) < 0) data.res = isl_union_map_free(data.res); isl_space_free(space); isl_union_map_free(umap); return data.res; } /* Internal data structure for isl_union_map_order_at_multi_union_pw_aff. * "mupa" is the function from which the isl_multi_pw_affs are extracted. * "order" is applied to the extracted isl_multi_pw_affs that correspond * to the domain and the range of each map. * "res" collects the results. */ struct isl_union_order_at_data { isl_multi_union_pw_aff *mupa; __isl_give isl_map *(*order)(__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); isl_union_map *res; }; /* Intersect "map" with the result of applying data->order to * the functions in data->mupa that apply to the domain and the range * of "map" and add the result to data->res. */ static isl_stat order_at(__isl_take isl_map *map, void *user) { struct isl_union_order_at_data *data = user; isl_space *space; isl_multi_pw_aff *mpa1, *mpa2; isl_map *order; space = isl_space_domain(isl_map_get_space(map)); mpa1 = isl_multi_union_pw_aff_extract_multi_pw_aff(data->mupa, space); space = isl_space_range(isl_map_get_space(map)); mpa2 = isl_multi_union_pw_aff_extract_multi_pw_aff(data->mupa, space); order = data->order(mpa1, mpa2); map = isl_map_intersect(map, order); data->res = isl_union_map_add_map(data->res, map); return data->res ? isl_stat_ok : isl_stat_error; } /* Intersect each map in "umap" with the result of calling "order" * on the functions is "mupa" that apply to the domain and the range * of the map. */ static __isl_give isl_union_map *isl_union_map_order_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa, __isl_give isl_map *(*order)(__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2)) { struct isl_union_order_at_data data; umap = isl_union_map_align_params(umap, isl_multi_union_pw_aff_get_space(mupa)); mupa = isl_multi_union_pw_aff_align_params(mupa, isl_union_map_get_space(umap)); data.mupa = mupa; data.order = order; data.res = isl_union_map_empty(isl_union_map_get_space(umap)); if (isl_union_map_foreach_map(umap, &order_at, &data) < 0) data.res = isl_union_map_free(data.res); isl_multi_union_pw_aff_free(mupa); isl_union_map_free(umap); return data.res; } /* Return the subset of "umap" where the domain and the range * have equal "mupa" values. */ __isl_give isl_union_map *isl_union_map_eq_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa) { return isl_union_map_order_at_multi_union_pw_aff(umap, mupa, &isl_multi_pw_aff_eq_map); } /* Return the subset of "umap" where the domain has a lexicographically * smaller "mupa" value than the range. */ __isl_give isl_union_map *isl_union_map_lex_lt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa) { return isl_union_map_order_at_multi_union_pw_aff(umap, mupa, &isl_multi_pw_aff_lex_lt_map); } /* Return the subset of "umap" where the domain has a lexicographically * greater "mupa" value than the range. */ __isl_give isl_union_map *isl_union_map_lex_gt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa) { return isl_union_map_order_at_multi_union_pw_aff(umap, mupa, &isl_multi_pw_aff_lex_gt_map); } /* Return the union of the elements in the list "list". */ __isl_give isl_union_set *isl_union_set_list_union( __isl_take isl_union_set_list *list) { int i, n; isl_ctx *ctx; isl_space *space; isl_union_set *res; if (!list) return NULL; ctx = isl_union_set_list_get_ctx(list); space = isl_space_params_alloc(ctx, 0); res = isl_union_set_empty(space); n = isl_union_set_list_n_union_set(list); for (i = 0; i < n; ++i) { isl_union_set *uset_i; uset_i = isl_union_set_list_get_union_set(list, i); res = isl_union_set_union(res, uset_i); } isl_union_set_list_free(list); return res; } isl-0.16.1/isl_union_templ.c0000664000175000017500000006726012645737450012705 00000000000000/* * Copyright 2010 INRIA Saclay * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ __isl_give UNION *FN(UNION,cow)(__isl_take UNION *u); isl_ctx *FN(UNION,get_ctx)(__isl_keep UNION *u) { return u ? u->space->ctx : NULL; } __isl_give isl_space *FN(UNION,get_space)(__isl_keep UNION *u) { if (!u) return NULL; return isl_space_copy(u->space); } /* Return the number of parameters of "u", where "type" * is required to be set to isl_dim_param. */ unsigned FN(UNION,dim)(__isl_keep UNION *u, enum isl_dim_type type) { if (!u) return 0; if (type != isl_dim_param) isl_die(FN(UNION,get_ctx)(u), isl_error_invalid, "can only reference parameters", return 0); return isl_space_dim(u->space, type); } /* Return the position of the parameter with the given name * in "u". * Return -1 if no such dimension can be found. */ int FN(UNION,find_dim_by_name)(__isl_keep UNION *u, enum isl_dim_type type, const char *name) { if (!u) return -1; return isl_space_find_dim_by_name(u->space, type, name); } #ifdef HAS_TYPE static __isl_give UNION *FN(UNION,alloc)(__isl_take isl_space *dim, enum isl_fold type, int size) #else static __isl_give UNION *FN(UNION,alloc)(__isl_take isl_space *dim, int size) #endif { UNION *u; dim = isl_space_params(dim); if (!dim) return NULL; u = isl_calloc_type(dim->ctx, UNION); if (!u) goto error; u->ref = 1; #ifdef HAS_TYPE u->type = type; #endif u->space = dim; if (isl_hash_table_init(dim->ctx, &u->table, size) < 0) return FN(UNION,free)(u); return u; error: isl_space_free(dim); return NULL; } #ifdef HAS_TYPE __isl_give UNION *FN(UNION,ZERO)(__isl_take isl_space *dim, enum isl_fold type) { return FN(UNION,alloc)(dim, type, 16); } #else __isl_give UNION *FN(UNION,ZERO)(__isl_take isl_space *dim) { return FN(UNION,alloc)(dim, 16); } #endif __isl_give UNION *FN(UNION,copy)(__isl_keep UNION *u) { if (!u) return NULL; u->ref++; return u; } /* Extract the element of "u" living in "space" (ignoring parameters). * * Return the ZERO element if "u" does not contain any element * living in "space". */ __isl_give PART *FN(FN(UNION,extract),PARTS)(__isl_keep UNION *u, __isl_take isl_space *space) { struct isl_hash_table_entry *entry; if (!u || !space) goto error; if (!isl_space_match(u->space, isl_dim_param, space, isl_dim_param)) { space = isl_space_drop_dims(space, isl_dim_param, 0, isl_space_dim(space, isl_dim_param)); space = isl_space_align_params(space, FN(UNION,get_space)(u)); if (!space) goto error; } entry = FN(UNION,find_part_entry)(u, space, 0); if (!entry) goto error; if (entry == isl_hash_table_entry_none) #ifdef HAS_TYPE return FN(PART,ZERO)(space, u->type); #else return FN(PART,ZERO)(space); #endif isl_space_free(space); return FN(PART,copy)(entry->data); error: isl_space_free(space); return NULL; } /* Add "part" to "u". * If "disjoint" is set, then "u" is not allowed to already have * a part that is defined over a domain that overlaps with the domain * of "part". * Otherwise, compute the union sum of "part" and the part in "u" * defined on the same space. */ static __isl_give UNION *FN(UNION,add_part_generic)(__isl_take UNION *u, __isl_take PART *part, int disjoint) { int empty; struct isl_hash_table_entry *entry; if (!part) goto error; empty = FN(PART,IS_ZERO)(part); if (empty < 0) goto error; if (empty) { FN(PART,free)(part); return u; } u = FN(UNION,align_params)(u, FN(PART,get_space)(part)); part = FN(PART,align_params)(part, FN(UNION,get_space)(u)); u = FN(UNION,cow)(u); if (!u) goto error; if (FN(UNION,check_disjoint_domain_other)(u, part) < 0) goto error; entry = FN(UNION,find_part_entry)(u, part->dim, 1); if (!entry) goto error; if (!entry->data) entry->data = part; else { if (disjoint && FN(UNION,check_disjoint_domain)(entry->data, part) < 0) goto error; entry->data = FN(PART,union_add_)(entry->data, FN(PART,copy)(part)); if (!entry->data) goto error; empty = FN(PART,IS_ZERO)(part); if (empty < 0) goto error; if (empty) u = FN(UNION,remove_part_entry)(u, entry); FN(PART,free)(part); } return u; error: FN(PART,free)(part); FN(UNION,free)(u); return NULL; } /* Add "part" to "u", where "u" is assumed not to already have * a part that is defined on the same space as "part". */ __isl_give UNION *FN(FN(UNION,add),PARTS)(__isl_take UNION *u, __isl_take PART *part) { return FN(UNION,add_part_generic)(u, part, 1); } #ifdef HAS_TYPE /* Allocate a UNION with the same type and the same size as "u" and * with space "space". */ static __isl_give UNION *FN(UNION,alloc_same_size_on_space)(__isl_keep UNION *u, __isl_take isl_space *space) { if (!u) goto error; return FN(UNION,alloc)(space, u->type, u->table.n); error: isl_space_free(space); return NULL; } #else /* Allocate a UNION with the same size as "u" and with space "space". */ static __isl_give UNION *FN(UNION,alloc_same_size_on_space)(__isl_keep UNION *u, __isl_take isl_space *space) { if (!u) goto error; return FN(UNION,alloc)(space, u->table.n); error: isl_space_free(space); return NULL; } #endif /* Allocate a UNION with the same space, the same type (if any) and * the same size as "u". */ static __isl_give UNION *FN(UNION,alloc_same_size)(__isl_keep UNION *u) { return FN(UNION,alloc_same_size_on_space)(u, FN(UNION,get_space)(u)); } /* Internal data structure for isl_union_*_transform_space. * "fn' is applied to each entry in the input. * "res" collects the results. */ S(UNION,transform_data) { __isl_give PART *(*fn)(__isl_take PART *part, void *user); void *user; UNION *res; }; /* Apply data->fn to "part" and add the result to data->res. */ static isl_stat FN(UNION,transform_entry)(__isl_take PART *part, void *user) { S(UNION,transform_data) *data = (S(UNION,transform_data) *)user; part = data->fn(part, data->user); data->res = FN(FN(UNION,add),PARTS)(data->res, part); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Return a UNION living in "space" that is obtained by applying "fn" * to each of the entries in "u". */ static __isl_give UNION *FN(UNION,transform_space)(__isl_take UNION *u, isl_space *space, __isl_give PART *(*fn)(__isl_take PART *part, void *user), void *user) { S(UNION,transform_data) data = { fn, user }; data.res = FN(UNION,alloc_same_size_on_space)(u, space); if (FN(FN(UNION,foreach),PARTS)(u, &FN(UNION,transform_entry), &data) < 0) data.res = FN(UNION,free)(data.res); FN(UNION,free)(u); return data.res; } /* Return a UNION that lives in the same space as "u" and that is obtained * by applying "fn" to each of the entries in "u". */ static __isl_give UNION *FN(UNION,transform)(__isl_take UNION *u, __isl_give PART *(*fn)(__isl_take PART *part, void *user), void *user) { return FN(UNION,transform_space)(u, FN(UNION,get_space)(u), fn, user); } /* Apply data->fn to *part and store the result back into *part. */ static isl_stat FN(UNION,transform_inplace_entry)(void **part, void *user) { S(UNION,transform_data) *data = (S(UNION,transform_data) *) user; *part = data->fn(*part, data->user); if (!*part) return isl_stat_error; return isl_stat_ok; } /* Update "u" by applying "fn" to each entry. * This operation is assumed not to change the number of entries nor * the spaces of the entries. * * If there is only one reference to "u", then change "u" inplace. * Otherwise, create a new UNION from "u" and discard the original. */ static __isl_give UNION *FN(UNION,transform_inplace)(__isl_take UNION *u, __isl_give PART *(*fn)(__isl_take PART *part, void *user), void *user) { isl_bool single_ref; single_ref = FN(UNION,has_single_reference)(u); if (single_ref < 0) return FN(UNION,free)(u); if (single_ref) { S(UNION,transform_data) data = { fn, user }; if (FN(UNION,foreach_inplace)(u, &FN(UNION,transform_inplace_entry), &data) < 0) return FN(UNION,free)(u); return u; } return FN(UNION,transform)(u, fn, user); } /* An isl_union_*_transform callback for use in isl_union_*_dup * that simply returns "part". */ static __isl_give PART *FN(UNION,copy_part)(__isl_take PART *part, void *user) { return part; } __isl_give UNION *FN(UNION,dup)(__isl_keep UNION *u) { u = FN(UNION,copy)(u); return FN(UNION,transform)(u, &FN(UNION,copy_part), NULL); } __isl_give UNION *FN(UNION,cow)(__isl_take UNION *u) { if (!u) return NULL; if (u->ref == 1) return u; u->ref--; return FN(UNION,dup)(u); } __isl_null UNION *FN(UNION,free)(__isl_take UNION *u) { if (!u) return NULL; if (--u->ref > 0) return NULL; isl_hash_table_foreach(u->space->ctx, &u->table, &FN(UNION,free_u_entry), NULL); isl_hash_table_clear(&u->table); isl_space_free(u->space); free(u); return NULL; } static __isl_give PART *FN(UNION,align_entry)(__isl_take PART *part, void *user) { isl_reordering *exp = user; exp = isl_reordering_extend_space(isl_reordering_copy(exp), FN(PART,get_domain_space)(part)); return FN(PART,realign_domain)(part, exp); } /* Reorder the parameters of "u" according to the given reordering. */ static __isl_give UNION *FN(UNION,realign_domain)(__isl_take UNION *u, __isl_take isl_reordering *r) { isl_space *space; if (!u || !r) goto error; space = isl_space_copy(r->dim); u = FN(UNION,transform_space)(u, space, &FN(UNION,align_entry), r); isl_reordering_free(r); return u; error: FN(UNION,free)(u); isl_reordering_free(r); return NULL; } /* Align the parameters of "u" to those of "model". */ __isl_give UNION *FN(UNION,align_params)(__isl_take UNION *u, __isl_take isl_space *model) { isl_reordering *r; if (!u || !model) goto error; if (isl_space_match(u->space, isl_dim_param, model, isl_dim_param)) { isl_space_free(model); return u; } model = isl_space_params(model); r = isl_parameter_alignment_reordering(u->space, model); isl_space_free(model); return FN(UNION,realign_domain)(u, r); error: isl_space_free(model); FN(UNION,free)(u); return NULL; } /* Add "part" to *u, taking the union sum if "u" already has * a part defined on the same space as "part". */ static isl_stat FN(UNION,union_add_part)(__isl_take PART *part, void *user) { UNION **u = (UNION **)user; *u = FN(UNION,add_part_generic)(*u, part, 0); return isl_stat_ok; } /* Compute the sum of "u1" and "u2" on the union of their domains, * with the actual sum on the shared domain and * the defined expression on the symmetric difference of the domains. * * This is an internal function that is exposed under different * names depending on whether the base expressions have a zero default * value. * If they do, then this function is called "add". * Otherwise, it is called "union_add". */ static __isl_give UNION *FN(UNION,union_add_)(__isl_take UNION *u1, __isl_take UNION *u2) { u1 = FN(UNION,align_params)(u1, FN(UNION,get_space)(u2)); u2 = FN(UNION,align_params)(u2, FN(UNION,get_space)(u1)); u1 = FN(UNION,cow)(u1); if (!u1 || !u2) goto error; if (FN(FN(UNION,foreach),PARTS)(u2, &FN(UNION,union_add_part), &u1) < 0) goto error; FN(UNION,free)(u2); return u1; error: FN(UNION,free)(u1); FN(UNION,free)(u2); return NULL; } __isl_give UNION *FN(FN(UNION,from),PARTS)(__isl_take PART *part) { isl_space *dim; UNION *u; if (!part) return NULL; dim = FN(PART,get_space)(part); dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in)); dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out)); #ifdef HAS_TYPE u = FN(UNION,ZERO)(dim, part->type); #else u = FN(UNION,ZERO)(dim); #endif u = FN(FN(UNION,add),PARTS)(u, part); return u; } S(UNION,match_bin_data) { UNION *u2; UNION *res; __isl_give PART *(*fn)(__isl_take PART *, __isl_take PART *); }; /* Check if data->u2 has an element living in the same space as "part". * If so, call data->fn on the two elements and add the result to * data->res. */ static isl_stat FN(UNION,match_bin_entry)(__isl_take PART *part, void *user) { S(UNION,match_bin_data) *data = user; struct isl_hash_table_entry *entry2; isl_space *space; PART *part2; space = FN(PART,get_space)(part); entry2 = FN(UNION,find_part_entry)(data->u2, space, 0); isl_space_free(space); if (!entry2) goto error; if (entry2 == isl_hash_table_entry_none) { FN(PART,free)(part); return isl_stat_ok; } part2 = entry2->data; if (!isl_space_tuple_is_equal(part->dim, isl_dim_out, part2->dim, isl_dim_out)) isl_die(FN(UNION,get_ctx)(data->u2), isl_error_invalid, "entries should have the same range space", goto error); part = data->fn(part, FN(PART, copy)(entry2->data)); data->res = FN(FN(UNION,add),PARTS)(data->res, part); if (!data->res) return isl_stat_error; return isl_stat_ok; error: FN(PART,free)(part); return isl_stat_error; } /* This function is currently only used from isl_polynomial.c * and not from isl_fold.c. */ static __isl_give UNION *FN(UNION,match_bin_op)(__isl_take UNION *u1, __isl_take UNION *u2, __isl_give PART *(*fn)(__isl_take PART *, __isl_take PART *)) __attribute__ ((unused)); /* For each pair of elements in "u1" and "u2" living in the same space, * call "fn" and collect the results. */ static __isl_give UNION *FN(UNION,match_bin_op)(__isl_take UNION *u1, __isl_take UNION *u2, __isl_give PART *(*fn)(__isl_take PART *, __isl_take PART *)) { S(UNION,match_bin_data) data = { NULL, NULL, fn }; u1 = FN(UNION,align_params)(u1, FN(UNION,get_space)(u2)); u2 = FN(UNION,align_params)(u2, FN(UNION,get_space)(u1)); if (!u1 || !u2) goto error; data.u2 = u2; data.res = FN(UNION,alloc_same_size)(u1); if (FN(FN(UNION,foreach),PARTS)(u1, &FN(UNION,match_bin_entry), &data) < 0) goto error; FN(UNION,free)(u1); FN(UNION,free)(u2); return data.res; error: FN(UNION,free)(u1); FN(UNION,free)(u2); FN(UNION,free)(data.res); return NULL; } /* Compute the sum of "u1" and "u2". * * If the base expressions have a default zero value, then the sum * is computed on the union of the domains of "u1" and "u2". * Otherwise, it is computed on their shared domains. */ __isl_give UNION *FN(UNION,add)(__isl_take UNION *u1, __isl_take UNION *u2) { #if DEFAULT_IS_ZERO return FN(UNION,union_add_)(u1, u2); #else return FN(UNION,match_bin_op)(u1, u2, &FN(PART,add)); #endif } #ifndef NO_SUB /* Subtract "u2" from "u1" and return the result. */ __isl_give UNION *FN(UNION,sub)(__isl_take UNION *u1, __isl_take UNION *u2) { return FN(UNION,match_bin_op)(u1, u2, &FN(PART,sub)); } #endif S(UNION,any_set_data) { isl_set *set; __isl_give PW *(*fn)(__isl_take PW*, __isl_take isl_set*); }; static __isl_give PART *FN(UNION,any_set_entry)(__isl_take PART *part, void *user) { S(UNION,any_set_data) *data = user; return data->fn(part, isl_set_copy(data->set)); } /* Update each element of "u" by calling "fn" on the element and "set". */ static __isl_give UNION *FN(UNION,any_set_op)(__isl_take UNION *u, __isl_take isl_set *set, __isl_give PW *(*fn)(__isl_take PW*, __isl_take isl_set*)) { S(UNION,any_set_data) data = { NULL, fn }; u = FN(UNION,align_params)(u, isl_set_get_space(set)); set = isl_set_align_params(set, FN(UNION,get_space)(u)); if (!u || !set) goto error; data.set = set; u = FN(UNION,transform)(u, &FN(UNION,any_set_entry), &data); isl_set_free(set); return u; error: FN(UNION,free)(u); isl_set_free(set); return NULL; } /* Intersect the domain of "u" with the parameter domain "context". */ __isl_give UNION *FN(UNION,intersect_params)(__isl_take UNION *u, __isl_take isl_set *set) { return FN(UNION,any_set_op)(u, set, &FN(PW,intersect_params)); } /* Compute the gist of the domain of "u" with respect to * the parameter domain "context". */ __isl_give UNION *FN(UNION,gist_params)(__isl_take UNION *u, __isl_take isl_set *set) { return FN(UNION,any_set_op)(u, set, &FN(PW,gist_params)); } S(UNION,match_domain_data) { isl_union_set *uset; UNION *res; __isl_give PW *(*fn)(__isl_take PW*, __isl_take isl_set*); }; static int FN(UNION,set_has_dim)(const void *entry, const void *val) { isl_set *set = (isl_set *)entry; isl_space *dim = (isl_space *)val; return isl_space_is_equal(set->dim, dim); } /* Find the set in data->uset that lives in the same space as the domain * of "part", apply data->fn to *entry and this set (if any), and add * the result to data->res. */ static isl_stat FN(UNION,match_domain_entry)(__isl_take PART *part, void *user) { S(UNION,match_domain_data) *data = user; uint32_t hash; struct isl_hash_table_entry *entry2; isl_space *space; space = FN(PART,get_domain_space)(part); hash = isl_space_get_hash(space); entry2 = isl_hash_table_find(data->uset->dim->ctx, &data->uset->table, hash, &FN(UNION,set_has_dim), space, 0); isl_space_free(space); if (!entry2) { FN(PART,free)(part); return isl_stat_ok; } part = data->fn(part, isl_set_copy(entry2->data)); data->res = FN(FN(UNION,add),PARTS)(data->res, part); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Apply fn to each pair of PW in u and set in uset such that * the set lives in the same space as the domain of PW * and collect the results. */ static __isl_give UNION *FN(UNION,match_domain_op)(__isl_take UNION *u, __isl_take isl_union_set *uset, __isl_give PW *(*fn)(__isl_take PW*, __isl_take isl_set*)) { S(UNION,match_domain_data) data = { NULL, NULL, fn }; u = FN(UNION,align_params)(u, isl_union_set_get_space(uset)); uset = isl_union_set_align_params(uset, FN(UNION,get_space)(u)); if (!u || !uset) goto error; data.uset = uset; data.res = FN(UNION,alloc_same_size)(u); if (FN(FN(UNION,foreach),PARTS)(u, &FN(UNION,match_domain_entry), &data) < 0) goto error; FN(UNION,free)(u); isl_union_set_free(uset); return data.res; error: FN(UNION,free)(u); isl_union_set_free(uset); FN(UNION,free)(data.res); return NULL; } /* Intersect the domain of "u" with "uset". * If "uset" is a parameters domain, then intersect the parameter * domain of "u" with this set. */ __isl_give UNION *FN(UNION,intersect_domain)(__isl_take UNION *u, __isl_take isl_union_set *uset) { if (isl_union_set_is_params(uset)) return FN(UNION,intersect_params)(u, isl_set_from_union_set(uset)); return FN(UNION,match_domain_op)(u, uset, &FN(PW,intersect_domain)); } /* Take the set (which may be empty) in data->uset that lives * in the same space as the domain of "pw", subtract it from the domain * of "part" and return the result. */ static __isl_give PART *FN(UNION,subtract_domain_entry)(__isl_take PART *part, void *user) { isl_union_set *uset = user; isl_space *space; isl_set *set; space = FN(PART,get_domain_space)(part); set = isl_union_set_extract_set(uset, space); return FN(PART,subtract_domain)(part, set); } /* Subtract "uset' from the domain of "u". */ __isl_give UNION *FN(UNION,subtract_domain)(__isl_take UNION *u, __isl_take isl_union_set *uset) { u = FN(UNION,transform)(u, &FN(UNION,subtract_domain_entry), uset); isl_union_set_free(uset); return u; } __isl_give UNION *FN(UNION,gist)(__isl_take UNION *u, __isl_take isl_union_set *uset) { if (isl_union_set_is_params(uset)) return FN(UNION,gist_params)(u, isl_set_from_union_set(uset)); return FN(UNION,match_domain_op)(u, uset, &FN(PW,gist)); } /* Coalesce an entry in a UNION. Coalescing is performed in-place. * Since the UNION may have several references, the entry is only * replaced if the coalescing is successful. */ static isl_stat FN(UNION,coalesce_entry)(void **entry, void *user) { PART **part_p = (PART **) entry; PART *part; part = FN(PART,copy)(*part_p); part = FN(PW,coalesce)(part); if (!part) return isl_stat_error; FN(PART,free)(*part_p); *part_p = part; return isl_stat_ok; } __isl_give UNION *FN(UNION,coalesce)(__isl_take UNION *u) { if (FN(UNION,foreach_inplace)(u, &FN(UNION,coalesce_entry), NULL) < 0) goto error; return u; error: FN(UNION,free)(u); return NULL; } static isl_stat FN(UNION,domain_entry)(__isl_take PART *part, void *user) { isl_union_set **uset = (isl_union_set **)user; *uset = isl_union_set_add_set(*uset, FN(PART,domain)(part)); return isl_stat_ok; } __isl_give isl_union_set *FN(UNION,domain)(__isl_take UNION *u) { isl_union_set *uset; uset = isl_union_set_empty(FN(UNION,get_space)(u)); if (FN(FN(UNION,foreach),PARTS)(u, &FN(UNION,domain_entry), &uset) < 0) goto error; FN(UNION,free)(u); return uset; error: isl_union_set_free(uset); FN(UNION,free)(u); return NULL; } #ifdef HAS_TYPE /* Negate the type of "u". */ static __isl_give UNION *FN(UNION,negate_type)(__isl_take UNION *u) { u = FN(UNION,cow)(u); if (!u) return NULL; u->type = isl_fold_type_negate(u->type); return u; } #else /* Negate the type of "u". * Since "u" does not have a type, do nothing. */ static __isl_give UNION *FN(UNION,negate_type)(__isl_take UNION *u) { return u; } #endif static __isl_give PART *FN(UNION,mul_isl_int_entry)(__isl_take PART *part, void *user) { isl_int *v = user; return FN(PW,mul_isl_int)(part, *v); } __isl_give UNION *FN(UNION,mul_isl_int)(__isl_take UNION *u, isl_int v) { if (isl_int_is_one(v)) return u; if (DEFAULT_IS_ZERO && u && isl_int_is_zero(v)) { UNION *zero; isl_space *dim = FN(UNION,get_space)(u); #ifdef HAS_TYPE zero = FN(UNION,ZERO)(dim, u->type); #else zero = FN(UNION,ZERO)(dim); #endif FN(UNION,free)(u); return zero; } u = FN(UNION,transform_inplace)(u, &FN(UNION,mul_isl_int_entry), &v); if (isl_int_is_neg(v)) u = FN(UNION,negate_type)(u); return u; } /* Multiply "part" by the isl_val "user" and return the result. */ static __isl_give PART *FN(UNION,scale_val_entry)(__isl_take PART *part, void *user) { isl_val *v = user; return FN(PART,scale_val)(part, isl_val_copy(v)); } /* Multiply "u" by "v" and return the result. */ __isl_give UNION *FN(UNION,scale_val)(__isl_take UNION *u, __isl_take isl_val *v) { if (!u || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return u; } if (DEFAULT_IS_ZERO && u && isl_val_is_zero(v)) { UNION *zero; isl_space *space = FN(UNION,get_space)(u); #ifdef HAS_TYPE zero = FN(UNION,ZERO)(space, u->type); #else zero = FN(UNION,ZERO)(space); #endif FN(UNION,free)(u); isl_val_free(v); return zero; } if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational factor", goto error); u = FN(UNION,transform_inplace)(u, &FN(UNION,scale_val_entry), v); if (isl_val_is_neg(v)) u = FN(UNION,negate_type)(u); isl_val_free(v); return u; error: isl_val_free(v); FN(UNION,free)(u); return NULL; } /* Divide "part" by the isl_val "user" and return the result. */ static __isl_give PART *FN(UNION,scale_down_val_entry)(__isl_take PART *part, void *user) { isl_val *v = user; return FN(PART,scale_down_val)(part, isl_val_copy(v)); } /* Divide "u" by "v" and return the result. */ __isl_give UNION *FN(UNION,scale_down_val)(__isl_take UNION *u, __isl_take isl_val *v) { if (!u || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return u; } if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); u = FN(UNION,transform_inplace)(u, &FN(UNION,scale_down_val_entry), v); if (isl_val_is_neg(v)) u = FN(UNION,negate_type)(u); isl_val_free(v); return u; error: isl_val_free(v); FN(UNION,free)(u); return NULL; } S(UNION,plain_is_equal_data) { UNION *u2; isl_bool is_equal; }; static isl_stat FN(UNION,plain_is_equal_entry)(void **entry, void *user) { S(UNION,plain_is_equal_data) *data = user; struct isl_hash_table_entry *entry2; PW *pw = *entry; entry2 = FN(UNION,find_part_entry)(data->u2, pw->dim, 0); if (!entry2 || entry2 == isl_hash_table_entry_none) { if (!entry2) data->is_equal = isl_bool_error; else data->is_equal = isl_bool_false; return isl_stat_error; } data->is_equal = FN(PW,plain_is_equal)(pw, entry2->data); if (data->is_equal < 0 || !data->is_equal) return isl_stat_error; return isl_stat_ok; } isl_bool FN(UNION,plain_is_equal)(__isl_keep UNION *u1, __isl_keep UNION *u2) { S(UNION,plain_is_equal_data) data = { NULL, isl_bool_true }; int n1, n2; if (!u1 || !u2) return isl_bool_error; if (u1 == u2) return isl_bool_true; if (u1->table.n != u2->table.n) return isl_bool_false; n1 = FN(FN(UNION,n),PARTS)(u1); n2 = FN(FN(UNION,n),PARTS)(u2); if (n1 < 0 || n2 < 0) return isl_bool_error; if (n1 != n2) return isl_bool_false; u1 = FN(UNION,copy)(u1); u2 = FN(UNION,copy)(u2); u1 = FN(UNION,align_params)(u1, FN(UNION,get_space)(u2)); u2 = FN(UNION,align_params)(u2, FN(UNION,get_space)(u1)); if (!u1 || !u2) goto error; data.u2 = u2; if (FN(UNION,foreach_inplace)(u1, &FN(UNION,plain_is_equal_entry), &data) < 0 && data.is_equal) goto error; FN(UNION,free)(u1); FN(UNION,free)(u2); return data.is_equal; error: FN(UNION,free)(u1); FN(UNION,free)(u2); return isl_bool_error; } /* Internal data structure for isl_union_*_drop_dims. * type, first and n are passed to isl_*_drop_dims. */ S(UNION,drop_dims_data) { enum isl_dim_type type; unsigned first; unsigned n; }; /* Drop the parameters specified by "data" from "part" and return the result. */ static __isl_give PART *FN(UNION,drop_dims_entry)(__isl_take PART *part, void *user) { S(UNION,drop_dims_data) *data = user; return FN(PART,drop_dims)(part, data->type, data->first, data->n); } /* Drop the specified parameters from "u". * That is, type is required to be isl_dim_param. */ __isl_give UNION *FN(UNION,drop_dims)( __isl_take UNION *u, enum isl_dim_type type, unsigned first, unsigned n) { isl_space *space; S(UNION,drop_dims_data) data = { type, first, n }; if (!u) return NULL; if (type != isl_dim_param) isl_die(FN(UNION,get_ctx)(u), isl_error_invalid, "can only project out parameters", return FN(UNION,free)(u)); space = FN(UNION,get_space)(u); space = isl_space_drop_dims(space, type, first, n); return FN(UNION,transform_space)(u, space, &FN(UNION,drop_dims_entry), &data); } /* Internal data structure for isl_union_*_set_dim_name. * pos is the position of the parameter that needs to be renamed. * s is the new name. */ S(UNION,set_dim_name_data) { unsigned pos; const char *s; }; /* Change the name of the parameter at position data->pos of "part" to data->s * and return the result. */ static __isl_give PART *FN(UNION,set_dim_name_entry)(__isl_take PART *part, void *user) { S(UNION,set_dim_name_data) *data = user; return FN(PART,set_dim_name)(part, isl_dim_param, data->pos, data->s); } /* Change the name of the parameter at position "pos" to "s". * That is, type is required to be isl_dim_param. */ __isl_give UNION *FN(UNION,set_dim_name)(__isl_take UNION *u, enum isl_dim_type type, unsigned pos, const char *s) { S(UNION,set_dim_name_data) data = { pos, s }; isl_space *space; if (!u) return NULL; if (type != isl_dim_param) isl_die(FN(UNION,get_ctx)(u), isl_error_invalid, "can only set parameter names", return FN(UNION,free)(u)); space = FN(UNION,get_space)(u); space = isl_space_set_dim_name(space, type, pos, s); return FN(UNION,transform_space)(u, space, &FN(UNION,set_dim_name_entry), &data); } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "part" and return the result. */ static __isl_give PART *FN(UNION,reset_user_entry)(__isl_take PART *part, void *user) { return FN(PART,reset_user)(part); } /* Reset the user pointer on all identifiers of parameters and tuples * of the spaces of "u". */ __isl_give UNION *FN(UNION,reset_user)(__isl_take UNION *u) { isl_space *space; space = FN(UNION,get_space)(u); space = isl_space_reset_user(space); return FN(UNION,transform_space)(u, space, &FN(UNION,reset_user_entry), NULL); } isl-0.16.1/isl_union_neg.c0000664000175000017500000000112612645737061012320 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include /* Return the opposite of "part". */ static __isl_give PART *FN(UNION,neg_entry)(__isl_take PART *part, void *user) { return FN(PART,neg)(part); } /* Return the opposite of "u". */ __isl_give UNION *FN(UNION,neg)(__isl_take UNION *u) { return FN(UNION,transform_inplace)(u, &FN(UNION,neg_entry), NULL); } isl-0.16.1/isl_config_post.h0000664000175000017500000000136712645737060012664 00000000000000#ifndef HAVE___ATTRIBUTE__ #define __attribute__(x) #endif #if HAVE_DECL_FFS #include #endif #if (HAVE_DECL_FFS==0) && (HAVE_DECL___BUILTIN_FFS==1) #define ffs __builtin_ffs #endif #if !HAVE_DECL_FFS && !HAVE_DECL___BUILTIN_FFS && HAVE_DECL__BITSCANFORWARD int isl_ffs(int i); #define ffs isl_ffs #endif #if HAVE_DECL_STRCASECMP || HAVE_DECL_STRNCASECMP #include #endif #if !HAVE_DECL_STRCASECMP && HAVE_DECL__STRICMP #define strcasecmp _stricmp #endif #if !HAVE_DECL_STRNCASECMP && HAVE_DECL__STRNICMP #define strncasecmp _strnicmp #endif #if !HAVE_DECL_SNPRINTF && HAVE_DECL__SNPRINTF #define snprintf _snprintf #endif #ifdef GCC_WARN_UNUSED_RESULT #define WARN_UNUSED GCC_WARN_UNUSED_RESULT #else #define WARN_UNUSED #endif isl-0.16.1/isl_constraint_private.h0000664000175000017500000000140612645737060014262 00000000000000#ifndef ISL_CONSTRAINT_PRIVATE_H #define ISL_CONSTRAINT_PRIVATE_H #include #include #include struct isl_constraint { int ref; int eq; isl_local_space *ls; isl_vec *v; }; #undef EL #define EL isl_constraint #include struct isl_constraint *isl_basic_set_constraint(struct isl_basic_set *bset, isl_int **line); void isl_constraint_get_coefficient(__isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_constraint *isl_constraint_set_constant( __isl_take isl_constraint *constraint, isl_int v); __isl_give isl_constraint *isl_constraint_set_coefficient( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int v); #endif isl-0.16.1/README0000664000175000017500000000333512645737060010207 00000000000000isl is a thread-safe C library for manipulating sets and relations of integer points bounded by affine constraints. The descriptions of the sets and relations may involve both parameters and existentially quantified variables. All computations are performed in exact integer arithmetic using GMP. isl is released under the MIT license, but depends on the LGPL GMP library. Minimal compilation instructions: ./configure make make install If you are taking the source from the git repository, then you first need to do git clone git://repo.or.cz/isl.git ./autogen.sh For more information, see doc/user.pod or the generated documentation. New releases are announced on http://freecode.com/projects/isl If you use isl, you can let me know by stacking https://www.ohloh.net/p/isl on ohloh. For bug reports, feature requests and questions, contact http://groups.google.com/group/isl-development Whenever you report a bug, please mention the exact version of isl that you are using (output of "./isl_cat --version"). If you are unable to compile isl, then report the git version (output of "git describe") or the version included in the name of the tarball. If you use isl for your research, you are invited do cite the following paper and/or the paper(s) describing the specific operations you use. @incollection{Verdoolaege2010isl, author = {Verdoolaege, Sven}, title = {isl: An Integer Set Library for the Polyhedral Model}, booktitle = {Mathematical Software - ICMS 2010}, series = {Lecture Notes in Computer Science}, editor = {Fukuda, Komei and Hoeven, Joris and Joswig, Michael and Takayama, Nobuki}, publisher = {Springer}, isbn = {978-3-642-15581-9}, pages = {299-302}, volume = {6327}, year = {2010} } isl-0.16.1/config.guess0000755000175000017500000013036112264500076011635 00000000000000#! /bin/sh # Attempt to guess a canonical system name. # Copyright 1992-2013 Free Software Foundation, Inc. timestamp='2013-06-10' # This file is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see . # # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that # program. This Exception is an additional permission under section 7 # of the GNU General Public License, version 3 ("GPLv3"). # # Originally written by Per Bothner. # # You can get the latest version of this script from: # http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD # # Please send patches with a ChangeLog entry to config-patches@gnu.org. me=`echo "$0" | sed -e 's,.*/,,'` usage="\ Usage: $0 [OPTION] Output the configuration name of the system \`$me' is run on. Operation modes: -h, --help print this help, then exit -t, --time-stamp print date of last modification, then exit -v, --version print version number, then exit Report bugs and patches to ." version="\ GNU config.guess ($timestamp) Originally written by Per Bothner. Copyright 1992-2013 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE." help=" Try \`$me --help' for more information." # Parse command line while test $# -gt 0 ; do case $1 in --time-stamp | --time* | -t ) echo "$timestamp" ; exit ;; --version | -v ) echo "$version" ; exit ;; --help | --h* | -h ) echo "$usage"; exit ;; -- ) # Stop option processing shift; break ;; - ) # Use stdin as input. break ;; -* ) echo "$me: invalid option $1$help" >&2 exit 1 ;; * ) break ;; esac done if test $# != 0; then echo "$me: too many arguments$help" >&2 exit 1 fi trap 'exit 1' 1 2 15 # CC_FOR_BUILD -- compiler used by this script. Note that the use of a # compiler to aid in system detection is discouraged as it requires # temporary files to be created and, as you can see below, it is a # headache to deal with in a portable fashion. # Historically, `CC_FOR_BUILD' used to be named `HOST_CC'. We still # use `HOST_CC' if defined, but it is deprecated. # Portable tmp directory creation inspired by the Autoconf team. set_cc_for_build=' trap "exitcode=\$?; (rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null) && exit \$exitcode" 0 ; trap "rm -f \$tmpfiles 2>/dev/null; rmdir \$tmp 2>/dev/null; exit 1" 1 2 13 15 ; : ${TMPDIR=/tmp} ; { tmp=`(umask 077 && mktemp -d "$TMPDIR/cgXXXXXX") 2>/dev/null` && test -n "$tmp" && test -d "$tmp" ; } || { test -n "$RANDOM" && tmp=$TMPDIR/cg$$-$RANDOM && (umask 077 && mkdir $tmp) ; } || { tmp=$TMPDIR/cg-$$ && (umask 077 && mkdir $tmp) && echo "Warning: creating insecure temp directory" >&2 ; } || { echo "$me: cannot create a temporary directory in $TMPDIR" >&2 ; exit 1 ; } ; dummy=$tmp/dummy ; tmpfiles="$dummy.c $dummy.o $dummy.rel $dummy" ; case $CC_FOR_BUILD,$HOST_CC,$CC in ,,) echo "int x;" > $dummy.c ; for c in cc gcc c89 c99 ; do if ($c -c -o $dummy.o $dummy.c) >/dev/null 2>&1 ; then CC_FOR_BUILD="$c"; break ; fi ; done ; if test x"$CC_FOR_BUILD" = x ; then CC_FOR_BUILD=no_compiler_found ; fi ;; ,,*) CC_FOR_BUILD=$CC ;; ,*,*) CC_FOR_BUILD=$HOST_CC ;; esac ; set_cc_for_build= ;' # This is needed to find uname on a Pyramid OSx when run in the BSD universe. # (ghazi@noc.rutgers.edu 1994-08-24) if (test -f /.attbin/uname) >/dev/null 2>&1 ; then PATH=$PATH:/.attbin ; export PATH fi UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown case "${UNAME_SYSTEM}" in Linux|GNU|GNU/*) # If the system lacks a compiler, then just pick glibc. # We could probably try harder. LIBC=gnu eval $set_cc_for_build cat <<-EOF > $dummy.c #include #if defined(__UCLIBC__) LIBC=uclibc #elif defined(__dietlibc__) LIBC=dietlibc #else LIBC=gnu #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^LIBC'` ;; esac # Note: order is significant - the case branches are not exclusive. case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in *:NetBSD:*:*) # NetBSD (nbsd) targets should (where applicable) match one or # more of the tuples: *-*-netbsdelf*, *-*-netbsdaout*, # *-*-netbsdecoff* and *-*-netbsd*. For targets that recently # switched to ELF, *-*-netbsd* would select the old # object file format. This provides both forward # compatibility and a consistent mechanism for selecting the # object file format. # # Note: NetBSD doesn't particularly care about the vendor # portion of the name. We always set it to "unknown". sysctl="sysctl -n hw.machine_arch" UNAME_MACHINE_ARCH=`(/sbin/$sysctl 2>/dev/null || \ /usr/sbin/$sysctl 2>/dev/null || echo unknown)` case "${UNAME_MACHINE_ARCH}" in armeb) machine=armeb-unknown ;; arm*) machine=arm-unknown ;; sh3el) machine=shl-unknown ;; sh3eb) machine=sh-unknown ;; sh5el) machine=sh5le-unknown ;; *) machine=${UNAME_MACHINE_ARCH}-unknown ;; esac # The Operating System including object format, if it has switched # to ELF recently, or will in the future. case "${UNAME_MACHINE_ARCH}" in arm*|i386|m68k|ns32k|sh3*|sparc|vax) eval $set_cc_for_build if echo __ELF__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ELF__ then # Once all utilities can be ECOFF (netbsdecoff) or a.out (netbsdaout). # Return netbsd for either. FIX? os=netbsd else os=netbsdelf fi ;; *) os=netbsd ;; esac # The OS release # Debian GNU/NetBSD machines have a different userland, and # thus, need a distinct triplet. However, they do not need # kernel version information, so it can be replaced with a # suitable tag, in the style of linux-gnu. case "${UNAME_VERSION}" in Debian*) release='-gnu' ;; *) release=`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'` ;; esac # Since CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM: # contains redundant information, the shorter form: # CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM is used. echo "${machine}-${os}${release}" exit ;; *:Bitrig:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/Bitrig.//'` echo ${UNAME_MACHINE_ARCH}-unknown-bitrig${UNAME_RELEASE} exit ;; *:OpenBSD:*:*) UNAME_MACHINE_ARCH=`arch | sed 's/OpenBSD.//'` echo ${UNAME_MACHINE_ARCH}-unknown-openbsd${UNAME_RELEASE} exit ;; *:ekkoBSD:*:*) echo ${UNAME_MACHINE}-unknown-ekkobsd${UNAME_RELEASE} exit ;; *:SolidBSD:*:*) echo ${UNAME_MACHINE}-unknown-solidbsd${UNAME_RELEASE} exit ;; macppc:MirBSD:*:*) echo powerpc-unknown-mirbsd${UNAME_RELEASE} exit ;; *:MirBSD:*:*) echo ${UNAME_MACHINE}-unknown-mirbsd${UNAME_RELEASE} exit ;; alpha:OSF1:*:*) case $UNAME_RELEASE in *4.0) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'` ;; *5.*) UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $4}'` ;; esac # According to Compaq, /usr/sbin/psrinfo has been available on # OSF/1 and Tru64 systems produced since 1995. I hope that # covers most systems running today. This code pipes the CPU # types through head -n 1, so we only detect the type of CPU 0. ALPHA_CPU_TYPE=`/usr/sbin/psrinfo -v | sed -n -e 's/^ The alpha \(.*\) processor.*$/\1/p' | head -n 1` case "$ALPHA_CPU_TYPE" in "EV4 (21064)") UNAME_MACHINE="alpha" ;; "EV4.5 (21064)") UNAME_MACHINE="alpha" ;; "LCA4 (21066/21068)") UNAME_MACHINE="alpha" ;; "EV5 (21164)") UNAME_MACHINE="alphaev5" ;; "EV5.6 (21164A)") UNAME_MACHINE="alphaev56" ;; "EV5.6 (21164PC)") UNAME_MACHINE="alphapca56" ;; "EV5.7 (21164PC)") UNAME_MACHINE="alphapca57" ;; "EV6 (21264)") UNAME_MACHINE="alphaev6" ;; "EV6.7 (21264A)") UNAME_MACHINE="alphaev67" ;; "EV6.8CB (21264C)") UNAME_MACHINE="alphaev68" ;; "EV6.8AL (21264B)") UNAME_MACHINE="alphaev68" ;; "EV6.8CX (21264D)") UNAME_MACHINE="alphaev68" ;; "EV6.9A (21264/EV69A)") UNAME_MACHINE="alphaev69" ;; "EV7 (21364)") UNAME_MACHINE="alphaev7" ;; "EV7.9 (21364A)") UNAME_MACHINE="alphaev79" ;; esac # A Pn.n version is a patched version. # A Vn.n version is a released version. # A Tn.n version is a released field test version. # A Xn.n version is an unreleased experimental baselevel. # 1.2 uses "1.2" for uname -r. echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[PVTX]//' | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` # Reset EXIT trap before exiting to avoid spurious non-zero exit code. exitcode=$? trap '' 0 exit $exitcode ;; Alpha\ *:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # Should we change UNAME_MACHINE based on the output of uname instead # of the specific Alpha model? echo alpha-pc-interix exit ;; 21064:Windows_NT:50:3) echo alpha-dec-winnt3.5 exit ;; Amiga*:UNIX_System_V:4.0:*) echo m68k-unknown-sysv4 exit ;; *:[Aa]miga[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-amigaos exit ;; *:[Mm]orph[Oo][Ss]:*:*) echo ${UNAME_MACHINE}-unknown-morphos exit ;; *:OS/390:*:*) echo i370-ibm-openedition exit ;; *:z/VM:*:*) echo s390-ibm-zvmoe exit ;; *:OS400:*:*) echo powerpc-ibm-os400 exit ;; arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*) echo arm-acorn-riscix${UNAME_RELEASE} exit ;; arm*:riscos:*:*|arm*:RISCOS:*:*) echo arm-unknown-riscos exit ;; SR2?01:HI-UX/MPP:*:* | SR8000:HI-UX/MPP:*:*) echo hppa1.1-hitachi-hiuxmpp exit ;; Pyramid*:OSx*:*:* | MIS*:OSx*:*:* | MIS*:SMP_DC-OSx*:*:*) # akee@wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE. if test "`(/bin/universe) 2>/dev/null`" = att ; then echo pyramid-pyramid-sysv3 else echo pyramid-pyramid-bsd fi exit ;; NILE*:*:*:dcosx) echo pyramid-pyramid-svr4 exit ;; DRS?6000:unix:4.0:6*) echo sparc-icl-nx6 exit ;; DRS?6000:UNIX_SV:4.2*:7* | DRS?6000:isis:4.2*:7*) case `/usr/bin/uname -p` in sparc) echo sparc-icl-nx7; exit ;; esac ;; s390x:SunOS:*:*) echo ${UNAME_MACHINE}-ibm-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4H:SunOS:5.*:*) echo sparc-hal-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*) echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; i86pc:AuroraUX:5.*:* | i86xen:AuroraUX:5.*:*) echo i386-pc-auroraux${UNAME_RELEASE} exit ;; i86pc:SunOS:5.*:* | i86xen:SunOS:5.*:*) eval $set_cc_for_build SUN_ARCH="i386" # If there is a compiler, see if it is configured for 64-bit objects. # Note that the Sun cc does not turn __LP64__ into 1 like gcc does. # This test works for both compilers. if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __amd64'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then SUN_ARCH="x86_64" fi fi echo ${SUN_ARCH}-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:6*:*) # According to config.sub, this is the proper way to canonicalize # SunOS6. Hard to guess exactly what SunOS6 will be like, but # it's likely to be more like Solaris than SunOS4. echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; sun4*:SunOS:*:*) case "`/usr/bin/arch -k`" in Series*|S4*) UNAME_RELEASE=`uname -v` ;; esac # Japanese Language versions have a version number like `4.1.3-JL'. echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'` exit ;; sun3*:SunOS:*:*) echo m68k-sun-sunos${UNAME_RELEASE} exit ;; sun*:*:4.2BSD:*) UNAME_RELEASE=`(sed 1q /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null` test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3 case "`/bin/arch`" in sun3) echo m68k-sun-sunos${UNAME_RELEASE} ;; sun4) echo sparc-sun-sunos${UNAME_RELEASE} ;; esac exit ;; aushp:SunOS:*:*) echo sparc-auspex-sunos${UNAME_RELEASE} exit ;; # The situation for MiNT is a little confusing. The machine name # can be virtually everything (everything which is not # "atarist" or "atariste" at least should have a processor # > m68000). The system name ranges from "MiNT" over "FreeMiNT" # to the lowercase version "mint" (or "freemint"). Finally # the system name "TOS" denotes a system which is actually not # MiNT. But MiNT is downward compatible to TOS, so this should # be no problem. atarist[e]:*MiNT:*:* | atarist[e]:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; atari*:*MiNT:*:* | atari*:*mint:*:* | atarist[e]:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; *falcon*:*MiNT:*:* | *falcon*:*mint:*:* | *falcon*:*TOS:*:*) echo m68k-atari-mint${UNAME_RELEASE} exit ;; milan*:*MiNT:*:* | milan*:*mint:*:* | *milan*:*TOS:*:*) echo m68k-milan-mint${UNAME_RELEASE} exit ;; hades*:*MiNT:*:* | hades*:*mint:*:* | *hades*:*TOS:*:*) echo m68k-hades-mint${UNAME_RELEASE} exit ;; *:*MiNT:*:* | *:*mint:*:* | *:*TOS:*:*) echo m68k-unknown-mint${UNAME_RELEASE} exit ;; m68k:machten:*:*) echo m68k-apple-machten${UNAME_RELEASE} exit ;; powerpc:machten:*:*) echo powerpc-apple-machten${UNAME_RELEASE} exit ;; RISC*:Mach:*:*) echo mips-dec-mach_bsd4.3 exit ;; RISC*:ULTRIX:*:*) echo mips-dec-ultrix${UNAME_RELEASE} exit ;; VAX*:ULTRIX*:*:*) echo vax-dec-ultrix${UNAME_RELEASE} exit ;; 2020:CLIX:*:* | 2430:CLIX:*:*) echo clipper-intergraph-clix${UNAME_RELEASE} exit ;; mips:*:*:UMIPS | mips:*:*:RISCos) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #ifdef __cplusplus #include /* for printf() prototype */ int main (int argc, char *argv[]) { #else int main (argc, argv) int argc; char *argv[]; { #endif #if defined (host_mips) && defined (MIPSEB) #if defined (SYSTYPE_SYSV) printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_SVR4) printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0); #endif #if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD) printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0); #endif #endif exit (-1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && dummyarg=`echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` && SYSTEM_NAME=`$dummy $dummyarg` && { echo "$SYSTEM_NAME"; exit; } echo mips-mips-riscos${UNAME_RELEASE} exit ;; Motorola:PowerMAX_OS:*:*) echo powerpc-motorola-powermax exit ;; Motorola:*:4.3:PL8-*) echo powerpc-harris-powermax exit ;; Night_Hawk:*:*:PowerMAX_OS | Synergy:PowerMAX_OS:*:*) echo powerpc-harris-powermax exit ;; Night_Hawk:Power_UNIX:*:*) echo powerpc-harris-powerunix exit ;; m88k:CX/UX:7*:*) echo m88k-harris-cxux7 exit ;; m88k:*:4*:R4*) echo m88k-motorola-sysv4 exit ;; m88k:*:3*:R3*) echo m88k-motorola-sysv3 exit ;; AViiON:dgux:*:*) # DG/UX returns AViiON for all architectures UNAME_PROCESSOR=`/usr/bin/uname -p` if [ $UNAME_PROCESSOR = mc88100 ] || [ $UNAME_PROCESSOR = mc88110 ] then if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx ] || \ [ ${TARGET_BINARY_INTERFACE}x = x ] then echo m88k-dg-dgux${UNAME_RELEASE} else echo m88k-dg-dguxbcs${UNAME_RELEASE} fi else echo i586-dg-dgux${UNAME_RELEASE} fi exit ;; M88*:DolphinOS:*:*) # DolphinOS (SVR3) echo m88k-dolphin-sysv3 exit ;; M88*:*:R3*:*) # Delta 88k system running SVR3 echo m88k-motorola-sysv3 exit ;; XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3) echo m88k-tektronix-sysv3 exit ;; Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD) echo m68k-tektronix-bsd exit ;; *:IRIX*:*:*) echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'` exit ;; ????????:AIX?:[12].1:2) # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX. echo romp-ibm-aix # uname -m gives an 8 hex-code CPU id exit ;; # Note that: echo "'`uname -s`'" gives 'AIX ' i*86:AIX:*:*) echo i386-ibm-aix exit ;; ia64:AIX:*:*) if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${UNAME_MACHINE}-ibm-aix${IBM_REV} exit ;; *:AIX:2:3) if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include main() { if (!__power_pc()) exit(1); puts("powerpc-ibm-aix3.2.5"); exit(0); } EOF if $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` then echo "$SYSTEM_NAME" else echo rs6000-ibm-aix3.2.5 fi elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then echo rs6000-ibm-aix3.2.4 else echo rs6000-ibm-aix3.2 fi exit ;; *:AIX:*:[4567]) IBM_CPU_ID=`/usr/sbin/lsdev -C -c processor -S available | sed 1q | awk '{ print $1 }'` if /usr/sbin/lsattr -El ${IBM_CPU_ID} | grep ' POWER' >/dev/null 2>&1; then IBM_ARCH=rs6000 else IBM_ARCH=powerpc fi if [ -x /usr/bin/oslevel ] ; then IBM_REV=`/usr/bin/oslevel` else IBM_REV=${UNAME_VERSION}.${UNAME_RELEASE} fi echo ${IBM_ARCH}-ibm-aix${IBM_REV} exit ;; *:AIX:*:*) echo rs6000-ibm-aix exit ;; ibmrt:4.4BSD:*|romp-ibm:BSD:*) echo romp-ibm-bsd4.4 exit ;; ibmrt:*BSD:*|romp-ibm:BSD:*) # covers RT/PC BSD and echo romp-ibm-bsd${UNAME_RELEASE} # 4.3 with uname added to exit ;; # report: romp-ibm BSD 4.3 *:BOSX:*:*) echo rs6000-bull-bosx exit ;; DPX/2?00:B.O.S.:*:*) echo m68k-bull-sysv3 exit ;; 9000/[34]??:4.3bsd:1.*:*) echo m68k-hp-bsd exit ;; hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*) echo m68k-hp-bsd4.4 exit ;; 9000/[34678]??:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` case "${UNAME_MACHINE}" in 9000/31? ) HP_ARCH=m68000 ;; 9000/[34]?? ) HP_ARCH=m68k ;; 9000/[678][0-9][0-9]) if [ -x /usr/bin/getconf ]; then sc_cpu_version=`/usr/bin/getconf SC_CPU_VERSION 2>/dev/null` sc_kernel_bits=`/usr/bin/getconf SC_KERNEL_BITS 2>/dev/null` case "${sc_cpu_version}" in 523) HP_ARCH="hppa1.0" ;; # CPU_PA_RISC1_0 528) HP_ARCH="hppa1.1" ;; # CPU_PA_RISC1_1 532) # CPU_PA_RISC2_0 case "${sc_kernel_bits}" in 32) HP_ARCH="hppa2.0n" ;; 64) HP_ARCH="hppa2.0w" ;; '') HP_ARCH="hppa2.0" ;; # HP-UX 10.20 esac ;; esac fi if [ "${HP_ARCH}" = "" ]; then eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #define _HPUX_SOURCE #include #include int main () { #if defined(_SC_KERNEL_BITS) long bits = sysconf(_SC_KERNEL_BITS); #endif long cpu = sysconf (_SC_CPU_VERSION); switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0"); break; case CPU_PA_RISC1_1: puts ("hppa1.1"); break; case CPU_PA_RISC2_0: #if defined(_SC_KERNEL_BITS) switch (bits) { case 64: puts ("hppa2.0w"); break; case 32: puts ("hppa2.0n"); break; default: puts ("hppa2.0"); break; } break; #else /* !defined(_SC_KERNEL_BITS) */ puts ("hppa2.0"); break; #endif default: puts ("hppa1.0"); break; } exit (0); } EOF (CCOPTS= $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null) && HP_ARCH=`$dummy` test -z "$HP_ARCH" && HP_ARCH=hppa fi ;; esac if [ ${HP_ARCH} = "hppa2.0w" ] then eval $set_cc_for_build # hppa2.0w-hp-hpux* has a 64-bit kernel and a compiler generating # 32-bit code. hppa64-hp-hpux* has the same kernel and a compiler # generating 64-bit code. GNU and HP use different nomenclature: # # $ CC_FOR_BUILD=cc ./config.guess # => hppa2.0w-hp-hpux11.23 # $ CC_FOR_BUILD="cc +DA2.0w" ./config.guess # => hppa64-hp-hpux11.23 if echo __LP64__ | (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | grep -q __LP64__ then HP_ARCH="hppa2.0w" else HP_ARCH="hppa64" fi fi echo ${HP_ARCH}-hp-hpux${HPUX_REV} exit ;; ia64:HP-UX:*:*) HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'` echo ia64-hp-hpux${HPUX_REV} exit ;; 3050*:HI-UX:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #include int main () { long cpu = sysconf (_SC_CPU_VERSION); /* The order matters, because CPU_IS_HP_MC68K erroneously returns true for CPU_PA_RISC1_0. CPU_IS_PA_RISC returns correct results, however. */ if (CPU_IS_PA_RISC (cpu)) { switch (cpu) { case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break; case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break; case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break; default: puts ("hppa-hitachi-hiuxwe2"); break; } } else if (CPU_IS_HP_MC68K (cpu)) puts ("m68k-hitachi-hiuxwe2"); else puts ("unknown-hitachi-hiuxwe2"); exit (0); } EOF $CC_FOR_BUILD -o $dummy $dummy.c && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } echo unknown-hitachi-hiuxwe2 exit ;; 9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* ) echo hppa1.1-hp-bsd exit ;; 9000/8??:4.3bsd:*:*) echo hppa1.0-hp-bsd exit ;; *9??*:MPE/iX:*:* | *3000*:MPE/iX:*:*) echo hppa1.0-hp-mpeix exit ;; hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* ) echo hppa1.1-hp-osf exit ;; hp8??:OSF1:*:*) echo hppa1.0-hp-osf exit ;; i*86:OSF1:*:*) if [ -x /usr/sbin/sysversion ] ; then echo ${UNAME_MACHINE}-unknown-osf1mk else echo ${UNAME_MACHINE}-unknown-osf1 fi exit ;; parisc*:Lites*:*:*) echo hppa1.1-hp-lites exit ;; C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*) echo c1-convex-bsd exit ;; C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*) echo c34-convex-bsd exit ;; C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*) echo c38-convex-bsd exit ;; C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*) echo c4-convex-bsd exit ;; CRAY*Y-MP:*:*:*) echo ymp-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*[A-Z]90:*:*:*) echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \ | sed -e 's/CRAY.*\([A-Z]90\)/\1/' \ -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/ \ -e 's/\.[^.]*$/.X/' exit ;; CRAY*TS:*:*:*) echo t90-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*T3E:*:*:*) echo alphaev5-cray-unicosmk${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; CRAY*SV1:*:*:*) echo sv1-cray-unicos${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; *:UNICOS/mp:*:*) echo craynv-cray-unicosmp${UNAME_RELEASE} | sed -e 's/\.[^.]*$/.X/' exit ;; F30[01]:UNIX_System_V:*:* | F700:UNIX_System_V:*:*) FUJITSU_PROC=`uname -m | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz'` FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'` echo "${FUJITSU_PROC}-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; 5000:UNIX_System_V:4.*:*) FUJITSU_SYS=`uname -p | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/\///'` FUJITSU_REL=`echo ${UNAME_RELEASE} | tr 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 'abcdefghijklmnopqrstuvwxyz' | sed -e 's/ /_/'` echo "sparc-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}" exit ;; i*86:BSD/386:*:* | i*86:BSD/OS:*:* | *:Ascend\ Embedded/OS:*:*) echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE} exit ;; sparc*:BSD/OS:*:*) echo sparc-unknown-bsdi${UNAME_RELEASE} exit ;; *:BSD/OS:*:*) echo ${UNAME_MACHINE}-unknown-bsdi${UNAME_RELEASE} exit ;; *:FreeBSD:*:*) UNAME_PROCESSOR=`/usr/bin/uname -p` case ${UNAME_PROCESSOR} in amd64) echo x86_64-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; *) echo ${UNAME_PROCESSOR}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` ;; esac exit ;; i*:CYGWIN*:*) echo ${UNAME_MACHINE}-pc-cygwin exit ;; *:MINGW64*:*) echo ${UNAME_MACHINE}-pc-mingw64 exit ;; *:MINGW*:*) echo ${UNAME_MACHINE}-pc-mingw32 exit ;; i*:MSYS*:*) echo ${UNAME_MACHINE}-pc-msys exit ;; i*:windows32*:*) # uname -m includes "-pc" on this system. echo ${UNAME_MACHINE}-mingw32 exit ;; i*:PW*:*) echo ${UNAME_MACHINE}-pc-pw32 exit ;; *:Interix*:*) case ${UNAME_MACHINE} in x86) echo i586-pc-interix${UNAME_RELEASE} exit ;; authenticamd | genuineintel | EM64T) echo x86_64-unknown-interix${UNAME_RELEASE} exit ;; IA64) echo ia64-unknown-interix${UNAME_RELEASE} exit ;; esac ;; [345]86:Windows_95:* | [345]86:Windows_98:* | [345]86:Windows_NT:*) echo i${UNAME_MACHINE}-pc-mks exit ;; 8664:Windows_NT:*) echo x86_64-pc-mks exit ;; i*:Windows_NT*:* | Pentium*:Windows_NT*:*) # How do we know it's Interix rather than the generic POSIX subsystem? # It also conflicts with pre-2.0 versions of AT&T UWIN. Should we # UNAME_MACHINE based on the output of uname instead of i386? echo i586-pc-interix exit ;; i*:UWIN*:*) echo ${UNAME_MACHINE}-pc-uwin exit ;; amd64:CYGWIN*:*:* | x86_64:CYGWIN*:*:*) echo x86_64-unknown-cygwin exit ;; p*:CYGWIN*:*) echo powerpcle-unknown-cygwin exit ;; prep*:SunOS:5.*:*) echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'` exit ;; *:GNU:*:*) # the GNU system echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-${LIBC}`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'` exit ;; *:GNU/*:*:*) # other systems with GNU libc and userland echo ${UNAME_MACHINE}-unknown-`echo ${UNAME_SYSTEM} | sed 's,^[^/]*/,,' | tr '[A-Z]' '[a-z]'``echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`-${LIBC} exit ;; i*86:Minix:*:*) echo ${UNAME_MACHINE}-pc-minix exit ;; aarch64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; aarch64_be:Linux:*:*) UNAME_MACHINE=aarch64_be echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; alpha:Linux:*:*) case `sed -n '/^cpu model/s/^.*: \(.*\)/\1/p' < /proc/cpuinfo` in EV5) UNAME_MACHINE=alphaev5 ;; EV56) UNAME_MACHINE=alphaev56 ;; PCA56) UNAME_MACHINE=alphapca56 ;; PCA57) UNAME_MACHINE=alphapca56 ;; EV6) UNAME_MACHINE=alphaev6 ;; EV67) UNAME_MACHINE=alphaev67 ;; EV68*) UNAME_MACHINE=alphaev68 ;; esac objdump --private-headers /bin/sh | grep -q ld.so.1 if test "$?" = 0 ; then LIBC="gnulibc1" ; fi echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; arc:Linux:*:* | arceb:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; arm*:Linux:*:*) eval $set_cc_for_build if echo __ARM_EABI__ | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_EABI__ then echo ${UNAME_MACHINE}-unknown-linux-${LIBC} else if echo __ARM_PCS_VFP | $CC_FOR_BUILD -E - 2>/dev/null \ | grep -q __ARM_PCS_VFP then echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabi else echo ${UNAME_MACHINE}-unknown-linux-${LIBC}eabihf fi fi exit ;; avr32*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; cris:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-${LIBC} exit ;; crisv32:Linux:*:*) echo ${UNAME_MACHINE}-axis-linux-${LIBC} exit ;; frv:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; hexagon:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; i*86:Linux:*:*) echo ${UNAME_MACHINE}-pc-linux-${LIBC} exit ;; ia64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; m32r*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; m68*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; mips:Linux:*:* | mips64:Linux:*:*) eval $set_cc_for_build sed 's/^ //' << EOF >$dummy.c #undef CPU #undef ${UNAME_MACHINE} #undef ${UNAME_MACHINE}el #if defined(__MIPSEL__) || defined(__MIPSEL) || defined(_MIPSEL) || defined(MIPSEL) CPU=${UNAME_MACHINE}el #else #if defined(__MIPSEB__) || defined(__MIPSEB) || defined(_MIPSEB) || defined(MIPSEB) CPU=${UNAME_MACHINE} #else CPU= #endif #endif EOF eval `$CC_FOR_BUILD -E $dummy.c 2>/dev/null | grep '^CPU'` test x"${CPU}" != x && { echo "${CPU}-unknown-linux-${LIBC}"; exit; } ;; or1k:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; or32:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; padre:Linux:*:*) echo sparc-unknown-linux-${LIBC} exit ;; parisc64:Linux:*:* | hppa64:Linux:*:*) echo hppa64-unknown-linux-${LIBC} exit ;; parisc:Linux:*:* | hppa:Linux:*:*) # Look for CPU level case `grep '^cpu[^a-z]*:' /proc/cpuinfo 2>/dev/null | cut -d' ' -f2` in PA7*) echo hppa1.1-unknown-linux-${LIBC} ;; PA8*) echo hppa2.0-unknown-linux-${LIBC} ;; *) echo hppa-unknown-linux-${LIBC} ;; esac exit ;; ppc64:Linux:*:*) echo powerpc64-unknown-linux-${LIBC} exit ;; ppc:Linux:*:*) echo powerpc-unknown-linux-${LIBC} exit ;; ppc64le:Linux:*:*) echo powerpc64le-unknown-linux-${LIBC} exit ;; ppcle:Linux:*:*) echo powerpcle-unknown-linux-${LIBC} exit ;; s390:Linux:*:* | s390x:Linux:*:*) echo ${UNAME_MACHINE}-ibm-linux-${LIBC} exit ;; sh64*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; sh*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; sparc:Linux:*:* | sparc64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; tile*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; vax:Linux:*:*) echo ${UNAME_MACHINE}-dec-linux-${LIBC} exit ;; x86_64:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; xtensa*:Linux:*:*) echo ${UNAME_MACHINE}-unknown-linux-${LIBC} exit ;; i*86:DYNIX/ptx:4*:*) # ptx 4.0 does uname -s correctly, with DYNIX/ptx in there. # earlier versions are messed up and put the nodename in both # sysname and nodename. echo i386-sequent-sysv4 exit ;; i*86:UNIX_SV:4.2MP:2.*) # Unixware is an offshoot of SVR4, but it has its own version # number series starting with 2... # I am not positive that other SVR4 systems won't match this, # I just have to hope. -- rms. # Use sysv4.2uw... so that sysv4* matches it. echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION} exit ;; i*86:OS/2:*:*) # If we were able to find `uname', then EMX Unix compatibility # is probably installed. echo ${UNAME_MACHINE}-pc-os2-emx exit ;; i*86:XTS-300:*:STOP) echo ${UNAME_MACHINE}-unknown-stop exit ;; i*86:atheos:*:*) echo ${UNAME_MACHINE}-unknown-atheos exit ;; i*86:syllable:*:*) echo ${UNAME_MACHINE}-pc-syllable exit ;; i*86:LynxOS:2.*:* | i*86:LynxOS:3.[01]*:* | i*86:LynxOS:4.[02]*:*) echo i386-unknown-lynxos${UNAME_RELEASE} exit ;; i*86:*DOS:*:*) echo ${UNAME_MACHINE}-pc-msdosdjgpp exit ;; i*86:*:4.*:* | i*86:SYSTEM_V:4.*:*) UNAME_REL=`echo ${UNAME_RELEASE} | sed 's/\/MP$//'` if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then echo ${UNAME_MACHINE}-univel-sysv${UNAME_REL} else echo ${UNAME_MACHINE}-pc-sysv${UNAME_REL} fi exit ;; i*86:*:5:[678]*) # UnixWare 7.x, OpenUNIX and OpenServer 6. case `/bin/uname -X | grep "^Machine"` in *486*) UNAME_MACHINE=i486 ;; *Pentium) UNAME_MACHINE=i586 ;; *Pent*|*Celeron) UNAME_MACHINE=i686 ;; esac echo ${UNAME_MACHINE}-unknown-sysv${UNAME_RELEASE}${UNAME_SYSTEM}${UNAME_VERSION} exit ;; i*86:*:3.2:*) if test -f /usr/options/cb.name; then UNAME_REL=`sed -n 's/.*Version //p' /dev/null >/dev/null ; then UNAME_REL=`(/bin/uname -X|grep Release|sed -e 's/.*= //')` (/bin/uname -X|grep i80486 >/dev/null) && UNAME_MACHINE=i486 (/bin/uname -X|grep '^Machine.*Pentium' >/dev/null) \ && UNAME_MACHINE=i586 (/bin/uname -X|grep '^Machine.*Pent *II' >/dev/null) \ && UNAME_MACHINE=i686 (/bin/uname -X|grep '^Machine.*Pentium Pro' >/dev/null) \ && UNAME_MACHINE=i686 echo ${UNAME_MACHINE}-pc-sco$UNAME_REL else echo ${UNAME_MACHINE}-pc-sysv32 fi exit ;; pc:*:*:*) # Left here for compatibility: # uname -m prints for DJGPP always 'pc', but it prints nothing about # the processor, so we play safe by assuming i586. # Note: whatever this is, it MUST be the same as what config.sub # prints for the "djgpp" host, or else GDB configury will decide that # this is a cross-build. echo i586-pc-msdosdjgpp exit ;; Intel:Mach:3*:*) echo i386-pc-mach3 exit ;; paragon:*:*:*) echo i860-intel-osf1 exit ;; i860:*:4.*:*) # i860-SVR4 if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4 else # Add other i860-SVR4 vendors below as they are discovered. echo i860-unknown-sysv${UNAME_RELEASE} # Unknown i860-SVR4 fi exit ;; mini*:CTIX:SYS*5:*) # "miniframe" echo m68010-convergent-sysv exit ;; mc68k:UNIX:SYSTEM5:3.51m) echo m68k-convergent-sysv exit ;; M680?0:D-NIX:5.3:*) echo m68k-diab-dnix exit ;; M68*:*:R3V[5678]*:*) test -r /sysV68 && { echo 'm68k-motorola-sysv'; exit; } ;; 3[345]??:*:4.0:3.0 | 3[34]??A:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 3[34]??/*:*:4.0:3.0 | 4400:*:4.0:3.0 | 4850:*:4.0:3.0 | SKA40:*:4.0:3.0 | SDS2:*:4.0:3.0 | SHG2:*:4.0:3.0 | S7501*:*:4.0:3.0) OS_REL='' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; 3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*) /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4; exit; } ;; NCR*:*:4.2:* | MPRAS*:*:4.2:*) OS_REL='.3' test -r /etc/.relid \ && OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid` /bin/uname -p 2>/dev/null | grep 86 >/dev/null \ && { echo i486-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } /bin/uname -p 2>/dev/null | /bin/grep pteron >/dev/null \ && { echo i586-ncr-sysv4.3${OS_REL}; exit; } ;; m68*:LynxOS:2.*:* | m68*:LynxOS:3.0*:*) echo m68k-unknown-lynxos${UNAME_RELEASE} exit ;; mc68030:UNIX_System_V:4.*:*) echo m68k-atari-sysv4 exit ;; TSUNAMI:LynxOS:2.*:*) echo sparc-unknown-lynxos${UNAME_RELEASE} exit ;; rs6000:LynxOS:2.*:*) echo rs6000-unknown-lynxos${UNAME_RELEASE} exit ;; PowerPC:LynxOS:2.*:* | PowerPC:LynxOS:3.[01]*:* | PowerPC:LynxOS:4.[02]*:*) echo powerpc-unknown-lynxos${UNAME_RELEASE} exit ;; SM[BE]S:UNIX_SV:*:*) echo mips-dde-sysv${UNAME_RELEASE} exit ;; RM*:ReliantUNIX-*:*:*) echo mips-sni-sysv4 exit ;; RM*:SINIX-*:*:*) echo mips-sni-sysv4 exit ;; *:SINIX-*:*:*) if uname -p 2>/dev/null >/dev/null ; then UNAME_MACHINE=`(uname -p) 2>/dev/null` echo ${UNAME_MACHINE}-sni-sysv4 else echo ns32k-sni-sysv fi exit ;; PENTIUM:*:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort # says echo i586-unisys-sysv4 exit ;; *:UNIX_System_V:4*:FTX*) # From Gerald Hewes . # How about differentiating between stratus architectures? -djm echo hppa1.1-stratus-sysv4 exit ;; *:*:*:FTX*) # From seanf@swdc.stratus.com. echo i860-stratus-sysv4 exit ;; i*86:VOS:*:*) # From Paul.Green@stratus.com. echo ${UNAME_MACHINE}-stratus-vos exit ;; *:VOS:*:*) # From Paul.Green@stratus.com. echo hppa1.1-stratus-vos exit ;; mc68*:A/UX:*:*) echo m68k-apple-aux${UNAME_RELEASE} exit ;; news*:NEWS-OS:6*:*) echo mips-sony-newsos6 exit ;; R[34]000:*System_V*:*:* | R4000:UNIX_SYSV:*:* | R*000:UNIX_SV:*:*) if [ -d /usr/nec ]; then echo mips-nec-sysv${UNAME_RELEASE} else echo mips-unknown-sysv${UNAME_RELEASE} fi exit ;; BeBox:BeOS:*:*) # BeOS running on hardware made by Be, PPC only. echo powerpc-be-beos exit ;; BeMac:BeOS:*:*) # BeOS running on Mac or Mac clone, PPC only. echo powerpc-apple-beos exit ;; BePC:BeOS:*:*) # BeOS running on Intel PC compatible. echo i586-pc-beos exit ;; BePC:Haiku:*:*) # Haiku running on Intel PC compatible. echo i586-pc-haiku exit ;; x86_64:Haiku:*:*) echo x86_64-unknown-haiku exit ;; SX-4:SUPER-UX:*:*) echo sx4-nec-superux${UNAME_RELEASE} exit ;; SX-5:SUPER-UX:*:*) echo sx5-nec-superux${UNAME_RELEASE} exit ;; SX-6:SUPER-UX:*:*) echo sx6-nec-superux${UNAME_RELEASE} exit ;; SX-7:SUPER-UX:*:*) echo sx7-nec-superux${UNAME_RELEASE} exit ;; SX-8:SUPER-UX:*:*) echo sx8-nec-superux${UNAME_RELEASE} exit ;; SX-8R:SUPER-UX:*:*) echo sx8r-nec-superux${UNAME_RELEASE} exit ;; Power*:Rhapsody:*:*) echo powerpc-apple-rhapsody${UNAME_RELEASE} exit ;; *:Rhapsody:*:*) echo ${UNAME_MACHINE}-apple-rhapsody${UNAME_RELEASE} exit ;; *:Darwin:*:*) UNAME_PROCESSOR=`uname -p` || UNAME_PROCESSOR=unknown eval $set_cc_for_build if test "$UNAME_PROCESSOR" = unknown ; then UNAME_PROCESSOR=powerpc fi if [ "$CC_FOR_BUILD" != 'no_compiler_found' ]; then if (echo '#ifdef __LP64__'; echo IS_64BIT_ARCH; echo '#endif') | \ (CCOPTS= $CC_FOR_BUILD -E - 2>/dev/null) | \ grep IS_64BIT_ARCH >/dev/null then case $UNAME_PROCESSOR in i386) UNAME_PROCESSOR=x86_64 ;; powerpc) UNAME_PROCESSOR=powerpc64 ;; esac fi fi echo ${UNAME_PROCESSOR}-apple-darwin${UNAME_RELEASE} exit ;; *:procnto*:*:* | *:QNX:[0123456789]*:*) UNAME_PROCESSOR=`uname -p` if test "$UNAME_PROCESSOR" = "x86"; then UNAME_PROCESSOR=i386 UNAME_MACHINE=pc fi echo ${UNAME_PROCESSOR}-${UNAME_MACHINE}-nto-qnx${UNAME_RELEASE} exit ;; *:QNX:*:4*) echo i386-pc-qnx exit ;; NEO-?:NONSTOP_KERNEL:*:*) echo neo-tandem-nsk${UNAME_RELEASE} exit ;; NSE-*:NONSTOP_KERNEL:*:*) echo nse-tandem-nsk${UNAME_RELEASE} exit ;; NSR-?:NONSTOP_KERNEL:*:*) echo nsr-tandem-nsk${UNAME_RELEASE} exit ;; *:NonStop-UX:*:*) echo mips-compaq-nonstopux exit ;; BS2000:POSIX*:*:*) echo bs2000-siemens-sysv exit ;; DS/*:UNIX_System_V:*:*) echo ${UNAME_MACHINE}-${UNAME_SYSTEM}-${UNAME_RELEASE} exit ;; *:Plan9:*:*) # "uname -m" is not consistent, so use $cputype instead. 386 # is converted to i386 for consistency with other x86 # operating systems. if test "$cputype" = "386"; then UNAME_MACHINE=i386 else UNAME_MACHINE="$cputype" fi echo ${UNAME_MACHINE}-unknown-plan9 exit ;; *:TOPS-10:*:*) echo pdp10-unknown-tops10 exit ;; *:TENEX:*:*) echo pdp10-unknown-tenex exit ;; KS10:TOPS-20:*:* | KL10:TOPS-20:*:* | TYPE4:TOPS-20:*:*) echo pdp10-dec-tops20 exit ;; XKL-1:TOPS-20:*:* | TYPE5:TOPS-20:*:*) echo pdp10-xkl-tops20 exit ;; *:TOPS-20:*:*) echo pdp10-unknown-tops20 exit ;; *:ITS:*:*) echo pdp10-unknown-its exit ;; SEI:*:*:SEIUX) echo mips-sei-seiux${UNAME_RELEASE} exit ;; *:DragonFly:*:*) echo ${UNAME_MACHINE}-unknown-dragonfly`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'` exit ;; *:*VMS:*:*) UNAME_MACHINE=`(uname -p) 2>/dev/null` case "${UNAME_MACHINE}" in A*) echo alpha-dec-vms ; exit ;; I*) echo ia64-dec-vms ; exit ;; V*) echo vax-dec-vms ; exit ;; esac ;; *:XENIX:*:SysV) echo i386-pc-xenix exit ;; i*86:skyos:*:*) echo ${UNAME_MACHINE}-pc-skyos`echo ${UNAME_RELEASE}` | sed -e 's/ .*$//' exit ;; i*86:rdos:*:*) echo ${UNAME_MACHINE}-pc-rdos exit ;; i*86:AROS:*:*) echo ${UNAME_MACHINE}-pc-aros exit ;; x86_64:VMkernel:*:*) echo ${UNAME_MACHINE}-unknown-esx exit ;; esac eval $set_cc_for_build cat >$dummy.c < # include #endif main () { #if defined (sony) #if defined (MIPSEB) /* BFD wants "bsd" instead of "newsos". Perhaps BFD should be changed, I don't know.... */ printf ("mips-sony-bsd\n"); exit (0); #else #include printf ("m68k-sony-newsos%s\n", #ifdef NEWSOS4 "4" #else "" #endif ); exit (0); #endif #endif #if defined (__arm) && defined (__acorn) && defined (__unix) printf ("arm-acorn-riscix\n"); exit (0); #endif #if defined (hp300) && !defined (hpux) printf ("m68k-hp-bsd\n"); exit (0); #endif #if defined (NeXT) #if !defined (__ARCHITECTURE__) #define __ARCHITECTURE__ "m68k" #endif int version; version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`; if (version < 4) printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version); else printf ("%s-next-openstep%d\n", __ARCHITECTURE__, version); exit (0); #endif #if defined (MULTIMAX) || defined (n16) #if defined (UMAXV) printf ("ns32k-encore-sysv\n"); exit (0); #else #if defined (CMU) printf ("ns32k-encore-mach\n"); exit (0); #else printf ("ns32k-encore-bsd\n"); exit (0); #endif #endif #endif #if defined (__386BSD__) printf ("i386-pc-bsd\n"); exit (0); #endif #if defined (sequent) #if defined (i386) printf ("i386-sequent-dynix\n"); exit (0); #endif #if defined (ns32000) printf ("ns32k-sequent-dynix\n"); exit (0); #endif #endif #if defined (_SEQUENT_) struct utsname un; uname(&un); if (strncmp(un.version, "V2", 2) == 0) { printf ("i386-sequent-ptx2\n"); exit (0); } if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */ printf ("i386-sequent-ptx1\n"); exit (0); } printf ("i386-sequent-ptx\n"); exit (0); #endif #if defined (vax) # if !defined (ultrix) # include # if defined (BSD) # if BSD == 43 printf ("vax-dec-bsd4.3\n"); exit (0); # else # if BSD == 199006 printf ("vax-dec-bsd4.3reno\n"); exit (0); # else printf ("vax-dec-bsd\n"); exit (0); # endif # endif # else printf ("vax-dec-bsd\n"); exit (0); # endif # else printf ("vax-dec-ultrix\n"); exit (0); # endif #endif #if defined (alliant) && defined (i860) printf ("i860-alliant-bsd\n"); exit (0); #endif exit (1); } EOF $CC_FOR_BUILD -o $dummy $dummy.c 2>/dev/null && SYSTEM_NAME=`$dummy` && { echo "$SYSTEM_NAME"; exit; } # Apollos put the system type in the environment. test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit; } # Convex versions that predate uname can use getsysinfo(1) if [ -x /usr/convex/getsysinfo ] then case `getsysinfo -f cpu_type` in c1*) echo c1-convex-bsd exit ;; c2*) if getsysinfo -f scalar_acc then echo c32-convex-bsd else echo c2-convex-bsd fi exit ;; c34*) echo c34-convex-bsd exit ;; c38*) echo c38-convex-bsd exit ;; c4*) echo c4-convex-bsd exit ;; esac fi cat >&2 < in order to provide the needed information to handle your system. config.guess timestamp = $timestamp uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null` /bin/uname -X = `(/bin/uname -X) 2>/dev/null` hostinfo = `(hostinfo) 2>/dev/null` /bin/universe = `(/bin/universe) 2>/dev/null` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null` /bin/arch = `(/bin/arch) 2>/dev/null` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null` UNAME_MACHINE = ${UNAME_MACHINE} UNAME_RELEASE = ${UNAME_RELEASE} UNAME_SYSTEM = ${UNAME_SYSTEM} UNAME_VERSION = ${UNAME_VERSION} EOF exit 1 # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "timestamp='" # time-stamp-format: "%:y-%02m-%02d" # time-stamp-end: "'" # End: isl-0.16.1/isl_factorization.c0000664000175000017500000001772712645737060013230 00000000000000/* * Copyright 2005-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include static __isl_give isl_factorizer *isl_factorizer_alloc( __isl_take isl_morph *morph, int n_group) { isl_factorizer *f = NULL; int *len = NULL; if (!morph) return NULL; if (n_group > 0) { len = isl_alloc_array(morph->dom->ctx, int, n_group); if (!len) goto error; } f = isl_alloc_type(morph->dom->ctx, struct isl_factorizer); if (!f) goto error; f->morph = morph; f->n_group = n_group; f->len = len; return f; error: free(len); isl_morph_free(morph); return NULL; } void isl_factorizer_free(__isl_take isl_factorizer *f) { if (!f) return; isl_morph_free(f->morph); free(f->len); free(f); } void isl_factorizer_dump(__isl_take isl_factorizer *f) { int i; if (!f) return; isl_morph_print_internal(f->morph, stderr); fprintf(stderr, "["); for (i = 0; i < f->n_group; ++i) { if (i) fprintf(stderr, ", "); fprintf(stderr, "%d", f->len[i]); } fprintf(stderr, "]\n"); } __isl_give isl_factorizer *isl_factorizer_identity(__isl_keep isl_basic_set *bset) { return isl_factorizer_alloc(isl_morph_identity(bset), 0); } __isl_give isl_factorizer *isl_factorizer_groups(__isl_keep isl_basic_set *bset, __isl_take isl_mat *Q, __isl_take isl_mat *U, int n, int *len) { int i; unsigned nvar; unsigned ovar; isl_space *dim; isl_basic_set *dom; isl_basic_set *ran; isl_morph *morph; isl_factorizer *f; isl_mat *id; if (!bset || !Q || !U) goto error; ovar = 1 + isl_space_offset(bset->dim, isl_dim_set); id = isl_mat_identity(bset->ctx, ovar); Q = isl_mat_diagonal(isl_mat_copy(id), Q); U = isl_mat_diagonal(id, U); nvar = isl_basic_set_dim(bset, isl_dim_set); dim = isl_basic_set_get_space(bset); dom = isl_basic_set_universe(isl_space_copy(dim)); dim = isl_space_drop_dims(dim, isl_dim_set, 0, nvar); dim = isl_space_add_dims(dim, isl_dim_set, nvar); ran = isl_basic_set_universe(dim); morph = isl_morph_alloc(dom, ran, Q, U); f = isl_factorizer_alloc(morph, n); if (!f) return NULL; for (i = 0; i < n; ++i) f->len[i] = len[i]; return f; error: isl_mat_free(Q); isl_mat_free(U); return NULL; } struct isl_factor_groups { int *pos; /* for each column: row position of pivot */ int *group; /* group to which a column belongs */ int *cnt; /* number of columns in the group */ int *rowgroup; /* group to which a constraint belongs */ }; /* Initialize isl_factor_groups structure: find pivot row positions, * each column initially belongs to its own group and the groups * of the constraints are still unknown. */ static int init_groups(struct isl_factor_groups *g, __isl_keep isl_mat *H) { int i, j; if (!H) return -1; g->pos = isl_alloc_array(H->ctx, int, H->n_col); g->group = isl_alloc_array(H->ctx, int, H->n_col); g->cnt = isl_alloc_array(H->ctx, int, H->n_col); g->rowgroup = isl_alloc_array(H->ctx, int, H->n_row); if (!g->pos || !g->group || !g->cnt || !g->rowgroup) return -1; for (i = 0; i < H->n_row; ++i) g->rowgroup[i] = -1; for (i = 0, j = 0; i < H->n_col; ++i) { for ( ; j < H->n_row; ++j) if (!isl_int_is_zero(H->row[j][i])) break; g->pos[i] = j; } for (i = 0; i < H->n_col; ++i) { g->group[i] = i; g->cnt[i] = 1; } return 0; } /* Update group[k] to the group column k belongs to. * When merging two groups, only the group of the current * group leader is changed. Here we change the group of * the other members to also point to the group that the * old group leader now points to. */ static void update_group(struct isl_factor_groups *g, int k) { int p = g->group[k]; while (g->cnt[p] == 0) p = g->group[p]; g->group[k] = p; } /* Merge group i with all groups of the subsequent columns * with non-zero coefficients in row j of H. * (The previous columns are all zero; otherwise we would have handled * the row before.) */ static int update_group_i_with_row_j(struct isl_factor_groups *g, int i, int j, __isl_keep isl_mat *H) { int k; g->rowgroup[j] = g->group[i]; for (k = i + 1; k < H->n_col && j >= g->pos[k]; ++k) { update_group(g, k); update_group(g, i); if (g->group[k] != g->group[i] && !isl_int_is_zero(H->row[j][k])) { isl_assert(H->ctx, g->cnt[g->group[k]] != 0, return -1); isl_assert(H->ctx, g->cnt[g->group[i]] != 0, return -1); if (g->group[i] < g->group[k]) { g->cnt[g->group[i]] += g->cnt[g->group[k]]; g->cnt[g->group[k]] = 0; g->group[g->group[k]] = g->group[i]; } else { g->cnt[g->group[k]] += g->cnt[g->group[i]]; g->cnt[g->group[i]] = 0; g->group[g->group[i]] = g->group[k]; } } } return 0; } /* Update the group information based on the constraint matrix. */ static int update_groups(struct isl_factor_groups *g, __isl_keep isl_mat *H) { int i, j; for (i = 0; i < H->n_col && g->cnt[0] < H->n_col; ++i) { if (g->pos[i] == H->n_row) continue; /* A line direction */ if (g->rowgroup[g->pos[i]] == -1) g->rowgroup[g->pos[i]] = i; for (j = g->pos[i] + 1; j < H->n_row; ++j) { if (isl_int_is_zero(H->row[j][i])) continue; if (g->rowgroup[j] != -1) continue; if (update_group_i_with_row_j(g, i, j, H) < 0) return -1; } } for (i = 1; i < H->n_col; ++i) update_group(g, i); return 0; } static void clear_groups(struct isl_factor_groups *g) { if (!g) return; free(g->pos); free(g->group); free(g->cnt); free(g->rowgroup); } /* Determine if the set variables of the basic set can be factorized and * return the results in an isl_factorizer. * * The algorithm works by first computing the Hermite normal form * and then grouping columns linked by one or more constraints together, * where a constraints "links" two or more columns if the constraint * has nonzero coefficients in the columns. */ __isl_give isl_factorizer *isl_basic_set_factorizer( __isl_keep isl_basic_set *bset) { int i, j, n, done; isl_mat *H, *U, *Q; unsigned nvar; struct isl_factor_groups g = { 0 }; isl_factorizer *f; if (!bset) return NULL; isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0, return NULL); nvar = isl_basic_set_dim(bset, isl_dim_set); if (nvar <= 1) return isl_factorizer_identity(bset); H = isl_mat_alloc(bset->ctx, bset->n_eq + bset->n_ineq, nvar); if (!H) return NULL; isl_mat_sub_copy(bset->ctx, H->row, bset->eq, bset->n_eq, 0, 1 + isl_space_offset(bset->dim, isl_dim_set), nvar); isl_mat_sub_copy(bset->ctx, H->row + bset->n_eq, bset->ineq, bset->n_ineq, 0, 1 + isl_space_offset(bset->dim, isl_dim_set), nvar); H = isl_mat_left_hermite(H, 0, &U, &Q); if (init_groups(&g, H) < 0) goto error; if (update_groups(&g, H) < 0) goto error; if (g.cnt[0] == nvar) { isl_mat_free(H); isl_mat_free(U); isl_mat_free(Q); clear_groups(&g); return isl_factorizer_identity(bset); } done = 0; n = 0; while (done != nvar) { int group = g.group[done]; for (i = 1; i < g.cnt[group]; ++i) { if (g.group[done + i] == group) continue; for (j = done + g.cnt[group]; j < nvar; ++j) if (g.group[j] == group) break; if (j == nvar) isl_die(bset->ctx, isl_error_internal, "internal error", goto error); g.group[j] = g.group[done + i]; Q = isl_mat_swap_rows(Q, done + i, j); U = isl_mat_swap_cols(U, done + i, j); } done += g.cnt[group]; g.pos[n++] = g.cnt[group]; } f = isl_factorizer_groups(bset, Q, U, n, g.pos); isl_mat_free(H); clear_groups(&g); return f; error: isl_mat_free(H); isl_mat_free(U); isl_mat_free(Q); clear_groups(&g); return NULL; } isl-0.16.1/isl_map.c0000664000175000017500000120164412645737514011127 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include "isl_space_private.h" #include "isl_equalities.h" #include #include #include #include #include #include "isl_sample.h" #include #include "isl_tab.h" #include #include #include #include #include #include #include #include #include #include #include static unsigned n(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return dim->nparam; case isl_dim_in: return dim->n_in; case isl_dim_out: return dim->n_out; case isl_dim_all: return dim->nparam + dim->n_in + dim->n_out; default: return 0; } } static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; default: return 0; } } unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap, enum isl_dim_type type) { if (!bmap) return 0; switch (type) { case isl_dim_cst: return 1; case isl_dim_param: case isl_dim_in: case isl_dim_out: return isl_space_dim(bmap->dim, type); case isl_dim_div: return bmap->n_div; case isl_dim_all: return isl_basic_map_total_dim(bmap); default: return 0; } } unsigned isl_map_dim(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? n(map->dim, type) : 0; } unsigned isl_set_dim(__isl_keep isl_set *set, enum isl_dim_type type) { return set ? n(set->dim, type) : 0; } unsigned isl_basic_map_offset(struct isl_basic_map *bmap, enum isl_dim_type type) { isl_space *dim = bmap->dim; switch (type) { case isl_dim_cst: return 0; case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; case isl_dim_div: return 1 + dim->nparam + dim->n_in + dim->n_out; default: return 0; } } unsigned isl_basic_set_offset(struct isl_basic_set *bset, enum isl_dim_type type) { return isl_basic_map_offset(bset, type); } static unsigned map_offset(struct isl_map *map, enum isl_dim_type type) { return pos(map->dim, type); } unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset, enum isl_dim_type type) { return isl_basic_map_dim(bset, type); } unsigned isl_basic_set_n_dim(__isl_keep isl_basic_set *bset) { return isl_basic_set_dim(bset, isl_dim_set); } unsigned isl_basic_set_n_param(__isl_keep isl_basic_set *bset) { return isl_basic_set_dim(bset, isl_dim_param); } unsigned isl_basic_set_total_dim(const struct isl_basic_set *bset) { if (!bset) return 0; return isl_space_dim(bset->dim, isl_dim_all) + bset->n_div; } unsigned isl_set_n_dim(__isl_keep isl_set *set) { return isl_set_dim(set, isl_dim_set); } unsigned isl_set_n_param(__isl_keep isl_set *set) { return isl_set_dim(set, isl_dim_param); } unsigned isl_basic_map_n_in(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->n_in : 0; } unsigned isl_basic_map_n_out(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->n_out : 0; } unsigned isl_basic_map_n_param(const struct isl_basic_map *bmap) { return bmap ? bmap->dim->nparam : 0; } unsigned isl_basic_map_n_div(const struct isl_basic_map *bmap) { return bmap ? bmap->n_div : 0; } unsigned isl_basic_map_total_dim(const struct isl_basic_map *bmap) { return bmap ? isl_space_dim(bmap->dim, isl_dim_all) + bmap->n_div : 0; } unsigned isl_map_n_in(const struct isl_map *map) { return map ? map->dim->n_in : 0; } unsigned isl_map_n_out(const struct isl_map *map) { return map ? map->dim->n_out : 0; } unsigned isl_map_n_param(const struct isl_map *map) { return map ? map->dim->nparam : 0; } int isl_map_compatible_domain(struct isl_map *map, struct isl_set *set) { int m; if (!map || !set) return -1; m = isl_space_match(map->dim, isl_dim_param, set->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(map->dim, isl_dim_in, set->dim, isl_dim_set); } int isl_basic_map_compatible_domain(struct isl_basic_map *bmap, struct isl_basic_set *bset) { int m; if (!bmap || !bset) return -1; m = isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bset->dim, isl_dim_set); } int isl_map_compatible_range(__isl_keep isl_map *map, __isl_keep isl_set *set) { int m; if (!map || !set) return -1; m = isl_space_match(map->dim, isl_dim_param, set->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(map->dim, isl_dim_out, set->dim, isl_dim_set); } int isl_basic_map_compatible_range(struct isl_basic_map *bmap, struct isl_basic_set *bset) { int m; if (!bmap || !bset) return -1; m = isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param); if (m < 0 || !m) return m; return isl_space_tuple_is_equal(bmap->dim, isl_dim_out, bset->dim, isl_dim_set); } isl_ctx *isl_basic_map_get_ctx(__isl_keep isl_basic_map *bmap) { return bmap ? bmap->ctx : NULL; } isl_ctx *isl_basic_set_get_ctx(__isl_keep isl_basic_set *bset) { return bset ? bset->ctx : NULL; } isl_ctx *isl_map_get_ctx(__isl_keep isl_map *map) { return map ? map->ctx : NULL; } isl_ctx *isl_set_get_ctx(__isl_keep isl_set *set) { return set ? set->ctx : NULL; } __isl_give isl_space *isl_basic_map_get_space(__isl_keep isl_basic_map *bmap) { if (!bmap) return NULL; return isl_space_copy(bmap->dim); } __isl_give isl_space *isl_basic_set_get_space(__isl_keep isl_basic_set *bset) { if (!bset) return NULL; return isl_space_copy(bset->dim); } /* Extract the divs in "bmap" as a matrix. */ __isl_give isl_mat *isl_basic_map_get_divs(__isl_keep isl_basic_map *bmap) { int i; isl_ctx *ctx; isl_mat *div; unsigned total; unsigned cols; if (!bmap) return NULL; ctx = isl_basic_map_get_ctx(bmap); total = isl_space_dim(bmap->dim, isl_dim_all); cols = 1 + 1 + total + bmap->n_div; div = isl_mat_alloc(ctx, bmap->n_div, cols); if (!div) return NULL; for (i = 0; i < bmap->n_div; ++i) isl_seq_cpy(div->row[i], bmap->div[i], cols); return div; } /* Extract the divs in "bset" as a matrix. */ __isl_give isl_mat *isl_basic_set_get_divs(__isl_keep isl_basic_set *bset) { return isl_basic_map_get_divs(bset); } __isl_give isl_local_space *isl_basic_map_get_local_space( __isl_keep isl_basic_map *bmap) { isl_mat *div; if (!bmap) return NULL; div = isl_basic_map_get_divs(bmap); return isl_local_space_alloc_div(isl_space_copy(bmap->dim), div); } __isl_give isl_local_space *isl_basic_set_get_local_space( __isl_keep isl_basic_set *bset) { return isl_basic_map_get_local_space(bset); } /* For each known div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(n-1)) + m d >= 0 * * Do not finalize the result. */ static __isl_give isl_basic_map *add_known_div_constraints( __isl_take isl_basic_map *bmap) { int i; unsigned n_div; if (!bmap) return NULL; n_div = isl_basic_map_dim(bmap, isl_dim_div); if (n_div == 0) return bmap; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 2 * n_div); if (!bmap) return NULL; for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_basic_map_add_div_constraints(bmap, i) < 0) return isl_basic_map_free(bmap); } return bmap; } __isl_give isl_basic_map *isl_basic_map_from_local_space( __isl_take isl_local_space *ls) { int i; int n_div; isl_basic_map *bmap; if (!ls) return NULL; n_div = isl_local_space_dim(ls, isl_dim_div); bmap = isl_basic_map_alloc_space(isl_local_space_get_space(ls), n_div, 0, 2 * n_div); for (i = 0; i < n_div; ++i) if (isl_basic_map_alloc_div(bmap) < 0) goto error; for (i = 0; i < n_div; ++i) isl_seq_cpy(bmap->div[i], ls->div->row[i], ls->div->n_col); bmap = add_known_div_constraints(bmap); isl_local_space_free(ls); return bmap; error: isl_local_space_free(ls); isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_from_local_space( __isl_take isl_local_space *ls) { return isl_basic_map_from_local_space(ls); } __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map) { if (!map) return NULL; return isl_space_copy(map->dim); } __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set) { if (!set) return NULL; return isl_space_copy(set->dim); } __isl_give isl_basic_map *isl_basic_map_set_tuple_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, const char *s) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_set_tuple_name(bmap->dim, type, s); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_set_tuple_name( __isl_take isl_basic_set *bset, const char *s) { return isl_basic_map_set_tuple_name(bset, isl_dim_set, s); } const char *isl_basic_map_get_tuple_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type) { return bmap ? isl_space_get_tuple_name(bmap->dim, type) : NULL; } __isl_give isl_map *isl_map_set_tuple_name(__isl_take isl_map *map, enum isl_dim_type type, const char *s) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_set_tuple_name(map->dim, type, s); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_set_tuple_name(map->p[i], type, s); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Replace the identifier of the tuple of type "type" by "id". */ __isl_give isl_basic_map *isl_basic_map_set_tuple_id( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_id *id) { bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap->dim = isl_space_set_tuple_id(bmap->dim, type, id); if (!bmap->dim) return isl_basic_map_free(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_id_free(id); return NULL; } /* Replace the identifier of the tuple by "id". */ __isl_give isl_basic_set *isl_basic_set_set_tuple_id( __isl_take isl_basic_set *bset, __isl_take isl_id *id) { return isl_basic_map_set_tuple_id(bset, isl_dim_set, id); } /* Does the input or output tuple have a name? */ isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_has_tuple_name(map->dim, type) : isl_bool_error; } const char *isl_map_get_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_get_tuple_name(map->dim, type) : NULL; } __isl_give isl_set *isl_set_set_tuple_name(__isl_take isl_set *set, const char *s) { return (isl_set *)isl_map_set_tuple_name((isl_map *)set, isl_dim_set, s); } __isl_give isl_map *isl_map_set_tuple_id(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_id *id) { map = isl_map_cow(map); if (!map) goto error; map->dim = isl_space_set_tuple_id(map->dim, type, id); return isl_map_reset_space(map, isl_space_copy(map->dim)); error: isl_id_free(id); return NULL; } __isl_give isl_set *isl_set_set_tuple_id(__isl_take isl_set *set, __isl_take isl_id *id) { return isl_map_set_tuple_id(set, isl_dim_set, id); } __isl_give isl_map *isl_map_reset_tuple_id(__isl_take isl_map *map, enum isl_dim_type type) { map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_reset_tuple_id(map->dim, type); return isl_map_reset_space(map, isl_space_copy(map->dim)); } __isl_give isl_set *isl_set_reset_tuple_id(__isl_take isl_set *set) { return isl_map_reset_tuple_id(set, isl_dim_set); } isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_has_tuple_id(map->dim, type) : isl_bool_error; } __isl_give isl_id *isl_map_get_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type) { return map ? isl_space_get_tuple_id(map->dim, type) : NULL; } isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set) { return isl_map_has_tuple_id(set, isl_dim_set); } __isl_give isl_id *isl_set_get_tuple_id(__isl_keep isl_set *set) { return isl_map_get_tuple_id(set, isl_dim_set); } /* Does the set tuple have a name? */ isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_has_tuple_name(set->dim, isl_dim_set); } const char *isl_basic_set_get_tuple_name(__isl_keep isl_basic_set *bset) { return bset ? isl_space_get_tuple_name(bset->dim, isl_dim_set) : NULL; } const char *isl_set_get_tuple_name(__isl_keep isl_set *set) { return set ? isl_space_get_tuple_name(set->dim, isl_dim_set) : NULL; } const char *isl_basic_map_get_dim_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return bmap ? isl_space_get_dim_name(bmap->dim, type, pos) : NULL; } const char *isl_basic_set_get_dim_name(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos) { return bset ? isl_space_get_dim_name(bset->dim, type, pos) : NULL; } /* Does the given dimension have a name? */ isl_bool isl_map_has_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { if (!map) return isl_bool_error; return isl_space_has_dim_name(map->dim, type, pos); } const char *isl_map_get_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_get_dim_name(map->dim, type, pos) : NULL; } const char *isl_set_get_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return set ? isl_space_get_dim_name(set->dim, type, pos) : NULL; } /* Does the given dimension have a name? */ isl_bool isl_set_has_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { if (!set) return isl_bool_error; return isl_space_has_dim_name(set->dim, type, pos); } __isl_give isl_basic_map *isl_basic_map_set_dim_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, const char *s) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_set_dim_name(bmap->dim, type, pos, s); if (!bmap->dim) goto error; return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_map *isl_map_set_dim_name(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, const char *s) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_set_dim_name(map->dim, type, pos, s); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_set_dim_name(map->p[i], type, pos, s); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_basic_set *isl_basic_set_set_dim_name( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, const char *s) { return (isl_basic_set *)isl_basic_map_set_dim_name( (isl_basic_map *)bset, type, pos, s); } __isl_give isl_set *isl_set_set_dim_name(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, const char *s) { return (isl_set *)isl_map_set_dim_name((isl_map *)set, type, pos, s); } isl_bool isl_basic_map_has_dim_id(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { if (!bmap) return isl_bool_error; return isl_space_has_dim_id(bmap->dim, type, pos); } __isl_give isl_id *isl_basic_set_get_dim_id(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos) { return bset ? isl_space_get_dim_id(bset->dim, type, pos) : NULL; } isl_bool isl_map_has_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_has_dim_id(map->dim, type, pos) : isl_bool_error; } __isl_give isl_id *isl_map_get_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { return map ? isl_space_get_dim_id(map->dim, type, pos) : NULL; } isl_bool isl_set_has_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_has_dim_id(set, type, pos); } __isl_give isl_id *isl_set_get_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_get_dim_id(set, type, pos); } __isl_give isl_map *isl_map_set_dim_id(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { map = isl_map_cow(map); if (!map) goto error; map->dim = isl_space_set_dim_id(map->dim, type, pos, id); return isl_map_reset_space(map, isl_space_copy(map->dim)); error: isl_id_free(id); return NULL; } __isl_give isl_set *isl_set_set_dim_id(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { return isl_map_set_dim_id(set, type, pos, id); } int isl_map_find_dim_by_id(__isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_id *id) { if (!map) return -1; return isl_space_find_dim_by_id(map->dim, type, id); } int isl_set_find_dim_by_id(__isl_keep isl_set *set, enum isl_dim_type type, __isl_keep isl_id *id) { return isl_map_find_dim_by_id(set, type, id); } /* Return the position of the dimension of the given type and name * in "bmap". * Return -1 if no such dimension can be found. */ int isl_basic_map_find_dim_by_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, const char *name) { if (!bmap) return -1; return isl_space_find_dim_by_name(bmap->dim, type, name); } int isl_map_find_dim_by_name(__isl_keep isl_map *map, enum isl_dim_type type, const char *name) { if (!map) return -1; return isl_space_find_dim_by_name(map->dim, type, name); } int isl_set_find_dim_by_name(__isl_keep isl_set *set, enum isl_dim_type type, const char *name) { return isl_map_find_dim_by_name(set, type, name); } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "map". */ __isl_give isl_map *isl_map_reset_user(__isl_take isl_map *map) { isl_space *space; space = isl_map_get_space(map); space = isl_space_reset_user(space); map = isl_map_reset_space(map, space); return map; } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "set". */ __isl_give isl_set *isl_set_reset_user(__isl_take isl_set *set) { return isl_map_reset_user(set); } int isl_basic_map_is_rational(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); } int isl_basic_set_is_rational(__isl_keep isl_basic_set *bset) { return isl_basic_map_is_rational(bset); } /* Does "bmap" contain any rational points? * * If "bmap" has an equality for each dimension, equating the dimension * to an integer constant, then it has no rational points, even if it * is marked as rational. */ int isl_basic_map_has_rational(__isl_keep isl_basic_map *bmap) { int has_rational = 1; unsigned total; if (!bmap) return -1; if (isl_basic_map_plain_is_empty(bmap)) return 0; if (!isl_basic_map_is_rational(bmap)) return 0; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_implicit_equalities(bmap); if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); if (bmap->n_eq == total) { int i, j; for (i = 0; i < bmap->n_eq; ++i) { j = isl_seq_first_non_zero(bmap->eq[i] + 1, total); if (j < 0) break; if (!isl_int_is_one(bmap->eq[i][1 + j]) && !isl_int_is_negone(bmap->eq[i][1 + j])) break; j = isl_seq_first_non_zero(bmap->eq[i] + 1 + j + 1, total - j - 1); if (j >= 0) break; } if (i == bmap->n_eq) has_rational = 0; } isl_basic_map_free(bmap); return has_rational; } /* Does "map" contain any rational points? */ int isl_map_has_rational(__isl_keep isl_map *map) { int i; int has_rational; if (!map) return -1; for (i = 0; i < map->n; ++i) { has_rational = isl_basic_map_has_rational(map->p[i]); if (has_rational < 0) return -1; if (has_rational) return 1; } return 0; } /* Does "set" contain any rational points? */ int isl_set_has_rational(__isl_keep isl_set *set) { return isl_map_has_rational(set); } /* Is this basic set a parameter domain? */ int isl_basic_set_is_params(__isl_keep isl_basic_set *bset) { if (!bset) return -1; return isl_space_is_params(bset->dim); } /* Is this set a parameter domain? */ isl_bool isl_set_is_params(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_is_params(set->dim); } /* Is this map actually a parameter domain? * Users should never call this function. Outside of isl, * a map can never be a parameter domain. */ int isl_map_is_params(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_is_params(map->dim); } static struct isl_basic_map *basic_map_init(struct isl_ctx *ctx, struct isl_basic_map *bmap, unsigned extra, unsigned n_eq, unsigned n_ineq) { int i; size_t row_size = 1 + isl_space_dim(bmap->dim, isl_dim_all) + extra; bmap->ctx = ctx; isl_ctx_ref(ctx); bmap->block = isl_blk_alloc(ctx, (n_ineq + n_eq) * row_size); if (isl_blk_is_error(bmap->block)) goto error; bmap->ineq = isl_alloc_array(ctx, isl_int *, n_ineq + n_eq); if ((n_ineq + n_eq) && !bmap->ineq) goto error; if (extra == 0) { bmap->block2 = isl_blk_empty(); bmap->div = NULL; } else { bmap->block2 = isl_blk_alloc(ctx, extra * (1 + row_size)); if (isl_blk_is_error(bmap->block2)) goto error; bmap->div = isl_alloc_array(ctx, isl_int *, extra); if (!bmap->div) goto error; } for (i = 0; i < n_ineq + n_eq; ++i) bmap->ineq[i] = bmap->block.data + i * row_size; for (i = 0; i < extra; ++i) bmap->div[i] = bmap->block2.data + i * (1 + row_size); bmap->ref = 1; bmap->flags = 0; bmap->c_size = n_eq + n_ineq; bmap->eq = bmap->ineq + n_ineq; bmap->extra = extra; bmap->n_eq = 0; bmap->n_ineq = 0; bmap->n_div = 0; bmap->sample = NULL; return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *space; space = isl_space_set_alloc(ctx, nparam, dim); if (!space) return NULL; bmap = isl_basic_map_alloc_space(space, extra, n_eq, n_ineq); return (struct isl_basic_set *)bmap; } struct isl_basic_set *isl_basic_set_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; if (!dim) return NULL; isl_assert(dim->ctx, dim->n_in == 0, goto error); bmap = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); return (struct isl_basic_set *)bmap; error: isl_space_free(dim); return NULL; } struct isl_basic_map *isl_basic_map_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; if (!dim) return NULL; bmap = isl_calloc_type(dim->ctx, struct isl_basic_map); if (!bmap) goto error; bmap->dim = dim; return basic_map_init(dim->ctx, bmap, extra, n_eq, n_ineq); error: isl_space_free(dim); return NULL; } struct isl_basic_map *isl_basic_map_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *dim; dim = isl_space_alloc(ctx, nparam, in, out); if (!dim) return NULL; bmap = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); return bmap; } static void dup_constraints( struct isl_basic_map *dst, struct isl_basic_map *src) { int i; unsigned total = isl_basic_map_total_dim(src); for (i = 0; i < src->n_eq; ++i) { int j = isl_basic_map_alloc_equality(dst); isl_seq_cpy(dst->eq[j], src->eq[i], 1+total); } for (i = 0; i < src->n_ineq; ++i) { int j = isl_basic_map_alloc_inequality(dst); isl_seq_cpy(dst->ineq[j], src->ineq[i], 1+total); } for (i = 0; i < src->n_div; ++i) { int j = isl_basic_map_alloc_div(dst); isl_seq_cpy(dst->div[j], src->div[i], 1+1+total); } ISL_F_SET(dst, ISL_BASIC_SET_FINAL); } struct isl_basic_map *isl_basic_map_dup(struct isl_basic_map *bmap) { struct isl_basic_map *dup; if (!bmap) return NULL; dup = isl_basic_map_alloc_space(isl_space_copy(bmap->dim), bmap->n_div, bmap->n_eq, bmap->n_ineq); if (!dup) return NULL; dup_constraints(dup, bmap); dup->flags = bmap->flags; dup->sample = isl_vec_copy(bmap->sample); return dup; } struct isl_basic_set *isl_basic_set_dup(struct isl_basic_set *bset) { struct isl_basic_map *dup; dup = isl_basic_map_dup((struct isl_basic_map *)bset); return (struct isl_basic_set *)dup; } struct isl_basic_set *isl_basic_set_copy(struct isl_basic_set *bset) { if (!bset) return NULL; if (ISL_F_ISSET(bset, ISL_BASIC_SET_FINAL)) { bset->ref++; return bset; } return isl_basic_set_dup(bset); } struct isl_set *isl_set_copy(struct isl_set *set) { if (!set) return NULL; set->ref++; return set; } struct isl_basic_map *isl_basic_map_copy(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_SET_FINAL)) { bmap->ref++; return bmap; } bmap = isl_basic_map_dup(bmap); if (bmap) ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); return bmap; } struct isl_map *isl_map_copy(struct isl_map *map) { if (!map) return NULL; map->ref++; return map; } __isl_null isl_basic_map *isl_basic_map_free(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (--bmap->ref > 0) return NULL; isl_ctx_deref(bmap->ctx); free(bmap->div); isl_blk_free(bmap->ctx, bmap->block2); free(bmap->ineq); isl_blk_free(bmap->ctx, bmap->block); isl_vec_free(bmap->sample); isl_space_free(bmap->dim); free(bmap); return NULL; } __isl_null isl_basic_set *isl_basic_set_free(__isl_take isl_basic_set *bset) { return isl_basic_map_free((struct isl_basic_map *)bset); } static int room_for_con(struct isl_basic_map *bmap, unsigned n) { return bmap->n_eq + bmap->n_ineq + n <= bmap->c_size; } __isl_give isl_map *isl_map_align_params_map_map_and( __isl_take isl_map *map1, __isl_take isl_map *map2, __isl_give isl_map *(*fn)(__isl_take isl_map *map1, __isl_take isl_map *map2)) { if (!map1 || !map2) goto error; if (isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param)) return fn(map1, map2); if (!isl_space_has_named_params(map1->dim) || !isl_space_has_named_params(map2->dim)) isl_die(map1->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map1 = isl_map_align_params(map1, isl_map_get_space(map2)); map2 = isl_map_align_params(map2, isl_map_get_space(map1)); return fn(map1, map2); error: isl_map_free(map1); isl_map_free(map2); return NULL; } isl_bool isl_map_align_params_map_map_and_test(__isl_keep isl_map *map1, __isl_keep isl_map *map2, isl_bool (*fn)(__isl_keep isl_map *map1, __isl_keep isl_map *map2)) { isl_bool r; if (!map1 || !map2) return isl_bool_error; if (isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param)) return fn(map1, map2); if (!isl_space_has_named_params(map1->dim) || !isl_space_has_named_params(map2->dim)) isl_die(map1->ctx, isl_error_invalid, "unaligned unnamed parameters", return isl_bool_error); map1 = isl_map_copy(map1); map2 = isl_map_copy(map2); map1 = isl_map_align_params(map1, isl_map_get_space(map2)); map2 = isl_map_align_params(map2, isl_map_get_space(map1)); r = fn(map1, map2); isl_map_free(map1); isl_map_free(map2); return r; } int isl_basic_map_alloc_equality(struct isl_basic_map *bmap) { struct isl_ctx *ctx; if (!bmap) return -1; ctx = bmap->ctx; isl_assert(ctx, room_for_con(bmap, 1), return -1); isl_assert(ctx, (bmap->eq - bmap->ineq) + bmap->n_eq <= bmap->c_size, return -1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); if ((bmap->eq - bmap->ineq) + bmap->n_eq == bmap->c_size) { isl_int *t; int j = isl_basic_map_alloc_inequality(bmap); if (j < 0) return -1; t = bmap->ineq[j]; bmap->ineq[j] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = bmap->eq[-1]; bmap->eq[-1] = t; bmap->n_eq++; bmap->n_ineq--; bmap->eq--; return 0; } isl_seq_clr(bmap->eq[bmap->n_eq] + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); return bmap->n_eq++; } int isl_basic_set_alloc_equality(struct isl_basic_set *bset) { return isl_basic_map_alloc_equality((struct isl_basic_map *)bset); } int isl_basic_map_free_equality(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_eq, return -1); bmap->n_eq -= n; return 0; } int isl_basic_set_free_equality(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_equality((struct isl_basic_map *)bset, n); } int isl_basic_map_drop_equality(struct isl_basic_map *bmap, unsigned pos) { isl_int *t; if (!bmap) return -1; isl_assert(bmap->ctx, pos < bmap->n_eq, return -1); if (pos != bmap->n_eq - 1) { t = bmap->eq[pos]; bmap->eq[pos] = bmap->eq[bmap->n_eq - 1]; bmap->eq[bmap->n_eq - 1] = t; } bmap->n_eq--; return 0; } int isl_basic_set_drop_equality(struct isl_basic_set *bset, unsigned pos) { return isl_basic_map_drop_equality((struct isl_basic_map *)bset, pos); } /* Turn inequality "pos" of "bmap" into an equality. * * In particular, we move the inequality in front of the equalities * and move the last inequality in the position of the moved inequality. * Note that isl_tab_make_equalities_explicit depends on this particular * change in the ordering of the constraints. */ void isl_basic_map_inequality_to_equality( struct isl_basic_map *bmap, unsigned pos) { isl_int *t; t = bmap->ineq[pos]; bmap->ineq[pos] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = bmap->eq[-1]; bmap->eq[-1] = t; bmap->n_eq++; bmap->n_ineq--; bmap->eq--; ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); } static int room_for_ineq(struct isl_basic_map *bmap, unsigned n) { return bmap->n_ineq + n <= bmap->eq - bmap->ineq; } int isl_basic_map_alloc_inequality(struct isl_basic_map *bmap) { struct isl_ctx *ctx; if (!bmap) return -1; ctx = bmap->ctx; isl_assert(ctx, room_for_ineq(bmap, 1), return -1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NO_REDUNDANT); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); ISL_F_CLR(bmap, ISL_BASIC_MAP_ALL_EQUALITIES); isl_seq_clr(bmap->ineq[bmap->n_ineq] + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); return bmap->n_ineq++; } int isl_basic_set_alloc_inequality(struct isl_basic_set *bset) { return isl_basic_map_alloc_inequality((struct isl_basic_map *)bset); } int isl_basic_map_free_inequality(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_ineq, return -1); bmap->n_ineq -= n; return 0; } int isl_basic_set_free_inequality(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_inequality((struct isl_basic_map *)bset, n); } int isl_basic_map_drop_inequality(struct isl_basic_map *bmap, unsigned pos) { isl_int *t; if (!bmap) return -1; isl_assert(bmap->ctx, pos < bmap->n_ineq, return -1); if (pos != bmap->n_ineq - 1) { t = bmap->ineq[pos]; bmap->ineq[pos] = bmap->ineq[bmap->n_ineq - 1]; bmap->ineq[bmap->n_ineq - 1] = t; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } bmap->n_ineq--; return 0; } int isl_basic_set_drop_inequality(struct isl_basic_set *bset, unsigned pos) { return isl_basic_map_drop_inequality((struct isl_basic_map *)bset, pos); } __isl_give isl_basic_map *isl_basic_map_add_eq(__isl_take isl_basic_map *bmap, isl_int *eq) { int k; bmap = isl_basic_map_extend_constraints(bmap, 1, 0); if (!bmap) return NULL; k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], eq, 1 + isl_basic_map_total_dim(bmap)); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_add_eq(__isl_take isl_basic_set *bset, isl_int *eq) { return (isl_basic_set *) isl_basic_map_add_eq((isl_basic_map *)bset, eq); } __isl_give isl_basic_map *isl_basic_map_add_ineq(__isl_take isl_basic_map *bmap, isl_int *ineq) { int k; bmap = isl_basic_map_extend_constraints(bmap, 0, 1); if (!bmap) return NULL; k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], ineq, 1 + isl_basic_map_total_dim(bmap)); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_add_ineq(__isl_take isl_basic_set *bset, isl_int *ineq) { return (isl_basic_set *) isl_basic_map_add_ineq((isl_basic_map *)bset, ineq); } int isl_basic_map_alloc_div(struct isl_basic_map *bmap) { if (!bmap) return -1; isl_assert(bmap->ctx, bmap->n_div < bmap->extra, return -1); isl_seq_clr(bmap->div[bmap->n_div] + 1 + 1 + isl_basic_map_total_dim(bmap), bmap->extra - bmap->n_div); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); return bmap->n_div++; } int isl_basic_set_alloc_div(struct isl_basic_set *bset) { return isl_basic_map_alloc_div((struct isl_basic_map *)bset); } int isl_basic_map_free_div(struct isl_basic_map *bmap, unsigned n) { if (!bmap) return -1; isl_assert(bmap->ctx, n <= bmap->n_div, return -1); bmap->n_div -= n; return 0; } int isl_basic_set_free_div(struct isl_basic_set *bset, unsigned n) { return isl_basic_map_free_div((struct isl_basic_map *)bset, n); } /* Copy constraint from src to dst, putting the vars of src at offset * dim_off in dst and the divs of src at offset div_off in dst. * If both sets are actually map, then dim_off applies to the input * variables. */ static void copy_constraint(struct isl_basic_map *dst_map, isl_int *dst, struct isl_basic_map *src_map, isl_int *src, unsigned in_off, unsigned out_off, unsigned div_off) { unsigned src_nparam = isl_basic_map_n_param(src_map); unsigned dst_nparam = isl_basic_map_n_param(dst_map); unsigned src_in = isl_basic_map_n_in(src_map); unsigned dst_in = isl_basic_map_n_in(dst_map); unsigned src_out = isl_basic_map_n_out(src_map); unsigned dst_out = isl_basic_map_n_out(dst_map); isl_int_set(dst[0], src[0]); isl_seq_cpy(dst+1, src+1, isl_min(dst_nparam, src_nparam)); if (dst_nparam > src_nparam) isl_seq_clr(dst+1+src_nparam, dst_nparam - src_nparam); isl_seq_clr(dst+1+dst_nparam, in_off); isl_seq_cpy(dst+1+dst_nparam+in_off, src+1+src_nparam, isl_min(dst_in-in_off, src_in)); if (dst_in-in_off > src_in) isl_seq_clr(dst+1+dst_nparam+in_off+src_in, dst_in - in_off - src_in); isl_seq_clr(dst+1+dst_nparam+dst_in, out_off); isl_seq_cpy(dst+1+dst_nparam+dst_in+out_off, src+1+src_nparam+src_in, isl_min(dst_out-out_off, src_out)); if (dst_out-out_off > src_out) isl_seq_clr(dst+1+dst_nparam+dst_in+out_off+src_out, dst_out - out_off - src_out); isl_seq_clr(dst+1+dst_nparam+dst_in+dst_out, div_off); isl_seq_cpy(dst+1+dst_nparam+dst_in+dst_out+div_off, src+1+src_nparam+src_in+src_out, isl_min(dst_map->extra-div_off, src_map->n_div)); if (dst_map->n_div-div_off > src_map->n_div) isl_seq_clr(dst+1+dst_nparam+dst_in+dst_out+ div_off+src_map->n_div, dst_map->n_div - div_off - src_map->n_div); } static void copy_div(struct isl_basic_map *dst_map, isl_int *dst, struct isl_basic_map *src_map, isl_int *src, unsigned in_off, unsigned out_off, unsigned div_off) { isl_int_set(dst[0], src[0]); copy_constraint(dst_map, dst+1, src_map, src+1, in_off, out_off, div_off); } static struct isl_basic_map *add_constraints(struct isl_basic_map *bmap1, struct isl_basic_map *bmap2, unsigned i_pos, unsigned o_pos) { int i; unsigned div_off; if (!bmap1 || !bmap2) goto error; div_off = bmap1->n_div; for (i = 0; i < bmap2->n_eq; ++i) { int i1 = isl_basic_map_alloc_equality(bmap1); if (i1 < 0) goto error; copy_constraint(bmap1, bmap1->eq[i1], bmap2, bmap2->eq[i], i_pos, o_pos, div_off); } for (i = 0; i < bmap2->n_ineq; ++i) { int i1 = isl_basic_map_alloc_inequality(bmap1); if (i1 < 0) goto error; copy_constraint(bmap1, bmap1->ineq[i1], bmap2, bmap2->ineq[i], i_pos, o_pos, div_off); } for (i = 0; i < bmap2->n_div; ++i) { int i1 = isl_basic_map_alloc_div(bmap1); if (i1 < 0) goto error; copy_div(bmap1, bmap1->div[i1], bmap2, bmap2->div[i], i_pos, o_pos, div_off); } isl_basic_map_free(bmap2); return bmap1; error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_add_constraints(struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned pos) { return (struct isl_basic_set *) add_constraints((struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2, 0, pos); } struct isl_basic_map *isl_basic_map_extend_space(struct isl_basic_map *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *ext; unsigned flags; int dims_ok; if (!dim) goto error; if (!base) goto error; dims_ok = isl_space_is_equal(base->dim, dim) && base->extra >= base->n_div + extra; if (dims_ok && room_for_con(base, n_eq + n_ineq) && room_for_ineq(base, n_ineq)) { isl_space_free(dim); return base; } isl_assert(base->ctx, base->dim->nparam <= dim->nparam, goto error); isl_assert(base->ctx, base->dim->n_in <= dim->n_in, goto error); isl_assert(base->ctx, base->dim->n_out <= dim->n_out, goto error); extra += base->extra; n_eq += base->n_eq; n_ineq += base->n_ineq; ext = isl_basic_map_alloc_space(dim, extra, n_eq, n_ineq); dim = NULL; if (!ext) goto error; if (dims_ok) ext->sample = isl_vec_copy(base->sample); flags = base->flags; ext = add_constraints(ext, base, 0, 0); if (ext) { ext->flags = flags; ISL_F_CLR(ext, ISL_BASIC_SET_FINAL); } return ext; error: isl_space_free(dim); isl_basic_map_free(base); return NULL; } struct isl_basic_set *isl_basic_set_extend_space(struct isl_basic_set *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { return (struct isl_basic_set *) isl_basic_map_extend_space((struct isl_basic_map *)base, dim, extra, n_eq, n_ineq); } struct isl_basic_map *isl_basic_map_extend_constraints( struct isl_basic_map *base, unsigned n_eq, unsigned n_ineq) { if (!base) return NULL; return isl_basic_map_extend_space(base, isl_space_copy(base->dim), 0, n_eq, n_ineq); } struct isl_basic_map *isl_basic_map_extend(struct isl_basic_map *base, unsigned nparam, unsigned n_in, unsigned n_out, unsigned extra, unsigned n_eq, unsigned n_ineq) { struct isl_basic_map *bmap; isl_space *dim; if (!base) return NULL; dim = isl_space_alloc(base->ctx, nparam, n_in, n_out); if (!dim) goto error; bmap = isl_basic_map_extend_space(base, dim, extra, n_eq, n_ineq); return bmap; error: isl_basic_map_free(base); return NULL; } struct isl_basic_set *isl_basic_set_extend(struct isl_basic_set *base, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq) { return (struct isl_basic_set *) isl_basic_map_extend((struct isl_basic_map *)base, nparam, 0, dim, extra, n_eq, n_ineq); } struct isl_basic_set *isl_basic_set_extend_constraints( struct isl_basic_set *base, unsigned n_eq, unsigned n_ineq) { return (struct isl_basic_set *) isl_basic_map_extend_constraints((struct isl_basic_map *)base, n_eq, n_ineq); } struct isl_basic_set *isl_basic_set_cow(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_cow((struct isl_basic_map *)bset); } struct isl_basic_map *isl_basic_map_cow(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (bmap->ref > 1) { bmap->ref--; bmap = isl_basic_map_dup(bmap); } if (bmap) { ISL_F_CLR(bmap, ISL_BASIC_SET_FINAL); ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); } return bmap; } struct isl_set *isl_set_cow(struct isl_set *set) { if (!set) return NULL; if (set->ref == 1) return set; set->ref--; return isl_set_dup(set); } struct isl_map *isl_map_cow(struct isl_map *map) { if (!map) return NULL; if (map->ref == 1) return map; map->ref--; return isl_map_dup(map); } static void swap_vars(struct isl_blk blk, isl_int *a, unsigned a_len, unsigned b_len) { isl_seq_cpy(blk.data, a+a_len, b_len); isl_seq_cpy(blk.data+b_len, a, a_len); isl_seq_cpy(a, blk.data, b_len+a_len); } static __isl_give isl_basic_map *isl_basic_map_swap_vars( __isl_take isl_basic_map *bmap, unsigned pos, unsigned n1, unsigned n2) { int i; struct isl_blk blk; if (!bmap) goto error; isl_assert(bmap->ctx, pos + n1 + n2 <= 1 + isl_basic_map_total_dim(bmap), goto error); if (n1 == 0 || n2 == 0) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; blk = isl_blk_alloc(bmap->ctx, n1 + n2); if (isl_blk_is_error(blk)) goto error; for (i = 0; i < bmap->n_eq; ++i) swap_vars(blk, bmap->eq[i] + pos, n1, n2); for (i = 0; i < bmap->n_ineq; ++i) swap_vars(blk, bmap->ineq[i] + pos, n1, n2); for (i = 0; i < bmap->n_div; ++i) swap_vars(blk, bmap->div[i]+1 + pos, n1, n2); isl_blk_free(bmap->ctx, blk); ISL_F_CLR(bmap, ISL_BASIC_SET_NORMALIZED); bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_set_to_empty(struct isl_basic_map *bmap) { int i = 0; unsigned total; if (!bmap) goto error; total = isl_basic_map_total_dim(bmap); isl_basic_map_free_div(bmap, bmap->n_div); isl_basic_map_free_inequality(bmap, bmap->n_ineq); if (bmap->n_eq > 0) isl_basic_map_free_equality(bmap, bmap->n_eq-1); else { i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; } isl_int_set_si(bmap->eq[i][0], 1); isl_seq_clr(bmap->eq[i]+1, total); ISL_F_SET(bmap, ISL_BASIC_MAP_EMPTY); isl_vec_free(bmap->sample); bmap->sample = NULL; return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_set_to_empty(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_set_to_empty((struct isl_basic_map *)bset); } /* Swap divs "a" and "b" in "bmap" (without modifying any of the constraints * of "bmap"). */ static void swap_div(__isl_keep isl_basic_map *bmap, int a, int b) { isl_int *t = bmap->div[a]; bmap->div[a] = bmap->div[b]; bmap->div[b] = t; } /* Swap divs "a" and "b" in "bmap" and adjust the constraints and * div definitions accordingly. */ void isl_basic_map_swap_div(struct isl_basic_map *bmap, int a, int b) { int i; unsigned off = isl_space_dim(bmap->dim, isl_dim_all); swap_div(bmap, a, b); for (i = 0; i < bmap->n_eq; ++i) isl_int_swap(bmap->eq[i][1+off+a], bmap->eq[i][1+off+b]); for (i = 0; i < bmap->n_ineq; ++i) isl_int_swap(bmap->ineq[i][1+off+a], bmap->ineq[i][1+off+b]); for (i = 0; i < bmap->n_div; ++i) isl_int_swap(bmap->div[i][1+1+off+a], bmap->div[i][1+1+off+b]); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_map *isl_map_eliminate(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map; if (first + n > isl_map_dim(map, type) || first + n < first) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_eliminate(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_set *isl_set_eliminate(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_eliminate((isl_map *)set, type, first, n); } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. */ __isl_give isl_set *isl_set_eliminate_dims(__isl_take isl_set *set, unsigned first, unsigned n) { return isl_set_eliminate(set, isl_dim_set, first, n); } __isl_give isl_basic_map *isl_basic_map_remove_divs( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; bmap = isl_basic_map_eliminate_vars(bmap, isl_space_dim(bmap->dim, isl_dim_all), bmap->n_div); if (!bmap) return NULL; bmap->n_div = 0; return isl_basic_map_finalize(bmap); } __isl_give isl_basic_set *isl_basic_set_remove_divs( __isl_take isl_basic_set *bset) { return (struct isl_basic_set *)isl_basic_map_remove_divs( (struct isl_basic_map *)bset); } __isl_give isl_map *isl_map_remove_divs(__isl_take isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_divs(__isl_take isl_set *set) { return isl_map_remove_divs(set); } struct isl_basic_map *isl_basic_map_remove_dims(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { if (!bmap) return NULL; isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type)) return bmap; bmap = isl_basic_map_eliminate_vars(bmap, isl_basic_map_offset(bmap, type) - 1 + first, n); if (!bmap) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY) && type == isl_dim_div) return bmap; bmap = isl_basic_map_drop(bmap, type, first, n); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Return true if the definition of the given div (recursively) involves * any of the given variables. */ static int div_involves_vars(__isl_keep isl_basic_map *bmap, int div, unsigned first, unsigned n) { int i; unsigned div_offset = isl_basic_map_offset(bmap, isl_dim_div); if (isl_int_is_zero(bmap->div[div][0])) return 0; if (isl_seq_first_non_zero(bmap->div[div] + 1 + first, n) >= 0) return 1; for (i = bmap->n_div - 1; i >= 0; --i) { if (isl_int_is_zero(bmap->div[div][1 + div_offset + i])) continue; if (div_involves_vars(bmap, i, first, n)) return 1; } return 0; } /* Try and add a lower and/or upper bound on "div" to "bmap" * based on inequality "i". * "total" is the total number of variables (excluding the divs). * "v" is a temporary object that can be used during the calculations. * If "lb" is set, then a lower bound should be constructed. * If "ub" is set, then an upper bound should be constructed. * * The calling function has already checked that the inequality does not * reference "div", but we still need to check that the inequality is * of the right form. We'll consider the case where we want to construct * a lower bound. The construction of upper bounds is similar. * * Let "div" be of the form * * q = floor((a + f(x))/d) * * We essentially check if constraint "i" is of the form * * b + f(x) >= 0 * * so that we can use it to derive a lower bound on "div". * However, we allow a slightly more general form * * b + g(x) >= 0 * * with the condition that the coefficients of g(x) - f(x) are all * divisible by d. * Rewriting this constraint as * * 0 >= -b - g(x) * * adding a + f(x) to both sides and dividing by d, we obtain * * (a + f(x))/d >= (a-b)/d + (f(x)-g(x))/d * * Taking the floor on both sides, we obtain * * q >= floor((a-b)/d) + (f(x)-g(x))/d * * or * * (g(x)-f(x))/d + ceil((b-a)/d) + q >= 0 * * In the case of an upper bound, we construct the constraint * * (g(x)+f(x))/d + floor((b+a)/d) - q >= 0 * */ static __isl_give isl_basic_map *insert_bounds_on_div_from_ineq( __isl_take isl_basic_map *bmap, int div, int i, unsigned total, isl_int v, int lb, int ub) { int j; for (j = 0; (lb || ub) && j < total + bmap->n_div; ++j) { if (lb) { isl_int_sub(v, bmap->ineq[i][1 + j], bmap->div[div][1 + 1 + j]); lb = isl_int_is_divisible_by(v, bmap->div[div][0]); } if (ub) { isl_int_add(v, bmap->ineq[i][1 + j], bmap->div[div][1 + 1 + j]); ub = isl_int_is_divisible_by(v, bmap->div[div][0]); } } if (!lb && !ub) return bmap; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, lb + ub); if (lb) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; for (j = 0; j < 1 + total + bmap->n_div; ++j) { isl_int_sub(bmap->ineq[k][j], bmap->ineq[i][j], bmap->div[div][1 + j]); isl_int_cdiv_q(bmap->ineq[k][j], bmap->ineq[k][j], bmap->div[div][0]); } isl_int_set_si(bmap->ineq[k][1 + total + div], 1); } if (ub) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; for (j = 0; j < 1 + total + bmap->n_div; ++j) { isl_int_add(bmap->ineq[k][j], bmap->ineq[i][j], bmap->div[div][1 + j]); isl_int_fdiv_q(bmap->ineq[k][j], bmap->ineq[k][j], bmap->div[div][0]); } isl_int_set_si(bmap->ineq[k][1 + total + div], -1); } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* This function is called right before "div" is eliminated from "bmap" * using Fourier-Motzkin. * Look through the constraints of "bmap" for constraints on the argument * of the integer division and use them to construct constraints on the * integer division itself. These constraints can then be combined * during the Fourier-Motzkin elimination. * Note that it is only useful to introduce lower bounds on "div" * if "bmap" already contains upper bounds on "div" as the newly * introduce lower bounds can then be combined with the pre-existing * upper bounds. Similarly for upper bounds. * We therefore first check if "bmap" contains any lower and/or upper bounds * on "div". * * It is interesting to note that the introduction of these constraints * can indeed lead to more accurate results, even when compared to * deriving constraints on the argument of "div" from constraints on "div". * Consider, for example, the set * * { [i,j,k] : 3 + i + 2j >= 0 and 2 * [(i+2j)/4] <= k } * * The second constraint can be rewritten as * * 2 * [(-i-2j+3)/4] + k >= 0 * * from which we can derive * * -i - 2j + 3 >= -2k * * or * * i + 2j <= 3 + 2k * * Combined with the first constraint, we obtain * * -3 <= 3 + 2k or k >= -3 * * If, on the other hand we derive a constraint on [(i+2j)/4] from * the first constraint, we obtain * * [(i + 2j)/4] >= [-3/4] = -1 * * Combining this constraint with the second constraint, we obtain * * k >= -2 */ static __isl_give isl_basic_map *insert_bounds_on_div( __isl_take isl_basic_map *bmap, int div) { int i; int check_lb, check_ub; isl_int v; unsigned total; if (!bmap) return NULL; if (isl_int_is_zero(bmap->div[div][0])) return bmap; total = isl_space_dim(bmap->dim, isl_dim_all); check_lb = 0; check_ub = 0; for (i = 0; (!check_lb || !check_ub) && i < bmap->n_ineq; ++i) { int s = isl_int_sgn(bmap->ineq[i][1 + total + div]); if (s > 0) check_ub = 1; if (s < 0) check_lb = 1; } if (!check_lb && !check_ub) return bmap; isl_int_init(v); for (i = 0; bmap && i < bmap->n_ineq; ++i) { if (!isl_int_is_zero(bmap->ineq[i][1 + total + div])) continue; bmap = insert_bounds_on_div_from_ineq(bmap, div, i, total, v, check_lb, check_ub); } isl_int_clear(v); return bmap; } /* Remove all divs (recursively) involving any of the given dimensions * in their definitions. */ __isl_give isl_basic_map *isl_basic_map_remove_divs_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!bmap) return NULL; isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); first += isl_basic_map_offset(bmap, type); for (i = bmap->n_div - 1; i >= 0; --i) { if (!div_involves_vars(bmap, i, first, n)) continue; bmap = insert_bounds_on_div(bmap, i); bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, i, 1); if (!bmap) return NULL; i = bmap->n_div; } return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_remove_divs_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_remove_divs_involving_dims(bset, type, first, n); } __isl_give isl_map *isl_map_remove_divs_involving_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_divs_involving_dims(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_divs_involving_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_remove_divs_involving_dims((isl_map *)set, type, first, n); } /* Does the desciption of "bmap" depend on the specified dimensions? * We also check whether the dimensions appear in any of the div definitions. * In principle there is no need for this check. If the dimensions appear * in a div definition, they also appear in the defining constraints of that * div. */ isl_bool isl_basic_map_involves_dims(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!bmap) return isl_bool_error; if (first + n > isl_basic_map_dim(bmap, type)) isl_die(bmap->ctx, isl_error_invalid, "index out of bounds", return isl_bool_error); first += isl_basic_map_offset(bmap, type); for (i = 0; i < bmap->n_eq; ++i) if (isl_seq_first_non_zero(bmap->eq[i] + first, n) >= 0) return isl_bool_true; for (i = 0; i < bmap->n_ineq; ++i) if (isl_seq_first_non_zero(bmap->ineq[i] + first, n) >= 0) return isl_bool_true; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_seq_first_non_zero(bmap->div[i] + 1 + first, n) >= 0) return isl_bool_true; } return isl_bool_false; } isl_bool isl_map_involves_dims(__isl_keep isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return isl_bool_error; if (first + n > isl_map_dim(map, type)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", return isl_bool_error); for (i = 0; i < map->n; ++i) { isl_bool involves = isl_basic_map_involves_dims(map->p[i], type, first, n); if (involves < 0 || involves) return involves; } return isl_bool_false; } isl_bool isl_basic_set_involves_dims(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_involves_dims(bset, type, first, n); } isl_bool isl_set_involves_dims(__isl_keep isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return isl_map_involves_dims(set, type, first, n); } /* Return true if the definition of the given div is unknown or depends * on unknown divs. */ static int div_is_unknown(__isl_keep isl_basic_map *bmap, int div) { int i; unsigned div_offset = isl_basic_map_offset(bmap, isl_dim_div); if (isl_int_is_zero(bmap->div[div][0])) return 1; for (i = bmap->n_div - 1; i >= 0; --i) { if (isl_int_is_zero(bmap->div[div][1 + div_offset + i])) continue; if (div_is_unknown(bmap, i)) return 1; } return 0; } /* Remove all divs that are unknown or defined in terms of unknown divs. */ __isl_give isl_basic_map *isl_basic_map_remove_unknown_divs( __isl_take isl_basic_map *bmap) { int i; if (!bmap) return NULL; for (i = bmap->n_div - 1; i >= 0; --i) { if (!div_is_unknown(bmap, i)) continue; bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, i, 1); if (!bmap) return NULL; i = bmap->n_div; } return bmap; } /* Remove all divs that are unknown or defined in terms of unknown divs. */ __isl_give isl_basic_set *isl_basic_set_remove_unknown_divs( __isl_take isl_basic_set *bset) { return isl_basic_map_remove_unknown_divs(bset); } __isl_give isl_map *isl_map_remove_unknown_divs(__isl_take isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_remove_unknown_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_unknown_divs(__isl_take isl_set *set) { return (isl_set *)isl_map_remove_unknown_divs((isl_map *)set); } __isl_give isl_basic_set *isl_basic_set_remove_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_basic_set *) isl_basic_map_remove_dims((isl_basic_map *)bset, type, first, n); } struct isl_map *isl_map_remove_dims(struct isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (n == 0) return map; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_eliminate_vars(map->p[i], isl_basic_map_offset(map->p[i], type) - 1 + first, n); if (!map->p[i]) goto error; } map = isl_map_drop(map, type, first, n); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_remove_dims(__isl_take isl_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_remove_dims((isl_map *)bset, type, first, n); } /* Project out n inputs starting at first using Fourier-Motzkin */ struct isl_map *isl_map_remove_inputs(struct isl_map *map, unsigned first, unsigned n) { return isl_map_remove_dims(map, isl_dim_in, first, n); } static void dump_term(struct isl_basic_map *bmap, isl_int c, int pos, FILE *out) { const char *name; unsigned in = isl_basic_map_n_in(bmap); unsigned dim = in + isl_basic_map_n_out(bmap); unsigned nparam = isl_basic_map_n_param(bmap); if (!pos) isl_int_print(out, c, 0); else { if (!isl_int_is_one(c)) isl_int_print(out, c, 0); if (pos < 1 + nparam) { name = isl_space_get_dim_name(bmap->dim, isl_dim_param, pos - 1); if (name) fprintf(out, "%s", name); else fprintf(out, "p%d", pos - 1); } else if (pos < 1 + nparam + in) fprintf(out, "i%d", pos - 1 - nparam); else if (pos < 1 + nparam + dim) fprintf(out, "o%d", pos - 1 - nparam - in); else fprintf(out, "e%d", pos - 1 - nparam - dim); } } static void dump_constraint_sign(struct isl_basic_map *bmap, isl_int *c, int sign, FILE *out) { int i; int first; unsigned len = 1 + isl_basic_map_total_dim(bmap); isl_int v; isl_int_init(v); for (i = 0, first = 1; i < len; ++i) { if (isl_int_sgn(c[i]) * sign <= 0) continue; if (!first) fprintf(out, " + "); first = 0; isl_int_abs(v, c[i]); dump_term(bmap, v, i, out); } isl_int_clear(v); if (first) fprintf(out, "0"); } static void dump_constraint(struct isl_basic_map *bmap, isl_int *c, const char *op, FILE *out, int indent) { int i; fprintf(out, "%*s", indent, ""); dump_constraint_sign(bmap, c, 1, out); fprintf(out, " %s ", op); dump_constraint_sign(bmap, c, -1, out); fprintf(out, "\n"); for (i = bmap->n_div; i < bmap->extra; ++i) { if (isl_int_is_zero(c[1+isl_space_dim(bmap->dim, isl_dim_all)+i])) continue; fprintf(out, "%*s", indent, ""); fprintf(out, "ERROR: unused div coefficient not zero\n"); abort(); } } static void dump_constraints(struct isl_basic_map *bmap, isl_int **c, unsigned n, const char *op, FILE *out, int indent) { int i; for (i = 0; i < n; ++i) dump_constraint(bmap, c[i], op, out, indent); } static void dump_affine(struct isl_basic_map *bmap, isl_int *exp, FILE *out) { int j; int first = 1; unsigned total = isl_basic_map_total_dim(bmap); for (j = 0; j < 1 + total; ++j) { if (isl_int_is_zero(exp[j])) continue; if (!first && isl_int_is_pos(exp[j])) fprintf(out, "+"); dump_term(bmap, exp[j], j, out); first = 0; } } static void dump(struct isl_basic_map *bmap, FILE *out, int indent) { int i; dump_constraints(bmap, bmap->eq, bmap->n_eq, "=", out, indent); dump_constraints(bmap, bmap->ineq, bmap->n_ineq, ">=", out, indent); for (i = 0; i < bmap->n_div; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "e%d = [(", i); dump_affine(bmap, bmap->div[i]+1, out); fprintf(out, ")/"); isl_int_print(out, bmap->div[i][0], 0); fprintf(out, "]\n"); } } void isl_basic_set_print_internal(struct isl_basic_set *bset, FILE *out, int indent) { if (!bset) { fprintf(out, "null basic set\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, nparam: %d, dim: %d, extra: %d, flags: %x\n", bset->ref, bset->dim->nparam, bset->dim->n_out, bset->extra, bset->flags); dump((struct isl_basic_map *)bset, out, indent); } void isl_basic_map_print_internal(struct isl_basic_map *bmap, FILE *out, int indent) { if (!bmap) { fprintf(out, "null basic map\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, nparam: %d, in: %d, out: %d, extra: %d, " "flags: %x, n_name: %d\n", bmap->ref, bmap->dim->nparam, bmap->dim->n_in, bmap->dim->n_out, bmap->extra, bmap->flags, bmap->dim->n_id); dump(bmap, out, indent); } int isl_inequality_negate(struct isl_basic_map *bmap, unsigned pos) { unsigned total; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); isl_assert(bmap->ctx, pos < bmap->n_ineq, return -1); isl_seq_neg(bmap->ineq[pos], bmap->ineq[pos], 1 + total); isl_int_sub_ui(bmap->ineq[pos][0], bmap->ineq[pos][0], 1); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); return 0; } __isl_give isl_set *isl_set_alloc_space(__isl_take isl_space *dim, int n, unsigned flags) { struct isl_set *set; if (!dim) return NULL; isl_assert(dim->ctx, dim->n_in == 0, goto error); isl_assert(dim->ctx, n >= 0, goto error); set = isl_alloc(dim->ctx, struct isl_set, sizeof(struct isl_set) + (n - 1) * sizeof(struct isl_basic_set *)); if (!set) goto error; set->ctx = dim->ctx; isl_ctx_ref(set->ctx); set->ref = 1; set->size = n; set->n = 0; set->dim = dim; set->flags = flags; return set; error: isl_space_free(dim); return NULL; } struct isl_set *isl_set_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned dim, int n, unsigned flags) { struct isl_set *set; isl_space *dims; dims = isl_space_alloc(ctx, nparam, 0, dim); if (!dims) return NULL; set = isl_set_alloc_space(dims, n, flags); return set; } /* Make sure "map" has room for at least "n" more basic maps. */ struct isl_map *isl_map_grow(struct isl_map *map, int n) { int i; struct isl_map *grown = NULL; if (!map) return NULL; isl_assert(map->ctx, n >= 0, goto error); if (map->n + n <= map->size) return map; grown = isl_map_alloc_space(isl_map_get_space(map), map->n + n, map->flags); if (!grown) goto error; for (i = 0; i < map->n; ++i) { grown->p[i] = isl_basic_map_copy(map->p[i]); if (!grown->p[i]) goto error; grown->n++; } isl_map_free(map); return grown; error: isl_map_free(grown); isl_map_free(map); return NULL; } /* Make sure "set" has room for at least "n" more basic sets. */ struct isl_set *isl_set_grow(struct isl_set *set, int n) { return (struct isl_set *)isl_map_grow((struct isl_map *)set, n); } struct isl_set *isl_set_dup(struct isl_set *set) { int i; struct isl_set *dup; if (!set) return NULL; dup = isl_set_alloc_space(isl_space_copy(set->dim), set->n, set->flags); if (!dup) return NULL; for (i = 0; i < set->n; ++i) dup = isl_set_add_basic_set(dup, isl_basic_set_copy(set->p[i])); return dup; } struct isl_set *isl_set_from_basic_set(struct isl_basic_set *bset) { return isl_map_from_basic_map(bset); } struct isl_map *isl_map_from_basic_map(struct isl_basic_map *bmap) { struct isl_map *map; if (!bmap) return NULL; map = isl_map_alloc_space(isl_space_copy(bmap->dim), 1, ISL_MAP_DISJOINT); return isl_map_add_basic_map(map, bmap); } __isl_give isl_set *isl_set_add_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *bset) { return (struct isl_set *)isl_map_add_basic_map((struct isl_map *)set, (struct isl_basic_map *)bset); } __isl_null isl_set *isl_set_free(__isl_take isl_set *set) { int i; if (!set) return NULL; if (--set->ref > 0) return NULL; isl_ctx_deref(set->ctx); for (i = 0; i < set->n; ++i) isl_basic_set_free(set->p[i]); isl_space_free(set->dim); free(set); return NULL; } void isl_set_print_internal(struct isl_set *set, FILE *out, int indent) { int i; if (!set) { fprintf(out, "null set\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, n: %d, nparam: %d, dim: %d, flags: %x\n", set->ref, set->n, set->dim->nparam, set->dim->n_out, set->flags); for (i = 0; i < set->n; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "basic set %d:\n", i); isl_basic_set_print_internal(set->p[i], out, indent+4); } } void isl_map_print_internal(struct isl_map *map, FILE *out, int indent) { int i; if (!map) { fprintf(out, "null map\n"); return; } fprintf(out, "%*s", indent, ""); fprintf(out, "ref: %d, n: %d, nparam: %d, in: %d, out: %d, " "flags: %x, n_name: %d\n", map->ref, map->n, map->dim->nparam, map->dim->n_in, map->dim->n_out, map->flags, map->dim->n_id); for (i = 0; i < map->n; ++i) { fprintf(out, "%*s", indent, ""); fprintf(out, "basic map %d:\n", i); isl_basic_map_print_internal(map->p[i], out, indent+4); } } struct isl_basic_map *isl_basic_map_intersect_domain( struct isl_basic_map *bmap, struct isl_basic_set *bset) { struct isl_basic_map *bmap_domain; if (!bmap || !bset) goto error; isl_assert(bset->ctx, isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param), goto error); if (isl_space_dim(bset->dim, isl_dim_set) != 0) isl_assert(bset->ctx, isl_basic_map_compatible_domain(bmap, bset), goto error); bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), bset->n_div, bset->n_eq, bset->n_ineq); bmap_domain = isl_basic_map_from_domain(bset); bmap = add_constraints(bmap, bmap_domain, 0, 0); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_set_free(bset); return NULL; } struct isl_basic_map *isl_basic_map_intersect_range( struct isl_basic_map *bmap, struct isl_basic_set *bset) { struct isl_basic_map *bmap_range; if (!bmap || !bset) goto error; isl_assert(bset->ctx, isl_space_match(bmap->dim, isl_dim_param, bset->dim, isl_dim_param), goto error); if (isl_space_dim(bset->dim, isl_dim_set) != 0) isl_assert(bset->ctx, isl_basic_map_compatible_range(bmap, bset), goto error); if (isl_basic_set_is_universe(bset)) { isl_basic_set_free(bset); return bmap; } bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), bset->n_div, bset->n_eq, bset->n_ineq); bmap_range = isl_basic_map_from_basic_set(bset, isl_space_copy(bset->dim)); bmap = add_constraints(bmap, bmap_range, 0, 0); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_set_free(bset); return NULL; } isl_bool isl_basic_map_contains(__isl_keep isl_basic_map *bmap, __isl_keep isl_vec *vec) { int i; unsigned total; isl_int s; if (!bmap || !vec) return isl_bool_error; total = 1 + isl_basic_map_total_dim(bmap); if (total != vec->size) return isl_bool_error; isl_int_init(s); for (i = 0; i < bmap->n_eq; ++i) { isl_seq_inner_product(vec->el, bmap->eq[i], total, &s); if (!isl_int_is_zero(s)) { isl_int_clear(s); return isl_bool_false; } } for (i = 0; i < bmap->n_ineq; ++i) { isl_seq_inner_product(vec->el, bmap->ineq[i], total, &s); if (isl_int_is_neg(s)) { isl_int_clear(s); return isl_bool_false; } } isl_int_clear(s); return isl_bool_true; } isl_bool isl_basic_set_contains(__isl_keep isl_basic_set *bset, __isl_keep isl_vec *vec) { return isl_basic_map_contains((struct isl_basic_map *)bset, vec); } struct isl_basic_map *isl_basic_map_intersect( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { struct isl_vec *sample = NULL; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param), goto error); if (isl_space_dim(bmap1->dim, isl_dim_all) == isl_space_dim(bmap1->dim, isl_dim_param) && isl_space_dim(bmap2->dim, isl_dim_all) != isl_space_dim(bmap2->dim, isl_dim_param)) return isl_basic_map_intersect(bmap2, bmap1); if (isl_space_dim(bmap2->dim, isl_dim_all) != isl_space_dim(bmap2->dim, isl_dim_param)) isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); if (isl_basic_map_plain_is_empty(bmap1)) { isl_basic_map_free(bmap2); return bmap1; } if (isl_basic_map_plain_is_empty(bmap2)) { isl_basic_map_free(bmap1); return bmap2; } if (bmap1->sample && isl_basic_map_contains(bmap1, bmap1->sample) > 0 && isl_basic_map_contains(bmap2, bmap1->sample) > 0) sample = isl_vec_copy(bmap1->sample); else if (bmap2->sample && isl_basic_map_contains(bmap1, bmap2->sample) > 0 && isl_basic_map_contains(bmap2, bmap2->sample) > 0) sample = isl_vec_copy(bmap2->sample); bmap1 = isl_basic_map_cow(bmap1); if (!bmap1) goto error; bmap1 = isl_basic_map_extend_space(bmap1, isl_space_copy(bmap1->dim), bmap2->n_div, bmap2->n_eq, bmap2->n_ineq); bmap1 = add_constraints(bmap1, bmap2, 0, 0); if (!bmap1) isl_vec_free(sample); else if (sample) { isl_vec_free(bmap1->sample); bmap1->sample = sample; } bmap1 = isl_basic_map_simplify(bmap1); return isl_basic_map_finalize(bmap1); error: if (sample) isl_vec_free(sample); isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_intersect( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { return (struct isl_basic_set *) isl_basic_map_intersect( (struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2); } __isl_give isl_basic_set *isl_basic_set_intersect_params( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) { return isl_basic_set_intersect(bset1, bset2); } /* Special case of isl_map_intersect, where both map1 and map2 * are convex, without any divs and such that either map1 or map2 * contains a single constraint. This constraint is then simply * added to the other map. */ static __isl_give isl_map *map_intersect_add_constraint( __isl_take isl_map *map1, __isl_take isl_map *map2) { isl_assert(map1->ctx, map1->n == 1, goto error); isl_assert(map2->ctx, map1->n == 1, goto error); isl_assert(map1->ctx, map1->p[0]->n_div == 0, goto error); isl_assert(map2->ctx, map1->p[0]->n_div == 0, goto error); if (map2->p[0]->n_eq + map2->p[0]->n_ineq != 1) return isl_map_intersect(map2, map1); isl_assert(map2->ctx, map2->p[0]->n_eq + map2->p[0]->n_ineq == 1, goto error); map1 = isl_map_cow(map1); if (!map1) goto error; if (isl_map_plain_is_empty(map1)) { isl_map_free(map2); return map1; } map1->p[0] = isl_basic_map_cow(map1->p[0]); if (map2->p[0]->n_eq == 1) map1->p[0] = isl_basic_map_add_eq(map1->p[0], map2->p[0]->eq[0]); else map1->p[0] = isl_basic_map_add_ineq(map1->p[0], map2->p[0]->ineq[0]); map1->p[0] = isl_basic_map_simplify(map1->p[0]); map1->p[0] = isl_basic_map_finalize(map1->p[0]); if (!map1->p[0]) goto error; if (isl_basic_map_plain_is_empty(map1->p[0])) { isl_basic_map_free(map1->p[0]); map1->n = 0; } isl_map_free(map2); return map1; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* map2 may be either a parameter domain or a map living in the same * space as map1. */ static __isl_give isl_map *map_intersect_internal(__isl_take isl_map *map1, __isl_take isl_map *map2) { unsigned flags = 0; isl_map *result; int i, j; if (!map1 || !map2) goto error; if ((isl_map_plain_is_empty(map1) || isl_map_plain_is_universe(map2)) && isl_space_is_equal(map1->dim, map2->dim)) { isl_map_free(map2); return map1; } if ((isl_map_plain_is_empty(map2) || isl_map_plain_is_universe(map1)) && isl_space_is_equal(map1->dim, map2->dim)) { isl_map_free(map1); return map2; } if (map1->n == 1 && map2->n == 1 && map1->p[0]->n_div == 0 && map2->p[0]->n_div == 0 && isl_space_is_equal(map1->dim, map2->dim) && (map1->p[0]->n_eq + map1->p[0]->n_ineq == 1 || map2->p[0]->n_eq + map2->p[0]->n_ineq == 1)) return map_intersect_add_constraint(map1, map2); if (isl_space_dim(map2->dim, isl_dim_all) != isl_space_dim(map2->dim, isl_dim_param)) isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n * map2->n, flags); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = isl_basic_map_intersect( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part) < 0) part = isl_basic_map_free(part); result = isl_map_add_basic_map(result, part); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } static __isl_give isl_map *map_intersect(__isl_take isl_map *map1, __isl_take isl_map *map2) { if (!map1 || !map2) goto error; if (!isl_space_is_equal(map1->dim, map2->dim)) isl_die(isl_map_get_ctx(map1), isl_error_invalid, "spaces don't match", goto error); return map_intersect_internal(map1, map2); error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_intersect(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_intersect); } struct isl_set *isl_set_intersect(struct isl_set *set1, struct isl_set *set2) { return (struct isl_set *) isl_map_intersect((struct isl_map *)set1, (struct isl_map *)set2); } /* map_intersect_internal accepts intersections * with parameter domains, so we can just call that function. */ static __isl_give isl_map *map_intersect_params(__isl_take isl_map *map, __isl_take isl_set *params) { return map_intersect_internal(map, params); } __isl_give isl_map *isl_map_intersect_params(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_intersect_params); } __isl_give isl_set *isl_set_intersect_params(__isl_take isl_set *set, __isl_take isl_set *params) { return isl_map_intersect_params(set, params); } struct isl_basic_map *isl_basic_map_reverse(struct isl_basic_map *bmap) { isl_space *space; unsigned pos, n1, n2; if (!bmap) return NULL; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; space = isl_space_reverse(isl_space_copy(bmap->dim)); pos = isl_basic_map_offset(bmap, isl_dim_in); n1 = isl_basic_map_dim(bmap, isl_dim_in); n2 = isl_basic_map_dim(bmap, isl_dim_out); bmap = isl_basic_map_swap_vars(bmap, pos, n1, n2); return isl_basic_map_reset_space(bmap, space); } static __isl_give isl_basic_map *basic_map_space_reset( __isl_take isl_basic_map *bmap, enum isl_dim_type type) { isl_space *space; if (!bmap) return NULL; if (!isl_space_is_named_or_nested(bmap->dim, type)) return bmap; space = isl_basic_map_get_space(bmap); space = isl_space_reset(space, type); bmap = isl_basic_map_reset_space(bmap, space); return bmap; } __isl_give isl_basic_map *isl_basic_map_insert_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, unsigned n) { isl_space *res_dim; struct isl_basic_map *res; struct isl_dim_map *dim_map; unsigned total, off; enum isl_dim_type t; if (n == 0) return basic_map_space_reset(bmap, type); if (!bmap) return NULL; res_dim = isl_space_insert_dims(isl_basic_map_get_space(bmap), type, pos, n); total = isl_basic_map_total_dim(bmap) + n; dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { if (t != type) { isl_dim_map_dim(dim_map, bmap->dim, t, off); } else { unsigned size = isl_basic_map_dim(bmap, t); isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, pos, off); isl_dim_map_dim_range(dim_map, bmap->dim, t, pos, size - pos, off + pos + n); } off += isl_space_dim(res_dim, t); } isl_dim_map_div(dim_map, bmap, off); res = isl_basic_map_alloc_space(res_dim, bmap->n_div, bmap->n_eq, bmap->n_ineq); if (isl_basic_map_is_rational(bmap)) res = isl_basic_map_set_rational(res); if (isl_basic_map_plain_is_empty(bmap)) { isl_basic_map_free(bmap); free(dim_map); return isl_basic_map_set_to_empty(res); } res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); return isl_basic_map_finalize(res); } __isl_give isl_basic_set *isl_basic_set_insert_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n) { return isl_basic_map_insert_dims(bset, type, pos, n); } __isl_give isl_basic_map *isl_basic_map_add_dims(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned n) { if (!bmap) return NULL; return isl_basic_map_insert_dims(bmap, type, isl_basic_map_dim(bmap, type), n); } __isl_give isl_basic_set *isl_basic_set_add_dims(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n) { if (!bset) return NULL; isl_assert(bset->ctx, type != isl_dim_in, goto error); return isl_basic_map_add_dims(bset, type, n); error: isl_basic_set_free(bset); return NULL; } static __isl_give isl_map *map_space_reset(__isl_take isl_map *map, enum isl_dim_type type) { isl_space *space; if (!map || !isl_space_is_named_or_nested(map->dim, type)) return map; space = isl_map_get_space(map); space = isl_space_reset(space, type); map = isl_map_reset_space(map, space); return map; } __isl_give isl_map *isl_map_insert_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, unsigned n) { int i; if (n == 0) return map_space_reset(map, type); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_insert_dims(map->dim, type, pos, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_insert_dims(map->p[i], type, pos, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_insert_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, unsigned n) { return isl_map_insert_dims(set, type, pos, n); } __isl_give isl_map *isl_map_add_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned n) { if (!map) return NULL; return isl_map_insert_dims(map, type, isl_map_dim(map, type), n); } __isl_give isl_set *isl_set_add_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned n) { if (!set) return NULL; isl_assert(set->ctx, type != isl_dim_in, goto error); return (isl_set *)isl_map_add_dims((isl_map *)set, type, n); error: isl_set_free(set); return NULL; } __isl_give isl_basic_map *isl_basic_map_move_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { struct isl_dim_map *dim_map; struct isl_basic_map *res; enum isl_dim_type t; unsigned total, off; if (!bmap) return NULL; if (n == 0) return bmap; isl_assert(bmap->ctx, src_pos + n <= isl_basic_map_dim(bmap, src_type), goto error); if (dst_type == src_type && dst_pos == src_pos) return bmap; isl_assert(bmap->ctx, dst_type != src_type, goto error); if (pos(bmap->dim, dst_type) + dst_pos == pos(bmap->dim, src_type) + src_pos + ((src_type < dst_type) ? n : 0)) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_move_dims(bmap->dim, dst_type, dst_pos, src_type, src_pos, n); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; } total = isl_basic_map_total_dim(bmap); dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { unsigned size = isl_space_dim(bmap->dim, t); if (t == dst_type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, dst_pos, off); off += dst_pos; isl_dim_map_dim_range(dim_map, bmap->dim, src_type, src_pos, n, off); off += n; isl_dim_map_dim_range(dim_map, bmap->dim, t, dst_pos, size - dst_pos, off); off += size - dst_pos; } else if (t == src_type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, src_pos, off); off += src_pos; isl_dim_map_dim_range(dim_map, bmap->dim, t, src_pos + n, size - src_pos - n, off); off += size - src_pos - n; } else { isl_dim_map_dim(dim_map, bmap->dim, t, off); off += size; } } isl_dim_map_div(dim_map, bmap, off); res = isl_basic_map_alloc_space(isl_basic_map_get_space(bmap), bmap->n_div, bmap->n_eq, bmap->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); if (!bmap) goto error; bmap->dim = isl_space_move_dims(bmap->dim, dst_type, dst_pos, src_type, src_pos, n); if (!bmap->dim) goto error; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_move_dims(__isl_take isl_basic_set *bset, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { return (isl_basic_set *)isl_basic_map_move_dims( (isl_basic_map *)bset, dst_type, dst_pos, src_type, src_pos, n); } __isl_give isl_set *isl_set_move_dims(__isl_take isl_set *set, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { if (!set) return NULL; isl_assert(set->ctx, dst_type != isl_dim_in, goto error); return (isl_set *)isl_map_move_dims((isl_map *)set, dst_type, dst_pos, src_type, src_pos, n); error: isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_move_dims(__isl_take isl_map *map, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map; isl_assert(map->ctx, src_pos + n <= isl_map_dim(map, src_type), goto error); if (dst_type == src_type && dst_pos == src_pos) return map; isl_assert(map->ctx, dst_type != src_type, goto error); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_move_dims(map->dim, dst_type, dst_pos, src_type, src_pos, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_move_dims(map->p[i], dst_type, dst_pos, src_type, src_pos, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Move the specified dimensions to the last columns right before * the divs. Don't change the dimension specification of bmap. * That's the responsibility of the caller. */ static __isl_give isl_basic_map *move_last(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { struct isl_dim_map *dim_map; struct isl_basic_map *res; enum isl_dim_type t; unsigned total, off; if (!bmap) return NULL; if (pos(bmap->dim, type) + first + n == 1 + isl_space_dim(bmap->dim, isl_dim_all)) return bmap; total = isl_basic_map_total_dim(bmap); dim_map = isl_dim_map_alloc(bmap->ctx, total); off = 0; for (t = isl_dim_param; t <= isl_dim_out; ++t) { unsigned size = isl_space_dim(bmap->dim, t); if (t == type) { isl_dim_map_dim_range(dim_map, bmap->dim, t, 0, first, off); off += first; isl_dim_map_dim_range(dim_map, bmap->dim, t, first, n, total - bmap->n_div - n); isl_dim_map_dim_range(dim_map, bmap->dim, t, first + n, size - (first + n), off); off += size - (first + n); } else { isl_dim_map_dim(dim_map, bmap->dim, t, off); off += size; } } isl_dim_map_div(dim_map, bmap, off + n); res = isl_basic_map_alloc_space(isl_basic_map_get_space(bmap), bmap->n_div, bmap->n_eq, bmap->n_ineq); res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); return res; } /* Insert "n" rows in the divs of "bmap". * * The number of columns is not changed, which means that the last * dimensions of "bmap" are being reintepreted as the new divs. * The space of "bmap" is not adjusted, however, which means * that "bmap" is left in an inconsistent state. Removing "n" dimensions * from the space of "bmap" is the responsibility of the caller. */ static __isl_give isl_basic_map *insert_div_rows(__isl_take isl_basic_map *bmap, int n) { int i; size_t row_size; isl_int **new_div; isl_int *old; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; row_size = 1 + isl_space_dim(bmap->dim, isl_dim_all) + bmap->extra; old = bmap->block2.data; bmap->block2 = isl_blk_extend(bmap->ctx, bmap->block2, (bmap->extra + n) * (1 + row_size)); if (!bmap->block2.data) return isl_basic_map_free(bmap); new_div = isl_alloc_array(bmap->ctx, isl_int *, bmap->extra + n); if (!new_div) return isl_basic_map_free(bmap); for (i = 0; i < n; ++i) { new_div[i] = bmap->block2.data + (bmap->extra + i) * (1 + row_size); isl_seq_clr(new_div[i], 1 + row_size); } for (i = 0; i < bmap->extra; ++i) new_div[n + i] = bmap->block2.data + (bmap->div[i] - old); free(bmap->div); bmap->div = new_div; bmap->n_div += n; bmap->extra += n; return bmap; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ __isl_give isl_basic_map *isl_basic_map_project_out( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { if (n == 0) return basic_map_space_reset(bmap, type); if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return isl_basic_map_remove_dims(bmap, type, first, n); isl_assert(bmap->ctx, first + n <= isl_basic_map_dim(bmap, type), goto error); bmap = move_last(bmap, type, first, n); bmap = isl_basic_map_cow(bmap); bmap = insert_div_rows(bmap, n); if (!bmap) return NULL; bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n); if (!bmap->dim) goto error; bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ struct isl_basic_set *isl_basic_set_project_out(struct isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_basic_set *)isl_basic_map_project_out( (isl_basic_map *)bset, type, first, n); } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) return NULL; if (n == 0) return map_space_reset(map, type); isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_drop_dims(map->dim, type, first, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_project_out(map->p[i], type, first, n); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Turn the n dimensions of type type, starting at first * into existentially quantified variables. */ __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_project_out((isl_map *)set, type, first, n); } static struct isl_basic_map *add_divs(struct isl_basic_map *bmap, unsigned n) { int i, j; for (i = 0; i < n; ++i) { j = isl_basic_map_alloc_div(bmap); if (j < 0) goto error; isl_seq_clr(bmap->div[j], 1+1+isl_basic_map_total_dim(bmap)); } return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_apply_range( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_space *dim_result = NULL; struct isl_basic_map *bmap; unsigned n_in, n_out, n, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; if (!isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "parameters don't match", goto error); if (!isl_space_tuple_is_equal(bmap1->dim, isl_dim_out, bmap2->dim, isl_dim_in)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "spaces don't match", goto error); dim_result = isl_space_join(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); n_in = isl_basic_map_n_in(bmap1); n_out = isl_basic_map_n_out(bmap2); n = isl_basic_map_n_out(bmap1); nparam = isl_basic_map_n_param(bmap1); total = nparam + n_in + n_out + bmap1->n_div + bmap2->n_div + n; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += n_in); isl_dim_map_div(dim_map1, bmap1, pos += n_out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += bmap2->n_div); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div + n, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = add_divs(bmap, n); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_basic_set *isl_basic_set_apply( struct isl_basic_set *bset, struct isl_basic_map *bmap) { if (!bset || !bmap) goto error; isl_assert(bset->ctx, isl_basic_map_compatible_domain(bmap, bset), goto error); return (struct isl_basic_set *) isl_basic_map_apply_range((struct isl_basic_map *)bset, bmap); error: isl_basic_set_free(bset); isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_apply_domain( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_basic_map_n_in(bmap1) == isl_basic_map_n_in(bmap2), goto error); isl_assert(bmap1->ctx, isl_basic_map_n_param(bmap1) == isl_basic_map_n_param(bmap2), goto error); bmap1 = isl_basic_map_reverse(bmap1); bmap1 = isl_basic_map_apply_range(bmap1, bmap2); return isl_basic_map_reverse(bmap1); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } /* Given two basic maps A -> f(A) and B -> g(B), construct a basic map * A \cap B -> f(A) + f(B) */ struct isl_basic_map *isl_basic_map_sum( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { unsigned n_in, n_out, nparam, total, pos; struct isl_basic_map *bmap = NULL; struct isl_dim_map *dim_map1, *dim_map2; int i; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); nparam = isl_basic_map_n_param(bmap1); n_in = isl_basic_map_n_in(bmap1); n_out = isl_basic_map_n_out(bmap1); total = nparam + n_in + n_out + bmap1->n_div + bmap2->n_div + 2 * n_out; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap2->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); isl_dim_map_div(dim_map1, bmap1, pos += n_in + n_out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += bmap2->n_div); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += n_out); bmap = isl_basic_map_alloc_space(isl_space_copy(bmap1->dim), bmap1->n_div + bmap2->n_div + 2 * n_out, bmap1->n_eq + bmap2->n_eq + n_out, bmap1->n_ineq + bmap2->n_ineq); for (i = 0; i < n_out; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j], 1+total); isl_int_set_si(bmap->eq[j][1+nparam+n_in+i], -1); isl_int_set_si(bmap->eq[j][1+pos+i], 1); isl_int_set_si(bmap->eq[j][1+pos-n_out+i], 1); } bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = add_divs(bmap, 2 * n_out); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } /* Given two maps A -> f(A) and B -> g(B), construct a map * A \cap B -> f(A) + f(B) */ struct isl_map *isl_map_sum(struct isl_map *map1, struct isl_map *map2) { struct isl_map *result; int i, j; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_is_equal(map1->dim, map2->dim), goto error); result = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n * map2->n, 0); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = isl_basic_map_sum( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part)) isl_basic_map_free(part); else result = isl_map_add_basic_map(result, part); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_set *isl_set_sum(__isl_take isl_set *set1, __isl_take isl_set *set2) { return (isl_set *)isl_map_sum((isl_map *)set1, (isl_map *)set2); } /* Given a basic map A -> f(A), construct A -> -f(A). */ struct isl_basic_map *isl_basic_map_neg(struct isl_basic_map *bmap) { int i, j; unsigned off, n; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; n = isl_basic_map_dim(bmap, isl_dim_out); off = isl_basic_map_offset(bmap, isl_dim_out); for (i = 0; i < bmap->n_eq; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->eq[i][off+j], bmap->eq[i][off+j]); for (i = 0; i < bmap->n_ineq; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->ineq[i][off+j], bmap->ineq[i][off+j]); for (i = 0; i < bmap->n_div; ++i) for (j = 0; j < n; ++j) isl_int_neg(bmap->div[i][1+off+j], bmap->div[i][1+off+j]); bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); } __isl_give isl_basic_set *isl_basic_set_neg(__isl_take isl_basic_set *bset) { return isl_basic_map_neg(bset); } /* Given a map A -> f(A), construct A -> -f(A). */ struct isl_map *isl_map_neg(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_neg(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_neg(__isl_take isl_set *set) { return (isl_set *)isl_map_neg((isl_map *)set); } /* Given a basic map A -> f(A) and an integer d, construct a basic map * A -> floor(f(A)/d). */ struct isl_basic_map *isl_basic_map_floordiv(struct isl_basic_map *bmap, isl_int d) { unsigned n_in, n_out, nparam, total, pos; struct isl_basic_map *result = NULL; struct isl_dim_map *dim_map; int i; if (!bmap) return NULL; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); n_out = isl_basic_map_n_out(bmap); total = nparam + n_in + n_out + bmap->n_div + n_out; dim_map = isl_dim_map_alloc(bmap->ctx, total); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_in, pos += nparam); isl_dim_map_div(dim_map, bmap, pos += n_in + n_out); isl_dim_map_dim(dim_map, bmap->dim, isl_dim_out, pos += bmap->n_div); result = isl_basic_map_alloc_space(isl_space_copy(bmap->dim), bmap->n_div + n_out, bmap->n_eq, bmap->n_ineq + 2 * n_out); result = isl_basic_map_add_constraints_dim_map(result, bmap, dim_map); result = add_divs(result, n_out); for (i = 0; i < n_out; ++i) { int j; j = isl_basic_map_alloc_inequality(result); if (j < 0) goto error; isl_seq_clr(result->ineq[j], 1+total); isl_int_neg(result->ineq[j][1+nparam+n_in+i], d); isl_int_set_si(result->ineq[j][1+pos+i], 1); j = isl_basic_map_alloc_inequality(result); if (j < 0) goto error; isl_seq_clr(result->ineq[j], 1+total); isl_int_set(result->ineq[j][1+nparam+n_in+i], d); isl_int_set_si(result->ineq[j][1+pos+i], -1); isl_int_sub_ui(result->ineq[j][0], d, 1); } result = isl_basic_map_simplify(result); return isl_basic_map_finalize(result); error: isl_basic_map_free(result); return NULL; } /* Given a map A -> f(A) and an integer d, construct a map * A -> floor(f(A)/d). */ struct isl_map *isl_map_floordiv(struct isl_map *map, isl_int d) { int i; map = isl_map_cow(map); if (!map) return NULL; ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_floordiv(map->p[i], d); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Given a map A -> f(A) and an integer d, construct a map * A -> floor(f(A)/d). */ __isl_give isl_map *isl_map_floordiv_val(__isl_take isl_map *map, __isl_take isl_val *d) { if (!map || !d) goto error; if (!isl_val_is_int(d)) isl_die(isl_val_get_ctx(d), isl_error_invalid, "expecting integer denominator", goto error); map = isl_map_floordiv(map, d->n); isl_val_free(d); return map; error: isl_map_free(map); isl_val_free(d); return NULL; } static struct isl_basic_map *var_equal(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[i][1+nparam+pos], -1); isl_int_set_si(bmap->eq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraints to "bmap" expressing i_pos < o_pos */ static struct isl_basic_map *var_less(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][0], -1); isl_int_set_si(bmap->ineq[i][1+nparam+pos], -1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos <= o_pos */ static __isl_give isl_basic_map *var_less_or_equal( __isl_take isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][1+nparam+pos], -1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], 1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraints to "bmap" expressing i_pos > o_pos */ static struct isl_basic_map *var_more(struct isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][0], -1); isl_int_set_si(bmap->ineq[i][1+nparam+pos], 1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], -1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Add a constraint to "bmap" expressing i_pos >= o_pos */ static __isl_give isl_basic_map *var_more_or_equal( __isl_take isl_basic_map *bmap, unsigned pos) { int i; unsigned nparam; unsigned n_in; i = isl_basic_map_alloc_inequality(bmap); if (i < 0) goto error; nparam = isl_basic_map_n_param(bmap); n_in = isl_basic_map_n_in(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[i][1+nparam+pos], 1); isl_int_set_si(bmap->ineq[i][1+nparam+n_in+pos], -1); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_equal( __isl_take isl_space *dim, unsigned n_equal) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, n_equal, 0); if (!bmap) return NULL; for (i = 0; i < n_equal && bmap; ++i) bmap = var_equal(bmap, i); return isl_basic_map_finalize(bmap); } /* Return a relation on of dimension "dim" expressing i_[0..pos] << o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_less_at(__isl_take isl_space *dim, unsigned pos) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); if (!bmap) return NULL; for (i = 0; i < pos && bmap; ++i) bmap = var_equal(bmap, i); if (bmap) bmap = var_less(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on of dimension "dim" expressing i_[0..pos] <<= o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_less_or_equal_at( __isl_take isl_space *dim, unsigned pos) { int i; isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); for (i = 0; i < pos; ++i) bmap = var_equal(bmap, i); bmap = var_less_or_equal(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on pairs of sets of dimension "dim" expressing i_pos > o_pos */ __isl_give isl_basic_map *isl_basic_map_more_at(__isl_take isl_space *dim, unsigned pos) { int i; struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); if (!bmap) return NULL; for (i = 0; i < pos && bmap; ++i) bmap = var_equal(bmap, i); if (bmap) bmap = var_more(bmap, pos); return isl_basic_map_finalize(bmap); } /* Return a relation on of dimension "dim" expressing i_[0..pos] >>= o_[0..pos] */ __isl_give isl_basic_map *isl_basic_map_more_or_equal_at( __isl_take isl_space *dim, unsigned pos) { int i; isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, pos, 1); for (i = 0; i < pos; ++i) bmap = var_equal(bmap, i); bmap = var_more_or_equal(bmap, pos); return isl_basic_map_finalize(bmap); } static __isl_give isl_map *map_lex_lte_first(__isl_take isl_space *dims, unsigned n, int equal) { struct isl_map *map; int i; if (n == 0 && equal) return isl_map_universe(dims); map = isl_map_alloc_space(isl_space_copy(dims), n, ISL_MAP_DISJOINT); for (i = 0; i + 1 < n; ++i) map = isl_map_add_basic_map(map, isl_basic_map_less_at(isl_space_copy(dims), i)); if (n > 0) { if (equal) map = isl_map_add_basic_map(map, isl_basic_map_less_or_equal_at(dims, n - 1)); else map = isl_map_add_basic_map(map, isl_basic_map_less_at(dims, n - 1)); } else isl_space_free(dims); return map; } static __isl_give isl_map *map_lex_lte(__isl_take isl_space *dims, int equal) { if (!dims) return NULL; return map_lex_lte_first(dims, dims->n_out, equal); } __isl_give isl_map *isl_map_lex_lt_first(__isl_take isl_space *dim, unsigned n) { return map_lex_lte_first(dim, n, 0); } __isl_give isl_map *isl_map_lex_le_first(__isl_take isl_space *dim, unsigned n) { return map_lex_lte_first(dim, n, 1); } __isl_give isl_map *isl_map_lex_lt(__isl_take isl_space *set_dim) { return map_lex_lte(isl_space_map_from_set(set_dim), 0); } __isl_give isl_map *isl_map_lex_le(__isl_take isl_space *set_dim) { return map_lex_lte(isl_space_map_from_set(set_dim), 1); } static __isl_give isl_map *map_lex_gte_first(__isl_take isl_space *dims, unsigned n, int equal) { struct isl_map *map; int i; if (n == 0 && equal) return isl_map_universe(dims); map = isl_map_alloc_space(isl_space_copy(dims), n, ISL_MAP_DISJOINT); for (i = 0; i + 1 < n; ++i) map = isl_map_add_basic_map(map, isl_basic_map_more_at(isl_space_copy(dims), i)); if (n > 0) { if (equal) map = isl_map_add_basic_map(map, isl_basic_map_more_or_equal_at(dims, n - 1)); else map = isl_map_add_basic_map(map, isl_basic_map_more_at(dims, n - 1)); } else isl_space_free(dims); return map; } static __isl_give isl_map *map_lex_gte(__isl_take isl_space *dims, int equal) { if (!dims) return NULL; return map_lex_gte_first(dims, dims->n_out, equal); } __isl_give isl_map *isl_map_lex_gt_first(__isl_take isl_space *dim, unsigned n) { return map_lex_gte_first(dim, n, 0); } __isl_give isl_map *isl_map_lex_ge_first(__isl_take isl_space *dim, unsigned n) { return map_lex_gte_first(dim, n, 1); } __isl_give isl_map *isl_map_lex_gt(__isl_take isl_space *set_dim) { return map_lex_gte(isl_space_map_from_set(set_dim), 0); } __isl_give isl_map *isl_map_lex_ge(__isl_take isl_space *set_dim) { return map_lex_gte(isl_space_map_from_set(set_dim), 1); } __isl_give isl_map *isl_set_lex_le_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_le(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_lt_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_lt(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_ge_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_ge(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_set_lex_gt_set(__isl_take isl_set *set1, __isl_take isl_set *set2) { isl_map *map; map = isl_map_lex_gt(isl_set_get_space(set1)); map = isl_map_intersect_domain(map, set1); map = isl_map_intersect_range(map, set2); return map; } __isl_give isl_map *isl_map_lex_le_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_le(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_lt_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_lt(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_ge_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_ge(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_map *isl_map_lex_gt_map(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *map; map = isl_map_lex_gt(isl_space_range(isl_map_get_space(map1))); map = isl_map_apply_domain(map, isl_map_reverse(map1)); map = isl_map_apply_range(map, isl_map_reverse(map2)); return map; } __isl_give isl_basic_map *isl_basic_map_from_basic_set( __isl_take isl_basic_set *bset, __isl_take isl_space *dim) { struct isl_basic_map *bmap; bset = isl_basic_set_cow(bset); if (!bset || !dim) goto error; isl_assert(bset->ctx, isl_space_compatible(bset->dim, dim), goto error); isl_space_free(bset->dim); bmap = (struct isl_basic_map *) bset; bmap->dim = dim; return isl_basic_map_finalize(bmap); error: isl_basic_set_free(bset); isl_space_free(dim); return NULL; } /* For a div d = floor(f/m), add the constraint * * f - m d >= 0 */ static int add_upper_div_constraint(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { int i; unsigned total = isl_basic_map_total_dim(bmap); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return -1; isl_seq_cpy(bmap->ineq[i], div + 1, 1 + total); isl_int_neg(bmap->ineq[i][1 + pos], div[0]); return 0; } /* For a div d = floor(f/m), add the constraint * * -(f-(n-1)) + m d >= 0 */ static int add_lower_div_constraint(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { int i; unsigned total = isl_basic_map_total_dim(bmap); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return -1; isl_seq_neg(bmap->ineq[i], div + 1, 1 + total); isl_int_set(bmap->ineq[i][1 + pos], div[0]); isl_int_add(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[i][1 + pos]); isl_int_sub_ui(bmap->ineq[i][0], bmap->ineq[i][0], 1); return 0; } /* For a div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(n-1)) + m d >= 0 * * Note that the second constraint is the negation of * * f - m d >= n */ int isl_basic_map_add_div_constraints_var(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div) { if (add_upper_div_constraint(bmap, pos, div) < 0) return -1; if (add_lower_div_constraint(bmap, pos, div) < 0) return -1; return 0; } int isl_basic_set_add_div_constraints_var(__isl_keep isl_basic_set *bset, unsigned pos, isl_int *div) { return isl_basic_map_add_div_constraints_var((isl_basic_map *)bset, pos, div); } int isl_basic_map_add_div_constraints(struct isl_basic_map *bmap, unsigned div) { unsigned total = isl_basic_map_total_dim(bmap); unsigned div_pos = total - bmap->n_div + div; return isl_basic_map_add_div_constraints_var(bmap, div_pos, bmap->div[div]); } /* For each known div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(n-1)) + m d >= 0 * * Remove duplicate constraints in case of some these div constraints * already appear in "bmap". */ __isl_give isl_basic_map *isl_basic_map_add_known_div_constraints( __isl_take isl_basic_map *bmap) { unsigned n_div; if (!bmap) return NULL; n_div = isl_basic_map_dim(bmap, isl_dim_div); if (n_div == 0) return bmap; bmap = add_known_div_constraints(bmap); bmap = isl_basic_map_remove_duplicate_constraints(bmap, NULL, 0); bmap = isl_basic_map_finalize(bmap); return bmap; } /* Add the div constraint of sign "sign" for div "div" of "bmap". * * In particular, if this div is of the form d = floor(f/m), * then add the constraint * * f - m d >= 0 * * if sign < 0 or the constraint * * -(f-(n-1)) + m d >= 0 * * if sign > 0. */ int isl_basic_map_add_div_constraint(__isl_keep isl_basic_map *bmap, unsigned div, int sign) { unsigned total; unsigned div_pos; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); div_pos = total - bmap->n_div + div; if (sign < 0) return add_upper_div_constraint(bmap, div_pos, bmap->div[div]); else return add_lower_div_constraint(bmap, div_pos, bmap->div[div]); } int isl_basic_set_add_div_constraints(struct isl_basic_set *bset, unsigned div) { return isl_basic_map_add_div_constraints(bset, div); } struct isl_basic_set *isl_basic_map_underlying_set( struct isl_basic_map *bmap) { if (!bmap) goto error; if (bmap->dim->nparam == 0 && bmap->dim->n_in == 0 && bmap->n_div == 0 && !isl_space_is_named_or_nested(bmap->dim, isl_dim_in) && !isl_space_is_named_or_nested(bmap->dim, isl_dim_out)) return (struct isl_basic_set *)bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; bmap->dim = isl_space_underlying(bmap->dim, bmap->n_div); if (!bmap->dim) goto error; bmap->extra -= bmap->n_div; bmap->n_div = 0; bmap = isl_basic_map_finalize(bmap); return (struct isl_basic_set *)bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_underlying_set( __isl_take isl_basic_set *bset) { return isl_basic_map_underlying_set((isl_basic_map *)bset); } /* Replace each element in "list" by the result of applying * isl_basic_map_underlying_set to the element. */ __isl_give isl_basic_set_list *isl_basic_map_list_underlying_set( __isl_take isl_basic_map_list *list) { int i, n; if (!list) return NULL; n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap; isl_basic_set *bset; bmap = isl_basic_map_list_get_basic_map(list, i); bset = isl_basic_set_underlying_set(bmap); list = isl_basic_set_list_set_basic_set(list, i, bset); } return list; } struct isl_basic_map *isl_basic_map_overlying_set( struct isl_basic_set *bset, struct isl_basic_map *like) { struct isl_basic_map *bmap; struct isl_ctx *ctx; unsigned total; int i; if (!bset || !like) goto error; ctx = bset->ctx; isl_assert(ctx, bset->n_div == 0, goto error); isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(ctx, bset->dim->n_out == isl_basic_map_total_dim(like), goto error); if (like->n_div == 0) { isl_space *space = isl_basic_map_get_space(like); isl_basic_map_free(like); return isl_basic_map_reset_space(bset, space); } bset = isl_basic_set_cow(bset); if (!bset) goto error; total = bset->dim->n_out + bset->extra; bmap = (struct isl_basic_map *)bset; isl_space_free(bmap->dim); bmap->dim = isl_space_copy(like->dim); if (!bmap->dim) goto error; bmap->n_div = like->n_div; bmap->extra += like->n_div; if (bmap->extra) { unsigned ltotal; isl_int **div; ltotal = total - bmap->extra + like->extra; if (ltotal > total) ltotal = total; bmap->block2 = isl_blk_extend(ctx, bmap->block2, bmap->extra * (1 + 1 + total)); if (isl_blk_is_error(bmap->block2)) goto error; div = isl_realloc_array(ctx, bmap->div, isl_int *, bmap->extra); if (!div) goto error; bmap->div = div; for (i = 0; i < bmap->extra; ++i) bmap->div[i] = bmap->block2.data + i * (1 + 1 + total); for (i = 0; i < like->n_div; ++i) { isl_seq_cpy(bmap->div[i], like->div[i], 1 + 1 + ltotal); isl_seq_clr(bmap->div[i]+1+1+ltotal, total - ltotal); } bmap = isl_basic_map_add_known_div_constraints(bmap); } isl_basic_map_free(like); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(like); isl_basic_set_free(bset); return NULL; } struct isl_basic_set *isl_basic_set_from_underlying_set( struct isl_basic_set *bset, struct isl_basic_set *like) { return (struct isl_basic_set *) isl_basic_map_overlying_set(bset, (struct isl_basic_map *)like); } struct isl_set *isl_set_from_underlying_set( struct isl_set *set, struct isl_basic_set *like) { int i; if (!set || !like) goto error; isl_assert(set->ctx, set->dim->n_out == isl_basic_set_total_dim(like), goto error); if (isl_space_is_equal(set->dim, like->dim) && like->n_div == 0) { isl_basic_set_free(like); return set; } set = isl_set_cow(set); if (!set) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_from_underlying_set(set->p[i], isl_basic_set_copy(like)); if (!set->p[i]) goto error; } isl_space_free(set->dim); set->dim = isl_space_copy(like->dim); if (!set->dim) goto error; isl_basic_set_free(like); return set; error: isl_basic_set_free(like); isl_set_free(set); return NULL; } struct isl_set *isl_map_underlying_set(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_cow(map->dim); if (!map->dim) goto error; for (i = 1; i < map->n; ++i) isl_assert(map->ctx, map->p[0]->n_div == map->p[i]->n_div, goto error); for (i = 0; i < map->n; ++i) { map->p[i] = (struct isl_basic_map *) isl_basic_map_underlying_set(map->p[i]); if (!map->p[i]) goto error; } if (map->n == 0) map->dim = isl_space_underlying(map->dim, 0); else { isl_space_free(map->dim); map->dim = isl_space_copy(map->p[0]->dim); } if (!map->dim) goto error; return (struct isl_set *)map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_to_underlying_set(struct isl_set *set) { return (struct isl_set *)isl_map_underlying_set((struct isl_map *)set); } /* Replace the space of "bmap" by "space". * * If the space of "bmap" is identical to "space" (including the identifiers * of the input and output dimensions), then simply return the original input. */ __isl_give isl_basic_map *isl_basic_map_reset_space( __isl_take isl_basic_map *bmap, __isl_take isl_space *space) { isl_bool equal; if (!bmap) goto error; equal = isl_space_is_equal(bmap->dim, space); if (equal >= 0 && equal) equal = isl_space_match(bmap->dim, isl_dim_in, space, isl_dim_in); if (equal >= 0 && equal) equal = isl_space_match(bmap->dim, isl_dim_out, space, isl_dim_out); if (equal < 0) goto error; if (equal) { isl_space_free(space); return bmap; } bmap = isl_basic_map_cow(bmap); if (!bmap || !space) goto error; isl_space_free(bmap->dim); bmap->dim = space; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); isl_space_free(space); return NULL; } __isl_give isl_basic_set *isl_basic_set_reset_space( __isl_take isl_basic_set *bset, __isl_take isl_space *dim) { return (isl_basic_set *)isl_basic_map_reset_space((isl_basic_map *)bset, dim); } __isl_give isl_map *isl_map_reset_space(__isl_take isl_map *map, __isl_take isl_space *dim) { int i; map = isl_map_cow(map); if (!map || !dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reset_space(map->p[i], isl_space_copy(dim)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = dim; return map; error: isl_map_free(map); isl_space_free(dim); return NULL; } __isl_give isl_set *isl_set_reset_space(__isl_take isl_set *set, __isl_take isl_space *dim) { return (struct isl_set *) isl_map_reset_space((struct isl_map *)set, dim); } /* Compute the parameter domain of the given basic set. */ __isl_give isl_basic_set *isl_basic_set_params(__isl_take isl_basic_set *bset) { isl_space *space; unsigned n; if (isl_basic_set_is_params(bset)) return bset; n = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_project_out(bset, isl_dim_set, 0, n); space = isl_basic_set_get_space(bset); space = isl_space_params(space); bset = isl_basic_set_reset_space(bset, space); return bset; } /* Construct a zero-dimensional basic set with the given parameter domain. */ __isl_give isl_basic_set *isl_basic_set_from_params( __isl_take isl_basic_set *bset) { isl_space *space; space = isl_basic_set_get_space(bset); space = isl_space_set_from_params(space); bset = isl_basic_set_reset_space(bset, space); return bset; } /* Compute the parameter domain of the given set. */ __isl_give isl_set *isl_set_params(__isl_take isl_set *set) { isl_space *space; unsigned n; if (isl_set_is_params(set)) return set; n = isl_set_dim(set, isl_dim_set); set = isl_set_project_out(set, isl_dim_set, 0, n); space = isl_set_get_space(set); space = isl_space_params(space); set = isl_set_reset_space(set, space); return set; } /* Construct a zero-dimensional set with the given parameter domain. */ __isl_give isl_set *isl_set_from_params(__isl_take isl_set *set) { isl_space *space; space = isl_set_get_space(set); space = isl_space_set_from_params(space); set = isl_set_reset_space(set, space); return set; } /* Compute the parameter domain of the given map. */ __isl_give isl_set *isl_map_params(__isl_take isl_map *map) { isl_space *space; unsigned n; n = isl_map_dim(map, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, 0, n); n = isl_map_dim(map, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, 0, n); space = isl_map_get_space(map); space = isl_space_params(space); map = isl_map_reset_space(map, space); return map; } struct isl_basic_set *isl_basic_map_domain(struct isl_basic_map *bmap) { isl_space *space; unsigned n_out; if (!bmap) return NULL; space = isl_space_domain(isl_basic_map_get_space(bmap)); n_out = isl_basic_map_n_out(bmap); bmap = isl_basic_map_project_out(bmap, isl_dim_out, 0, n_out); return isl_basic_map_reset_space(bmap, space); } int isl_basic_map_may_be_set(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return isl_space_may_be_set(bmap->dim); } /* Is this basic map actually a set? * Users should never call this function. Outside of isl, * the type should indicate whether something is a set or a map. */ int isl_basic_map_is_set(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return isl_space_is_set(bmap->dim); } struct isl_basic_set *isl_basic_map_range(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (isl_basic_map_is_set(bmap)) return bmap; return isl_basic_map_domain(isl_basic_map_reverse(bmap)); } __isl_give isl_basic_map *isl_basic_map_domain_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *domain; int nparam, n_in, n_out; unsigned total; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_from_range(isl_space_domain(isl_basic_map_get_space(bmap))); domain = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, domain); bmap = isl_basic_map_extend_constraints(bmap, n_in, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n_in; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + n_out + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_range_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *range; int nparam, n_in, n_out; unsigned total; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_from_range(isl_space_range(isl_basic_map_get_space(bmap))); range = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, range); bmap = isl_basic_map_extend_constraints(bmap, n_out, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n_out; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n_in + n_out + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } int isl_map_may_be_set(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_may_be_set(map->dim); } /* Is this map actually a set? * Users should never call this function. Outside of isl, * the type should indicate whether something is a set or a map. */ int isl_map_is_set(__isl_keep isl_map *map) { if (!map) return -1; return isl_space_is_set(map->dim); } struct isl_set *isl_map_range(struct isl_map *map) { int i; struct isl_set *set; if (!map) goto error; if (isl_map_is_set(map)) return (isl_set *)map; map = isl_map_cow(map); if (!map) goto error; set = (struct isl_set *) map; set->dim = isl_space_range(set->dim); if (!set->dim) goto error; for (i = 0; i < map->n; ++i) { set->p[i] = isl_basic_map_range(map->p[i]); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_MAP_DISJOINT); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_domain_map(map->dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_domain_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map) { int i; isl_space *range_dim; map = isl_map_cow(map); if (!map) return NULL; range_dim = isl_space_range(isl_map_get_space(map)); range_dim = isl_space_from_range(range_dim); map->dim = isl_space_from_domain(isl_space_wrap(map->dim)); map->dim = isl_space_join(map->dim, range_dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_range_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } /* Given a wrapped map of the form A[B -> C], * return the map A[B -> C] -> B. */ __isl_give isl_map *isl_set_wrapped_domain_map(__isl_take isl_set *set) { isl_id *id; isl_map *map; if (!set) return NULL; if (!isl_set_has_tuple_id(set)) return isl_map_domain_map(isl_set_unwrap(set)); id = isl_set_get_tuple_id(set); map = isl_map_domain_map(isl_set_unwrap(set)); map = isl_map_set_tuple_id(map, isl_dim_in, id); return map; } __isl_give isl_map *isl_map_from_set(__isl_take isl_set *set, __isl_take isl_space *dim) { int i; struct isl_map *map = NULL; set = isl_set_cow(set); if (!set || !dim) goto error; isl_assert(set->ctx, isl_space_compatible(set->dim, dim), goto error); map = (struct isl_map *)set; for (i = 0; i < set->n; ++i) { map->p[i] = isl_basic_map_from_basic_set( set->p[i], isl_space_copy(dim)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = dim; return map; error: isl_space_free(dim); isl_set_free(set); return NULL; } __isl_give isl_basic_map *isl_basic_map_from_domain( __isl_take isl_basic_set *bset) { return isl_basic_map_reverse(isl_basic_map_from_range(bset)); } __isl_give isl_basic_map *isl_basic_map_from_range( __isl_take isl_basic_set *bset) { isl_space *space; space = isl_basic_set_get_space(bset); space = isl_space_from_range(space); bset = isl_basic_set_reset_space(bset, space); return (isl_basic_map *)bset; } /* Create a relation with the given set as range. * The domain of the created relation is a zero-dimensional * flat anonymous space. */ __isl_give isl_map *isl_map_from_range(__isl_take isl_set *set) { isl_space *space; space = isl_set_get_space(set); space = isl_space_from_range(space); set = isl_set_reset_space(set, space); return (struct isl_map *)set; } /* Create a relation with the given set as domain. * The range of the created relation is a zero-dimensional * flat anonymous space. */ __isl_give isl_map *isl_map_from_domain(__isl_take isl_set *set) { return isl_map_reverse(isl_map_from_range(set)); } __isl_give isl_basic_map *isl_basic_map_from_domain_and_range( __isl_take isl_basic_set *domain, __isl_take isl_basic_set *range) { return isl_basic_map_apply_range(isl_basic_map_reverse(domain), range); } __isl_give isl_map *isl_map_from_domain_and_range(__isl_take isl_set *domain, __isl_take isl_set *range) { return isl_map_apply_range(isl_map_reverse(domain), range); } __isl_give isl_map *isl_map_alloc_space(__isl_take isl_space *dim, int n, unsigned flags) { struct isl_map *map; if (!dim) return NULL; if (n < 0) isl_die(dim->ctx, isl_error_internal, "negative number of basic maps", goto error); map = isl_alloc(dim->ctx, struct isl_map, sizeof(struct isl_map) + (n - 1) * sizeof(struct isl_basic_map *)); if (!map) goto error; map->ctx = dim->ctx; isl_ctx_ref(map->ctx); map->ref = 1; map->size = n; map->n = 0; map->dim = dim; map->flags = flags; return map; error: isl_space_free(dim); return NULL; } struct isl_map *isl_map_alloc(struct isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, int n, unsigned flags) { struct isl_map *map; isl_space *dims; dims = isl_space_alloc(ctx, nparam, in, out); if (!dims) return NULL; map = isl_map_alloc_space(dims, n, flags); return map; } __isl_give isl_basic_map *isl_basic_map_empty(__isl_take isl_space *dim) { struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, 1, 0); bmap = isl_basic_map_set_to_empty(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_empty(__isl_take isl_space *dim) { struct isl_basic_set *bset; bset = isl_basic_set_alloc_space(dim, 0, 1, 0); bset = isl_basic_set_set_to_empty(bset); return bset; } __isl_give isl_basic_map *isl_basic_map_universe(__isl_take isl_space *dim) { struct isl_basic_map *bmap; bmap = isl_basic_map_alloc_space(dim, 0, 0, 0); bmap = isl_basic_map_finalize(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_universe(__isl_take isl_space *dim) { struct isl_basic_set *bset; bset = isl_basic_set_alloc_space(dim, 0, 0, 0); bset = isl_basic_set_finalize(bset); return bset; } __isl_give isl_basic_map *isl_basic_map_nat_universe(__isl_take isl_space *dim) { int i; unsigned total = isl_space_dim(dim, isl_dim_all); isl_basic_map *bmap; bmap= isl_basic_map_alloc_space(dim, 0, 0, total); for (i = 0; i < total; ++i) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + total); isl_int_set_si(bmap->ineq[k][1 + i], 1); } return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_nat_universe(__isl_take isl_space *dim) { return isl_basic_map_nat_universe(dim); } __isl_give isl_map *isl_map_nat_universe(__isl_take isl_space *dim) { return isl_map_from_basic_map(isl_basic_map_nat_universe(dim)); } __isl_give isl_set *isl_set_nat_universe(__isl_take isl_space *dim) { return isl_map_nat_universe(dim); } __isl_give isl_map *isl_map_empty(__isl_take isl_space *dim) { return isl_map_alloc_space(dim, 0, ISL_MAP_DISJOINT); } __isl_give isl_set *isl_set_empty(__isl_take isl_space *dim) { return isl_set_alloc_space(dim, 0, ISL_MAP_DISJOINT); } __isl_give isl_map *isl_map_universe(__isl_take isl_space *dim) { struct isl_map *map; if (!dim) return NULL; map = isl_map_alloc_space(isl_space_copy(dim), 1, ISL_MAP_DISJOINT); map = isl_map_add_basic_map(map, isl_basic_map_universe(dim)); return map; } __isl_give isl_set *isl_set_universe(__isl_take isl_space *dim) { struct isl_set *set; if (!dim) return NULL; set = isl_set_alloc_space(isl_space_copy(dim), 1, ISL_MAP_DISJOINT); set = isl_set_add_basic_set(set, isl_basic_set_universe(dim)); return set; } struct isl_map *isl_map_dup(struct isl_map *map) { int i; struct isl_map *dup; if (!map) return NULL; dup = isl_map_alloc_space(isl_space_copy(map->dim), map->n, map->flags); for (i = 0; i < map->n; ++i) dup = isl_map_add_basic_map(dup, isl_basic_map_copy(map->p[i])); return dup; } __isl_give isl_map *isl_map_add_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *bmap) { if (!bmap || !map) goto error; if (isl_basic_map_plain_is_empty(bmap)) { isl_basic_map_free(bmap); return map; } isl_assert(map->ctx, isl_space_is_equal(map->dim, bmap->dim), goto error); isl_assert(map->ctx, map->n < map->size, goto error); map->p[map->n] = bmap; map->n++; ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: if (map) isl_map_free(map); if (bmap) isl_basic_map_free(bmap); return NULL; } __isl_null isl_map *isl_map_free(__isl_take isl_map *map) { int i; if (!map) return NULL; if (--map->ref > 0) return NULL; isl_ctx_deref(map->ctx); for (i = 0; i < map->n; ++i) isl_basic_map_free(map->p[i]); isl_space_free(map->dim); free(map); return NULL; } static struct isl_basic_map *isl_basic_map_fix_pos_si( struct isl_basic_map *bmap, unsigned pos, int value) { int j; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j] + 1, isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][pos], -1); isl_int_set_si(bmap->eq[j][0], value); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } static __isl_give isl_basic_map *isl_basic_map_fix_pos( __isl_take isl_basic_map *bmap, unsigned pos, isl_int value) { int j; bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j] + 1, isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][pos], -1); isl_int_set(bmap->eq[j][0], value); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_fix_si(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); return isl_basic_map_fix_pos_si(bmap, isl_basic_map_offset(bmap, type) + pos, value); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_fix(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int value) { if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); return isl_basic_map_fix_pos(bmap, isl_basic_map_offset(bmap, type) + pos, value); error: isl_basic_map_free(bmap); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "bmap" * to be equal to "v". */ __isl_give isl_basic_map *isl_basic_map_fix_val(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { if (!bmap || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "expecting integer value", goto error); if (pos >= isl_basic_map_dim(bmap, type)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_fix_pos(bmap, pos, v->n); isl_val_free(v); return bmap; error: isl_basic_map_free(bmap); isl_val_free(v); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "bset" * to be equal to "v". */ __isl_give isl_basic_set *isl_basic_set_fix_val(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { return isl_basic_map_fix_val(bset, type, pos, v); } struct isl_basic_set *isl_basic_set_fix_si(struct isl_basic_set *bset, enum isl_dim_type type, unsigned pos, int value) { return (struct isl_basic_set *) isl_basic_map_fix_si((struct isl_basic_map *)bset, type, pos, value); } __isl_give isl_basic_set *isl_basic_set_fix(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_int value) { return (struct isl_basic_set *) isl_basic_map_fix((struct isl_basic_map *)bset, type, pos, value); } struct isl_basic_map *isl_basic_map_fix_input_si(struct isl_basic_map *bmap, unsigned input, int value) { return isl_basic_map_fix_si(bmap, isl_dim_in, input, value); } struct isl_basic_set *isl_basic_set_fix_dim_si(struct isl_basic_set *bset, unsigned dim, int value) { return (struct isl_basic_set *) isl_basic_map_fix_si((struct isl_basic_map *)bset, isl_dim_set, dim, value); } static int remove_if_empty(__isl_keep isl_map *map, int i) { int empty = isl_basic_map_plain_is_empty(map->p[i]); if (empty < 0) return -1; if (!empty) return 0; isl_basic_map_free(map->p[i]); if (i != map->n - 1) { ISL_F_CLR(map, ISL_MAP_NORMALIZED); map->p[i] = map->p[map->n - 1]; } map->n--; return 0; } /* Perform "fn" on each basic map of "map", where we may not be holding * the only reference to "map". * In particular, "fn" should be a semantics preserving operation * that we want to apply to all copies of "map". We therefore need * to be careful not to modify "map" in a way that breaks "map" * in case anything goes wrong. */ __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map, __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap)) { struct isl_basic_map *bmap; int i; if (!map) return NULL; for (i = map->n - 1; i >= 0; --i) { bmap = isl_basic_map_copy(map->p[i]); bmap = fn(bmap); if (!bmap) goto error; isl_basic_map_free(map->p[i]); map->p[i] = bmap; if (remove_if_empty(map, i) < 0) goto error; } return map; error: isl_map_free(map); return NULL; } struct isl_map *isl_map_fix_si(struct isl_map *map, enum isl_dim_type type, unsigned pos, int value) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_fix_si(map->p[i], type, pos, value); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return (struct isl_set *) isl_map_fix_si((struct isl_map *)set, type, pos, value); } __isl_give isl_map *isl_map_fix(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_fix(map->p[i], type, pos, value); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_fix(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return (struct isl_set *)isl_map_fix((isl_map *)set, type, pos, value); } /* Fix the value of the variable at position "pos" of type "type" of "map" * to be equal to "v". */ __isl_give isl_map *isl_map_fix_val(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { int i; map = isl_map_cow(map); if (!map || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "expecting integer value", goto error); if (pos >= isl_map_dim(map, type)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "index out of bounds", goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_fix_val(map->p[i], type, pos, isl_val_copy(v)); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); isl_val_free(v); return map; error: isl_map_free(map); isl_val_free(v); return NULL; } /* Fix the value of the variable at position "pos" of type "type" of "set" * to be equal to "v". */ __isl_give isl_set *isl_set_fix_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { return isl_map_fix_val(set, type, pos, v); } struct isl_map *isl_map_fix_input_si(struct isl_map *map, unsigned input, int value) { return isl_map_fix_si(map, isl_dim_in, input, value); } struct isl_set *isl_set_fix_dim_si(struct isl_set *set, unsigned dim, int value) { return (struct isl_set *) isl_map_fix_si((struct isl_map *)set, isl_dim_set, dim, value); } static __isl_give isl_basic_map *basic_map_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value, int upper) { int j; if (!bmap) return NULL; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); j = isl_basic_map_alloc_inequality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->ineq[j], 1 + isl_basic_map_total_dim(bmap)); if (upper) { isl_int_set_si(bmap->ineq[j][pos], -1); isl_int_set_si(bmap->ineq[j][0], value); } else { isl_int_set_si(bmap->ineq[j][pos], 1); isl_int_set_si(bmap->ineq[j][0], -value); } bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_lower_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { return basic_map_bound_si(bmap, type, pos, value, 0); } /* Constrain the values of the given dimension to be no greater than "value". */ __isl_give isl_basic_map *isl_basic_map_upper_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value) { return basic_map_bound_si(bmap, type, pos, value, 1); } struct isl_basic_set *isl_basic_set_lower_bound_dim(struct isl_basic_set *bset, unsigned dim, isl_int value) { int j; bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend_constraints(bset, 0, 1); j = isl_basic_set_alloc_inequality(bset); if (j < 0) goto error; isl_seq_clr(bset->ineq[j], 1 + isl_basic_set_total_dim(bset)); isl_int_set_si(bset->ineq[j][1 + isl_basic_set_n_param(bset) + dim], 1); isl_int_neg(bset->ineq[j][0], value); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } static __isl_give isl_map *map_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value, int upper) { int i; map = isl_map_cow(map); if (!map) return NULL; isl_assert(map->ctx, pos < isl_map_dim(map, type), goto error); for (i = 0; i < map->n; ++i) { map->p[i] = basic_map_bound_si(map->p[i], type, pos, value, upper); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_lower_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value) { return map_bound_si(map, type, pos, value, 0); } __isl_give isl_map *isl_map_upper_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value) { return map_bound_si(map, type, pos, value, 1); } __isl_give isl_set *isl_set_lower_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return (struct isl_set *) isl_map_lower_bound_si((struct isl_map *)set, type, pos, value); } __isl_give isl_set *isl_set_upper_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value) { return isl_map_upper_bound_si(set, type, pos, value); } /* Bound the given variable of "bmap" from below (or above is "upper" * is set) to "value". */ static __isl_give isl_basic_map *basic_map_bound( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int value, int upper) { int j; if (!bmap) return NULL; if (pos >= isl_basic_map_dim(bmap, type)) isl_die(bmap->ctx, isl_error_invalid, "index out of bounds", goto error); pos += isl_basic_map_offset(bmap, type); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); j = isl_basic_map_alloc_inequality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->ineq[j], 1 + isl_basic_map_total_dim(bmap)); if (upper) { isl_int_set_si(bmap->ineq[j][pos], -1); isl_int_set(bmap->ineq[j][0], value); } else { isl_int_set_si(bmap->ineq[j][pos], 1); isl_int_neg(bmap->ineq[j][0], value); } bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Bound the given variable of "map" from below (or above is "upper" * is set) to "value". */ static __isl_give isl_map *map_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value, int upper) { int i; map = isl_map_cow(map); if (!map) return NULL; if (pos >= isl_map_dim(map, type)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); for (i = map->n - 1; i >= 0; --i) { map->p[i] = basic_map_bound(map->p[i], type, pos, value, upper); if (remove_if_empty(map, i) < 0) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_lower_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { return map_bound(map, type, pos, value, 0); } __isl_give isl_map *isl_map_upper_bound(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value) { return map_bound(map, type, pos, value, 1); } __isl_give isl_set *isl_set_lower_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return isl_map_lower_bound(set, type, pos, value); } __isl_give isl_set *isl_set_upper_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value) { return isl_map_upper_bound(set, type, pos, value); } /* Force the values of the variable at position "pos" of type "type" of "set" * to be no smaller than "value". */ __isl_give isl_set *isl_set_lower_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value) { if (!value) goto error; if (!isl_val_is_int(value)) isl_die(isl_set_get_ctx(set), isl_error_invalid, "expecting integer value", goto error); set = isl_set_lower_bound(set, type, pos, value->n); isl_val_free(value); return set; error: isl_val_free(value); isl_set_free(set); return NULL; } /* Force the values of the variable at position "pos" of type "type" of "set" * to be no greater than "value". */ __isl_give isl_set *isl_set_upper_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value) { if (!value) goto error; if (!isl_val_is_int(value)) isl_die(isl_set_get_ctx(set), isl_error_invalid, "expecting integer value", goto error); set = isl_set_upper_bound(set, type, pos, value->n); isl_val_free(value); return set; error: isl_val_free(value); isl_set_free(set); return NULL; } struct isl_set *isl_set_lower_bound_dim(struct isl_set *set, unsigned dim, isl_int value) { int i; set = isl_set_cow(set); if (!set) return NULL; isl_assert(set->ctx, dim < isl_set_n_dim(set), goto error); for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_lower_bound_dim(set->p[i], dim, value); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } struct isl_map *isl_map_reverse(struct isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; map->dim = isl_space_reverse(map->dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reverse(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } static struct isl_map *isl_basic_map_partial_lexopt( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty, int max) { return isl_tab_basic_map_partial_lexopt(bmap, dom, empty, max); } struct isl_map *isl_basic_map_partial_lexmax( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty) { return isl_basic_map_partial_lexopt(bmap, dom, empty, 1); } struct isl_map *isl_basic_map_partial_lexmin( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty) { return isl_basic_map_partial_lexopt(bmap, dom, empty, 0); } struct isl_set *isl_basic_set_partial_lexmin( struct isl_basic_set *bset, struct isl_basic_set *dom, struct isl_set **empty) { return (struct isl_set *) isl_basic_map_partial_lexmin((struct isl_basic_map *)bset, dom, empty); } struct isl_set *isl_basic_set_partial_lexmax( struct isl_basic_set *bset, struct isl_basic_set *dom, struct isl_set **empty) { return (struct isl_set *) isl_basic_map_partial_lexmax((struct isl_basic_map *)bset, dom, empty); } __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty) { return isl_basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, 0); } __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexmax_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty) { return isl_basic_map_partial_lexopt_pw_multi_aff(bmap, dom, empty, 1); } __isl_give isl_pw_multi_aff *isl_basic_set_partial_lexmin_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty) { return isl_basic_map_partial_lexmin_pw_multi_aff(bset, dom, empty); } __isl_give isl_pw_multi_aff *isl_basic_set_partial_lexmax_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty) { return isl_basic_map_partial_lexmax_pw_multi_aff(bset, dom, empty); } __isl_give isl_pw_multi_aff *isl_basic_map_lexopt_pw_multi_aff( __isl_take isl_basic_map *bmap, int max) { isl_basic_set *dom = NULL; isl_space *dom_space; if (!bmap) goto error; dom_space = isl_space_domain(isl_space_copy(bmap->dim)); dom = isl_basic_set_universe(dom_space); return isl_basic_map_partial_lexopt_pw_multi_aff(bmap, dom, NULL, max); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_pw_multi_aff *isl_basic_map_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap) { return isl_basic_map_lexopt_pw_multi_aff(bmap, 0); } #undef TYPE #define TYPE isl_pw_multi_aff #undef SUFFIX #define SUFFIX _pw_multi_aff #undef EMPTY #define EMPTY isl_pw_multi_aff_empty #undef ADD #define ADD isl_pw_multi_aff_union_add #include "isl_map_lexopt_templ.c" /* Given a map "map", compute the lexicographically minimal * (or maximal) image element for each domain element in dom, * in the form of an isl_pw_multi_aff. * Set *empty to those elements in dom that do not have an image element. * * We first compute the lexicographically minimal or maximal element * in the first basic map. This results in a partial solution "res" * and a subset "todo" of dom that still need to be handled. * We then consider each of the remaining maps in "map" and successively * update both "res" and "todo". */ static __isl_give isl_pw_multi_aff *isl_map_partial_lexopt_aligned_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, int max) { int i; isl_pw_multi_aff *res; isl_set *todo; if (!map || !dom) goto error; if (isl_map_plain_is_empty(map)) { if (empty) *empty = dom; else isl_set_free(dom); return isl_pw_multi_aff_from_map(map); } res = basic_map_partial_lexopt_pw_multi_aff( isl_basic_map_copy(map->p[0]), isl_set_copy(dom), &todo, max); for (i = 1; i < map->n; ++i) { isl_pw_multi_aff *res_i; isl_set *todo_i; res_i = basic_map_partial_lexopt_pw_multi_aff( isl_basic_map_copy(map->p[i]), isl_set_copy(dom), &todo_i, max); if (max) res = isl_pw_multi_aff_union_lexmax(res, res_i); else res = isl_pw_multi_aff_union_lexmin(res, res_i); todo = isl_set_intersect(todo, todo_i); } isl_set_free(dom); isl_map_free(map); if (empty) *empty = todo; else isl_set_free(todo); return res; error: if (empty) *empty = NULL; isl_set_free(dom); isl_map_free(map); return NULL; } #undef TYPE #define TYPE isl_map #undef SUFFIX #define SUFFIX #undef EMPTY #define EMPTY isl_map_empty #undef ADD #define ADD isl_map_union_disjoint #include "isl_map_lexopt_templ.c" /* Given a map "map", compute the lexicographically minimal * (or maximal) image element for each domain element in dom. * Set *empty to those elements in dom that do not have an image element. * * We first compute the lexicographically minimal or maximal element * in the first basic map. This results in a partial solution "res" * and a subset "todo" of dom that still need to be handled. * We then consider each of the remaining maps in "map" and successively * update both "res" and "todo". * * Let res^k and todo^k be the results after k steps and let i = k + 1. * Assume we are computing the lexicographical maximum. * We first compute the lexicographically maximal element in basic map i. * This results in a partial solution res_i and a subset todo_i. * Then we combine these results with those obtain for the first k basic maps * to obtain a result that is valid for the first k+1 basic maps. * In particular, the set where there is no solution is the set where * there is no solution for the first k basic maps and also no solution * for the ith basic map, i.e., * * todo^i = todo^k * todo_i * * On dom(res^k) * dom(res_i), we need to pick the larger of the two * solutions, arbitrarily breaking ties in favor of res^k. * That is, when res^k(a) >= res_i(a), we pick res^k and * when res^k(a) < res_i(a), we pick res_i. (Here, ">=" and "<" denote * the lexicographic order.) * In practice, we compute * * res^k * (res_i . "<=") * * and * * res_i * (res^k . "<") * * Finally, we consider the symmetric difference of dom(res^k) and dom(res_i), * where only one of res^k and res_i provides a solution and we simply pick * that one, i.e., * * res^k * todo_i * and * res_i * todo^k * * Note that we only compute these intersections when dom(res^k) intersects * dom(res_i). Otherwise, the only effect of these intersections is to * potentially break up res^k and res_i into smaller pieces. * We want to avoid such splintering as much as possible. * In fact, an earlier implementation of this function would look for * better results in the domain of res^k and for extra results in todo^k, * but this would always result in a splintering according to todo^k, * even when the domain of basic map i is disjoint from the domains of * the previous basic maps. */ static __isl_give isl_map *isl_map_partial_lexopt_aligned( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, int max) { int i; struct isl_map *res; struct isl_set *todo; if (!map || !dom) goto error; if (isl_map_plain_is_empty(map)) { if (empty) *empty = dom; else isl_set_free(dom); return map; } res = basic_map_partial_lexopt(isl_basic_map_copy(map->p[0]), isl_set_copy(dom), &todo, max); for (i = 1; i < map->n; ++i) { isl_map *lt, *le; isl_map *res_i; isl_set *todo_i; isl_space *dim = isl_space_range(isl_map_get_space(res)); res_i = basic_map_partial_lexopt(isl_basic_map_copy(map->p[i]), isl_set_copy(dom), &todo_i, max); if (max) { lt = isl_map_lex_lt(isl_space_copy(dim)); le = isl_map_lex_le(dim); } else { lt = isl_map_lex_gt(isl_space_copy(dim)); le = isl_map_lex_ge(dim); } lt = isl_map_apply_range(isl_map_copy(res), lt); lt = isl_map_intersect(lt, isl_map_copy(res_i)); le = isl_map_apply_range(isl_map_copy(res_i), le); le = isl_map_intersect(le, isl_map_copy(res)); if (!isl_map_is_empty(lt) || !isl_map_is_empty(le)) { res = isl_map_intersect_domain(res, isl_set_copy(todo_i)); res_i = isl_map_intersect_domain(res_i, isl_set_copy(todo)); } res = isl_map_union_disjoint(res, res_i); res = isl_map_union_disjoint(res, lt); res = isl_map_union_disjoint(res, le); todo = isl_set_intersect(todo, todo_i); } isl_set_free(dom); isl_map_free(map); if (empty) *empty = todo; else isl_set_free(todo); return res; error: if (empty) *empty = NULL; isl_set_free(dom); isl_map_free(map); return NULL; } __isl_give isl_map *isl_map_partial_lexmax( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty) { return isl_map_partial_lexopt(map, dom, empty, 1); } __isl_give isl_map *isl_map_partial_lexmin( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty) { return isl_map_partial_lexopt(map, dom, empty, 0); } __isl_give isl_set *isl_set_partial_lexmin( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty) { return (struct isl_set *) isl_map_partial_lexmin((struct isl_map *)set, dom, empty); } __isl_give isl_set *isl_set_partial_lexmax( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty) { return (struct isl_set *) isl_map_partial_lexmax((struct isl_map *)set, dom, empty); } /* Compute the lexicographic minimum (or maximum if "max" is set) * of "bmap" over its domain. * * Since we are not interested in the part of the domain space where * there is no solution, we initialize the domain to those constraints * of "bmap" that only involve the parameters and the input dimensions. * This relieves the parametric programming engine from detecting those * inequalities and transferring them to the context. More importantly, * it ensures that those inequalities are transferred first and not * intermixed with inequalities that actually split the domain. */ __isl_give isl_map *isl_basic_map_lexopt(__isl_take isl_basic_map *bmap, int max) { int n_div; int n_out; isl_basic_map *copy; isl_basic_set *dom; n_div = isl_basic_map_dim(bmap, isl_dim_div); n_out = isl_basic_map_dim(bmap, isl_dim_out); copy = isl_basic_map_copy(bmap); copy = isl_basic_map_drop_constraints_involving_dims(copy, isl_dim_div, 0, n_div); copy = isl_basic_map_drop_constraints_involving_dims(copy, isl_dim_out, 0, n_out); dom = isl_basic_map_domain(copy); return isl_basic_map_partial_lexopt(bmap, dom, NULL, max); } __isl_give isl_map *isl_basic_map_lexmin(__isl_take isl_basic_map *bmap) { return isl_basic_map_lexopt(bmap, 0); } __isl_give isl_map *isl_basic_map_lexmax(__isl_take isl_basic_map *bmap) { return isl_basic_map_lexopt(bmap, 1); } __isl_give isl_set *isl_basic_set_lexmin(__isl_take isl_basic_set *bset) { return (isl_set *)isl_basic_map_lexmin((isl_basic_map *)bset); } __isl_give isl_set *isl_basic_set_lexmax(__isl_take isl_basic_set *bset) { return (isl_set *)isl_basic_map_lexmax((isl_basic_map *)bset); } /* Extract the first and only affine expression from list * and then add it to *pwaff with the given dom. * This domain is known to be disjoint from other domains * because of the way isl_basic_map_foreach_lexmax works. */ static int update_dim_opt(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user) { isl_ctx *ctx = isl_basic_set_get_ctx(dom); isl_aff *aff; isl_pw_aff **pwaff = user; isl_pw_aff *pwaff_i; if (!list) goto error; if (isl_aff_list_n_aff(list) != 1) isl_die(ctx, isl_error_internal, "expecting single element list", goto error); aff = isl_aff_list_get_aff(list, 0); pwaff_i = isl_pw_aff_alloc(isl_set_from_basic_set(dom), aff); *pwaff = isl_pw_aff_add_disjoint(*pwaff, pwaff_i); isl_aff_list_free(list); return 0; error: isl_basic_set_free(dom); isl_aff_list_free(list); return -1; } /* Given a basic map with one output dimension, compute the minimum or * maximum of that dimension as an isl_pw_aff. * * The isl_pw_aff is constructed by having isl_basic_map_foreach_lexopt * call update_dim_opt on each leaf of the result. */ static __isl_give isl_pw_aff *basic_map_dim_opt(__isl_keep isl_basic_map *bmap, int max) { isl_space *dim = isl_basic_map_get_space(bmap); isl_pw_aff *pwaff; int r; dim = isl_space_from_domain(isl_space_domain(dim)); dim = isl_space_add_dims(dim, isl_dim_out, 1); pwaff = isl_pw_aff_empty(dim); r = isl_basic_map_foreach_lexopt(bmap, max, &update_dim_opt, &pwaff); if (r < 0) return isl_pw_aff_free(pwaff); return pwaff; } /* Compute the minimum or maximum of the given output dimension * as a function of the parameters and the input dimensions, * but independently of the other output dimensions. * * We first project out the other output dimension and then compute * the "lexicographic" maximum in each basic map, combining the results * using isl_pw_aff_union_max. */ static __isl_give isl_pw_aff *map_dim_opt(__isl_take isl_map *map, int pos, int max) { int i; isl_pw_aff *pwaff; unsigned n_out; n_out = isl_map_dim(map, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, pos + 1, n_out - (pos + 1)); map = isl_map_project_out(map, isl_dim_out, 0, pos); if (!map) return NULL; if (map->n == 0) { isl_space *dim = isl_map_get_space(map); isl_map_free(map); return isl_pw_aff_empty(dim); } pwaff = basic_map_dim_opt(map->p[0], max); for (i = 1; i < map->n; ++i) { isl_pw_aff *pwaff_i; pwaff_i = basic_map_dim_opt(map->p[i], max); pwaff = isl_pw_aff_union_opt(pwaff, pwaff_i, max); } isl_map_free(map); return pwaff; } /* Compute the maximum of the given output dimension as a function of the * parameters and input dimensions, but independently of * the other output dimensions. */ __isl_give isl_pw_aff *isl_map_dim_max(__isl_take isl_map *map, int pos) { return map_dim_opt(map, pos, 1); } /* Compute the minimum or maximum of the given set dimension * as a function of the parameters, * but independently of the other set dimensions. */ static __isl_give isl_pw_aff *set_dim_opt(__isl_take isl_set *set, int pos, int max) { return map_dim_opt(set, pos, max); } /* Compute the maximum of the given set dimension as a function of the * parameters, but independently of the other set dimensions. */ __isl_give isl_pw_aff *isl_set_dim_max(__isl_take isl_set *set, int pos) { return set_dim_opt(set, pos, 1); } /* Compute the minimum of the given set dimension as a function of the * parameters, but independently of the other set dimensions. */ __isl_give isl_pw_aff *isl_set_dim_min(__isl_take isl_set *set, int pos) { return set_dim_opt(set, pos, 0); } /* Apply a preimage specified by "mat" on the parameters of "bset". * bset is assumed to have only parameters and divs. */ static struct isl_basic_set *basic_set_parameter_preimage( struct isl_basic_set *bset, struct isl_mat *mat) { unsigned nparam; if (!bset || !mat) goto error; bset->dim = isl_space_cow(bset->dim); if (!bset->dim) goto error; nparam = isl_basic_set_dim(bset, isl_dim_param); isl_assert(bset->ctx, mat->n_row == 1 + nparam, goto error); bset->dim->nparam = 0; bset->dim->n_out = nparam; bset = isl_basic_set_preimage(bset, mat); if (bset) { bset->dim->nparam = bset->dim->n_out; bset->dim->n_out = 0; } return bset; error: isl_mat_free(mat); isl_basic_set_free(bset); return NULL; } /* Apply a preimage specified by "mat" on the parameters of "set". * set is assumed to have only parameters and divs. */ static struct isl_set *set_parameter_preimage( struct isl_set *set, struct isl_mat *mat) { isl_space *dim = NULL; unsigned nparam; if (!set || !mat) goto error; dim = isl_space_copy(set->dim); dim = isl_space_cow(dim); if (!dim) goto error; nparam = isl_set_dim(set, isl_dim_param); isl_assert(set->ctx, mat->n_row == 1 + nparam, goto error); dim->nparam = 0; dim->n_out = nparam; isl_set_reset_space(set, dim); set = isl_set_preimage(set, mat); if (!set) goto error2; dim = isl_space_copy(set->dim); dim = isl_space_cow(dim); if (!dim) goto error2; dim->nparam = dim->n_out; dim->n_out = 0; isl_set_reset_space(set, dim); return set; error: isl_space_free(dim); isl_mat_free(mat); error2: isl_set_free(set); return NULL; } /* Intersect the basic set "bset" with the affine space specified by the * equalities in "eq". */ static struct isl_basic_set *basic_set_append_equalities( struct isl_basic_set *bset, struct isl_mat *eq) { int i, k; unsigned len; if (!bset || !eq) goto error; bset = isl_basic_set_extend_space(bset, isl_space_copy(bset->dim), 0, eq->n_row, 0); if (!bset) goto error; len = 1 + isl_space_dim(bset->dim, isl_dim_all) + bset->extra; for (i = 0; i < eq->n_row; ++i) { k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], eq->row[i], eq->n_col); isl_seq_clr(bset->eq[k] + eq->n_col, len - eq->n_col); } isl_mat_free(eq); bset = isl_basic_set_gauss(bset, NULL); bset = isl_basic_set_finalize(bset); return bset; error: isl_mat_free(eq); isl_basic_set_free(bset); return NULL; } /* Intersect the set "set" with the affine space specified by the * equalities in "eq". */ static struct isl_set *set_append_equalities(struct isl_set *set, struct isl_mat *eq) { int i; if (!set || !eq) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = basic_set_append_equalities(set->p[i], isl_mat_copy(eq)); if (!set->p[i]) goto error; } isl_mat_free(eq); return set; error: isl_mat_free(eq); isl_set_free(set); return NULL; } /* Given a basic set "bset" that only involves parameters and existentially * quantified variables, return the index of the first equality * that only involves parameters. If there is no such equality then * return bset->n_eq. * * This function assumes that isl_basic_set_gauss has been called on "bset". */ static int first_parameter_equality(__isl_keep isl_basic_set *bset) { int i, j; unsigned nparam, n_div; if (!bset) return -1; nparam = isl_basic_set_dim(bset, isl_dim_param); n_div = isl_basic_set_dim(bset, isl_dim_div); for (i = 0, j = n_div - 1; i < bset->n_eq && j >= 0; --j) { if (!isl_int_is_zero(bset->eq[i][1 + nparam + j])) ++i; } return i; } /* Compute an explicit representation for the existentially quantified * variables in "bset" by computing the "minimal value" of the set * variables. Since there are no set variables, the computation of * the minimal value essentially computes an explicit representation * of the non-empty part(s) of "bset". * * The input only involves parameters and existentially quantified variables. * All equalities among parameters have been removed. * * Since the existentially quantified variables in the result are in general * going to be different from those in the input, we first replace * them by the minimal number of variables based on their equalities. * This should simplify the parametric integer programming. */ static __isl_give isl_set *base_compute_divs(__isl_take isl_basic_set *bset) { isl_morph *morph1, *morph2; isl_set *set; unsigned n; if (!bset) return NULL; if (bset->n_eq == 0) return isl_basic_set_lexmin(bset); morph1 = isl_basic_set_parameter_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph1), bset); bset = isl_basic_set_lift(bset); morph2 = isl_basic_set_variable_compression(bset, isl_dim_set); bset = isl_morph_basic_set(morph2, bset); n = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_project_out(bset, isl_dim_set, 0, n); set = isl_basic_set_lexmin(bset); set = isl_morph_set(isl_morph_inverse(morph1), set); return set; } /* Project the given basic set onto its parameter domain, possibly introducing * new, explicit, existential variables in the constraints. * The input has parameters and (possibly implicit) existential variables. * The output has the same parameters, but only * explicit existentially quantified variables. * * The actual projection is performed by pip, but pip doesn't seem * to like equalities very much, so we first remove the equalities * among the parameters by performing a variable compression on * the parameters. Afterward, an inverse transformation is performed * and the equalities among the parameters are inserted back in. * * The variable compression on the parameters may uncover additional * equalities that were only implicit before. We therefore check * if there are any new parameter equalities in the result and * if so recurse. The removal of parameter equalities is required * for the parameter compression performed by base_compute_divs. */ static struct isl_set *parameter_compute_divs(struct isl_basic_set *bset) { int i; struct isl_mat *eq; struct isl_mat *T, *T2; struct isl_set *set; unsigned nparam; bset = isl_basic_set_cow(bset); if (!bset) return NULL; if (bset->n_eq == 0) return base_compute_divs(bset); bset = isl_basic_set_gauss(bset, NULL); if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return isl_set_from_basic_set(bset); i = first_parameter_equality(bset); if (i == bset->n_eq) return base_compute_divs(bset); nparam = isl_basic_set_dim(bset, isl_dim_param); eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, i, bset->n_eq - i, 0, 1 + nparam); eq = isl_mat_cow(eq); T = isl_mat_variable_compression(isl_mat_copy(eq), &T2); if (T && T->n_col == 0) { isl_mat_free(T); isl_mat_free(T2); isl_mat_free(eq); bset = isl_basic_set_set_to_empty(bset); return isl_set_from_basic_set(bset); } bset = basic_set_parameter_preimage(bset, T); i = first_parameter_equality(bset); if (!bset) set = NULL; else if (i == bset->n_eq) set = base_compute_divs(bset); else set = parameter_compute_divs(bset); set = set_parameter_preimage(set, T2); set = set_append_equalities(set, eq); return set; } /* Insert the divs from "ls" before those of "bmap". * * The number of columns is not changed, which means that the last * dimensions of "bmap" are being reintepreted as the divs from "ls". * The caller is responsible for removing the same number of dimensions * from the space of "bmap". */ static __isl_give isl_basic_map *insert_divs_from_local_space( __isl_take isl_basic_map *bmap, __isl_keep isl_local_space *ls) { int i; int n_div; int old_n_div; n_div = isl_local_space_dim(ls, isl_dim_div); if (n_div == 0) return bmap; old_n_div = bmap->n_div; bmap = insert_div_rows(bmap, n_div); if (!bmap) return NULL; for (i = 0; i < n_div; ++i) { isl_seq_cpy(bmap->div[i], ls->div->row[i], ls->div->n_col); isl_seq_clr(bmap->div[i] + ls->div->n_col, old_n_div); } return bmap; } /* Replace the space of "bmap" by the space and divs of "ls". * * If "ls" has any divs, then we simplify the result since we may * have discovered some additional equalities that could simplify * the div expressions. */ static __isl_give isl_basic_map *basic_replace_space_by_local_space( __isl_take isl_basic_map *bmap, __isl_take isl_local_space *ls) { int n_div; bmap = isl_basic_map_cow(bmap); if (!bmap || !ls) goto error; n_div = isl_local_space_dim(ls, isl_dim_div); bmap = insert_divs_from_local_space(bmap, ls); if (!bmap) goto error; isl_space_free(bmap->dim); bmap->dim = isl_local_space_get_space(ls); if (!bmap->dim) goto error; isl_local_space_free(ls); if (n_div > 0) bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); isl_local_space_free(ls); return NULL; } /* Replace the space of "map" by the space and divs of "ls". */ static __isl_give isl_map *replace_space_by_local_space(__isl_take isl_map *map, __isl_take isl_local_space *ls) { int i; map = isl_map_cow(map); if (!map || !ls) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = basic_replace_space_by_local_space(map->p[i], isl_local_space_copy(ls)); if (!map->p[i]) goto error; } isl_space_free(map->dim); map->dim = isl_local_space_get_space(ls); if (!map->dim) goto error; isl_local_space_free(ls); return map; error: isl_local_space_free(ls); isl_map_free(map); return NULL; } /* Compute an explicit representation for the existentially * quantified variables for which do not know any explicit representation yet. * * We first sort the existentially quantified variables so that the * existentially quantified variables for which we already have an explicit * representation are placed before those for which we do not. * The input dimensions, the output dimensions and the existentially * quantified variables for which we already have an explicit * representation are then turned into parameters. * compute_divs returns a map with the same parameters and * no input or output dimensions and the dimension specification * is reset to that of the input, including the existentially quantified * variables for which we already had an explicit representation. */ static struct isl_map *compute_divs(struct isl_basic_map *bmap) { struct isl_basic_set *bset; struct isl_set *set; struct isl_map *map; isl_space *dim; isl_local_space *ls; unsigned nparam; unsigned n_in; unsigned n_out; unsigned n_known; int i; bmap = isl_basic_map_sort_divs(bmap); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; for (n_known = 0; n_known < bmap->n_div; ++n_known) if (isl_int_is_zero(bmap->div[n_known][0])) break; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); dim = isl_space_set_alloc(bmap->ctx, nparam + n_in + n_out + n_known, 0); if (!dim) goto error; ls = isl_basic_map_get_local_space(bmap); ls = isl_local_space_drop_dims(ls, isl_dim_div, n_known, bmap->n_div - n_known); if (n_known > 0) { for (i = n_known; i < bmap->n_div; ++i) swap_div(bmap, i - n_known, i); bmap->n_div -= n_known; bmap->extra -= n_known; } bmap = isl_basic_map_reset_space(bmap, dim); bset = (struct isl_basic_set *)bmap; set = parameter_compute_divs(bset); map = (struct isl_map *)set; map = replace_space_by_local_space(map, ls); return map; error: isl_basic_map_free(bmap); return NULL; } /* Does local variable "div" of "bmap" have an explicit representation? */ isl_bool isl_basic_map_div_is_known(__isl_keep isl_basic_map *bmap, int div) { if (!bmap) return isl_bool_error; if (div < 0 || div >= isl_basic_map_dim(bmap, isl_dim_div)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "position out of bounds", return isl_bool_error); return !isl_int_is_zero(bmap->div[div][0]); } /* Does "bmap" have an explicit representation for all local variables? */ isl_bool isl_basic_map_divs_known(__isl_keep isl_basic_map *bmap) { int i; unsigned off; if (!bmap) return isl_bool_error; off = isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { if (!isl_basic_map_div_is_known(bmap, i)) return isl_bool_false; isl_assert(bmap->ctx, isl_int_is_zero(bmap->div[i][1+1+off+i]), return isl_bool_error); } return isl_bool_true; } /* Do all basic maps in "map" have an explicit representation * for all local variables? */ isl_bool isl_map_divs_known(__isl_keep isl_map *map) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { int known = isl_basic_map_divs_known(map->p[i]); if (known <= 0) return known; } return isl_bool_true; } /* If bmap contains any unknown divs, then compute explicit * expressions for them. However, this computation may be * quite expensive, so first try to remove divs that aren't * strictly needed. */ struct isl_map *isl_basic_map_compute_divs(struct isl_basic_map *bmap) { int known; struct isl_map *map; known = isl_basic_map_divs_known(bmap); if (known < 0) goto error; if (known) return isl_map_from_basic_map(bmap); bmap = isl_basic_map_drop_redundant_divs(bmap); known = isl_basic_map_divs_known(bmap); if (known < 0) goto error; if (known) return isl_map_from_basic_map(bmap); map = compute_divs(bmap); return map; error: isl_basic_map_free(bmap); return NULL; } struct isl_map *isl_map_compute_divs(struct isl_map *map) { int i; int known; struct isl_map *res; if (!map) return NULL; if (map->n == 0) return map; known = isl_map_divs_known(map); if (known < 0) { isl_map_free(map); return NULL; } if (known) return map; res = isl_basic_map_compute_divs(isl_basic_map_copy(map->p[0])); for (i = 1 ; i < map->n; ++i) { struct isl_map *r2; r2 = isl_basic_map_compute_divs(isl_basic_map_copy(map->p[i])); if (ISL_F_ISSET(map, ISL_MAP_DISJOINT)) res = isl_map_union_disjoint(res, r2); else res = isl_map_union(res, r2); } isl_map_free(map); return res; } struct isl_set *isl_basic_set_compute_divs(struct isl_basic_set *bset) { return (struct isl_set *) isl_basic_map_compute_divs((struct isl_basic_map *)bset); } struct isl_set *isl_set_compute_divs(struct isl_set *set) { return (struct isl_set *) isl_map_compute_divs((struct isl_map *)set); } struct isl_set *isl_map_domain(struct isl_map *map) { int i; struct isl_set *set; if (!map) goto error; map = isl_map_cow(map); if (!map) return NULL; set = (struct isl_set *)map; set->dim = isl_space_domain(set->dim); if (!set->dim) goto error; for (i = 0; i < map->n; ++i) { set->p[i] = isl_basic_map_domain(map->p[i]); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_MAP_DISJOINT); ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_map_free(map); return NULL; } /* Return the union of "map1" and "map2", where we assume for now that * "map1" and "map2" are disjoint. Note that the basic maps inside * "map1" or "map2" may not be disjoint from each other. * Also note that this function is also called from isl_map_union, * which takes care of handling the situation where "map1" and "map2" * may not be disjoint. * * If one of the inputs is empty, we can simply return the other input. * Similarly, if one of the inputs is universal, then it is equal to the union. */ static __isl_give isl_map *map_union_disjoint(__isl_take isl_map *map1, __isl_take isl_map *map2) { int i; unsigned flags = 0; struct isl_map *map = NULL; int is_universe; if (!map1 || !map2) goto error; if (!isl_space_is_equal(map1->dim, map2->dim)) isl_die(isl_map_get_ctx(map1), isl_error_invalid, "spaces don't match", goto error); if (map1->n == 0) { isl_map_free(map1); return map2; } if (map2->n == 0) { isl_map_free(map2); return map1; } is_universe = isl_map_plain_is_universe(map1); if (is_universe < 0) goto error; if (is_universe) { isl_map_free(map2); return map1; } is_universe = isl_map_plain_is_universe(map2); if (is_universe < 0) goto error; if (is_universe) { isl_map_free(map1); return map2; } if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); map = isl_map_alloc_space(isl_space_copy(map1->dim), map1->n + map2->n, flags); if (!map) goto error; for (i = 0; i < map1->n; ++i) { map = isl_map_add_basic_map(map, isl_basic_map_copy(map1->p[i])); if (!map) goto error; } for (i = 0; i < map2->n; ++i) { map = isl_map_add_basic_map(map, isl_basic_map_copy(map2->p[i])); if (!map) goto error; } isl_map_free(map1); isl_map_free(map2); return map; error: isl_map_free(map); isl_map_free(map1); isl_map_free(map2); return NULL; } /* Return the union of "map1" and "map2", where "map1" and "map2" are * guaranteed to be disjoint by the caller. * * Note that this functions is called from within isl_map_make_disjoint, * so we have to be careful not to touch the constraints of the inputs * in any way. */ __isl_give isl_map *isl_map_union_disjoint(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_union_disjoint); } /* Return the union of "map1" and "map2", where "map1" and "map2" may * not be disjoint. The parameters are assumed to have been aligned. * * We currently simply call map_union_disjoint, the internal operation * of which does not really depend on the inputs being disjoint. * If the result contains more than one basic map, then we clear * the disjoint flag since the result may contain basic maps from * both inputs and these are not guaranteed to be disjoint. * * As a special case, if "map1" and "map2" are obviously equal, * then we simply return "map1". */ static __isl_give isl_map *map_union_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { int equal; if (!map1 || !map2) goto error; equal = isl_map_plain_is_equal(map1, map2); if (equal < 0) goto error; if (equal) { isl_map_free(map2); return map1; } map1 = map_union_disjoint(map1, map2); if (!map1) return NULL; if (map1->n > 1) ISL_F_CLR(map1, ISL_MAP_DISJOINT); return map1; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* Return the union of "map1" and "map2", where "map1" and "map2" may * not be disjoint. */ __isl_give isl_map *isl_map_union(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_union_aligned); } struct isl_set *isl_set_union_disjoint( struct isl_set *set1, struct isl_set *set2) { return (struct isl_set *) isl_map_union_disjoint( (struct isl_map *)set1, (struct isl_map *)set2); } struct isl_set *isl_set_union(struct isl_set *set1, struct isl_set *set2) { return (struct isl_set *) isl_map_union((struct isl_map *)set1, (struct isl_map *)set2); } /* Apply "fn" to pairs of elements from "map" and "set" and collect * the results. * * "map" and "set" are assumed to be compatible and non-NULL. */ static __isl_give isl_map *map_intersect_set(__isl_take isl_map *map, __isl_take isl_set *set, __isl_give isl_basic_map *fn(__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset)) { unsigned flags = 0; struct isl_map *result; int i, j; if (isl_set_plain_is_universe(set)) { isl_set_free(set); return map; } if (ISL_F_ISSET(map, ISL_MAP_DISJOINT) && ISL_F_ISSET(set, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(isl_space_copy(map->dim), map->n * set->n, flags); for (i = 0; result && i < map->n; ++i) for (j = 0; j < set->n; ++j) { result = isl_map_add_basic_map(result, fn(isl_basic_map_copy(map->p[i]), isl_basic_set_copy(set->p[j]))); if (!result) break; } isl_map_free(map); isl_set_free(set); return result; } static __isl_give isl_map *map_intersect_range(__isl_take isl_map *map, __isl_take isl_set *set) { if (!map || !set) goto error; if (!isl_map_compatible_range(map, set)) isl_die(set->ctx, isl_error_invalid, "incompatible spaces", goto error); return map_intersect_set(map, set, &isl_basic_map_intersect_range); error: isl_map_free(map); isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_intersect_range(__isl_take isl_map *map, __isl_take isl_set *set) { return isl_map_align_params_map_map_and(map, set, &map_intersect_range); } static __isl_give isl_map *map_intersect_domain(__isl_take isl_map *map, __isl_take isl_set *set) { if (!map || !set) goto error; if (!isl_map_compatible_domain(map, set)) isl_die(set->ctx, isl_error_invalid, "incompatible spaces", goto error); return map_intersect_set(map, set, &isl_basic_map_intersect_domain); error: isl_map_free(map); isl_set_free(set); return NULL; } __isl_give isl_map *isl_map_intersect_domain(__isl_take isl_map *map, __isl_take isl_set *set) { return isl_map_align_params_map_map_and(map, set, &map_intersect_domain); } static __isl_give isl_map *map_apply_domain(__isl_take isl_map *map1, __isl_take isl_map *map2) { if (!map1 || !map2) goto error; map1 = isl_map_reverse(map1); map1 = isl_map_apply_range(map1, map2); return isl_map_reverse(map1); error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_apply_domain(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_apply_domain); } static __isl_give isl_map *map_apply_range(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_space *dim_result; struct isl_map *result; int i, j; if (!map1 || !map2) goto error; dim_result = isl_space_join(isl_space_copy(map1->dim), isl_space_copy(map2->dim)); result = isl_map_alloc_space(dim_result, map1->n * map2->n, 0); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { result = isl_map_add_basic_map(result, isl_basic_map_apply_range( isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j]))); if (!result) goto error; } isl_map_free(map1); isl_map_free(map2); if (result && result->n <= 1) ISL_F_SET(result, ISL_MAP_DISJOINT); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } __isl_give isl_map *isl_map_apply_range(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_apply_range); } /* * returns range - domain */ struct isl_basic_set *isl_basic_map_deltas(struct isl_basic_map *bmap) { isl_space *target_space; struct isl_basic_set *bset; unsigned dim; unsigned nparam; int i; if (!bmap) goto error; isl_assert(bmap->ctx, isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bmap->dim, isl_dim_out), goto error); target_space = isl_space_domain(isl_basic_map_get_space(bmap)); dim = isl_basic_map_n_in(bmap); nparam = isl_basic_map_n_param(bmap); bmap = isl_basic_map_from_range(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_add_dims(bmap, isl_dim_in, dim); bmap = isl_basic_map_extend_constraints(bmap, dim, 0); for (i = 0; i < dim; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) { bmap = isl_basic_map_free(bmap); break; } isl_seq_clr(bmap->eq[j], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][1+nparam+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+dim+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+2*dim+i], -1); } bset = isl_basic_map_domain(bmap); bset = isl_basic_set_reset_space(bset, target_space); return bset; error: isl_basic_map_free(bmap); return NULL; } /* * returns range - domain */ __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map) { int i; isl_space *dim; struct isl_set *result; if (!map) return NULL; isl_assert(map->ctx, isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out), goto error); dim = isl_map_get_space(map); dim = isl_space_domain(dim); result = isl_set_alloc_space(dim, map->n, 0); if (!result) goto error; for (i = 0; i < map->n; ++i) result = isl_set_add_basic_set(result, isl_basic_map_deltas(isl_basic_map_copy(map->p[i]))); isl_map_free(map); return result; error: isl_map_free(map); return NULL; } /* * returns [domain -> range] -> range - domain */ __isl_give isl_basic_map *isl_basic_map_deltas_map( __isl_take isl_basic_map *bmap) { int i, k; isl_space *dim; isl_basic_map *domain; int nparam, n; unsigned total; if (!isl_space_tuple_is_equal(bmap->dim, isl_dim_in, bmap->dim, isl_dim_out)) isl_die(bmap->ctx, isl_error_invalid, "domain and range don't match", goto error); nparam = isl_basic_map_dim(bmap, isl_dim_param); n = isl_basic_map_dim(bmap, isl_dim_in); dim = isl_space_from_range(isl_space_domain(isl_basic_map_get_space(bmap))); domain = isl_basic_map_universe(dim); bmap = isl_basic_map_from_domain(isl_basic_map_wrap(bmap)); bmap = isl_basic_map_apply_range(bmap, domain); bmap = isl_basic_map_extend_constraints(bmap, n, 0); total = isl_basic_map_total_dim(bmap); for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + total); isl_int_set_si(bmap->eq[k][1 + nparam + i], 1); isl_int_set_si(bmap->eq[k][1 + nparam + n + i], -1); isl_int_set_si(bmap->eq[k][1 + nparam + n + n + i], 1); } bmap = isl_basic_map_gauss(bmap, NULL); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } /* * returns [domain -> range] -> range - domain */ __isl_give isl_map *isl_map_deltas_map(__isl_take isl_map *map) { int i; isl_space *domain_dim; if (!map) return NULL; if (!isl_space_tuple_is_equal(map->dim, isl_dim_in, map->dim, isl_dim_out)) isl_die(map->ctx, isl_error_invalid, "domain and range don't match", goto error); map = isl_map_cow(map); if (!map) return NULL; domain_dim = isl_space_from_range(isl_space_domain(isl_map_get_space(map))); map->dim = isl_space_from_domain(isl_space_wrap(map->dim)); map->dim = isl_space_join(map->dim, domain_dim); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_deltas_map(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } static __isl_give isl_basic_map *basic_map_identity(__isl_take isl_space *dims) { struct isl_basic_map *bmap; unsigned nparam; unsigned dim; int i; if (!dims) return NULL; nparam = dims->nparam; dim = dims->n_out; bmap = isl_basic_map_alloc_space(dims, 0, dim, 0); if (!bmap) goto error; for (i = 0; i < dim; ++i) { int j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_clr(bmap->eq[j], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[j][1+nparam+i], 1); isl_int_set_si(bmap->eq[j][1+nparam+dim+i], -1); } return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_identity(__isl_take isl_space *dim) { if (!dim) return NULL; if (dim->n_in != dim->n_out) isl_die(dim->ctx, isl_error_invalid, "number of input and output dimensions needs to be " "the same", goto error); return basic_map_identity(dim); error: isl_space_free(dim); return NULL; } __isl_give isl_map *isl_map_identity(__isl_take isl_space *dim) { return isl_map_from_basic_map(isl_basic_map_identity(dim)); } __isl_give isl_map *isl_set_identity(__isl_take isl_set *set) { isl_space *dim = isl_set_get_space(set); isl_map *id; id = isl_map_identity(isl_space_map_from_set(dim)); return isl_map_intersect_range(id, set); } /* Construct a basic set with all set dimensions having only non-negative * values. */ __isl_give isl_basic_set *isl_basic_set_positive_orthant( __isl_take isl_space *space) { int i; unsigned nparam; unsigned dim; struct isl_basic_set *bset; if (!space) return NULL; nparam = space->nparam; dim = space->n_out; bset = isl_basic_set_alloc_space(space, 0, 0, dim); if (!bset) return NULL; for (i = 0; i < dim; ++i) { int k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset)); isl_int_set_si(bset->ineq[k][1 + nparam + i], 1); } return bset; error: isl_basic_set_free(bset); return NULL; } /* Construct the half-space x_pos >= 0. */ static __isl_give isl_basic_set *nonneg_halfspace(__isl_take isl_space *dim, int pos) { int k; isl_basic_set *nonneg; nonneg = isl_basic_set_alloc_space(dim, 0, 0, 1); k = isl_basic_set_alloc_inequality(nonneg); if (k < 0) goto error; isl_seq_clr(nonneg->ineq[k], 1 + isl_basic_set_total_dim(nonneg)); isl_int_set_si(nonneg->ineq[k][pos], 1); return isl_basic_set_finalize(nonneg); error: isl_basic_set_free(nonneg); return NULL; } /* Construct the half-space x_pos <= -1. */ static __isl_give isl_basic_set *neg_halfspace(__isl_take isl_space *dim, int pos) { int k; isl_basic_set *neg; neg = isl_basic_set_alloc_space(dim, 0, 0, 1); k = isl_basic_set_alloc_inequality(neg); if (k < 0) goto error; isl_seq_clr(neg->ineq[k], 1 + isl_basic_set_total_dim(neg)); isl_int_set_si(neg->ineq[k][0], -1); isl_int_set_si(neg->ineq[k][pos], -1); return isl_basic_set_finalize(neg); error: isl_basic_set_free(neg); return NULL; } __isl_give isl_set *isl_set_split_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned offset; isl_basic_set *nonneg; isl_basic_set *neg; if (!set) return NULL; if (n == 0) return set; isl_assert(set->ctx, first + n <= isl_set_dim(set, type), goto error); offset = pos(set->dim, type); for (i = 0; i < n; ++i) { nonneg = nonneg_halfspace(isl_set_get_space(set), offset + first + i); neg = neg_halfspace(isl_set_get_space(set), offset + first + i); set = isl_set_intersect(set, isl_basic_set_union(nonneg, neg)); } return set; error: isl_set_free(set); return NULL; } static int foreach_orthant(__isl_take isl_set *set, int *signs, int first, int len, int (*fn)(__isl_take isl_set *orthant, int *signs, void *user), void *user) { isl_set *half; if (!set) return -1; if (isl_set_plain_is_empty(set)) { isl_set_free(set); return 0; } if (first == len) return fn(set, signs, user); signs[first] = 1; half = isl_set_from_basic_set(nonneg_halfspace(isl_set_get_space(set), 1 + first)); half = isl_set_intersect(half, isl_set_copy(set)); if (foreach_orthant(half, signs, first + 1, len, fn, user) < 0) goto error; signs[first] = -1; half = isl_set_from_basic_set(neg_halfspace(isl_set_get_space(set), 1 + first)); half = isl_set_intersect(half, set); return foreach_orthant(half, signs, first + 1, len, fn, user); error: isl_set_free(set); return -1; } /* Call "fn" on the intersections of "set" with each of the orthants * (except for obviously empty intersections). The orthant is identified * by the signs array, with each entry having value 1 or -1 according * to the sign of the corresponding variable. */ int isl_set_foreach_orthant(__isl_keep isl_set *set, int (*fn)(__isl_take isl_set *orthant, int *signs, void *user), void *user) { unsigned nparam; unsigned nvar; int *signs; int r; if (!set) return -1; if (isl_set_plain_is_empty(set)) return 0; nparam = isl_set_dim(set, isl_dim_param); nvar = isl_set_dim(set, isl_dim_set); signs = isl_alloc_array(set->ctx, int, nparam + nvar); r = foreach_orthant(isl_set_copy(set), signs, 0, nparam + nvar, fn, user); free(signs); return r; } isl_bool isl_set_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_equal((struct isl_map *)set1, (struct isl_map *)set2); } isl_bool isl_basic_map_is_subset(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int is_subset; struct isl_map *map1; struct isl_map *map2; if (!bmap1 || !bmap2) return isl_bool_error; map1 = isl_map_from_basic_map(isl_basic_map_copy(bmap1)); map2 = isl_map_from_basic_map(isl_basic_map_copy(bmap2)); is_subset = isl_map_is_subset(map1, map2); isl_map_free(map1); isl_map_free(map2); return is_subset; } isl_bool isl_basic_set_is_subset(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_is_subset(bset1, bset2); } isl_bool isl_basic_map_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { isl_bool is_subset; if (!bmap1 || !bmap2) return isl_bool_error; is_subset = isl_basic_map_is_subset(bmap1, bmap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_basic_map_is_subset(bmap2, bmap1); return is_subset; } isl_bool isl_basic_set_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_is_equal( (struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2); } isl_bool isl_map_is_empty(__isl_keep isl_map *map) { int i; int is_empty; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { is_empty = isl_basic_map_is_empty(map->p[i]); if (is_empty < 0) return isl_bool_error; if (!is_empty) return isl_bool_false; } return isl_bool_true; } isl_bool isl_map_plain_is_empty(__isl_keep isl_map *map) { return map ? map->n == 0 : isl_bool_error; } isl_bool isl_set_plain_is_empty(__isl_keep isl_set *set) { return set ? set->n == 0 : isl_bool_error; } isl_bool isl_set_is_empty(__isl_keep isl_set *set) { return isl_map_is_empty((struct isl_map *)set); } int isl_map_has_equal_space(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { if (!map1 || !map2) return -1; return isl_space_is_equal(map1->dim, map2->dim); } int isl_set_has_equal_space(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { if (!set1 || !set2) return -1; return isl_space_is_equal(set1->dim, set2->dim); } static isl_bool map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool is_subset; if (!map1 || !map2) return isl_bool_error; is_subset = isl_map_is_subset(map1, map2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_map_is_subset(map2, map1); return is_subset; } isl_bool isl_map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { return isl_map_align_params_map_map_and_test(map1, map2, &map_is_equal); } isl_bool isl_basic_map_is_strict_subset( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_bool is_subset; if (!bmap1 || !bmap2) return isl_bool_error; is_subset = isl_basic_map_is_subset(bmap1, bmap2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_basic_map_is_subset(bmap2, bmap1); if (is_subset == isl_bool_error) return is_subset; return !is_subset; } isl_bool isl_map_is_strict_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool is_subset; if (!map1 || !map2) return isl_bool_error; is_subset = isl_map_is_subset(map1, map2); if (is_subset != isl_bool_true) return is_subset; is_subset = isl_map_is_subset(map2, map1); if (is_subset == isl_bool_error) return is_subset; return !is_subset; } isl_bool isl_set_is_strict_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_strict_subset((isl_map *)set1, (isl_map *)set2); } isl_bool isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return bmap->n_eq == 0 && bmap->n_ineq == 0; } isl_bool isl_basic_set_is_universe(__isl_keep isl_basic_set *bset) { if (!bset) return isl_bool_error; return bset->n_eq == 0 && bset->n_ineq == 0; } isl_bool isl_map_plain_is_universe(__isl_keep isl_map *map) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool r = isl_basic_map_is_universe(map->p[i]); if (r < 0 || r) return r; } return isl_bool_false; } isl_bool isl_set_plain_is_universe(__isl_keep isl_set *set) { return isl_map_plain_is_universe((isl_map *) set); } isl_bool isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap) { struct isl_basic_set *bset = NULL; struct isl_vec *sample = NULL; isl_bool empty; unsigned total; if (!bmap) return isl_bool_error; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return isl_bool_true; if (isl_basic_map_is_universe(bmap)) return isl_bool_false; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) { struct isl_basic_map *copy = isl_basic_map_copy(bmap); copy = isl_basic_map_remove_redundancies(copy); empty = isl_basic_map_plain_is_empty(copy); isl_basic_map_free(copy); return empty; } total = 1 + isl_basic_map_total_dim(bmap); if (bmap->sample && bmap->sample->size == total) { int contains = isl_basic_map_contains(bmap, bmap->sample); if (contains < 0) return isl_bool_error; if (contains) return isl_bool_false; } isl_vec_free(bmap->sample); bmap->sample = NULL; bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); if (!bset) return isl_bool_error; sample = isl_basic_set_sample_vec(bset); if (!sample) return isl_bool_error; empty = sample->size == 0; isl_vec_free(bmap->sample); bmap->sample = sample; if (empty) ISL_F_SET(bmap, ISL_BASIC_MAP_EMPTY); return empty; } isl_bool isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY); } isl_bool isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset) { if (!bset) return isl_bool_error; return ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY); } isl_bool isl_basic_set_is_empty(__isl_keep isl_basic_set *bset) { return isl_basic_map_is_empty((struct isl_basic_map *)bset); } struct isl_map *isl_basic_map_union( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { struct isl_map *map; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), goto error); map = isl_map_alloc_space(isl_space_copy(bmap1->dim), 2, 0); if (!map) goto error; map = isl_map_add_basic_map(map, bmap1); map = isl_map_add_basic_map(map, bmap2); return map; error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } struct isl_set *isl_basic_set_union( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { return (struct isl_set *)isl_basic_map_union( (struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2); } /* Order divs such that any div only depends on previous divs */ struct isl_basic_map *isl_basic_map_order_divs(struct isl_basic_map *bmap) { int i; unsigned off; if (!bmap) return NULL; off = isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { int pos; if (isl_int_is_zero(bmap->div[i][0])) continue; pos = isl_seq_first_non_zero(bmap->div[i]+1+1+off+i, bmap->n_div-i); if (pos == -1) continue; isl_basic_map_swap_div(bmap, i, i + pos); --i; } return bmap; } struct isl_basic_set *isl_basic_set_order_divs(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_order_divs((struct isl_basic_map *)bset); } __isl_give isl_map *isl_map_order_divs(__isl_take isl_map *map) { int i; if (!map) return 0; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_order_divs(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Apply the expansion computed by isl_merge_divs. * The expansion itself is given by "exp" while the resulting * list of divs is given by "div". */ __isl_give isl_basic_set *isl_basic_set_expand_divs( __isl_take isl_basic_set *bset, __isl_take isl_mat *div, int *exp) { int i, j; int n_div; bset = isl_basic_set_cow(bset); if (!bset || !div) goto error; if (div->n_row < bset->n_div) isl_die(isl_mat_get_ctx(div), isl_error_invalid, "not an expansion", goto error); n_div = bset->n_div; bset = isl_basic_map_extend_space(bset, isl_space_copy(bset->dim), div->n_row - n_div, 0, 2 * (div->n_row - n_div)); for (i = n_div; i < div->n_row; ++i) if (isl_basic_set_alloc_div(bset) < 0) goto error; j = n_div - 1; for (i = div->n_row - 1; i >= 0; --i) { if (j >= 0 && exp[j] == i) { if (i != j) isl_basic_map_swap_div(bset, i, j); j--; } else { isl_seq_cpy(bset->div[i], div->row[i], div->n_col); if (isl_basic_map_add_div_constraints(bset, i) < 0) goto error; } } isl_mat_free(div); return bset; error: isl_basic_set_free(bset); isl_mat_free(div); return NULL; } /* Look for a div in dst that corresponds to the div "div" in src. * The divs before "div" in src and dst are assumed to be the same. * * Returns -1 if no corresponding div was found and the position * of the corresponding div in dst otherwise. */ static int find_div(struct isl_basic_map *dst, struct isl_basic_map *src, unsigned div) { int i; unsigned total = isl_space_dim(src->dim, isl_dim_all); isl_assert(dst->ctx, div <= dst->n_div, return -1); for (i = div; i < dst->n_div; ++i) if (isl_seq_eq(dst->div[i], src->div[div], 1+1+total+div) && isl_seq_first_non_zero(dst->div[i]+1+1+total+div, dst->n_div - div) == -1) return i; return -1; } /* Align the divs of "dst" to those of "src", adding divs from "src" * if needed. That is, make sure that the first src->n_div divs * of the result are equal to those of src. * * The result is not finalized as by design it will have redundant * divs if any divs from "src" were copied. */ __isl_give isl_basic_map *isl_basic_map_align_divs( __isl_take isl_basic_map *dst, __isl_keep isl_basic_map *src) { int i; int known, extended; unsigned total; if (!dst || !src) return isl_basic_map_free(dst); if (src->n_div == 0) return dst; known = isl_basic_map_divs_known(src); if (known < 0) return isl_basic_map_free(dst); if (!known) isl_die(isl_basic_map_get_ctx(src), isl_error_invalid, "some src divs are unknown", return isl_basic_map_free(dst)); src = isl_basic_map_order_divs(src); extended = 0; total = isl_space_dim(src->dim, isl_dim_all); for (i = 0; i < src->n_div; ++i) { int j = find_div(dst, src, i); if (j < 0) { if (!extended) { int extra = src->n_div - i; dst = isl_basic_map_cow(dst); if (!dst) return NULL; dst = isl_basic_map_extend_space(dst, isl_space_copy(dst->dim), extra, 0, 2 * extra); extended = 1; } j = isl_basic_map_alloc_div(dst); if (j < 0) return isl_basic_map_free(dst); isl_seq_cpy(dst->div[j], src->div[i], 1+1+total+i); isl_seq_clr(dst->div[j]+1+1+total+i, dst->n_div - i); if (isl_basic_map_add_div_constraints(dst, j) < 0) return isl_basic_map_free(dst); } if (j != i) isl_basic_map_swap_div(dst, i, j); } return dst; } struct isl_basic_set *isl_basic_set_align_divs( struct isl_basic_set *dst, struct isl_basic_set *src) { return (struct isl_basic_set *)isl_basic_map_align_divs( (struct isl_basic_map *)dst, (struct isl_basic_map *)src); } struct isl_map *isl_map_align_divs(struct isl_map *map) { int i; if (!map) return NULL; if (map->n == 0) return map; map = isl_map_compute_divs(map); map = isl_map_cow(map); if (!map) return NULL; for (i = 1; i < map->n; ++i) map->p[0] = isl_basic_map_align_divs(map->p[0], map->p[i]); for (i = 1; i < map->n; ++i) { map->p[i] = isl_basic_map_align_divs(map->p[i], map->p[0]); if (!map->p[i]) return isl_map_free(map); } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; } struct isl_set *isl_set_align_divs(struct isl_set *set) { return (struct isl_set *)isl_map_align_divs((struct isl_map *)set); } /* Align the divs of the basic maps in "map" to those * of the basic maps in "list", as well as to the other basic maps in "map". * The elements in "list" are assumed to have known divs. */ __isl_give isl_map *isl_map_align_divs_to_basic_map_list( __isl_take isl_map *map, __isl_keep isl_basic_map_list *list) { int i, n; map = isl_map_compute_divs(map); map = isl_map_cow(map); if (!map || !list) return isl_map_free(map); if (map->n == 0) return map; n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap; bmap = isl_basic_map_list_get_basic_map(list, i); map->p[0] = isl_basic_map_align_divs(map->p[0], bmap); isl_basic_map_free(bmap); } if (!map->p[0]) return isl_map_free(map); return isl_map_align_divs(map); } /* Align the divs of each element of "list" to those of "bmap". * Both "bmap" and the elements of "list" are assumed to have known divs. */ __isl_give isl_basic_map_list *isl_basic_map_list_align_divs_to_basic_map( __isl_take isl_basic_map_list *list, __isl_keep isl_basic_map *bmap) { int i, n; if (!list || !bmap) return isl_basic_map_list_free(list); n = isl_basic_map_list_n_basic_map(list); for (i = 0; i < n; ++i) { isl_basic_map *bmap_i; bmap_i = isl_basic_map_list_get_basic_map(list, i); bmap_i = isl_basic_map_align_divs(bmap_i, bmap); list = isl_basic_map_list_set_basic_map(list, i, bmap_i); } return list; } static __isl_give isl_set *set_apply( __isl_take isl_set *set, __isl_take isl_map *map) { if (!set || !map) goto error; isl_assert(set->ctx, isl_map_compatible_domain(map, set), goto error); map = isl_map_intersect_domain(map, set); set = isl_map_range(map); return set; error: isl_set_free(set); isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_apply( __isl_take isl_set *set, __isl_take isl_map *map) { return isl_map_align_params_map_map_and(set, map, &set_apply); } /* There is no need to cow as removing empty parts doesn't change * the meaning of the set. */ struct isl_map *isl_map_remove_empty_parts(struct isl_map *map) { int i; if (!map) return NULL; for (i = map->n - 1; i >= 0; --i) remove_if_empty(map, i); return map; } struct isl_set *isl_set_remove_empty_parts(struct isl_set *set) { return (struct isl_set *) isl_map_remove_empty_parts((struct isl_map *)set); } struct isl_basic_map *isl_map_copy_basic_map(struct isl_map *map) { struct isl_basic_map *bmap; if (!map || map->n == 0) return NULL; bmap = map->p[map->n-1]; isl_assert(map->ctx, ISL_F_ISSET(bmap, ISL_BASIC_SET_FINAL), return NULL); return isl_basic_map_copy(bmap); } struct isl_basic_set *isl_set_copy_basic_set(struct isl_set *set) { return (struct isl_basic_set *) isl_map_copy_basic_map((struct isl_map *)set); } __isl_give isl_map *isl_map_drop_basic_map(__isl_take isl_map *map, __isl_keep isl_basic_map *bmap) { int i; if (!map || !bmap) goto error; for (i = map->n-1; i >= 0; --i) { if (map->p[i] != bmap) continue; map = isl_map_cow(map); if (!map) goto error; isl_basic_map_free(map->p[i]); if (i != map->n-1) { ISL_F_CLR(map, ISL_SET_NORMALIZED); map->p[i] = map->p[map->n-1]; } map->n--; return map; } return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_drop_basic_set(struct isl_set *set, struct isl_basic_set *bset) { return (struct isl_set *)isl_map_drop_basic_map((struct isl_map *)set, (struct isl_basic_map *)bset); } /* Given two basic sets bset1 and bset2, compute the maximal difference * between the values of dimension pos in bset1 and those in bset2 * for any common value of the parameters and dimensions preceding pos. */ static enum isl_lp_result basic_set_maximal_difference_at( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, int pos, isl_int *opt) { isl_space *dims; struct isl_basic_map *bmap1 = NULL; struct isl_basic_map *bmap2 = NULL; struct isl_ctx *ctx; struct isl_vec *obj; unsigned total; unsigned nparam; unsigned dim1, dim2; enum isl_lp_result res; if (!bset1 || !bset2) return isl_lp_error; nparam = isl_basic_set_n_param(bset1); dim1 = isl_basic_set_n_dim(bset1); dim2 = isl_basic_set_n_dim(bset2); dims = isl_space_alloc(bset1->ctx, nparam, pos, dim1 - pos); bmap1 = isl_basic_map_from_basic_set(isl_basic_set_copy(bset1), dims); dims = isl_space_alloc(bset2->ctx, nparam, pos, dim2 - pos); bmap2 = isl_basic_map_from_basic_set(isl_basic_set_copy(bset2), dims); if (!bmap1 || !bmap2) goto error; bmap1 = isl_basic_map_cow(bmap1); bmap1 = isl_basic_map_extend(bmap1, nparam, pos, (dim1 - pos) + (dim2 - pos), bmap2->n_div, bmap2->n_eq, bmap2->n_ineq); bmap1 = add_constraints(bmap1, bmap2, 0, dim1 - pos); if (!bmap1) goto error2; total = isl_basic_map_total_dim(bmap1); ctx = bmap1->ctx; obj = isl_vec_alloc(ctx, 1 + total); if (!obj) goto error2; isl_seq_clr(obj->block.data, 1 + total); isl_int_set_si(obj->block.data[1+nparam+pos], 1); isl_int_set_si(obj->block.data[1+nparam+pos+(dim1-pos)], -1); res = isl_basic_map_solve_lp(bmap1, 1, obj->block.data, ctx->one, opt, NULL, NULL); isl_basic_map_free(bmap1); isl_vec_free(obj); return res; error: isl_basic_map_free(bmap2); error2: isl_basic_map_free(bmap1); return isl_lp_error; } /* Given two _disjoint_ basic sets bset1 and bset2, check whether * for any common value of the parameters and dimensions preceding pos * in both basic sets, the values of dimension pos in bset1 are * smaller or larger than those in bset2. * * Returns * 1 if bset1 follows bset2 * -1 if bset1 precedes bset2 * 0 if bset1 and bset2 are incomparable * -2 if some error occurred. */ int isl_basic_set_compare_at(struct isl_basic_set *bset1, struct isl_basic_set *bset2, int pos) { isl_int opt; enum isl_lp_result res; int cmp; isl_int_init(opt); res = basic_set_maximal_difference_at(bset1, bset2, pos, &opt); if (res == isl_lp_empty) cmp = 0; else if ((res == isl_lp_ok && isl_int_is_pos(opt)) || res == isl_lp_unbounded) cmp = 1; else if (res == isl_lp_ok && isl_int_is_neg(opt)) cmp = -1; else cmp = -2; isl_int_clear(opt); return cmp; } /* Given two basic sets bset1 and bset2, check whether * for any common value of the parameters and dimensions preceding pos * there is a value of dimension pos in bset1 that is larger * than a value of the same dimension in bset2. * * Return * 1 if there exists such a pair * 0 if there is no such pair, but there is a pair of equal values * -1 otherwise * -2 if some error occurred. */ int isl_basic_set_follows_at(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2, int pos) { isl_int opt; enum isl_lp_result res; int cmp; isl_int_init(opt); res = basic_set_maximal_difference_at(bset1, bset2, pos, &opt); if (res == isl_lp_empty) cmp = -1; else if ((res == isl_lp_ok && isl_int_is_pos(opt)) || res == isl_lp_unbounded) cmp = 1; else if (res == isl_lp_ok && isl_int_is_neg(opt)) cmp = -1; else if (res == isl_lp_ok) cmp = 0; else cmp = -2; isl_int_clear(opt); return cmp; } /* Given two sets set1 and set2, check whether * for any common value of the parameters and dimensions preceding pos * there is a value of dimension pos in set1 that is larger * than a value of the same dimension in set2. * * Return * 1 if there exists such a pair * 0 if there is no such pair, but there is a pair of equal values * -1 otherwise * -2 if some error occurred. */ int isl_set_follows_at(__isl_keep isl_set *set1, __isl_keep isl_set *set2, int pos) { int i, j; int follows = -1; if (!set1 || !set2) return -2; for (i = 0; i < set1->n; ++i) for (j = 0; j < set2->n; ++j) { int f; f = isl_basic_set_follows_at(set1->p[i], set2->p[j], pos); if (f == 1 || f == -2) return f; if (f > follows) follows = f; } return follows; } static int isl_basic_map_plain_has_fixed_var(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *val) { int i; int d; unsigned total; if (!bmap) return -1; total = isl_basic_map_total_dim(bmap); for (i = 0, d = total-1; i < bmap->n_eq && d+1 > pos; ++i) { for (; d+1 > pos; --d) if (!isl_int_is_zero(bmap->eq[i][1+d])) break; if (d != pos) continue; if (isl_seq_first_non_zero(bmap->eq[i]+1, d) != -1) return 0; if (isl_seq_first_non_zero(bmap->eq[i]+1+d+1, total-d-1) != -1) return 0; if (!isl_int_is_one(bmap->eq[i][1+d])) return 0; if (val) isl_int_neg(*val, bmap->eq[i][0]); return 1; } return 0; } static int isl_map_plain_has_fixed_var(__isl_keep isl_map *map, unsigned pos, isl_int *val) { int i; isl_int v; isl_int tmp; int fixed; if (!map) return -1; if (map->n == 0) return 0; if (map->n == 1) return isl_basic_map_plain_has_fixed_var(map->p[0], pos, val); isl_int_init(v); isl_int_init(tmp); fixed = isl_basic_map_plain_has_fixed_var(map->p[0], pos, &v); for (i = 1; fixed == 1 && i < map->n; ++i) { fixed = isl_basic_map_plain_has_fixed_var(map->p[i], pos, &tmp); if (fixed == 1 && isl_int_ne(tmp, v)) fixed = 0; } if (val) isl_int_set(*val, v); isl_int_clear(tmp); isl_int_clear(v); return fixed; } static int isl_basic_set_plain_has_fixed_var(__isl_keep isl_basic_set *bset, unsigned pos, isl_int *val) { return isl_basic_map_plain_has_fixed_var((struct isl_basic_map *)bset, pos, val); } static int isl_set_plain_has_fixed_var(__isl_keep isl_set *set, unsigned pos, isl_int *val) { return isl_map_plain_has_fixed_var((struct isl_map *)set, pos, val); } int isl_basic_map_plain_is_fixed(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int *val) { if (pos >= isl_basic_map_dim(bmap, type)) return -1; return isl_basic_map_plain_has_fixed_var(bmap, isl_basic_map_offset(bmap, type) - 1 + pos, val); } /* If "bmap" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_basic_map_plain_get_val_if_fixed( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { isl_ctx *ctx; isl_val *v; int fixed; if (!bmap) return NULL; ctx = isl_basic_map_get_ctx(bmap); v = isl_val_alloc(ctx); if (!v) return NULL; fixed = isl_basic_map_plain_is_fixed(bmap, type, pos, &v->n); if (fixed < 0) return isl_val_free(v); if (fixed) { isl_int_set_si(v->d, 1); return v; } isl_val_free(v); return isl_val_nan(ctx); } int isl_map_plain_is_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_int *val) { if (pos >= isl_map_dim(map, type)) return -1; return isl_map_plain_has_fixed_var(map, map_offset(map, type) - 1 + pos, val); } /* If "map" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_map_plain_get_val_if_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { isl_ctx *ctx; isl_val *v; int fixed; if (!map) return NULL; ctx = isl_map_get_ctx(map); v = isl_val_alloc(ctx); if (!v) return NULL; fixed = isl_map_plain_is_fixed(map, type, pos, &v->n); if (fixed < 0) return isl_val_free(v); if (fixed) { isl_int_set_si(v->d, 1); return v; } isl_val_free(v); return isl_val_nan(ctx); } /* If "set" obviously lies on a hyperplane where the given dimension * has a fixed value, then return that value. * Otherwise return NaN. */ __isl_give isl_val *isl_set_plain_get_val_if_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_plain_get_val_if_fixed(set, type, pos); } int isl_set_plain_is_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos, isl_int *val) { return isl_map_plain_is_fixed(set, type, pos, val); } /* Check if dimension dim has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_basic_set_plain_dim_is_fixed(__isl_keep isl_basic_set *bset, unsigned dim, isl_int *val) { return isl_basic_set_plain_has_fixed_var(bset, isl_basic_set_n_param(bset) + dim, val); } /* Check if dimension dim has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_set_plain_dim_is_fixed(__isl_keep isl_set *set, unsigned dim, isl_int *val) { return isl_set_plain_has_fixed_var(set, isl_set_n_param(set) + dim, val); } /* Check if input variable in has fixed value and if so and if val is not NULL, * then return this fixed value in *val. */ int isl_map_plain_input_is_fixed(__isl_keep isl_map *map, unsigned in, isl_int *val) { return isl_map_plain_has_fixed_var(map, isl_map_n_param(map) + in, val); } /* Check if dimension dim has an (obvious) fixed lower bound and if so * and if val is not NULL, then return this lower bound in *val. */ int isl_basic_set_plain_dim_has_fixed_lower_bound( __isl_keep isl_basic_set *bset, unsigned dim, isl_int *val) { int i, i_eq = -1, i_ineq = -1; isl_int *c; unsigned total; unsigned nparam; if (!bset) return -1; total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][1+nparam+dim])) continue; if (i_eq != -1) return 0; i_eq = i; } for (i = 0; i < bset->n_ineq; ++i) { if (!isl_int_is_pos(bset->ineq[i][1+nparam+dim])) continue; if (i_eq != -1 || i_ineq != -1) return 0; i_ineq = i; } if (i_eq == -1 && i_ineq == -1) return 0; c = i_eq != -1 ? bset->eq[i_eq] : bset->ineq[i_ineq]; /* The coefficient should always be one due to normalization. */ if (!isl_int_is_one(c[1+nparam+dim])) return 0; if (isl_seq_first_non_zero(c+1, nparam+dim) != -1) return 0; if (isl_seq_first_non_zero(c+1+nparam+dim+1, total - nparam - dim - 1) != -1) return 0; if (val) isl_int_neg(*val, c[0]); return 1; } int isl_set_plain_dim_has_fixed_lower_bound(__isl_keep isl_set *set, unsigned dim, isl_int *val) { int i; isl_int v; isl_int tmp; int fixed; if (!set) return -1; if (set->n == 0) return 0; if (set->n == 1) return isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[0], dim, val); isl_int_init(v); isl_int_init(tmp); fixed = isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[0], dim, &v); for (i = 1; fixed == 1 && i < set->n; ++i) { fixed = isl_basic_set_plain_dim_has_fixed_lower_bound(set->p[i], dim, &tmp); if (fixed == 1 && isl_int_ne(tmp, v)) fixed = 0; } if (val) isl_int_set(*val, v); isl_int_clear(tmp); isl_int_clear(v); return fixed; } /* Return -1 if the constraint "c1" should be sorted before "c2" * and 1 if it should be sorted after "c2". * Return 0 if the two constraints are the same (up to the constant term). * * In particular, if a constraint involves later variables than another * then it is sorted after this other constraint. * uset_gist depends on constraints without existentially quantified * variables sorting first. * * For constraints that have the same latest variable, those * with the same coefficient for this latest variable (first in absolute value * and then in actual value) are grouped together. * This is useful for detecting pairs of constraints that can * be chained in their printed representation. * * Finally, within a group, constraints are sorted according to * their coefficients (excluding the constant term). */ static int sort_constraint_cmp(const void *p1, const void *p2, void *arg) { isl_int **c1 = (isl_int **) p1; isl_int **c2 = (isl_int **) p2; int l1, l2; unsigned size = *(unsigned *) arg; int cmp; l1 = isl_seq_last_non_zero(*c1 + 1, size); l2 = isl_seq_last_non_zero(*c2 + 1, size); if (l1 != l2) return l1 - l2; cmp = isl_int_abs_cmp((*c1)[1 + l1], (*c2)[1 + l1]); if (cmp != 0) return cmp; cmp = isl_int_cmp((*c1)[1 + l1], (*c2)[1 + l1]); if (cmp != 0) return -cmp; return isl_seq_cmp(*c1 + 1, *c2 + 1, size); } /* Return -1 if the constraint "c1" of "bmap" is sorted before "c2" * by isl_basic_map_sort_constraints, 1 if it is sorted after "c2" * and 0 if the two constraints are the same (up to the constant term). */ int isl_basic_map_constraint_cmp(__isl_keep isl_basic_map *bmap, isl_int *c1, isl_int *c2) { unsigned total; if (!bmap) return -2; total = isl_basic_map_total_dim(bmap); return sort_constraint_cmp(&c1, &c2, &total); } __isl_give isl_basic_map *isl_basic_map_sort_constraints( __isl_take isl_basic_map *bmap) { unsigned total; if (!bmap) return NULL; if (bmap->n_ineq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED)) return bmap; total = isl_basic_map_total_dim(bmap); if (isl_sort(bmap->ineq, bmap->n_ineq, sizeof(isl_int *), &sort_constraint_cmp, &total) < 0) return isl_basic_map_free(bmap); return bmap; } __isl_give isl_basic_set *isl_basic_set_sort_constraints( __isl_take isl_basic_set *bset) { return (struct isl_basic_set *)isl_basic_map_sort_constraints( (struct isl_basic_map *)bset); } struct isl_basic_map *isl_basic_map_normalize(struct isl_basic_map *bmap) { if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED)) return bmap; bmap = isl_basic_map_remove_redundancies(bmap); bmap = isl_basic_map_sort_constraints(bmap); if (bmap) ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED); return bmap; } struct isl_basic_set *isl_basic_set_normalize(struct isl_basic_set *bset) { return (struct isl_basic_set *)isl_basic_map_normalize( (struct isl_basic_map *)bset); } int isl_basic_map_plain_cmp(const __isl_keep isl_basic_map *bmap1, const __isl_keep isl_basic_map *bmap2) { int i, cmp; unsigned total; if (!bmap1 || !bmap2) return -1; if (bmap1 == bmap2) return 0; if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_RATIONAL) != ISL_F_ISSET(bmap2, ISL_BASIC_MAP_RATIONAL)) return ISL_F_ISSET(bmap1, ISL_BASIC_MAP_RATIONAL) ? -1 : 1; if (isl_basic_map_n_param(bmap1) != isl_basic_map_n_param(bmap2)) return isl_basic_map_n_param(bmap1) - isl_basic_map_n_param(bmap2); if (isl_basic_map_n_in(bmap1) != isl_basic_map_n_in(bmap2)) return isl_basic_map_n_out(bmap1) - isl_basic_map_n_out(bmap2); if (isl_basic_map_n_out(bmap1) != isl_basic_map_n_out(bmap2)) return isl_basic_map_n_out(bmap1) - isl_basic_map_n_out(bmap2); if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_EMPTY) && ISL_F_ISSET(bmap2, ISL_BASIC_MAP_EMPTY)) return 0; if (ISL_F_ISSET(bmap1, ISL_BASIC_MAP_EMPTY)) return 1; if (ISL_F_ISSET(bmap2, ISL_BASIC_MAP_EMPTY)) return -1; if (bmap1->n_eq != bmap2->n_eq) return bmap1->n_eq - bmap2->n_eq; if (bmap1->n_ineq != bmap2->n_ineq) return bmap1->n_ineq - bmap2->n_ineq; if (bmap1->n_div != bmap2->n_div) return bmap1->n_div - bmap2->n_div; total = isl_basic_map_total_dim(bmap1); for (i = 0; i < bmap1->n_eq; ++i) { cmp = isl_seq_cmp(bmap1->eq[i], bmap2->eq[i], 1+total); if (cmp) return cmp; } for (i = 0; i < bmap1->n_ineq; ++i) { cmp = isl_seq_cmp(bmap1->ineq[i], bmap2->ineq[i], 1+total); if (cmp) return cmp; } for (i = 0; i < bmap1->n_div; ++i) { cmp = isl_seq_cmp(bmap1->div[i], bmap2->div[i], 1+1+total); if (cmp) return cmp; } return 0; } int isl_basic_set_plain_cmp(const __isl_keep isl_basic_set *bset1, const __isl_keep isl_basic_set *bset2) { return isl_basic_map_plain_cmp(bset1, bset2); } int isl_set_plain_cmp(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { int i, cmp; if (set1 == set2) return 0; if (set1->n != set2->n) return set1->n - set2->n; for (i = 0; i < set1->n; ++i) { cmp = isl_basic_set_plain_cmp(set1->p[i], set2->p[i]); if (cmp) return cmp; } return 0; } isl_bool isl_basic_map_plain_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { if (!bmap1 || !bmap2) return isl_bool_error; return isl_basic_map_plain_cmp(bmap1, bmap2) == 0; } isl_bool isl_basic_set_plain_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_plain_is_equal((isl_basic_map *)bset1, (isl_basic_map *)bset2); } static int qsort_bmap_cmp(const void *p1, const void *p2) { const struct isl_basic_map *bmap1 = *(const struct isl_basic_map **)p1; const struct isl_basic_map *bmap2 = *(const struct isl_basic_map **)p2; return isl_basic_map_plain_cmp(bmap1, bmap2); } /* Sort the basic maps of "map" and remove duplicate basic maps. * * While removing basic maps, we make sure that the basic maps remain * sorted because isl_map_normalize expects the basic maps of the result * to be sorted. */ static __isl_give isl_map *sort_and_remove_duplicates(__isl_take isl_map *map) { int i, j; map = isl_map_remove_empty_parts(map); if (!map) return NULL; qsort(map->p, map->n, sizeof(struct isl_basic_map *), qsort_bmap_cmp); for (i = map->n - 1; i >= 1; --i) { if (!isl_basic_map_plain_is_equal(map->p[i - 1], map->p[i])) continue; isl_basic_map_free(map->p[i-1]); for (j = i; j < map->n; ++j) map->p[j - 1] = map->p[j]; map->n--; } return map; } /* Remove obvious duplicates among the basic maps of "map". * * Unlike isl_map_normalize, this function does not remove redundant * constraints and only removes duplicates that have exactly the same * constraints in the input. It does sort the constraints and * the basic maps to ease the detection of duplicates. * * If "map" has already been normalized or if the basic maps are * disjoint, then there can be no duplicates. */ __isl_give isl_map *isl_map_remove_obvious_duplicates(__isl_take isl_map *map) { int i; isl_basic_map *bmap; if (!map) return NULL; if (map->n <= 1) return map; if (ISL_F_ISSET(map, ISL_MAP_NORMALIZED | ISL_MAP_DISJOINT)) return map; for (i = 0; i < map->n; ++i) { bmap = isl_basic_map_copy(map->p[i]); bmap = isl_basic_map_sort_constraints(bmap); if (!bmap) return isl_map_free(map); isl_basic_map_free(map->p[i]); map->p[i] = bmap; } map = sort_and_remove_duplicates(map); return map; } /* We normalize in place, but if anything goes wrong we need * to return NULL, so we need to make sure we don't change the * meaning of any possible other copies of map. */ __isl_give isl_map *isl_map_normalize(__isl_take isl_map *map) { int i; struct isl_basic_map *bmap; if (!map) return NULL; if (ISL_F_ISSET(map, ISL_MAP_NORMALIZED)) return map; for (i = 0; i < map->n; ++i) { bmap = isl_basic_map_normalize(isl_basic_map_copy(map->p[i])); if (!bmap) goto error; isl_basic_map_free(map->p[i]); map->p[i] = bmap; } map = sort_and_remove_duplicates(map); if (map) ISL_F_SET(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_normalize(struct isl_set *set) { return (struct isl_set *)isl_map_normalize((struct isl_map *)set); } isl_bool isl_map_plain_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i; isl_bool equal; if (!map1 || !map2) return isl_bool_error; if (map1 == map2) return isl_bool_true; if (!isl_space_is_equal(map1->dim, map2->dim)) return isl_bool_false; map1 = isl_map_copy(map1); map2 = isl_map_copy(map2); map1 = isl_map_normalize(map1); map2 = isl_map_normalize(map2); if (!map1 || !map2) goto error; equal = map1->n == map2->n; for (i = 0; equal && i < map1->n; ++i) { equal = isl_basic_map_plain_is_equal(map1->p[i], map2->p[i]); if (equal < 0) goto error; } isl_map_free(map1); isl_map_free(map2); return equal; error: isl_map_free(map1); isl_map_free(map2); return isl_bool_error; } isl_bool isl_set_plain_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_plain_is_equal((struct isl_map *)set1, (struct isl_map *)set2); } /* Return an interval that ranges from min to max (inclusive) */ struct isl_basic_set *isl_basic_set_interval(struct isl_ctx *ctx, isl_int min, isl_int max) { int k; struct isl_basic_set *bset = NULL; bset = isl_basic_set_alloc(ctx, 0, 1, 0, 0, 2); if (!bset) goto error; k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_int_set_si(bset->ineq[k][1], 1); isl_int_neg(bset->ineq[k][0], min); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_int_set_si(bset->ineq[k][1], -1); isl_int_set(bset->ineq[k][0], max); return bset; error: isl_basic_set_free(bset); return NULL; } /* Return the basic maps in "map" as a list. */ __isl_give isl_basic_map_list *isl_map_get_basic_map_list( __isl_keep isl_map *map) { int i; isl_ctx *ctx; isl_basic_map_list *list; if (!map) return NULL; ctx = isl_map_get_ctx(map); list = isl_basic_map_list_alloc(ctx, map->n); for (i = 0; i < map->n; ++i) { isl_basic_map *bmap; bmap = isl_basic_map_copy(map->p[i]); list = isl_basic_map_list_add(list, bmap); } return list; } /* Return the intersection of the elements in the non-empty list "list". * All elements are assumed to live in the same space. */ __isl_give isl_basic_map *isl_basic_map_list_intersect( __isl_take isl_basic_map_list *list) { int i, n; isl_basic_map *bmap; if (!list) return NULL; n = isl_basic_map_list_n_basic_map(list); if (n < 1) isl_die(isl_basic_map_list_get_ctx(list), isl_error_invalid, "expecting non-empty list", goto error); bmap = isl_basic_map_list_get_basic_map(list, 0); for (i = 1; i < n; ++i) { isl_basic_map *bmap_i; bmap_i = isl_basic_map_list_get_basic_map(list, i); bmap = isl_basic_map_intersect(bmap, bmap_i); } isl_basic_map_list_free(list); return bmap; error: isl_basic_map_list_free(list); return NULL; } /* Return the intersection of the elements in the non-empty list "list". * All elements are assumed to live in the same space. */ __isl_give isl_basic_set *isl_basic_set_list_intersect( __isl_take isl_basic_set_list *list) { return isl_basic_map_list_intersect(list); } /* Return the Cartesian product of the basic sets in list (in the given order). */ __isl_give isl_basic_set *isl_basic_set_list_product( __isl_take struct isl_basic_set_list *list) { int i; unsigned dim; unsigned nparam; unsigned extra; unsigned n_eq; unsigned n_ineq; struct isl_basic_set *product = NULL; if (!list) goto error; isl_assert(list->ctx, list->n > 0, goto error); isl_assert(list->ctx, list->p[0], goto error); nparam = isl_basic_set_n_param(list->p[0]); dim = isl_basic_set_n_dim(list->p[0]); extra = list->p[0]->n_div; n_eq = list->p[0]->n_eq; n_ineq = list->p[0]->n_ineq; for (i = 1; i < list->n; ++i) { isl_assert(list->ctx, list->p[i], goto error); isl_assert(list->ctx, nparam == isl_basic_set_n_param(list->p[i]), goto error); dim += isl_basic_set_n_dim(list->p[i]); extra += list->p[i]->n_div; n_eq += list->p[i]->n_eq; n_ineq += list->p[i]->n_ineq; } product = isl_basic_set_alloc(list->ctx, nparam, dim, extra, n_eq, n_ineq); if (!product) goto error; dim = 0; for (i = 0; i < list->n; ++i) { isl_basic_set_add_constraints(product, isl_basic_set_copy(list->p[i]), dim); dim += isl_basic_set_n_dim(list->p[i]); } isl_basic_set_list_free(list); return product; error: isl_basic_set_free(product); isl_basic_set_list_free(list); return NULL; } struct isl_basic_map *isl_basic_map_product( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2) { isl_space *dim_result = NULL; struct isl_basic_map *bmap; unsigned in1, in2, out1, out2, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; isl_assert(bmap1->ctx, isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param), goto error); dim_result = isl_space_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in1 = isl_basic_map_n_in(bmap1); in2 = isl_basic_map_n_in(bmap2); out1 = isl_basic_map_n_out(bmap1); out2 = isl_basic_map_n_out(bmap2); nparam = isl_basic_map_n_param(bmap1); total = nparam + in1 + in2 + out1 + out2 + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos += in1); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in2); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += out1); isl_dim_map_div(dim_map1, bmap1, pos += out2); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_flat_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_basic_map *prod; prod = isl_basic_map_product(bmap1, bmap2); prod = isl_basic_map_flatten(prod); return prod; } __isl_give isl_basic_set *isl_basic_set_flat_product( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2) { return isl_basic_map_flat_range_product(bset1, bset2); } __isl_give isl_basic_map *isl_basic_map_domain_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_space *space_result = NULL; isl_basic_map *bmap; unsigned in1, in2, out, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; space_result = isl_space_domain_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in1 = isl_basic_map_dim(bmap1, isl_dim_in); in2 = isl_basic_map_dim(bmap2, isl_dim_in); out = isl_basic_map_dim(bmap1, isl_dim_out); nparam = isl_basic_map_dim(bmap1, isl_dim_param); total = nparam + in1 + in2 + out + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos += in1); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in2); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos); isl_dim_map_div(dim_map1, bmap1, pos += out); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(space_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_space *dim_result = NULL; isl_basic_map *bmap; unsigned in, out1, out2, nparam, total, pos; struct isl_dim_map *dim_map1, *dim_map2; if (!bmap1 || !bmap2) goto error; if (!isl_space_match(bmap1->dim, isl_dim_param, bmap2->dim, isl_dim_param)) isl_die(isl_basic_map_get_ctx(bmap1), isl_error_invalid, "parameters don't match", goto error); dim_result = isl_space_range_product(isl_space_copy(bmap1->dim), isl_space_copy(bmap2->dim)); in = isl_basic_map_dim(bmap1, isl_dim_in); out1 = isl_basic_map_n_out(bmap1); out2 = isl_basic_map_n_out(bmap2); nparam = isl_basic_map_n_param(bmap1); total = nparam + in + out1 + out2 + bmap1->n_div + bmap2->n_div; dim_map1 = isl_dim_map_alloc(bmap1->ctx, total); dim_map2 = isl_dim_map_alloc(bmap1->ctx, total); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_param, pos = 0); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_in, pos += nparam); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_in, pos); isl_dim_map_dim(dim_map1, bmap1->dim, isl_dim_out, pos += in); isl_dim_map_dim(dim_map2, bmap2->dim, isl_dim_out, pos += out1); isl_dim_map_div(dim_map1, bmap1, pos += out2); isl_dim_map_div(dim_map2, bmap2, pos += bmap1->n_div); bmap = isl_basic_map_alloc_space(dim_result, bmap1->n_div + bmap2->n_div, bmap1->n_eq + bmap2->n_eq, bmap1->n_ineq + bmap2->n_ineq); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap1, dim_map1); bmap = isl_basic_map_add_constraints_dim_map(bmap, bmap2, dim_map2); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); return NULL; } __isl_give isl_basic_map *isl_basic_map_flat_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2) { isl_basic_map *prod; prod = isl_basic_map_range_product(bmap1, bmap2); prod = isl_basic_map_flatten_range(prod); return prod; } /* Apply "basic_map_product" to each pair of basic maps in "map1" and "map2" * and collect the results. * The result live in the space obtained by calling "space_product" * on the spaces of "map1" and "map2". * If "remove_duplicates" is set then the result may contain duplicates * (even if the inputs do not) and so we try and remove the obvious * duplicates. */ static __isl_give isl_map *map_product(__isl_take isl_map *map1, __isl_take isl_map *map2, __isl_give isl_space *(*space_product)(__isl_take isl_space *left, __isl_take isl_space *right), __isl_give isl_basic_map *(*basic_map_product)( __isl_take isl_basic_map *left, __isl_take isl_basic_map *right), int remove_duplicates) { unsigned flags = 0; struct isl_map *result; int i, j; if (!map1 || !map2) goto error; isl_assert(map1->ctx, isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param), goto error); if (ISL_F_ISSET(map1, ISL_MAP_DISJOINT) && ISL_F_ISSET(map2, ISL_MAP_DISJOINT)) ISL_FL_SET(flags, ISL_MAP_DISJOINT); result = isl_map_alloc_space(space_product(isl_space_copy(map1->dim), isl_space_copy(map2->dim)), map1->n * map2->n, flags); if (!result) goto error; for (i = 0; i < map1->n; ++i) for (j = 0; j < map2->n; ++j) { struct isl_basic_map *part; part = basic_map_product(isl_basic_map_copy(map1->p[i]), isl_basic_map_copy(map2->p[j])); if (isl_basic_map_is_empty(part)) isl_basic_map_free(part); else result = isl_map_add_basic_map(result, part); if (!result) goto error; } if (remove_duplicates) result = isl_map_remove_obvious_duplicates(result); isl_map_free(map1); isl_map_free(map2); return result; error: isl_map_free(map1); isl_map_free(map2); return NULL; } /* Given two maps A -> B and C -> D, construct a map [A -> C] -> [B -> D] */ static __isl_give isl_map *map_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_product, &isl_basic_map_product, 0); } __isl_give isl_map *isl_map_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_product_aligned); } /* Given two maps A -> B and C -> D, construct a map (A, C) -> (B, D) */ __isl_give isl_map *isl_map_flat_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_product(map1, map2); prod = isl_map_flatten(prod); return prod; } /* Given two set A and B, construct its Cartesian product A x B. */ struct isl_set *isl_set_product(struct isl_set *set1, struct isl_set *set2) { return isl_map_range_product(set1, set2); } __isl_give isl_set *isl_set_flat_product(__isl_take isl_set *set1, __isl_take isl_set *set2) { return isl_map_flat_range_product(set1, set2); } /* Given two maps A -> B and C -> D, construct a map [A -> C] -> (B * D) */ static __isl_give isl_map *map_domain_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_domain_product, &isl_basic_map_domain_product, 1); } /* Given two maps A -> B and C -> D, construct a map (A * C) -> [B -> D] */ static __isl_give isl_map *map_range_product_aligned(__isl_take isl_map *map1, __isl_take isl_map *map2) { return map_product(map1, map2, &isl_space_range_product, &isl_basic_map_range_product, 1); } __isl_give isl_map *isl_map_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_domain_product_aligned); } __isl_give isl_map *isl_map_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { return isl_map_align_params_map_map_and(map1, map2, &map_range_product_aligned); } /* Given a map of the form [A -> B] -> [C -> D], return the map A -> C. */ __isl_give isl_map *isl_map_factor_domain(__isl_take isl_map *map) { isl_space *space; int total1, keep1, total2, keep2; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim) || !isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "not a product", return isl_map_free(map)); space = isl_map_get_space(map); total1 = isl_space_dim(space, isl_dim_in); total2 = isl_space_dim(space, isl_dim_out); space = isl_space_factor_domain(space); keep1 = isl_space_dim(space, isl_dim_in); keep2 = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_in, keep1, total1 - keep1); map = isl_map_project_out(map, isl_dim_out, keep2, total2 - keep2); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> [C -> D], return the map B -> D. */ __isl_give isl_map *isl_map_factor_range(__isl_take isl_map *map) { isl_space *space; int total1, keep1, total2, keep2; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim) || !isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "not a product", return isl_map_free(map)); space = isl_map_get_space(map); total1 = isl_space_dim(space, isl_dim_in); total2 = isl_space_dim(space, isl_dim_out); space = isl_space_factor_range(space); keep1 = isl_space_dim(space, isl_dim_in); keep2 = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_in, 0, total1 - keep1); map = isl_map_project_out(map, isl_dim_out, 0, total2 - keep2); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> C, return the map A -> C. */ __isl_give isl_map *isl_map_domain_factor_domain(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "domain is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_in); space = isl_space_domain_factor_domain(space); keep = isl_space_dim(space, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, keep, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map of the form [A -> B] -> C, return the map B -> C. */ __isl_give isl_map *isl_map_domain_factor_range(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_domain_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "domain is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_in); space = isl_space_domain_factor_range(space); keep = isl_space_dim(space, isl_dim_in); map = isl_map_project_out(map, isl_dim_in, 0, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map A -> [B -> C], extract the map A -> B. */ __isl_give isl_map *isl_map_range_factor_domain(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "range is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_domain(space); keep = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, keep, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given a map A -> [B -> C], extract the map A -> C. */ __isl_give isl_map *isl_map_range_factor_range(__isl_take isl_map *map) { isl_space *space; int total, keep; if (!map) return NULL; if (!isl_space_range_is_wrapping(map->dim)) isl_die(isl_map_get_ctx(map), isl_error_invalid, "range is not a product", return isl_map_free(map)); space = isl_map_get_space(map); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_range(space); keep = isl_space_dim(space, isl_dim_out); map = isl_map_project_out(map, isl_dim_out, 0, total - keep); map = isl_map_reset_space(map, space); return map; } /* Given two maps A -> B and C -> D, construct a map (A, C) -> (B * D) */ __isl_give isl_map *isl_map_flat_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_domain_product(map1, map2); prod = isl_map_flatten_domain(prod); return prod; } /* Given two maps A -> B and C -> D, construct a map (A * C) -> (B, D) */ __isl_give isl_map *isl_map_flat_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2) { isl_map *prod; prod = isl_map_range_product(map1, map2); prod = isl_map_flatten_range(prod); return prod; } uint32_t isl_basic_map_get_hash(__isl_keep isl_basic_map *bmap) { int i; uint32_t hash = isl_hash_init(); unsigned total; if (!bmap) return 0; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_normalize(bmap); if (!bmap) return 0; total = isl_basic_map_total_dim(bmap); isl_hash_byte(hash, bmap->n_eq & 0xFF); for (i = 0; i < bmap->n_eq; ++i) { uint32_t c_hash; c_hash = isl_seq_get_hash(bmap->eq[i], 1 + total); isl_hash_hash(hash, c_hash); } isl_hash_byte(hash, bmap->n_ineq & 0xFF); for (i = 0; i < bmap->n_ineq; ++i) { uint32_t c_hash; c_hash = isl_seq_get_hash(bmap->ineq[i], 1 + total); isl_hash_hash(hash, c_hash); } isl_hash_byte(hash, bmap->n_div & 0xFF); for (i = 0; i < bmap->n_div; ++i) { uint32_t c_hash; if (isl_int_is_zero(bmap->div[i][0])) continue; isl_hash_byte(hash, i & 0xFF); c_hash = isl_seq_get_hash(bmap->div[i], 1 + 1 + total); isl_hash_hash(hash, c_hash); } isl_basic_map_free(bmap); return hash; } uint32_t isl_basic_set_get_hash(__isl_keep isl_basic_set *bset) { return isl_basic_map_get_hash((isl_basic_map *)bset); } uint32_t isl_map_get_hash(__isl_keep isl_map *map) { int i; uint32_t hash; if (!map) return 0; map = isl_map_copy(map); map = isl_map_normalize(map); if (!map) return 0; hash = isl_hash_init(); for (i = 0; i < map->n; ++i) { uint32_t bmap_hash; bmap_hash = isl_basic_map_get_hash(map->p[i]); isl_hash_hash(hash, bmap_hash); } isl_map_free(map); return hash; } uint32_t isl_set_get_hash(__isl_keep isl_set *set) { return isl_map_get_hash((isl_map *)set); } /* Check if the value for dimension dim is completely determined * by the values of the other parameters and variables. * That is, check if dimension dim is involved in an equality. */ int isl_basic_set_dim_is_unique(struct isl_basic_set *bset, unsigned dim) { int i; unsigned nparam; if (!bset) return -1; nparam = isl_basic_set_n_param(bset); for (i = 0; i < bset->n_eq; ++i) if (!isl_int_is_zero(bset->eq[i][1 + nparam + dim])) return 1; return 0; } /* Check if the value for dimension dim is completely determined * by the values of the other parameters and variables. * That is, check if dimension dim is involved in an equality * for each of the subsets. */ int isl_set_dim_is_unique(struct isl_set *set, unsigned dim) { int i; if (!set) return -1; for (i = 0; i < set->n; ++i) { int unique; unique = isl_basic_set_dim_is_unique(set->p[i], dim); if (unique != 1) return unique; } return 1; } /* Return the number of basic maps in the (current) representation of "map". */ int isl_map_n_basic_map(__isl_keep isl_map *map) { return map ? map->n : 0; } int isl_set_n_basic_set(__isl_keep isl_set *set) { return set ? set->n : 0; } isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map, isl_stat (*fn)(__isl_take isl_basic_map *bmap, void *user), void *user) { int i; if (!map) return isl_stat_error; for (i = 0; i < map->n; ++i) if (fn(isl_basic_map_copy(map->p[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_basic_set *bset, void *user), void *user) { int i; if (!set) return isl_stat_error; for (i = 0; i < set->n; ++i) if (fn(isl_basic_set_copy(set->p[i]), user) < 0) return isl_stat_error; return isl_stat_ok; } /* Return a list of basic sets, the union of which is equal to "set". */ __isl_give isl_basic_set_list *isl_set_get_basic_set_list( __isl_keep isl_set *set) { int i; isl_basic_set_list *list; if (!set) return NULL; list = isl_basic_set_list_alloc(isl_set_get_ctx(set), set->n); for (i = 0; i < set->n; ++i) { isl_basic_set *bset; bset = isl_basic_set_copy(set->p[i]); list = isl_basic_set_list_add(list, bset); } return list; } __isl_give isl_basic_set *isl_basic_set_lift(__isl_take isl_basic_set *bset) { isl_space *dim; if (!bset) return NULL; bset = isl_basic_set_cow(bset); if (!bset) return NULL; dim = isl_basic_set_get_space(bset); dim = isl_space_lift(dim, bset->n_div); if (!dim) goto error; isl_space_free(bset->dim); bset->dim = dim; bset->extra -= bset->n_div; bset->n_div = 0; bset = isl_basic_set_finalize(bset); return bset; error: isl_basic_set_free(bset); return NULL; } __isl_give isl_set *isl_set_lift(__isl_take isl_set *set) { int i; isl_space *dim; unsigned n_div; set = isl_set_align_divs(set); if (!set) return NULL; set = isl_set_cow(set); if (!set) return NULL; n_div = set->p[0]->n_div; dim = isl_set_get_space(set); dim = isl_space_lift(dim, n_div); if (!dim) goto error; isl_space_free(set->dim); set->dim = dim; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_lift(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } __isl_give isl_map *isl_set_lifting(__isl_take isl_set *set) { isl_space *dim; struct isl_basic_map *bmap; unsigned n_set; unsigned n_div; unsigned n_param; unsigned total; int i, k, l; set = isl_set_align_divs(set); if (!set) return NULL; dim = isl_set_get_space(set); if (set->n == 0 || set->p[0]->n_div == 0) { isl_set_free(set); return isl_map_identity(isl_space_map_from_set(dim)); } n_div = set->p[0]->n_div; dim = isl_space_map_from_set(dim); n_param = isl_space_dim(dim, isl_dim_param); n_set = isl_space_dim(dim, isl_dim_in); dim = isl_space_extend(dim, n_param, n_set, n_set + n_div); bmap = isl_basic_map_alloc_space(dim, 0, n_set, 2 * n_div); for (i = 0; i < n_set; ++i) bmap = var_equal(bmap, i); total = n_param + n_set + n_set + n_div; for (i = 0; i < n_div; ++i) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], set->p[0]->div[i]+1, 1+n_param); isl_seq_clr(bmap->ineq[k]+1+n_param, n_set); isl_seq_cpy(bmap->ineq[k]+1+n_param+n_set, set->p[0]->div[i]+1+1+n_param, n_set + n_div); isl_int_neg(bmap->ineq[k][1+n_param+n_set+n_set+i], set->p[0]->div[i][0]); l = isl_basic_map_alloc_inequality(bmap); if (l < 0) goto error; isl_seq_neg(bmap->ineq[l], bmap->ineq[k], 1 + total); isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], set->p[0]->div[i][0]); isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); } isl_set_free(set); bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return isl_map_from_basic_map(bmap); error: isl_set_free(set); isl_basic_map_free(bmap); return NULL; } int isl_basic_set_size(__isl_keep isl_basic_set *bset) { unsigned dim; int size = 0; if (!bset) return -1; dim = isl_basic_set_total_dim(bset); size += bset->n_eq * (1 + dim); size += bset->n_ineq * (1 + dim); size += bset->n_div * (2 + dim); return size; } int isl_set_size(__isl_keep isl_set *set) { int i; int size = 0; if (!set) return -1; for (i = 0; i < set->n; ++i) size += isl_basic_set_size(set->p[i]); return size; } /* Check if there is any lower bound (if lower == 0) and/or upper * bound (if upper == 0) on the specified dim. */ static isl_bool basic_map_dim_is_bounded(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int lower, int upper) { int i; if (!bmap) return isl_bool_error; isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), return isl_bool_error); pos += isl_basic_map_offset(bmap, type); for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (!isl_int_is_zero(bmap->div[i][1 + pos])) return isl_bool_true; } for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][pos])) return isl_bool_true; for (i = 0; i < bmap->n_ineq; ++i) { int sgn = isl_int_sgn(bmap->ineq[i][pos]); if (sgn > 0) lower = 1; if (sgn < 0) upper = 1; } return lower && upper; } int isl_basic_map_dim_is_bounded(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 0, 0); } isl_bool isl_basic_map_dim_has_lower_bound(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 0, 1); } isl_bool isl_basic_map_dim_has_upper_bound(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos) { return basic_map_dim_is_bounded(bmap, type, pos, 1, 0); } int isl_map_dim_is_bounded(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos) { int i; if (!map) return -1; for (i = 0; i < map->n; ++i) { int bounded; bounded = isl_basic_map_dim_is_bounded(map->p[i], type, pos); if (bounded < 0 || !bounded) return bounded; } return 1; } /* Return 1 if the specified dim is involved in both an upper bound * and a lower bound. */ int isl_set_dim_is_bounded(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return isl_map_dim_is_bounded((isl_map *)set, type, pos); } /* Does "map" have a bound (according to "fn") for any of its basic maps? */ static isl_bool has_any_bound(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_bool (*fn)(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos)) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool bounded; bounded = fn(map->p[i], type, pos); if (bounded < 0 || bounded) return bounded; } return isl_bool_false; } /* Return 1 if the specified dim is involved in any lower bound. */ isl_bool isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_any_bound(set, type, pos, &isl_basic_map_dim_has_lower_bound); } /* Return 1 if the specified dim is involved in any upper bound. */ isl_bool isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_any_bound(set, type, pos, &isl_basic_map_dim_has_upper_bound); } /* Does "map" have a bound (according to "fn") for all of its basic maps? */ static isl_bool has_bound(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_bool (*fn)(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos)) { int i; if (!map) return isl_bool_error; for (i = 0; i < map->n; ++i) { isl_bool bounded; bounded = fn(map->p[i], type, pos); if (bounded < 0 || !bounded) return bounded; } return isl_bool_true; } /* Return 1 if the specified dim has a lower bound (in each of its basic sets). */ isl_bool isl_set_dim_has_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_bound(set, type, pos, &isl_basic_map_dim_has_lower_bound); } /* Return 1 if the specified dim has an upper bound (in each of its basic sets). */ isl_bool isl_set_dim_has_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos) { return has_bound(set, type, pos, &isl_basic_map_dim_has_upper_bound); } /* For each of the "n" variables starting at "first", determine * the sign of the variable and put the results in the first "n" * elements of the array "signs". * Sign * 1 means that the variable is non-negative * -1 means that the variable is non-positive * 0 means the variable attains both positive and negative values. */ int isl_basic_set_vars_get_sign(__isl_keep isl_basic_set *bset, unsigned first, unsigned n, int *signs) { isl_vec *bound = NULL; struct isl_tab *tab = NULL; struct isl_tab_undo *snap; int i; if (!bset || !signs) return -1; bound = isl_vec_alloc(bset->ctx, 1 + isl_basic_set_total_dim(bset)); tab = isl_tab_from_basic_set(bset, 0); if (!bound || !tab) goto error; isl_seq_clr(bound->el, bound->size); isl_int_set_si(bound->el[0], -1); snap = isl_tab_snap(tab); for (i = 0; i < n; ++i) { int empty; isl_int_set_si(bound->el[1 + first + i], -1); if (isl_tab_add_ineq(tab, bound->el) < 0) goto error; empty = tab->empty; isl_int_set_si(bound->el[1 + first + i], 0); if (isl_tab_rollback(tab, snap) < 0) goto error; if (empty) { signs[i] = 1; continue; } isl_int_set_si(bound->el[1 + first + i], 1); if (isl_tab_add_ineq(tab, bound->el) < 0) goto error; empty = tab->empty; isl_int_set_si(bound->el[1 + first + i], 0); if (isl_tab_rollback(tab, snap) < 0) goto error; signs[i] = empty ? -1 : 0; } isl_tab_free(tab); isl_vec_free(bound); return 0; error: isl_tab_free(tab); isl_vec_free(bound); return -1; } int isl_basic_set_dims_get_sign(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n, int *signs) { if (!bset || !signs) return -1; isl_assert(bset->ctx, first + n <= isl_basic_set_dim(bset, type), return -1); first += pos(bset->dim, type) - 1; return isl_basic_set_vars_get_sign(bset, first, n, signs); } /* Is it possible for the integer division "div" to depend (possibly * indirectly) on any output dimensions? * * If the div is undefined, then we conservatively assume that it * may depend on them. * Otherwise, we check if it actually depends on them or on any integer * divisions that may depend on them. */ static int div_may_involve_output(__isl_keep isl_basic_map *bmap, int div) { int i; unsigned n_out, o_out; unsigned n_div, o_div; if (isl_int_is_zero(bmap->div[div][0])) return 1; n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); if (isl_seq_first_non_zero(bmap->div[div] + 1 + o_out, n_out) != -1) return 1; n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(bmap->div[div][1 + o_div + i])) continue; if (div_may_involve_output(bmap, i)) return 1; } return 0; } /* Return the first integer division of "bmap" in the range * [first, first + n[ that may depend on any output dimensions and * that has a non-zero coefficient in "c" (where the first coefficient * in "c" corresponds to integer division "first"). */ static int first_div_may_involve_output(__isl_keep isl_basic_map *bmap, isl_int *c, int first, int n) { int k; if (!bmap) return -1; for (k = first; k < first + n; ++k) { if (isl_int_is_zero(c[k])) continue; if (div_may_involve_output(bmap, k)) return k; } return first + n; } /* Look for a pair of inequality constraints in "bmap" of the form * * -l + i >= 0 or i >= l * and * n + l - i >= 0 or i <= l + n * * with n < "m" and i the output dimension at position "pos". * (Note that n >= 0 as otherwise the two constraints would conflict.) * Furthermore, "l" is only allowed to involve parameters, input dimensions * and earlier output dimensions, as well as integer divisions that do * not involve any of the output dimensions. * * Return the index of the first inequality constraint or bmap->n_ineq * if no such pair can be found. */ static int find_modulo_constraint_pair(__isl_keep isl_basic_map *bmap, int pos, isl_int m) { int i, j; isl_ctx *ctx; unsigned total; unsigned n_div, o_div; unsigned n_out, o_out; int less; if (!bmap) return -1; ctx = isl_basic_map_get_ctx(bmap); total = isl_basic_map_total_dim(bmap); n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); for (i = 0; i < bmap->n_ineq; ++i) { if (!isl_int_abs_eq(bmap->ineq[i][o_out + pos], ctx->one)) continue; if (isl_seq_first_non_zero(bmap->ineq[i] + o_out + pos + 1, n_out - (pos + 1)) != -1) continue; if (first_div_may_involve_output(bmap, bmap->ineq[i] + o_div, 0, n_div) < n_div) continue; for (j = i + 1; j < bmap->n_ineq; ++j) { if (!isl_int_abs_eq(bmap->ineq[j][o_out + pos], ctx->one)) continue; if (!isl_seq_is_neg(bmap->ineq[i] + 1, bmap->ineq[j] + 1, total)) continue; break; } if (j >= bmap->n_ineq) continue; isl_int_add(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[j][0]); less = isl_int_abs_lt(bmap->ineq[i][0], m); isl_int_sub(bmap->ineq[i][0], bmap->ineq[i][0], bmap->ineq[j][0]); if (!less) continue; if (isl_int_is_one(bmap->ineq[i][o_out + pos])) return i; else return j; } return bmap->n_ineq; } /* Return the index of the equality of "bmap" that defines * the output dimension "pos" in terms of earlier dimensions. * The equality may also involve integer divisions, as long * as those integer divisions are defined in terms of * parameters or input dimensions. * In this case, *div is set to the number of integer divisions and * *ineq is set to the number of inequality constraints (provided * div and ineq are not NULL). * * The equality may also involve a single integer division involving * the output dimensions (typically only output dimension "pos") as * long as the coefficient of output dimension "pos" is 1 or -1 and * there is a pair of constraints i >= l and i <= l + n, with i referring * to output dimension "pos", l an expression involving only earlier * dimensions and n smaller than the coefficient of the integer division * in the equality. In this case, the output dimension can be defined * in terms of a modulo expression that does not involve the integer division. * *div is then set to this single integer division and * *ineq is set to the index of constraint i >= l. * * Return bmap->n_eq if there is no such equality. * Return -1 on error. */ int isl_basic_map_output_defining_equality(__isl_keep isl_basic_map *bmap, int pos, int *div, int *ineq) { int j, k, l; unsigned n_out, o_out; unsigned n_div, o_div; if (!bmap) return -1; n_out = isl_basic_map_dim(bmap, isl_dim_out); o_out = isl_basic_map_offset(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div); if (ineq) *ineq = bmap->n_ineq; if (div) *div = n_div; for (j = 0; j < bmap->n_eq; ++j) { if (isl_int_is_zero(bmap->eq[j][o_out + pos])) continue; if (isl_seq_first_non_zero(bmap->eq[j] + o_out + pos + 1, n_out - (pos + 1)) != -1) continue; k = first_div_may_involve_output(bmap, bmap->eq[j] + o_div, 0, n_div); if (k >= n_div) return j; if (!isl_int_is_one(bmap->eq[j][o_out + pos]) && !isl_int_is_negone(bmap->eq[j][o_out + pos])) continue; if (first_div_may_involve_output(bmap, bmap->eq[j] + o_div, k + 1, n_div - (k+1)) < n_div) continue; l = find_modulo_constraint_pair(bmap, pos, bmap->eq[j][o_div + k]); if (l < 0) return -1; if (l >= bmap->n_ineq) continue; if (div) *div = k; if (ineq) *ineq = l; return j; } return bmap->n_eq; } /* Check if the given basic map is obviously single-valued. * In particular, for each output dimension, check that there is * an equality that defines the output dimension in terms of * earlier dimensions. */ isl_bool isl_basic_map_plain_is_single_valued(__isl_keep isl_basic_map *bmap) { int i; unsigned n_out; if (!bmap) return isl_bool_error; n_out = isl_basic_map_dim(bmap, isl_dim_out); for (i = 0; i < n_out; ++i) { int eq; eq = isl_basic_map_output_defining_equality(bmap, i, NULL, NULL); if (eq < 0) return isl_bool_error; if (eq >= bmap->n_eq) return isl_bool_false; } return isl_bool_true; } /* Check if the given basic map is single-valued. * We simply compute * * M \circ M^-1 * * and check if the result is a subset of the identity mapping. */ isl_bool isl_basic_map_is_single_valued(__isl_keep isl_basic_map *bmap) { isl_space *space; isl_basic_map *test; isl_basic_map *id; isl_bool sv; sv = isl_basic_map_plain_is_single_valued(bmap); if (sv < 0 || sv) return sv; test = isl_basic_map_reverse(isl_basic_map_copy(bmap)); test = isl_basic_map_apply_range(test, isl_basic_map_copy(bmap)); space = isl_basic_map_get_space(bmap); space = isl_space_map_from_set(isl_space_range(space)); id = isl_basic_map_identity(space); sv = isl_basic_map_is_subset(test, id); isl_basic_map_free(test); isl_basic_map_free(id); return sv; } /* Check if the given map is obviously single-valued. */ isl_bool isl_map_plain_is_single_valued(__isl_keep isl_map *map) { if (!map) return isl_bool_error; if (map->n == 0) return isl_bool_true; if (map->n >= 2) return isl_bool_false; return isl_basic_map_plain_is_single_valued(map->p[0]); } /* Check if the given map is single-valued. * We simply compute * * M \circ M^-1 * * and check if the result is a subset of the identity mapping. */ isl_bool isl_map_is_single_valued(__isl_keep isl_map *map) { isl_space *dim; isl_map *test; isl_map *id; isl_bool sv; sv = isl_map_plain_is_single_valued(map); if (sv < 0 || sv) return sv; test = isl_map_reverse(isl_map_copy(map)); test = isl_map_apply_range(test, isl_map_copy(map)); dim = isl_space_map_from_set(isl_space_range(isl_map_get_space(map))); id = isl_map_identity(dim); sv = isl_map_is_subset(test, id); isl_map_free(test); isl_map_free(id); return sv; } isl_bool isl_map_is_injective(__isl_keep isl_map *map) { isl_bool in; map = isl_map_copy(map); map = isl_map_reverse(map); in = isl_map_is_single_valued(map); isl_map_free(map); return in; } /* Check if the given map is obviously injective. */ isl_bool isl_map_plain_is_injective(__isl_keep isl_map *map) { isl_bool in; map = isl_map_copy(map); map = isl_map_reverse(map); in = isl_map_plain_is_single_valued(map); isl_map_free(map); return in; } isl_bool isl_map_is_bijective(__isl_keep isl_map *map) { isl_bool sv; sv = isl_map_is_single_valued(map); if (sv < 0 || !sv) return sv; return isl_map_is_injective(map); } isl_bool isl_set_is_singleton(__isl_keep isl_set *set) { return isl_map_is_single_valued((isl_map *)set); } int isl_map_is_translation(__isl_keep isl_map *map) { int ok; isl_set *delta; delta = isl_map_deltas(isl_map_copy(map)); ok = isl_set_is_singleton(delta); isl_set_free(delta); return ok; } static int unique(isl_int *p, unsigned pos, unsigned len) { if (isl_seq_first_non_zero(p, pos) != -1) return 0; if (isl_seq_first_non_zero(p + pos + 1, len - pos - 1) != -1) return 0; return 1; } int isl_basic_set_is_box(__isl_keep isl_basic_set *bset) { int i, j; unsigned nvar; unsigned ovar; if (!bset) return -1; if (isl_basic_set_dim(bset, isl_dim_div) != 0) return 0; nvar = isl_basic_set_dim(bset, isl_dim_set); ovar = isl_space_offset(bset->dim, isl_dim_set); for (j = 0; j < nvar; ++j) { int lower = 0, upper = 0; for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][1 + ovar + j])) continue; if (!unique(bset->eq[i] + 1 + ovar, j, nvar)) return 0; break; } if (i < bset->n_eq) continue; for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][1 + ovar + j])) continue; if (!unique(bset->ineq[i] + 1 + ovar, j, nvar)) return 0; if (isl_int_is_pos(bset->ineq[i][1 + ovar + j])) lower = 1; else upper = 1; } if (!lower || !upper) return 0; } return 1; } int isl_set_is_box(__isl_keep isl_set *set) { if (!set) return -1; if (set->n != 1) return 0; return isl_basic_set_is_box(set->p[0]); } isl_bool isl_basic_set_is_wrapping(__isl_keep isl_basic_set *bset) { if (!bset) return isl_bool_error; return isl_space_is_wrapping(bset->dim); } isl_bool isl_set_is_wrapping(__isl_keep isl_set *set) { if (!set) return isl_bool_error; return isl_space_is_wrapping(set->dim); } /* Modify the space of "map" through a call to "change". * If "can_change" is set (not NULL), then first call it to check * if the modification is allowed, printing the error message "cannot_change" * if it is not. */ static __isl_give isl_map *isl_map_change_space(__isl_take isl_map *map, isl_bool (*can_change)(__isl_keep isl_map *map), const char *cannot_change, __isl_give isl_space *(*change)(__isl_take isl_space *space)) { isl_bool ok; isl_space *space; if (!map) return NULL; ok = can_change ? can_change(map) : isl_bool_true; if (ok < 0) return isl_map_free(map); if (!ok) isl_die(isl_map_get_ctx(map), isl_error_invalid, cannot_change, return isl_map_free(map)); space = change(isl_map_get_space(map)); map = isl_map_reset_space(map, space); return map; } /* Is the domain of "map" a wrapped relation? */ isl_bool isl_map_domain_is_wrapping(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_domain_is_wrapping(map->dim); } /* Is the range of "map" a wrapped relation? */ isl_bool isl_map_range_is_wrapping(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_range_is_wrapping(map->dim); } __isl_give isl_basic_set *isl_basic_map_wrap(__isl_take isl_basic_map *bmap) { bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_wrap(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return (isl_basic_set *)bmap; error: isl_basic_map_free(bmap); return NULL; } /* Given a map A -> B, return the set (A -> B). */ __isl_give isl_set *isl_map_wrap(__isl_take isl_map *map) { return isl_map_change_space(map, NULL, NULL, &isl_space_wrap); } __isl_give isl_basic_map *isl_basic_set_unwrap(__isl_take isl_basic_set *bset) { bset = isl_basic_set_cow(bset); if (!bset) return NULL; bset->dim = isl_space_unwrap(bset->dim); if (!bset->dim) goto error; bset = isl_basic_set_finalize(bset); return (isl_basic_map *)bset; error: isl_basic_set_free(bset); return NULL; } /* Given a set (A -> B), return the map A -> B. * Error out if "set" is not of the form (A -> B). */ __isl_give isl_map *isl_set_unwrap(__isl_take isl_set *set) { return isl_map_change_space(set, &isl_set_is_wrapping, "not a wrapping set", &isl_space_unwrap); } __isl_give isl_basic_map *isl_basic_map_reset(__isl_take isl_basic_map *bmap, enum isl_dim_type type) { if (!bmap) return NULL; if (!isl_space_is_named_or_nested(bmap->dim, type)) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_reset(bmap->dim, type); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_map *isl_map_reset(__isl_take isl_map *map, enum isl_dim_type type) { int i; if (!map) return NULL; if (!isl_space_is_named_or_nested(map->dim, type)) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reset(map->p[i], type); if (!map->p[i]) goto error; } map->dim = isl_space_reset(map->dim, type); if (!map->dim) goto error; return map; error: isl_map_free(map); return NULL; } __isl_give isl_basic_map *isl_basic_map_flatten(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[0] && !bmap->dim->nested[1]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_flatten(__isl_take isl_basic_set *bset) { return (isl_basic_set *)isl_basic_map_flatten((isl_basic_map *)bset); } __isl_give isl_basic_map *isl_basic_map_flatten_domain( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[0]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten_domain(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_flatten_range( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!bmap->dim->nested[1]) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_flatten_range(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Remove any internal structure from the spaces of domain and range of "map". */ __isl_give isl_map *isl_map_flatten(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[0] && !map->dim->nested[1]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten); } __isl_give isl_set *isl_set_flatten(__isl_take isl_set *set) { return (isl_set *)isl_map_flatten((isl_map *)set); } __isl_give isl_map *isl_set_flatten_map(__isl_take isl_set *set) { isl_space *dim, *flat_dim; isl_map *map; dim = isl_set_get_space(set); flat_dim = isl_space_flatten(isl_space_copy(dim)); map = isl_map_identity(isl_space_join(isl_space_reverse(dim), flat_dim)); map = isl_map_intersect_domain(map, set); return map; } /* Remove any internal structure from the space of the domain of "map". */ __isl_give isl_map *isl_map_flatten_domain(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[0]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten_domain); } /* Remove any internal structure from the space of the range of "map". */ __isl_give isl_map *isl_map_flatten_range(__isl_take isl_map *map) { if (!map) return NULL; if (!map->dim->nested[1]) return map; return isl_map_change_space(map, NULL, NULL, &isl_space_flatten_range); } /* Reorder the dimensions of "bmap" according to the given dim_map * and set the dimension specification to "dim". */ __isl_give isl_basic_map *isl_basic_map_realign(__isl_take isl_basic_map *bmap, __isl_take isl_space *dim, __isl_take struct isl_dim_map *dim_map) { isl_basic_map *res; unsigned flags; bmap = isl_basic_map_cow(bmap); if (!bmap || !dim || !dim_map) goto error; flags = bmap->flags; ISL_FL_CLR(flags, ISL_BASIC_MAP_FINAL); ISL_FL_CLR(flags, ISL_BASIC_MAP_NORMALIZED); ISL_FL_CLR(flags, ISL_BASIC_MAP_NORMALIZED_DIVS); res = isl_basic_map_alloc_space(dim, bmap->n_div, bmap->n_eq, bmap->n_ineq); res = isl_basic_map_add_constraints_dim_map(res, bmap, dim_map); if (res) res->flags = flags; res = isl_basic_map_finalize(res); return res; error: free(dim_map); isl_basic_map_free(bmap); isl_space_free(dim); return NULL; } /* Reorder the dimensions of "map" according to given reordering. */ __isl_give isl_map *isl_map_realign(__isl_take isl_map *map, __isl_take isl_reordering *r) { int i; struct isl_dim_map *dim_map; map = isl_map_cow(map); dim_map = isl_dim_map_from_reordering(r); if (!map || !r || !dim_map) goto error; for (i = 0; i < map->n; ++i) { struct isl_dim_map *dim_map_i; dim_map_i = isl_dim_map_extend(dim_map, map->p[i]); map->p[i] = isl_basic_map_realign(map->p[i], isl_space_copy(r->dim), dim_map_i); if (!map->p[i]) goto error; } map = isl_map_reset_space(map, isl_space_copy(r->dim)); isl_reordering_free(r); free(dim_map); return map; error: free(dim_map); isl_map_free(map); isl_reordering_free(r); return NULL; } __isl_give isl_set *isl_set_realign(__isl_take isl_set *set, __isl_take isl_reordering *r) { return (isl_set *)isl_map_realign((isl_map *)set, r); } __isl_give isl_map *isl_map_align_params(__isl_take isl_map *map, __isl_take isl_space *model) { isl_ctx *ctx; if (!map || !model) goto error; ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(map->dim)) isl_die(ctx, isl_error_invalid, "relation has unnamed parameters", goto error); if (!isl_space_match(map->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(map->dim, model); exp = isl_reordering_extend_space(exp, isl_map_get_space(map)); map = isl_map_realign(map, exp); } isl_space_free(model); return map; error: isl_space_free(model); isl_map_free(map); return NULL; } __isl_give isl_set *isl_set_align_params(__isl_take isl_set *set, __isl_take isl_space *model) { return isl_map_align_params(set, model); } /* Align the parameters of "bmap" to those of "model", introducing * additional parameters if needed. */ __isl_give isl_basic_map *isl_basic_map_align_params( __isl_take isl_basic_map *bmap, __isl_take isl_space *model) { isl_ctx *ctx; if (!bmap || !model) goto error; ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(bmap->dim)) isl_die(ctx, isl_error_invalid, "relation has unnamed parameters", goto error); if (!isl_space_match(bmap->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; struct isl_dim_map *dim_map; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(bmap->dim, model); exp = isl_reordering_extend_space(exp, isl_basic_map_get_space(bmap)); dim_map = isl_dim_map_from_reordering(exp); bmap = isl_basic_map_realign(bmap, exp ? isl_space_copy(exp->dim) : NULL, isl_dim_map_extend(dim_map, bmap)); isl_reordering_free(exp); free(dim_map); } isl_space_free(model); return bmap; error: isl_space_free(model); isl_basic_map_free(bmap); return NULL; } /* Align the parameters of "bset" to those of "model", introducing * additional parameters if needed. */ __isl_give isl_basic_set *isl_basic_set_align_params( __isl_take isl_basic_set *bset, __isl_take isl_space *model) { return isl_basic_map_align_params(bset, model); } __isl_give isl_mat *isl_basic_map_equalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; struct isl_mat *mat; int i, j, k; int pos; if (!bmap) return NULL; mat = isl_mat_alloc(bmap->ctx, bmap->n_eq, isl_basic_map_total_dim(bmap) + 1); if (!mat) return NULL; for (i = 0; i < bmap->n_eq; ++i) for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(mat->row[i][pos], bmap->eq[i][off + k]); ++pos; } } return mat; } __isl_give isl_mat *isl_basic_map_inequalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; struct isl_mat *mat; int i, j, k; int pos; if (!bmap) return NULL; mat = isl_mat_alloc(bmap->ctx, bmap->n_ineq, isl_basic_map_total_dim(bmap) + 1); if (!mat) return NULL; for (i = 0; i < bmap->n_ineq; ++i) for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(mat->row[i][pos], bmap->ineq[i][off + k]); ++pos; } } return mat; } __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5) { enum isl_dim_type c[5] = { c1, c2, c3, c4, c5 }; isl_basic_map *bmap; unsigned total; unsigned extra; int i, j, k, l; int pos; if (!dim || !eq || !ineq) goto error; if (eq->n_col != ineq->n_col) isl_die(dim->ctx, isl_error_invalid, "equalities and inequalities matrices should have " "same number of columns", goto error); total = 1 + isl_space_dim(dim, isl_dim_all); if (eq->n_col < total) isl_die(dim->ctx, isl_error_invalid, "number of columns too small", goto error); extra = eq->n_col - total; bmap = isl_basic_map_alloc_space(isl_space_copy(dim), extra, eq->n_row, ineq->n_row); if (!bmap) goto error; for (i = 0; i < extra; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_int_set_si(bmap->div[k][0], 0); } for (i = 0; i < eq->n_row; ++i) { l = isl_basic_map_alloc_equality(bmap); if (l < 0) goto error; for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(bmap->eq[l][off + k], eq->row[i][pos]); ++pos; } } } for (i = 0; i < ineq->n_row; ++i) { l = isl_basic_map_alloc_inequality(bmap); if (l < 0) goto error; for (j = 0, pos = 0; j < 5; ++j) { int off = isl_basic_map_offset(bmap, c[j]); for (k = 0; k < isl_basic_map_dim(bmap, c[j]); ++k) { isl_int_set(bmap->ineq[l][off + k], ineq->row[i][pos]); ++pos; } } } isl_space_free(dim); isl_mat_free(eq); isl_mat_free(ineq); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_space_free(dim); isl_mat_free(eq); isl_mat_free(ineq); return NULL; } __isl_give isl_mat *isl_basic_set_equalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { return isl_basic_map_equalities_matrix((isl_basic_map *)bset, c1, c2, c3, c4, isl_dim_in); } __isl_give isl_mat *isl_basic_set_inequalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { return isl_basic_map_inequalities_matrix((isl_basic_map *)bset, c1, c2, c3, c4, isl_dim_in); } __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4) { return (isl_basic_set*) isl_basic_map_from_constraint_matrices(dim, eq, ineq, c1, c2, c3, c4, isl_dim_in); } isl_bool isl_basic_map_can_zip(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_zip(bmap->dim); } isl_bool isl_map_can_zip(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_zip(map->dim); } /* Given a basic map (A -> B) -> (C -> D), return the corresponding basic map * (A -> C) -> (B -> D). */ __isl_give isl_basic_map *isl_basic_map_zip(__isl_take isl_basic_map *bmap) { unsigned pos; unsigned n1; unsigned n2; if (!bmap) return NULL; if (!isl_basic_map_can_zip(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be zipped", goto error); pos = isl_basic_map_offset(bmap, isl_dim_in) + isl_space_dim(bmap->dim->nested[0], isl_dim_in); n1 = isl_space_dim(bmap->dim->nested[0], isl_dim_out); n2 = isl_space_dim(bmap->dim->nested[1], isl_dim_in); bmap = isl_basic_map_cow(bmap); bmap = isl_basic_map_swap_vars(bmap, pos, n1, n2); if (!bmap) return NULL; bmap->dim = isl_space_zip(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_mark_final(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Given a map (A -> B) -> (C -> D), return the corresponding map * (A -> C) -> (B -> D). */ __isl_give isl_map *isl_map_zip(__isl_take isl_map *map) { int i; if (!map) return NULL; if (!isl_map_can_zip(map)) isl_die(map->ctx, isl_error_invalid, "map cannot be zipped", goto error); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_zip(map->p[i]); if (!map->p[i]) goto error; } map->dim = isl_space_zip(map->dim); if (!map->dim) goto error; return map; error: isl_map_free(map); return NULL; } /* Can we apply isl_basic_map_curry to "bmap"? * That is, does it have a nested relation in its domain? */ isl_bool isl_basic_map_can_curry(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_curry(bmap->dim); } /* Can we apply isl_map_curry to "map"? * That is, does it have a nested relation in its domain? */ isl_bool isl_map_can_curry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_curry(map->dim); } /* Given a basic map (A -> B) -> C, return the corresponding basic map * A -> (B -> C). */ __isl_give isl_basic_map *isl_basic_map_curry(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!isl_basic_map_can_curry(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be curried", goto error); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_curry(bmap->dim); if (!bmap->dim) goto error; bmap = isl_basic_map_mark_final(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Given a map (A -> B) -> C, return the corresponding map * A -> (B -> C). */ __isl_give isl_map *isl_map_curry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_curry, "map cannot be curried", &isl_space_curry); } /* Can isl_map_range_curry be applied to "map"? * That is, does it have a nested relation in its range, * the domain of which is itself a nested relation? */ isl_bool isl_map_can_range_curry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_range_curry(map->dim); } /* Given a map A -> ((B -> C) -> D), return the corresponding map * A -> (B -> (C -> D)). */ __isl_give isl_map *isl_map_range_curry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_range_curry, "map range cannot be curried", &isl_space_range_curry); } /* Can we apply isl_basic_map_uncurry to "bmap"? * That is, does it have a nested relation in its domain? */ isl_bool isl_basic_map_can_uncurry(__isl_keep isl_basic_map *bmap) { if (!bmap) return isl_bool_error; return isl_space_can_uncurry(bmap->dim); } /* Can we apply isl_map_uncurry to "map"? * That is, does it have a nested relation in its domain? */ isl_bool isl_map_can_uncurry(__isl_keep isl_map *map) { if (!map) return isl_bool_error; return isl_space_can_uncurry(map->dim); } /* Given a basic map A -> (B -> C), return the corresponding basic map * (A -> B) -> C. */ __isl_give isl_basic_map *isl_basic_map_uncurry(__isl_take isl_basic_map *bmap) { if (!bmap) return NULL; if (!isl_basic_map_can_uncurry(bmap)) isl_die(bmap->ctx, isl_error_invalid, "basic map cannot be uncurried", return isl_basic_map_free(bmap)); bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; bmap->dim = isl_space_uncurry(bmap->dim); if (!bmap->dim) return isl_basic_map_free(bmap); bmap = isl_basic_map_mark_final(bmap); return bmap; } /* Given a map A -> (B -> C), return the corresponding map * (A -> B) -> C. */ __isl_give isl_map *isl_map_uncurry(__isl_take isl_map *map) { return isl_map_change_space(map, &isl_map_can_uncurry, "map cannot be uncurried", &isl_space_uncurry); } /* Construct a basic map mapping the domain of the affine expression * to a one-dimensional range prescribed by the affine expression. */ __isl_give isl_basic_map *isl_basic_map_from_aff(__isl_take isl_aff *aff) { int k; int pos; isl_local_space *ls; isl_basic_map *bmap; if (!aff) return NULL; ls = isl_aff_get_local_space(aff); bmap = isl_basic_map_from_local_space(ls); bmap = isl_basic_map_extend_constraints(bmap, 1, 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; pos = isl_basic_map_offset(bmap, isl_dim_out); isl_seq_cpy(bmap->eq[k], aff->v->el + 1, pos); isl_int_neg(bmap->eq[k][pos], aff->v->el[0]); isl_seq_cpy(bmap->eq[k] + pos + 1, aff->v->el + 1 + pos, aff->v->size - (pos + 1)); isl_aff_free(aff); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_aff_free(aff); isl_basic_map_free(bmap); return NULL; } /* Construct a map mapping the domain of the affine expression * to a one-dimensional range prescribed by the affine expression. */ __isl_give isl_map *isl_map_from_aff(__isl_take isl_aff *aff) { isl_basic_map *bmap; bmap = isl_basic_map_from_aff(aff); return isl_map_from_basic_map(bmap); } /* Construct a basic map mapping the domain the multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression. */ __isl_give isl_basic_map *isl_basic_map_from_multi_aff( __isl_take isl_multi_aff *maff) { int i; isl_space *space; isl_basic_map *bmap; if (!maff) return NULL; if (isl_space_dim(maff->space, isl_dim_out) != maff->n) isl_die(isl_multi_aff_get_ctx(maff), isl_error_internal, "invalid space", goto error); space = isl_space_domain(isl_multi_aff_get_space(maff)); bmap = isl_basic_map_universe(isl_space_from_domain(space)); for (i = 0; i < maff->n; ++i) { isl_aff *aff; isl_basic_map *bmap_i; aff = isl_aff_copy(maff->p[i]); bmap_i = isl_basic_map_from_aff(aff); bmap = isl_basic_map_flat_range_product(bmap, bmap_i); } bmap = isl_basic_map_reset_space(bmap, isl_multi_aff_get_space(maff)); isl_multi_aff_free(maff); return bmap; error: isl_multi_aff_free(maff); return NULL; } /* Construct a map mapping the domain the multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression. */ __isl_give isl_map *isl_map_from_multi_aff(__isl_take isl_multi_aff *maff) { isl_basic_map *bmap; bmap = isl_basic_map_from_multi_aff(maff); return isl_map_from_basic_map(bmap); } /* Construct a basic map mapping a domain in the given space to * to an n-dimensional range, with n the number of elements in the list, * where each coordinate in the range is prescribed by the * corresponding affine expression. * The domains of all affine expressions in the list are assumed to match * domain_dim. */ __isl_give isl_basic_map *isl_basic_map_from_aff_list( __isl_take isl_space *domain_dim, __isl_take isl_aff_list *list) { int i; isl_space *dim; isl_basic_map *bmap; if (!list) return NULL; dim = isl_space_from_domain(domain_dim); bmap = isl_basic_map_universe(dim); for (i = 0; i < list->n; ++i) { isl_aff *aff; isl_basic_map *bmap_i; aff = isl_aff_copy(list->p[i]); bmap_i = isl_basic_map_from_aff(aff); bmap = isl_basic_map_flat_range_product(bmap, bmap_i); } isl_aff_list_free(list); return bmap; } __isl_give isl_set *isl_set_equate(__isl_take isl_set *set, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_equate(set, type1, pos1, type2, pos2); } /* Construct a basic map where the given dimensions are equal to each other. */ static __isl_give isl_basic_map *equator(__isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!space) return NULL; if (pos1 >= isl_space_dim(space, type1)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_space_dim(space, type2)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (type1 == type2 && pos1 == pos2) return isl_basic_map_universe(space); bmap = isl_basic_map_alloc_space(isl_space_copy(space), 0, 1, 0); i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->eq[i][pos1], -1); isl_int_set_si(bmap->eq[i][pos2], 1); bmap = isl_basic_map_finalize(bmap); isl_space_free(space); return bmap; error: isl_space_free(space); isl_basic_map_free(bmap); return NULL; } /* Add a constraint imposing that the given two dimensions are equal. */ __isl_give isl_basic_map *isl_basic_map_equate(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *eq; eq = equator(isl_basic_map_get_space(bmap), type1, pos1, type2, pos2); bmap = isl_basic_map_intersect(bmap, eq); return bmap; } /* Add a constraint imposing that the given two dimensions are equal. */ __isl_give isl_map *isl_map_equate(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap; bmap = equator(isl_map_get_space(map), type1, pos1, type2, pos2); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; } /* Add a constraint imposing that the given two dimensions have opposite values. */ __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!map) return NULL; if (pos1 >= isl_map_dim(map, type1)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_map_dim(map, type2)) isl_die(map->ctx, isl_error_invalid, "index out of bounds", goto error); bmap = isl_basic_map_alloc_space(isl_map_get_space(map), 0, 1, 0); i = isl_basic_map_alloc_equality(bmap); if (i < 0) goto error; isl_seq_clr(bmap->eq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->eq[i][pos1], 1); isl_int_set_si(bmap->eq[i][pos2], 1); bmap = isl_basic_map_finalize(bmap); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; error: isl_basic_map_free(bmap); isl_map_free(map); return NULL; } /* Construct a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ static __isl_give isl_constraint *constraint_order_ge( __isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; if (!space) return NULL; c = isl_constraint_alloc_inequality(isl_local_space_from_space(space)); if (pos1 >= isl_constraint_dim(c, type1)) isl_die(isl_constraint_get_ctx(c), isl_error_invalid, "index out of bounds", return isl_constraint_free(c)); if (pos2 >= isl_constraint_dim(c, type2)) isl_die(isl_constraint_get_ctx(c), isl_error_invalid, "index out of bounds", return isl_constraint_free(c)); if (type1 == type2 && pos1 == pos2) return c; c = isl_constraint_set_coefficient_si(c, type1, pos1, 1); c = isl_constraint_set_coefficient_si(c, type2, pos2, -1); return c; } /* Add a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ __isl_give isl_basic_map *isl_basic_map_order_ge(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; isl_space *space; if (type1 == type2 && pos1 == pos2) return bmap; space = isl_basic_map_get_space(bmap); c = constraint_order_ge(space, type1, pos1, type2, pos2); bmap = isl_basic_map_add_constraint(bmap, c); return bmap; } /* Add a constraint imposing that the value of the first dimension is * greater than or equal to that of the second. */ __isl_give isl_map *isl_map_order_ge(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_constraint *c; isl_space *space; if (type1 == type2 && pos1 == pos2) return map; space = isl_map_get_space(map); c = constraint_order_ge(space, type1, pos1, type2, pos2); map = isl_map_add_constraint(map, c); return map; } /* Add a constraint imposing that the value of the first dimension is * less than or equal to that of the second. */ __isl_give isl_map *isl_map_order_le(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_order_ge(map, type2, pos2, type1, pos1); } /* Construct a basic map where the value of the first dimension is * greater than that of the second. */ static __isl_give isl_basic_map *greator(__isl_take isl_space *space, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap = NULL; int i; if (!space) return NULL; if (pos1 >= isl_space_dim(space, type1)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (pos2 >= isl_space_dim(space, type2)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "index out of bounds", goto error); if (type1 == type2 && pos1 == pos2) return isl_basic_map_empty(space); bmap = isl_basic_map_alloc_space(space, 0, 0, 1); i = isl_basic_map_alloc_inequality(bmap); if (i < 0) return isl_basic_map_free(bmap); isl_seq_clr(bmap->ineq[i], 1 + isl_basic_map_total_dim(bmap)); pos1 += isl_basic_map_offset(bmap, type1); pos2 += isl_basic_map_offset(bmap, type2); isl_int_set_si(bmap->ineq[i][pos1], 1); isl_int_set_si(bmap->ineq[i][pos2], -1); isl_int_set_si(bmap->ineq[i][0], -1); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_space_free(space); isl_basic_map_free(bmap); return NULL; } /* Add a constraint imposing that the value of the first dimension is * greater than that of the second. */ __isl_give isl_basic_map *isl_basic_map_order_gt(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *gt; gt = greator(isl_basic_map_get_space(bmap), type1, pos1, type2, pos2); bmap = isl_basic_map_intersect(bmap, gt); return bmap; } /* Add a constraint imposing that the value of the first dimension is * greater than that of the second. */ __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { isl_basic_map *bmap; bmap = greator(isl_map_get_space(map), type1, pos1, type2, pos2); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; } /* Add a constraint imposing that the value of the first dimension is * smaller than that of the second. */ __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2) { return isl_map_order_gt(map, type2, pos2, type1, pos1); } __isl_give isl_aff *isl_basic_map_get_div(__isl_keep isl_basic_map *bmap, int pos) { isl_aff *div; isl_local_space *ls; if (!bmap) return NULL; if (!isl_basic_map_divs_known(bmap)) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "some divs are unknown", return NULL); ls = isl_basic_map_get_local_space(bmap); div = isl_local_space_get_div(ls, pos); isl_local_space_free(ls); return div; } __isl_give isl_aff *isl_basic_set_get_div(__isl_keep isl_basic_set *bset, int pos) { return isl_basic_map_get_div(bset, pos); } /* Plug in "subs" for dimension "type", "pos" of "bset". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) * * Constraints of the form * * a i + g * * are replaced by * * a f + d g * * We currently require that "subs" is an integral expression. * Handling rational expressions may require us to add stride constraints * as we do in isl_basic_set_preimage_multi_aff. */ __isl_give isl_basic_set *isl_basic_set_substitute( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { int i; isl_int v; isl_ctx *ctx; if (bset && isl_basic_set_plain_is_empty(bset)) return bset; bset = isl_basic_set_cow(bset); if (!bset || !subs) goto error; ctx = isl_basic_set_get_ctx(bset); if (!isl_space_is_equal(bset->dim, subs->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", goto error); if (isl_local_space_dim(subs->ls, isl_dim_div) != 0) isl_die(ctx, isl_error_unsupported, "cannot handle divs yet", goto error); if (!isl_int_is_one(subs->v->el[0])) isl_die(ctx, isl_error_invalid, "can only substitute integer expressions", goto error); pos += isl_basic_set_offset(bset, type); isl_int_init(v); for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][pos])) continue; isl_int_set(v, bset->eq[i][pos]); isl_int_set_si(bset->eq[i][pos], 0); isl_seq_combine(bset->eq[i], subs->v->el[0], bset->eq[i], v, subs->v->el + 1, subs->v->size - 1); } for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][pos])) continue; isl_int_set(v, bset->ineq[i][pos]); isl_int_set_si(bset->ineq[i][pos], 0); isl_seq_combine(bset->ineq[i], subs->v->el[0], bset->ineq[i], v, subs->v->el + 1, subs->v->size - 1); } for (i = 0; i < bset->n_div; ++i) { if (isl_int_is_zero(bset->div[i][1 + pos])) continue; isl_int_set(v, bset->div[i][1 + pos]); isl_int_set_si(bset->div[i][1 + pos], 0); isl_seq_combine(bset->div[i] + 1, subs->v->el[0], bset->div[i] + 1, v, subs->v->el + 1, subs->v->size - 1); isl_int_mul(bset->div[i][0], bset->div[i][0], subs->v->el[0]); } isl_int_clear(v); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } /* Plug in "subs" for dimension "type", "pos" of "set". */ __isl_give isl_set *isl_set_substitute(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { int i; if (set && isl_set_plain_is_empty(set)) return set; set = isl_set_cow(set); if (!set || !subs) goto error; for (i = set->n - 1; i >= 0; --i) { set->p[i] = isl_basic_set_substitute(set->p[i], type, pos, subs); if (remove_if_empty(set, i) < 0) goto error; } return set; error: isl_set_free(set); return NULL; } /* Check if the range of "ma" is compatible with the domain or range * (depending on "type") of "bmap". * Return -1 if anything is wrong. */ static int check_basic_map_compatible_range_multi_aff( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, __isl_keep isl_multi_aff *ma) { int m; isl_space *ma_space; ma_space = isl_multi_aff_get_space(ma); m = isl_space_match(bmap->dim, isl_dim_param, ma_space, isl_dim_param); if (m < 0) goto error; if (!m) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "parameters don't match", goto error); m = isl_space_tuple_is_equal(bmap->dim, type, ma_space, isl_dim_out); if (m < 0) goto error; if (!m) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "spaces don't match", goto error); isl_space_free(ma_space); return m; error: isl_space_free(ma_space); return -1; } /* Copy the divs from "ma" to "bmap", adding zeros for the "n_before" * coefficients before the transformed range of dimensions, * the "n_after" coefficients after the transformed range of dimensions * and the coefficients of the other divs in "bmap". */ static int set_ma_divs(__isl_keep isl_basic_map *bmap, __isl_keep isl_multi_aff *ma, int n_before, int n_after, int n_div) { int i; int n_param; int n_set; isl_local_space *ls; if (n_div == 0) return 0; ls = isl_aff_get_domain_local_space(ma->p[0]); if (!ls) return -1; n_param = isl_local_space_dim(ls, isl_dim_param); n_set = isl_local_space_dim(ls, isl_dim_set); for (i = 0; i < n_div; ++i) { int o_bmap = 0, o_ls = 0; isl_seq_cpy(bmap->div[i], ls->div->row[i], 1 + 1 + n_param); o_bmap += 1 + 1 + n_param; o_ls += 1 + 1 + n_param; isl_seq_clr(bmap->div[i] + o_bmap, n_before); o_bmap += n_before; isl_seq_cpy(bmap->div[i] + o_bmap, ls->div->row[i] + o_ls, n_set); o_bmap += n_set; o_ls += n_set; isl_seq_clr(bmap->div[i] + o_bmap, n_after); o_bmap += n_after; isl_seq_cpy(bmap->div[i] + o_bmap, ls->div->row[i] + o_ls, n_div); o_bmap += n_div; o_ls += n_div; isl_seq_clr(bmap->div[i] + o_bmap, bmap->n_div - n_div); if (isl_basic_set_add_div_constraints(bmap, i) < 0) goto error; } isl_local_space_free(ls); return 0; error: isl_local_space_free(ls); return -1; } /* How many stride constraints does "ma" enforce? * That is, how many of the affine expressions have a denominator * different from one? */ static int multi_aff_strides(__isl_keep isl_multi_aff *ma) { int i; int strides = 0; for (i = 0; i < ma->n; ++i) if (!isl_int_is_one(ma->p[i]->v->el[0])) strides++; return strides; } /* For each affine expression in ma of the form * * x_i = (f_i y + h_i)/m_i * * with m_i different from one, add a constraint to "bmap" * of the form * * f_i y + h_i = m_i alpha_i * * with alpha_i an additional existentially quantified variable. */ static __isl_give isl_basic_map *add_ma_strides( __isl_take isl_basic_map *bmap, __isl_keep isl_multi_aff *ma, int n_before, int n_after) { int i, k; int div; int total; int n_param; int n_in; int n_div; total = isl_basic_map_total_dim(bmap); n_param = isl_multi_aff_dim(ma, isl_dim_param); n_in = isl_multi_aff_dim(ma, isl_dim_in); n_div = isl_multi_aff_dim(ma, isl_dim_div); for (i = 0; i < ma->n; ++i) { int o_bmap = 0, o_ma = 1; if (isl_int_is_one(ma->p[i]->v->el[0])) continue; div = isl_basic_map_alloc_div(bmap); k = isl_basic_map_alloc_equality(bmap); if (div < 0 || k < 0) goto error; isl_int_set_si(bmap->div[div][0], 0); isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, 1 + n_param); o_bmap += 1 + n_param; o_ma += 1 + n_param; isl_seq_clr(bmap->eq[k] + o_bmap, n_before); o_bmap += n_before; isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, n_in); o_bmap += n_in; o_ma += n_in; isl_seq_clr(bmap->eq[k] + o_bmap, n_after); o_bmap += n_after; isl_seq_cpy(bmap->eq[k] + o_bmap, ma->p[i]->v->el + o_ma, n_div); o_bmap += n_div; o_ma += n_div; isl_seq_clr(bmap->eq[k] + o_bmap, 1 + total - o_bmap); isl_int_neg(bmap->eq[k][1 + total], ma->p[i]->v->el[0]); total++; } return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Replace the domain or range space (depending on "type) of "space" by "set". */ static __isl_give isl_space *isl_space_set(__isl_take isl_space *space, enum isl_dim_type type, __isl_take isl_space *set) { if (type == isl_dim_in) { space = isl_space_range(space); space = isl_space_map_from_domain_and_range(set, space); } else { space = isl_space_domain(space); space = isl_space_map_from_domain_and_range(space, set); } return space; } /* Compute the preimage of the domain or range (depending on "type") * of "bmap" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the domain or range has been replaced by * the domain space of "ma". * * If bmap is represented by * * A(p) + S u + B x + T v + C(divs) >= 0, * * where u and x are input and output dimensions if type == isl_dim_out * while x and v are input and output dimensions if type == isl_dim_in, * and ma is represented by * * x = D(p) + F(y) + G(divs') * * then the result is * * A(p) + B D(p) + S u + B F(y) + T v + B G(divs') + C(divs) >= 0 * * The divs in the input set are similarly adjusted. * In particular * * floor((a_i(p) + s u + b_i x + t v + c_i(divs))/n_i) * * becomes * * floor((a_i(p) + b_i D(p) + s u + b_i F(y) + t v + * B_i G(divs') + c_i(divs))/n_i) * * If bmap is not a rational map and if F(y) involves any denominators * * x_i = (f_i y + h_i)/m_i * * then additional constraints are added to ensure that we only * map back integer points. That is we enforce * * f_i y + h_i = m_i alpha_i * * with alpha_i an additional existentially quantified variable. * * We first copy over the divs from "ma". * Then we add the modified constraints and divs from "bmap". * Finally, we add the stride constraints, if needed. */ __isl_give isl_basic_map *isl_basic_map_preimage_multi_aff( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { int i, k; isl_space *space; isl_basic_map *res = NULL; int n_before, n_after, n_div_bmap, n_div_ma; isl_int f, c1, c2, g; int rational, strides; isl_int_init(f); isl_int_init(c1); isl_int_init(c2); isl_int_init(g); ma = isl_multi_aff_align_divs(ma); if (!bmap || !ma) goto error; if (check_basic_map_compatible_range_multi_aff(bmap, type, ma) < 0) goto error; if (type == isl_dim_in) { n_before = 0; n_after = isl_basic_map_dim(bmap, isl_dim_out); } else { n_before = isl_basic_map_dim(bmap, isl_dim_in); n_after = 0; } n_div_bmap = isl_basic_map_dim(bmap, isl_dim_div); n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0; space = isl_multi_aff_get_domain_space(ma); space = isl_space_set(isl_basic_map_get_space(bmap), type, space); rational = isl_basic_map_is_rational(bmap); strides = rational ? 0 : multi_aff_strides(ma); res = isl_basic_map_alloc_space(space, n_div_ma + n_div_bmap + strides, bmap->n_eq + strides, bmap->n_ineq + 2 * n_div_ma); if (rational) res = isl_basic_map_set_rational(res); for (i = 0; i < n_div_ma + n_div_bmap; ++i) if (isl_basic_map_alloc_div(res) < 0) goto error; if (set_ma_divs(res, ma, n_before, n_after, n_div_ma) < 0) goto error; for (i = 0; i < bmap->n_eq; ++i) { k = isl_basic_map_alloc_equality(res); if (k < 0) goto error; isl_seq_preimage(res->eq[k], bmap->eq[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 0); } for (i = 0; i < bmap->n_ineq; ++i) { k = isl_basic_map_alloc_inequality(res); if (k < 0) goto error; isl_seq_preimage(res->ineq[k], bmap->ineq[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 0); } for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) { isl_int_set_si(res->div[n_div_ma + i][0], 0); continue; } isl_seq_preimage(res->div[n_div_ma + i], bmap->div[i], ma, n_before, n_after, n_div_ma, n_div_bmap, f, c1, c2, g, 1); } if (strides) res = add_ma_strides(res, ma, n_before, n_after); isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_basic_map_free(bmap); isl_multi_aff_free(ma); res = isl_basic_set_simplify(res); return isl_basic_map_finalize(res); error: isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_basic_map_free(bmap); isl_multi_aff_free(ma); isl_basic_map_free(res); return NULL; } /* Compute the preimage of "bset" under the function represented by "ma". * In other words, plug in "ma" in "bset". The result is a basic set * that lives in the domain space of "ma". */ __isl_give isl_basic_set *isl_basic_set_preimage_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bset, isl_dim_set, ma); } /* Compute the preimage of the domain of "bmap" under the function * represented by "ma". * In other words, plug in "ma" in the domain of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the domain has been replaced by the domain space of "ma". */ __isl_give isl_basic_map *isl_basic_map_preimage_domain_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bmap, isl_dim_in, ma); } /* Compute the preimage of the range of "bmap" under the function * represented by "ma". * In other words, plug in "ma" in the range of "bmap". * The result is a basic map that lives in the same space as "bmap" * except that the range has been replaced by the domain space of "ma". */ __isl_give isl_basic_map *isl_basic_map_preimage_range_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma) { return isl_basic_map_preimage_multi_aff(bmap, isl_dim_out, ma); } /* Check if the range of "ma" is compatible with the domain or range * (depending on "type") of "map". * Return -1 if anything is wrong. */ static int check_map_compatible_range_multi_aff( __isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_multi_aff *ma) { int m; isl_space *ma_space; ma_space = isl_multi_aff_get_space(ma); m = isl_space_tuple_is_equal(map->dim, type, ma_space, isl_dim_out); isl_space_free(ma_space); if (m >= 0 && !m) isl_die(isl_map_get_ctx(map), isl_error_invalid, "spaces don't match", return -1); return m; } /* Compute the preimage of the domain or range (depending on "type") * of "map" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "map". * The result is a map that lives in the same space as "map" * except that the domain or range has been replaced by * the domain space of "ma". * * The parameters are assumed to have been aligned. */ static __isl_give isl_map *map_preimage_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { int i; isl_space *space; map = isl_map_cow(map); ma = isl_multi_aff_align_divs(ma); if (!map || !ma) goto error; if (check_map_compatible_range_multi_aff(map, type, ma) < 0) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_preimage_multi_aff(map->p[i], type, isl_multi_aff_copy(ma)); if (!map->p[i]) goto error; } space = isl_multi_aff_get_domain_space(ma); space = isl_space_set(isl_map_get_space(map), type, space); isl_space_free(map->dim); map->dim = space; if (!map->dim) goto error; isl_multi_aff_free(ma); if (map->n > 1) ISL_F_CLR(map, ISL_MAP_DISJOINT); ISL_F_CLR(map, ISL_SET_NORMALIZED); return map; error: isl_multi_aff_free(ma); isl_map_free(map); return NULL; } /* Compute the preimage of the domain or range (depending on "type") * of "map" under the function represented by "ma". * In other words, plug in "ma" in the domain or range of "map". * The result is a map that lives in the same space as "map" * except that the domain or range has been replaced by * the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_aff *ma) { if (!map || !ma) goto error; if (isl_space_match(map->dim, isl_dim_param, ma->space, isl_dim_param)) return map_preimage_multi_aff(map, type, ma); if (!isl_space_has_named_params(map->dim) || !isl_space_has_named_params(ma->space)) isl_die(map->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map = isl_map_align_params(map, isl_multi_aff_get_space(ma)); ma = isl_multi_aff_align_params(ma, isl_map_get_space(map)); return map_preimage_multi_aff(map, type, ma); error: isl_multi_aff_free(ma); return isl_map_free(map); } /* Compute the preimage of "set" under the function represented by "ma". * In other words, plug in "ma" in "set". The result is a set * that lives in the domain space of "ma". */ __isl_give isl_set *isl_set_preimage_multi_aff(__isl_take isl_set *set, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(set, isl_dim_set, ma); } /* Compute the preimage of the domain of "map" under the function * represented by "ma". * In other words, plug in "ma" in the domain of "map". * The result is a map that lives in the same space as "map" * except that the domain has been replaced by the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_domain_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(map, isl_dim_in, ma); } /* Compute the preimage of the range of "map" under the function * represented by "ma". * In other words, plug in "ma" in the range of "map". * The result is a map that lives in the same space as "map" * except that the range has been replaced by the domain space of "ma". */ __isl_give isl_map *isl_map_preimage_range_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma) { return isl_map_preimage_multi_aff(map, isl_dim_out, ma); } /* Compute the preimage of "map" under the function represented by "pma". * In other words, plug in "pma" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "pma". * * The parameters of "map" and "pma" are assumed to have been aligned. */ static __isl_give isl_map *isl_map_preimage_pw_multi_aff_aligned( __isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_pw_multi_aff *pma) { int i; isl_map *res; if (!pma) goto error; if (pma->n == 0) { isl_pw_multi_aff_free(pma); res = isl_map_empty(isl_map_get_space(map)); isl_map_free(map); return res; } res = isl_map_preimage_multi_aff(isl_map_copy(map), type, isl_multi_aff_copy(pma->p[0].maff)); if (type == isl_dim_in) res = isl_map_intersect_domain(res, isl_map_copy(pma->p[0].set)); else res = isl_map_intersect_range(res, isl_map_copy(pma->p[0].set)); for (i = 1; i < pma->n; ++i) { isl_map *res_i; res_i = isl_map_preimage_multi_aff(isl_map_copy(map), type, isl_multi_aff_copy(pma->p[i].maff)); if (type == isl_dim_in) res_i = isl_map_intersect_domain(res_i, isl_map_copy(pma->p[i].set)); else res_i = isl_map_intersect_range(res_i, isl_map_copy(pma->p[i].set)); res = isl_map_union(res, res_i); } isl_pw_multi_aff_free(pma); isl_map_free(map); return res; error: isl_pw_multi_aff_free(pma); isl_map_free(map); return NULL; } /* Compute the preimage of "map" under the function represented by "pma". * In other words, plug in "pma" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_pw_multi_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_pw_multi_aff *pma) { if (!map || !pma) goto error; if (isl_space_match(map->dim, isl_dim_param, pma->dim, isl_dim_param)) return isl_map_preimage_pw_multi_aff_aligned(map, type, pma); if (!isl_space_has_named_params(map->dim) || !isl_space_has_named_params(pma->dim)) isl_die(map->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map = isl_map_align_params(map, isl_pw_multi_aff_get_space(pma)); pma = isl_pw_multi_aff_align_params(pma, isl_map_get_space(map)); return isl_map_preimage_pw_multi_aff_aligned(map, type, pma); error: isl_pw_multi_aff_free(pma); return isl_map_free(map); } /* Compute the preimage of "set" under the function represented by "pma". * In other words, plug in "pma" in "set". The result is a set * that lives in the domain space of "pma". */ __isl_give isl_set *isl_set_preimage_pw_multi_aff(__isl_take isl_set *set, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(set, isl_dim_set, pma); } /* Compute the preimage of the domain of "map" under the function * represented by "pma". * In other words, plug in "pma" in the domain of "map". * The result is a map that lives in the same space as "map", * except that domain space has been replaced by the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_domain_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(map, isl_dim_in, pma); } /* Compute the preimage of the range of "map" under the function * represented by "pma". * In other words, plug in "pma" in the range of "map". * The result is a map that lives in the same space as "map", * except that range space has been replaced by the domain space of "pma". */ __isl_give isl_map *isl_map_preimage_range_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma) { return isl_map_preimage_pw_multi_aff(map, isl_dim_out, pma); } /* Compute the preimage of "map" under the function represented by "mpa". * In other words, plug in "mpa" in the domain or range of "map". * The result is a map that lives in the same space as "map", * except that the space of type "type" has been replaced by * the domain space of "mpa". * * If the map does not involve any constraints that refer to the * dimensions of the substituted space, then the only possible * effect of "mpa" on the map is to map the space to a different space. * We create a separate isl_multi_aff to effectuate this change * in order to avoid spurious splitting of the map along the pieces * of "mpa". */ __isl_give isl_map *isl_map_preimage_multi_pw_aff(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_multi_pw_aff *mpa) { int n; isl_pw_multi_aff *pma; if (!map || !mpa) goto error; n = isl_map_dim(map, type); if (!isl_map_involves_dims(map, type, 0, n)) { isl_space *space; isl_multi_aff *ma; space = isl_multi_pw_aff_get_space(mpa); isl_multi_pw_aff_free(mpa); ma = isl_multi_aff_zero(space); return isl_map_preimage_multi_aff(map, type, ma); } pma = isl_pw_multi_aff_from_multi_pw_aff(mpa); return isl_map_preimage_pw_multi_aff(map, type, pma); error: isl_map_free(map); isl_multi_pw_aff_free(mpa); return NULL; } /* Compute the preimage of "map" under the function represented by "mpa". * In other words, plug in "mpa" in the domain "map". * The result is a map that lives in the same space as "map", * except that domain space has been replaced by the domain space of "mpa". */ __isl_give isl_map *isl_map_preimage_domain_multi_pw_aff( __isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa) { return isl_map_preimage_multi_pw_aff(map, isl_dim_in, mpa); } /* Compute the preimage of "set" by the function represented by "mpa". * In other words, plug in "mpa" in "set". */ __isl_give isl_set *isl_set_preimage_multi_pw_aff(__isl_take isl_set *set, __isl_take isl_multi_pw_aff *mpa) { return isl_map_preimage_multi_pw_aff(set, isl_dim_set, mpa); } isl-0.16.1/isl_factorization.h0000664000175000017500000000131512645737060013217 00000000000000#include #include #if defined(__cplusplus) extern "C" { #endif /* Data for factorizing a particular basic set. * After applying "morph" to the basic set, there are "n_group" * groups of consecutive set variables, each of length "len[i]", * with 0 <= i < n_group. * If no factorization is possible, then "n_group" is set to 0. */ struct isl_factorizer { isl_morph *morph; int n_group; int *len; }; typedef struct isl_factorizer isl_factorizer; __isl_give isl_factorizer *isl_basic_set_factorizer( __isl_keep isl_basic_set *bset); void isl_factorizer_free(__isl_take isl_factorizer *f); void isl_factorizer_dump(__isl_take isl_factorizer *f); #if defined(__cplusplus) } #endif isl-0.16.1/isl_gmp.c0000664000175000017500000000114012645737060011115 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include uint32_t isl_gmp_hash(mpz_t v, uint32_t hash) { int sa = v[0]._mp_size; int abs_sa = sa < 0 ? -sa : sa; unsigned char *data = (unsigned char *)v[0]._mp_d; unsigned char *end = data + abs_sa * sizeof(v[0]._mp_d[0]); if (sa < 0) isl_hash_byte(hash, 0xFF); for (; data < end; ++data) isl_hash_byte(hash, *data); return hash; } isl-0.16.1/polyhedron_minimize.c0000664000175000017500000000460412645737061013560 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include #include /* The input of this program is the same as that of the "polytope_minimize" * program from the barvinok distribution. * * Constraints of set is PolyLib format. * Linear or affine objective function in PolyLib format. */ static struct isl_vec *isl_vec_lin_to_aff(struct isl_vec *vec) { struct isl_vec *aff; if (!vec) return NULL; aff = isl_vec_alloc(vec->ctx, 1 + vec->size); if (!aff) goto error; isl_int_set_si(aff->el[0], 0); isl_seq_cpy(aff->el + 1, vec->el, vec->size); isl_vec_free(vec); return aff; error: isl_vec_free(vec); return NULL; } /* Rotate elements of vector right. * In particular, move the constant term from the end of the * vector to the start of the vector. */ static struct isl_vec *vec_ror(struct isl_vec *vec) { int i; if (!vec) return NULL; for (i = vec->size - 2; i >= 0; --i) isl_int_swap(vec->el[i], vec->el[i + 1]); return vec; } int main(int argc, char **argv) { struct isl_ctx *ctx = isl_ctx_alloc(); struct isl_basic_set *bset; struct isl_vec *obj; struct isl_vec *sol; isl_int opt; unsigned dim; enum isl_lp_result res; isl_printer *p; isl_int_init(opt); bset = isl_basic_set_read_from_file(ctx, stdin); assert(bset); obj = isl_vec_read_from_file(ctx, stdin); assert(obj); dim = isl_basic_set_total_dim(bset); assert(obj->size >= dim && obj->size <= dim + 1); if (obj->size != dim + 1) obj = isl_vec_lin_to_aff(obj); else obj = vec_ror(obj); res = isl_basic_set_solve_ilp(bset, 0, obj->el, &opt, &sol); switch (res) { case isl_lp_error: fprintf(stderr, "error\n"); return -1; case isl_lp_empty: fprintf(stdout, "empty\n"); break; case isl_lp_unbounded: fprintf(stdout, "unbounded\n"); break; case isl_lp_ok: p = isl_printer_to_file(ctx, stdout); p = isl_printer_print_vec(p, sol); p = isl_printer_end_line(p); p = isl_printer_print_isl_int(p, opt); p = isl_printer_end_line(p); isl_printer_free(p); } isl_basic_set_free(bset); isl_vec_free(obj); isl_vec_free(sol); isl_ctx_free(ctx); isl_int_clear(opt); return 0; } isl-0.16.1/isl_int_imath.h0000664000175000017500000000567012645737060012327 00000000000000#ifndef ISL_INT_IMATH_H #define ISL_INT_IMATH_H #include "isl_hide_deprecated.h" #include /* isl_int is the basic integer type, implemented with imath's mp_int. */ typedef mp_int isl_int; #define isl_int_init(i) i = mp_int_alloc() #define isl_int_clear(i) mp_int_free(i) #define isl_int_set(r,i) impz_set(r,i) #define isl_int_set_si(r,i) impz_set_si(r,i) #define isl_int_set_ui(r,i) impz_set_ui(r,i) #define isl_int_fits_slong(r) isl_imath_fits_slong_p(r) #define isl_int_get_si(r) impz_get_si(r) #define isl_int_fits_ulong(r) isl_imath_fits_ulong_p(r) #define isl_int_get_ui(r) impz_get_ui(r) #define isl_int_get_d(r) impz_get_si(r) #define isl_int_get_str(r) impz_get_str(0, 10, r) #define isl_int_abs(r,i) impz_abs(r,i) #define isl_int_neg(r,i) impz_neg(r,i) #define isl_int_swap(i,j) impz_swap(i,j) #define isl_int_swap_or_set(i,j) impz_swap(i,j) #define isl_int_add_ui(r,i,j) impz_add_ui(r,i,j) #define isl_int_sub_ui(r,i,j) impz_sub_ui(r,i,j) #define isl_int_add(r,i,j) impz_add(r,i,j) #define isl_int_sub(r,i,j) impz_sub(r,i,j) #define isl_int_mul(r,i,j) impz_mul(r,i,j) #define isl_int_mul_2exp(r,i,j) impz_mul_2exp(r,i,j) #define isl_int_mul_si(r,i,j) mp_int_mul_value(i,j,r) #define isl_int_mul_ui(r,i,j) impz_mul_ui(r,i,j) #define isl_int_pow_ui(r,i,j) impz_pow_ui(r,i,j) #define isl_int_addmul(r,i,j) impz_addmul(r,i,j) #define isl_int_addmul_ui(r,i,j) isl_imath_addmul_ui(r,i,j) #define isl_int_submul(r,i,j) impz_submul(r,i,j) #define isl_int_submul_ui(r,i,j) isl_imath_submul_ui(r,i,j) #define isl_int_gcd(r,i,j) impz_gcd(r,i,j) #define isl_int_lcm(r,i,j) impz_lcm(r,i,j) #define isl_int_divexact(r,i,j) impz_divexact(r,i,j) #define isl_int_divexact_ui(r,i,j) impz_divexact_ui(r,i,j) #define isl_int_tdiv_q(r,i,j) impz_tdiv_q(r,i,j) #define isl_int_cdiv_q(r,i,j) impz_cdiv_q(r,i,j) #define isl_int_fdiv_q(r,i,j) impz_fdiv_q(r,i,j) #define isl_int_fdiv_r(r,i,j) impz_fdiv_r(r,i,j) #define isl_int_fdiv_q_ui(r,i,j) impz_fdiv_q_ui(r,i,j) #define isl_int_read(r,s) impz_set_str(r,s,10) #define isl_int_sgn(i) impz_sgn(i) #define isl_int_cmp(i,j) impz_cmp(i,j) #define isl_int_cmp_si(i,si) impz_cmp_si(i,si) #define isl_int_eq(i,j) (impz_cmp(i,j) == 0) #define isl_int_ne(i,j) (impz_cmp(i,j) != 0) #define isl_int_lt(i,j) (impz_cmp(i,j) < 0) #define isl_int_le(i,j) (impz_cmp(i,j) <= 0) #define isl_int_gt(i,j) (impz_cmp(i,j) > 0) #define isl_int_ge(i,j) (impz_cmp(i,j) >= 0) #define isl_int_abs_cmp(i,j) impz_cmpabs(i,j) #define isl_int_abs_eq(i,j) (impz_cmpabs(i,j) == 0) #define isl_int_abs_ne(i,j) (impz_cmpabs(i,j) != 0) #define isl_int_abs_lt(i,j) (impz_cmpabs(i,j) < 0) #define isl_int_abs_gt(i,j) (impz_cmpabs(i,j) > 0) #define isl_int_abs_ge(i,j) (impz_cmpabs(i,j) >= 0) #define isl_int_is_divisible_by(i,j) impz_divisible_p(i,j) uint32_t isl_imath_hash(mp_int v, uint32_t hash); #define isl_int_hash(v,h) isl_imath_hash(v,h) typedef void (*isl_int_print_mp_free_t)(void *, size_t); #define isl_int_free_str(s) free(s) #endif /* ISL_INT_IMATH_H */ isl-0.16.1/configure0000775000175000017500000243326112645755062011247 00000000000000#! /bin/sh # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.69 for isl 0.16.1. # # Report bugs to . # # # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # # # This configure script is free software; the Free Software Foundation # gives unlimited permission to copy, distribute and modify it. ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Use a proper internal environment variable to ensure we don't fall # into an infinite loop, continuously re-executing ourselves. if test x"${_as_can_reexec}" != xno && test "x$CONFIG_SHELL" != x; then _as_can_reexec=no; export _as_can_reexec; # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 as_fn_exit 255 fi # We don't want this to propagate to other subprocesses. { _as_can_reexec=; unset _as_can_reexec;} if test "x$CONFIG_SHELL" = x; then as_bourne_compatible="if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi " as_required="as_fn_return () { (exit \$1); } as_fn_success () { as_fn_return 0; } as_fn_failure () { as_fn_return 1; } as_fn_ret_success () { return 0; } as_fn_ret_failure () { return 1; } exitcode=0 as_fn_success || { exitcode=1; echo as_fn_success failed.; } as_fn_failure && { exitcode=1; echo as_fn_failure succeeded.; } as_fn_ret_success || { exitcode=1; echo as_fn_ret_success failed.; } as_fn_ret_failure && { exitcode=1; echo as_fn_ret_failure succeeded.; } if ( set x; as_fn_ret_success y && test x = \"\$1\" ); then : else exitcode=1; echo positional parameters were not saved. fi test x\$exitcode = x0 || exit 1 test -x / || exit 1" as_suggested=" as_lineno_1=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_1a=\$LINENO as_lineno_2=";as_suggested=$as_suggested$LINENO;as_suggested=$as_suggested" as_lineno_2a=\$LINENO eval 'test \"x\$as_lineno_1'\$as_run'\" != \"x\$as_lineno_2'\$as_run'\" && test \"x\`expr \$as_lineno_1'\$as_run' + 1\`\" = \"x\$as_lineno_2'\$as_run'\"' || exit 1 test -n \"\${ZSH_VERSION+set}\${BASH_VERSION+set}\" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO ECHO=\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO\$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test \"X\`printf %s \$ECHO\`\" = \"X\$ECHO\" \\ || test \"X\`print -r -- \$ECHO\`\" = \"X\$ECHO\" ) || exit 1 test \$(( 1 + 1 )) = 2 || exit 1" if (eval "$as_required") 2>/dev/null; then : as_have_required=yes else as_have_required=no fi if test x$as_have_required = xyes && (eval "$as_suggested") 2>/dev/null; then : else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_found=false for as_dir in /bin$PATH_SEPARATOR/usr/bin$PATH_SEPARATOR$PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. as_found=: case $as_dir in #( /*) for as_base in sh bash ksh sh5; do # Try only shells that exist, to save several forks. as_shell=$as_dir/$as_base if { test -f "$as_shell" || test -f "$as_shell.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$as_shell"; } 2>/dev/null; then : CONFIG_SHELL=$as_shell as_have_required=yes if { $as_echo "$as_bourne_compatible""$as_suggested" | as_run=a "$as_shell"; } 2>/dev/null; then : break 2 fi fi done;; esac as_found=false done $as_found || { if { test -f "$SHELL" || test -f "$SHELL.exe"; } && { $as_echo "$as_bourne_compatible""$as_required" | as_run=a "$SHELL"; } 2>/dev/null; then : CONFIG_SHELL=$SHELL as_have_required=yes fi; } IFS=$as_save_IFS if test "x$CONFIG_SHELL" != x; then : export CONFIG_SHELL # We cannot yet assume a decent shell, so we have to provide a # neutralization value for shells without unset; and this also # works around shells that cannot unset nonexistent variables. # Preserve -v and -x to the replacement shell. BASH_ENV=/dev/null ENV=/dev/null (unset BASH_ENV) >/dev/null 2>&1 && unset BASH_ENV ENV case $- in # (((( *v*x* | *x*v* ) as_opts=-vx ;; *v* ) as_opts=-v ;; *x* ) as_opts=-x ;; * ) as_opts= ;; esac exec $CONFIG_SHELL $as_opts "$as_myself" ${1+"$@"} # Admittedly, this is quite paranoid, since all the known shells bail # out after a failed `exec'. $as_echo "$0: could not re-execute with $CONFIG_SHELL" >&2 exit 255 fi if test x$as_have_required = xno; then : $as_echo "$0: This script requires a shell more modern than all" $as_echo "$0: the shells that I found on your system." if test x${ZSH_VERSION+set} = xset ; then $as_echo "$0: In particular, zsh $ZSH_VERSION has bugs and should" $as_echo "$0: be upgraded to zsh 4.3.4 or later." else $as_echo "$0: Please tell bug-autoconf@gnu.org and $0: isl-development@googlegroups.com about your system, $0: including any error possibly output before this $0: message. Then install a modern shell, or manually run $0: the script under such a shell if you do have one." fi exit 1 fi fi fi SHELL=${CONFIG_SHELL-/bin/sh} export SHELL # Unset more variables known to interfere with behavior of common tools. CLICOLOR_FORCE= GREP_OPTIONS= unset CLICOLOR_FORCE GREP_OPTIONS ## --------------------- ## ## M4sh Shell Functions. ## ## --------------------- ## # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits as_lineno_1=$LINENO as_lineno_1a=$LINENO as_lineno_2=$LINENO as_lineno_2a=$LINENO eval 'test "x$as_lineno_1'$as_run'" != "x$as_lineno_2'$as_run'" && test "x`expr $as_lineno_1'$as_run' + 1`" = "x$as_lineno_2'$as_run'"' || { # Blame Lee E. McMahon (1931-1989) for sed's syntax. :-) sed -n ' p /[$]LINENO/= ' <$as_myself | sed ' s/[$]LINENO.*/&-/ t lineno b :lineno N :loop s/[$]LINENO\([^'$as_cr_alnum'_].*\n\)\(.*\)/\2\1\2/ t loop s/-\n.*// ' >$as_me.lineno && chmod +x "$as_me.lineno" || { $as_echo "$as_me: error: cannot create $as_me.lineno; rerun with a POSIX shell" >&2; as_fn_exit 1; } # If we had to re-execute with $CONFIG_SHELL, we're ensured to have # already done that, so ensure we don't try to do so again and fall # in an infinite loop. This has already happened in practice. _as_can_reexec=no; export _as_can_reexec # Don't try to exec as it changes $[0], causing all sort of problems # (the dirname of $[0] is not the place where we might find the # original and so on. Autoconf is especially sensitive to this). . "./$as_me.lineno" # Exit status is that of the last command. exit } ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" SHELL=${CONFIG_SHELL-/bin/sh} test -n "$DJDIR" || exec 7<&0 &1 # Name of the host. # hostname on some systems (SVR3.2, old GNU/Linux) returns a bogus exit status, # so uname gets run too. ac_hostname=`(hostname || uname -n) 2>/dev/null | sed 1q` # # Initializations. # ac_default_prefix=/usr/local ac_clean_files= ac_config_libobj_dir=. LIBOBJS= cross_compiling=no subdirs= MFLAGS= MAKEFLAGS= # Identity of this package. PACKAGE_NAME='isl' PACKAGE_TARNAME='isl' PACKAGE_VERSION='0.16.1' PACKAGE_STRING='isl 0.16.1' PACKAGE_BUGREPORT='isl-development@googlegroups.com' PACKAGE_URL='' # Factoring default headers for most tests. ac_includes_default="\ #include #ifdef HAVE_SYS_TYPES_H # include #endif #ifdef HAVE_SYS_STAT_H # include #endif #ifdef STDC_HEADERS # include # include #else # ifdef HAVE_STDLIB_H # include # endif #endif #ifdef HAVE_STRING_H # if !defined STDC_HEADERS && defined HAVE_MEMORY_H # include # endif # include #endif #ifdef HAVE_STRINGS_H # include #endif #ifdef HAVE_INTTYPES_H # include #endif #ifdef HAVE_STDINT_H # include #endif #ifdef HAVE_UNISTD_H # include #endif" ac_subst_vars='am__EXEEXT_FALSE am__EXEEXT_TRUE LTLIBOBJS LIBOBJS GIT_HEAD_VERSION GIT_HEAD GIT_HEAD_ID pkgconfig_libfile pkgconfig_libdir WARNING_FLAGS HAVE_CLANG_FALSE HAVE_CLANG_TRUE LIB_CLANG_EDIT llvm_config_found CLANG_LIBS CLANG_LDFLAGS CLANG_CXXFLAGS SMALL_INT_OPT_FALSE SMALL_INT_OPT_TRUE GMP_FOR_MP_FALSE GMP_FOR_MP_TRUE IMATH_FOR_MP_FALSE IMATH_FOR_MP_TRUE NEED_GET_MEMORY_FUNCTIONS_FALSE NEED_GET_MEMORY_FUNCTIONS_TRUE MP_LIBS MP_LDFLAGS MP_CPPFLAGS GENERATE_DOC_FALSE GENERATE_DOC_TRUE POD2HTML PDFLATEX PERL CXXCPP CPP OTOOL64 OTOOL LIPO NMEDIT DSYMUTIL MANIFEST_TOOL RANLIB ac_ct_AR AR DLLTOOL OBJDUMP LN_S NM ac_ct_DUMPBIN DUMPBIN LD FGREP EGREP GREP SED LIBTOOL PRTDIAG host_os host_vendor host_cpu host build_os build_vendor build_cpu build am__fastdepCXX_FALSE am__fastdepCXX_TRUE CXXDEPMODE ac_ct_CXX CXXFLAGS CXX am__fastdepCC_FALSE am__fastdepCC_TRUE CCDEPMODE am__nodep AMDEPBACKSLASH AMDEP_FALSE AMDEP_TRUE am__quote am__include DEPDIR OBJEXT EXEEXT ac_ct_CC CPPFLAGS LDFLAGS CFLAGS CC versioninfo AM_BACKSLASH AM_DEFAULT_VERBOSITY AM_DEFAULT_V AM_V am__untar am__tar AMTAR am__leading_dot SET_MAKE AWK mkdir_p MKDIR_P INSTALL_STRIP_PROGRAM STRIP install_sh MAKEINFO AUTOHEADER AUTOMAKE AUTOCONF ACLOCAL VERSION PACKAGE CYGPATH_W am__isrc INSTALL_DATA INSTALL_SCRIPT INSTALL_PROGRAM target_alias host_alias build_alias LIBS ECHO_T ECHO_N ECHO_C DEFS mandir localedir libdir psdir pdfdir dvidir htmldir infodir docdir oldincludedir includedir localstatedir sharedstatedir sysconfdir datadir datarootdir libexecdir sbindir bindir program_transform_name prefix exec_prefix PACKAGE_URL PACKAGE_BUGREPORT PACKAGE_STRING PACKAGE_VERSION PACKAGE_TARNAME PACKAGE_NAME PATH_SEPARATOR SHELL' ac_subst_files='' ac_user_opts=' enable_option_checking enable_silent_rules enable_dependency_tracking enable_portable_binary with_gcc_arch enable_shared enable_static with_pic enable_fast_install with_gnu_ld with_sysroot enable_libtool_lock with_int with_gmp with_gmp_prefix with_gmp_exec_prefix with_gmp_builddir with_clang with_clang_prefix with_clang_exec_prefix ' ac_precious_vars='build_alias host_alias target_alias CC CFLAGS LDFLAGS LIBS CPPFLAGS CXX CXXFLAGS CCC CPP CXXCPP' # Initialize some variables set by options. ac_init_help= ac_init_version=false ac_unrecognized_opts= ac_unrecognized_sep= # The variables have the same names as the options, with # dashes changed to underlines. cache_file=/dev/null exec_prefix=NONE no_create= no_recursion= prefix=NONE program_prefix=NONE program_suffix=NONE program_transform_name=s,x,x, silent= site= srcdir= verbose= x_includes=NONE x_libraries=NONE # Installation directory options. # These are left unexpanded so users can "make install exec_prefix=/foo" # and all the variables that are supposed to be based on exec_prefix # by default will actually change. # Use braces instead of parens because sh, perl, etc. also accept them. # (The list follows the same order as the GNU Coding Standards.) bindir='${exec_prefix}/bin' sbindir='${exec_prefix}/sbin' libexecdir='${exec_prefix}/libexec' datarootdir='${prefix}/share' datadir='${datarootdir}' sysconfdir='${prefix}/etc' sharedstatedir='${prefix}/com' localstatedir='${prefix}/var' includedir='${prefix}/include' oldincludedir='/usr/include' docdir='${datarootdir}/doc/${PACKAGE_TARNAME}' infodir='${datarootdir}/info' htmldir='${docdir}' dvidir='${docdir}' pdfdir='${docdir}' psdir='${docdir}' libdir='${exec_prefix}/lib' localedir='${datarootdir}/locale' mandir='${datarootdir}/man' ac_prev= ac_dashdash= for ac_option do # If the previous option needs an argument, assign it. if test -n "$ac_prev"; then eval $ac_prev=\$ac_option ac_prev= continue fi case $ac_option in *=?*) ac_optarg=`expr "X$ac_option" : '[^=]*=\(.*\)'` ;; *=) ac_optarg= ;; *) ac_optarg=yes ;; esac # Accept the important Cygnus configure options, so we can diagnose typos. case $ac_dashdash$ac_option in --) ac_dashdash=yes ;; -bindir | --bindir | --bindi | --bind | --bin | --bi) ac_prev=bindir ;; -bindir=* | --bindir=* | --bindi=* | --bind=* | --bin=* | --bi=*) bindir=$ac_optarg ;; -build | --build | --buil | --bui | --bu) ac_prev=build_alias ;; -build=* | --build=* | --buil=* | --bui=* | --bu=*) build_alias=$ac_optarg ;; -cache-file | --cache-file | --cache-fil | --cache-fi \ | --cache-f | --cache- | --cache | --cach | --cac | --ca | --c) ac_prev=cache_file ;; -cache-file=* | --cache-file=* | --cache-fil=* | --cache-fi=* \ | --cache-f=* | --cache-=* | --cache=* | --cach=* | --cac=* | --ca=* | --c=*) cache_file=$ac_optarg ;; --config-cache | -C) cache_file=config.cache ;; -datadir | --datadir | --datadi | --datad) ac_prev=datadir ;; -datadir=* | --datadir=* | --datadi=* | --datad=*) datadir=$ac_optarg ;; -datarootdir | --datarootdir | --datarootdi | --datarootd | --dataroot \ | --dataroo | --dataro | --datar) ac_prev=datarootdir ;; -datarootdir=* | --datarootdir=* | --datarootdi=* | --datarootd=* \ | --dataroot=* | --dataroo=* | --dataro=* | --datar=*) datarootdir=$ac_optarg ;; -disable-* | --disable-*) ac_useropt=`expr "x$ac_option" : 'x-*disable-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--disable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=no ;; -docdir | --docdir | --docdi | --doc | --do) ac_prev=docdir ;; -docdir=* | --docdir=* | --docdi=* | --doc=* | --do=*) docdir=$ac_optarg ;; -dvidir | --dvidir | --dvidi | --dvid | --dvi | --dv) ac_prev=dvidir ;; -dvidir=* | --dvidir=* | --dvidi=* | --dvid=* | --dvi=* | --dv=*) dvidir=$ac_optarg ;; -enable-* | --enable-*) ac_useropt=`expr "x$ac_option" : 'x-*enable-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid feature name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "enable_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--enable-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval enable_$ac_useropt=\$ac_optarg ;; -exec-prefix | --exec_prefix | --exec-prefix | --exec-prefi \ | --exec-pref | --exec-pre | --exec-pr | --exec-p | --exec- \ | --exec | --exe | --ex) ac_prev=exec_prefix ;; -exec-prefix=* | --exec_prefix=* | --exec-prefix=* | --exec-prefi=* \ | --exec-pref=* | --exec-pre=* | --exec-pr=* | --exec-p=* | --exec-=* \ | --exec=* | --exe=* | --ex=*) exec_prefix=$ac_optarg ;; -gas | --gas | --ga | --g) # Obsolete; use --with-gas. with_gas=yes ;; -help | --help | --hel | --he | -h) ac_init_help=long ;; -help=r* | --help=r* | --hel=r* | --he=r* | -hr*) ac_init_help=recursive ;; -help=s* | --help=s* | --hel=s* | --he=s* | -hs*) ac_init_help=short ;; -host | --host | --hos | --ho) ac_prev=host_alias ;; -host=* | --host=* | --hos=* | --ho=*) host_alias=$ac_optarg ;; -htmldir | --htmldir | --htmldi | --htmld | --html | --htm | --ht) ac_prev=htmldir ;; -htmldir=* | --htmldir=* | --htmldi=* | --htmld=* | --html=* | --htm=* \ | --ht=*) htmldir=$ac_optarg ;; -includedir | --includedir | --includedi | --included | --include \ | --includ | --inclu | --incl | --inc) ac_prev=includedir ;; -includedir=* | --includedir=* | --includedi=* | --included=* | --include=* \ | --includ=* | --inclu=* | --incl=* | --inc=*) includedir=$ac_optarg ;; -infodir | --infodir | --infodi | --infod | --info | --inf) ac_prev=infodir ;; -infodir=* | --infodir=* | --infodi=* | --infod=* | --info=* | --inf=*) infodir=$ac_optarg ;; -libdir | --libdir | --libdi | --libd) ac_prev=libdir ;; -libdir=* | --libdir=* | --libdi=* | --libd=*) libdir=$ac_optarg ;; -libexecdir | --libexecdir | --libexecdi | --libexecd | --libexec \ | --libexe | --libex | --libe) ac_prev=libexecdir ;; -libexecdir=* | --libexecdir=* | --libexecdi=* | --libexecd=* | --libexec=* \ | --libexe=* | --libex=* | --libe=*) libexecdir=$ac_optarg ;; -localedir | --localedir | --localedi | --localed | --locale) ac_prev=localedir ;; -localedir=* | --localedir=* | --localedi=* | --localed=* | --locale=*) localedir=$ac_optarg ;; -localstatedir | --localstatedir | --localstatedi | --localstated \ | --localstate | --localstat | --localsta | --localst | --locals) ac_prev=localstatedir ;; -localstatedir=* | --localstatedir=* | --localstatedi=* | --localstated=* \ | --localstate=* | --localstat=* | --localsta=* | --localst=* | --locals=*) localstatedir=$ac_optarg ;; -mandir | --mandir | --mandi | --mand | --man | --ma | --m) ac_prev=mandir ;; -mandir=* | --mandir=* | --mandi=* | --mand=* | --man=* | --ma=* | --m=*) mandir=$ac_optarg ;; -nfp | --nfp | --nf) # Obsolete; use --without-fp. with_fp=no ;; -no-create | --no-create | --no-creat | --no-crea | --no-cre \ | --no-cr | --no-c | -n) no_create=yes ;; -no-recursion | --no-recursion | --no-recursio | --no-recursi \ | --no-recurs | --no-recur | --no-recu | --no-rec | --no-re | --no-r) no_recursion=yes ;; -oldincludedir | --oldincludedir | --oldincludedi | --oldincluded \ | --oldinclude | --oldinclud | --oldinclu | --oldincl | --oldinc \ | --oldin | --oldi | --old | --ol | --o) ac_prev=oldincludedir ;; -oldincludedir=* | --oldincludedir=* | --oldincludedi=* | --oldincluded=* \ | --oldinclude=* | --oldinclud=* | --oldinclu=* | --oldincl=* | --oldinc=* \ | --oldin=* | --oldi=* | --old=* | --ol=* | --o=*) oldincludedir=$ac_optarg ;; -prefix | --prefix | --prefi | --pref | --pre | --pr | --p) ac_prev=prefix ;; -prefix=* | --prefix=* | --prefi=* | --pref=* | --pre=* | --pr=* | --p=*) prefix=$ac_optarg ;; -program-prefix | --program-prefix | --program-prefi | --program-pref \ | --program-pre | --program-pr | --program-p) ac_prev=program_prefix ;; -program-prefix=* | --program-prefix=* | --program-prefi=* \ | --program-pref=* | --program-pre=* | --program-pr=* | --program-p=*) program_prefix=$ac_optarg ;; -program-suffix | --program-suffix | --program-suffi | --program-suff \ | --program-suf | --program-su | --program-s) ac_prev=program_suffix ;; -program-suffix=* | --program-suffix=* | --program-suffi=* \ | --program-suff=* | --program-suf=* | --program-su=* | --program-s=*) program_suffix=$ac_optarg ;; -program-transform-name | --program-transform-name \ | --program-transform-nam | --program-transform-na \ | --program-transform-n | --program-transform- \ | --program-transform | --program-transfor \ | --program-transfo | --program-transf \ | --program-trans | --program-tran \ | --progr-tra | --program-tr | --program-t) ac_prev=program_transform_name ;; -program-transform-name=* | --program-transform-name=* \ | --program-transform-nam=* | --program-transform-na=* \ | --program-transform-n=* | --program-transform-=* \ | --program-transform=* | --program-transfor=* \ | --program-transfo=* | --program-transf=* \ | --program-trans=* | --program-tran=* \ | --progr-tra=* | --program-tr=* | --program-t=*) program_transform_name=$ac_optarg ;; -pdfdir | --pdfdir | --pdfdi | --pdfd | --pdf | --pd) ac_prev=pdfdir ;; -pdfdir=* | --pdfdir=* | --pdfdi=* | --pdfd=* | --pdf=* | --pd=*) pdfdir=$ac_optarg ;; -psdir | --psdir | --psdi | --psd | --ps) ac_prev=psdir ;; -psdir=* | --psdir=* | --psdi=* | --psd=* | --ps=*) psdir=$ac_optarg ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) silent=yes ;; -sbindir | --sbindir | --sbindi | --sbind | --sbin | --sbi | --sb) ac_prev=sbindir ;; -sbindir=* | --sbindir=* | --sbindi=* | --sbind=* | --sbin=* \ | --sbi=* | --sb=*) sbindir=$ac_optarg ;; -sharedstatedir | --sharedstatedir | --sharedstatedi \ | --sharedstated | --sharedstate | --sharedstat | --sharedsta \ | --sharedst | --shareds | --shared | --share | --shar \ | --sha | --sh) ac_prev=sharedstatedir ;; -sharedstatedir=* | --sharedstatedir=* | --sharedstatedi=* \ | --sharedstated=* | --sharedstate=* | --sharedstat=* | --sharedsta=* \ | --sharedst=* | --shareds=* | --shared=* | --share=* | --shar=* \ | --sha=* | --sh=*) sharedstatedir=$ac_optarg ;; -site | --site | --sit) ac_prev=site ;; -site=* | --site=* | --sit=*) site=$ac_optarg ;; -srcdir | --srcdir | --srcdi | --srcd | --src | --sr) ac_prev=srcdir ;; -srcdir=* | --srcdir=* | --srcdi=* | --srcd=* | --src=* | --sr=*) srcdir=$ac_optarg ;; -sysconfdir | --sysconfdir | --sysconfdi | --sysconfd | --sysconf \ | --syscon | --sysco | --sysc | --sys | --sy) ac_prev=sysconfdir ;; -sysconfdir=* | --sysconfdir=* | --sysconfdi=* | --sysconfd=* | --sysconf=* \ | --syscon=* | --sysco=* | --sysc=* | --sys=* | --sy=*) sysconfdir=$ac_optarg ;; -target | --target | --targe | --targ | --tar | --ta | --t) ac_prev=target_alias ;; -target=* | --target=* | --targe=* | --targ=* | --tar=* | --ta=* | --t=*) target_alias=$ac_optarg ;; -v | -verbose | --verbose | --verbos | --verbo | --verb) verbose=yes ;; -version | --version | --versio | --versi | --vers | -V) ac_init_version=: ;; -with-* | --with-*) ac_useropt=`expr "x$ac_option" : 'x-*with-\([^=]*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--with-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=\$ac_optarg ;; -without-* | --without-*) ac_useropt=`expr "x$ac_option" : 'x-*without-\(.*\)'` # Reject names that are not valid shell variable names. expr "x$ac_useropt" : ".*[^-+._$as_cr_alnum]" >/dev/null && as_fn_error $? "invalid package name: $ac_useropt" ac_useropt_orig=$ac_useropt ac_useropt=`$as_echo "$ac_useropt" | sed 's/[-+.]/_/g'` case $ac_user_opts in *" "with_$ac_useropt" "*) ;; *) ac_unrecognized_opts="$ac_unrecognized_opts$ac_unrecognized_sep--without-$ac_useropt_orig" ac_unrecognized_sep=', ';; esac eval with_$ac_useropt=no ;; --x) # Obsolete; use --with-x. with_x=yes ;; -x-includes | --x-includes | --x-include | --x-includ | --x-inclu \ | --x-incl | --x-inc | --x-in | --x-i) ac_prev=x_includes ;; -x-includes=* | --x-includes=* | --x-include=* | --x-includ=* | --x-inclu=* \ | --x-incl=* | --x-inc=* | --x-in=* | --x-i=*) x_includes=$ac_optarg ;; -x-libraries | --x-libraries | --x-librarie | --x-librari \ | --x-librar | --x-libra | --x-libr | --x-lib | --x-li | --x-l) ac_prev=x_libraries ;; -x-libraries=* | --x-libraries=* | --x-librarie=* | --x-librari=* \ | --x-librar=* | --x-libra=* | --x-libr=* | --x-lib=* | --x-li=* | --x-l=*) x_libraries=$ac_optarg ;; -*) as_fn_error $? "unrecognized option: \`$ac_option' Try \`$0 --help' for more information" ;; *=*) ac_envvar=`expr "x$ac_option" : 'x\([^=]*\)='` # Reject names that are not valid shell variable names. case $ac_envvar in #( '' | [0-9]* | *[!_$as_cr_alnum]* ) as_fn_error $? "invalid variable name: \`$ac_envvar'" ;; esac eval $ac_envvar=\$ac_optarg export $ac_envvar ;; *) # FIXME: should be removed in autoconf 3.0. $as_echo "$as_me: WARNING: you should use --build, --host, --target" >&2 expr "x$ac_option" : ".*[^-._$as_cr_alnum]" >/dev/null && $as_echo "$as_me: WARNING: invalid host type: $ac_option" >&2 : "${build_alias=$ac_option} ${host_alias=$ac_option} ${target_alias=$ac_option}" ;; esac done if test -n "$ac_prev"; then ac_option=--`echo $ac_prev | sed 's/_/-/g'` as_fn_error $? "missing argument to $ac_option" fi if test -n "$ac_unrecognized_opts"; then case $enable_option_checking in no) ;; fatal) as_fn_error $? "unrecognized options: $ac_unrecognized_opts" ;; *) $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2 ;; esac fi # Check all directory arguments for consistency. for ac_var in exec_prefix prefix bindir sbindir libexecdir datarootdir \ datadir sysconfdir sharedstatedir localstatedir includedir \ oldincludedir docdir infodir htmldir dvidir pdfdir psdir \ libdir localedir mandir do eval ac_val=\$$ac_var # Remove trailing slashes. case $ac_val in */ ) ac_val=`expr "X$ac_val" : 'X\(.*[^/]\)' \| "X$ac_val" : 'X\(.*\)'` eval $ac_var=\$ac_val;; esac # Be sure to have absolute directory names. case $ac_val in [\\/$]* | ?:[\\/]* ) continue;; NONE | '' ) case $ac_var in *prefix ) continue;; esac;; esac as_fn_error $? "expected an absolute directory name for --$ac_var: $ac_val" done # There might be people who depend on the old broken behavior: `$host' # used to hold the argument of --host etc. # FIXME: To remove some day. build=$build_alias host=$host_alias target=$target_alias # FIXME: To remove some day. if test "x$host_alias" != x; then if test "x$build_alias" = x; then cross_compiling=maybe elif test "x$build_alias" != "x$host_alias"; then cross_compiling=yes fi fi ac_tool_prefix= test -n "$host_alias" && ac_tool_prefix=$host_alias- test "$silent" = yes && exec 6>/dev/null ac_pwd=`pwd` && test -n "$ac_pwd" && ac_ls_di=`ls -di .` && ac_pwd_ls_di=`cd "$ac_pwd" && ls -di .` || as_fn_error $? "working directory cannot be determined" test "X$ac_ls_di" = "X$ac_pwd_ls_di" || as_fn_error $? "pwd does not report name of working directory" # Find the source files, if location was not specified. if test -z "$srcdir"; then ac_srcdir_defaulted=yes # Try the directory containing this script, then the parent directory. ac_confdir=`$as_dirname -- "$as_myself" || $as_expr X"$as_myself" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_myself" : 'X\(//\)[^/]' \| \ X"$as_myself" : 'X\(//\)$' \| \ X"$as_myself" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_myself" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` srcdir=$ac_confdir if test ! -r "$srcdir/$ac_unique_file"; then srcdir=.. fi else ac_srcdir_defaulted=no fi if test ! -r "$srcdir/$ac_unique_file"; then test "$ac_srcdir_defaulted" = yes && srcdir="$ac_confdir or .." as_fn_error $? "cannot find sources ($ac_unique_file) in $srcdir" fi ac_msg="sources are in $srcdir, but \`cd $srcdir' does not work" ac_abs_confdir=`( cd "$srcdir" && test -r "./$ac_unique_file" || as_fn_error $? "$ac_msg" pwd)` # When building in place, set srcdir=. if test "$ac_abs_confdir" = "$ac_pwd"; then srcdir=. fi # Remove unnecessary trailing slashes from srcdir. # Double slashes in file names in object file debugging info # mess up M-x gdb in Emacs. case $srcdir in */) srcdir=`expr "X$srcdir" : 'X\(.*[^/]\)' \| "X$srcdir" : 'X\(.*\)'`;; esac for ac_var in $ac_precious_vars; do eval ac_env_${ac_var}_set=\${${ac_var}+set} eval ac_env_${ac_var}_value=\$${ac_var} eval ac_cv_env_${ac_var}_set=\${${ac_var}+set} eval ac_cv_env_${ac_var}_value=\$${ac_var} done # # Report the --help message. # if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF \`configure' configures isl 0.16.1 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... To assign environment variables (e.g., CC, CFLAGS...), specify them as VAR=VALUE. See below for descriptions of some of the useful variables. Defaults for the options are specified in brackets. Configuration: -h, --help display this help and exit --help=short display options specific to this package --help=recursive display the short help of all the included packages -V, --version display version information and exit -q, --quiet, --silent do not print \`checking ...' messages --cache-file=FILE cache test results in FILE [disabled] -C, --config-cache alias for \`--cache-file=config.cache' -n, --no-create do not create output files --srcdir=DIR find the sources in DIR [configure dir or \`..'] Installation directories: --prefix=PREFIX install architecture-independent files in PREFIX [$ac_default_prefix] --exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX] By default, \`make install' will install all the files in \`$ac_default_prefix/bin', \`$ac_default_prefix/lib' etc. You can specify an installation prefix other than \`$ac_default_prefix' using \`--prefix', for instance \`--prefix=\$HOME'. For better control, use the options below. Fine tuning of the installation directories: --bindir=DIR user executables [EPREFIX/bin] --sbindir=DIR system admin executables [EPREFIX/sbin] --libexecdir=DIR program executables [EPREFIX/libexec] --sysconfdir=DIR read-only single-machine data [PREFIX/etc] --sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com] --localstatedir=DIR modifiable single-machine data [PREFIX/var] --libdir=DIR object code libraries [EPREFIX/lib] --includedir=DIR C header files [PREFIX/include] --oldincludedir=DIR C header files for non-gcc [/usr/include] --datarootdir=DIR read-only arch.-independent data root [PREFIX/share] --datadir=DIR read-only architecture-independent data [DATAROOTDIR] --infodir=DIR info documentation [DATAROOTDIR/info] --localedir=DIR locale-dependent data [DATAROOTDIR/locale] --mandir=DIR man documentation [DATAROOTDIR/man] --docdir=DIR documentation root [DATAROOTDIR/doc/isl] --htmldir=DIR html documentation [DOCDIR] --dvidir=DIR dvi documentation [DOCDIR] --pdfdir=DIR pdf documentation [DOCDIR] --psdir=DIR ps documentation [DOCDIR] _ACEOF cat <<\_ACEOF Program names: --program-prefix=PREFIX prepend PREFIX to installed program names --program-suffix=SUFFIX append SUFFIX to installed program names --program-transform-name=PROGRAM run sed PROGRAM on installed program names System types: --build=BUILD configure for building on BUILD [guessed] --host=HOST cross-compile to build programs to run on HOST [BUILD] _ACEOF fi if test -n "$ac_init_help"; then case $ac_init_help in short | recursive ) echo "Configuration of isl 0.16.1:";; esac cat <<\_ACEOF Optional Features: --disable-option-checking ignore unrecognized --enable/--with options --disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no) --enable-FEATURE[=ARG] include FEATURE [ARG=yes] --enable-silent-rules less verbose build output (undo: "make V=1") --disable-silent-rules verbose build output (undo: "make V=0") --enable-dependency-tracking do not reject slow dependency extractors --disable-dependency-tracking speeds up one-time build --enable-portable-binary disable compiler optimizations that would produce unportable binaries --enable-shared[=PKGS] build shared libraries [default=yes] --enable-static[=PKGS] build static libraries [default=yes] --enable-fast-install[=PKGS] optimize for fast installation [default=yes] --disable-libtool-lock avoid locking (might break parallel builds) Optional Packages: --with-PACKAGE[=ARG] use PACKAGE [ARG=yes] --without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no) --with-gcc-arch= use architecture for gcc -march/-mtune, instead of guessing --with-pic[=PKGS] try to use only PIC/non-PIC objects [default=use both] --with-gnu-ld assume the C compiler uses GNU ld [default=no] --with-sysroot[=DIR] Search for dependent libraries within DIR (or the compiler's sysroot if not specified). --with-int=gmp|imath|imath-32 Which package to use to represent multi-precision integers [default=gmp] --with-gmp=system|build Which gmp to use [default=system] --with-gmp-prefix=DIR Prefix of gmp installation --with-gmp-exec-prefix=DIR Exec prefix of gmp installation --with-gmp-builddir=DIR Location of gmp builddir --with-clang=system|no Which clang to use [default=no] --with-clang-prefix=DIR Prefix of clang installation --with-clang-exec-prefix=DIR Exec prefix of clang installation Some influential environment variables: CC C compiler command CFLAGS C compiler flags LDFLAGS linker flags, e.g. -L if you have libraries in a nonstandard directory LIBS libraries to pass to the linker, e.g. -l CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I if you have headers in a nonstandard directory CXX C++ compiler command CXXFLAGS C++ compiler flags CPP C preprocessor CXXCPP C++ preprocessor Use these variables to override the choices made by `configure' or to help it to find libraries and programs with nonstandard names/locations. Report bugs to . _ACEOF ac_status=$? fi if test "$ac_init_help" = "recursive"; then # If there are subdirs, report their specific --help. for ac_dir in : $ac_subdirs_all; do test "x$ac_dir" = x: && continue test -d "$ac_dir" || { cd "$srcdir" && ac_pwd=`pwd` && srcdir=. && test -d "$ac_dir"; } || continue ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix cd "$ac_dir" || { ac_status=$?; continue; } # Check for guested configure. if test -f "$ac_srcdir/configure.gnu"; then echo && $SHELL "$ac_srcdir/configure.gnu" --help=recursive elif test -f "$ac_srcdir/configure"; then echo && $SHELL "$ac_srcdir/configure" --help=recursive else $as_echo "$as_me: WARNING: no configuration information is in $ac_dir" >&2 fi || ac_status=$? cd "$ac_pwd" || { ac_status=$?; break; } done fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF isl configure 0.16.1 generated by GNU Autoconf 2.69 Copyright (C) 2012 Free Software Foundation, Inc. This configure script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it. _ACEOF exit fi ## ------------------------ ## ## Autoconf initialization. ## ## ------------------------ ## # ac_fn_c_try_compile LINENO # -------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_compile # ac_fn_cxx_try_compile LINENO # ---------------------------- # Try to compile conftest.$ac_ext, and return whether this succeeded. ac_fn_cxx_try_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_cxx_werror_flag" || test ! -s conftest.err } && test -s conftest.$ac_objext; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_cxx_try_compile # ac_fn_c_try_run LINENO # ---------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. Assumes # that executables *can* be run. ac_fn_c_try_run () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { ac_try='./conftest$ac_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then : ac_retval=0 else $as_echo "$as_me: program exited with status $ac_status" >&5 $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=$ac_status fi rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_run # ac_fn_c_try_link LINENO # ----------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_c_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_link # ac_fn_c_check_header_compile LINENO HEADER VAR INCLUDES # ------------------------------------------------------- # Tests whether HEADER exists and can be compiled using the include files in # INCLUDES, setting the cache variable VAR accordingly. ac_fn_c_check_header_compile () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_compile # ac_fn_c_try_cpp LINENO # ---------------------- # Try to preprocess conftest.$ac_ext, and return whether this succeeded. ac_fn_c_try_cpp () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_cpp conftest.$ac_ext" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_c_preproc_warn_flag$ac_c_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_c_try_cpp # ac_fn_c_check_func LINENO FUNC VAR # ---------------------------------- # Tests whether FUNC exists, setting the cache variable VAR accordingly ac_fn_c_check_func () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Define $2 to an innocuous variant, in case declares $2. For example, HP-UX 11i declares gettimeofday. */ #define $2 innocuous_$2 /* System header to define __stub macros and hopefully few prototypes, which can conflict with char $2 (); below. Prefer to if __STDC__ is defined, since exists even on freestanding compilers. */ #ifdef __STDC__ # include #else # include #endif #undef $2 /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char $2 (); /* The GNU C library defines this for functions which it implements to always fail with ENOSYS. Some functions are actually named something starting with __ and the normal name is an alias. */ #if defined __stub_$2 || defined __stub___$2 choke me #endif int main () { return $2 (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_func # ac_fn_cxx_try_cpp LINENO # ------------------------ # Try to preprocess conftest.$ac_ext, and return whether this succeeded. ac_fn_cxx_try_cpp () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if { { ac_try="$ac_cpp conftest.$ac_ext" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_cpp conftest.$ac_ext") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } > conftest.i && { test -z "$ac_cxx_preproc_warn_flag$ac_cxx_werror_flag" || test ! -s conftest.err }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_cxx_try_cpp # ac_fn_cxx_try_link LINENO # ------------------------- # Try to link conftest.$ac_ext, and return whether this succeeded. ac_fn_cxx_try_link () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack rm -f conftest.$ac_objext conftest$ac_exeext if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>conftest.err ac_status=$? if test -s conftest.err; then grep -v '^ *+' conftest.err >conftest.er1 cat conftest.er1 >&5 mv -f conftest.er1 conftest.err fi $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && { test -z "$ac_cxx_werror_flag" || test ! -s conftest.err } && test -s conftest$ac_exeext && { test "$cross_compiling" = yes || test -x conftest$ac_exeext }; then : ac_retval=0 else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 ac_retval=1 fi # Delete the IPA/IPO (Inter Procedural Analysis/Optimization) information # created by the PGI compiler (conftest_ipa8_conftest.oo), as it would # interfere with the next link command; also delete a directory that is # left behind by Apple's compiler. We do this before executing the actions. rm -rf conftest.dSYM conftest_ipa8_conftest.oo eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno as_fn_set_status $ac_retval } # ac_fn_cxx_try_link # ac_fn_c_check_type LINENO TYPE VAR INCLUDES # ------------------------------------------- # Tests whether TYPE exists after having included INCLUDES, setting cache # variable VAR accordingly. ac_fn_c_check_type () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=no" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof ($2)) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { if (sizeof (($2))) return 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else eval "$3=yes" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_type # ac_fn_c_compute_int LINENO EXPR VAR INCLUDES # -------------------------------------------- # Tries to find the compile-time value of EXPR in a program that includes # INCLUDES, setting VAR accordingly. Returns whether the value could be # computed ac_fn_c_compute_int () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if test "$cross_compiling" = yes; then # Depending upon the size, compute the lo and hi bounds. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=0 ac_mid=0 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid; break else as_fn_arith $ac_mid + 1 && ac_lo=$as_val if test $ac_lo -le $ac_mid; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid + 1 && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) < 0)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=-1 ac_mid=-1 while :; do cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) >= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_lo=$ac_mid; break else as_fn_arith '(' $ac_mid ')' - 1 && ac_hi=$as_val if test $ac_mid -le $ac_hi; then ac_lo= ac_hi= break fi as_fn_arith 2 '*' $ac_mid && ac_mid=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done else ac_lo= ac_hi= fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext # Binary search between lo and hi bounds. while test "x$ac_lo" != "x$ac_hi"; do as_fn_arith '(' $ac_hi - $ac_lo ')' / 2 + $ac_lo && ac_mid=$as_val cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { static int test_array [1 - 2 * !(($2) <= $ac_mid)]; test_array [0] = 0; return test_array [0]; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_hi=$ac_mid else as_fn_arith '(' $ac_mid ')' + 1 && ac_lo=$as_val fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done case $ac_lo in #(( ?*) eval "$3=\$ac_lo"; ac_retval=0 ;; '') ac_retval=1 ;; esac else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 static long int longval () { return $2; } static unsigned long int ulongval () { return $2; } #include #include int main () { FILE *f = fopen ("conftest.val", "w"); if (! f) return 1; if (($2) < 0) { long int i = longval (); if (i != ($2)) return 1; fprintf (f, "%ld", i); } else { unsigned long int i = ulongval (); if (i != ($2)) return 1; fprintf (f, "%lu", i); } /* Do not output a trailing newline, as this causes \r\n confusion on some platforms. */ return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : echo >>conftest.val; read $3 &5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } else # Is the header compilable? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 $as_echo_n "checking $2 usability... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_header_compiler=yes else ac_header_compiler=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 $as_echo "$ac_header_compiler" >&6; } # Is the header present? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 $as_echo_n "checking $2 presence... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include <$2> _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : ac_header_preproc=yes else ac_header_preproc=no fi rm -f conftest.err conftest.i conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 $as_echo "$ac_header_preproc" >&6; } # So? What about this header? case $ac_header_compiler:$ac_header_preproc:$ac_c_preproc_warn_flag in #(( yes:no: ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; no:yes:* ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ( $as_echo "## ----------------------------------------------- ## ## Report this to isl-development@googlegroups.com ## ## ----------------------------------------------- ##" ) | sed "s/^/$as_me: WARNING: /" >&2 ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=\$ac_header_compiler" fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_header_mongrel # ac_fn_c_check_decl LINENO SYMBOL VAR INCLUDES # --------------------------------------------- # Tests whether SYMBOL is declared in INCLUDES, setting cache variable VAR # accordingly. ac_fn_c_check_decl () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack as_decl_name=`echo $2|sed 's/ *(.*//'` as_decl_use=`echo $2|sed -e 's/(/((/' -e 's/)/) 0&/' -e 's/,/) 0& (/g'` { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $as_decl_name is declared" >&5 $as_echo_n "checking whether $as_decl_name is declared... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 int main () { #ifndef $as_decl_name #ifdef __cplusplus (void) $as_decl_use; #else (void) $as_decl_name; #endif #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval "$3=yes" else eval "$3=no" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_c_check_decl # ac_fn_cxx_check_header_mongrel LINENO HEADER VAR INCLUDES # --------------------------------------------------------- # Tests whether HEADER exists, giving a warning if it cannot be compiled using # the include files in INCLUDES and setting the cache variable VAR # accordingly. ac_fn_cxx_check_header_mongrel () { as_lineno=${as_lineno-"$1"} as_lineno_stack=as_lineno_stack=$as_lineno_stack if eval \${$3+:} false; then : { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } else # Is the header compilable? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 usability" >&5 $as_echo_n "checking $2 usability... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ $4 #include <$2> _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : ac_header_compiler=yes else ac_header_compiler=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_compiler" >&5 $as_echo "$ac_header_compiler" >&6; } # Is the header present? { $as_echo "$as_me:${as_lineno-$LINENO}: checking $2 presence" >&5 $as_echo_n "checking $2 presence... " >&6; } cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include <$2> _ACEOF if ac_fn_cxx_try_cpp "$LINENO"; then : ac_header_preproc=yes else ac_header_preproc=no fi rm -f conftest.err conftest.i conftest.$ac_ext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_header_preproc" >&5 $as_echo "$ac_header_preproc" >&6; } # So? What about this header? case $ac_header_compiler:$ac_header_preproc:$ac_cxx_preproc_warn_flag in #(( yes:no: ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&5 $as_echo "$as_me: WARNING: $2: accepted by the compiler, rejected by the preprocessor!" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ;; no:yes:* ) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: present but cannot be compiled" >&5 $as_echo "$as_me: WARNING: $2: present but cannot be compiled" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: check for missing prerequisite headers?" >&5 $as_echo "$as_me: WARNING: $2: check for missing prerequisite headers?" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: see the Autoconf documentation" >&5 $as_echo "$as_me: WARNING: $2: see the Autoconf documentation" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&5 $as_echo "$as_me: WARNING: $2: section \"Present But Cannot Be Compiled\"" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $2: proceeding with the compiler's result" >&5 $as_echo "$as_me: WARNING: $2: proceeding with the compiler's result" >&2;} ( $as_echo "## ----------------------------------------------- ## ## Report this to isl-development@googlegroups.com ## ## ----------------------------------------------- ##" ) | sed "s/^/$as_me: WARNING: /" >&2 ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $2" >&5 $as_echo_n "checking for $2... " >&6; } if eval \${$3+:} false; then : $as_echo_n "(cached) " >&6 else eval "$3=\$ac_header_compiler" fi eval ac_res=\$$3 { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_res" >&5 $as_echo "$ac_res" >&6; } fi eval $as_lineno_stack; ${as_lineno_stack:+:} unset as_lineno } # ac_fn_cxx_check_header_mongrel cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. It was created by isl $as_me 0.16.1, which was generated by GNU Autoconf 2.69. Invocation command line was $ $0 $@ _ACEOF exec 5>>config.log { cat <<_ASUNAME ## --------- ## ## Platform. ## ## --------- ## hostname = `(hostname || uname -n) 2>/dev/null | sed 1q` uname -m = `(uname -m) 2>/dev/null || echo unknown` uname -r = `(uname -r) 2>/dev/null || echo unknown` uname -s = `(uname -s) 2>/dev/null || echo unknown` uname -v = `(uname -v) 2>/dev/null || echo unknown` /usr/bin/uname -p = `(/usr/bin/uname -p) 2>/dev/null || echo unknown` /bin/uname -X = `(/bin/uname -X) 2>/dev/null || echo unknown` /bin/arch = `(/bin/arch) 2>/dev/null || echo unknown` /usr/bin/arch -k = `(/usr/bin/arch -k) 2>/dev/null || echo unknown` /usr/convex/getsysinfo = `(/usr/convex/getsysinfo) 2>/dev/null || echo unknown` /usr/bin/hostinfo = `(/usr/bin/hostinfo) 2>/dev/null || echo unknown` /bin/machine = `(/bin/machine) 2>/dev/null || echo unknown` /usr/bin/oslevel = `(/usr/bin/oslevel) 2>/dev/null || echo unknown` /bin/universe = `(/bin/universe) 2>/dev/null || echo unknown` _ASUNAME as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. $as_echo "PATH: $as_dir" done IFS=$as_save_IFS } >&5 cat >&5 <<_ACEOF ## ----------- ## ## Core tests. ## ## ----------- ## _ACEOF # Keep a trace of the command line. # Strip out --no-create and --no-recursion so they do not pile up. # Strip out --silent because we don't want to record it for future runs. # Also quote any args containing shell meta-characters. # Make two passes to allow for proper duplicate-argument suppression. ac_configure_args= ac_configure_args0= ac_configure_args1= ac_must_keep_next=false for ac_pass in 1 2 do for ac_arg do case $ac_arg in -no-create | --no-c* | -n | -no-recursion | --no-r*) continue ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil) continue ;; *\'*) ac_arg=`$as_echo "$ac_arg" | sed "s/'/'\\\\\\\\''/g"` ;; esac case $ac_pass in 1) as_fn_append ac_configure_args0 " '$ac_arg'" ;; 2) as_fn_append ac_configure_args1 " '$ac_arg'" if test $ac_must_keep_next = true; then ac_must_keep_next=false # Got value, back to normal. else case $ac_arg in *=* | --config-cache | -C | -disable-* | --disable-* \ | -enable-* | --enable-* | -gas | --g* | -nfp | --nf* \ | -q | -quiet | --q* | -silent | --sil* | -v | -verb* \ | -with-* | --with-* | -without-* | --without-* | --x) case "$ac_configure_args0 " in "$ac_configure_args1"*" '$ac_arg' "* ) continue ;; esac ;; -* ) ac_must_keep_next=true ;; esac fi as_fn_append ac_configure_args " '$ac_arg'" ;; esac done done { ac_configure_args0=; unset ac_configure_args0;} { ac_configure_args1=; unset ac_configure_args1;} # When interrupted or exit'd, cleanup temporary files, and complete # config.log. We remove comments because anyway the quotes in there # would cause problems or look ugly. # WARNING: Use '\'' to represent an apostrophe within the trap. # WARNING: Do not start the trap code with a newline, due to a FreeBSD 4.0 bug. trap 'exit_status=$? # Save into config.log some information that might help in debugging. { echo $as_echo "## ---------------- ## ## Cache variables. ## ## ---------------- ##" echo # The following way of writing the cache mishandles newlines in values, ( for ac_var in `(set) 2>&1 | sed -n '\''s/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'\''`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space='\'' '\''; set) 2>&1` in #( *${as_nl}ac_space=\ *) sed -n \ "s/'\''/'\''\\\\'\'''\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\''\\2'\''/p" ;; #( *) sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) echo $as_echo "## ----------------- ## ## Output variables. ## ## ----------------- ##" echo for ac_var in $ac_subst_vars do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo if test -n "$ac_subst_files"; then $as_echo "## ------------------- ## ## File substitutions. ## ## ------------------- ##" echo for ac_var in $ac_subst_files do eval ac_val=\$$ac_var case $ac_val in *\'\''*) ac_val=`$as_echo "$ac_val" | sed "s/'\''/'\''\\\\\\\\'\'''\''/g"`;; esac $as_echo "$ac_var='\''$ac_val'\''" done | sort echo fi if test -s confdefs.h; then $as_echo "## ----------- ## ## confdefs.h. ## ## ----------- ##" echo cat confdefs.h echo fi test "$ac_signal" != 0 && $as_echo "$as_me: caught signal $ac_signal" $as_echo "$as_me: exit $exit_status" } >&5 rm -f core *.core core.conftest.* && rm -f -r conftest* confdefs* conf$$* $ac_clean_files && exit $exit_status ' 0 for ac_signal in 1 2 13 15; do trap 'ac_signal='$ac_signal'; as_fn_exit 1' $ac_signal done ac_signal=0 # confdefs.h avoids OS command line length limits that DEFS can exceed. rm -f -r conftest* confdefs.h $as_echo "/* confdefs.h */" > confdefs.h # Predefined preprocessor variables. cat >>confdefs.h <<_ACEOF #define PACKAGE_NAME "$PACKAGE_NAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_TARNAME "$PACKAGE_TARNAME" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_VERSION "$PACKAGE_VERSION" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_STRING "$PACKAGE_STRING" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_BUGREPORT "$PACKAGE_BUGREPORT" _ACEOF cat >>confdefs.h <<_ACEOF #define PACKAGE_URL "$PACKAGE_URL" _ACEOF # Let the site file select an alternate cache file if it wants to. # Prefer an explicitly selected file to automatically selected ones. ac_site_file1=NONE ac_site_file2=NONE if test -n "$CONFIG_SITE"; then # We do not want a PATH search for config.site. case $CONFIG_SITE in #(( -*) ac_site_file1=./$CONFIG_SITE;; */*) ac_site_file1=$CONFIG_SITE;; *) ac_site_file1=./$CONFIG_SITE;; esac elif test "x$prefix" != xNONE; then ac_site_file1=$prefix/share/config.site ac_site_file2=$prefix/etc/config.site else ac_site_file1=$ac_default_prefix/share/config.site ac_site_file2=$ac_default_prefix/etc/config.site fi for ac_site_file in "$ac_site_file1" "$ac_site_file2" do test "x$ac_site_file" = xNONE && continue if test /dev/null != "$ac_site_file" && test -r "$ac_site_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading site script $ac_site_file" >&5 $as_echo "$as_me: loading site script $ac_site_file" >&6;} sed 's/^/| /' "$ac_site_file" >&5 . "$ac_site_file" \ || { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "failed to load site script $ac_site_file See \`config.log' for more details" "$LINENO" 5; } fi done if test -r "$cache_file"; then # Some versions of bash will fail to source /dev/null (special files # actually), so we avoid doing that. DJGPP emulates it as a regular file. if test /dev/null != "$cache_file" && test -f "$cache_file"; then { $as_echo "$as_me:${as_lineno-$LINENO}: loading cache $cache_file" >&5 $as_echo "$as_me: loading cache $cache_file" >&6;} case $cache_file in [\\/]* | ?:[\\/]* ) . "$cache_file";; *) . "./$cache_file";; esac fi else { $as_echo "$as_me:${as_lineno-$LINENO}: creating cache $cache_file" >&5 $as_echo "$as_me: creating cache $cache_file" >&6;} >$cache_file fi # Check that the precious variables saved in the cache have kept the same # value. ac_cache_corrupted=false for ac_var in $ac_precious_vars; do eval ac_old_set=\$ac_cv_env_${ac_var}_set eval ac_new_set=\$ac_env_${ac_var}_set eval ac_old_val=\$ac_cv_env_${ac_var}_value eval ac_new_val=\$ac_env_${ac_var}_value case $ac_old_set,$ac_new_set in set,) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was set to \`$ac_old_val' in the previous run" >&2;} ac_cache_corrupted=: ;; ,set) { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' was not set in the previous run" >&5 $as_echo "$as_me: error: \`$ac_var' was not set in the previous run" >&2;} ac_cache_corrupted=: ;; ,);; *) if test "x$ac_old_val" != "x$ac_new_val"; then # differences in whitespace do not lead to failure. ac_old_val_w=`echo x $ac_old_val` ac_new_val_w=`echo x $ac_new_val` if test "$ac_old_val_w" != "$ac_new_val_w"; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: \`$ac_var' has changed since the previous run:" >&5 $as_echo "$as_me: error: \`$ac_var' has changed since the previous run:" >&2;} ac_cache_corrupted=: else { $as_echo "$as_me:${as_lineno-$LINENO}: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&5 $as_echo "$as_me: warning: ignoring whitespace changes in \`$ac_var' since the previous run:" >&2;} eval $ac_var=\$ac_old_val fi { $as_echo "$as_me:${as_lineno-$LINENO}: former value: \`$ac_old_val'" >&5 $as_echo "$as_me: former value: \`$ac_old_val'" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: current value: \`$ac_new_val'" >&5 $as_echo "$as_me: current value: \`$ac_new_val'" >&2;} fi;; esac # Pass precious variables to config.status. if test "$ac_new_set" = set; then case $ac_new_val in *\'*) ac_arg=$ac_var=`$as_echo "$ac_new_val" | sed "s/'/'\\\\\\\\''/g"` ;; *) ac_arg=$ac_var=$ac_new_val ;; esac case " $ac_configure_args " in *" '$ac_arg' "*) ;; # Avoid dups. Use of quotes ensures accuracy. *) as_fn_append ac_configure_args " '$ac_arg'" ;; esac fi done if $ac_cache_corrupted; then { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: error: changes in the environment can compromise the build" >&5 $as_echo "$as_me: error: changes in the environment can compromise the build" >&2;} as_fn_error $? "run \`make distclean' and/or \`rm $cache_file' and start over" "$LINENO" 5 fi ## -------------------- ## ## Main body of script. ## ## -------------------- ## ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_aux_dir= for ac_dir in . "$srcdir"/.; do if test -f "$ac_dir/install-sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install-sh -c" break elif test -f "$ac_dir/install.sh"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/install.sh -c" break elif test -f "$ac_dir/shtool"; then ac_aux_dir=$ac_dir ac_install_sh="$ac_aux_dir/shtool install -c" break fi done if test -z "$ac_aux_dir"; then as_fn_error $? "cannot find install-sh, install.sh, or shtool in . \"$srcdir\"/." "$LINENO" 5 fi # These three variables are undocumented and unsupported, # and are intended to be withdrawn in a future Autoconf release. # They can cause serious problems if a builder's source tree is in a directory # whose full name contains unusual characters. ac_config_guess="$SHELL $ac_aux_dir/config.guess" # Please don't use this var. ac_config_sub="$SHELL $ac_aux_dir/config.sub" # Please don't use this var. ac_configure="$SHELL $ac_aux_dir/configure" # Please don't use this var. am__api_version='1.14' # Find a good install program. We prefer a C program (faster), # so one script is as good as another. But avoid the broken or # incompatible versions: # SysV /etc/install, /usr/sbin/install # SunOS /usr/etc/install # IRIX /sbin/install # AIX /bin/install # AmigaOS /C/install, which installs bootblocks on floppy discs # AIX 4 /usr/bin/installbsd, which doesn't work without a -g flag # AFS /usr/afsws/bin/install, which mishandles nonexistent args # SVR4 /usr/ucb/install, which tries to use the nonexistent group "staff" # OS/2's system install, which has a completely different semantic # ./install, which can be erroneously created by make from ./install.sh. # Reject install programs that cannot install multiple files. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a BSD-compatible install" >&5 $as_echo_n "checking for a BSD-compatible install... " >&6; } if test -z "$INSTALL"; then if ${ac_cv_path_install+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. # Account for people who put trailing slashes in PATH elements. case $as_dir/ in #(( ./ | .// | /[cC]/* | \ /etc/* | /usr/sbin/* | /usr/etc/* | /sbin/* | /usr/afsws/bin/* | \ ?:[\\/]os2[\\/]install[\\/]* | ?:[\\/]OS2[\\/]INSTALL[\\/]* | \ /usr/ucb/* ) ;; *) # OSF1 and SCO ODT 3.0 have their own names for install. # Don't use installbsd from OSF since it installs stuff as root # by default. for ac_prog in ginstall scoinst install; do for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext"; then if test $ac_prog = install && grep dspmsg "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # AIX install. It has an incompatible calling convention. : elif test $ac_prog = install && grep pwplus "$as_dir/$ac_prog$ac_exec_ext" >/dev/null 2>&1; then # program-specific install script used by HP pwplus--don't use. : else rm -rf conftest.one conftest.two conftest.dir echo one > conftest.one echo two > conftest.two mkdir conftest.dir if "$as_dir/$ac_prog$ac_exec_ext" -c conftest.one conftest.two "`pwd`/conftest.dir" && test -s conftest.one && test -s conftest.two && test -s conftest.dir/conftest.one && test -s conftest.dir/conftest.two then ac_cv_path_install="$as_dir/$ac_prog$ac_exec_ext -c" break 3 fi fi fi done done ;; esac done IFS=$as_save_IFS rm -rf conftest.one conftest.two conftest.dir fi if test "${ac_cv_path_install+set}" = set; then INSTALL=$ac_cv_path_install else # As a last resort, use the slow shell script. Don't cache a # value for INSTALL within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. INSTALL=$ac_install_sh fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $INSTALL" >&5 $as_echo "$INSTALL" >&6; } # Use test -z because SunOS4 sh mishandles braces in ${var-val}. # It thinks the first close brace ends the variable substitution. test -z "$INSTALL_PROGRAM" && INSTALL_PROGRAM='${INSTALL}' test -z "$INSTALL_SCRIPT" && INSTALL_SCRIPT='${INSTALL}' test -z "$INSTALL_DATA" && INSTALL_DATA='${INSTALL} -m 644' { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether build environment is sane" >&5 $as_echo_n "checking whether build environment is sane... " >&6; } # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[\\\"\#\$\&\'\`$am_lf]*) as_fn_error $? "unsafe absolute working directory name" "$LINENO" 5;; esac case $srcdir in *[\\\"\#\$\&\'\`$am_lf\ \ ]*) as_fn_error $? "unsafe srcdir value: '$srcdir'" "$LINENO" 5;; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$*" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$*" != "X $srcdir/configure conftest.file" \ && test "$*" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". as_fn_error $? "ls -t appears to fail. Make sure there is not a broken alias in your environment" "$LINENO" 5 fi if test "$2" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$2" = conftest.file ) then # Ok. : else as_fn_error $? "newly created file is older than distributed files! Check your system clock" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi rm -f conftest.file test "$program_prefix" != NONE && program_transform_name="s&^&$program_prefix&;$program_transform_name" # Use a double $ so make ignores it. test "$program_suffix" != NONE && program_transform_name="s&\$&$program_suffix&;$program_transform_name" # Double any \ or $. # By default was `s,x,x', remove it if useless. ac_script='s/[\\$]/&&/g;s/;s,x,x,$//' program_transform_name=`$as_echo "$program_transform_name" | sed "$ac_script"` # expand $ac_aux_dir to an absolute path am_aux_dir=`cd $ac_aux_dir && pwd` if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: 'missing' script is too old or missing" >&5 $as_echo "$as_me: WARNING: 'missing' script is too old or missing" >&2;} fi if test x"${install_sh}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. if test "$cross_compiling" != no; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a thread-safe mkdir -p" >&5 $as_echo_n "checking for a thread-safe mkdir -p... " >&6; } if test -z "$MKDIR_P"; then if ${ac_cv_path_mkdir+:} false; then : $as_echo_n "(cached) " >&6 else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/opt/sfw/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in mkdir gmkdir; do for ac_exec_ext in '' $ac_executable_extensions; do as_fn_executable_p "$as_dir/$ac_prog$ac_exec_ext" || continue case `"$as_dir/$ac_prog$ac_exec_ext" --version 2>&1` in #( 'mkdir (GNU coreutils) '* | \ 'mkdir (coreutils) '* | \ 'mkdir (fileutils) '4.1*) ac_cv_path_mkdir=$as_dir/$ac_prog$ac_exec_ext break 3;; esac done done done IFS=$as_save_IFS fi test -d ./--version && rmdir ./--version if test "${ac_cv_path_mkdir+set}" = set; then MKDIR_P="$ac_cv_path_mkdir -p" else # As a last resort, use the slow shell script. Don't cache a # value for MKDIR_P within a source directory, because that will # break other packages using the cache if that directory is # removed, or if the value is a relative name. MKDIR_P="$ac_install_sh -d" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MKDIR_P" >&5 $as_echo "$MKDIR_P" >&6; } for ac_prog in gawk mawk nawk awk do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AWK+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AWK"; then ac_cv_prog_AWK="$AWK" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AWK="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AWK=$ac_cv_prog_AWK if test -n "$AWK"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AWK" >&5 $as_echo "$AWK" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AWK" && break done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ${MAKE-make} sets \$(MAKE)" >&5 $as_echo_n "checking whether ${MAKE-make} sets \$(MAKE)... " >&6; } set x ${MAKE-make} ac_make=`$as_echo "$2" | sed 's/+/p/g; s/[^a-zA-Z0-9_]/_/g'` if eval \${ac_cv_prog_make_${ac_make}_set+:} false; then : $as_echo_n "(cached) " >&6 else cat >conftest.make <<\_ACEOF SHELL = /bin/sh all: @echo '@@@%%%=$(MAKE)=@@@%%%' _ACEOF # GNU make sometimes prints "make[1]: Entering ...", which would confuse us. case `${MAKE-make} -f conftest.make 2>/dev/null` in *@@@%%%=?*=@@@%%%*) eval ac_cv_prog_make_${ac_make}_set=yes;; *) eval ac_cv_prog_make_${ac_make}_set=no;; esac rm -f conftest.make fi if eval test \$ac_cv_prog_make_${ac_make}_set = yes; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } SET_MAKE= else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } SET_MAKE="MAKE=${MAKE-make}" fi rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null # Check whether --enable-silent-rules was given. if test "${enable_silent_rules+set}" = set; then : enableval=$enable_silent_rules; fi case $enable_silent_rules in # ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=1;; esac am_make=${MAKE-make} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $am_make supports nested variables" >&5 $as_echo_n "checking whether $am_make supports nested variables... " >&6; } if ${am_cv_make_support_nested_variables+:} false; then : $as_echo_n "(cached) " >&6 else if $as_echo 'TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit' | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_make_support_nested_variables" >&5 $as_echo "$am_cv_make_support_nested_variables" >&6; } if test $am_cv_make_support_nested_variables = yes; then AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AM_BACKSLASH='\' if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." am__isrc=' -I$(srcdir)' # test to see if srcdir already configured if test -f $srcdir/config.status; then as_fn_error $? "source directory already configured; run \"make distclean\" there first" "$LINENO" 5 fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi # Define the identity of the package. PACKAGE='isl' VERSION='0.16.1' cat >>confdefs.h <<_ACEOF #define PACKAGE "$PACKAGE" _ACEOF cat >>confdefs.h <<_ACEOF #define VERSION "$VERSION" _ACEOF # Some tools Automake needs. ACLOCAL=${ACLOCAL-"${am_missing_run}aclocal-${am__api_version}"} AUTOCONF=${AUTOCONF-"${am_missing_run}autoconf"} AUTOMAKE=${AUTOMAKE-"${am_missing_run}automake-${am__api_version}"} AUTOHEADER=${AUTOHEADER-"${am_missing_run}autoheader"} MAKEINFO=${MAKEINFO-"${am_missing_run}makeinfo"} # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # mkdir_p='$(MKDIR_P)' # We need awk for the "check" target. The system "awk" is bad on # some platforms. # Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AMTAR='$${TAR-tar}' # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar pax cpio none' am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -' # POSIX will say in a future version that running "rm -f" with no argument # is OK; and we want to be able to make that assumption in our Makefile # recipes. So use an aggressive probe to check that the usage we want is # actually supported "in the wild" to an acceptable degree. # See automake bug#10828. # To make any issue more visible, cause the running configure to be aborted # by default if the 'rm' program in use doesn't match our expectations; the # user can still override this though. if rm -f && rm -fr && rm -rf; then : OK; else cat >&2 <<'END' Oops! Your 'rm' program seems unable to run without file operands specified on the command line, even when the '-f' option is present. This is contrary to the behaviour of most rm programs out there, and not conforming with the upcoming POSIX standard: Please tell bug-automake@gnu.org about your system, including the value of your $PATH and any error possibly output before this message. This can help us improve future automake versions. END if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then echo 'Configuration will proceed anyway, since you have set the' >&2 echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2 echo >&2 else cat >&2 <<'END' Aborting the configuration process, to ensure you take notice of the issue. You can download and install GNU coreutils to get an 'rm' implementation that behaves properly: . If you want to complete the configuration process using your problematic 'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM to "yes", and re-run configure. END as_fn_error $? "Your 'rm' program is bad, sorry." "$LINENO" 5 fi fi # Check whether --enable-silent-rules was given. if test "${enable_silent_rules+set}" = set; then : enableval=$enable_silent_rules; fi case $enable_silent_rules in # ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=0;; esac am_make=${MAKE-make} { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $am_make supports nested variables" >&5 $as_echo_n "checking whether $am_make supports nested variables... " >&6; } if ${am_cv_make_support_nested_variables+:} false; then : $as_echo_n "(cached) " >&6 else if $as_echo 'TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit' | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_make_support_nested_variables" >&5 $as_echo "$am_cv_make_support_nested_variables" >&6; } if test $am_cv_make_support_nested_variables = yes; then AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AM_BACKSLASH='\' versioninfo=16:1:1 if test "x$prefix" != "xNONE"; then prefix_wd=`cd $prefix && pwd` srcdir_wd=`cd $srcdir && pwd` wd=`pwd` if test "x$prefix_wd" = "x$srcdir_wd"; then as_fn_error $? "Installation in source directory not supported" "$LINENO" 5 fi if test "x$prefix_wd" = "x$wd"; then as_fn_error $? "Installation in build directory not supported" "$LINENO" 5 fi fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}gcc", so it can be a program name with args. set dummy ${ac_tool_prefix}gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_CC"; then ac_ct_CC=$CC # Extract the first word of "gcc", so it can be a program name with args. set dummy gcc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="gcc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi else CC="$ac_cv_prog_CC" fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}cc", so it can be a program name with args. set dummy ${ac_tool_prefix}cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="${ac_tool_prefix}cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi fi if test -z "$CC"; then # Extract the first word of "cc", so it can be a program name with args. set dummy cc; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else ac_prog_rejected=no as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then if test "$as_dir/$ac_word$ac_exec_ext" = "/usr/ucb/cc"; then ac_prog_rejected=yes continue fi ac_cv_prog_CC="cc" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS if test $ac_prog_rejected = yes; then # We found a bogon in the path, so make sure we never use it. set dummy $ac_cv_prog_CC shift if test $# != 0; then # We chose a different compiler from the bogus one. # However, it has the same basename, so the bogon will be chosen # first if we set CC to just the basename; use the full file name. shift ac_cv_prog_CC="$as_dir/$ac_word${1+' '}$@" fi fi fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$CC"; then if test -n "$ac_tool_prefix"; then for ac_prog in cl.exe do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CC"; then ac_cv_prog_CC="$CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CC="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CC=$ac_cv_prog_CC if test -n "$CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CC" >&5 $as_echo "$CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CC" && break done fi if test -z "$CC"; then ac_ct_CC=$CC for ac_prog in cl.exe do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CC+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CC"; then ac_cv_prog_ac_ct_CC="$ac_ct_CC" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CC="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CC=$ac_cv_prog_ac_ct_CC if test -n "$ac_ct_CC"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CC" >&5 $as_echo "$ac_ct_CC" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CC" && break done if test "x$ac_ct_CC" = x; then CC="" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CC=$ac_ct_CC fi fi fi test -z "$CC" && { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "no acceptable C compiler found in \$PATH See \`config.log' for more details" "$LINENO" 5; } # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files a.out a.out.dSYM a.exe b.out" # Try to create an executable without -o first, disregard a.out. # It will help us diagnose broken compilers, and finding out an intuition # of exeext. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler works" >&5 $as_echo_n "checking whether the C compiler works... " >&6; } ac_link_default=`$as_echo "$ac_link" | sed 's/ -o *conftest[^ ]*//'` # The possible output files: ac_files="a.out conftest.exe conftest a.exe a_out.exe b.out conftest.*" ac_rmfiles= for ac_file in $ac_files do case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; * ) ac_rmfiles="$ac_rmfiles $ac_file";; esac done rm -f $ac_rmfiles if { { ac_try="$ac_link_default" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link_default") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # Autoconf-2.13 could set the ac_cv_exeext variable to `no'. # So ignore a value of `no', otherwise this would lead to `EXEEXT = no' # in a Makefile. We should not override ac_cv_exeext if it was cached, # so that the user can short-circuit this test for compilers unknown to # Autoconf. for ac_file in $ac_files '' do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; [ab].out ) # We found the default executable, but exeext='' is most # certainly right. break;; *.* ) if test "${ac_cv_exeext+set}" = set && test "$ac_cv_exeext" != no; then :; else ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` fi # We set ac_cv_exeext here because the later test for it is not # safe: cross compilers may not add the suffix if given an `-o' # argument, so we may need to know it at that point already. # Even if this section looks crufty: it has the advantage of # actually working. break;; * ) break;; esac done test "$ac_cv_exeext" = no && ac_cv_exeext= else ac_file='' fi if test -z "$ac_file"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "C compiler cannot create executables See \`config.log' for more details" "$LINENO" 5; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler default output file name" >&5 $as_echo_n "checking for C compiler default output file name... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_file" >&5 $as_echo "$ac_file" >&6; } ac_exeext=$ac_cv_exeext rm -f -r a.out a.out.dSYM a.exe conftest$ac_cv_exeext b.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of executables" >&5 $as_echo_n "checking for suffix of executables... " >&6; } if { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : # If both `conftest.exe' and `conftest' are `present' (well, observable) # catch `conftest.exe'. For instance with Cygwin, `ls conftest' will # work properly (i.e., refer to `conftest.exe'), while it won't with # `rm'. for ac_file in conftest.exe conftest conftest.*; do test -f "$ac_file" || continue case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM | *.o | *.obj ) ;; *.* ) ac_cv_exeext=`expr "$ac_file" : '[^.]*\(\..*\)'` break;; * ) break;; esac done else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of executables: cannot compile and link See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest conftest$ac_cv_exeext { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_exeext" >&5 $as_echo "$ac_cv_exeext" >&6; } rm -f conftest.$ac_ext EXEEXT=$ac_cv_exeext ac_exeext=$EXEEXT cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { FILE *f = fopen ("conftest.out", "w"); return ferror (f) || fclose (f) != 0; ; return 0; } _ACEOF ac_clean_files="$ac_clean_files conftest.out" # Check that the compiler produces executables we can run. If not, either # the compiler is broken, or we cross compile. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are cross compiling" >&5 $as_echo_n "checking whether we are cross compiling... " >&6; } if test "$cross_compiling" != yes; then { { ac_try="$ac_link" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_link") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if { ac_try='./conftest$ac_cv_exeext' { { case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_try") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; }; then cross_compiling=no else if test "$cross_compiling" = maybe; then cross_compiling=yes else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot run C compiled programs. If you meant to cross compile, use \`--host'. See \`config.log' for more details" "$LINENO" 5; } fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $cross_compiling" >&5 $as_echo "$cross_compiling" >&6; } rm -f conftest.$ac_ext conftest$ac_cv_exeext conftest.out ac_clean_files=$ac_clean_files_save { $as_echo "$as_me:${as_lineno-$LINENO}: checking for suffix of object files" >&5 $as_echo_n "checking for suffix of object files... " >&6; } if ${ac_cv_objext+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF rm -f conftest.o conftest.obj if { { ac_try="$ac_compile" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compile") 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then : for ac_file in conftest.o conftest.obj conftest.*; do test -f "$ac_file" || continue; case $ac_file in *.$ac_ext | *.xcoff | *.tds | *.d | *.pdb | *.xSYM | *.bb | *.bbg | *.map | *.inf | *.dSYM ) ;; *) ac_cv_objext=`expr "$ac_file" : '.*\.\(.*\)'` break;; esac done else $as_echo "$as_me: failed program was:" >&5 sed 's/^/| /' conftest.$ac_ext >&5 { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "cannot compute suffix of object files: cannot compile See \`config.log' for more details" "$LINENO" 5; } fi rm -f conftest.$ac_cv_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_objext" >&5 $as_echo "$ac_cv_objext" >&6; } OBJEXT=$ac_cv_objext ac_objext=$OBJEXT { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C compiler" >&5 $as_echo_n "checking whether we are using the GNU C compiler... " >&6; } if ${ac_cv_c_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_c_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_c_compiler_gnu" >&5 $as_echo "$ac_cv_c_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GCC=yes else GCC= fi ac_test_CFLAGS=${CFLAGS+set} ac_save_CFLAGS=$CFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC accepts -g" >&5 $as_echo_n "checking whether $CC accepts -g... " >&6; } if ${ac_cv_prog_cc_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_c_werror_flag=$ac_c_werror_flag ac_c_werror_flag=yes ac_cv_prog_cc_g=no CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes else CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : else ac_c_werror_flag=$ac_save_c_werror_flag CFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_c_werror_flag=$ac_save_c_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_g" >&5 $as_echo "$ac_cv_prog_cc_g" >&6; } if test "$ac_test_CFLAGS" = set; then CFLAGS=$ac_save_CFLAGS elif test $ac_cv_prog_cc_g = yes; then if test "$GCC" = yes; then CFLAGS="-g -O2" else CFLAGS="-g" fi else if test "$GCC" = yes; then CFLAGS="-O2" else CFLAGS= fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $CC option to accept ISO C89" >&5 $as_echo_n "checking for $CC option to accept ISO C89... " >&6; } if ${ac_cv_prog_cc_c89+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_prog_cc_c89=no ac_save_CC=$CC cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include struct stat; /* Most of the following tests are stolen from RCS 5.7's src/conf.sh. */ struct buf { int x; }; FILE * (*rcsopen) (struct buf *, struct stat *, int); static char *e (p, i) char **p; int i; { return p[i]; } static char *f (char * (*g) (char **, int), char **p, ...) { char *s; va_list v; va_start (v,p); s = g (p, va_arg (v,int)); va_end (v); return s; } /* OSF 4.0 Compaq cc is some sort of almost-ANSI by default. It has function prototypes and stuff, but not '\xHH' hex character constants. These don't provoke an error unfortunately, instead are silently treated as 'x'. The following induces an error, until -std is added to get proper ANSI mode. Curiously '\x00'!='x' always comes out true, for an array size at least. It's necessary to write '\x00'==0 to get something that's true only with -std. */ int osf4_cc_array ['\x00' == 0 ? 1 : -1]; /* IBM C 6 for AIX is almost-ANSI by default, but it replaces macro parameters inside strings and character constants. */ #define FOO(x) 'x' int xlc6_cc_array[FOO(a) == 'x' ? 1 : -1]; int test (int i, double x); struct s1 {int (*f) (int a);}; struct s2 {int (*f) (double a);}; int pairnames (int, char **, FILE *(*)(struct buf *, struct stat *, int), int, int); int argc; char **argv; int main () { return f (e, argv, 0) != argv[0] || f (e, argv, 1) != argv[1]; ; return 0; } _ACEOF for ac_arg in '' -qlanglvl=extc89 -qlanglvl=ansi -std \ -Ae "-Aa -D_HPUX_SOURCE" "-Xc -D__EXTENSIONS__" do CC="$ac_save_CC $ac_arg" if ac_fn_c_try_compile "$LINENO"; then : ac_cv_prog_cc_c89=$ac_arg fi rm -f core conftest.err conftest.$ac_objext test "x$ac_cv_prog_cc_c89" != "xno" && break done rm -f conftest.$ac_ext CC=$ac_save_CC fi # AC_CACHE_VAL case "x$ac_cv_prog_cc_c89" in x) { $as_echo "$as_me:${as_lineno-$LINENO}: result: none needed" >&5 $as_echo "none needed" >&6; } ;; xno) { $as_echo "$as_me:${as_lineno-$LINENO}: result: unsupported" >&5 $as_echo "unsupported" >&6; } ;; *) CC="$CC $ac_cv_prog_cc_c89" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cc_c89" >&5 $as_echo "$ac_cv_prog_cc_c89" >&6; } ;; esac if test "x$ac_cv_prog_cc_c89" != xno; then : fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CC understands -c and -o together" >&5 $as_echo_n "checking whether $CC understands -c and -o together... " >&6; } if ${am_cv_prog_cc_c_o+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF # Make sure it works both with $CC and with simple cc. # Following AC_PROG_CC_C_O, we do the test twice because some # compilers refuse to overwrite an existing .o file with -o, # though they will create one. am_cv_prog_cc_c_o=yes for am_i in 1 2; do if { echo "$as_me:$LINENO: $CC -c conftest.$ac_ext -o conftest2.$ac_objext" >&5 ($CC -c conftest.$ac_ext -o conftest2.$ac_objext) >&5 2>&5 ac_status=$? echo "$as_me:$LINENO: \$? = $ac_status" >&5 (exit $ac_status); } \ && test -f conftest2.$ac_objext; then : OK else am_cv_prog_cc_c_o=no break fi done rm -f core conftest* unset am_i fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_prog_cc_c_o" >&5 $as_echo "$am_cv_prog_cc_c_o" >&6; } if test "$am_cv_prog_cc_c_o" != yes; then # Losing compiler, so override with the script. # FIXME: It is wrong to rewrite CC. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__CC in this case, # and then we could set am__CC="\$(top_srcdir)/compile \$(CC)" CC="$am_aux_dir/compile $CC" fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu DEPDIR="${am__leading_dot}deps" ac_config_commands="$ac_config_commands depfiles" am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for style of include used by $am_make" >&5 $as_echo_n "checking for style of include used by $am_make... " >&6; } am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $_am_result" >&5 $as_echo "$_am_result" >&6; } rm -f confinc confmf # Check whether --enable-dependency-tracking was given. if test "${enable_dependency_tracking+set}" = set; then : enableval=$enable_dependency_tracking; fi if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi if test "x$enable_dependency_tracking" != xno; then AMDEP_TRUE= AMDEP_FALSE='#' else AMDEP_TRUE='#' AMDEP_FALSE= fi depcc="$CC" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CC_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CC_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CC_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CC_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CC_dependencies_compiler_type" >&5 $as_echo "$am_cv_CC_dependencies_compiler_type" >&6; } CCDEPMODE=depmode=$am_cv_CC_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CC_dependencies_compiler_type" = gcc3; then am__fastdepCC_TRUE= am__fastdepCC_FALSE='#' else am__fastdepCC_TRUE='#' am__fastdepCC_FALSE= fi ac_ext=cpp ac_cpp='$CXXCPP $CPPFLAGS' ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_cxx_compiler_gnu if test -z "$CXX"; then if test -n "$CCC"; then CXX=$CCC else if test -n "$ac_tool_prefix"; then for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_CXX+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$CXX"; then ac_cv_prog_CXX="$CXX" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_CXX="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi CXX=$ac_cv_prog_CXX if test -n "$CXX"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CXX" >&5 $as_echo "$CXX" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$CXX" && break done fi if test -z "$CXX"; then ac_ct_CXX=$CXX for ac_prog in g++ c++ gpp aCC CC cxx cc++ cl.exe FCC KCC RCC xlC_r xlC do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_CXX+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_CXX"; then ac_cv_prog_ac_ct_CXX="$ac_ct_CXX" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_CXX="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_CXX=$ac_cv_prog_ac_ct_CXX if test -n "$ac_ct_CXX"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_CXX" >&5 $as_echo "$ac_ct_CXX" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_CXX" && break done if test "x$ac_ct_CXX" = x; then CXX="g++" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac CXX=$ac_ct_CXX fi fi fi fi # Provide some information about the compiler. $as_echo "$as_me:${as_lineno-$LINENO}: checking for C++ compiler version" >&5 set X $ac_compile ac_compiler=$2 for ac_option in --version -v -V -qversion; do { { ac_try="$ac_compiler $ac_option >&5" case "(($ac_try" in *\"* | *\`* | *\\*) ac_try_echo=\$ac_try;; *) ac_try_echo=$ac_try;; esac eval ac_try_echo="\"\$as_me:${as_lineno-$LINENO}: $ac_try_echo\"" $as_echo "$ac_try_echo"; } >&5 (eval "$ac_compiler $ac_option >&5") 2>conftest.err ac_status=$? if test -s conftest.err; then sed '10a\ ... rest of stderr output deleted ... 10q' conftest.err >conftest.er1 cat conftest.er1 >&5 fi rm -f conftest.er1 conftest.err $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } done { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether we are using the GNU C++ compiler" >&5 $as_echo_n "checking whether we are using the GNU C++ compiler... " >&6; } if ${ac_cv_cxx_compiler_gnu+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #ifndef __GNUC__ choke me #endif ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : ac_compiler_gnu=yes else ac_compiler_gnu=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cv_cxx_compiler_gnu=$ac_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_cxx_compiler_gnu" >&5 $as_echo "$ac_cv_cxx_compiler_gnu" >&6; } if test $ac_compiler_gnu = yes; then GXX=yes else GXX= fi ac_test_CXXFLAGS=${CXXFLAGS+set} ac_save_CXXFLAGS=$CXXFLAGS { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether $CXX accepts -g" >&5 $as_echo_n "checking whether $CXX accepts -g... " >&6; } if ${ac_cv_prog_cxx_g+:} false; then : $as_echo_n "(cached) " >&6 else ac_save_cxx_werror_flag=$ac_cxx_werror_flag ac_cxx_werror_flag=yes ac_cv_prog_cxx_g=no CXXFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : ac_cv_prog_cxx_g=yes else CXXFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : else ac_cxx_werror_flag=$ac_save_cxx_werror_flag CXXFLAGS="-g" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : ac_cv_prog_cxx_g=yes fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext ac_cxx_werror_flag=$ac_save_cxx_werror_flag fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_prog_cxx_g" >&5 $as_echo "$ac_cv_prog_cxx_g" >&6; } if test "$ac_test_CXXFLAGS" = set; then CXXFLAGS=$ac_save_CXXFLAGS elif test $ac_cv_prog_cxx_g = yes; then if test "$GXX" = yes; then CXXFLAGS="-g -O2" else CXXFLAGS="-g" fi else if test "$GXX" = yes; then CXXFLAGS="-O2" else CXXFLAGS= fi fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu depcc="$CXX" am_compiler_list= { $as_echo "$as_me:${as_lineno-$LINENO}: checking dependency style of $depcc" >&5 $as_echo_n "checking dependency style of $depcc... " >&6; } if ${am_cv_CXX_dependencies_compiler_type+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_CXX_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n 's/^#*\([a-zA-Z0-9]*\))$/\1/p' < ./depcomp` fi am__universal=false case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_CXX_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_CXX_dependencies_compiler_type=none fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $am_cv_CXX_dependencies_compiler_type" >&5 $as_echo "$am_cv_CXX_dependencies_compiler_type" >&6; } CXXDEPMODE=depmode=$am_cv_CXX_dependencies_compiler_type if test "x$enable_dependency_tracking" != xno \ && test "$am_cv_CXX_dependencies_compiler_type" = gcc3; then am__fastdepCXX_TRUE= am__fastdepCXX_FALSE='#' else am__fastdepCXX_TRUE='#' am__fastdepCXX_FALSE= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler vendor" >&5 $as_echo_n "checking for C compiler vendor... " >&6; } if ${ax_cv_c_compiler_vendor+:} false; then : $as_echo_n "(cached) " >&6 else ax_cv_c_compiler_vendor=unknown # note: don't check for gcc first since some other compilers define __GNUC__ for ventest in intel:__ICC,__ECC,__INTEL_COMPILER ibm:__xlc__,__xlC__,__IBMC__,__IBMCPP__ pathscale:__PATHCC__,__PATHSCALE__ clang:__clang__ gnu:__GNUC__ sun:__SUNPRO_C,__SUNPRO_CC hp:__HP_cc,__HP_aCC dec:__DECC,__DECCXX,__DECC_VER,__DECCXX_VER borland:__BORLANDC__,__TURBOC__ comeau:__COMO__ cray:_CRAYC kai:__KCC lcc:__LCC__ metrowerks:__MWERKS__ sgi:__sgi,sgi microsoft:_MSC_VER watcom:__WATCOMC__ portland:__PGI; do vencpp="defined("`echo $ventest | cut -d: -f2 | sed 's/,/) || defined(/g'`")" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #if !($vencpp) thisisanerror; #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_c_compiler_vendor=`echo $ventest | cut -d: -f1`; break fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_c_compiler_vendor" >&5 $as_echo "$ax_cv_c_compiler_vendor" >&6; } # Make sure we can run config.sub. $SHELL "$ac_aux_dir/config.sub" sun4 >/dev/null 2>&1 || as_fn_error $? "cannot run $SHELL $ac_aux_dir/config.sub" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking build system type" >&5 $as_echo_n "checking build system type... " >&6; } if ${ac_cv_build+:} false; then : $as_echo_n "(cached) " >&6 else ac_build_alias=$build_alias test "x$ac_build_alias" = x && ac_build_alias=`$SHELL "$ac_aux_dir/config.guess"` test "x$ac_build_alias" = x && as_fn_error $? "cannot guess build type; you must specify one" "$LINENO" 5 ac_cv_build=`$SHELL "$ac_aux_dir/config.sub" $ac_build_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $ac_build_alias failed" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_build" >&5 $as_echo "$ac_cv_build" >&6; } case $ac_cv_build in *-*-*) ;; *) as_fn_error $? "invalid value of canonical build" "$LINENO" 5;; esac build=$ac_cv_build ac_save_IFS=$IFS; IFS='-' set x $ac_cv_build shift build_cpu=$1 build_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: build_os=$* IFS=$ac_save_IFS case $build_os in *\ *) build_os=`echo "$build_os" | sed 's/ /-/g'`;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking host system type" >&5 $as_echo_n "checking host system type... " >&6; } if ${ac_cv_host+:} false; then : $as_echo_n "(cached) " >&6 else if test "x$host_alias" = x; then ac_cv_host=$ac_cv_build else ac_cv_host=`$SHELL "$ac_aux_dir/config.sub" $host_alias` || as_fn_error $? "$SHELL $ac_aux_dir/config.sub $host_alias failed" "$LINENO" 5 fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_host" >&5 $as_echo "$ac_cv_host" >&6; } case $ac_cv_host in *-*-*) ;; *) as_fn_error $? "invalid value of canonical host" "$LINENO" 5;; esac host=$ac_cv_host ac_save_IFS=$IFS; IFS='-' set x $ac_cv_host shift host_cpu=$1 host_vendor=$2 shift; shift # Remember, the first character of IFS is used to create $*, # except with old shells: host_os=$* IFS=$ac_save_IFS case $host_os in *\ *) host_os=`echo "$host_os" | sed 's/ /-/g'`;; esac # Check whether --enable-portable-binary was given. if test "${enable_portable_binary+set}" = set; then : enableval=$enable_portable_binary; acx_maxopt_portable=$withval else acx_maxopt_portable=no fi # Try to determine "good" native compiler flags if none specified via CFLAGS if test "$ac_test_CFLAGS" != "set"; then CFLAGS="" case $ax_cv_c_compiler_vendor in dec) CFLAGS="-newc -w0 -O5 -ansi_alias -ansi_args -fp_reorder -tune host" if test "x$acx_maxopt_portable" = xno; then CFLAGS="$CFLAGS -arch host" fi;; sun) CFLAGS="-native -fast -xO5 -dalign" if test "x$acx_maxopt_portable" = xyes; then CFLAGS="$CFLAGS -xarch=generic" fi;; hp) CFLAGS="+Oall +Optrs_ansi +DSnative" if test "x$acx_maxopt_portable" = xyes; then CFLAGS="$CFLAGS +DAportable" fi;; ibm) if test "x$acx_maxopt_portable" = xno; then xlc_opt="-qarch=auto -qtune=auto" else xlc_opt="-qtune=auto" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts $xlc_opt" >&5 $as_echo_n "checking whether C compiler accepts $xlc_opt... " >&6; } ax_save_FLAGS=$CFLAGS CFLAGS="$xlc_opt" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval `$as_echo "ax_cv_c_flags_$xlc_opt" | $as_tr_sh`=yes else eval `$as_echo "ax_cv_c_flags_$xlc_opt" | $as_tr_sh`=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS eval ax_check_compiler_flags=$`$as_echo "ax_cv_c_flags_$xlc_opt" | $as_tr_sh` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then CFLAGS="-O3 -qansialias -w $xlc_opt" else CFLAGS="-O3 -qansialias -w" echo "******************************************************" echo "* You seem to have the IBM C compiler. It is *" echo "* recommended for best performance that you use: *" echo "* *" echo "* CFLAGS=-O3 -qarch=xxx -qtune=xxx -qansialias -w *" echo "* ^^^ ^^^ *" echo "* where xxx is pwr2, pwr3, 604, or whatever kind of *" echo "* CPU you have. (Set the CFLAGS environment var. *" echo "* and re-run configure.) For more info, man cc. *" echo "******************************************************" fi ;; intel) CFLAGS="-O3 -ansi_alias" if test "x$acx_maxopt_portable" = xno; then icc_archflag=unknown icc_flags="" case $host_cpu in i686*|x86_64*) # icc accepts gcc assembly syntax, so these should work: ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for x86 cpuid 0 output" >&5 $as_echo_n "checking for x86 cpuid 0 output... " >&6; } if ${ax_cv_gcc_x86_cpuid_0+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ax_cv_gcc_x86_cpuid_0=unknown else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int op = 0, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ax_cv_gcc_x86_cpuid_0=`cat conftest_cpuid`; rm -f conftest_cpuid else ax_cv_gcc_x86_cpuid_0=unknown; rm -f conftest_cpuid fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_x86_cpuid_0" >&5 $as_echo "$ax_cv_gcc_x86_cpuid_0" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for x86 cpuid 1 output" >&5 $as_echo_n "checking for x86 cpuid 1 output... " >&6; } if ${ax_cv_gcc_x86_cpuid_1+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ax_cv_gcc_x86_cpuid_1=unknown else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int op = 1, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ax_cv_gcc_x86_cpuid_1=`cat conftest_cpuid`; rm -f conftest_cpuid else ax_cv_gcc_x86_cpuid_1=unknown; rm -f conftest_cpuid fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_x86_cpuid_1" >&5 $as_echo "$ax_cv_gcc_x86_cpuid_1" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu case $ax_cv_gcc_x86_cpuid_0 in # see AX_GCC_ARCHFLAG *:756e6547:*:*) # Intel case $ax_cv_gcc_x86_cpuid_1 in *6a?:*[234]:*:*|*6[789b]?:*:*:*) icc_flags="-xK";; *f3[347]:*:*:*|*f41347:*:*:*) icc_flags="-xP -xN -xW -xK";; *f??:*:*:*) icc_flags="-xN -xW -xK";; esac ;; esac ;; esac if test "x$icc_flags" != x; then for flag in $icc_flags; do { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts $flag" >&5 $as_echo_n "checking whether C compiler accepts $flag... " >&6; } ax_save_FLAGS=$CFLAGS CFLAGS="$flag" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval `$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh`=yes else eval `$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh`=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS eval ax_check_compiler_flags=$`$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then icc_archflag=$flag; break else : fi done fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for icc architecture flag" >&5 $as_echo_n "checking for icc architecture flag... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $icc_archflag" >&5 $as_echo "$icc_archflag" >&6; } if test "x$icc_archflag" != xunknown; then CFLAGS="$CFLAGS $icc_archflag" fi fi ;; gnu) # default optimization flags for gcc on all systems CFLAGS="-O3 -fomit-frame-pointer" # -malign-double for x86 systems { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts -malign-double" >&5 $as_echo_n "checking whether C compiler accepts -malign-double... " >&6; } if ${ax_cv_c_flags__malign_double+:} false; then : $as_echo_n "(cached) " >&6 else ax_save_FLAGS=$CFLAGS CFLAGS="-malign-double" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_c_flags__malign_double=yes else ax_cv_c_flags__malign_double=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS fi eval ax_check_compiler_flags=$ax_cv_c_flags__malign_double { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then CFLAGS="$CFLAGS -malign-double" else : fi # -fstrict-aliasing for gcc-2.95+ { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts -fstrict-aliasing" >&5 $as_echo_n "checking whether C compiler accepts -fstrict-aliasing... " >&6; } if ${ax_cv_c_flags__fstrict_aliasing+:} false; then : $as_echo_n "(cached) " >&6 else ax_save_FLAGS=$CFLAGS CFLAGS="-fstrict-aliasing" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_c_flags__fstrict_aliasing=yes else ax_cv_c_flags__fstrict_aliasing=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS fi eval ax_check_compiler_flags=$ax_cv_c_flags__fstrict_aliasing { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then CFLAGS="$CFLAGS -fstrict-aliasing" else : fi # note that we enable "unsafe" fp optimization with other compilers, too { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts -ffast-math" >&5 $as_echo_n "checking whether C compiler accepts -ffast-math... " >&6; } if ${ax_cv_c_flags__ffast_math+:} false; then : $as_echo_n "(cached) " >&6 else ax_save_FLAGS=$CFLAGS CFLAGS="-ffast-math" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_c_flags__ffast_math=yes else ax_cv_c_flags__ffast_math=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS fi eval ax_check_compiler_flags=$ax_cv_c_flags__ffast_math { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then CFLAGS="$CFLAGS -ffast-math" else : fi # Check whether --with-gcc-arch was given. if test "${with_gcc_arch+set}" = set; then : withval=$with_gcc_arch; ax_gcc_arch=$withval else ax_gcc_arch=yes fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for gcc architecture flag" >&5 $as_echo_n "checking for gcc architecture flag... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: " >&5 $as_echo "" >&6; } if ${ax_cv_gcc_archflag+:} false; then : $as_echo_n "(cached) " >&6 else ax_cv_gcc_archflag="unknown" if test "$GCC" = yes; then if test "x$ax_gcc_arch" = xyes; then ax_gcc_arch="" if test "$cross_compiling" = no; then case $host_cpu in i[3456]86*|x86_64*) # use cpuid codes, in part from x86info-1.7 by D. Jones ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for x86 cpuid 0 output" >&5 $as_echo_n "checking for x86 cpuid 0 output... " >&6; } if ${ax_cv_gcc_x86_cpuid_0+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ax_cv_gcc_x86_cpuid_0=unknown else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int op = 0, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ax_cv_gcc_x86_cpuid_0=`cat conftest_cpuid`; rm -f conftest_cpuid else ax_cv_gcc_x86_cpuid_0=unknown; rm -f conftest_cpuid fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_x86_cpuid_0" >&5 $as_echo "$ax_cv_gcc_x86_cpuid_0" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for x86 cpuid 1 output" >&5 $as_echo_n "checking for x86 cpuid 1 output... " >&6; } if ${ax_cv_gcc_x86_cpuid_1+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ax_cv_gcc_x86_cpuid_1=unknown else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int op = 1, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ax_cv_gcc_x86_cpuid_1=`cat conftest_cpuid`; rm -f conftest_cpuid else ax_cv_gcc_x86_cpuid_1=unknown; rm -f conftest_cpuid fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_x86_cpuid_1" >&5 $as_echo "$ax_cv_gcc_x86_cpuid_1" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu case $ax_cv_gcc_x86_cpuid_0 in *:756e6547:*:*) # Intel case $ax_cv_gcc_x86_cpuid_1 in *5[48]?:*:*:*) ax_gcc_arch="pentium-mmx pentium" ;; *5??:*:*:*) ax_gcc_arch=pentium ;; *6[3456]?:*:*:*) ax_gcc_arch="pentium2 pentiumpro" ;; *6a?:*[01]:*:*) ax_gcc_arch="pentium2 pentiumpro" ;; *6a?:*[234]:*:*) ax_gcc_arch="pentium3 pentiumpro" ;; *6[9d]?:*:*:*) ax_gcc_arch="pentium-m pentium3 pentiumpro" ;; *6[78b]?:*:*:*) ax_gcc_arch="pentium3 pentiumpro" ;; *6??:*:*:*) ax_gcc_arch=pentiumpro ;; *f3[347]:*:*:*|*f41347:*:*:*) case $host_cpu in x86_64*) ax_gcc_arch="nocona pentium4 pentiumpro" ;; *) ax_gcc_arch="prescott pentium4 pentiumpro" ;; esac ;; *f??:*:*:*) ax_gcc_arch="pentium4 pentiumpro";; esac ;; *:68747541:*:*) # AMD case $ax_cv_gcc_x86_cpuid_1 in *5[67]?:*:*:*) ax_gcc_arch=k6 ;; *5[8d]?:*:*:*) ax_gcc_arch="k6-2 k6" ;; *5[9]?:*:*:*) ax_gcc_arch="k6-3 k6" ;; *60?:*:*:*) ax_gcc_arch=k7 ;; *6[12]?:*:*:*) ax_gcc_arch="athlon k7" ;; *6[34]?:*:*:*) ax_gcc_arch="athlon-tbird k7" ;; *67?:*:*:*) ax_gcc_arch="athlon-4 athlon k7" ;; *6[68a]?:*:*:*) ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for x86 cpuid 0x80000006 output" >&5 $as_echo_n "checking for x86 cpuid 0x80000006 output... " >&6; } if ${ax_cv_gcc_x86_cpuid_0x80000006+:} false; then : $as_echo_n "(cached) " >&6 else if test "$cross_compiling" = yes; then : ax_cv_gcc_x86_cpuid_0x80000006=unknown else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int op = 0x80000006, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : ax_cv_gcc_x86_cpuid_0x80000006=`cat conftest_cpuid`; rm -f conftest_cpuid else ax_cv_gcc_x86_cpuid_0x80000006=unknown; rm -f conftest_cpuid fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_x86_cpuid_0x80000006" >&5 $as_echo "$ax_cv_gcc_x86_cpuid_0x80000006" >&6; } ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # L2 cache size case $ax_cv_gcc_x86_cpuid_0x80000006 in *:*:*[1-9a-f]??????:*) # (L2 = ecx >> 16) >= 256 ax_gcc_arch="athlon-xp athlon-4 athlon k7" ;; *) ax_gcc_arch="athlon-4 athlon k7" ;; esac ;; *f[4cef8b]?:*:*:*) ax_gcc_arch="athlon64 k8" ;; *f5?:*:*:*) ax_gcc_arch="opteron k8" ;; *f7?:*:*:*) ax_gcc_arch="athlon-fx opteron k8" ;; *f??:*:*:*) ax_gcc_arch="k8" ;; esac ;; *:746e6543:*:*) # IDT case $ax_cv_gcc_x86_cpuid_1 in *54?:*:*:*) ax_gcc_arch=winchip-c6 ;; *58?:*:*:*) ax_gcc_arch=winchip2 ;; *6[78]?:*:*:*) ax_gcc_arch=c3 ;; *69?:*:*:*) ax_gcc_arch="c3-2 c3" ;; esac ;; esac if test x"$ax_gcc_arch" = x; then # fallback case $host_cpu in i586*) ax_gcc_arch=pentium ;; i686*) ax_gcc_arch=pentiumpro ;; esac fi ;; sparc*) # Extract the first word of "prtdiag", so it can be a program name with args. set dummy prtdiag; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_path_PRTDIAG+:} false; then : $as_echo_n "(cached) " >&6 else case $PRTDIAG in [\\/]* | ?:[\\/]*) ac_cv_path_PRTDIAG="$PRTDIAG" # Let the user override the test with a path. ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR as_dummy="$PATH:/usr/platform/`uname -i`/sbin/:/usr/platform/`uname -m`/sbin/" for as_dir in $as_dummy do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_path_PRTDIAG="$as_dir/$ac_word$ac_exec_ext" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS test -z "$ac_cv_path_PRTDIAG" && ac_cv_path_PRTDIAG="prtdiag" ;; esac fi PRTDIAG=$ac_cv_path_PRTDIAG if test -n "$PRTDIAG"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $PRTDIAG" >&5 $as_echo "$PRTDIAG" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi cputype=`(((grep cpu /proc/cpuinfo | cut -d: -f2) ; ($PRTDIAG -v |grep -i sparc) ; grep -i cpu /var/run/dmesg.boot ) | head -n 1) 2> /dev/null` cputype=`echo "$cputype" | tr -d ' -' |tr $as_cr_LETTERS $as_cr_letters` case $cputype in *ultrasparciv*) ax_gcc_arch="ultrasparc4 ultrasparc3 ultrasparc v9" ;; *ultrasparciii*) ax_gcc_arch="ultrasparc3 ultrasparc v9" ;; *ultrasparc*) ax_gcc_arch="ultrasparc v9" ;; *supersparc*|*tms390z5[05]*) ax_gcc_arch="supersparc v8" ;; *hypersparc*|*rt62[056]*) ax_gcc_arch="hypersparc v8" ;; *cypress*) ax_gcc_arch=cypress ;; esac ;; alphaev5) ax_gcc_arch=ev5 ;; alphaev56) ax_gcc_arch=ev56 ;; alphapca56) ax_gcc_arch="pca56 ev56" ;; alphapca57) ax_gcc_arch="pca57 pca56 ev56" ;; alphaev6) ax_gcc_arch=ev6 ;; alphaev67) ax_gcc_arch=ev67 ;; alphaev68) ax_gcc_arch="ev68 ev67" ;; alphaev69) ax_gcc_arch="ev69 ev68 ev67" ;; alphaev7) ax_gcc_arch="ev7 ev69 ev68 ev67" ;; alphaev79) ax_gcc_arch="ev79 ev7 ev69 ev68 ev67" ;; powerpc*) cputype=`((grep cpu /proc/cpuinfo | head -n 1 | cut -d: -f2 | cut -d, -f1 | sed 's/ //g') ; /usr/bin/machine ; /bin/machine; grep CPU /var/run/dmesg.boot | head -n 1 | cut -d" " -f2) 2> /dev/null` cputype=`echo $cputype | sed -e 's/ppc//g;s/ *//g'` case $cputype in *750*) ax_gcc_arch="750 G3" ;; *740[0-9]*) ax_gcc_arch="$cputype 7400 G4" ;; *74[4-5][0-9]*) ax_gcc_arch="$cputype 7450 G4" ;; *74[0-9][0-9]*) ax_gcc_arch="$cputype G4" ;; *970*) ax_gcc_arch="970 G5 power4";; *POWER4*|*power4*|*gq*) ax_gcc_arch="power4 970";; *POWER5*|*power5*|*gr*|*gs*) ax_gcc_arch="power5 power4 970";; 603ev|8240) ax_gcc_arch="$cputype 603e 603";; *) ax_gcc_arch=$cputype ;; esac ax_gcc_arch="$ax_gcc_arch powerpc" ;; esac fi # not cross-compiling fi # guess arch if test "x$ax_gcc_arch" != x -a "x$ax_gcc_arch" != xno; then for arch in $ax_gcc_arch; do if test "x$acx_maxopt_portable" = xyes; then # if we require portable code flags="-mtune=$arch" # -mcpu=$arch and m$arch generate nonportable code on every arch except # x86. And some other arches (e.g. Alpha) don't accept -mtune. Grrr. case $host_cpu in i*86|x86_64*) flags="$flags -mcpu=$arch -m$arch";; esac else flags="-march=$arch -mcpu=$arch -m$arch" fi for flag in $flags; do { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts $flag" >&5 $as_echo_n "checking whether C compiler accepts $flag... " >&6; } ax_save_FLAGS=$CFLAGS CFLAGS="$flag" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval `$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh`=yes else eval `$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh`=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS eval ax_check_compiler_flags=$`$as_echo "ax_cv_c_flags_$flag" | $as_tr_sh` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then ax_cv_gcc_archflag=$flag; break else : fi done test "x$ax_cv_gcc_archflag" = xunknown || break done fi fi # $GCC=yes fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for gcc architecture flag" >&5 $as_echo_n "checking for gcc architecture flag... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_archflag" >&5 $as_echo "$ax_cv_gcc_archflag" >&6; } if test "x$ax_cv_gcc_archflag" = xunknown; then : else CFLAGS="$CFLAGS $ax_cv_gcc_archflag" fi # drop to -O1 for gcc 4.2 $CC --version | sed -e 's/.* \([0-9][0-9]*\)\.\([0-9][0-9]*\).*/\1 \2/' | (read major minor if test $major -eq 4 -a $minor -eq 2; then exit 0 fi exit 1 ) && CFLAGS="-O1" ;; esac if test -z "$CFLAGS"; then echo "" echo "********************************************************" echo "* WARNING: Don't know the best CFLAGS for this system *" echo "* Use ./configure CFLAGS=... to specify your own flags *" echo "* (otherwise, a default of CFLAGS=-O3 will be used) *" echo "********************************************************" echo "" CFLAGS="-O3" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether C compiler accepts $CFLAGS" >&5 $as_echo_n "checking whether C compiler accepts $CFLAGS... " >&6; } ax_save_FLAGS=$CFLAGS CFLAGS="$CFLAGS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : eval `$as_echo "ax_cv_c_flags_$CFLAGS" | $as_tr_sh`=yes else eval `$as_echo "ax_cv_c_flags_$CFLAGS" | $as_tr_sh`=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext CFLAGS=$ax_save_FLAGS eval ax_check_compiler_flags=$`$as_echo "ax_cv_c_flags_$CFLAGS" | $as_tr_sh` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_check_compiler_flags" >&5 $as_echo "$ax_check_compiler_flags" >&6; } if test "x$ax_check_compiler_flags" = xyes; then : else echo "" echo "********************************************************" echo "* WARNING: The guessed CFLAGS don't seem to work with *" echo "* your compiler. *" echo "* Use ./configure CFLAGS=... to specify your own flags *" echo "********************************************************" echo "" CFLAGS="" fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the compiler supports function __attribute__((__warn_unused_result__))" >&5 $as_echo_n "checking whether the compiler supports function __attribute__((__warn_unused_result__))... " >&6; } if ${ax_cv_gcc_warn_unused_result+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ __attribute__((__warn_unused_result__)) int f(int i) { return i; } int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_gcc_warn_unused_result=yes else ax_cv_gcc_warn_unused_result=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_gcc_warn_unused_result" >&5 $as_echo "$ax_cv_gcc_warn_unused_result" >&6; } if test "$ax_cv_gcc_warn_unused_result" = yes; then $as_echo "#define GCC_WARN_UNUSED_RESULT __attribute__((__warn_unused_result__))" >>confdefs.h fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for __attribute__" >&5 $as_echo_n "checking for __attribute__... " >&6; } if ${ax_cv___attribute__+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include static void foo(void) __attribute__ ((unused)); static void foo(void) { exit(1); } int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv___attribute__=yes else ax_cv___attribute__=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv___attribute__" >&5 $as_echo "$ax_cv___attribute__" >&6; } if test "$ax_cv___attribute__" = "yes"; then $as_echo "#define HAVE___ATTRIBUTE__ 1" >>confdefs.h fi case `pwd` in *\ * | *\ *) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&5 $as_echo "$as_me: WARNING: Libtool does not cope well with whitespace in \`pwd\`" >&2;} ;; esac macro_version='2.4.2.418' macro_revision='2.4.2.418' ltmain=$ac_aux_dir/ltmain.sh # Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\(["`$\\]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to print strings" >&5 $as_echo_n "checking how to print strings... " >&6; } # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "" } case $ECHO in printf*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: printf" >&5 $as_echo "printf" >&6; } ;; print*) { $as_echo "$as_me:${as_lineno-$LINENO}: result: print -r" >&5 $as_echo "print -r" >&6; } ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: cat" >&5 $as_echo "cat" >&6; } ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5 $as_echo_n "checking for a sed that does not truncate output... " >&6; } if ${ac_cv_path_SED+:} false; then : $as_echo_n "(cached) " >&6 else ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for ac_i in 1 2 3 4 5 6 7; do ac_script="$ac_script$as_nl$ac_script" done echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed { ac_script=; unset ac_script;} if test -z "$SED"; then ac_path_SED_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_SED="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_SED" || continue # Check for GNU ac_path_SED and select it if it is found. # Check for GNU $ac_path_SED case `"$ac_path_SED" --version 2>&1` in *GNU*) ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo '' >> "conftest.nl" "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_SED_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_SED="$ac_path_SED" ac_path_SED_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_SED_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_SED"; then as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5 fi else ac_cv_path_SED=$SED fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5 $as_echo "$ac_cv_path_SED" >&6; } SED="$ac_cv_path_SED" rm -f conftest.sed test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for egrep" >&5 $as_echo_n "checking for egrep... " >&6; } if ${ac_cv_path_EGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo a | $GREP -E '(a|b)' >/dev/null 2>&1 then ac_cv_path_EGREP="$GREP -E" else if test -z "$EGREP"; then ac_path_EGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in egrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_EGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_EGREP" || continue # Check for GNU ac_path_EGREP and select it if it is found. # Check for GNU $ac_path_EGREP case `"$ac_path_EGREP" --version 2>&1` in *GNU*) ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'EGREP' >> "conftest.nl" "$ac_path_EGREP" 'EGREP$' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_EGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_EGREP="$ac_path_EGREP" ac_path_EGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_EGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_EGREP"; then as_fn_error $? "no acceptable egrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_EGREP=$EGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_EGREP" >&5 $as_echo "$ac_cv_path_EGREP" >&6; } EGREP="$ac_cv_path_EGREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for fgrep" >&5 $as_echo_n "checking for fgrep... " >&6; } if ${ac_cv_path_FGREP+:} false; then : $as_echo_n "(cached) " >&6 else if echo 'ab*c' | $GREP -F 'ab*c' >/dev/null 2>&1 then ac_cv_path_FGREP="$GREP -F" else if test -z "$FGREP"; then ac_path_FGREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in fgrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_FGREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_FGREP" || continue # Check for GNU ac_path_FGREP and select it if it is found. # Check for GNU $ac_path_FGREP case `"$ac_path_FGREP" --version 2>&1` in *GNU*) ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'FGREP' >> "conftest.nl" "$ac_path_FGREP" FGREP < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_FGREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_FGREP="$ac_path_FGREP" ac_path_FGREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_FGREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_FGREP"; then as_fn_error $? "no acceptable fgrep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_FGREP=$FGREP fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_FGREP" >&5 $as_echo "$ac_cv_path_FGREP" >&6; } FGREP="$ac_cv_path_FGREP" test -z "$GREP" && GREP=grep # Check whether --with-gnu-ld was given. if test "${with_gnu_ld+set}" = set; then : withval=$with_gnu_ld; test no = "$withval" || with_gnu_ld=yes else with_gnu_ld=no fi ac_prog=ld if test yes = "$GCC"; then # Check if gcc -print-prog-name=ld gives a path. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5 $as_echo_n "checking for ld used by $CC... " >&6; } case $host in *-*-mingw*) # gcc leaves a trailing carriage return, which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [\\/]* | ?:[\\/]*) re_direlt='/[^/][^/]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD=$ac_prog ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test yes = "$with_gnu_ld"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5 $as_echo_n "checking for GNU ld... " >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5 $as_echo_n "checking for non-GNU ld... " >&6; } fi if ${lt_cv_path_LD+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$LD"; then lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD=$ac_dir/$ac_prog # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &5 $as_echo "$LD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5 $as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; } if ${lt_cv_prog_gnu_ld+:} false; then : $as_echo_n "(cached) " >&6 else # I'd rather use --version here, but apparently some GNU lds only accept -v. case `$LD -v 2>&1 &5 $as_echo "$lt_cv_prog_gnu_ld" >&6; } with_gnu_ld=$lt_cv_prog_gnu_ld { $as_echo "$as_me:${as_lineno-$LINENO}: checking for BSD- or MS-compatible name lister (nm)" >&5 $as_echo_n "checking for BSD- or MS-compatible name lister (nm)... " >&6; } if ${lt_cv_path_NM+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM=$NM else lt_nm_to_check=${ac_tool_prefix}nm if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. tmp_nm=$ac_dir/$lt_tmp_nm if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then # Check to see if the nm accepts a BSD-compat flag. # Adding the 'sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file case `"$tmp_nm" -B /dev/null 2>&1 | sed '1q'` in */dev/null* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break 2 ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break 2 ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS=$lt_save_ifs done : ${lt_cv_path_NM=no} fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_NM" >&5 $as_echo "$lt_cv_path_NM" >&6; } if test no != "$lt_cv_path_NM"; then NM=$lt_cv_path_NM else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else if test -n "$ac_tool_prefix"; then for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DUMPBIN"; then ac_cv_prog_DUMPBIN="$DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DUMPBIN="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DUMPBIN=$ac_cv_prog_DUMPBIN if test -n "$DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DUMPBIN" >&5 $as_echo "$DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$DUMPBIN" && break done fi if test -z "$DUMPBIN"; then ac_ct_DUMPBIN=$DUMPBIN for ac_prog in dumpbin "link -dump" do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DUMPBIN+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DUMPBIN"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_ct_DUMPBIN" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DUMPBIN="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DUMPBIN=$ac_cv_prog_ac_ct_DUMPBIN if test -n "$ac_ct_DUMPBIN"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DUMPBIN" >&5 $as_echo "$ac_ct_DUMPBIN" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_DUMPBIN" && break done if test "x$ac_ct_DUMPBIN" = x; then DUMPBIN=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DUMPBIN=$ac_ct_DUMPBIN fi fi case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols -headers" ;; *) DUMPBIN=: ;; esac fi if test : != "$DUMPBIN"; then NM=$DUMPBIN fi fi test -z "$NM" && NM=nm { $as_echo "$as_me:${as_lineno-$LINENO}: checking the name lister ($NM) interface" >&5 $as_echo_n "checking the name lister ($NM) interface... " >&6; } if ${lt_cv_nm_interface+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&5) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&5) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&5 (eval echo "\"\$as_me:$LINENO: output\"" >&5) cat conftest.out >&5 if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_nm_interface" >&5 $as_echo "$lt_cv_nm_interface" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether ln -s works" >&5 $as_echo_n "checking whether ln -s works... " >&6; } LN_S=$as_ln_s if test "$LN_S" = "ln -s"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no, using $LN_S" >&5 $as_echo "no, using $LN_S" >&6; } fi # find the maximum length of command line arguments { $as_echo "$as_me:${as_lineno-$LINENO}: checking the maximum length of command line arguments" >&5 $as_echo_n "checking the maximum length of command line arguments... " >&6; } if ${lt_cv_sys_max_cmd_len+:} false; then : $as_echo_n "(cached) " >&6 else i=0 teststring=ABCD case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[ ]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len" && \ test undefined != "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test X`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test 17 != "$i" # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac fi if test -n "$lt_cv_sys_max_cmd_len"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sys_max_cmd_len" >&5 $as_echo "$lt_cv_sys_max_cmd_len" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: none" >&5 $as_echo "none" >&6; } fi max_cmd_len=$lt_cv_sys_max_cmd_len : ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to $host format" >&5 $as_echo_n "checking how to convert $build file names to $host format... " >&6; } if ${lt_cv_to_host_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac fi to_host_file_cmd=$lt_cv_to_host_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_host_file_cmd" >&5 $as_echo "$lt_cv_to_host_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to convert $build file names to toolchain format" >&5 $as_echo_n "checking how to convert $build file names to toolchain format... " >&6; } if ${lt_cv_to_tool_file_cmd+:} false; then : $as_echo_n "(cached) " >&6 else #assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac fi to_tool_file_cmd=$lt_cv_to_tool_file_cmd { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_to_tool_file_cmd" >&5 $as_echo "$lt_cv_to_tool_file_cmd" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $LD option to reload object files" >&5 $as_echo_n "checking for $LD option to reload object files... " >&6; } if ${lt_cv_ld_reload_flag+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_reload_flag='-r' fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_reload_flag" >&5 $as_echo "$lt_cv_ld_reload_flag" >&6; } reload_flag=$lt_cv_ld_reload_flag case $reload_flag in "" | " "*) ;; *) reload_flag=" $reload_flag" ;; esac reload_cmds='$LD$reload_flag -o $output$reload_objs' case $host_os in cygwin* | mingw* | pw32* | cegcc*) if test yes != "$GCC"; then reload_cmds=false fi ;; darwin*) if test yes = "$GCC"; then reload_cmds='$LTCC $LTCFLAGS -nostdlib $wl-r -o $output$reload_objs' else reload_cmds='$LD$reload_flag -o $output$reload_objs' fi ;; esac if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}objdump", so it can be a program name with args. set dummy ${ac_tool_prefix}objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OBJDUMP"; then ac_cv_prog_OBJDUMP="$OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OBJDUMP="${ac_tool_prefix}objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OBJDUMP=$ac_cv_prog_OBJDUMP if test -n "$OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OBJDUMP" >&5 $as_echo "$OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OBJDUMP"; then ac_ct_OBJDUMP=$OBJDUMP # Extract the first word of "objdump", so it can be a program name with args. set dummy objdump; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OBJDUMP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OBJDUMP"; then ac_cv_prog_ac_ct_OBJDUMP="$ac_ct_OBJDUMP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OBJDUMP="objdump" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OBJDUMP=$ac_cv_prog_ac_ct_OBJDUMP if test -n "$ac_ct_OBJDUMP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OBJDUMP" >&5 $as_echo "$ac_ct_OBJDUMP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OBJDUMP" = x; then OBJDUMP="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OBJDUMP=$ac_ct_OBJDUMP fi else OBJDUMP="$ac_cv_prog_OBJDUMP" fi test -z "$OBJDUMP" && OBJDUMP=objdump { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to recognize dependent libraries" >&5 $as_echo_n "checking how to recognize dependent libraries... " >&6; } if ${lt_cv_deplibs_check_method+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_file_magic_cmd='$MAGIC_CMD' lt_cv_file_magic_test_file= lt_cv_deplibs_check_method='unknown' # Need to set the preceding variable on all platforms that support # interlibrary dependencies. # 'none' -- dependencies not supported. # 'unknown' -- same as none, but documents that we really don't know. # 'pass_all' -- all dependencies passed with no checks. # 'test_compile' -- check by making test program. # 'file_magic [[regex]]' -- check by looking for files in library path # that responds to the $file_magic_cmd with a given extended regex. # If you have 'file' or equivalent on your system and you're not sure # whether 'pass_all' will *always* work, you probably want this one. case $host_os in aix[4-9]*) lt_cv_deplibs_check_method=pass_all ;; beos*) lt_cv_deplibs_check_method=pass_all ;; bsdi[45]*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib)' lt_cv_file_magic_cmd='/usr/bin/file -L' lt_cv_file_magic_test_file=/shlib/libc.so ;; cygwin*) # func_win32_libid is a shell function defined in ltmain.sh lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' ;; mingw* | pw32*) # Base MSYS/MinGW do not provide the 'file' command needed by # func_win32_libid shell function, so use a weaker test based on 'objdump', # unless we find 'file', for example because we are cross-compiling. if ( file / ) >/dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[3-9]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF-[0-9][0-9]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]' lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|PA-RISC[0-9]\.[0-9]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[3-9]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd* | bitrig*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[^/]+(\.so\.[0-9]+\.[0-9]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [ML]SB (shared object|dynamic lib) M[0-9][0-9]* Version [0-9]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [0-9][0-9]*-bit [LM]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [0-9][0-9]*-bit [LM]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_deplibs_check_method" >&5 $as_echo "$lt_cv_deplibs_check_method" >&6; } file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[\1]\/[\1]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dlltool", so it can be a program name with args. set dummy ${ac_tool_prefix}dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DLLTOOL"; then ac_cv_prog_DLLTOOL="$DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DLLTOOL="${ac_tool_prefix}dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DLLTOOL=$ac_cv_prog_DLLTOOL if test -n "$DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DLLTOOL" >&5 $as_echo "$DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DLLTOOL"; then ac_ct_DLLTOOL=$DLLTOOL # Extract the first word of "dlltool", so it can be a program name with args. set dummy dlltool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DLLTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DLLTOOL"; then ac_cv_prog_ac_ct_DLLTOOL="$ac_ct_DLLTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DLLTOOL="dlltool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DLLTOOL=$ac_cv_prog_ac_ct_DLLTOOL if test -n "$ac_ct_DLLTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DLLTOOL" >&5 $as_echo "$ac_ct_DLLTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DLLTOOL" = x; then DLLTOOL="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DLLTOOL=$ac_ct_DLLTOOL fi else DLLTOOL="$ac_cv_prog_DLLTOOL" fi test -z "$DLLTOOL" && DLLTOOL=dlltool { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to associate runtime and link libraries" >&5 $as_echo_n "checking how to associate runtime and link libraries... " >&6; } if ${lt_cv_sharedlib_from_linklib_cmd+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh; # decide which one to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd=$ECHO ;; esac fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_sharedlib_from_linklib_cmd" >&5 $as_echo "$lt_cv_sharedlib_from_linklib_cmd" >&6; } sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO if test -n "$ac_tool_prefix"; then for ac_prog in ar do # Extract the first word of "$ac_tool_prefix$ac_prog", so it can be a program name with args. set dummy $ac_tool_prefix$ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$AR"; then ac_cv_prog_AR="$AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_AR="$ac_tool_prefix$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi AR=$ac_cv_prog_AR if test -n "$AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $AR" >&5 $as_echo "$AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$AR" && break done fi if test -z "$AR"; then ac_ct_AR=$AR for ac_prog in ar do # Extract the first word of "$ac_prog", so it can be a program name with args. set dummy $ac_prog; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_AR+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_AR"; then ac_cv_prog_ac_ct_AR="$ac_ct_AR" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_AR="$ac_prog" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_AR=$ac_cv_prog_ac_ct_AR if test -n "$ac_ct_AR"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_AR" >&5 $as_echo "$ac_ct_AR" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -n "$ac_ct_AR" && break done if test "x$ac_ct_AR" = x; then AR="false" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac AR=$ac_ct_AR fi fi : ${AR=ar} : ${AR_FLAGS=cru} { $as_echo "$as_me:${as_lineno-$LINENO}: checking for archiver @FILE support" >&5 $as_echo_n "checking for archiver @FILE support... " >&6; } if ${lt_cv_ar_at_file+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ar_at_file=no cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test 0 -eq "$ac_status"; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$lt_ar_try\""; } >&5 (eval $lt_ar_try) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } if test 0 -ne "$ac_status"; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ar_at_file" >&5 $as_echo "$lt_cv_ar_at_file" >&6; } if test no = "$lt_cv_ar_at_file"; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}strip", so it can be a program name with args. set dummy ${ac_tool_prefix}strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$STRIP"; then ac_cv_prog_STRIP="$STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_STRIP="${ac_tool_prefix}strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi STRIP=$ac_cv_prog_STRIP if test -n "$STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $STRIP" >&5 $as_echo "$STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_STRIP"; then ac_ct_STRIP=$STRIP # Extract the first word of "strip", so it can be a program name with args. set dummy strip; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_STRIP+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_STRIP"; then ac_cv_prog_ac_ct_STRIP="$ac_ct_STRIP" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_STRIP="strip" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_STRIP=$ac_cv_prog_ac_ct_STRIP if test -n "$ac_ct_STRIP"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_STRIP" >&5 $as_echo "$ac_ct_STRIP" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_STRIP" = x; then STRIP=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac STRIP=$ac_ct_STRIP fi else STRIP="$ac_cv_prog_STRIP" fi test -z "$STRIP" && STRIP=: if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}ranlib", so it can be a program name with args. set dummy ${ac_tool_prefix}ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$RANLIB"; then ac_cv_prog_RANLIB="$RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_RANLIB="${ac_tool_prefix}ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi RANLIB=$ac_cv_prog_RANLIB if test -n "$RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $RANLIB" >&5 $as_echo "$RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_RANLIB"; then ac_ct_RANLIB=$RANLIB # Extract the first word of "ranlib", so it can be a program name with args. set dummy ranlib; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_RANLIB+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_RANLIB"; then ac_cv_prog_ac_ct_RANLIB="$ac_ct_RANLIB" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_RANLIB="ranlib" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_RANLIB=$ac_cv_prog_ac_ct_RANLIB if test -n "$ac_ct_RANLIB"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_RANLIB" >&5 $as_echo "$ac_ct_RANLIB" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_RANLIB" = x; then RANLIB=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac RANLIB=$ac_ct_RANLIB fi else RANLIB="$ac_cv_prog_RANLIB" fi test -z "$RANLIB" && RANLIB=: # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in bitrig* | openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Check for command to grab the raw symbol name followed by C symbol from nm. { $as_echo "$as_me:${as_lineno-$LINENO}: checking command to parse $NM output from $compiler object" >&5 $as_echo_n "checking command to parse $NM output from $compiler object... " >&6; } if ${lt_cv_sys_global_symbol_pipe+:} false; then : $as_echo_n "(cached) " >&6 else # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[BCDEGRST]' # Regexp to match symbols that can be accessed directly from C. sympat='\([_A-Za-z][_A-Za-z0-9]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[BCDT]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[ABCDGISTW]' ;; hpux*) if test ia64 = "$host_cpu"; then symcode='[ABCDEGRST]' fi ;; irix* | nonstopux*) symcode='[BCDEGRST]' ;; osf*) symcode='[BCDEGQRST]' ;; solaris*) symcode='[BDRT]' ;; sco3.2v5*) symcode='[DT]' ;; sysv4.2uw2*) symcode='[DT]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[ABDT]' ;; sysv4) symcode='[DFNSTU]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[ABCDGIRSTW]' ;; esac if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Gets list of data symbols to import. lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'" # Adjust the below global symbol transforms to fixup imported variables. lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'" lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'" lt_c_name_lib_hook="\ -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\ -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'" else # Disable hooks by default. lt_cv_sys_global_symbol_to_import= lt_cdecl_hook= lt_c_name_hook= lt_c_name_lib_hook= fi # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n"\ $lt_cdecl_hook\ " -e 's/^T .* \(.*\)$/extern int \1();/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n"\ $lt_c_name_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'" # Transform an extracted symbol line into symbol name with lib prefix and # symbol address. lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\ $lt_c_name_lib_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function, # D for any global variable and I for any imported variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK '"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\ " /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\ " /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\ " {split(\$ 0,a,/\||\r/); split(a[2],s)};"\ " s[1]~/^[@?]/{print f,s[1],s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[ ]\($symcode$symcode*\)[ ][ ]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then # Now try to grab the symbols. nlist=conftest.nm if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist\""; } >&5 (eval $NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS=conftstm.$ac_objext CFLAGS="$CFLAGS$lt_prog_compiler_no_builtin_flag" if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s conftest$ac_exeext; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&5 fi else echo "cannot find nm_test_var in $nlist" >&5 fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&5 fi else echo "$progname: failed program was:" >&5 cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test yes = "$pipe_works"; then break else lt_cv_sys_global_symbol_pipe= fi done fi if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: failed" >&5 $as_echo "failed" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: ok" >&5 $as_echo "ok" >&6; } fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[@]FILE' >/dev/null; then nm_file_list_spec='@' fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for sysroot" >&5 $as_echo_n "checking for sysroot... " >&6; } # Check whether --with-sysroot was given. if test "${with_sysroot+set}" = set; then : withval=$with_sysroot; else with_sysroot=no fi lt_sysroot= case $with_sysroot in #( yes) if test yes = "$GCC"; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_sysroot" >&5 $as_echo "$with_sysroot" >&6; } as_fn_error $? "The sysroot must be an absolute path." "$LINENO" 5 ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${lt_sysroot:-no}" >&5 $as_echo "${lt_sysroot:-no}" >&6; } # Check whether --enable-libtool-lock was given. if test "${enable_libtool_lock+set}" = set; then : enableval=$enable_libtool_lock; fi test no = "$enable_libtool_lock" || enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out what ABI is being produced by ac_compile, and set mode # options accordingly. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE=32 ;; *ELF-64*) HPUX_IA64_MODE=64 ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '#line '$LINENO' "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then if test yes = "$lt_cv_prog_gnu_ld"; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; mips64*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '#line '$LINENO' "configure"' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then emul=elf case `/usr/bin/file conftest.$ac_objext` in *32-bit*) emul="${emul}32" ;; *64-bit*) emul="${emul}64" ;; esac case `/usr/bin/file conftest.$ac_objext` in *MSB*) emul="${emul}btsmip" ;; *LSB*) emul="${emul}ltsmip" ;; esac case `/usr/bin/file conftest.$ac_objext` in *N32*) emul="${emul}n32" ;; esac LD="${LD-ld} -m $emul" fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. Note that the listed cases only cover the # situations where additional linker options are needed (such as when # doing 32-bit compilation for a host where ld defaults to 64-bit, or # vice versa); the common cases where no linker options are needed do # not appear in the list. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) case `/usr/bin/file conftest.o` in *x86-64*) LD="${LD-ld} -m elf32_x86_64" ;; *) LD="${LD-ld} -m elf_i386" ;; esac ;; powerpc64le-*linux*) LD="${LD-ld} -m elf32lppclinux" ;; powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; powerpcle-*linux*) LD="${LD-ld} -m elf64lppc" ;; powerpc-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -belf" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the C compiler needs -belf" >&5 $as_echo_n "checking whether the C compiler needs -belf... " >&6; } if ${lt_cv_cc_needs_belf+:} false; then : $as_echo_n "(cached) " >&6 else ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_cc_needs_belf=yes else lt_cv_cc_needs_belf=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_cc_needs_belf" >&5 $as_echo "$lt_cv_cc_needs_belf" >&6; } if test yes != "$lt_cv_cc_needs_belf"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS=$SAVE_CFLAGS fi ;; *-*solaris*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo 'int i;' > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*|x86_64-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD=${LD-ld}_sol2 fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks=$enable_libtool_lock if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}mt", so it can be a program name with args. set dummy ${ac_tool_prefix}mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$MANIFEST_TOOL"; then ac_cv_prog_MANIFEST_TOOL="$MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_MANIFEST_TOOL="${ac_tool_prefix}mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi MANIFEST_TOOL=$ac_cv_prog_MANIFEST_TOOL if test -n "$MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MANIFEST_TOOL" >&5 $as_echo "$MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_MANIFEST_TOOL"; then ac_ct_MANIFEST_TOOL=$MANIFEST_TOOL # Extract the first word of "mt", so it can be a program name with args. set dummy mt; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_MANIFEST_TOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_MANIFEST_TOOL"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="$ac_ct_MANIFEST_TOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_MANIFEST_TOOL="mt" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_MANIFEST_TOOL=$ac_cv_prog_ac_ct_MANIFEST_TOOL if test -n "$ac_ct_MANIFEST_TOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_MANIFEST_TOOL" >&5 $as_echo "$ac_ct_MANIFEST_TOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_MANIFEST_TOOL" = x; then MANIFEST_TOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac MANIFEST_TOOL=$ac_ct_MANIFEST_TOOL fi else MANIFEST_TOOL="$ac_cv_prog_MANIFEST_TOOL" fi test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $MANIFEST_TOOL is a manifest tool" >&5 $as_echo_n "checking if $MANIFEST_TOOL is a manifest tool... " >&6; } if ${lt_cv_path_mainfest_tool+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&5 $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&5 if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_path_mainfest_tool" >&5 $as_echo "$lt_cv_path_mainfest_tool" >&6; } if test yes != "$lt_cv_path_mainfest_tool"; then MANIFEST_TOOL=: fi case $host_os in rhapsody* | darwin*) if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}dsymutil", so it can be a program name with args. set dummy ${ac_tool_prefix}dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$DSYMUTIL"; then ac_cv_prog_DSYMUTIL="$DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_DSYMUTIL="${ac_tool_prefix}dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi DSYMUTIL=$ac_cv_prog_DSYMUTIL if test -n "$DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $DSYMUTIL" >&5 $as_echo "$DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_DSYMUTIL"; then ac_ct_DSYMUTIL=$DSYMUTIL # Extract the first word of "dsymutil", so it can be a program name with args. set dummy dsymutil; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_DSYMUTIL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_DSYMUTIL"; then ac_cv_prog_ac_ct_DSYMUTIL="$ac_ct_DSYMUTIL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_DSYMUTIL="dsymutil" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_DSYMUTIL=$ac_cv_prog_ac_ct_DSYMUTIL if test -n "$ac_ct_DSYMUTIL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_DSYMUTIL" >&5 $as_echo "$ac_ct_DSYMUTIL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_DSYMUTIL" = x; then DSYMUTIL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac DSYMUTIL=$ac_ct_DSYMUTIL fi else DSYMUTIL="$ac_cv_prog_DSYMUTIL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}nmedit", so it can be a program name with args. set dummy ${ac_tool_prefix}nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$NMEDIT"; then ac_cv_prog_NMEDIT="$NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_NMEDIT="${ac_tool_prefix}nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi NMEDIT=$ac_cv_prog_NMEDIT if test -n "$NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $NMEDIT" >&5 $as_echo "$NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_NMEDIT"; then ac_ct_NMEDIT=$NMEDIT # Extract the first word of "nmedit", so it can be a program name with args. set dummy nmedit; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_NMEDIT+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_NMEDIT"; then ac_cv_prog_ac_ct_NMEDIT="$ac_ct_NMEDIT" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_NMEDIT="nmedit" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_NMEDIT=$ac_cv_prog_ac_ct_NMEDIT if test -n "$ac_ct_NMEDIT"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_NMEDIT" >&5 $as_echo "$ac_ct_NMEDIT" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_NMEDIT" = x; then NMEDIT=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac NMEDIT=$ac_ct_NMEDIT fi else NMEDIT="$ac_cv_prog_NMEDIT" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}lipo", so it can be a program name with args. set dummy ${ac_tool_prefix}lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$LIPO"; then ac_cv_prog_LIPO="$LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_LIPO="${ac_tool_prefix}lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi LIPO=$ac_cv_prog_LIPO if test -n "$LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $LIPO" >&5 $as_echo "$LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_LIPO"; then ac_ct_LIPO=$LIPO # Extract the first word of "lipo", so it can be a program name with args. set dummy lipo; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_LIPO+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_LIPO"; then ac_cv_prog_ac_ct_LIPO="$ac_ct_LIPO" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_LIPO="lipo" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_LIPO=$ac_cv_prog_ac_ct_LIPO if test -n "$ac_ct_LIPO"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_LIPO" >&5 $as_echo "$ac_ct_LIPO" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_LIPO" = x; then LIPO=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac LIPO=$ac_ct_LIPO fi else LIPO="$ac_cv_prog_LIPO" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool", so it can be a program name with args. set dummy ${ac_tool_prefix}otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL"; then ac_cv_prog_OTOOL="$OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL="${ac_tool_prefix}otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL=$ac_cv_prog_OTOOL if test -n "$OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL" >&5 $as_echo "$OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL"; then ac_ct_OTOOL=$OTOOL # Extract the first word of "otool", so it can be a program name with args. set dummy otool; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL"; then ac_cv_prog_ac_ct_OTOOL="$ac_ct_OTOOL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL="otool" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL=$ac_cv_prog_ac_ct_OTOOL if test -n "$ac_ct_OTOOL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL" >&5 $as_echo "$ac_ct_OTOOL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL" = x; then OTOOL=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL=$ac_ct_OTOOL fi else OTOOL="$ac_cv_prog_OTOOL" fi if test -n "$ac_tool_prefix"; then # Extract the first word of "${ac_tool_prefix}otool64", so it can be a program name with args. set dummy ${ac_tool_prefix}otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$OTOOL64"; then ac_cv_prog_OTOOL64="$OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_OTOOL64="${ac_tool_prefix}otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi OTOOL64=$ac_cv_prog_OTOOL64 if test -n "$OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $OTOOL64" >&5 $as_echo "$OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi fi if test -z "$ac_cv_prog_OTOOL64"; then ac_ct_OTOOL64=$OTOOL64 # Extract the first word of "otool64", so it can be a program name with args. set dummy otool64; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_ac_ct_OTOOL64+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$ac_ct_OTOOL64"; then ac_cv_prog_ac_ct_OTOOL64="$ac_ct_OTOOL64" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_ac_ct_OTOOL64="otool64" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi ac_ct_OTOOL64=$ac_cv_prog_ac_ct_OTOOL64 if test -n "$ac_ct_OTOOL64"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_ct_OTOOL64" >&5 $as_echo "$ac_ct_OTOOL64" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$ac_ct_OTOOL64" = x; then OTOOL64=":" else case $cross_compiling:$ac_tool_warned in yes:) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: using cross tools not prefixed with host triplet" >&5 $as_echo "$as_me: WARNING: using cross tools not prefixed with host triplet" >&2;} ac_tool_warned=yes ;; esac OTOOL64=$ac_ct_OTOOL64 fi else OTOOL64="$ac_cv_prog_OTOOL64" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -single_module linker flag" >&5 $as_echo_n "checking for -single_module linker flag... " >&6; } if ${lt_cv_apple_cc_single_mod+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_apple_cc_single_mod=no if test -z "$LT_MULTI_MODULE"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&5 $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&5 # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test 0 = "$_lt_result"; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&5 fi rm -rf libconftest.dylib* rm -f conftest.* fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_apple_cc_single_mod" >&5 $as_echo "$lt_cv_apple_cc_single_mod" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -exported_symbols_list linker flag" >&5 $as_echo_n "checking for -exported_symbols_list linker flag... " >&6; } if ${lt_cv_ld_exported_symbols_list+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_ld_exported_symbols_list=yes else lt_cv_ld_exported_symbols_list=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_exported_symbols_list" >&5 $as_echo "$lt_cv_ld_exported_symbols_list" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking for -force_load linker flag" >&5 $as_echo_n "checking for -force_load linker flag... " >&6; } if ${lt_cv_ld_force_load+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&5 $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&5 echo "$AR cru libconftest.a conftest.o" >&5 $AR cru libconftest.a conftest.o 2>&5 echo "$RANLIB libconftest.a" >&5 $RANLIB libconftest.a 2>&5 cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&5 $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&5 elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then lt_cv_ld_force_load=yes else cat conftest.err >&5 fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_ld_force_load" >&5 $as_echo "$lt_cv_ld_force_load" >&6; } case $host_os in rhapsody* | darwin1.[012]) _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[91]*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; 10.[012]*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test yes = "$lt_cv_apple_cc_single_mod"; then _lt_dar_single_mod='$single_module' fi if test yes = "$lt_cv_ld_exported_symbols_list"; then _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib' fi if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C preprocessor" >&5 $as_echo_n "checking how to run the C preprocessor... " >&6; } # On Suns, sometimes $CPP names a directory. if test -n "$CPP" && test -d "$CPP"; then CPP= fi if test -z "$CPP"; then if ${ac_cv_prog_CPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CPP needs to be expanded for CPP in "$CC -E" "$CC -E -traditional-cpp" "/lib/cpp" do ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CPP=$CPP fi CPP=$ac_cv_prog_CPP else ac_cv_prog_CPP=$CPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CPP" >&5 $as_echo "$CPP" >&6; } ac_preproc_ok=false for ac_c_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_c_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C preprocessor \"$CPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ANSI C header files" >&5 $as_echo_n "checking for ANSI C header files... " >&6; } if ${ac_cv_header_stdc+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #include #include int main () { ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_header_stdc=yes else ac_cv_header_stdc=no fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test $ac_cv_header_stdc = yes; then # SunOS 4.x string.h does not declare mem*, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "memchr" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # ISC 2.0.2 stdlib.h does not declare free, contrary to ANSI. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "free" >/dev/null 2>&1; then : else ac_cv_header_stdc=no fi rm -f conftest* fi if test $ac_cv_header_stdc = yes; then # /bin/cc in Irix-4.0.5 gets non-ANSI ctype macros unless using -ansi. if test "$cross_compiling" = yes; then : : else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include #include #if ((' ' & 0x0FF) == 0x020) # define ISLOWER(c) ('a' <= (c) && (c) <= 'z') # define TOUPPER(c) (ISLOWER(c) ? 'A' + ((c) - 'a') : (c)) #else # define ISLOWER(c) \ (('a' <= (c) && (c) <= 'i') \ || ('j' <= (c) && (c) <= 'r') \ || ('s' <= (c) && (c) <= 'z')) # define TOUPPER(c) (ISLOWER(c) ? ((c) | 0x40) : (c)) #endif #define XOR(e, f) (((e) && !(f)) || (!(e) && (f))) int main () { int i; for (i = 0; i < 256; i++) if (XOR (islower (i), ISLOWER (i)) || toupper (i) != TOUPPER (i)) return 2; return 0; } _ACEOF if ac_fn_c_try_run "$LINENO"; then : else ac_cv_header_stdc=no fi rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ conftest.$ac_objext conftest.beam conftest.$ac_ext fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdc" >&5 $as_echo "$ac_cv_header_stdc" >&6; } if test $ac_cv_header_stdc = yes; then $as_echo "#define STDC_HEADERS 1" >>confdefs.h fi # On IRIX 5.3, sys/types and inttypes.h are conflicting. for ac_header in sys/types.h sys/stat.h stdlib.h string.h memory.h strings.h \ inttypes.h stdint.h unistd.h do : as_ac_Header=`$as_echo "ac_cv_header_$ac_header" | $as_tr_sh` ac_fn_c_check_header_compile "$LINENO" "$ac_header" "$as_ac_Header" "$ac_includes_default " if eval test \"x\$"$as_ac_Header"\" = x"yes"; then : cat >>confdefs.h <<_ACEOF #define `$as_echo "HAVE_$ac_header" | $as_tr_cpp` 1 _ACEOF fi done for ac_header in dlfcn.h do : ac_fn_c_check_header_compile "$LINENO" "dlfcn.h" "ac_cv_header_dlfcn_h" "$ac_includes_default " if test "x$ac_cv_header_dlfcn_h" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_DLFCN_H 1 _ACEOF fi done func_stripname_cnf () { case $2 in .*) func_stripname_result=`$ECHO "$3" | $SED "s%^$1%%; s%\\\\$2\$%%"`;; *) func_stripname_result=`$ECHO "$3" | $SED "s%^$1%%; s%$2\$%%"`;; esac } # func_stripname_cnf # Set options enable_dlopen=no enable_win32_dll=no # Check whether --enable-shared was given. if test "${enable_shared+set}" = set; then : enableval=$enable_shared; p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS=$lt_save_ifs ;; esac else enable_shared=yes fi # Check whether --enable-static was given. if test "${enable_static+set}" = set; then : enableval=$enable_static; p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS=$lt_save_ifs ;; esac else enable_static=yes fi # Check whether --with-pic was given. if test "${with_pic+set}" = set; then : withval=$with_pic; lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for lt_pkg in $withval; do IFS=$lt_save_ifs if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS=$lt_save_ifs ;; esac else pic_mode=default fi # Check whether --enable-fast-install was given. if test "${enable_fast_install+set}" = set; then : enableval=$enable_fast_install; p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS=$lt_save_ifs ;; esac else enable_fast_install=yes fi # This can be used to rebuild libtool when needed LIBTOOL_DEPS=$ltmain # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' test -z "$LN_S" && LN_S="ln -s" if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for objdir" >&5 $as_echo_n "checking for objdir... " >&6; } if ${lt_cv_objdir+:} false; then : $as_echo_n "(cached) " >&6 else rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_objdir" >&5 $as_echo "$lt_cv_objdir" >&6; } objdir=$lt_cv_objdir cat >>confdefs.h <<_ACEOF #define LT_OBJDIR "$lt_cv_objdir/" _ACEOF case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a '.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld=$lt_cv_prog_gnu_ld old_CC=$CC old_CFLAGS=$CFLAGS # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o for cc_temp in $compiler""; do case $cc_temp in compile | *[\\/]compile | ccache | *[\\/]ccache ) ;; distcc | *[\\/]distcc | purify | *[\\/]purify ) ;; \-*) ;; *) break;; esac done cc_basename=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ${ac_tool_prefix}file" >&5 $as_echo_n "checking for ${ac_tool_prefix}file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/${ac_tool_prefix}file"; then lt_cv_path_MAGIC_CMD=$ac_dir/"${ac_tool_prefix}file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac fi MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for file" >&5 $as_echo_n "checking for file... " >&6; } if ${lt_cv_path_MAGIC_CMD+:} false; then : $as_echo_n "(cached) " >&6 else case $MAGIC_CMD in [\\/*] | ?:[\\/]*) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR ac_dummy="/usr/bin$PATH_SEPARATOR$PATH" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/file"; then lt_cv_path_MAGIC_CMD=$ac_dir/"file" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac fi MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $MAGIC_CMD" >&5 $as_echo "$MAGIC_CMD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi else MAGIC_CMD=: fi fi fi ;; esac # Use C for the default configuration in the libtool script lt_save_CC=$CC ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o objext=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... if test -n "$compiler"; then lt_prog_compiler_no_builtin_flag= if test yes = "$GCC"; then case $cc_basename in nvcc*) lt_prog_compiler_no_builtin_flag=' -Xcompiler -fno-builtin' ;; *) lt_prog_compiler_no_builtin_flag=' -fno-builtin' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -fno-rtti -fno-exceptions" >&5 $as_echo_n "checking if $compiler supports -fno-rtti -fno-exceptions... " >&6; } if ${lt_cv_prog_compiler_rtti_exceptions+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_rtti_exceptions=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-fno-rtti -fno-exceptions" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_rtti_exceptions=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_rtti_exceptions" >&5 $as_echo "$lt_cv_prog_compiler_rtti_exceptions" >&6; } if test yes = "$lt_cv_prog_compiler_rtti_exceptions"; then lt_prog_compiler_no_builtin_flag="$lt_prog_compiler_no_builtin_flag -fno-rtti -fno-exceptions" else : fi fi lt_prog_compiler_wl= lt_prog_compiler_pic= lt_prog_compiler_static= if test yes = "$GCC"; then lt_prog_compiler_wl='-Wl,' lt_prog_compiler_static='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' fi lt_prog_compiler_pic='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support lt_prog_compiler_pic='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. lt_prog_compiler_pic='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries lt_prog_compiler_pic='-DDLL_EXPORT' ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. lt_prog_compiler_static= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) lt_prog_compiler_pic='-fPIC' ;; esac ;; interix[3-9]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. lt_prog_compiler_can_build_shared=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic=-Kconform_pic fi ;; *) lt_prog_compiler_pic='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 lt_prog_compiler_wl='-Xlinker ' if test -n "$lt_prog_compiler_pic"; then lt_prog_compiler_pic="-Xcompiler $lt_prog_compiler_pic" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) lt_prog_compiler_wl='-Wl,' if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static='-Bstatic' else lt_prog_compiler_static='-bnso -bI:/lib/syscalls.exp' fi ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic='-fno-common' case $cc_basename in nagfor*) # NAG Fortran compiler lt_prog_compiler_wl='-Wl,-Wl,,' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; esac ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). lt_prog_compiler_pic='-DDLL_EXPORT' ;; hpux9* | hpux10* | hpux11*) lt_prog_compiler_wl='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) lt_prog_compiler_pic='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? lt_prog_compiler_static='$wl-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) lt_prog_compiler_wl='-Wl,' # PIC (with -KPIC) is the default. lt_prog_compiler_static='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in # old Intel for x86_64, which still supported -KPIC. ecc*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; # Lahey Fortran 8.1. lf95*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='--shared' lt_prog_compiler_static='--static' ;; nagfor*) # NAG Fortran compiler lt_prog_compiler_wl='-Wl,-Wl,,' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; tcc*) # Fabrice Bellard et al's Tiny C Compiler lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; ccc*) lt_prog_compiler_wl='-Wl,' # All Alpha code is PIC. lt_prog_compiler_static='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-qpic' lt_prog_compiler_static='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [1-7].* | *Sun*Fortran*\ 8.[0-3]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='' ;; *Sun\ F* | *Sun*Fortran*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' lt_prog_compiler_wl='-Wl,' ;; *Intel*\ [CF]*Compiler*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fPIC' lt_prog_compiler_static='-static' ;; *Portland\ Group*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-fpic' lt_prog_compiler_static='-Bstatic' ;; esac ;; esac ;; newsos6) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic='-fPIC -shared' ;; osf3* | osf4* | osf5*) lt_prog_compiler_wl='-Wl,' # All OSF/1 code is PIC. lt_prog_compiler_static='-non_shared' ;; rdos*) lt_prog_compiler_static='-non_shared' ;; solaris*) lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) lt_prog_compiler_wl='-Qoption ld ';; *) lt_prog_compiler_wl='-Wl,';; esac ;; sunos4*) lt_prog_compiler_wl='-Qoption ld ' lt_prog_compiler_pic='-PIC' lt_prog_compiler_static='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic='-Kconform_pic' lt_prog_compiler_static='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_pic='-KPIC' lt_prog_compiler_static='-Bstatic' ;; unicos*) lt_prog_compiler_wl='-Wl,' lt_prog_compiler_can_build_shared=no ;; uts4*) lt_prog_compiler_pic='-pic' lt_prog_compiler_static='-Bstatic' ;; *) lt_prog_compiler_can_build_shared=no ;; esac fi case $host_os in # For platforms that do not support PIC, -DPIC is meaningless: *djgpp*) lt_prog_compiler_pic= ;; *) lt_prog_compiler_pic="$lt_prog_compiler_pic -DPIC" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5 $as_echo_n "checking for $compiler option to produce PIC... " >&6; } if ${lt_cv_prog_compiler_pic+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic=$lt_prog_compiler_pic fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic" >&5 $as_echo "$lt_cv_prog_compiler_pic" >&6; } lt_prog_compiler_pic=$lt_cv_prog_compiler_pic # # Check to make sure the PIC flag actually works. # if test -n "$lt_prog_compiler_pic"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic works" >&5 $as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic works... " >&6; } if ${lt_cv_prog_compiler_pic_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic_works=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$lt_prog_compiler_pic -DPIC" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works" >&5 $as_echo "$lt_cv_prog_compiler_pic_works" >&6; } if test yes = "$lt_cv_prog_compiler_pic_works"; then case $lt_prog_compiler_pic in "" | " "*) ;; *) lt_prog_compiler_pic=" $lt_prog_compiler_pic" ;; esac else lt_prog_compiler_pic= lt_prog_compiler_can_build_shared=no fi fi # # Check to make sure the static flag actually works. # wl=$lt_prog_compiler_wl eval lt_tmp_static_flag=\"$lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5 $as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; } if ${lt_cv_prog_compiler_static_works+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_static_works=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS $lt_tmp_static_flag" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_static_works=yes fi else lt_cv_prog_compiler_static_works=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works" >&5 $as_echo "$lt_cv_prog_compiler_static_works" >&6; } if test yes = "$lt_cv_prog_compiler_static_works"; then : else lt_prog_compiler_static= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o" >&5 $as_echo "$lt_cv_prog_compiler_c_o" >&6; } hard_links=nottested if test no = "$lt_cv_prog_compiler_c_o" && test no != "$need_locks"; then # do not overwrite the value of need_locks provided by the user { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5 $as_echo_n "checking if we can lock with hard links... " >&6; } hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5 $as_echo "$hard_links" >&6; } if test no = "$hard_links"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&5 $as_echo "$as_me: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&2;} need_locks=warn fi else need_locks=no fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5 $as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; } runpath_var= allow_undefined_flag= always_export_symbols=no archive_cmds= archive_expsym_cmds= compiler_needs_object=no enable_shared_with_static_runtimes=no export_dynamic_flag_spec= export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' hardcode_automatic=no hardcode_direct=no hardcode_direct_absolute=no hardcode_libdir_flag_spec= hardcode_libdir_separator= hardcode_minus_L=no hardcode_shlibpath_var=unsupported inherit_rpath=no link_all_deplibs=unknown module_cmds= module_expsym_cmds= old_archive_from_new_cmds= old_archive_from_expsyms_cmds= thread_safe_flag_spec= whole_archive_flag_spec= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list include_expsyms= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ' (' and ')$', so one must not match beginning or # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc', # as well as any symbol that contains 'd'. exclude_expsyms='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*' # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test yes != "$GCC"; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd* | bitrig*) with_gnu_ld=no ;; esac ld_shlibs=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test yes = "$with_gnu_ld"; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[2-9]*) ;; *\ \(GNU\ Binutils\)\ [3-9]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test yes = "$lt_use_gnu_ld_interface"; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='$wl' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' export_dynamic_flag_spec='$wl--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then whole_archive_flag_spec=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else whole_archive_flag_spec= fi supports_anon_versioning=no case `$LD -v | $SED -e 's/(^)\+)\s\+//' 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [01].* | *\ 2.[0-9].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[3-9]*) # On AIX/PPC, the GNU linker is very broken if test ia64 != "$host_cpu"; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then allow_undefined_flag=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME archive_cmds='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else ld_shlibs=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, ) is actually meaningless, # as there is no search path for DLLs. hardcode_libdir_flag_spec='-L$libdir' export_dynamic_flag_spec='$wl--export-all-symbols' allow_undefined_flag=unsupported always_export_symbols=no enable_shared_with_static_runtimes=yes export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1 DATA/;s/^.*[ ]__nm__\([^ ]*\)[ ][^ ]*/\1 DATA/;/^I[ ]/d;/^[AITW][ ]/s/.* //'\'' | sort | uniq > $export_symbols' exclude_expsyms='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname' if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else ld_shlibs=no fi ;; haiku*) archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' link_all_deplibs=yes ;; interix[3-9]*) hardcode_direct=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='$wl-rpath,$libdir' export_dynamic_flag_spec='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' archive_expsym_cmds='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test linux-dietlibc = "$host_os"; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test no = "$tmp_diet" then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 whole_archive_flag_spec= tmp_sharedflag='--shared' ;; nagfor*) # NAGFOR 5.3 tmp_sharedflag='-Wl,-shared' ;; xl[cC]* | bgxl[cC]* | mpixl[cC]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 whole_archive_flag_spec='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' compiler_needs_object=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 whole_archive_flag_spec='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' compiler_needs_object=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac archive_cmds='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi case $cc_basename in xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself whole_archive_flag_spec='--whole-archive$convenience --no-whole-archive' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' archive_cmds='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test yes = "$supports_anon_versioning"; then archive_expsym_cmds='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else ld_shlibs=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [01].* | *\ 2.[0-9].* | *\ 2.1[0-5].*) ld_shlibs=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac ;; sunos4*) archive_cmds='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= hardcode_direct=yes hardcode_shlibpath_var=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else ld_shlibs=no fi ;; esac if test no = "$ld_shlibs"; then runpath_var= hardcode_libdir_flag_spec= export_dynamic_flag_spec= whole_archive_flag_spec= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) allow_undefined_flag=unsupported always_export_symbols=yes archive_expsym_cmds='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. hardcode_minus_L=yes if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. hardcode_direct=unsupported fi ;; aix[4-9]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global # defined symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else export_symbols_cmds='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*) for ld_flag in $LDFLAGS; do if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then aix_use_runtimelinking=yes break fi done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. archive_cmds='' hardcode_direct=yes hardcode_direct_absolute=yes hardcode_libdir_separator=':' link_all_deplibs=yes file_list_spec='$wl-f,' if test yes = "$GCC"; then case $host_os in aix4.[012]|aix4.[012].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 hardcode_direct=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking hardcode_minus_L=yes hardcode_libdir_flag_spec='-L$libdir' hardcode_libdir_separator= fi ;; esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag="$shared_flag "'$wl-G' fi else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi fi fi export_dynamic_flag_spec='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. always_export_symbols=yes if test yes = "$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. allow_undefined_flag='-berok' # Determine the default libpath from the value encoded in an # empty executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath" archive_expsym_cmds='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then hardcode_libdir_flag_spec='$wl-R $libdir:/usr/lib:/lib' allow_undefined_flag="-z nodefs" archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath_+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath_=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath_"; then lt_cv_aix_libpath_=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath_ fi hardcode_libdir_flag_spec='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. no_undefined_flag=' $wl-bernotok' allow_undefined_flag=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. whole_archive_flag_spec='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives whole_archive_flag_spec='$convenience' fi archive_cmds_need_lc=yes # This is similar to how AIX traditionally builds its shared libraries. archive_expsym_cmds="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs $wl-bnoentry $compiler_flags $wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds='' ;; m68k) archive_cmds='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes ;; esac ;; bsdi[45]*) export_dynamic_flag_spec=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported always_export_symbols=yes file_list_spec='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' archive_expsym_cmds='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, )='true' enable_shared_with_static_runtimes=yes exclude_expsyms='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' export_symbols_cmds='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1,DATA/'\'' | $SED -e '\''/^[AITW][ ]/s/.*[ ]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib old_postinstall_cmds='chmod 644 $oldlib' postlink_cmds='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper hardcode_libdir_flag_spec=' ' allow_undefined_flag=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. archive_cmds='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. old_archive_from_new_cmds='true' # FIXME: Should let the user specify the lib program. old_archive_cmds='lib -OUT:$oldlib$oldobjs$old_deplibs' enable_shared_with_static_runtimes=yes ;; esac ;; darwin* | rhapsody*) archive_cmds_need_lc=no hardcode_direct=no hardcode_automatic=yes hardcode_shlibpath_var=unsupported if test yes = "$lt_cv_ld_force_load"; then whole_archive_flag_spec='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' else whole_archive_flag_spec='' fi link_all_deplibs=yes allow_undefined_flag=$_lt_dar_allow_undefined case $cc_basename in ifort*|nagfor*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test yes = "$_lt_dar_can_shared"; then output_verbose_link_cmd=func_echo_all archive_cmds="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil" module_cmds="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil" archive_expsym_cmds="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil" module_expsym_cmds="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil" else ld_shlibs=no fi ;; dgux*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; hpux9*) if test yes = "$GCC"; then archive_cmds='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else archive_cmds='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' fi hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: hardcode_direct=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes export_dynamic_flag_spec='$wl-E' ;; hpux10*) if test yes,no = "$GCC,$with_gnu_ld"; then archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test no = "$with_gnu_ld"; then hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes fi ;; hpux11*) if test yes,no = "$GCC,$with_gnu_ld"; then case $host_cpu in hppa*64*) archive_cmds='$CC -shared $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) archive_cmds='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) archive_cmds='$CC -b $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) archive_cmds='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $CC understands -b" >&5 $as_echo_n "checking if $CC understands -b... " >&6; } if ${lt_cv_prog_compiler__b+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler__b=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -b" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler__b=yes fi else lt_cv_prog_compiler__b=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler__b" >&5 $as_echo "$lt_cv_prog_compiler__b" >&6; } if test yes = "$lt_cv_prog_compiler__b"; then archive_cmds='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi ;; esac fi if test no = "$with_gnu_ld"; then hardcode_libdir_flag_spec='$wl+b $wl$libdir' hardcode_libdir_separator=: case $host_cpu in hppa*64*|ia64*) hardcode_direct=no hardcode_shlibpath_var=no ;; *) hardcode_direct=yes hardcode_direct_absolute=yes export_dynamic_flag_spec='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. hardcode_minus_L=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test yes = "$GCC"; then archive_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $host_os linker accepts -exported_symbol" >&5 $as_echo_n "checking whether the $host_os linker accepts -exported_symbol... " >&6; } if ${lt_cv_irix_exported_symbol+:} false; then : $as_echo_n "(cached) " >&6 else save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int foo (void) { return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : lt_cv_irix_exported_symbol=yes else lt_cv_irix_exported_symbol=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_irix_exported_symbol" >&5 $as_echo "$lt_cv_irix_exported_symbol" >&6; } if test yes = "$lt_cv_irix_exported_symbol"; then archive_expsym_cmds='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations $wl-exports_file $wl$export_symbols -o $lib' fi else archive_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' archive_expsym_cmds='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: inherit_rpath=yes link_all_deplibs=yes ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else archive_cmds='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi hardcode_libdir_flag_spec='-R$libdir' hardcode_direct=yes hardcode_shlibpath_var=no ;; newsos6) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: hardcode_shlibpath_var=no ;; *nto* | *qnx*) ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then hardcode_direct=yes hardcode_shlibpath_var=no hardcode_direct_absolute=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols' hardcode_libdir_flag_spec='$wl-rpath,$libdir' export_dynamic_flag_spec='$wl-E' else archive_cmds='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' hardcode_libdir_flag_spec='$wl-rpath,$libdir' fi else ld_shlibs=no fi ;; os2*) hardcode_libdir_flag_spec='-L$libdir' hardcode_minus_L=yes allow_undefined_flag=unsupported archive_cmds='$ECHO "LIBRARY $libname INITINSTANCE" > $output_objdir/$libname.def~$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~echo DATA >> $output_objdir/$libname.def~echo " SINGLE NONSHARED" >> $output_objdir/$libname.def~echo EXPORTS >> $output_objdir/$libname.def~emxexp $libobjs >> $output_objdir/$libname.def~$CC -Zdll -Zcrtdll -o $lib $libobjs $deplibs $compiler_flags $output_objdir/$libname.def' old_archive_from_new_cmds='emximp -o $output_objdir/$libname.a $output_objdir/$libname.def' ;; osf3*) if test yes = "$GCC"; then allow_undefined_flag=' $wl-expect_unresolved $wl\*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' fi archive_cmds_need_lc='no' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' hardcode_libdir_separator=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test yes = "$GCC"; then allow_undefined_flag=' $wl-expect_unresolved $wl\*' archive_cmds='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' hardcode_libdir_flag_spec='$wl-rpath $wl$libdir' else allow_undefined_flag=' -expect_unresolved \*' archive_cmds='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' archive_expsym_cmds='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $wl-input $wl$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly hardcode_libdir_flag_spec='-rpath $libdir' fi archive_cmds_need_lc='no' hardcode_libdir_separator=: ;; solaris*) no_undefined_flag=' -z defs' if test yes = "$GCC"; then wlarc='$wl' archive_cmds='$CC -shared $pic_flag $wl-z ${wl}text $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag $wl-z ${wl}text $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' archive_cmds='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='$wl' archive_cmds='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi hardcode_libdir_flag_spec='-R$libdir' hardcode_shlibpath_var=no case $host_os in solaris2.[0-5] | solaris2.[0-5].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. GCC discards it without '$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test yes = "$GCC"; then whole_archive_flag_spec='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' else whole_archive_flag_spec='-z allextract$convenience -z defaultextract' fi ;; esac link_all_deplibs=yes ;; sunos4*) if test sequent = "$host_vendor"; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. archive_cmds='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi hardcode_libdir_flag_spec='-L$libdir' hardcode_direct=yes hardcode_minus_L=yes hardcode_shlibpath_var=no ;; sysv4) case $host_vendor in sni) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. archive_cmds='$LD -G -o $lib $libobjs $deplibs $linker_flags' reload_cmds='$CC -r -o $output$reload_objs' hardcode_direct=no ;; motorola) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_direct=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' hardcode_shlibpath_var=no ;; sysv4.3*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no export_dynamic_flag_spec='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_shlibpath_var=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes ld_shlibs=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*) no_undefined_flag='$wl-z,text' archive_cmds_need_lc=no hardcode_shlibpath_var=no runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. no_undefined_flag='$wl-z,text' allow_undefined_flag='$wl-z,nodefs' archive_cmds_need_lc=no hardcode_shlibpath_var=no hardcode_libdir_flag_spec='$wl-R,$libdir' hardcode_libdir_separator=':' link_all_deplibs=yes export_dynamic_flag_spec='$wl-Bexport' runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then archive_cmds='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else archive_cmds='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) archive_cmds='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' hardcode_libdir_flag_spec='-L$libdir' hardcode_shlibpath_var=no ;; *) ld_shlibs=no ;; esac if test sni = "$host_vendor"; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) export_dynamic_flag_spec='$wl-Blargedynsym' ;; esac fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs" >&5 $as_echo "$ld_shlibs" >&6; } test no = "$ld_shlibs" && can_build_shared=no with_gnu_ld=$with_gnu_ld # # Do we need to explicitly link libc? # case "x$archive_cmds_need_lc" in x|xyes) # Assume -lc should be added archive_cmds_need_lc=yes if test yes,yes = "$GCC,$enable_shared"; then case $archive_cmds in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5 $as_echo_n "checking whether -lc should be explicitly linked in... " >&6; } if ${lt_cv_archive_cmds_need_lc+:} false; then : $as_echo_n "(cached) " >&6 else $RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$lt_prog_compiler_wl pic_flag=$lt_prog_compiler_pic compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$allow_undefined_flag allow_undefined_flag= if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5 (eval $archive_cmds 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } then lt_cv_archive_cmds_need_lc=no else lt_cv_archive_cmds_need_lc=yes fi allow_undefined_flag=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc" >&5 $as_echo "$lt_cv_archive_cmds_need_lc" >&6; } archive_cmds_need_lc=$lt_cv_archive_cmds_need_lc ;; esac fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5 $as_echo_n "checking dynamic linker characteristics... " >&6; } if test yes = "$GCC"; then case $host_os in darwin*) lt_awk_arg='/^libraries:/,/LR/' ;; *) lt_awk_arg='/^libraries:/' ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq='s|=\([A-Za-z]:\)|\1|g' ;; *) lt_sed_strip_eq='s|=/|/|g' ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary... lt_tmp_lt_search_path_spec= lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` # ...but if some path component already ends with the multilib dir we assume # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer). case "$lt_multi_os_dir; $lt_search_path_spec " in "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*) lt_multi_os_dir= ;; esac for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path$lt_multi_os_dir" elif test -n "$lt_multi_os_dir"; then test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS = " "; FS = "/|\n";} { lt_foo = ""; lt_count = 0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo = "/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[lt_foo]++; } if (lt_freq[lt_foo] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's|/\([A-Za-z]:\)|\1|g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=.so postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='$libname$release$shared_ext$major' ;; aix[4-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test ia64 = "$host_cpu"; then # AIX 5 supports IA64 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line '#! .'. This would cause the generated library to # depend on '.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[01] | aix4.[01].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. if test yes = "$aix_use_runtimelinking"; then # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' else # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' fi shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='$libname$shared_ext' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[45]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api" ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' library_names_spec='$libname.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec=$LIB if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='$libname$release$major$shared_ext $libname$shared_ext' soname_spec='$libname$release$major$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib" sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[23].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[01]* | freebsdelf3.[01]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[2-9]* | freebsdelf3.[2-9]* | \ freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=no sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' if test 32 = "$HPUX_IA64_MODE"; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" fi sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[3-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test yes = "$lt_cv_prog_gnu_ld"; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff" sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; linux*android*) version_type=none # Android doesn't support versioned libraries. need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext' soname_spec='$libname$release$shared_ext' finish_cmds= shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes dynamic_linker='Android linker' # Don't embed -rpath directories since the linker doesn't support them. hardcode_libdir_flag_spec='-L$libdir' ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH if ${lt_cv_shlibpath_overrides_runpath+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$lt_prog_compiler_wl\"; \ LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec\"" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then : lt_cv_shlibpath_overrides_runpath=yes fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS libdir=$save_libdir fi shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Append ld.so.conf contents to the search path if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd* | bitrig*) version_type=sunos sys_lib_dlsearch_path_spec=/usr/lib need_lib_prefix=no if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then need_version=no else need_version=yes fi library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; os2*) libname_spec='$name' shrext_cmds=.dll need_lib_prefix=no library_names_spec='$libname$shared_ext $libname.a' dynamic_linker='OS/2 ld.exe' shlibpath_var=LIBPATH ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test yes = "$with_gnu_ld"; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec; then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext' soname_spec='$libname$shared_ext.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=freebsd-elf need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test yes = "$with_gnu_ld"; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5 $as_echo "$dynamic_linker" >&6; } test no = "$dynamic_linker" && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test yes = "$GCC"; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec fi if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5 $as_echo_n "checking how to hardcode library paths into programs... " >&6; } hardcode_action= if test -n "$hardcode_libdir_flag_spec" || test -n "$runpath_var" || test yes = "$hardcode_automatic"; then # We can hardcode non-existent directories. if test no != "$hardcode_direct" && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, )" && test no != "$hardcode_minus_L"; then # Linking always hardcodes the temporary library directory. hardcode_action=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. hardcode_action=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. hardcode_action=unsupported fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action" >&5 $as_echo "$hardcode_action" >&6; } if test relink = "$hardcode_action" || test yes = "$inherit_rpath"; then # Fast installation is not supported enable_fast_install=no elif test yes = "$shlibpath_overrides_runpath" || test no = "$enable_shared"; then # Fast installation is not necessary enable_fast_install=needless fi if test yes != "$enable_dlopen"; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen=load_add_on lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen=LoadLibrary lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen=dlopen lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl else lt_cv_dlopen=dyld lt_cv_dlopen_libs= lt_cv_dlopen_self=yes fi ;; tpf*) # Don't try to run any link tests for TPF. We know it's impossible # because TPF is a cross-compiler, and we know how we open DSOs. lt_cv_dlopen=dlopen lt_cv_dlopen_libs= lt_cv_dlopen_self=no ;; *) ac_fn_c_check_func "$LINENO" "shl_load" "ac_cv_func_shl_load" if test "x$ac_cv_func_shl_load" = xyes; then : lt_cv_dlopen=shl_load else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for shl_load in -ldld" >&5 $as_echo_n "checking for shl_load in -ldld... " >&6; } if ${ac_cv_lib_dld_shl_load+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char shl_load (); int main () { return shl_load (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_shl_load=yes else ac_cv_lib_dld_shl_load=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_shl_load" >&5 $as_echo "$ac_cv_lib_dld_shl_load" >&6; } if test "x$ac_cv_lib_dld_shl_load" = xyes; then : lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld else ac_fn_c_check_func "$LINENO" "dlopen" "ac_cv_func_dlopen" if test "x$ac_cv_func_dlopen" = xyes; then : lt_cv_dlopen=dlopen else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -ldl" >&5 $as_echo_n "checking for dlopen in -ldl... " >&6; } if ${ac_cv_lib_dl_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldl $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dl_dlopen=yes else ac_cv_lib_dl_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dl_dlopen" >&5 $as_echo "$ac_cv_lib_dl_dlopen" >&6; } if test "x$ac_cv_lib_dl_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dlopen in -lsvld" >&5 $as_echo_n "checking for dlopen in -lsvld... " >&6; } if ${ac_cv_lib_svld_dlopen+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lsvld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dlopen (); int main () { return dlopen (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_svld_dlopen=yes else ac_cv_lib_svld_dlopen=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_svld_dlopen" >&5 $as_echo "$ac_cv_lib_svld_dlopen" >&6; } if test "x$ac_cv_lib_svld_dlopen" = xyes; then : lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for dld_link in -ldld" >&5 $as_echo_n "checking for dld_link in -ldld... " >&6; } if ${ac_cv_lib_dld_dld_link+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-ldld $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ /* Override any GCC internal prototype to avoid an error. Use char because int might match the return type of a GCC builtin and then its argument prototype would still apply. */ #ifdef __cplusplus extern "C" #endif char dld_link (); int main () { return dld_link (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_dld_dld_link=yes else ac_cv_lib_dld_dld_link=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_dld_dld_link" >&5 $as_echo "$ac_cv_lib_dld_dld_link" >&6; } if test "x$ac_cv_lib_dld_dld_link" = xyes; then : lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld fi fi fi fi fi fi ;; esac if test no = "$lt_cv_dlopen"; then enable_dlopen=no else enable_dlopen=yes fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS=$CPPFLAGS test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS=$LDFLAGS wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS=$LIBS LIBS="$lt_cv_dlopen_libs $LIBS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a program can dlopen itself" >&5 $as_echo_n "checking whether a program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self+:} false; then : $as_echo_n "(cached) " >&6 else if test yes = "$cross_compiling"; then : lt_cv_dlopen_self=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self=no ;; esac else : # compilation failed lt_cv_dlopen_self=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self" >&5 $as_echo "$lt_cv_dlopen_self" >&6; } if test yes = "$lt_cv_dlopen_self"; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether a statically linked program can dlopen itself" >&5 $as_echo_n "checking whether a statically linked program can dlopen itself... " >&6; } if ${lt_cv_dlopen_self_static+:} false; then : $as_echo_n "(cached) " >&6 else if test yes = "$cross_compiling"; then : lt_cv_dlopen_self_static=cross else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF #line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; } _LT_EOF if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_link\""; } >&5 (eval $ac_link) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&5 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlneed_uscore) lt_cv_dlopen_self_static=yes ;; x$lt_dlunknown|x*) lt_cv_dlopen_self_static=no ;; esac else : # compilation failed lt_cv_dlopen_self_static=no fi fi rm -fr conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_dlopen_self_static" >&5 $as_echo "$lt_cv_dlopen_self_static" >&6; } fi CPPFLAGS=$save_CPPFLAGS LDFLAGS=$save_LDFLAGS LIBS=$save_LIBS ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi striplib= old_striplib= { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether stripping libraries is possible" >&5 $as_echo_n "checking whether stripping libraries is possible... " >&6; } if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP"; then striplib="$STRIP -x" old_striplib="$STRIP -S" { $as_echo "$as_me:${as_lineno-$LINENO}: result: yes" >&5 $as_echo "yes" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi ;; *) { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } ;; esac fi # Report what library types will actually be built { $as_echo "$as_me:${as_lineno-$LINENO}: checking if libtool supports shared libraries" >&5 $as_echo_n "checking if libtool supports shared libraries... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $can_build_shared" >&5 $as_echo "$can_build_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build shared libraries" >&5 $as_echo_n "checking whether to build shared libraries... " >&6; } test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[4-9]*) if test ia64 != "$host_cpu" && test no = "$aix_use_runtimelinking"; then test yes = "$enable_shared" && enable_static=no fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_shared" >&5 $as_echo "$enable_shared" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether to build static libraries" >&5 $as_echo_n "checking whether to build static libraries... " >&6; } # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes { $as_echo "$as_me:${as_lineno-$LINENO}: result: $enable_static" >&5 $as_echo "$enable_static" >&6; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu CC=$lt_save_CC if test -n "$CXX" && ( test no != "$CXX" && ( (test g++ = "$CXX" && `g++ -v >/dev/null 2>&1` ) || (test g++ != "$CXX"))); then ac_ext=cpp ac_cpp='$CXXCPP $CPPFLAGS' ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_cxx_compiler_gnu { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to run the C++ preprocessor" >&5 $as_echo_n "checking how to run the C++ preprocessor... " >&6; } if test -z "$CXXCPP"; then if ${ac_cv_prog_CXXCPP+:} false; then : $as_echo_n "(cached) " >&6 else # Double quotes because CXXCPP needs to be expanded for CXXCPP in "$CXX -E" "/lib/cpp" do ac_preproc_ok=false for ac_cxx_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_cxx_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_cxx_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : break fi done ac_cv_prog_CXXCPP=$CXXCPP fi CXXCPP=$ac_cv_prog_CXXCPP else ac_cv_prog_CXXCPP=$CXXCPP fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $CXXCPP" >&5 $as_echo "$CXXCPP" >&6; } ac_preproc_ok=false for ac_cxx_preproc_warn_flag in '' yes do # Use a header file that comes with gcc, so configuring glibc # with a fresh cross-compiler works. # Prefer to if __STDC__ is defined, since # exists even on freestanding compilers. # On the NeXT, cc -E runs the code through the compiler's parser, # not just through cpp. "Syntax error" is here to catch this case. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #ifdef __STDC__ # include #else # include #endif Syntax error _ACEOF if ac_fn_cxx_try_cpp "$LINENO"; then : else # Broken: fails on valid input. continue fi rm -f conftest.err conftest.i conftest.$ac_ext # OK, works on sane cases. Now check whether nonexistent headers # can be detected and how. cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if ac_fn_cxx_try_cpp "$LINENO"; then : # Broken: success on invalid input. continue else # Passes both tests. ac_preproc_ok=: break fi rm -f conftest.err conftest.i conftest.$ac_ext done # Because of `break', _AC_PREPROC_IFELSE's cleaning code was skipped. rm -f conftest.i conftest.err conftest.$ac_ext if $ac_preproc_ok; then : else { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error $? "C++ preprocessor \"$CXXCPP\" fails sanity check See \`config.log' for more details" "$LINENO" 5; } fi ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu else _lt_caught_CXX_error=yes fi ac_ext=cpp ac_cpp='$CXXCPP $CPPFLAGS' ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_cxx_compiler_gnu archive_cmds_need_lc_CXX=no allow_undefined_flag_CXX= always_export_symbols_CXX=no archive_expsym_cmds_CXX= compiler_needs_object_CXX=no export_dynamic_flag_spec_CXX= hardcode_direct_CXX=no hardcode_direct_absolute_CXX=no hardcode_libdir_flag_spec_CXX= hardcode_libdir_separator_CXX= hardcode_minus_L_CXX=no hardcode_shlibpath_var_CXX=unsupported hardcode_automatic_CXX=no inherit_rpath_CXX=no module_cmds_CXX= module_expsym_cmds_CXX= link_all_deplibs_CXX=unknown old_archive_cmds_CXX=$old_archive_cmds reload_flag_CXX=$reload_flag reload_cmds_CXX=$reload_cmds no_undefined_flag_CXX= whole_archive_flag_spec_CXX= enable_shared_with_static_runtimes_CXX=no # Source file extension for C++ test sources. ac_ext=cpp # Object file extension for compiled C++ test sources. objext=o objext_CXX=$objext # No sense in running all these tests if we already determined that # the CXX compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_caught_CXX_error"; then # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(int, char *[]) { return(0); }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC # save warnings/boilerplate of simple test code ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_LD=$LD lt_save_GCC=$GCC GCC=$GXX lt_save_with_gnu_ld=$with_gnu_ld lt_save_path_LD=$lt_cv_path_LD if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx else $as_unset lt_cv_prog_gnu_ld fi if test -n "${lt_cv_path_LDCXX+set}"; then lt_cv_path_LD=$lt_cv_path_LDCXX else $as_unset lt_cv_path_LD fi test -z "${LDCXX+set}" || LD=$LDCXX CC=${CXX-"c++"} CFLAGS=$CXXFLAGS compiler=$CC compiler_CXX=$CC for cc_temp in $compiler""; do case $cc_temp in compile | *[\\/]compile | ccache | *[\\/]ccache ) ;; distcc | *[\\/]distcc | purify | *[\\/]purify ) ;; \-*) ;; *) break;; esac done cc_basename=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` if test -n "$compiler"; then # We don't want -fno-exception when compiling C++ code, so set the # no_builtin_flag separately if test yes = "$GXX"; then lt_prog_compiler_no_builtin_flag_CXX=' -fno-builtin' else lt_prog_compiler_no_builtin_flag_CXX= fi if test yes = "$GXX"; then # Set up default GNU C++ configuration # Check whether --with-gnu-ld was given. if test "${with_gnu_ld+set}" = set; then : withval=$with_gnu_ld; test no = "$withval" || with_gnu_ld=yes else with_gnu_ld=no fi ac_prog=ld if test yes = "$GCC"; then # Check if gcc -print-prog-name=ld gives a path. { $as_echo "$as_me:${as_lineno-$LINENO}: checking for ld used by $CC" >&5 $as_echo_n "checking for ld used by $CC... " >&6; } case $host in *-*-mingw*) # gcc leaves a trailing carriage return, which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [\\/]* | ?:[\\/]*) re_direlt='/[^/][^/]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD=$ac_prog ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test yes = "$with_gnu_ld"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for GNU ld" >&5 $as_echo_n "checking for GNU ld... " >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: checking for non-GNU ld" >&5 $as_echo_n "checking for non-GNU ld... " >&6; } fi if ${lt_cv_path_LD+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$LD"; then lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD=$ac_dir/$ac_prog # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &5 $as_echo "$LD" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi test -z "$LD" && as_fn_error $? "no acceptable ld found in \$PATH" "$LINENO" 5 { $as_echo "$as_me:${as_lineno-$LINENO}: checking if the linker ($LD) is GNU ld" >&5 $as_echo_n "checking if the linker ($LD) is GNU ld... " >&6; } if ${lt_cv_prog_gnu_ld+:} false; then : $as_echo_n "(cached) " >&6 else # I'd rather use --version here, but apparently some GNU lds only accept -v. case `$LD -v 2>&1 &5 $as_echo "$lt_cv_prog_gnu_ld" >&6; } with_gnu_ld=$lt_cv_prog_gnu_ld # Check if GNU C++ uses GNU ld as the underlying linker, since the # archiving commands below assume that GNU ld is being used. if test yes = "$with_gnu_ld"; then archive_cmds_CXX='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' hardcode_libdir_flag_spec_CXX='$wl-rpath $wl$libdir' export_dynamic_flag_spec_CXX='$wl--export-dynamic' # If archive_cmds runs LD, not CC, wlarc should be empty # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to # investigate it a little bit more. (MM) wlarc='$wl' # ancient GNU ld didn't support --whole-archive et. al. if eval "`$CC -print-prog-name=ld` --help 2>&1" | $GREP 'no-whole-archive' > /dev/null; then whole_archive_flag_spec_CXX=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else whole_archive_flag_spec_CXX= fi else with_gnu_ld=no wlarc= # A generic and very simple default shared library creation # command for GNU C++ for the case where it uses the native # linker, instead of GNU ld. If possible, this setting should # overridden to take advantage of the native linker features on # the platform it is being used on. archive_cmds_CXX='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' fi # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else GXX=no with_gnu_ld=no wlarc= fi # PORTME: fill in a description of your system's C++ link characteristics { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5 $as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; } ld_shlibs_CXX=yes case $host_os in aix3*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; aix[4-9]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[23]|aix4.[23].*|aix[5-9]*) for ld_flag in $LDFLAGS; do case $ld_flag in *-brtl*) aix_use_runtimelinking=yes break ;; esac done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. archive_cmds_CXX='' hardcode_direct_CXX=yes hardcode_direct_absolute_CXX=yes hardcode_libdir_separator_CXX=':' link_all_deplibs_CXX=yes file_list_spec_CXX='$wl-f,' if test yes = "$GXX"; then case $host_os in aix4.[012]|aix4.[012].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 hardcode_direct_CXX=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking hardcode_minus_L_CXX=yes hardcode_libdir_flag_spec_CXX='-L$libdir' hardcode_libdir_separator_CXX= fi esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag=$shared_flag' $wl-G' fi else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi fi fi export_dynamic_flag_spec_CXX='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to # export. always_export_symbols_CXX=yes if test yes = "$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. allow_undefined_flag_CXX='-berok' # Determine the default libpath from the value encoded in an empty # executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath__CXX+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath__CXX=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath__CXX"; then lt_cv_aix_libpath__CXX=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath__CXX"; then lt_cv_aix_libpath__CXX=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath__CXX fi hardcode_libdir_flag_spec_CXX='$wl-blibpath:$libdir:'"$aix_libpath" archive_expsym_cmds_CXX='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then hardcode_libdir_flag_spec_CXX='$wl-R $libdir:/usr/lib:/lib' allow_undefined_flag_CXX="-z nodefs" archive_expsym_cmds_CXX="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else if ${lt_cv_aix_libpath__CXX+:} false; then : $as_echo_n "(cached) " >&6 else cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_link "$LINENO"; then : lt_aix_libpath_sed=' /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }' lt_cv_aix_libpath__CXX=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$lt_cv_aix_libpath__CXX"; then lt_cv_aix_libpath__CXX=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext if test -z "$lt_cv_aix_libpath__CXX"; then lt_cv_aix_libpath__CXX=/usr/lib:/lib fi fi aix_libpath=$lt_cv_aix_libpath__CXX fi hardcode_libdir_flag_spec_CXX='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. no_undefined_flag_CXX=' $wl-bernotok' allow_undefined_flag_CXX=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. whole_archive_flag_spec_CXX='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives whole_archive_flag_spec_CXX='$convenience' fi archive_cmds_need_lc_CXX=yes # This is similar to how AIX traditionally builds its shared # libraries. archive_expsym_cmds_CXX="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs $wl-bnoentry $compiler_flags $wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then allow_undefined_flag_CXX=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME archive_cmds_CXX='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else ld_shlibs_CXX=no fi ;; chorus*) case $cc_basename in *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac ;; cygwin* | mingw* | pw32* | cegcc*) case $GXX,$cc_basename in ,cl* | no,cl*) # Native MSVC # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. hardcode_libdir_flag_spec_CXX=' ' allow_undefined_flag_CXX=unsupported always_export_symbols_CXX=yes file_list_spec_CXX='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. archive_cmds_CXX='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' archive_expsym_cmds_CXX='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, CXX)='true' enable_shared_with_static_runtimes_CXX=yes # Don't use ranlib old_postinstall_cmds_CXX='chmod 644 $oldlib' postlink_cmds_CXX='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ func_to_tool_file "$lt_outputfile"~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # g++ # _LT_TAGVAR(hardcode_libdir_flag_spec, CXX) is actually meaningless, # as there is no search path for DLLs. hardcode_libdir_flag_spec_CXX='-L$libdir' export_dynamic_flag_spec_CXX='$wl--export-all-symbols' allow_undefined_flag_CXX=unsupported always_export_symbols_CXX=no enable_shared_with_static_runtimes_CXX=yes if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then archive_cmds_CXX='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... archive_expsym_cmds_CXX='if test DEF = "`$SED -n -e '\''s/^[ ]*//'\'' -e '\''/^\(;.*\)*$/d'\'' -e '\''s/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p'\'' -e q $export_symbols`" ; then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else ld_shlibs_CXX=no fi ;; esac ;; darwin* | rhapsody*) archive_cmds_need_lc_CXX=no hardcode_direct_CXX=no hardcode_automatic_CXX=yes hardcode_shlibpath_var_CXX=unsupported if test yes = "$lt_cv_ld_force_load"; then whole_archive_flag_spec_CXX='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' else whole_archive_flag_spec_CXX='' fi link_all_deplibs_CXX=yes allow_undefined_flag_CXX=$_lt_dar_allow_undefined case $cc_basename in ifort*|nagfor*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test yes = "$_lt_dar_can_shared"; then output_verbose_link_cmd=func_echo_all archive_cmds_CXX="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil" module_cmds_CXX="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil" archive_expsym_cmds_CXX="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil" module_expsym_cmds_CXX="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil" if test yes != "$lt_cv_apple_cc_single_mod"; then archive_cmds_CXX="\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dsymutil" archive_expsym_cmds_CXX="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dar_export_syms$_lt_dsymutil" fi else ld_shlibs_CXX=no fi ;; dgux*) case $cc_basename in ec++*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; ghcx*) # Green Hills C++ Compiler # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac ;; freebsd2.*) # C++ shared libraries reported to be fairly broken before # switch to ELF ld_shlibs_CXX=no ;; freebsd-elf*) archive_cmds_need_lc_CXX=no ;; freebsd* | dragonfly*) # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF # conventions ld_shlibs_CXX=yes ;; haiku*) archive_cmds_CXX='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' link_all_deplibs_CXX=yes ;; hpux9*) hardcode_libdir_flag_spec_CXX='$wl+b $wl$libdir' hardcode_libdir_separator_CXX=: export_dynamic_flag_spec_CXX='$wl-E' hardcode_direct_CXX=yes hardcode_minus_L_CXX=yes # Not in the search PATH, # but as the default # location of the library. case $cc_basename in CC*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; aCC*) archive_cmds_CXX='$RM $output_objdir/$soname~$CC -b $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then archive_cmds_CXX='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else # FIXME: insert proper C++ library support ld_shlibs_CXX=no fi ;; esac ;; hpux10*|hpux11*) if test no = "$with_gnu_ld"; then hardcode_libdir_flag_spec_CXX='$wl+b $wl$libdir' hardcode_libdir_separator_CXX=: case $host_cpu in hppa*64*|ia64*) ;; *) export_dynamic_flag_spec_CXX='$wl-E' ;; esac fi case $host_cpu in hppa*64*|ia64*) hardcode_direct_CXX=no hardcode_shlibpath_var_CXX=no ;; *) hardcode_direct_CXX=yes hardcode_direct_absolute_CXX=yes hardcode_minus_L_CXX=yes # Not in the search PATH, # but as the default # location of the library. ;; esac case $cc_basename in CC*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; aCC*) case $host_cpu in hppa*64*) archive_cmds_CXX='$CC -b $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) archive_cmds_CXX='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) archive_cmds_CXX='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then case $host_cpu in hppa*64*) archive_cmds_CXX='$CC -shared -nostdlib -fPIC $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) archive_cmds_CXX='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) archive_cmds_CXX='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac fi else # FIXME: insert proper C++ library support ld_shlibs_CXX=no fi ;; esac ;; interix[3-9]*) hardcode_direct_CXX=no hardcode_shlibpath_var_CXX=no hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir' export_dynamic_flag_spec_CXX='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. archive_cmds_CXX='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' archive_expsym_cmds_CXX='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; irix5* | irix6*) case $cc_basename in CC*) # SGI C++ archive_cmds_CXX='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' # Archives containing C++ object files must be created using # "CC -ar", where "CC" is the IRIX C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. old_archive_cmds_CXX='$CC -ar -WR,-u -o $oldlib $oldobjs' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` -o $lib' fi fi link_all_deplibs_CXX=yes ;; esac hardcode_libdir_flag_spec_CXX='$wl-rpath $wl$libdir' hardcode_libdir_separator_CXX=: inherit_rpath_CXX=yes ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. archive_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' archive_expsym_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib $wl-retain-symbols-file,$export_symbols; mv \$templib $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir' export_dynamic_flag_spec_CXX='$wl--export-dynamic' # Archives containing C++ object files must be created using # "CC -Bstatic", where "CC" is the KAI C++ compiler. old_archive_cmds_CXX='$CC -Bstatic -o $oldlib $oldobjs' ;; icpc* | ecpc* ) # Intel C++ with_gnu_ld=yes # version 8.0 and above of icpc choke on multiply defined symbols # if we add $predep_objects and $postdep_objects, however 7.1 and # earlier do not add the objects themselves. case `$CC -V 2>&1` in *"Version 7."*) archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 8.0 or newer tmp_idyn= case $host_cpu in ia64*) tmp_idyn=' -i_dynamic';; esac archive_cmds_CXX='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac archive_cmds_need_lc_CXX=no hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir' export_dynamic_flag_spec_CXX='$wl--export-dynamic' whole_archive_flag_spec_CXX='$wl--whole-archive$convenience $wl--no-whole-archive' ;; pgCC* | pgcpp*) # Portland Group C++ compiler case `$CC -V` in *pgCC\ [1-5].* | *pgcpp\ [1-5].*) prelink_cmds_CXX='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~ compile_command="$compile_command `find $tpldir -name \*.o | sort | $NL2SP`"' old_archive_cmds_CXX='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~ $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name \*.o | sort | $NL2SP`~ $RANLIB $oldlib' archive_cmds_CXX='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 6 and above use weak symbols archive_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac hardcode_libdir_flag_spec_CXX='$wl--rpath $wl$libdir' export_dynamic_flag_spec_CXX='$wl--export-dynamic' whole_archive_flag_spec_CXX='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' ;; cxx*) # Compaq C++ archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' archive_expsym_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib $wl-retain-symbols-file $wl$export_symbols' runpath_var=LD_RUN_PATH hardcode_libdir_flag_spec_CXX='-rpath $libdir' hardcode_libdir_separator_CXX=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld .*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed' ;; xl* | mpixl* | bgxl*) # IBM XL 8.0 on PPC, with GNU ld hardcode_libdir_flag_spec_CXX='$wl-rpath $wl$libdir' export_dynamic_flag_spec_CXX='$wl--export-dynamic' archive_cmds_CXX='$CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then archive_expsym_cmds_CXX='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 no_undefined_flag_CXX=' -zdefs' archive_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' archive_expsym_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file $wl$export_symbols' hardcode_libdir_flag_spec_CXX='-R$libdir' whole_archive_flag_spec_CXX='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' compiler_needs_object_CXX=yes # Not sure whether something based on # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 # would be better. output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. old_archive_cmds_CXX='$CC -xar -o $oldlib $oldobjs' ;; esac ;; esac ;; lynxos*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; m88k*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; mvs*) case $cc_basename in cxx*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then archive_cmds_CXX='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags' wlarc= hardcode_libdir_flag_spec_CXX='-R$libdir' hardcode_direct_CXX=yes hardcode_shlibpath_var_CXX=no fi # Workaround some broken pre-1.5 toolchains output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"' ;; *nto* | *qnx*) ld_shlibs_CXX=yes ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then hardcode_direct_CXX=yes hardcode_shlibpath_var_CXX=no hardcode_direct_absolute_CXX=yes archive_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir' if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`"; then archive_expsym_cmds_CXX='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file,$export_symbols -o $lib' export_dynamic_flag_spec_CXX='$wl-E' whole_archive_flag_spec_CXX=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' fi output_verbose_link_cmd=func_echo_all else ld_shlibs_CXX=no fi ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. archive_cmds_CXX='tempext=`echo $shared_ext | $SED -e '\''s/\([^()0-9A-Za-z{}]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' hardcode_libdir_flag_spec_CXX='$wl-rpath,$libdir' hardcode_libdir_separator_CXX=: # Archives containing C++ object files must be created using # the KAI C++ compiler. case $host in osf3*) old_archive_cmds_CXX='$CC -Bstatic -o $oldlib $oldobjs' ;; *) old_archive_cmds_CXX='$CC -o $oldlib $oldobjs' ;; esac ;; RCC*) # Rational C++ 2.4.1 # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; cxx*) case $host in osf3*) allow_undefined_flag_CXX=' $wl-expect_unresolved $wl\*' archive_cmds_CXX='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $soname `test -n "$verstring" && func_echo_all "$wl-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' hardcode_libdir_flag_spec_CXX='$wl-rpath $wl$libdir' ;; *) allow_undefined_flag_CXX=' -expect_unresolved \*' archive_cmds_CXX='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' archive_expsym_cmds_CXX='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~ echo "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname $wl-input $wl$lib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~ $RM $lib.exp' hardcode_libdir_flag_spec_CXX='-rpath $libdir' ;; esac hardcode_libdir_separator_CXX=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld.*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes,no = "$GXX,$with_gnu_ld"; then allow_undefined_flag_CXX=' $wl-expect_unresolved $wl\*' case $host in osf3*) archive_cmds_CXX='$CC -shared -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; *) archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; esac hardcode_libdir_flag_spec_CXX='$wl-rpath $wl$libdir' hardcode_libdir_separator_CXX=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # FIXME: insert proper C++ library support ld_shlibs_CXX=no fi ;; esac ;; psos*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; lcc*) # Lucid # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ archive_cmds_need_lc_CXX=yes no_undefined_flag_CXX=' -zdefs' archive_cmds_CXX='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag $wl-M $wl$lib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' hardcode_libdir_flag_spec_CXX='-R$libdir' hardcode_shlibpath_var_CXX=no case $host_os in solaris2.[0-5] | solaris2.[0-5].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. # Supported since Solaris 2.6 (maybe 2.5.1?) whole_archive_flag_spec_CXX='-z allextract$convenience -z defaultextract' ;; esac link_all_deplibs_CXX=yes output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. old_archive_cmds_CXX='$CC -xar -o $oldlib $oldobjs' ;; gcx*) # Green Hills C++ Compiler archive_cmds_CXX='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' # The C++ compiler must be used to create the archive. old_archive_cmds_CXX='$CC $LDFLAGS -archive -o $oldlib $oldobjs' ;; *) # GNU C++ compiler with Solaris linker if test yes,no = "$GXX,$with_gnu_ld"; then no_undefined_flag_CXX=' $wl-z ${wl}defs' if $CC --version | $GREP -v '^2\.7' > /dev/null; then archive_cmds_CXX='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # g++ 2.7 appears to require '-G' NOT '-shared' on this # platform. archive_cmds_CXX='$CC -G -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' archive_expsym_cmds_CXX='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' fi hardcode_libdir_flag_spec_CXX='$wl-R $wl$libdir' case $host_os in solaris2.[0-5] | solaris2.[0-5].*) ;; *) whole_archive_flag_spec_CXX='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' ;; esac fi ;; esac ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[01].[10]* | unixware7* | sco3.2v5.0.[024]*) no_undefined_flag_CXX='$wl-z,text' archive_cmds_need_lc_CXX=no hardcode_shlibpath_var_CXX=no runpath_var='LD_RUN_PATH' case $cc_basename in CC*) archive_cmds_CXX='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds_CXX='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; *) archive_cmds_CXX='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds_CXX='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. no_undefined_flag_CXX='$wl-z,text' allow_undefined_flag_CXX='$wl-z,nodefs' archive_cmds_need_lc_CXX=no hardcode_shlibpath_var_CXX=no hardcode_libdir_flag_spec_CXX='$wl-R,$libdir' hardcode_libdir_separator_CXX=':' link_all_deplibs_CXX=yes export_dynamic_flag_spec_CXX='$wl-Bexport' runpath_var='LD_RUN_PATH' case $cc_basename in CC*) archive_cmds_CXX='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds_CXX='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' old_archive_cmds_CXX='$CC -Tprelink_objects $oldobjs~ '"$old_archive_cmds_CXX" reload_cmds_CXX='$CC -Tprelink_objects $reload_objs~ '"$reload_cmds_CXX" ;; *) archive_cmds_CXX='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' archive_expsym_cmds_CXX='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac ;; vxworks*) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; *) # FIXME: insert proper C++ library support ld_shlibs_CXX=no ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs_CXX" >&5 $as_echo "$ld_shlibs_CXX" >&6; } test no = "$ld_shlibs_CXX" && can_build_shared=no GCC_CXX=$GXX LD_CXX=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... # Dependencies to place before and after the object being linked: predep_objects_CXX= postdep_objects_CXX= predeps_CXX= postdeps_CXX= compiler_lib_search_path_CXX= cat > conftest.$ac_ext <<_LT_EOF class Foo { public: Foo (void) { a = 0; } private: int a; }; _LT_EOF _lt_libdeps_save_CFLAGS=$CFLAGS case "$CC $CFLAGS " in #( *\ -flto*\ *) CFLAGS="$CFLAGS -fno-lto" ;; *\ -fwhopr*\ *) CFLAGS="$CFLAGS -fno-whopr" ;; *\ -fuse-linker-plugin*\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;; esac if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; }; then # Parse the compiler output and extract the necessary # objects, libraries and library flags. # Sentinel used to keep track of whether or not we are before # the conftest object file. pre_test_object_deps_done=no for p in `eval "$output_verbose_link_cmd"`; do case $prev$p in -L* | -R* | -l*) # Some compilers place space between "-{L,R}" and the path. # Remove the space. if test x-L = "$p" || test x-R = "$p"; then prev=$p continue fi # Expand the sysroot to ease extracting the directories later. if test -z "$prev"; then case $p in -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;; -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;; -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;; esac fi case $p in =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;; esac if test no = "$pre_test_object_deps_done"; then case $prev in -L | -R) # Internal compiler library paths should come after those # provided the user. The postdeps already come after the # user supplied libs so there is no need to process them. if test -z "$compiler_lib_search_path_CXX"; then compiler_lib_search_path_CXX=$prev$p else compiler_lib_search_path_CXX="${compiler_lib_search_path_CXX} $prev$p" fi ;; # The "-l" case would never come before the object being # linked, so don't bother handling this case. esac else if test -z "$postdeps_CXX"; then postdeps_CXX=$prev$p else postdeps_CXX="${postdeps_CXX} $prev$p" fi fi prev= ;; *.lto.$objext) ;; # Ignore GCC LTO objects *.$objext) # This assumes that the test object file only shows up # once in the compiler output. if test "$p" = "conftest.$objext"; then pre_test_object_deps_done=yes continue fi if test no = "$pre_test_object_deps_done"; then if test -z "$predep_objects_CXX"; then predep_objects_CXX=$p else predep_objects_CXX="$predep_objects_CXX $p" fi else if test -z "$postdep_objects_CXX"; then postdep_objects_CXX=$p else postdep_objects_CXX="$postdep_objects_CXX $p" fi fi ;; *) ;; # Ignore the rest. esac done # Clean up. rm -f a.out a.exe else echo "libtool.m4: error: problem compiling CXX test program" fi $RM -f confest.$objext CFLAGS=$_lt_libdeps_save_CFLAGS # PORTME: override above test on systems where it is broken case $host_os in interix[3-9]*) # Interix 3.5 installs completely hosed .la files for C++, so rather than # hack all around it, let's just trust "g++" to DTRT. predep_objects_CXX= postdep_objects_CXX= postdeps_CXX= ;; linux*) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac if test yes != "$solaris_use_stlport4"; then postdeps_CXX='-library=Cstd -library=Crun' fi ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac # Adding this requires a known-good setup of shared libraries for # Sun compiler versions before 5.6, else PIC objects from an old # archive will be linked into the output, leading to subtle bugs. if test yes != "$solaris_use_stlport4"; then postdeps_CXX='-library=Cstd -library=Crun' fi ;; esac ;; esac case " $postdeps_CXX " in *" -lc "*) archive_cmds_need_lc_CXX=no ;; esac compiler_lib_search_dirs_CXX= if test -n "${compiler_lib_search_path_CXX}"; then compiler_lib_search_dirs_CXX=`echo " ${compiler_lib_search_path_CXX}" | $SED -e 's! -L! !g' -e 's!^ !!'` fi lt_prog_compiler_wl_CXX= lt_prog_compiler_pic_CXX= lt_prog_compiler_static_CXX= # C++ specific cases for pic, static, wl, etc. if test yes = "$GXX"; then lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_static_CXX='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static_CXX='-Bstatic' fi lt_prog_compiler_pic_CXX='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support lt_prog_compiler_pic_CXX='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. lt_prog_compiler_pic_CXX='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries lt_prog_compiler_pic_CXX='-DDLL_EXPORT' ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files lt_prog_compiler_pic_CXX='-fno-common' ;; *djgpp*) # DJGPP does not support shared libraries at all lt_prog_compiler_pic_CXX= ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. lt_prog_compiler_static_CXX= ;; interix[3-9]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; sysv4*MP*) if test -d /usr/nec; then lt_prog_compiler_pic_CXX=-Kconform_pic fi ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) ;; *) lt_prog_compiler_pic_CXX='-fPIC' ;; esac ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic_CXX='-fPIC -shared' ;; *) lt_prog_compiler_pic_CXX='-fPIC' ;; esac else case $host_os in aix[4-9]*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor lt_prog_compiler_static_CXX='-Bstatic' else lt_prog_compiler_static_CXX='-bnso -bI:/lib/syscalls.exp' fi ;; chorus*) case $cc_basename in cxch68*) # Green Hills C++ Compiler # _LT_TAGVAR(lt_prog_compiler_static, CXX)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a" ;; esac ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). lt_prog_compiler_pic_CXX='-DDLL_EXPORT' ;; dgux*) case $cc_basename in ec++*) lt_prog_compiler_pic_CXX='-KPIC' ;; ghcx*) # Green Hills C++ Compiler lt_prog_compiler_pic_CXX='-pic' ;; *) ;; esac ;; freebsd* | dragonfly*) # FreeBSD uses GNU C++ ;; hpux9* | hpux10* | hpux11*) case $cc_basename in CC*) lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_static_CXX='$wl-a ${wl}archive' if test ia64 != "$host_cpu"; then lt_prog_compiler_pic_CXX='+Z' fi ;; aCC*) lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_static_CXX='$wl-a ${wl}archive' case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) lt_prog_compiler_pic_CXX='+Z' ;; esac ;; *) ;; esac ;; interix*) # This is c89, which is MS Visual C++ (no shared libs) # Anyone wants to do a port? ;; irix5* | irix6* | nonstopux*) case $cc_basename in CC*) lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_static_CXX='-non_shared' # CC pic flag -KPIC is the default. ;; *) ;; esac ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # KAI C++ Compiler lt_prog_compiler_wl_CXX='--backend -Wl,' lt_prog_compiler_pic_CXX='-fPIC' ;; ecpc* ) # old Intel C++ for x86_64, which still supported -KPIC. lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_pic_CXX='-KPIC' lt_prog_compiler_static_CXX='-static' ;; icpc* ) # Intel C++, used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_pic_CXX='-fPIC' lt_prog_compiler_static_CXX='-static' ;; pgCC* | pgcpp*) # Portland Group C++ compiler lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_pic_CXX='-fpic' lt_prog_compiler_static_CXX='-Bstatic' ;; cxx*) # Compaq C++ # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. lt_prog_compiler_pic_CXX= lt_prog_compiler_static_CXX='-non_shared' ;; xlc* | xlC* | bgxl[cC]* | mpixl[cC]*) # IBM XL 8.0, 9.0 on PPC and BlueGene lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_pic_CXX='-qpic' lt_prog_compiler_static_CXX='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 lt_prog_compiler_pic_CXX='-KPIC' lt_prog_compiler_static_CXX='-Bstatic' lt_prog_compiler_wl_CXX='-Qoption ld ' ;; esac ;; esac ;; lynxos*) ;; m88k*) ;; mvs*) case $cc_basename in cxx*) lt_prog_compiler_pic_CXX='-W c,exportall' ;; *) ;; esac ;; netbsd*) ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. lt_prog_compiler_pic_CXX='-fPIC -shared' ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) lt_prog_compiler_wl_CXX='--backend -Wl,' ;; RCC*) # Rational C++ 2.4.1 lt_prog_compiler_pic_CXX='-pic' ;; cxx*) # Digital/Compaq C++ lt_prog_compiler_wl_CXX='-Wl,' # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. lt_prog_compiler_pic_CXX= lt_prog_compiler_static_CXX='-non_shared' ;; *) ;; esac ;; psos*) ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ lt_prog_compiler_pic_CXX='-KPIC' lt_prog_compiler_static_CXX='-Bstatic' lt_prog_compiler_wl_CXX='-Qoption ld ' ;; gcx*) # Green Hills C++ Compiler lt_prog_compiler_pic_CXX='-PIC' ;; *) ;; esac ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x lt_prog_compiler_pic_CXX='-pic' lt_prog_compiler_static_CXX='-Bstatic' ;; lcc*) # Lucid lt_prog_compiler_pic_CXX='-pic' ;; *) ;; esac ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) case $cc_basename in CC*) lt_prog_compiler_wl_CXX='-Wl,' lt_prog_compiler_pic_CXX='-KPIC' lt_prog_compiler_static_CXX='-Bstatic' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 lt_prog_compiler_pic_CXX='-KPIC' ;; *) ;; esac ;; vxworks*) ;; *) lt_prog_compiler_can_build_shared_CXX=no ;; esac fi case $host_os in # For platforms that do not support PIC, -DPIC is meaningless: *djgpp*) lt_prog_compiler_pic_CXX= ;; *) lt_prog_compiler_pic_CXX="$lt_prog_compiler_pic_CXX -DPIC" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $compiler option to produce PIC" >&5 $as_echo_n "checking for $compiler option to produce PIC... " >&6; } if ${lt_cv_prog_compiler_pic_CXX+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic_CXX=$lt_prog_compiler_pic_CXX fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_CXX" >&5 $as_echo "$lt_cv_prog_compiler_pic_CXX" >&6; } lt_prog_compiler_pic_CXX=$lt_cv_prog_compiler_pic_CXX # # Check to make sure the PIC flag actually works. # if test -n "$lt_prog_compiler_pic_CXX"; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler PIC flag $lt_prog_compiler_pic_CXX works" >&5 $as_echo_n "checking if $compiler PIC flag $lt_prog_compiler_pic_CXX works... " >&6; } if ${lt_cv_prog_compiler_pic_works_CXX+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_pic_works_CXX=no ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$lt_prog_compiler_pic_CXX -DPIC" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_pic_works_CXX=yes fi fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_pic_works_CXX" >&5 $as_echo "$lt_cv_prog_compiler_pic_works_CXX" >&6; } if test yes = "$lt_cv_prog_compiler_pic_works_CXX"; then case $lt_prog_compiler_pic_CXX in "" | " "*) ;; *) lt_prog_compiler_pic_CXX=" $lt_prog_compiler_pic_CXX" ;; esac else lt_prog_compiler_pic_CXX= lt_prog_compiler_can_build_shared_CXX=no fi fi # # Check to make sure the static flag actually works. # wl=$lt_prog_compiler_wl_CXX eval lt_tmp_static_flag=\"$lt_prog_compiler_static_CXX\" { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler static flag $lt_tmp_static_flag works" >&5 $as_echo_n "checking if $compiler static flag $lt_tmp_static_flag works... " >&6; } if ${lt_cv_prog_compiler_static_works_CXX+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_static_works_CXX=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS $lt_tmp_static_flag" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&5 $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then lt_cv_prog_compiler_static_works_CXX=yes fi else lt_cv_prog_compiler_static_works_CXX=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_static_works_CXX" >&5 $as_echo "$lt_cv_prog_compiler_static_works_CXX" >&6; } if test yes = "$lt_cv_prog_compiler_static_works_CXX"; then : else lt_prog_compiler_static_CXX= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o_CXX+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o_CXX=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o_CXX=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o_CXX" >&5 $as_echo "$lt_cv_prog_compiler_c_o_CXX" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking if $compiler supports -c -o file.$ac_objext" >&5 $as_echo_n "checking if $compiler supports -c -o file.$ac_objext... " >&6; } if ${lt_cv_prog_compiler_c_o_CXX+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_prog_compiler_c_o_CXX=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [^ ]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&5) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&5 echo "$as_me:$LINENO: \$? = $ac_status" >&5 if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then lt_cv_prog_compiler_c_o_CXX=yes fi fi chmod u+w . 2>&5 $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_prog_compiler_c_o_CXX" >&5 $as_echo "$lt_cv_prog_compiler_c_o_CXX" >&6; } hard_links=nottested if test no = "$lt_cv_prog_compiler_c_o_CXX" && test no != "$need_locks"; then # do not overwrite the value of need_locks provided by the user { $as_echo "$as_me:${as_lineno-$LINENO}: checking if we can lock with hard links" >&5 $as_echo_n "checking if we can lock with hard links... " >&6; } hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hard_links" >&5 $as_echo "$hard_links" >&6; } if test no = "$hard_links"; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&5 $as_echo "$as_me: WARNING: '$CC' does not support '-c -o', so 'make -j' may be unsafe" >&2;} need_locks=warn fi else need_locks=no fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether the $compiler linker ($LD) supports shared libraries" >&5 $as_echo_n "checking whether the $compiler linker ($LD) supports shared libraries... " >&6; } export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' exclude_expsyms_CXX='_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*' case $host_os in aix[4-9]*) # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global defined # symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds_CXX='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else export_symbols_cmds_CXX='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi ;; pw32*) export_symbols_cmds_CXX=$ltdll_cmds ;; cygwin* | mingw* | cegcc*) case $cc_basename in cl*) exclude_expsyms_CXX='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' ;; *) export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[BCDGRS][ ]/s/.*[ ]\([^ ]*\)/\1 DATA/;s/^.*[ ]__nm__\([^ ]*\)[ ][^ ]*/\1 DATA/;/^I[ ]/d;/^[AITW][ ]/s/.* //'\'' | sort | uniq > $export_symbols' exclude_expsyms_CXX='[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname' ;; esac ;; *) export_symbols_cmds_CXX='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ld_shlibs_CXX" >&5 $as_echo "$ld_shlibs_CXX" >&6; } test no = "$ld_shlibs_CXX" && can_build_shared=no with_gnu_ld_CXX=$with_gnu_ld # # Do we need to explicitly link libc? # case "x$archive_cmds_need_lc_CXX" in x|xyes) # Assume -lc should be added archive_cmds_need_lc_CXX=yes if test yes,yes = "$GCC,$enable_shared"; then case $archive_cmds_CXX in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. { $as_echo "$as_me:${as_lineno-$LINENO}: checking whether -lc should be explicitly linked in" >&5 $as_echo_n "checking whether -lc should be explicitly linked in... " >&6; } if ${lt_cv_archive_cmds_need_lc_CXX+:} false; then : $as_echo_n "(cached) " >&6 else $RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_compile\""; } >&5 (eval $ac_compile) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$lt_prog_compiler_wl_CXX pic_flag=$lt_prog_compiler_pic_CXX compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$allow_undefined_flag_CXX allow_undefined_flag_CXX= if { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$archive_cmds_CXX 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1\""; } >&5 (eval $archive_cmds_CXX 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) 2>&5 ac_status=$? $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 test $ac_status = 0; } then lt_cv_archive_cmds_need_lc_CXX=no else lt_cv_archive_cmds_need_lc_CXX=yes fi allow_undefined_flag_CXX=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $lt_cv_archive_cmds_need_lc_CXX" >&5 $as_echo "$lt_cv_archive_cmds_need_lc_CXX" >&6; } archive_cmds_need_lc_CXX=$lt_cv_archive_cmds_need_lc_CXX ;; esac fi ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking dynamic linker characteristics" >&5 $as_echo_n "checking dynamic linker characteristics... " >&6; } library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=.so postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='$libname$release$shared_ext$major' ;; aix[4-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test ia64 = "$host_cpu"; then # AIX 5 supports IA64 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line '#! .'. This would cause the generated library to # depend on '.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[01] | aix4.[01].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. if test yes = "$aix_use_runtimelinking"; then # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' else # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' fi shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([^/]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='$libname$shared_ext' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[45]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext' library_names_spec='$libname.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([a-zA-Z]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec=$LIB if $ECHO "$sys_lib_search_path_spec" | $GREP ';[c-zC-Z]:/' >/dev/null; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='$libname`echo $release | $SED -e 's/[.]/-/g'`$versuffix$shared_ext $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='$libname$release$major$shared_ext $libname$shared_ext' soname_spec='$libname$release$major$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[23].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[01]* | freebsdelf3.[01]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[2-9]* | freebsdelf3.[2-9]* | \ freebsd4.[0-5] | freebsdelf4.[0-5] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=no sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' if test 32 = "$HPUX_IA64_MODE"; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" fi sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[3-9]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test yes = "$lt_cv_prog_gnu_ld"; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff" sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; linux*android*) version_type=none # Android doesn't support versioned libraries. need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext' soname_spec='$libname$release$shared_ext' finish_cmds= shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes dynamic_linker='Android linker' # Don't embed -rpath directories since the linker doesn't support them. hardcode_libdir_flag_spec_CXX='-L$libdir' ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH if ${lt_cv_shlibpath_overrides_runpath+:} false; then : $as_echo_n "(cached) " >&6 else lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$lt_prog_compiler_wl_CXX\"; \ LDFLAGS=\"\$LDFLAGS $hardcode_libdir_flag_spec_CXX\"" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { ; return 0; } _ACEOF if ac_fn_cxx_try_link "$LINENO"; then : if ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null; then : lt_cv_shlibpath_overrides_runpath=yes fi fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LDFLAGS=$save_LDFLAGS libdir=$save_libdir fi shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Append ld.so.conf contents to the search path if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \$2)); skip = 1; } { if (!skip) print \$0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd* | bitrig*) version_type=sunos sys_lib_dlsearch_path_spec=/usr/lib need_lib_prefix=no if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then need_version=no else need_version=yes fi library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; os2*) libname_spec='$name' shrext_cmds=.dll need_lib_prefix=no library_names_spec='$libname$shared_ext $libname.a' dynamic_linker='OS/2 ld.exe' shlibpath_var=LIBPATH ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test yes = "$with_gnu_ld"; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec; then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext' soname_spec='$libname$shared_ext.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=freebsd-elf need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test yes = "$with_gnu_ld"; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $dynamic_linker" >&5 $as_echo "$dynamic_linker" >&6; } test no = "$dynamic_linker" && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test yes = "$GCC"; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec fi if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking how to hardcode library paths into programs" >&5 $as_echo_n "checking how to hardcode library paths into programs... " >&6; } hardcode_action_CXX= if test -n "$hardcode_libdir_flag_spec_CXX" || test -n "$runpath_var_CXX" || test yes = "$hardcode_automatic_CXX"; then # We can hardcode non-existent directories. if test no != "$hardcode_direct_CXX" && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, CXX)" && test no != "$hardcode_minus_L_CXX"; then # Linking always hardcodes the temporary library directory. hardcode_action_CXX=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. hardcode_action_CXX=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. hardcode_action_CXX=unsupported fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $hardcode_action_CXX" >&5 $as_echo "$hardcode_action_CXX" >&6; } if test relink = "$hardcode_action_CXX" || test yes = "$inherit_rpath_CXX"; then # Fast installation is not supported enable_fast_install=no elif test yes = "$shlibpath_overrides_runpath" || test no = "$enable_shared"; then # Fast installation is not necessary enable_fast_install=needless fi fi # test -n "$compiler" CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS LDCXX=$LD LD=$lt_save_LD GCC=$lt_save_GCC with_gnu_ld=$lt_save_with_gnu_ld lt_cv_path_LDCXX=$lt_cv_path_LD lt_cv_path_LD=$lt_save_path_LD lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld fi # test yes != "$_lt_caught_CXX_error" ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu ac_config_commands="$ac_config_commands libtool" # Only expand once: # Extract the first word of "perl", so it can be a program name with args. set dummy perl; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_PERL+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$PERL"; then ac_cv_prog_PERL="$PERL" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_PERL="perl" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi PERL=$ac_cv_prog_PERL if test -n "$PERL"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $PERL" >&5 $as_echo "$PERL" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi # Extract the first word of "pdflatex", so it can be a program name with args. set dummy pdflatex; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_PDFLATEX+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$PDFLATEX"; then ac_cv_prog_PDFLATEX="$PDFLATEX" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_PDFLATEX="pdflatex" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi PDFLATEX=$ac_cv_prog_PDFLATEX if test -n "$PDFLATEX"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $PDFLATEX" >&5 $as_echo "$PDFLATEX" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi # Extract the first word of "pod2html", so it can be a program name with args. set dummy pod2html; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_POD2HTML+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$POD2HTML"; then ac_cv_prog_POD2HTML="$POD2HTML" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_POD2HTML="pod2html" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi POD2HTML=$ac_cv_prog_POD2HTML if test -n "$POD2HTML"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $POD2HTML" >&5 $as_echo "$POD2HTML" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test -n "$PERL" -a -n "$PDFLATEX" -a -n "$POD2HTML"; then GENERATE_DOC_TRUE= GENERATE_DOC_FALSE='#' else GENERATE_DOC_TRUE='#' GENERATE_DOC_FALSE= fi # ------ AX CREATE STDINT H ------------------------------------- { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint types" >&5 $as_echo_n "checking for stdint types... " >&6; } ac_stdint_h=`echo include/isl/stdint.h` # try to shortcircuit - if the default include path of the compiler # can find a "stdint.h" header then we assume that all compilers can. if ${ac_cv_header_stdint_t+:} false; then : $as_echo_n "(cached) " >&6 else old_CXXFLAGS="$CXXFLAGS" ; CXXFLAGS="" old_CPPFLAGS="$CPPFLAGS" ; CPPFLAGS="" old_CFLAGS="$CFLAGS" ; CFLAGS="" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int_least32_t v = 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ac_cv_stdint_result="(assuming C99 compatible system)" ac_cv_header_stdint_t="stdint.h"; else ac_cv_header_stdint_t="" fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext if test "$GCC" = "yes" && test ".$ac_cv_header_stdint_t" = "."; then CFLAGS="-std=c99" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { int_least32_t v = 0; ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: your GCC compiler has a defunct stdint.h for its default-mode" >&5 $as_echo "$as_me: WARNING: your GCC compiler has a defunct stdint.h for its default-mode" >&2;} fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext fi CXXFLAGS="$old_CXXFLAGS" CPPFLAGS="$old_CPPFLAGS" CFLAGS="$old_CFLAGS" fi v="... $ac_cv_header_stdint_h" if test "$ac_stdint_h" = "stdint.h" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: (are you sure you want them in ./stdint.h?)" >&5 $as_echo "(are you sure you want them in ./stdint.h?)" >&6; } elif test "$ac_stdint_h" = "inttypes.h" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: (are you sure you want them in ./inttypes.h?)" >&5 $as_echo "(are you sure you want them in ./inttypes.h?)" >&6; } elif test "_$ac_cv_header_stdint_t" = "_" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: (putting them into $ac_stdint_h)$v" >&5 $as_echo "(putting them into $ac_stdint_h)$v" >&6; } else ac_cv_header_stdint="$ac_cv_header_stdint_t" { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdint (shortcircuit)" >&5 $as_echo "$ac_cv_header_stdint (shortcircuit)" >&6; } fi if test "_$ac_cv_header_stdint_t" = "_" ; then # can not shortcircuit.. inttype_headers=`echo | sed -e 's/,/ /g'` ac_cv_stdint_result="(no helpful system typedefs seen)" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint uintptr_t" >&5 $as_echo_n "checking for stdint uintptr_t... " >&6; } if ${ac_cv_header_stdint_x+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_header_stdint_x="" # the 1997 typedefs (inttypes.h) { $as_echo "$as_me:${as_lineno-$LINENO}: result: (..)" >&5 $as_echo "(..)" >&6; } for i in stdint.h inttypes.h sys/inttypes.h $inttype_headers do unset ac_cv_type_uintptr_t unset ac_cv_type_uint64_t ac_fn_c_check_type "$LINENO" "uintptr_t" "ac_cv_type_uintptr_t" "#include <$i> " if test "x$ac_cv_type_uintptr_t" = xyes; then : ac_cv_header_stdint_x=$i else continue fi ac_fn_c_check_type "$LINENO" "uint64_t" "ac_cv_type_uint64_t" "#include<$i> " if test "x$ac_cv_type_uint64_t" = xyes; then : and64="/uint64_t" else and64="" fi ac_cv_stdint_result="(seen uintptr_t$and64 in $i)" break done { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint uintptr_t" >&5 $as_echo_n "checking for stdint uintptr_t... " >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdint_x" >&5 $as_echo "$ac_cv_header_stdint_x" >&6; } if test "_$ac_cv_header_stdint_x" = "_" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint uint32_t" >&5 $as_echo_n "checking for stdint uint32_t... " >&6; } if ${ac_cv_header_stdint_o+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_header_stdint_o="" # the 1995 typedefs (sys/inttypes.h) { $as_echo "$as_me:${as_lineno-$LINENO}: result: (..)" >&5 $as_echo "(..)" >&6; } for i in inttypes.h sys/inttypes.h stdint.h $inttype_headers do unset ac_cv_type_uint32_t unset ac_cv_type_uint64_t ac_fn_c_check_type "$LINENO" "uint32_t" "ac_cv_type_uint32_t" "#include <$i> " if test "x$ac_cv_type_uint32_t" = xyes; then : ac_cv_header_stdint_o=$i else continue fi ac_fn_c_check_type "$LINENO" "uint64_t" "ac_cv_type_uint64_t" "#include<$i> " if test "x$ac_cv_type_uint64_t" = xyes; then : and64="/uint64_t" else and64="" fi ac_cv_stdint_result="(seen uint32_t$and64 in $i)" break break; done { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint uint32_t" >&5 $as_echo_n "checking for stdint uint32_t... " >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdint_o" >&5 $as_echo "$ac_cv_header_stdint_o" >&6; } fi if test "_$ac_cv_header_stdint_x" = "_" ; then if test "_$ac_cv_header_stdint_o" = "_" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint u_int32_t" >&5 $as_echo_n "checking for stdint u_int32_t... " >&6; } if ${ac_cv_header_stdint_u+:} false; then : $as_echo_n "(cached) " >&6 else ac_cv_header_stdint_u="" # the BSD typedefs (sys/types.h) { $as_echo "$as_me:${as_lineno-$LINENO}: result: (..)" >&5 $as_echo "(..)" >&6; } for i in sys/types.h inttypes.h sys/inttypes.h $inttype_headers ; do unset ac_cv_type_u_int32_t unset ac_cv_type_u_int64_t ac_fn_c_check_type "$LINENO" "u_int32_t" "ac_cv_type_u_int32_t" "#include <$i> " if test "x$ac_cv_type_u_int32_t" = xyes; then : ac_cv_header_stdint_u=$i else continue fi ac_fn_c_check_type "$LINENO" "u_int64_t" "ac_cv_type_u_int64_t" "#include<$i> " if test "x$ac_cv_type_u_int64_t" = xyes; then : and64="/u_int64_t" else and64="" fi ac_cv_stdint_result="(seen u_int32_t$and64 in $i)" break break; done { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint u_int32_t" >&5 $as_echo_n "checking for stdint u_int32_t... " >&6; } fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_header_stdint_u" >&5 $as_echo "$ac_cv_header_stdint_u" >&6; } fi fi if test "_$ac_cv_header_stdint_x" = "_" ; then { $as_echo "$as_me:${as_lineno-$LINENO}: checking for stdint datatype model" >&5 $as_echo_n "checking for stdint datatype model... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: (..)" >&5 $as_echo "(..)" >&6; } # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of char" >&5 $as_echo_n "checking size of char... " >&6; } if ${ac_cv_sizeof_char+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (char))" "ac_cv_sizeof_char" "$ac_includes_default"; then : else if test "$ac_cv_type_char" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (char) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_char=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_char" >&5 $as_echo "$ac_cv_sizeof_char" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_CHAR $ac_cv_sizeof_char _ACEOF # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of short" >&5 $as_echo_n "checking size of short... " >&6; } if ${ac_cv_sizeof_short+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (short))" "ac_cv_sizeof_short" "$ac_includes_default"; then : else if test "$ac_cv_type_short" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (short) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_short=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_short" >&5 $as_echo "$ac_cv_sizeof_short" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_SHORT $ac_cv_sizeof_short _ACEOF # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of int" >&5 $as_echo_n "checking size of int... " >&6; } if ${ac_cv_sizeof_int+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (int))" "ac_cv_sizeof_int" "$ac_includes_default"; then : else if test "$ac_cv_type_int" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (int) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_int=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_int" >&5 $as_echo "$ac_cv_sizeof_int" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_INT $ac_cv_sizeof_int _ACEOF # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of long" >&5 $as_echo_n "checking size of long... " >&6; } if ${ac_cv_sizeof_long+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (long))" "ac_cv_sizeof_long" "$ac_includes_default"; then : else if test "$ac_cv_type_long" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (long) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_long=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_long" >&5 $as_echo "$ac_cv_sizeof_long" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_LONG $ac_cv_sizeof_long _ACEOF # The cast to long int works around a bug in the HP C Compiler # version HP92453-01 B.11.11.23709.GP, which incorrectly rejects # declarations like `int a3[[(sizeof (unsigned char)) >= 0]];'. # This bug is HP SR number 8606223364. { $as_echo "$as_me:${as_lineno-$LINENO}: checking size of void*" >&5 $as_echo_n "checking size of void*... " >&6; } if ${ac_cv_sizeof_voidp+:} false; then : $as_echo_n "(cached) " >&6 else if ac_fn_c_compute_int "$LINENO" "(long int) (sizeof (void*))" "ac_cv_sizeof_voidp" "$ac_includes_default"; then : else if test "$ac_cv_type_voidp" = yes; then { { $as_echo "$as_me:${as_lineno-$LINENO}: error: in \`$ac_pwd':" >&5 $as_echo "$as_me: error: in \`$ac_pwd':" >&2;} as_fn_error 77 "cannot compute sizeof (void*) See \`config.log' for more details" "$LINENO" 5; } else ac_cv_sizeof_voidp=0 fi fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_sizeof_voidp" >&5 $as_echo "$ac_cv_sizeof_voidp" >&6; } cat >>confdefs.h <<_ACEOF #define SIZEOF_VOIDP $ac_cv_sizeof_voidp _ACEOF ac_cv_char_data_model="" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_char" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_short" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_int" ac_cv_long_data_model="" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_int" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_long" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_voidp" { $as_echo "$as_me:${as_lineno-$LINENO}: checking data model" >&5 $as_echo_n "checking data model... " >&6; } case "$ac_cv_char_data_model/$ac_cv_long_data_model" in 122/242) ac_cv_data_model="IP16" ; n="standard 16bit machine" ;; 122/244) ac_cv_data_model="LP32" ; n="standard 32bit machine" ;; 122/*) ac_cv_data_model="i16" ; n="unusual int16 model" ;; 124/444) ac_cv_data_model="ILP32" ; n="standard 32bit unixish" ;; 124/488) ac_cv_data_model="LP64" ; n="standard 64bit unixish" ;; 124/448) ac_cv_data_model="LLP64" ; n="unusual 64bit unixish" ;; 124/*) ac_cv_data_model="i32" ; n="unusual int32 model" ;; 128/888) ac_cv_data_model="ILP64" ; n="unusual 64bit numeric" ;; 128/*) ac_cv_data_model="i64" ; n="unusual int64 model" ;; 222/*2) ac_cv_data_model="DSP16" ; n="strict 16bit dsptype" ;; 333/*3) ac_cv_data_model="DSP24" ; n="strict 24bit dsptype" ;; 444/*4) ac_cv_data_model="DSP32" ; n="strict 32bit dsptype" ;; 666/*6) ac_cv_data_model="DSP48" ; n="strict 48bit dsptype" ;; 888/*8) ac_cv_data_model="DSP64" ; n="strict 64bit dsptype" ;; 222/*|333/*|444/*|666/*|888/*) : ac_cv_data_model="iDSP" ; n="unusual dsptype" ;; *) ac_cv_data_model="none" ; n="very unusual model" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_data_model ($ac_cv_long_data_model, $n)" >&5 $as_echo "$ac_cv_data_model ($ac_cv_long_data_model, $n)" >&6; } fi if test "_$ac_cv_header_stdint_x" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_x" elif test "_$ac_cv_header_stdint_o" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_o" elif test "_$ac_cv_header_stdint_u" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_u" else ac_cv_header_stdint="stddef.h" fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for extra inttypes in chosen header" >&5 $as_echo_n "checking for extra inttypes in chosen header... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: ($ac_cv_header_stdint)" >&5 $as_echo "($ac_cv_header_stdint)" >&6; } unset ac_cv_type_int_least32_t unset ac_cv_type_int_fast32_t ac_fn_c_check_type "$LINENO" "int_least32_t" "ac_cv_type_int_least32_t" "#include <$ac_cv_header_stdint> " if test "x$ac_cv_type_int_least32_t" = xyes; then : fi ac_fn_c_check_type "$LINENO" "int_fast32_t" "ac_cv_type_int_fast32_t" "#include<$ac_cv_header_stdint> " if test "x$ac_cv_type_int_fast32_t" = xyes; then : fi ac_fn_c_check_type "$LINENO" "intmax_t" "ac_cv_type_intmax_t" "#include <$ac_cv_header_stdint> " if test "x$ac_cv_type_intmax_t" = xyes; then : fi fi # shortcircut to system "stdint.h" # ------------------ PREPARE VARIABLES ------------------------------ if test "$GCC" = "yes" ; then ac_cv_stdint_message="using gnu compiler "`$CC --version | head -1` else ac_cv_stdint_message="using $CC" fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: make use of $ac_cv_header_stdint in $ac_stdint_h $ac_cv_stdint_result" >&5 $as_echo "make use of $ac_cv_header_stdint in $ac_stdint_h $ac_cv_stdint_result" >&6; } # ----------------- DONE inttypes.h checks START header ------------- ac_config_commands="$ac_config_commands $ac_stdint_h" # Check whether --with-int was given. if test "${with_int+set}" = set; then : withval=$with_int; else with_int=gmp fi case "$with_int" in gmp|imath|imath-32) ;; *) as_fn_error $? "bad value ${withval} for --with-int (use gmp, imath or imath-32)" "$LINENO" 5 esac case "$with_int" in gmp) $as_echo "#define USE_GMP_FOR_MP /**/" >>confdefs.h # Check whether --with-gmp was given. if test "${with_gmp+set}" = set; then : withval=$with_gmp; fi case "system" in system|build) # Check whether --with-gmp_prefix was given. if test "${with_gmp_prefix+set}" = set; then : withval=$with_gmp_prefix; fi # Check whether --with-gmp_exec_prefix was given. if test "${with_gmp_exec_prefix+set}" = set; then : withval=$with_gmp_exec_prefix; fi esac # Check whether --with-gmp_builddir was given. if test "${with_gmp_builddir+set}" = set; then : withval=$with_gmp_builddir; fi if test "x$with_gmp_prefix" != "x" -a "x$with_gmp_exec_prefix" = "x"; then with_gmp_exec_prefix=$with_gmp_prefix fi if test "x$with_gmp_prefix" != "x" -o "x$with_gmp_exec_prefix" != "x"; then if test "x$with_gmp" != "x" -a "x$with_gmp" != "xyes" -a "x$with_gmp" != "xsystem"; then as_fn_error $? "Setting $with_gmp_prefix implies use of system gmp" "$LINENO" 5 fi with_gmp="system" fi if test "x$with_gmp_builddir" != "x"; then if test "x$with_gmp" != "x" -a "x$with_gmp" != "xyes" -a "x$with_gmp" != "xbuild"; then as_fn_error $? "Setting $with_gmp_builddir implies use of build gmp" "$LINENO" 5 fi with_gmp="build" gmp_srcdir=`echo @abs_srcdir@ | $with_gmp_builddir/config.status --file=-` { $as_echo "$as_me:${as_lineno-$LINENO}: gmp sources in $gmp_srcdir" >&5 $as_echo "$as_me: gmp sources in $gmp_srcdir" >&6;} fi if test "x$with_gmp_exec_prefix" != "x"; then export PKG_CONFIG_PATH="$with_gmp_exec_prefix/lib/pkgconfig${PKG_CONFIG_PATH+:$PKG_CONFIG_PATH}" fi case "$with_gmp" in system|build) ;; *) case "system" in bundled) if test -d $srcdir/.git -a \ -d $srcdir/gmp -a \ ! -d $srcdir/gmp/.git; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git repo detected, but submodule gmp not initialized" >&5 $as_echo "$as_me: WARNING: git repo detected, but submodule gmp not initialized" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: You may want to run" >&5 $as_echo "$as_me: WARNING: You may want to run" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git submodule init" >&5 $as_echo "$as_me: WARNING: git submodule init" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git submodule update" >&5 $as_echo "$as_me: WARNING: git submodule update" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: sh autogen.sh" >&5 $as_echo "$as_me: WARNING: sh autogen.sh" >&2;} fi if test -f $srcdir/gmp/configure; then with_gmp="bundled" else with_gmp="no" fi ;; *) with_gmp="system" ;; esac ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking which gmp to use" >&5 $as_echo_n "checking which gmp to use... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_gmp" >&5 $as_echo "$with_gmp" >&6; } case "$with_gmp" in system) if test "x$with_gmp_prefix" != "x"; then isl_configure_args="$isl_configure_args --with-gmp=$with_gmp_prefix" MP_CPPFLAGS="-I$with_gmp_prefix/include" MP_LDFLAGS="-L$with_gmp_prefix/lib" fi MP_LIBS=-lgmp SAVE_CPPFLAGS="$CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" SAVE_LIBS="$LIBS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" LDFLAGS="$MP_LDFLAGS $LDFLAGS" LIBS="$MP_LIBS $LIBS" ac_fn_c_check_header_mongrel "$LINENO" "gmp.h" "ac_cv_header_gmp_h" "$ac_includes_default" if test "x$ac_cv_header_gmp_h" = xyes; then : else as_fn_error $? "gmp.h header not found" "$LINENO" 5 fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for main in -lgmp" >&5 $as_echo_n "checking for main in -lgmp... " >&6; } if ${ac_cv_lib_gmp_main+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lgmp $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { return main (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_gmp_main=yes else ac_cv_lib_gmp_main=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_gmp_main" >&5 $as_echo "$ac_cv_lib_gmp_main" >&6; } if test "x$ac_cv_lib_gmp_main" = xyes; then : cat >>confdefs.h <<_ACEOF #define HAVE_LIBGMP 1 _ACEOF LIBS="-lgmp $LIBS" else as_fn_error $? "gmp library not found" "$LINENO" 5 fi cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { mpz_t n, d; if (mpz_divisible_p(n, d)) mpz_divexact_ui(n, n, 4); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : else as_fn_error $? "gmp library too old" "$LINENO" 5 fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext CPPFLAGS="$SAVE_CPPFLAGS" LDFLAGS="$SAVE_LDFLAGS" LIBS="$SAVE_LIBS" ;; build) MP_CPPFLAGS="-I$gmp_srcdir -I$with_gmp_builddir" MP_LIBS="$with_gmp_builddir/libgmp.la" ;; esac SAVE_CPPFLAGS="$CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" SAVE_LIBS="$LIBS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" LDFLAGS="$MP_LDFLAGS $LDFLAGS" LIBS="$MP_LIBS $LIBS" need_get_memory_functions=false ac_fn_c_check_decl "$LINENO" "mp_get_memory_functions" "ac_cv_have_decl_mp_get_memory_functions" "#include " if test "x$ac_cv_have_decl_mp_get_memory_functions" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_MP_GET_MEMORY_FUNCTIONS $ac_have_decl _ACEOF if test $ac_have_decl = 1; then : else need_get_memory_functions=true fi CPPFLAGS="$SAVE_CPPFLAGS" LDFLAGS="$SAVE_LDFLAGS" LIBS="$SAVE_LIBS" if test x$need_get_memory_functions = xtrue; then NEED_GET_MEMORY_FUNCTIONS_TRUE= NEED_GET_MEMORY_FUNCTIONS_FALSE='#' else NEED_GET_MEMORY_FUNCTIONS_TRUE='#' NEED_GET_MEMORY_FUNCTIONS_FALSE= fi ;; imath|imath-32) $as_echo "#define USE_IMATH_FOR_MP /**/" >>confdefs.h MP_CPPFLAGS="-I$srcdir/imath_wrap" MP_LDFLAGS="" MP_LIBS="" SAVE_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" ac_fn_c_check_header_mongrel "$LINENO" "imath.h" "ac_cv_header_imath_h" "$ac_includes_default" if test "x$ac_cv_header_imath_h" = xyes; then : else as_fn_error $? "imath.h header not found" "$LINENO" 5 fi ac_fn_c_check_header_mongrel "$LINENO" "gmp_compat.h" "ac_cv_header_gmp_compat_h" "$ac_includes_default" if test "x$ac_cv_header_gmp_compat_h" = xyes; then : else as_fn_error $? "gmp_compat.h header not found" "$LINENO" 5 fi CPPFLAGS="$SAVE_CPPFLAGS" if test x = xfalse; then NEED_GET_MEMORY_FUNCTIONS_TRUE= NEED_GET_MEMORY_FUNCTIONS_FALSE='#' else NEED_GET_MEMORY_FUNCTIONS_TRUE='#' NEED_GET_MEMORY_FUNCTIONS_FALSE= fi ;; esac if test "x$with_int" = "ximath-32" -a "x$GCC" = "xyes"; then MP_CPPFLAGS="-std=gnu99 $MP_CPPFLAGS" fi if test x$with_int = ximath -o x$with_int = ximath-32; then IMATH_FOR_MP_TRUE= IMATH_FOR_MP_FALSE='#' else IMATH_FOR_MP_TRUE='#' IMATH_FOR_MP_FALSE= fi if test x$with_int = xgmp; then GMP_FOR_MP_TRUE= GMP_FOR_MP_FALSE='#' else GMP_FOR_MP_TRUE='#' GMP_FOR_MP_FALSE= fi if test "x$with_int" == "ximath-32"; then SMALL_INT_OPT_TRUE= SMALL_INT_OPT_FALSE='#' else SMALL_INT_OPT_TRUE='#' SMALL_INT_OPT_FALSE= fi if test "x$with_int" == "ximath-32"; then : $as_echo "#define USE_SMALL_INT_OPT /**/" >>confdefs.h fi ac_fn_c_check_decl "$LINENO" "ffs" "ac_cv_have_decl_ffs" "#include " if test "x$ac_cv_have_decl_ffs" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_FFS $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "__builtin_ffs" "ac_cv_have_decl___builtin_ffs" "$ac_includes_default" if test "x$ac_cv_have_decl___builtin_ffs" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL___BUILTIN_FFS $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "_BitScanForward" "ac_cv_have_decl__BitScanForward" "#include " if test "x$ac_cv_have_decl__BitScanForward" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL__BITSCANFORWARD $ac_have_decl _ACEOF if test "x$ac_cv_have_decl_ffs" = xno -a \ "x$ac_cv_have_decl___builtin_ffs" = xno -a \ "x$ac_cv_have_decl__BitScanForward" = xno; then as_fn_error $? "No ffs implementation found" "$LINENO" 5 fi ac_fn_c_check_decl "$LINENO" "strcasecmp" "ac_cv_have_decl_strcasecmp" "#include " if test "x$ac_cv_have_decl_strcasecmp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_STRCASECMP $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "strncasecmp" "ac_cv_have_decl_strncasecmp" "#include " if test "x$ac_cv_have_decl_strncasecmp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_STRNCASECMP $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "_stricmp" "ac_cv_have_decl__stricmp" "#include " if test "x$ac_cv_have_decl__stricmp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL__STRICMP $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "_strnicmp" "ac_cv_have_decl__strnicmp" "#include " if test "x$ac_cv_have_decl__strnicmp" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL__STRNICMP $ac_have_decl _ACEOF if test "x$ac_cv_have_decl_strcasecmp" = xno -a \ "x$ac_cv_have_decl__stricmp" = xno; then as_fn_error $? "No strcasecmp implementation found" "$LINENO" 5 fi if test "x$ac_cv_have_decl_strncasecmp" = xno -a \ "x$ac_cv_have_decl__strnicmp" = xno; then as_fn_error $? "No strncasecmp implementation found" "$LINENO" 5 fi ac_fn_c_check_decl "$LINENO" "snprintf" "ac_cv_have_decl_snprintf" "#include " if test "x$ac_cv_have_decl_snprintf" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL_SNPRINTF $ac_have_decl _ACEOF ac_fn_c_check_decl "$LINENO" "_snprintf" "ac_cv_have_decl__snprintf" "#include " if test "x$ac_cv_have_decl__snprintf" = xyes; then : ac_have_decl=1 else ac_have_decl=0 fi cat >>confdefs.h <<_ACEOF #define HAVE_DECL__SNPRINTF $ac_have_decl _ACEOF if test "x$ac_cv_have_decl_snprintf" = xno -a \ "x$ac_cv_have_decl__snprintf" = xno; then as_fn_error $? "No snprintf implementation found" "$LINENO" 5 fi # Check whether --with-clang was given. if test "${with_clang+set}" = set; then : withval=$with_clang; fi case "system" in system|no) # Check whether --with-clang_prefix was given. if test "${with_clang_prefix+set}" = set; then : withval=$with_clang_prefix; fi # Check whether --with-clang_exec_prefix was given. if test "${with_clang_exec_prefix+set}" = set; then : withval=$with_clang_exec_prefix; fi esac if test "x$with_clang_prefix" != "x" -a "x$with_clang_exec_prefix" = "x"; then with_clang_exec_prefix=$with_clang_prefix fi if test "x$with_clang_prefix" != "x" -o "x$with_clang_exec_prefix" != "x"; then if test "x$with_clang" != "x" -a "x$with_clang" != "xyes" -a "x$with_clang" != "xsystem"; then as_fn_error $? "Setting $with_clang_prefix implies use of system clang" "$LINENO" 5 fi with_clang="system" fi if test "x$with_clang_builddir" != "x"; then if test "x$with_clang" != "x" -a "x$with_clang" != "xyes" -a "x$with_clang" != "xbuild"; then as_fn_error $? "Setting $with_clang_builddir implies use of build clang" "$LINENO" 5 fi with_clang="build" clang_srcdir=`echo @abs_srcdir@ | $with_clang_builddir/config.status --file=-` { $as_echo "$as_me:${as_lineno-$LINENO}: clang sources in $clang_srcdir" >&5 $as_echo "$as_me: clang sources in $clang_srcdir" >&6;} fi if test "x$with_clang_exec_prefix" != "x"; then export PKG_CONFIG_PATH="$with_clang_exec_prefix/lib/pkgconfig${PKG_CONFIG_PATH+:$PKG_CONFIG_PATH}" fi case "$with_clang" in system|no) ;; *) case "no" in bundled) if test -d $srcdir/.git -a \ -d $srcdir/clang -a \ ! -d $srcdir/clang/.git; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git repo detected, but submodule clang not initialized" >&5 $as_echo "$as_me: WARNING: git repo detected, but submodule clang not initialized" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: You may want to run" >&5 $as_echo "$as_me: WARNING: You may want to run" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git submodule init" >&5 $as_echo "$as_me: WARNING: git submodule init" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: git submodule update" >&5 $as_echo "$as_me: WARNING: git submodule update" >&2;} { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: sh autogen.sh" >&5 $as_echo "$as_me: WARNING: sh autogen.sh" >&2;} fi if test -f $srcdir/clang/configure; then with_clang="bundled" else with_clang="no" fi ;; *) with_clang="no" ;; esac ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: checking which clang to use" >&5 $as_echo_n "checking which clang to use... " >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: result: $with_clang" >&5 $as_echo "$with_clang" >&6; } case "$with_clang" in system) { $as_echo "$as_me:${as_lineno-$LINENO}: checking for grep that handles long lines and -e" >&5 $as_echo_n "checking for grep that handles long lines and -e... " >&6; } if ${ac_cv_path_GREP+:} false; then : $as_echo_n "(cached) " >&6 else if test -z "$GREP"; then ac_path_GREP_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH$PATH_SEPARATOR/usr/xpg4/bin do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in grep ggrep; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_GREP="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_GREP" || continue # Check for GNU ac_path_GREP and select it if it is found. # Check for GNU $ac_path_GREP case `"$ac_path_GREP" --version 2>&1` in *GNU*) ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo 'GREP' >> "conftest.nl" "$ac_path_GREP" -e 'GREP$' -e '-(cannot match)-' < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_GREP_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_GREP="$ac_path_GREP" ac_path_GREP_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_GREP_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_GREP"; then as_fn_error $? "no acceptable grep could be found in $PATH$PATH_SEPARATOR/usr/xpg4/bin" "$LINENO" 5 fi else ac_cv_path_GREP=$GREP fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_GREP" >&5 $as_echo "$ac_cv_path_GREP" >&6; } GREP="$ac_cv_path_GREP" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for a sed that does not truncate output" >&5 $as_echo_n "checking for a sed that does not truncate output... " >&6; } if ${ac_cv_path_SED+:} false; then : $as_echo_n "(cached) " >&6 else ac_script=s/aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb/ for ac_i in 1 2 3 4 5 6 7; do ac_script="$ac_script$as_nl$ac_script" done echo "$ac_script" 2>/dev/null | sed 99q >conftest.sed { ac_script=; unset ac_script;} if test -z "$SED"; then ac_path_SED_found=false # Loop through the user's path and test for each of PROGNAME-LIST as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do ac_path_SED="$as_dir/$ac_prog$ac_exec_ext" as_fn_executable_p "$ac_path_SED" || continue # Check for GNU ac_path_SED and select it if it is found. # Check for GNU $ac_path_SED case `"$ac_path_SED" --version 2>&1` in *GNU*) ac_cv_path_SED="$ac_path_SED" ac_path_SED_found=:;; *) ac_count=0 $as_echo_n 0123456789 >"conftest.in" while : do cat "conftest.in" "conftest.in" >"conftest.tmp" mv "conftest.tmp" "conftest.in" cp "conftest.in" "conftest.nl" $as_echo '' >> "conftest.nl" "$ac_path_SED" -f conftest.sed < "conftest.nl" >"conftest.out" 2>/dev/null || break diff "conftest.out" "conftest.nl" >/dev/null 2>&1 || break as_fn_arith $ac_count + 1 && ac_count=$as_val if test $ac_count -gt ${ac_path_SED_max-0}; then # Best one so far, save it but keep looking for a better one ac_cv_path_SED="$ac_path_SED" ac_path_SED_max=$ac_count fi # 10*(2^10) chars as input seems more than enough test $ac_count -gt 10 && break done rm -f conftest.in conftest.tmp conftest.nl conftest.out;; esac $ac_path_SED_found && break 3 done done done IFS=$as_save_IFS if test -z "$ac_cv_path_SED"; then as_fn_error $? "no acceptable sed could be found in \$PATH" "$LINENO" 5 fi else ac_cv_path_SED=$SED fi fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_path_SED" >&5 $as_echo "$ac_cv_path_SED" >&6; } SED="$ac_cv_path_SED" rm -f conftest.sed llvm_config="llvm-config" # Extract the first word of ""$llvm_config"", so it can be a program name with args. set dummy "$llvm_config"; ac_word=$2 { $as_echo "$as_me:${as_lineno-$LINENO}: checking for $ac_word" >&5 $as_echo_n "checking for $ac_word... " >&6; } if ${ac_cv_prog_llvm_config_found+:} false; then : $as_echo_n "(cached) " >&6 else if test -n "$llvm_config_found"; then ac_cv_prog_llvm_config_found="$llvm_config_found" # Let the user override the test. else as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for ac_exec_ext in '' $ac_executable_extensions; do if as_fn_executable_p "$as_dir/$ac_word$ac_exec_ext"; then ac_cv_prog_llvm_config_found="yes" $as_echo "$as_me:${as_lineno-$LINENO}: found $as_dir/$ac_word$ac_exec_ext" >&5 break 2 fi done done IFS=$as_save_IFS fi fi llvm_config_found=$ac_cv_prog_llvm_config_found if test -n "$llvm_config_found"; then { $as_echo "$as_me:${as_lineno-$LINENO}: result: $llvm_config_found" >&5 $as_echo "$llvm_config_found" >&6; } else { $as_echo "$as_me:${as_lineno-$LINENO}: result: no" >&5 $as_echo "no" >&6; } fi if test "x$with_clang_prefix" != "x"; then llvm_config="$with_clang_prefix/bin/llvm-config" if test -x "$llvm_config"; then llvm_config_found=yes fi fi if test "$llvm_config_found" != yes; then as_fn_error $? "llvm-config not found" "$LINENO" 5 fi CLANG_CXXFLAGS=`$llvm_config --cxxflags | \ $SED -e 's/-Wcovered-switch-default//'` CLANG_LDFLAGS=`$llvm_config --ldflags` targets=`$llvm_config --targets-built` components="$targets asmparser bitreader support mc" $llvm_config --components | $GREP option > /dev/null 2> /dev/null if test $? -eq 0; then components="$components option" fi CLANG_LIBS=`$llvm_config --libs $components` systemlibs=`$llvm_config --system-libs 2> /dev/null | tail -1` if test $? -eq 0; then CLANG_LIBS="$CLANG_LIBS $systemlibs" fi CLANG_PREFIX=`$llvm_config --prefix` cat >>confdefs.h <<_ACEOF #define CLANG_PREFIX "$CLANG_PREFIX" _ACEOF SAVE_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CLANG_CXXFLAGS $CPPFLAGS" ac_ext=cpp ac_cpp='$CXXCPP $CPPFLAGS' ac_compile='$CXX -c $CXXFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CXX -o conftest$ac_exeext $CXXFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_cxx_compiler_gnu ac_fn_cxx_check_header_mongrel "$LINENO" "clang/Basic/SourceLocation.h" "ac_cv_header_clang_Basic_SourceLocation_h" "$ac_includes_default" if test "x$ac_cv_header_clang_Basic_SourceLocation_h" = xyes; then : else as_fn_error $? "clang header file not found" "$LINENO" 5 fi cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "getDefaultTargetTriple" >/dev/null 2>&1; then : else $as_echo "#define getDefaultTargetTriple getHostTriple" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "getExpansionLineNumber" >/dev/null 2>&1; then : else $as_echo "#define getExpansionLineNumber getInstantiationLineNumber" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "DiagnosticsEngine" >/dev/null 2>&1; then : else $as_echo "#define DiagnosticsEngine Diagnostic" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "ArrayRef" >/dev/null 2>&1; then : $as_echo "#define USE_ARRAYREF /**/" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "CXXIsProduction" >/dev/null 2>&1; then : $as_echo "#define HAVE_CXXISPRODUCTION /**/" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP " IsProduction" >/dev/null 2>&1; then : $as_echo "#define HAVE_ISPRODUCTION /**/" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; DiagnosticsEngine *Diags; new driver::Driver("", "", "", *Diags); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : $as_echo "#define DRIVER_CTOR_TAKES_DEFAULTIMAGENAME /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "void HandleTopLevelDecl\(" >/dev/null 2>&1; then : $as_echo "#define HandleTopLevelDeclReturn void" >>confdefs.h $as_echo "#define HandleTopLevelDeclContinue /**/" >>confdefs.h else $as_echo "#define HandleTopLevelDeclReturn bool" >>confdefs.h $as_echo "#define HandleTopLevelDeclContinue true" >>confdefs.h fi rm -f conftest* ac_fn_cxx_check_header_mongrel "$LINENO" "clang/Basic/DiagnosticOptions.h" "ac_cv_header_clang_Basic_DiagnosticOptions_h" "$ac_includes_default" if test "x$ac_cv_header_clang_Basic_DiagnosticOptions_h" = xyes; then : $as_echo "#define HAVE_BASIC_DIAGNOSTICOPTIONS_H /**/" >>confdefs.h fi cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; std::shared_ptr TO; DiagnosticsEngine *Diags; TargetInfo::CreateTargetInfo(*Diags, TO); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : $as_echo "#define CREATETARGETINFO_TAKES_SHARED_PTR /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; TargetOptions *TO; DiagnosticsEngine *Diags; TargetInfo::CreateTargetInfo(*Diags, TO); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : $as_echo "#define CREATETARGETINFO_TAKES_POINTER /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; DiagnosticConsumer *client; CompilerInstance *Clang; Clang->createDiagnostics(client); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : else $as_echo "#define CREATEDIAGNOSTICS_TAKES_ARG /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; HeaderSearchOptions HSO; HSO.AddPath("", frontend::Angled, false, false); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : $as_echo "#define ADDPATH_TAKES_4_ARGUMENTS /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "getNumParams" >/dev/null 2>&1; then : $as_echo "#define getNumArgs getNumParams" >>confdefs.h $as_echo "#define getArgType getParamType" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "getReturnType" >/dev/null 2>&1; then : else $as_echo "#define getReturnType getResultType" >>confdefs.h fi rm -f conftest* cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include int main () { using namespace clang; CompilerInstance *Clang; Clang->createPreprocessor(TU_Complete); ; return 0; } _ACEOF if ac_fn_cxx_try_compile "$LINENO"; then : $as_echo "#define CREATEPREPROCESSOR_TAKES_TUKIND /**/" >>confdefs.h fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "setMainFileID" >/dev/null 2>&1; then : $as_echo "#define HAVE_SETMAINFILEID /**/" >>confdefs.h fi rm -f conftest* ac_fn_cxx_check_header_mongrel "$LINENO" "llvm/ADT/OwningPtr.h" "ac_cv_header_llvm_ADT_OwningPtr_h" "$ac_includes_default" if test "x$ac_cv_header_llvm_ADT_OwningPtr_h" = xyes; then : $as_echo "#define HAVE_ADT_OWNINGPTR_H /**/" >>confdefs.h fi cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ #include _ACEOF if (eval "$ac_cpp conftest.$ac_ext") 2>&5 | $EGREP "initializeBuiltins" >/dev/null 2>&1; then : else $as_echo "#define initializeBuiltins InitializeBuiltins" >>confdefs.h fi rm -f conftest* ac_ext=c ac_cpp='$CPP $CPPFLAGS' ac_compile='$CC -c $CFLAGS $CPPFLAGS conftest.$ac_ext >&5' ac_link='$CC -o conftest$ac_exeext $CFLAGS $CPPFLAGS $LDFLAGS conftest.$ac_ext $LIBS >&5' ac_compiler_gnu=$ac_cv_c_compiler_gnu CPPFLAGS="$SAVE_CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" LDFLAGS="$CLANG_LDFLAGS $LDFLAGS" { $as_echo "$as_me:${as_lineno-$LINENO}: checking for main in -lclangEdit" >&5 $as_echo_n "checking for main in -lclangEdit... " >&6; } if ${ac_cv_lib_clangEdit_main+:} false; then : $as_echo_n "(cached) " >&6 else ac_check_lib_save_LIBS=$LIBS LIBS="-lclangEdit $LIBS" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { return main (); ; return 0; } _ACEOF if ac_fn_c_try_link "$LINENO"; then : ac_cv_lib_clangEdit_main=yes else ac_cv_lib_clangEdit_main=no fi rm -f core conftest.err conftest.$ac_objext \ conftest$ac_exeext conftest.$ac_ext LIBS=$ac_check_lib_save_LIBS fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_cv_lib_clangEdit_main" >&5 $as_echo "$ac_cv_lib_clangEdit_main" >&6; } if test "x$ac_cv_lib_clangEdit_main" = xyes; then : LIB_CLANG_EDIT=-lclangEdit fi LDFLAGS="$SAVE_LDFLAGS" ;; esac if test $with_clang = system; then HAVE_CLANG_TRUE= HAVE_CLANG_FALSE='#' else HAVE_CLANG_TRUE='#' HAVE_CLANG_FALSE= fi { $as_echo "$as_me:${as_lineno-$LINENO}: checking for C compiler vendor" >&5 $as_echo_n "checking for C compiler vendor... " >&6; } if ${ax_cv_c_compiler_vendor+:} false; then : $as_echo_n "(cached) " >&6 else ax_cv_c_compiler_vendor=unknown # note: don't check for gcc first since some other compilers define __GNUC__ for ventest in intel:__ICC,__ECC,__INTEL_COMPILER ibm:__xlc__,__xlC__,__IBMC__,__IBMCPP__ pathscale:__PATHCC__,__PATHSCALE__ clang:__clang__ gnu:__GNUC__ sun:__SUNPRO_C,__SUNPRO_CC hp:__HP_cc,__HP_aCC dec:__DECC,__DECCXX,__DECC_VER,__DECCXX_VER borland:__BORLANDC__,__TURBOC__ comeau:__COMO__ cray:_CRAYC kai:__KCC lcc:__LCC__ metrowerks:__MWERKS__ sgi:__sgi,sgi microsoft:_MSC_VER watcom:__WATCOMC__ portland:__PGI; do vencpp="defined("`echo $ventest | cut -d: -f2 | sed 's/,/) || defined(/g'`")" cat confdefs.h - <<_ACEOF >conftest.$ac_ext /* end confdefs.h. */ int main () { #if !($vencpp) thisisanerror; #endif ; return 0; } _ACEOF if ac_fn_c_try_compile "$LINENO"; then : ax_cv_c_compiler_vendor=`echo $ventest | cut -d: -f1`; break fi rm -f core conftest.err conftest.$ac_objext conftest.$ac_ext done fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_cv_c_compiler_vendor" >&5 $as_echo "$ax_cv_c_compiler_vendor" >&6; } WARNING_FLAGS="" if test "${ax_cv_c_compiler_vendor}" = "clang"; then WARNING_FLAGS="-Wall" fi PACKAGE_CFLAGS="$MP_CPPFLAGS" PACKAGE_LDFLAGS="$MP_LDFLAGS" PACKAGE_LIBS="-lisl $MP_LIBS" # we need the expanded forms... test "x$prefix" = xNONE && prefix=$ac_default_prefix test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig libname" >&5 $as_echo_n "checking our pkgconfig libname... " >&6; } test ".$ax_create_pkgconfig_libname" != "." || \ ax_create_pkgconfig_libname="${PACKAGE_NAME}" test ".$ax_create_pkgconfig_libname" != "." || \ ax_create_pkgconfig_libname="$PACKAGE" ax_create_pkgconfig_libname=`eval echo "$ax_create_pkgconfig_libname"` ax_create_pkgconfig_libname=`eval echo "$ax_create_pkgconfig_libname"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_libname" >&5 $as_echo "$ax_create_pkgconfig_libname" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig version" >&5 $as_echo_n "checking our pkgconfig version... " >&6; } test ".$ax_create_pkgconfig_version" != "." || \ ax_create_pkgconfig_version="${PACKAGE_VERSION}" test ".$ax_create_pkgconfig_version" != "." || \ ax_create_pkgconfig_version="$VERSION" ax_create_pkgconfig_version=`eval echo "$ax_create_pkgconfig_version"` ax_create_pkgconfig_version=`eval echo "$ax_create_pkgconfig_version"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_version" >&5 $as_echo "$ax_create_pkgconfig_version" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig_libdir" >&5 $as_echo_n "checking our pkgconfig_libdir... " >&6; } test ".$pkgconfig_libdir" = "." && \ pkgconfig_libdir='${libdir}/pkgconfig' ax_create_pkgconfig_libdir=`eval echo "$pkgconfig_libdir"` ax_create_pkgconfig_libdir=`eval echo "$ax_create_pkgconfig_libdir"` ax_create_pkgconfig_libdir=`eval echo "$ax_create_pkgconfig_libdir"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $pkgconfig_libdir" >&5 $as_echo "$pkgconfig_libdir" >&6; } test "$pkgconfig_libdir" != "$ax_create_pkgconfig_libdir" && ( { $as_echo "$as_me:${as_lineno-$LINENO}: result: expanded our pkgconfig_libdir... $ax_create_pkgconfig_libdir" >&5 $as_echo "expanded our pkgconfig_libdir... $ax_create_pkgconfig_libdir" >&6; }) { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig_libfile" >&5 $as_echo_n "checking our pkgconfig_libfile... " >&6; } test ".$pkgconfig_libfile" != "." || \ pkgconfig_libfile="$ax_create_pkgconfig_libname.pc" ax_create_pkgconfig_libfile=`eval echo "$pkgconfig_libfile"` ax_create_pkgconfig_libfile=`eval echo "$ax_create_pkgconfig_libfile"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $pkgconfig_libfile" >&5 $as_echo "$pkgconfig_libfile" >&6; } test "$pkgconfig_libfile" != "$ax_create_pkgconfig_libfile" && ( { $as_echo "$as_me:${as_lineno-$LINENO}: result: expanded our pkgconfig_libfile... $ax_create_pkgconfig_libfile" >&5 $as_echo "expanded our pkgconfig_libfile... $ax_create_pkgconfig_libfile" >&6; }) { $as_echo "$as_me:${as_lineno-$LINENO}: checking our package / suffix" >&5 $as_echo_n "checking our package / suffix... " >&6; } ax_create_pkgconfig_suffix="$program_suffix" test ".$ax_create_pkgconfig_suffix" != .NONE || ax_create_pkgconfig_suffix="" { $as_echo "$as_me:${as_lineno-$LINENO}: result: ${PACKAGE_NAME} / ${ax_create_pkgconfig_suffix}" >&5 $as_echo "${PACKAGE_NAME} / ${ax_create_pkgconfig_suffix}" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig description" >&5 $as_echo_n "checking our pkgconfig description... " >&6; } ax_create_pkgconfig_description="$PACKAGE_SUMMARY" test ".$ax_create_pkgconfig_description" != "." || \ ax_create_pkgconfig_description="$ax_create_pkgconfig_libname Library" ax_create_pkgconfig_description=`eval echo "$ax_create_pkgconfig_description"` ax_create_pkgconfig_description=`eval echo "$ax_create_pkgconfig_description"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_description" >&5 $as_echo "$ax_create_pkgconfig_description" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig requires" >&5 $as_echo_n "checking our pkgconfig requires... " >&6; } ax_create_pkgconfig_requires="$PACKAGE_REQUIRES" ax_create_pkgconfig_requires=`eval echo "$ax_create_pkgconfig_requires"` ax_create_pkgconfig_requires=`eval echo "$ax_create_pkgconfig_requires"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_requires" >&5 $as_echo "$ax_create_pkgconfig_requires" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig ext libs" >&5 $as_echo_n "checking our pkgconfig ext libs... " >&6; } ax_create_pkgconfig_pkglibs="$PACKAGE_LIBS" test ".$ax_create_pkgconfig_pkglibs" != "." || ax_create_pkgconfig_pkglibs="-l$ax_create_pkgconfig_libname" ax_create_pkgconfig_libs="$ax_create_pkgconfig_pkglibs $LIBS" ax_create_pkgconfig_libs=`eval echo "$ax_create_pkgconfig_libs"` ax_create_pkgconfig_libs=`eval echo "$ax_create_pkgconfig_libs"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_libs" >&5 $as_echo "$ax_create_pkgconfig_libs" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig cppflags" >&5 $as_echo_n "checking our pkgconfig cppflags... " >&6; } ax_create_pkgconfig_cppflags="$PACKAGE_CFLAGS" ax_create_pkgconfig_cppflags=`eval echo "$ax_create_pkgconfig_cppflags"` ax_create_pkgconfig_cppflags=`eval echo "$ax_create_pkgconfig_cppflags"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_cppflags" >&5 $as_echo "$ax_create_pkgconfig_cppflags" >&6; } { $as_echo "$as_me:${as_lineno-$LINENO}: checking our pkgconfig ldflags" >&5 $as_echo_n "checking our pkgconfig ldflags... " >&6; } ax_create_pkgconfig_ldflags="$PACKAGE_LDFLAGS" ax_create_pkgconfig_ldflags=`eval echo "$ax_create_pkgconfig_ldflags"` ax_create_pkgconfig_ldflags=`eval echo "$ax_create_pkgconfig_ldflags"` { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ax_create_pkgconfig_ldflags" >&5 $as_echo "$ax_create_pkgconfig_ldflags" >&6; } test ".$ax_create_pkgconfig_generate" != "." || \ ax_create_pkgconfig_generate="$ax_create_pkgconfig_libname.pc" ax_create_pkgconfig_generate=`eval echo "$ax_create_pkgconfig_generate"` ax_create_pkgconfig_generate=`eval echo "$ax_create_pkgconfig_generate"` test "$pkgconfig_libfile" != "$ax_create_pkgconfig_generate" && ( { $as_echo "$as_me:${as_lineno-$LINENO}: result: generate the pkgconfig later... $ax_create_pkgconfig_generate" >&5 $as_echo "generate the pkgconfig later... $ax_create_pkgconfig_generate" >&6; }) if test ".$ax_create_pkgconfig_src_libdir" = "." ; then ax_create_pkgconfig_src_libdir=`pwd` ax_create_pkgconfig_src_libdir=`$as_dirname -- "$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" || $as_expr X"$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" : 'X\(//\)[^/]' \| \ X"$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" : 'X\(//\)$' \| \ X"$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ax_create_pkgconfig_src_libdir/$ax_create_pkgconfig_generate" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test ! -d $ax_create_pkgconfig_src_libdir/src || \ ax_create_pkgconfig_src_libdir="$ax_create_pkgconfig_src_libdir/src" case ".$objdir" in *libs) ax_create_pkgconfig_src_libdir="$ax_create_pkgconfig_src_libdir/$objdir" ;; esac { $as_echo "$as_me:${as_lineno-$LINENO}: result: noninstalled pkgconfig -L $ax_create_pkgconfig_src_libdir" >&5 $as_echo "noninstalled pkgconfig -L $ax_create_pkgconfig_src_libdir" >&6; } fi if test ".$ax_create_pkgconfig_src_headers" = "." ; then ax_create_pkgconfig_src_headers=`pwd` v="$ac_top_srcdir" ; test ".$v" != "." || v="$ax_spec_dir" test ".$v" != "." || v="$srcdir" case "$v" in /*) ax_create_pkgconfig_src_headers="" ;; esac ax_create_pkgconfig_src_headers=`$as_dirname -- "$ax_create_pkgconfig_src_headers/$v/x" || $as_expr X"$ax_create_pkgconfig_src_headers/$v/x" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ax_create_pkgconfig_src_headers/$v/x" : 'X\(//\)[^/]' \| \ X"$ax_create_pkgconfig_src_headers/$v/x" : 'X\(//\)$' \| \ X"$ax_create_pkgconfig_src_headers/$v/x" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ax_create_pkgconfig_src_headers/$v/x" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test ! -d $ax_create_pkgconfig_src_headers/include || \ ax_create_pkgconfig_src_headers="$ax_create_pkgconfig_src_headers/include" { $as_echo "$as_me:${as_lineno-$LINENO}: result: noninstalled pkgconfig -I $ax_create_pkgconfig_src_headers" >&5 $as_echo "noninstalled pkgconfig -I $ax_create_pkgconfig_src_headers" >&6; } fi ac_config_commands="$ac_config_commands $ax_create_pkgconfig_generate" if test -f $srcdir/.git; then gitdir=`GIT_DIR=$srcdir/.git git rev-parse --git-dir` GIT_HEAD="$gitdir/index" GIT_REPO="$gitdir" GIT_HEAD_ID=`GIT_DIR=$GIT_REPO git describe --always` elif test -f $srcdir/.git/HEAD; then GIT_HEAD="$srcdir/.git/index" GIT_REPO="$srcdir/.git" GIT_HEAD_ID=`GIT_DIR=$GIT_REPO git describe --always` elif test -f $srcdir/GIT_HEAD_ID; then GIT_HEAD_ID=`cat $srcdir/GIT_HEAD_ID` else mysrcdir=`(cd $srcdir; pwd)` head=`basename $mysrcdir | sed -e 's/.*-//'` head2=`echo $head | sed -e 's/^0-9a-f//'` head3=`echo $head2 | sed -e 's/........................................//'` if test "x$head3" = "x" -a "x$head" = "x$head2"; then GIT_HEAD_ID="$head" else GIT_HEAD_ID="UNKNOWN" fi fi if test -z "$GIT_REPO" ; then GIT_HEAD_VERSION="$GIT_HEAD_ID" else GIT_HEAD_VERSION="\`GIT_DIR=$GIT_REPO git describe --always\`" fi ac_config_headers="$ac_config_headers isl_config.h" ac_config_files="$ac_config_files Makefile" ac_config_files="$ac_config_files doc/Makefile" if test $with_clang = system; then ac_config_files="$ac_config_files interface/Makefile" fi ac_config_files="$ac_config_files bound_test.sh" ac_config_files="$ac_config_files codegen_test.sh" ac_config_files="$ac_config_files pip_test.sh" cat >confcache <<\_ACEOF # This file is a shell script that caches the results of configure # tests run on this system so they can be shared between configure # scripts and configure runs, see configure's option --config-cache. # It is not useful on other systems. If it contains results you don't # want to keep, you may remove or edit it. # # config.status only pays attention to the cache file if you give it # the --recheck option to rerun configure. # # `ac_cv_env_foo' variables (set or unset) will be overridden when # loading this file, other *unset* `ac_cv_foo' will be assigned the # following values. _ACEOF # The following way of writing the cache mishandles newlines in values, # but we know of no workaround that is simple, portable, and efficient. # So, we kill variables containing newlines. # Ultrix sh set writes to stderr and can't be redirected directly, # and sets the high bit in the cache file unless we assign to the vars. ( for ac_var in `(set) 2>&1 | sed -n 's/^\([a-zA-Z_][a-zA-Z0-9_]*\)=.*/\1/p'`; do eval ac_val=\$$ac_var case $ac_val in #( *${as_nl}*) case $ac_var in #( *_cv_*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: cache variable $ac_var contains a newline" >&5 $as_echo "$as_me: WARNING: cache variable $ac_var contains a newline" >&2;} ;; esac case $ac_var in #( _ | IFS | as_nl) ;; #( BASH_ARGV | BASH_SOURCE) eval $ac_var= ;; #( *) { eval $ac_var=; unset $ac_var;} ;; esac ;; esac done (set) 2>&1 | case $as_nl`(ac_space=' '; set) 2>&1` in #( *${as_nl}ac_space=\ *) # `set' does not quote correctly, so add quotes: double-quote # substitution turns \\\\ into \\, and sed turns \\ into \. sed -n \ "s/'/'\\\\''/g; s/^\\([_$as_cr_alnum]*_cv_[_$as_cr_alnum]*\\)=\\(.*\\)/\\1='\\2'/p" ;; #( *) # `set' quotes correctly as required by POSIX, so do not add quotes. sed -n "/^[_$as_cr_alnum]*_cv_[_$as_cr_alnum]*=/p" ;; esac | sort ) | sed ' /^ac_cv_env_/b end t clear :clear s/^\([^=]*\)=\(.*[{}].*\)$/test "${\1+set}" = set || &/ t end s/^\([^=]*\)=\(.*\)$/\1=${\1=\2}/ :end' >>confcache if diff "$cache_file" confcache >/dev/null 2>&1; then :; else if test -w "$cache_file"; then if test "x$cache_file" != "x/dev/null"; then { $as_echo "$as_me:${as_lineno-$LINENO}: updating cache $cache_file" >&5 $as_echo "$as_me: updating cache $cache_file" >&6;} if test ! -f "$cache_file" || test -h "$cache_file"; then cat confcache >"$cache_file" else case $cache_file in #( */* | ?:*) mv -f confcache "$cache_file"$$ && mv -f "$cache_file"$$ "$cache_file" ;; #( *) mv -f confcache "$cache_file" ;; esac fi fi else { $as_echo "$as_me:${as_lineno-$LINENO}: not updating unwritable cache $cache_file" >&5 $as_echo "$as_me: not updating unwritable cache $cache_file" >&6;} fi fi rm -f confcache test "x$prefix" = xNONE && prefix=$ac_default_prefix # Let make expand exec_prefix. test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' DEFS=-DHAVE_CONFIG_H ac_libobjs= ac_ltlibobjs= U= for ac_i in : $LIBOBJS; do test "x$ac_i" = x: && continue # 1. Remove the extension, and $U if already installed. ac_script='s/\$U\././;s/\.o$//;s/\.obj$//' ac_i=`$as_echo "$ac_i" | sed "$ac_script"` # 2. Prepend LIBOBJDIR. When used with automake>=1.10 LIBOBJDIR # will be set to the directory where LIBOBJS objects are built. as_fn_append ac_libobjs " \${LIBOBJDIR}$ac_i\$U.$ac_objext" as_fn_append ac_ltlibobjs " \${LIBOBJDIR}$ac_i"'$U.lo' done LIBOBJS=$ac_libobjs LTLIBOBJS=$ac_ltlibobjs { $as_echo "$as_me:${as_lineno-$LINENO}: checking that generated files are newer than configure" >&5 $as_echo_n "checking that generated files are newer than configure... " >&6; } if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi { $as_echo "$as_me:${as_lineno-$LINENO}: result: done" >&5 $as_echo "done" >&6; } if test -n "$EXEEXT"; then am__EXEEXT_TRUE= am__EXEEXT_FALSE='#' else am__EXEEXT_TRUE='#' am__EXEEXT_FALSE= fi if test -z "${AMDEP_TRUE}" && test -z "${AMDEP_FALSE}"; then as_fn_error $? "conditional \"AMDEP\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCC_TRUE}" && test -z "${am__fastdepCC_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${am__fastdepCXX_TRUE}" && test -z "${am__fastdepCXX_FALSE}"; then as_fn_error $? "conditional \"am__fastdepCXX\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${GENERATE_DOC_TRUE}" && test -z "${GENERATE_DOC_FALSE}"; then as_fn_error $? "conditional \"GENERATE_DOC\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${NEED_GET_MEMORY_FUNCTIONS_TRUE}" && test -z "${NEED_GET_MEMORY_FUNCTIONS_FALSE}"; then as_fn_error $? "conditional \"NEED_GET_MEMORY_FUNCTIONS\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${NEED_GET_MEMORY_FUNCTIONS_TRUE}" && test -z "${NEED_GET_MEMORY_FUNCTIONS_FALSE}"; then as_fn_error $? "conditional \"NEED_GET_MEMORY_FUNCTIONS\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${IMATH_FOR_MP_TRUE}" && test -z "${IMATH_FOR_MP_FALSE}"; then as_fn_error $? "conditional \"IMATH_FOR_MP\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${GMP_FOR_MP_TRUE}" && test -z "${GMP_FOR_MP_FALSE}"; then as_fn_error $? "conditional \"GMP_FOR_MP\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${SMALL_INT_OPT_TRUE}" && test -z "${SMALL_INT_OPT_FALSE}"; then as_fn_error $? "conditional \"SMALL_INT_OPT\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi if test -z "${HAVE_CLANG_TRUE}" && test -z "${HAVE_CLANG_FALSE}"; then as_fn_error $? "conditional \"HAVE_CLANG\" was never defined. Usually this means the macro was only invoked conditionally." "$LINENO" 5 fi : "${CONFIG_STATUS=./config.status}" ac_write_fail=0 ac_clean_files_save=$ac_clean_files ac_clean_files="$ac_clean_files $CONFIG_STATUS" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $CONFIG_STATUS" >&5 $as_echo "$as_me: creating $CONFIG_STATUS" >&6;} as_write_fail=0 cat >$CONFIG_STATUS <<_ASEOF || as_write_fail=1 #! $SHELL # Generated by $as_me. # Run this file to recreate the current configuration. # Compiler output produced by configure, useful for debugging # configure, is in config.log if it exists. debug=false ac_cs_recheck=false ac_cs_silent=false SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$CONFIG_STATUS <<\_ASEOF || as_write_fail=1 ## -------------------- ## ## M4sh Initialization. ## ## -------------------- ## # Be more Bourne compatible DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in #( *posix*) : set -o posix ;; #( *) : ;; esac fi as_nl=' ' export as_nl # Printing a long string crashes Solaris 7 /usr/bin/printf. as_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo as_echo=$as_echo$as_echo$as_echo$as_echo$as_echo$as_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='print -r --' as_echo_n='print -rn --' elif (test "X`printf %s $as_echo`" = "X$as_echo") 2>/dev/null; then as_echo='printf %s\n' as_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $as_echo) 2>/dev/null`" = "X-n $as_echo"; then as_echo_body='eval /usr/ucb/echo -n "$1$as_nl"' as_echo_n='/usr/ucb/echo -n' else as_echo_body='eval expr "X$1" : "X\\(.*\\)"' as_echo_n_body='eval arg=$1; case $arg in #( *"$as_nl"*) expr "X$arg" : "X\\(.*\\)$as_nl"; arg=`expr "X$arg" : ".*$as_nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$as_nl" ' export as_echo_n_body as_echo_n='sh -c $as_echo_n_body as_echo' fi export as_echo_body as_echo='sh -c $as_echo_body as_echo' fi # The user is always right. if test "${PATH_SEPARATOR+set}" != set; then PATH_SEPARATOR=: (PATH='/bin;/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 && { (PATH='/bin:/bin'; FPATH=$PATH; sh -c :) >/dev/null 2>&1 || PATH_SEPARATOR=';' } fi # IFS # We need space, tab and new line, in precisely that order. Quoting is # there to prevent editors from complaining about space-tab. # (If _AS_PATH_WALK were called with IFS unset, it would disable word # splitting by setting IFS to empty value.) IFS=" "" $as_nl" # Find who we are. Look in the path if we contain no directory separator. as_myself= case $0 in #(( *[\\/]* ) as_myself=$0 ;; *) as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. test -r "$as_dir/$0" && as_myself=$as_dir/$0 && break done IFS=$as_save_IFS ;; esac # We did not find ourselves, most probably we were run as `sh COMMAND' # in which case we are not to be found in the path. if test "x$as_myself" = x; then as_myself=$0 fi if test ! -f "$as_myself"; then $as_echo "$as_myself: error: cannot find myself; rerun with an absolute file name" >&2 exit 1 fi # Unset variables that we do not need and which cause bugs (e.g. in # pre-3.0 UWIN ksh). But do not cause bugs in bash 2.01; the "|| exit 1" # suppresses any "Segmentation fault" message there. '((' could # trigger a bug in pdksh 5.2.14. for as_var in BASH_ENV ENV MAIL MAILPATH do eval test x\${$as_var+set} = xset \ && ( (unset $as_var) || exit 1) >/dev/null 2>&1 && unset $as_var || : done PS1='$ ' PS2='> ' PS4='+ ' # NLS nuisances. LC_ALL=C export LC_ALL LANGUAGE=C export LANGUAGE # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # as_fn_error STATUS ERROR [LINENO LOG_FD] # ---------------------------------------- # Output "`basename $0`: error: ERROR" to stderr. If LINENO and LOG_FD are # provided, also output the error to LOG_FD, referencing LINENO. Then exit the # script with STATUS, using 1 if that was 0. as_fn_error () { as_status=$1; test $as_status -eq 0 && as_status=1 if test "$4"; then as_lineno=${as_lineno-"$3"} as_lineno_stack=as_lineno_stack=$as_lineno_stack $as_echo "$as_me:${as_lineno-$LINENO}: error: $2" >&$4 fi $as_echo "$as_me: error: $2" >&2 as_fn_exit $as_status } # as_fn_error # as_fn_set_status STATUS # ----------------------- # Set $? to STATUS, without forking. as_fn_set_status () { return $1 } # as_fn_set_status # as_fn_exit STATUS # ----------------- # Exit the shell with STATUS, even in a "trap 0" or "set -e" context. as_fn_exit () { set +e as_fn_set_status $1 exit $1 } # as_fn_exit # as_fn_unset VAR # --------------- # Portably unset VAR. as_fn_unset () { { eval $1=; unset $1;} } as_unset=as_fn_unset # as_fn_append VAR VALUE # ---------------------- # Append the text in VALUE to the end of the definition contained in VAR. Take # advantage of any shell optimizations that allow amortized linear growth over # repeated appends, instead of the typical quadratic growth present in naive # implementations. if (eval "as_var=1; as_var+=2; test x\$as_var = x12") 2>/dev/null; then : eval 'as_fn_append () { eval $1+=\$2 }' else as_fn_append () { eval $1=\$$1\$2 } fi # as_fn_append # as_fn_arith ARG... # ------------------ # Perform arithmetic evaluation on the ARGs, and store the result in the # global $as_val. Take advantage of shells that can avoid forks. The arguments # must be portable across $(()) and expr. if (eval "test \$(( 1 + 1 )) = 2") 2>/dev/null; then : eval 'as_fn_arith () { as_val=$(( $* )) }' else as_fn_arith () { as_val=`expr "$@" || test $? -eq 1` } fi # as_fn_arith if expr a : '\(a\)' >/dev/null 2>&1 && test "X`expr 00001 : '.*\(...\)'`" = X001; then as_expr=expr else as_expr=false fi if (basename -- /) >/dev/null 2>&1 && test "X`basename -- / 2>&1`" = "X/"; then as_basename=basename else as_basename=false fi if (as_dir=`dirname -- /` && test "X$as_dir" = X/) >/dev/null 2>&1; then as_dirname=dirname else as_dirname=false fi as_me=`$as_basename -- "$0" || $as_expr X/"$0" : '.*/\([^/][^/]*\)/*$' \| \ X"$0" : 'X\(//\)$' \| \ X"$0" : 'X\(/\)' \| . 2>/dev/null || $as_echo X/"$0" | sed '/^.*\/\([^/][^/]*\)\/*$/{ s//\1/ q } /^X\/\(\/\/\)$/{ s//\1/ q } /^X\/\(\/\).*/{ s//\1/ q } s/.*/./; q'` # Avoid depending upon Character Ranges. as_cr_letters='abcdefghijklmnopqrstuvwxyz' as_cr_LETTERS='ABCDEFGHIJKLMNOPQRSTUVWXYZ' as_cr_Letters=$as_cr_letters$as_cr_LETTERS as_cr_digits='0123456789' as_cr_alnum=$as_cr_Letters$as_cr_digits ECHO_C= ECHO_N= ECHO_T= case `echo -n x` in #((((( -n*) case `echo 'xy\c'` in *c*) ECHO_T=' ';; # ECHO_T is single tab character. xy) ECHO_C='\c';; *) echo `echo ksh88 bug on AIX 6.1` > /dev/null ECHO_T=' ';; esac;; *) ECHO_N='-n';; esac rm -f conf$$ conf$$.exe conf$$.file if test -d conf$$.dir; then rm -f conf$$.dir/conf$$.file else rm -f conf$$.dir mkdir conf$$.dir 2>/dev/null fi if (echo >conf$$.file) 2>/dev/null; then if ln -s conf$$.file conf$$ 2>/dev/null; then as_ln_s='ln -s' # ... but there are two gotchas: # 1) On MSYS, both `ln -s file dir' and `ln file dir' fail. # 2) DJGPP < 2.04 has no symlinks; `ln -s' creates a wrapper executable. # In both cases, we have to default to `cp -pR'. ln -s conf$$.file conf$$.dir 2>/dev/null && test ! -f conf$$.exe || as_ln_s='cp -pR' elif ln conf$$.file conf$$ 2>/dev/null; then as_ln_s=ln else as_ln_s='cp -pR' fi else as_ln_s='cp -pR' fi rm -f conf$$ conf$$.exe conf$$.dir/conf$$.file conf$$.file rmdir conf$$.dir 2>/dev/null # as_fn_mkdir_p # ------------- # Create "$as_dir" as a directory, including parents if necessary. as_fn_mkdir_p () { case $as_dir in #( -*) as_dir=./$as_dir;; esac test -d "$as_dir" || eval $as_mkdir_p || { as_dirs= while :; do case $as_dir in #( *\'*) as_qdir=`$as_echo "$as_dir" | sed "s/'/'\\\\\\\\''/g"`;; #'( *) as_qdir=$as_dir;; esac as_dirs="'$as_qdir' $as_dirs" as_dir=`$as_dirname -- "$as_dir" || $as_expr X"$as_dir" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$as_dir" : 'X\(//\)[^/]' \| \ X"$as_dir" : 'X\(//\)$' \| \ X"$as_dir" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$as_dir" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` test -d "$as_dir" && break done test -z "$as_dirs" || eval "mkdir $as_dirs" } || test -d "$as_dir" || as_fn_error $? "cannot create directory $as_dir" } # as_fn_mkdir_p if mkdir -p . 2>/dev/null; then as_mkdir_p='mkdir -p "$as_dir"' else test -d ./-p && rmdir ./-p as_mkdir_p=false fi # as_fn_executable_p FILE # ----------------------- # Test if FILE is an executable regular file. as_fn_executable_p () { test -f "$1" && test -x "$1" } # as_fn_executable_p as_test_x='test -x' as_executable_p=as_fn_executable_p # Sed expression to map a string onto a valid CPP name. as_tr_cpp="eval sed 'y%*$as_cr_letters%P$as_cr_LETTERS%;s%[^_$as_cr_alnum]%_%g'" # Sed expression to map a string onto a valid variable name. as_tr_sh="eval sed 'y%*+%pp%;s%[^_$as_cr_alnum]%_%g'" exec 6>&1 ## ----------------------------------- ## ## Main body of $CONFIG_STATUS script. ## ## ----------------------------------- ## _ASEOF test $as_write_fail = 0 && chmod +x $CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Save the log message, to keep $0 and so on meaningful, and to # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" This file was extended by isl $as_me 0.16.1, which was generated by GNU Autoconf 2.69. Invocation command line was CONFIG_FILES = $CONFIG_FILES CONFIG_HEADERS = $CONFIG_HEADERS CONFIG_LINKS = $CONFIG_LINKS CONFIG_COMMANDS = $CONFIG_COMMANDS $ $0 $@ on `(hostname || uname -n) 2>/dev/null | sed 1q` " _ACEOF case $ac_config_files in *" "*) set x $ac_config_files; shift; ac_config_files=$*;; esac case $ac_config_headers in *" "*) set x $ac_config_headers; shift; ac_config_headers=$*;; esac cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # Files that config.status was made for. config_files="$ac_config_files" config_headers="$ac_config_headers" config_commands="$ac_config_commands" _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 ac_cs_usage="\ \`$as_me' instantiates files and other configuration actions from templates according to the current configuration. Unless the files and actions are specified as TAGs, all are instantiated by default. Usage: $0 [OPTION]... [TAG]... -h, --help print this help, then exit -V, --version print version number and configuration settings, then exit --config print configuration, then exit -q, --quiet, --silent do not print progress messages -d, --debug don't remove temporary files --recheck update $as_me by reconfiguring in the same conditions --file=FILE[:TEMPLATE] instantiate the configuration file FILE --header=FILE[:TEMPLATE] instantiate the configuration header FILE Configuration files: $config_files Configuration headers: $config_headers Configuration commands: $config_commands Report bugs to ." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_version="\\ isl config.status 0.16.1 configured by $0, generated by GNU Autoconf 2.69, with options \\"\$ac_cs_config\\" Copyright (C) 2012 Free Software Foundation, Inc. This config.status script is free software; the Free Software Foundation gives unlimited permission to copy, distribute and modify it." ac_pwd='$ac_pwd' srcdir='$srcdir' INSTALL='$INSTALL' MKDIR_P='$MKDIR_P' AWK='$AWK' test -n "\$AWK" || AWK=awk _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # The default lists apply if the user does not specify any file. ac_need_defaults=: while test $# != 0 do case $1 in --*=?*) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg=`expr "X$1" : 'X[^=]*=\(.*\)'` ac_shift=: ;; --*=) ac_option=`expr "X$1" : 'X\([^=]*\)='` ac_optarg= ac_shift=: ;; *) ac_option=$1 ac_optarg=$2 ac_shift=shift ;; esac case $ac_option in # Handling of the options. -recheck | --recheck | --rechec | --reche | --rech | --rec | --re | --r) ac_cs_recheck=: ;; --version | --versio | --versi | --vers | --ver | --ve | --v | -V ) $as_echo "$ac_cs_version"; exit ;; --config | --confi | --conf | --con | --co | --c ) $as_echo "$ac_cs_config"; exit ;; --debug | --debu | --deb | --de | --d | -d ) debug=: ;; --file | --fil | --fi | --f ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; '') as_fn_error $? "missing file argument" ;; esac as_fn_append CONFIG_FILES " '$ac_optarg'" ac_need_defaults=false;; --header | --heade | --head | --hea ) $ac_shift case $ac_optarg in *\'*) ac_optarg=`$as_echo "$ac_optarg" | sed "s/'/'\\\\\\\\''/g"` ;; esac as_fn_append CONFIG_HEADERS " '$ac_optarg'" ac_need_defaults=false;; --he | --h) # Conflict between --help and --header as_fn_error $? "ambiguous option: \`$1' Try \`$0 --help' for more information.";; --help | --hel | -h ) $as_echo "$ac_cs_usage"; exit ;; -q | -quiet | --quiet | --quie | --qui | --qu | --q \ | -silent | --silent | --silen | --sile | --sil | --si | --s) ac_cs_silent=: ;; # This is an error. -*) as_fn_error $? "unrecognized option: \`$1' Try \`$0 --help' for more information." ;; *) as_fn_append ac_config_targets " $1" ac_need_defaults=false ;; esac shift done ac_configure_extra_args= if $ac_cs_silent; then exec 6>/dev/null ac_configure_extra_args="$ac_configure_extra_args --silent" fi _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 if \$ac_cs_recheck; then set X $SHELL '$0' $ac_configure_args \$ac_configure_extra_args --no-create --no-recursion shift \$as_echo "running CONFIG_SHELL=$SHELL \$*" >&6 CONFIG_SHELL='$SHELL' export CONFIG_SHELL exec "\$@" fi _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 exec 5>>config.log { echo sed 'h;s/./-/g;s/^.../## /;s/...$/ ##/;p;x;p;x' <<_ASBOX ## Running $as_me. ## _ASBOX $as_echo "$ac_log" } >&5 _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 # # INIT-COMMANDS # AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir" # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' macro_version='`$ECHO "$macro_version" | $SED "$delay_single_quote_subst"`' macro_revision='`$ECHO "$macro_revision" | $SED "$delay_single_quote_subst"`' enable_shared='`$ECHO "$enable_shared" | $SED "$delay_single_quote_subst"`' enable_static='`$ECHO "$enable_static" | $SED "$delay_single_quote_subst"`' pic_mode='`$ECHO "$pic_mode" | $SED "$delay_single_quote_subst"`' enable_fast_install='`$ECHO "$enable_fast_install" | $SED "$delay_single_quote_subst"`' SHELL='`$ECHO "$SHELL" | $SED "$delay_single_quote_subst"`' ECHO='`$ECHO "$ECHO" | $SED "$delay_single_quote_subst"`' PATH_SEPARATOR='`$ECHO "$PATH_SEPARATOR" | $SED "$delay_single_quote_subst"`' host_alias='`$ECHO "$host_alias" | $SED "$delay_single_quote_subst"`' host='`$ECHO "$host" | $SED "$delay_single_quote_subst"`' host_os='`$ECHO "$host_os" | $SED "$delay_single_quote_subst"`' build_alias='`$ECHO "$build_alias" | $SED "$delay_single_quote_subst"`' build='`$ECHO "$build" | $SED "$delay_single_quote_subst"`' build_os='`$ECHO "$build_os" | $SED "$delay_single_quote_subst"`' SED='`$ECHO "$SED" | $SED "$delay_single_quote_subst"`' Xsed='`$ECHO "$Xsed" | $SED "$delay_single_quote_subst"`' GREP='`$ECHO "$GREP" | $SED "$delay_single_quote_subst"`' EGREP='`$ECHO "$EGREP" | $SED "$delay_single_quote_subst"`' FGREP='`$ECHO "$FGREP" | $SED "$delay_single_quote_subst"`' LD='`$ECHO "$LD" | $SED "$delay_single_quote_subst"`' NM='`$ECHO "$NM" | $SED "$delay_single_quote_subst"`' LN_S='`$ECHO "$LN_S" | $SED "$delay_single_quote_subst"`' max_cmd_len='`$ECHO "$max_cmd_len" | $SED "$delay_single_quote_subst"`' ac_objext='`$ECHO "$ac_objext" | $SED "$delay_single_quote_subst"`' exeext='`$ECHO "$exeext" | $SED "$delay_single_quote_subst"`' lt_unset='`$ECHO "$lt_unset" | $SED "$delay_single_quote_subst"`' lt_SP2NL='`$ECHO "$lt_SP2NL" | $SED "$delay_single_quote_subst"`' lt_NL2SP='`$ECHO "$lt_NL2SP" | $SED "$delay_single_quote_subst"`' lt_cv_to_host_file_cmd='`$ECHO "$lt_cv_to_host_file_cmd" | $SED "$delay_single_quote_subst"`' lt_cv_to_tool_file_cmd='`$ECHO "$lt_cv_to_tool_file_cmd" | $SED "$delay_single_quote_subst"`' reload_flag='`$ECHO "$reload_flag" | $SED "$delay_single_quote_subst"`' reload_cmds='`$ECHO "$reload_cmds" | $SED "$delay_single_quote_subst"`' OBJDUMP='`$ECHO "$OBJDUMP" | $SED "$delay_single_quote_subst"`' deplibs_check_method='`$ECHO "$deplibs_check_method" | $SED "$delay_single_quote_subst"`' file_magic_cmd='`$ECHO "$file_magic_cmd" | $SED "$delay_single_quote_subst"`' file_magic_glob='`$ECHO "$file_magic_glob" | $SED "$delay_single_quote_subst"`' want_nocaseglob='`$ECHO "$want_nocaseglob" | $SED "$delay_single_quote_subst"`' DLLTOOL='`$ECHO "$DLLTOOL" | $SED "$delay_single_quote_subst"`' sharedlib_from_linklib_cmd='`$ECHO "$sharedlib_from_linklib_cmd" | $SED "$delay_single_quote_subst"`' AR='`$ECHO "$AR" | $SED "$delay_single_quote_subst"`' AR_FLAGS='`$ECHO "$AR_FLAGS" | $SED "$delay_single_quote_subst"`' archiver_list_spec='`$ECHO "$archiver_list_spec" | $SED "$delay_single_quote_subst"`' STRIP='`$ECHO "$STRIP" | $SED "$delay_single_quote_subst"`' RANLIB='`$ECHO "$RANLIB" | $SED "$delay_single_quote_subst"`' old_postinstall_cmds='`$ECHO "$old_postinstall_cmds" | $SED "$delay_single_quote_subst"`' old_postuninstall_cmds='`$ECHO "$old_postuninstall_cmds" | $SED "$delay_single_quote_subst"`' old_archive_cmds='`$ECHO "$old_archive_cmds" | $SED "$delay_single_quote_subst"`' lock_old_archive_extraction='`$ECHO "$lock_old_archive_extraction" | $SED "$delay_single_quote_subst"`' CC='`$ECHO "$CC" | $SED "$delay_single_quote_subst"`' CFLAGS='`$ECHO "$CFLAGS" | $SED "$delay_single_quote_subst"`' compiler='`$ECHO "$compiler" | $SED "$delay_single_quote_subst"`' GCC='`$ECHO "$GCC" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_pipe='`$ECHO "$lt_cv_sys_global_symbol_pipe" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_cdecl='`$ECHO "$lt_cv_sys_global_symbol_to_cdecl" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_import='`$ECHO "$lt_cv_sys_global_symbol_to_import" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address" | $SED "$delay_single_quote_subst"`' lt_cv_sys_global_symbol_to_c_name_address_lib_prefix='`$ECHO "$lt_cv_sys_global_symbol_to_c_name_address_lib_prefix" | $SED "$delay_single_quote_subst"`' lt_cv_nm_interface='`$ECHO "$lt_cv_nm_interface" | $SED "$delay_single_quote_subst"`' nm_file_list_spec='`$ECHO "$nm_file_list_spec" | $SED "$delay_single_quote_subst"`' lt_sysroot='`$ECHO "$lt_sysroot" | $SED "$delay_single_quote_subst"`' objdir='`$ECHO "$objdir" | $SED "$delay_single_quote_subst"`' MAGIC_CMD='`$ECHO "$MAGIC_CMD" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_no_builtin_flag='`$ECHO "$lt_prog_compiler_no_builtin_flag" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_pic='`$ECHO "$lt_prog_compiler_pic" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_wl='`$ECHO "$lt_prog_compiler_wl" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_static='`$ECHO "$lt_prog_compiler_static" | $SED "$delay_single_quote_subst"`' lt_cv_prog_compiler_c_o='`$ECHO "$lt_cv_prog_compiler_c_o" | $SED "$delay_single_quote_subst"`' need_locks='`$ECHO "$need_locks" | $SED "$delay_single_quote_subst"`' MANIFEST_TOOL='`$ECHO "$MANIFEST_TOOL" | $SED "$delay_single_quote_subst"`' DSYMUTIL='`$ECHO "$DSYMUTIL" | $SED "$delay_single_quote_subst"`' NMEDIT='`$ECHO "$NMEDIT" | $SED "$delay_single_quote_subst"`' LIPO='`$ECHO "$LIPO" | $SED "$delay_single_quote_subst"`' OTOOL='`$ECHO "$OTOOL" | $SED "$delay_single_quote_subst"`' OTOOL64='`$ECHO "$OTOOL64" | $SED "$delay_single_quote_subst"`' libext='`$ECHO "$libext" | $SED "$delay_single_quote_subst"`' shrext_cmds='`$ECHO "$shrext_cmds" | $SED "$delay_single_quote_subst"`' extract_expsyms_cmds='`$ECHO "$extract_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds_need_lc='`$ECHO "$archive_cmds_need_lc" | $SED "$delay_single_quote_subst"`' enable_shared_with_static_runtimes='`$ECHO "$enable_shared_with_static_runtimes" | $SED "$delay_single_quote_subst"`' export_dynamic_flag_spec='`$ECHO "$export_dynamic_flag_spec" | $SED "$delay_single_quote_subst"`' whole_archive_flag_spec='`$ECHO "$whole_archive_flag_spec" | $SED "$delay_single_quote_subst"`' compiler_needs_object='`$ECHO "$compiler_needs_object" | $SED "$delay_single_quote_subst"`' old_archive_from_new_cmds='`$ECHO "$old_archive_from_new_cmds" | $SED "$delay_single_quote_subst"`' old_archive_from_expsyms_cmds='`$ECHO "$old_archive_from_expsyms_cmds" | $SED "$delay_single_quote_subst"`' archive_cmds='`$ECHO "$archive_cmds" | $SED "$delay_single_quote_subst"`' archive_expsym_cmds='`$ECHO "$archive_expsym_cmds" | $SED "$delay_single_quote_subst"`' module_cmds='`$ECHO "$module_cmds" | $SED "$delay_single_quote_subst"`' module_expsym_cmds='`$ECHO "$module_expsym_cmds" | $SED "$delay_single_quote_subst"`' with_gnu_ld='`$ECHO "$with_gnu_ld" | $SED "$delay_single_quote_subst"`' allow_undefined_flag='`$ECHO "$allow_undefined_flag" | $SED "$delay_single_quote_subst"`' no_undefined_flag='`$ECHO "$no_undefined_flag" | $SED "$delay_single_quote_subst"`' hardcode_libdir_flag_spec='`$ECHO "$hardcode_libdir_flag_spec" | $SED "$delay_single_quote_subst"`' hardcode_libdir_separator='`$ECHO "$hardcode_libdir_separator" | $SED "$delay_single_quote_subst"`' hardcode_direct='`$ECHO "$hardcode_direct" | $SED "$delay_single_quote_subst"`' hardcode_direct_absolute='`$ECHO "$hardcode_direct_absolute" | $SED "$delay_single_quote_subst"`' hardcode_minus_L='`$ECHO "$hardcode_minus_L" | $SED "$delay_single_quote_subst"`' hardcode_shlibpath_var='`$ECHO "$hardcode_shlibpath_var" | $SED "$delay_single_quote_subst"`' hardcode_automatic='`$ECHO "$hardcode_automatic" | $SED "$delay_single_quote_subst"`' inherit_rpath='`$ECHO "$inherit_rpath" | $SED "$delay_single_quote_subst"`' link_all_deplibs='`$ECHO "$link_all_deplibs" | $SED "$delay_single_quote_subst"`' always_export_symbols='`$ECHO "$always_export_symbols" | $SED "$delay_single_quote_subst"`' export_symbols_cmds='`$ECHO "$export_symbols_cmds" | $SED "$delay_single_quote_subst"`' exclude_expsyms='`$ECHO "$exclude_expsyms" | $SED "$delay_single_quote_subst"`' include_expsyms='`$ECHO "$include_expsyms" | $SED "$delay_single_quote_subst"`' prelink_cmds='`$ECHO "$prelink_cmds" | $SED "$delay_single_quote_subst"`' postlink_cmds='`$ECHO "$postlink_cmds" | $SED "$delay_single_quote_subst"`' file_list_spec='`$ECHO "$file_list_spec" | $SED "$delay_single_quote_subst"`' variables_saved_for_relink='`$ECHO "$variables_saved_for_relink" | $SED "$delay_single_quote_subst"`' need_lib_prefix='`$ECHO "$need_lib_prefix" | $SED "$delay_single_quote_subst"`' need_version='`$ECHO "$need_version" | $SED "$delay_single_quote_subst"`' version_type='`$ECHO "$version_type" | $SED "$delay_single_quote_subst"`' runpath_var='`$ECHO "$runpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_var='`$ECHO "$shlibpath_var" | $SED "$delay_single_quote_subst"`' shlibpath_overrides_runpath='`$ECHO "$shlibpath_overrides_runpath" | $SED "$delay_single_quote_subst"`' libname_spec='`$ECHO "$libname_spec" | $SED "$delay_single_quote_subst"`' library_names_spec='`$ECHO "$library_names_spec" | $SED "$delay_single_quote_subst"`' soname_spec='`$ECHO "$soname_spec" | $SED "$delay_single_quote_subst"`' install_override_mode='`$ECHO "$install_override_mode" | $SED "$delay_single_quote_subst"`' postinstall_cmds='`$ECHO "$postinstall_cmds" | $SED "$delay_single_quote_subst"`' postuninstall_cmds='`$ECHO "$postuninstall_cmds" | $SED "$delay_single_quote_subst"`' finish_cmds='`$ECHO "$finish_cmds" | $SED "$delay_single_quote_subst"`' finish_eval='`$ECHO "$finish_eval" | $SED "$delay_single_quote_subst"`' hardcode_into_libs='`$ECHO "$hardcode_into_libs" | $SED "$delay_single_quote_subst"`' sys_lib_search_path_spec='`$ECHO "$sys_lib_search_path_spec" | $SED "$delay_single_quote_subst"`' sys_lib_dlsearch_path_spec='`$ECHO "$sys_lib_dlsearch_path_spec" | $SED "$delay_single_quote_subst"`' hardcode_action='`$ECHO "$hardcode_action" | $SED "$delay_single_quote_subst"`' enable_dlopen='`$ECHO "$enable_dlopen" | $SED "$delay_single_quote_subst"`' enable_dlopen_self='`$ECHO "$enable_dlopen_self" | $SED "$delay_single_quote_subst"`' enable_dlopen_self_static='`$ECHO "$enable_dlopen_self_static" | $SED "$delay_single_quote_subst"`' old_striplib='`$ECHO "$old_striplib" | $SED "$delay_single_quote_subst"`' striplib='`$ECHO "$striplib" | $SED "$delay_single_quote_subst"`' compiler_lib_search_dirs='`$ECHO "$compiler_lib_search_dirs" | $SED "$delay_single_quote_subst"`' predep_objects='`$ECHO "$predep_objects" | $SED "$delay_single_quote_subst"`' postdep_objects='`$ECHO "$postdep_objects" | $SED "$delay_single_quote_subst"`' predeps='`$ECHO "$predeps" | $SED "$delay_single_quote_subst"`' postdeps='`$ECHO "$postdeps" | $SED "$delay_single_quote_subst"`' compiler_lib_search_path='`$ECHO "$compiler_lib_search_path" | $SED "$delay_single_quote_subst"`' LD_CXX='`$ECHO "$LD_CXX" | $SED "$delay_single_quote_subst"`' reload_flag_CXX='`$ECHO "$reload_flag_CXX" | $SED "$delay_single_quote_subst"`' reload_cmds_CXX='`$ECHO "$reload_cmds_CXX" | $SED "$delay_single_quote_subst"`' old_archive_cmds_CXX='`$ECHO "$old_archive_cmds_CXX" | $SED "$delay_single_quote_subst"`' compiler_CXX='`$ECHO "$compiler_CXX" | $SED "$delay_single_quote_subst"`' GCC_CXX='`$ECHO "$GCC_CXX" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_no_builtin_flag_CXX='`$ECHO "$lt_prog_compiler_no_builtin_flag_CXX" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_pic_CXX='`$ECHO "$lt_prog_compiler_pic_CXX" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_wl_CXX='`$ECHO "$lt_prog_compiler_wl_CXX" | $SED "$delay_single_quote_subst"`' lt_prog_compiler_static_CXX='`$ECHO "$lt_prog_compiler_static_CXX" | $SED "$delay_single_quote_subst"`' lt_cv_prog_compiler_c_o_CXX='`$ECHO "$lt_cv_prog_compiler_c_o_CXX" | $SED "$delay_single_quote_subst"`' archive_cmds_need_lc_CXX='`$ECHO "$archive_cmds_need_lc_CXX" | $SED "$delay_single_quote_subst"`' enable_shared_with_static_runtimes_CXX='`$ECHO "$enable_shared_with_static_runtimes_CXX" | $SED "$delay_single_quote_subst"`' export_dynamic_flag_spec_CXX='`$ECHO "$export_dynamic_flag_spec_CXX" | $SED "$delay_single_quote_subst"`' whole_archive_flag_spec_CXX='`$ECHO "$whole_archive_flag_spec_CXX" | $SED "$delay_single_quote_subst"`' compiler_needs_object_CXX='`$ECHO "$compiler_needs_object_CXX" | $SED "$delay_single_quote_subst"`' old_archive_from_new_cmds_CXX='`$ECHO "$old_archive_from_new_cmds_CXX" | $SED "$delay_single_quote_subst"`' old_archive_from_expsyms_cmds_CXX='`$ECHO "$old_archive_from_expsyms_cmds_CXX" | $SED "$delay_single_quote_subst"`' archive_cmds_CXX='`$ECHO "$archive_cmds_CXX" | $SED "$delay_single_quote_subst"`' archive_expsym_cmds_CXX='`$ECHO "$archive_expsym_cmds_CXX" | $SED "$delay_single_quote_subst"`' module_cmds_CXX='`$ECHO "$module_cmds_CXX" | $SED "$delay_single_quote_subst"`' module_expsym_cmds_CXX='`$ECHO "$module_expsym_cmds_CXX" | $SED "$delay_single_quote_subst"`' with_gnu_ld_CXX='`$ECHO "$with_gnu_ld_CXX" | $SED "$delay_single_quote_subst"`' allow_undefined_flag_CXX='`$ECHO "$allow_undefined_flag_CXX" | $SED "$delay_single_quote_subst"`' no_undefined_flag_CXX='`$ECHO "$no_undefined_flag_CXX" | $SED "$delay_single_quote_subst"`' hardcode_libdir_flag_spec_CXX='`$ECHO "$hardcode_libdir_flag_spec_CXX" | $SED "$delay_single_quote_subst"`' hardcode_libdir_separator_CXX='`$ECHO "$hardcode_libdir_separator_CXX" | $SED "$delay_single_quote_subst"`' hardcode_direct_CXX='`$ECHO "$hardcode_direct_CXX" | $SED "$delay_single_quote_subst"`' hardcode_direct_absolute_CXX='`$ECHO "$hardcode_direct_absolute_CXX" | $SED "$delay_single_quote_subst"`' hardcode_minus_L_CXX='`$ECHO "$hardcode_minus_L_CXX" | $SED "$delay_single_quote_subst"`' hardcode_shlibpath_var_CXX='`$ECHO "$hardcode_shlibpath_var_CXX" | $SED "$delay_single_quote_subst"`' hardcode_automatic_CXX='`$ECHO "$hardcode_automatic_CXX" | $SED "$delay_single_quote_subst"`' inherit_rpath_CXX='`$ECHO "$inherit_rpath_CXX" | $SED "$delay_single_quote_subst"`' link_all_deplibs_CXX='`$ECHO "$link_all_deplibs_CXX" | $SED "$delay_single_quote_subst"`' always_export_symbols_CXX='`$ECHO "$always_export_symbols_CXX" | $SED "$delay_single_quote_subst"`' export_symbols_cmds_CXX='`$ECHO "$export_symbols_cmds_CXX" | $SED "$delay_single_quote_subst"`' exclude_expsyms_CXX='`$ECHO "$exclude_expsyms_CXX" | $SED "$delay_single_quote_subst"`' include_expsyms_CXX='`$ECHO "$include_expsyms_CXX" | $SED "$delay_single_quote_subst"`' prelink_cmds_CXX='`$ECHO "$prelink_cmds_CXX" | $SED "$delay_single_quote_subst"`' postlink_cmds_CXX='`$ECHO "$postlink_cmds_CXX" | $SED "$delay_single_quote_subst"`' file_list_spec_CXX='`$ECHO "$file_list_spec_CXX" | $SED "$delay_single_quote_subst"`' hardcode_action_CXX='`$ECHO "$hardcode_action_CXX" | $SED "$delay_single_quote_subst"`' compiler_lib_search_dirs_CXX='`$ECHO "$compiler_lib_search_dirs_CXX" | $SED "$delay_single_quote_subst"`' predep_objects_CXX='`$ECHO "$predep_objects_CXX" | $SED "$delay_single_quote_subst"`' postdep_objects_CXX='`$ECHO "$postdep_objects_CXX" | $SED "$delay_single_quote_subst"`' predeps_CXX='`$ECHO "$predeps_CXX" | $SED "$delay_single_quote_subst"`' postdeps_CXX='`$ECHO "$postdeps_CXX" | $SED "$delay_single_quote_subst"`' compiler_lib_search_path_CXX='`$ECHO "$compiler_lib_search_path_CXX" | $SED "$delay_single_quote_subst"`' LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } # Quote evaled strings. for var in SHELL \ ECHO \ PATH_SEPARATOR \ SED \ GREP \ EGREP \ FGREP \ LD \ NM \ LN_S \ lt_SP2NL \ lt_NL2SP \ reload_flag \ OBJDUMP \ deplibs_check_method \ file_magic_cmd \ file_magic_glob \ want_nocaseglob \ DLLTOOL \ sharedlib_from_linklib_cmd \ AR \ AR_FLAGS \ archiver_list_spec \ STRIP \ RANLIB \ CC \ CFLAGS \ compiler \ lt_cv_sys_global_symbol_pipe \ lt_cv_sys_global_symbol_to_cdecl \ lt_cv_sys_global_symbol_to_import \ lt_cv_sys_global_symbol_to_c_name_address \ lt_cv_sys_global_symbol_to_c_name_address_lib_prefix \ lt_cv_nm_interface \ nm_file_list_spec \ lt_prog_compiler_no_builtin_flag \ lt_prog_compiler_pic \ lt_prog_compiler_wl \ lt_prog_compiler_static \ lt_cv_prog_compiler_c_o \ need_locks \ MANIFEST_TOOL \ DSYMUTIL \ NMEDIT \ LIPO \ OTOOL \ OTOOL64 \ shrext_cmds \ export_dynamic_flag_spec \ whole_archive_flag_spec \ compiler_needs_object \ with_gnu_ld \ allow_undefined_flag \ no_undefined_flag \ hardcode_libdir_flag_spec \ hardcode_libdir_separator \ exclude_expsyms \ include_expsyms \ file_list_spec \ variables_saved_for_relink \ libname_spec \ library_names_spec \ soname_spec \ install_override_mode \ finish_eval \ old_striplib \ striplib \ compiler_lib_search_dirs \ predep_objects \ postdep_objects \ predeps \ postdeps \ compiler_lib_search_path \ LD_CXX \ reload_flag_CXX \ compiler_CXX \ lt_prog_compiler_no_builtin_flag_CXX \ lt_prog_compiler_pic_CXX \ lt_prog_compiler_wl_CXX \ lt_prog_compiler_static_CXX \ lt_cv_prog_compiler_c_o_CXX \ export_dynamic_flag_spec_CXX \ whole_archive_flag_spec_CXX \ compiler_needs_object_CXX \ with_gnu_ld_CXX \ allow_undefined_flag_CXX \ no_undefined_flag_CXX \ hardcode_libdir_flag_spec_CXX \ hardcode_libdir_separator_CXX \ exclude_expsyms_CXX \ include_expsyms_CXX \ file_list_spec_CXX \ compiler_lib_search_dirs_CXX \ predep_objects_CXX \ postdep_objects_CXX \ predeps_CXX \ postdeps_CXX \ compiler_lib_search_path_CXX; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in reload_cmds \ old_postinstall_cmds \ old_postuninstall_cmds \ old_archive_cmds \ extract_expsyms_cmds \ old_archive_from_new_cmds \ old_archive_from_expsyms_cmds \ archive_cmds \ archive_expsym_cmds \ module_cmds \ module_expsym_cmds \ export_symbols_cmds \ prelink_cmds \ postlink_cmds \ postinstall_cmds \ postuninstall_cmds \ finish_cmds \ sys_lib_search_path_spec \ sys_lib_dlsearch_path_spec \ reload_cmds_CXX \ old_archive_cmds_CXX \ old_archive_from_new_cmds_CXX \ old_archive_from_expsyms_cmds_CXX \ archive_cmds_CXX \ archive_expsym_cmds_CXX \ module_cmds_CXX \ module_expsym_cmds_CXX \ export_symbols_cmds_CXX \ prelink_cmds_CXX \ postlink_cmds_CXX; do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[\\\\\\\`\\"\\\$]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done ac_aux_dir='$ac_aux_dir' # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi PACKAGE='$PACKAGE' VERSION='$VERSION' RM='$RM' ofile='$ofile' # variables for create stdint.h replacement PACKAGE="$PACKAGE" VERSION="$VERSION" ac_stdint_h="$ac_stdint_h" _ac_stdint_h=`$as_echo "_$PACKAGE-$ac_stdint_h" | $as_tr_cpp` ac_cv_stdint_message="$ac_cv_stdint_message" ac_cv_header_stdint_t="$ac_cv_header_stdint_t" ac_cv_header_stdint_x="$ac_cv_header_stdint_x" ac_cv_header_stdint_o="$ac_cv_header_stdint_o" ac_cv_header_stdint_u="$ac_cv_header_stdint_u" ac_cv_type_uint64_t="$ac_cv_type_uint64_t" ac_cv_type_u_int64_t="$ac_cv_type_u_int64_t" ac_cv_char_data_model="$ac_cv_char_data_model" ac_cv_long_data_model="$ac_cv_long_data_model" ac_cv_type_int_least32_t="$ac_cv_type_int_least32_t" ac_cv_type_int_fast32_t="$ac_cv_type_int_fast32_t" ac_cv_type_intmax_t="$ac_cv_type_intmax_t" ax_create_pkgconfig_generate="$ax_create_pkgconfig_generate" pkgconfig_prefix='$prefix' pkgconfig_execprefix='$exec_prefix' pkgconfig_bindir='$bindir' pkgconfig_libdir='$libdir' pkgconfig_includedir='$includedir' pkgconfig_datarootdir='$datarootdir' pkgconfig_datadir='$datadir' pkgconfig_sysconfdir='$sysconfdir' pkgconfig_suffix='$ax_create_pkgconfig_suffix' pkgconfig_package='$PACKAGE_NAME' pkgconfig_libname='$ax_create_pkgconfig_libname' pkgconfig_description='$ax_create_pkgconfig_description' pkgconfig_version='$ax_create_pkgconfig_version' pkgconfig_requires='$ax_create_pkgconfig_requires' pkgconfig_libs='$ax_create_pkgconfig_libs' pkgconfig_ldflags='$ax_create_pkgconfig_ldflags' pkgconfig_cppflags='$ax_create_pkgconfig_cppflags' pkgconfig_src_libdir='$ax_create_pkgconfig_src_libdir' pkgconfig_src_headers='$ax_create_pkgconfig_src_headers' _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # Handling of arguments. for ac_config_target in $ac_config_targets do case $ac_config_target in "depfiles") CONFIG_COMMANDS="$CONFIG_COMMANDS depfiles" ;; "libtool") CONFIG_COMMANDS="$CONFIG_COMMANDS libtool" ;; "$ac_stdint_h") CONFIG_COMMANDS="$CONFIG_COMMANDS $ac_stdint_h" ;; "$ax_create_pkgconfig_generate") CONFIG_COMMANDS="$CONFIG_COMMANDS $ax_create_pkgconfig_generate" ;; "isl_config.h") CONFIG_HEADERS="$CONFIG_HEADERS isl_config.h" ;; "Makefile") CONFIG_FILES="$CONFIG_FILES Makefile" ;; "doc/Makefile") CONFIG_FILES="$CONFIG_FILES doc/Makefile" ;; "interface/Makefile") CONFIG_FILES="$CONFIG_FILES interface/Makefile" ;; "bound_test.sh") CONFIG_FILES="$CONFIG_FILES bound_test.sh" ;; "codegen_test.sh") CONFIG_FILES="$CONFIG_FILES codegen_test.sh" ;; "pip_test.sh") CONFIG_FILES="$CONFIG_FILES pip_test.sh" ;; *) as_fn_error $? "invalid argument: \`$ac_config_target'" "$LINENO" 5;; esac done # If the user did not use the arguments to specify the items to instantiate, # then the envvar interface is used. Set only those that are not. # We use the long form for the default assignment because of an extremely # bizarre bug on SunOS 4.1.3. if $ac_need_defaults; then test "${CONFIG_FILES+set}" = set || CONFIG_FILES=$config_files test "${CONFIG_HEADERS+set}" = set || CONFIG_HEADERS=$config_headers test "${CONFIG_COMMANDS+set}" = set || CONFIG_COMMANDS=$config_commands fi # Have a temporary directory for convenience. Make it in the build tree # simply because there is no reason against having it here, and in addition, # creating and moving files from /tmp can sometimes cause problems. # Hook for its removal unless debugging. # Note that there is a small window in which the directory will not be cleaned: # after its creation but before its name has been assigned to `$tmp'. $debug || { tmp= ac_tmp= trap 'exit_status=$? : "${ac_tmp:=$tmp}" { test ! -d "$ac_tmp" || rm -fr "$ac_tmp"; } && exit $exit_status ' 0 trap 'as_fn_exit 1' 1 2 13 15 } # Create a (secure) tmp directory for tmp files. { tmp=`(umask 077 && mktemp -d "./confXXXXXX") 2>/dev/null` && test -d "$tmp" } || { tmp=./conf$$-$RANDOM (umask 077 && mkdir "$tmp") } || as_fn_error $? "cannot create a temporary directory in ." "$LINENO" 5 ac_tmp=$tmp # Set up the scripts for CONFIG_FILES section. # No need to generate them if there are no CONFIG_FILES. # This happens for instance with `./config.status config.h'. if test -n "$CONFIG_FILES"; then ac_cr=`echo X | tr X '\015'` # On cygwin, bash can eat \r inside `` if the user requested igncr. # But we know of no other shell where ac_cr would be empty at this # point, so we can use a bashism as a fallback. if test "x$ac_cr" = x; then eval ac_cr=\$\'\\r\' fi ac_cs_awk_cr=`$AWK 'BEGIN { print "a\rb" }' /dev/null` if test "$ac_cs_awk_cr" = "a${ac_cr}b"; then ac_cs_awk_cr='\\r' else ac_cs_awk_cr=$ac_cr fi echo 'BEGIN {' >"$ac_tmp/subs1.awk" && _ACEOF { echo "cat >conf$$subs.awk <<_ACEOF" && echo "$ac_subst_vars" | sed 's/.*/&!$&$ac_delim/' && echo "_ACEOF" } >conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_num=`echo "$ac_subst_vars" | grep -c '^'` ac_delim='%!_!# ' for ac_last_try in false false false false false :; do . ./conf$$subs.sh || as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 ac_delim_n=`sed -n "s/.*$ac_delim\$/X/p" conf$$subs.awk | grep -c X` if test $ac_delim_n = $ac_delim_num; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_STATUS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done rm -f conf$$subs.sh cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>"\$ac_tmp/subs1.awk" <<\\_ACAWK && _ACEOF sed -n ' h s/^/S["/; s/!.*/"]=/ p g s/^[^!]*!// :repl t repl s/'"$ac_delim"'$// t delim :nl h s/\(.\{148\}\)..*/\1/ t more1 s/["\\]/\\&/g; s/^/"/; s/$/\\n"\\/ p n b repl :more1 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t nl :delim h s/\(.\{148\}\)..*/\1/ t more2 s/["\\]/\\&/g; s/^/"/; s/$/"/ p b :more2 s/["\\]/\\&/g; s/^/"/; s/$/"\\/ p g s/.\{148\}// t delim ' >$CONFIG_STATUS || ac_write_fail=1 rm -f conf$$subs.awk cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 _ACAWK cat >>"\$ac_tmp/subs1.awk" <<_ACAWK && for (key in S) S_is_set[key] = 1 FS = "" } { line = $ 0 nfields = split(line, field, "@") substed = 0 len = length(field[1]) for (i = 2; i < nfields; i++) { key = field[i] keylen = length(key) if (S_is_set[key]) { value = S[key] line = substr(line, 1, len) "" value "" substr(line, len + keylen + 3) len += length(value) + length(field[++i]) substed = 1 } else len += 1 + keylen } print line } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 if sed "s/$ac_cr//" < /dev/null > /dev/null 2>&1; then sed "s/$ac_cr\$//; s/$ac_cr/$ac_cs_awk_cr/g" else cat fi < "$ac_tmp/subs1.awk" > "$ac_tmp/subs.awk" \ || as_fn_error $? "could not setup config files machinery" "$LINENO" 5 _ACEOF # VPATH may cause trouble with some makes, so we remove sole $(srcdir), # ${srcdir} and @srcdir@ entries from VPATH if srcdir is ".", strip leading and # trailing colons and then remove the whole line if VPATH becomes empty # (actually we leave an empty line to preserve line numbers). if test "x$srcdir" = x.; then ac_vpsub='/^[ ]*VPATH[ ]*=[ ]*/{ h s/// s/^/:/ s/[ ]*$/:/ s/:\$(srcdir):/:/g s/:\${srcdir}:/:/g s/:@srcdir@:/:/g s/^:*// s/:*$// x s/\(=[ ]*\).*/\1/ G s/\n// s/^[^=]*=[ ]*$// }' fi cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 fi # test -n "$CONFIG_FILES" # Set up the scripts for CONFIG_HEADERS section. # No need to generate them if there are no CONFIG_HEADERS. # This happens for instance with `./config.status Makefile'. if test -n "$CONFIG_HEADERS"; then cat >"$ac_tmp/defines.awk" <<\_ACAWK || BEGIN { _ACEOF # Transform confdefs.h into an awk script `defines.awk', embedded as # here-document in config.status, that substitutes the proper values into # config.h.in to produce config.h. # Create a delimiter string that does not exist in confdefs.h, to ease # handling of long lines. ac_delim='%!_!# ' for ac_last_try in false false :; do ac_tt=`sed -n "/$ac_delim/p" confdefs.h` if test -z "$ac_tt"; then break elif $ac_last_try; then as_fn_error $? "could not make $CONFIG_HEADERS" "$LINENO" 5 else ac_delim="$ac_delim!$ac_delim _$ac_delim!! " fi done # For the awk script, D is an array of macro values keyed by name, # likewise P contains macro parameters if any. Preserve backslash # newline sequences. ac_word_re=[_$as_cr_Letters][_$as_cr_alnum]* sed -n ' s/.\{148\}/&'"$ac_delim"'/g t rset :rset s/^[ ]*#[ ]*define[ ][ ]*/ / t def d :def s/\\$// t bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3"/p s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2"/p d :bsnl s/["\\]/\\&/g s/^ \('"$ac_word_re"'\)\(([^()]*)\)[ ]*\(.*\)/P["\1"]="\2"\ D["\1"]=" \3\\\\\\n"\\/p t cont s/^ \('"$ac_word_re"'\)[ ]*\(.*\)/D["\1"]=" \2\\\\\\n"\\/p t cont d :cont n s/.\{148\}/&'"$ac_delim"'/g t clear :clear s/\\$// t bsnlc s/["\\]/\\&/g; s/^/"/; s/$/"/p d :bsnlc s/["\\]/\\&/g; s/^/"/; s/$/\\\\\\n"\\/p b cont ' >$CONFIG_STATUS || ac_write_fail=1 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 for (key in D) D_is_set[key] = 1 FS = "" } /^[\t ]*#[\t ]*(define|undef)[\t ]+$ac_word_re([\t (]|\$)/ { line = \$ 0 split(line, arg, " ") if (arg[1] == "#") { defundef = arg[2] mac1 = arg[3] } else { defundef = substr(arg[1], 2) mac1 = arg[2] } split(mac1, mac2, "(") #) macro = mac2[1] prefix = substr(line, 1, index(line, defundef) - 1) if (D_is_set[macro]) { # Preserve the white space surrounding the "#". print prefix "define", macro P[macro] D[macro] next } else { # Replace #undef with comments. This is necessary, for example, # in the case of _POSIX_SOURCE, which is predefined and required # on some systems where configure will not decide to define it. if (defundef == "undef") { print "/*", prefix defundef, macro, "*/" next } } } { print } _ACAWK _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 as_fn_error $? "could not setup config headers machinery" "$LINENO" 5 fi # test -n "$CONFIG_HEADERS" eval set X " :F $CONFIG_FILES :H $CONFIG_HEADERS :C $CONFIG_COMMANDS" shift for ac_tag do case $ac_tag in :[FHLC]) ac_mode=$ac_tag; continue;; esac case $ac_mode$ac_tag in :[FHL]*:*);; :L* | :C*:*) as_fn_error $? "invalid tag \`$ac_tag'" "$LINENO" 5;; :[FH]-) ac_tag=-:-;; :[FH]*) ac_tag=$ac_tag:$ac_tag.in;; esac ac_save_IFS=$IFS IFS=: set x $ac_tag IFS=$ac_save_IFS shift ac_file=$1 shift case $ac_mode in :L) ac_source=$1;; :[FH]) ac_file_inputs= for ac_f do case $ac_f in -) ac_f="$ac_tmp/stdin";; *) # Look for the file first in the build tree, then in the source tree # (if the path is not absolute). The absolute path cannot be DOS-style, # because $ac_f cannot contain `:'. test -f "$ac_f" || case $ac_f in [\\/$]*) false;; *) test -f "$srcdir/$ac_f" && ac_f="$srcdir/$ac_f";; esac || as_fn_error 1 "cannot find input file: \`$ac_f'" "$LINENO" 5;; esac case $ac_f in *\'*) ac_f=`$as_echo "$ac_f" | sed "s/'/'\\\\\\\\''/g"`;; esac as_fn_append ac_file_inputs " '$ac_f'" done # Let's still pretend it is `configure' which instantiates (i.e., don't # use $as_me), people would be surprised to read: # /* config.h. Generated by config.status. */ configure_input='Generated from '` $as_echo "$*" | sed 's|^[^:]*/||;s|:[^:]*/|, |g' `' by configure.' if test x"$ac_file" != x-; then configure_input="$ac_file. $configure_input" { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_file" >&5 $as_echo "$as_me: creating $ac_file" >&6;} fi # Neutralize special characters interpreted by sed in replacement strings. case $configure_input in #( *\&* | *\|* | *\\* ) ac_sed_conf_input=`$as_echo "$configure_input" | sed 's/[\\\\&|]/\\\\&/g'`;; #( *) ac_sed_conf_input=$configure_input;; esac case $ac_tag in *:-:* | *:-) cat >"$ac_tmp/stdin" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; esac ;; esac ac_dir=`$as_dirname -- "$ac_file" || $as_expr X"$ac_file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_file" : 'X\(//\)[^/]' \| \ X"$ac_file" : 'X\(//\)$' \| \ X"$ac_file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p ac_builddir=. case "$ac_dir" in .) ac_dir_suffix= ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_dir_suffix=/`$as_echo "$ac_dir" | sed 's|^\.[\\/]||'` # A ".." for each directory in $ac_dir_suffix. ac_top_builddir_sub=`$as_echo "$ac_dir_suffix" | sed 's|/[^\\/]*|/..|g;s|/||'` case $ac_top_builddir_sub in "") ac_top_builddir_sub=. ac_top_build_prefix= ;; *) ac_top_build_prefix=$ac_top_builddir_sub/ ;; esac ;; esac ac_abs_top_builddir=$ac_pwd ac_abs_builddir=$ac_pwd$ac_dir_suffix # for backward compatibility: ac_top_builddir=$ac_top_build_prefix case $srcdir in .) # We are building in place. ac_srcdir=. ac_top_srcdir=$ac_top_builddir_sub ac_abs_top_srcdir=$ac_pwd ;; [\\/]* | ?:[\\/]* ) # Absolute name. ac_srcdir=$srcdir$ac_dir_suffix; ac_top_srcdir=$srcdir ac_abs_top_srcdir=$srcdir ;; *) # Relative name. ac_srcdir=$ac_top_build_prefix$srcdir$ac_dir_suffix ac_top_srcdir=$ac_top_build_prefix$srcdir ac_abs_top_srcdir=$ac_pwd/$srcdir ;; esac ac_abs_srcdir=$ac_abs_top_srcdir$ac_dir_suffix case $ac_mode in :F) # # CONFIG_FILE # case $INSTALL in [\\/$]* | ?:[\\/]* ) ac_INSTALL=$INSTALL ;; *) ac_INSTALL=$ac_top_build_prefix$INSTALL ;; esac ac_MKDIR_P=$MKDIR_P case $MKDIR_P in [\\/$]* | ?:[\\/]* ) ;; */*) ac_MKDIR_P=$ac_top_build_prefix$MKDIR_P ;; esac _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 # If the template does not know about datarootdir, expand it. # FIXME: This hack should be removed a few years after 2.60. ac_datarootdir_hack=; ac_datarootdir_seen= ac_sed_dataroot=' /datarootdir/ { p q } /@datadir@/p /@docdir@/p /@infodir@/p /@localedir@/p /@mandir@/p' case `eval "sed -n \"\$ac_sed_dataroot\" $ac_file_inputs"` in *datarootdir*) ac_datarootdir_seen=yes;; *@datadir@*|*@docdir@*|*@infodir@*|*@localedir@*|*@mandir@*) { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&5 $as_echo "$as_me: WARNING: $ac_file_inputs seems to ignore the --datarootdir setting" >&2;} _ACEOF cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_datarootdir_hack=' s&@datadir@&$datadir&g s&@docdir@&$docdir&g s&@infodir@&$infodir&g s&@localedir@&$localedir&g s&@mandir@&$mandir&g s&\\\${datarootdir}&$datarootdir&g' ;; esac _ACEOF # Neutralize VPATH when `$srcdir' = `.'. # Shell code in configure.ac might set extrasub. # FIXME: do we really want to maintain this feature? cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 ac_sed_extra="$ac_vpsub $extrasub _ACEOF cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1 :t /@[a-zA-Z_][a-zA-Z_0-9]*@/!b s|@configure_input@|$ac_sed_conf_input|;t t s&@top_builddir@&$ac_top_builddir_sub&;t t s&@top_build_prefix@&$ac_top_build_prefix&;t t s&@srcdir@&$ac_srcdir&;t t s&@abs_srcdir@&$ac_abs_srcdir&;t t s&@top_srcdir@&$ac_top_srcdir&;t t s&@abs_top_srcdir@&$ac_abs_top_srcdir&;t t s&@builddir@&$ac_builddir&;t t s&@abs_builddir@&$ac_abs_builddir&;t t s&@abs_top_builddir@&$ac_abs_top_builddir&;t t s&@INSTALL@&$ac_INSTALL&;t t s&@MKDIR_P@&$ac_MKDIR_P&;t t $ac_datarootdir_hack " eval sed \"\$ac_sed_extra\" "$ac_file_inputs" | $AWK -f "$ac_tmp/subs.awk" \ >$ac_tmp/out || as_fn_error $? "could not create $ac_file" "$LINENO" 5 test -z "$ac_datarootdir_hack$ac_datarootdir_seen" && { ac_out=`sed -n '/\${datarootdir}/p' "$ac_tmp/out"`; test -n "$ac_out"; } && { ac_out=`sed -n '/^[ ]*datarootdir[ ]*:*=/p' \ "$ac_tmp/out"`; test -z "$ac_out"; } && { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&5 $as_echo "$as_me: WARNING: $ac_file contains a reference to the variable \`datarootdir' which seems to be undefined. Please make sure it is defined" >&2;} rm -f "$ac_tmp/stdin" case $ac_file in -) cat "$ac_tmp/out" && rm -f "$ac_tmp/out";; *) rm -f "$ac_file" && mv "$ac_tmp/out" "$ac_file";; esac \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 ;; :H) # # CONFIG_HEADER # if test x"$ac_file" != x-; then { $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" } >"$ac_tmp/config.h" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 if diff "$ac_file" "$ac_tmp/config.h" >/dev/null 2>&1; then { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_file is unchanged" >&5 $as_echo "$as_me: $ac_file is unchanged" >&6;} else rm -f "$ac_file" mv "$ac_tmp/config.h" "$ac_file" \ || as_fn_error $? "could not create $ac_file" "$LINENO" 5 fi else $as_echo "/* $configure_input */" \ && eval '$AWK -f "$ac_tmp/defines.awk"' "$ac_file_inputs" \ || as_fn_error $? "could not create -" "$LINENO" 5 fi # Compute "$ac_file"'s index in $config_headers. _am_arg="$ac_file" _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`$as_dirname -- "$_am_arg" || $as_expr X"$_am_arg" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$_am_arg" : 'X\(//\)[^/]' \| \ X"$_am_arg" : 'X\(//\)$' \| \ X"$_am_arg" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$_am_arg" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'`/stamp-h$_am_stamp_count ;; :C) { $as_echo "$as_me:${as_lineno-$LINENO}: executing $ac_file commands" >&5 $as_echo "$as_me: executing $ac_file commands" >&6;} ;; esac case $ac_file$ac_mode in "depfiles":C) test x"$AMDEP_TRUE" != x"" || { # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`$as_dirname -- "$mf" || $as_expr X"$mf" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$mf" : 'X\(//\)[^/]' \| \ X"$mf" : 'X\(//\)$' \| \ X"$mf" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$mf" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`$as_dirname -- "$file" || $as_expr X"$file" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$file" : 'X\(//\)[^/]' \| \ X"$file" : 'X\(//\)$' \| \ X"$file" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$file" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir=$dirpart/$fdir; as_fn_mkdir_p # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ;; "libtool":C) # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi cfgfile=${ofile}T trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # `$ECHO "$ofile" | sed 's%^.*/%%'` - Provide generalized library-building support services. # Generated automatically by $as_me ($PACKAGE) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # 2006, 2007, 2008, 2009, 2010, 2011 Free Software # Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is part of GNU Libtool. # # GNU Libtool is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Libtool; see the file COPYING. If not, a copy # can be downloaded from http://www.gnu.org/licenses/gpl.html, or # obtained by writing to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # The names of the tagged configurations supported by this script. available_tags='CXX ' # ### BEGIN LIBTOOL CONFIG # Which release of libtool.m4 was used? macro_version=$macro_version macro_revision=$macro_revision # Whether or not to build shared libraries. build_libtool_libs=$enable_shared # Whether or not to build static libraries. build_old_libs=$enable_static # What type of objects to build. pic_mode=$pic_mode # Whether or not to optimize for fast installation. fast_install=$enable_fast_install # Shell to use when invoking shell scripts. SHELL=$lt_SHELL # An echo program that protects backslashes. ECHO=$lt_ECHO # The PATH separator for the build system. PATH_SEPARATOR=$lt_PATH_SEPARATOR # The host system. host_alias=$host_alias host=$host host_os=$host_os # The build system. build_alias=$build_alias build=$build build_os=$build_os # A sed program that does not truncate output. SED=$lt_SED # Sed that helps us avoid accidentally triggering echo(1) options like -n. Xsed="\$SED -e 1s/^X//" # A grep program that handles long lines. GREP=$lt_GREP # An ERE matcher. EGREP=$lt_EGREP # A literal string matcher. FGREP=$lt_FGREP # A BSD- or MS-compatible name lister. NM=$lt_NM # Whether we need soft or hard links. LN_S=$lt_LN_S # What is the maximum length of a command? max_cmd_len=$max_cmd_len # Object file suffix (normally "o"). objext=$ac_objext # Executable file suffix (normally ""). exeext=$exeext # whether the shell understands "unset". lt_unset=$lt_unset # turn spaces into newlines. SP2NL=$lt_lt_SP2NL # turn newlines into spaces. NL2SP=$lt_lt_NL2SP # convert \$build file names to \$host format. to_host_file_cmd=$lt_cv_to_host_file_cmd # convert \$build files to toolchain format. to_tool_file_cmd=$lt_cv_to_tool_file_cmd # An object symbol dumper. OBJDUMP=$lt_OBJDUMP # Method to check whether dependent libraries are shared objects. deplibs_check_method=$lt_deplibs_check_method # Command to use when deplibs_check_method = "file_magic". file_magic_cmd=$lt_file_magic_cmd # How to find potential files when deplibs_check_method = "file_magic". file_magic_glob=$lt_file_magic_glob # Find potential files using nocaseglob when deplibs_check_method = "file_magic". want_nocaseglob=$lt_want_nocaseglob # DLL creation program. DLLTOOL=$lt_DLLTOOL # Command to associate shared and link libraries. sharedlib_from_linklib_cmd=$lt_sharedlib_from_linklib_cmd # The archiver. AR=$lt_AR # Flags to create an archive. AR_FLAGS=$lt_AR_FLAGS # How to feed a file listing to the archiver. archiver_list_spec=$lt_archiver_list_spec # A symbol stripping program. STRIP=$lt_STRIP # Commands used to install an old-style archive. RANLIB=$lt_RANLIB old_postinstall_cmds=$lt_old_postinstall_cmds old_postuninstall_cmds=$lt_old_postuninstall_cmds # Whether to use a lock for old archive extraction. lock_old_archive_extraction=$lock_old_archive_extraction # A C compiler. LTCC=$lt_CC # LTCC compiler flags. LTCFLAGS=$lt_CFLAGS # Take the output of nm and produce a listing of raw symbols and C names. global_symbol_pipe=$lt_lt_cv_sys_global_symbol_pipe # Transform the output of nm in a proper C declaration. global_symbol_to_cdecl=$lt_lt_cv_sys_global_symbol_to_cdecl # Transform the output of nm into a list of symbols to manually relocate. global_symbol_to_import=$lt_lt_cv_sys_global_symbol_to_import # Transform the output of nm in a C name address pair. global_symbol_to_c_name_address=$lt_lt_cv_sys_global_symbol_to_c_name_address # Transform the output of nm in a C name address pair when lib prefix is needed. global_symbol_to_c_name_address_lib_prefix=$lt_lt_cv_sys_global_symbol_to_c_name_address_lib_prefix # The name lister interface. nm_interface=$lt_lt_cv_nm_interface # Specify filename containing input files for \$NM. nm_file_list_spec=$lt_nm_file_list_spec # The root where to search for dependent libraries,and where our libraries should be installed. lt_sysroot=$lt_sysroot # The name of the directory that contains temporary libtool files. objdir=$objdir # Used to examine libraries when file_magic_cmd begins with "file". MAGIC_CMD=$MAGIC_CMD # Must we lock files when doing compilation? need_locks=$lt_need_locks # Manifest tool. MANIFEST_TOOL=$lt_MANIFEST_TOOL # Tool to manipulate archived DWARF debug symbol files on Mac OS X. DSYMUTIL=$lt_DSYMUTIL # Tool to change global to local symbols on Mac OS X. NMEDIT=$lt_NMEDIT # Tool to manipulate fat objects and archives on Mac OS X. LIPO=$lt_LIPO # ldd/readelf like tool for Mach-O binaries on Mac OS X. OTOOL=$lt_OTOOL # ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4. OTOOL64=$lt_OTOOL64 # Old archive suffix (normally "a"). libext=$libext # Shared library suffix (normally ".so"). shrext_cmds=$lt_shrext_cmds # The commands to extract the exported symbol list from a shared archive. extract_expsyms_cmds=$lt_extract_expsyms_cmds # Variables whose values should be saved in libtool wrapper scripts and # restored at link time. variables_saved_for_relink=$lt_variables_saved_for_relink # Do we need the "lib" prefix for modules? need_lib_prefix=$need_lib_prefix # Do we need a version for libraries? need_version=$need_version # Library versioning type. version_type=$version_type # Shared library runtime path variable. runpath_var=$runpath_var # Shared library path variable. shlibpath_var=$shlibpath_var # Is shlibpath searched before the hard-coded library search path? shlibpath_overrides_runpath=$shlibpath_overrides_runpath # Format of library name prefix. libname_spec=$lt_libname_spec # List of archive names. First name is the real one, the rest are links. # The last name is the one that the linker finds with -lNAME library_names_spec=$lt_library_names_spec # The coded name of the library, if different from the real name. soname_spec=$lt_soname_spec # Permission mode override for installation of shared libraries. install_override_mode=$lt_install_override_mode # Command to use after installation of a shared archive. postinstall_cmds=$lt_postinstall_cmds # Command to use after uninstallation of a shared archive. postuninstall_cmds=$lt_postuninstall_cmds # Commands used to finish a libtool library installation in a directory. finish_cmds=$lt_finish_cmds # As "finish_cmds", except a single script fragment to be evaled but # not shown. finish_eval=$lt_finish_eval # Whether we should hardcode library paths into libraries. hardcode_into_libs=$hardcode_into_libs # Compile-time system search path for libraries. sys_lib_search_path_spec=$lt_sys_lib_search_path_spec # Run-time system search path for libraries. sys_lib_dlsearch_path_spec=$lt_sys_lib_dlsearch_path_spec # Whether dlopen is supported. dlopen_support=$enable_dlopen # Whether dlopen of programs is supported. dlopen_self=$enable_dlopen_self # Whether dlopen of statically linked programs is supported. dlopen_self_static=$enable_dlopen_self_static # Commands to strip libraries. old_striplib=$lt_old_striplib striplib=$lt_striplib # The linker used to build libraries. LD=$lt_LD # How to create reloadable object files. reload_flag=$lt_reload_flag reload_cmds=$lt_reload_cmds # Commands used to build an old-style archive. old_archive_cmds=$lt_old_archive_cmds # A language specific compiler. CC=$lt_compiler # Is the compiler the GNU compiler? with_gcc=$GCC # Compiler flag to turn off builtin functions. no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag # Additional compiler flags for building library objects. pic_flag=$lt_lt_prog_compiler_pic # How to pass a linker flag through the compiler. wl=$lt_lt_prog_compiler_wl # Compiler flag to prevent dynamic linking. link_static_flag=$lt_lt_prog_compiler_static # Does compiler simultaneously support -c and -o options? compiler_c_o=$lt_lt_cv_prog_compiler_c_o # Whether or not to add -lc for building shared libraries. build_libtool_need_lc=$archive_cmds_need_lc # Whether or not to disallow shared libs when runtime libs are static. allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes # Compiler flag to allow reflexive dlopens. export_dynamic_flag_spec=$lt_export_dynamic_flag_spec # Compiler flag to generate shared objects directly from archives. whole_archive_flag_spec=$lt_whole_archive_flag_spec # Whether the compiler copes with passing no objects directly. compiler_needs_object=$lt_compiler_needs_object # Create an old-style archive from a shared archive. old_archive_from_new_cmds=$lt_old_archive_from_new_cmds # Create a temporary old-style archive to link instead of a shared archive. old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds # Commands used to build a shared archive. archive_cmds=$lt_archive_cmds archive_expsym_cmds=$lt_archive_expsym_cmds # Commands used to build a loadable module if different from building # a shared archive. module_cmds=$lt_module_cmds module_expsym_cmds=$lt_module_expsym_cmds # Whether we are building with GNU ld or not. with_gnu_ld=$lt_with_gnu_ld # Flag that allows shared libraries with undefined symbols to be built. allow_undefined_flag=$lt_allow_undefined_flag # Flag that enforces no undefined symbols. no_undefined_flag=$lt_no_undefined_flag # Flag to hardcode \$libdir into a binary during linking. # This must work even if \$libdir does not exist hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec # Whether we need a single "-rpath" flag with a separated argument. hardcode_libdir_separator=$lt_hardcode_libdir_separator # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary. hardcode_direct=$hardcode_direct # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary and the resulting library dependency is # "absolute",i.e impossible to change by setting \$shlibpath_var if the # library is relocated. hardcode_direct_absolute=$hardcode_direct_absolute # Set to "yes" if using the -LDIR flag during linking hardcodes DIR # into the resulting binary. hardcode_minus_L=$hardcode_minus_L # Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR # into the resulting binary. hardcode_shlibpath_var=$hardcode_shlibpath_var # Set to "yes" if building a shared library automatically hardcodes DIR # into the library and all subsequent libraries and executables linked # against it. hardcode_automatic=$hardcode_automatic # Set to yes if linker adds runtime paths of dependent libraries # to runtime path list. inherit_rpath=$inherit_rpath # Whether libtool must link a program against all its dependency libraries. link_all_deplibs=$link_all_deplibs # Set to "yes" if exported symbols are required. always_export_symbols=$always_export_symbols # The commands to list exported symbols. export_symbols_cmds=$lt_export_symbols_cmds # Symbols that should not be listed in the preloaded symbols. exclude_expsyms=$lt_exclude_expsyms # Symbols that must always be exported. include_expsyms=$lt_include_expsyms # Commands necessary for linking programs (against libraries) with templates. prelink_cmds=$lt_prelink_cmds # Commands necessary for finishing linking programs. postlink_cmds=$lt_postlink_cmds # Specify filename containing input files. file_list_spec=$lt_file_list_spec # How to hardcode a shared library path into an executable. hardcode_action=$hardcode_action # The directories searched by this compiler when creating a shared library. compiler_lib_search_dirs=$lt_compiler_lib_search_dirs # Dependencies to place before and after the objects being linked to # create a shared library. predep_objects=$lt_predep_objects postdep_objects=$lt_postdep_objects predeps=$lt_predeps postdeps=$lt_postdeps # The library search path used internally by the compiler when linking # a shared library. compiler_lib_search_path=$lt_compiler_lib_search_path # ### END LIBTOOL CONFIG _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac ltmain=$ac_aux_dir/ltmain.sh # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" cat <<_LT_EOF >> "$ofile" # ### BEGIN LIBTOOL TAG CONFIG: CXX # The linker used to build libraries. LD=$lt_LD_CXX # How to create reloadable object files. reload_flag=$lt_reload_flag_CXX reload_cmds=$lt_reload_cmds_CXX # Commands used to build an old-style archive. old_archive_cmds=$lt_old_archive_cmds_CXX # A language specific compiler. CC=$lt_compiler_CXX # Is the compiler the GNU compiler? with_gcc=$GCC_CXX # Compiler flag to turn off builtin functions. no_builtin_flag=$lt_lt_prog_compiler_no_builtin_flag_CXX # Additional compiler flags for building library objects. pic_flag=$lt_lt_prog_compiler_pic_CXX # How to pass a linker flag through the compiler. wl=$lt_lt_prog_compiler_wl_CXX # Compiler flag to prevent dynamic linking. link_static_flag=$lt_lt_prog_compiler_static_CXX # Does compiler simultaneously support -c and -o options? compiler_c_o=$lt_lt_cv_prog_compiler_c_o_CXX # Whether or not to add -lc for building shared libraries. build_libtool_need_lc=$archive_cmds_need_lc_CXX # Whether or not to disallow shared libs when runtime libs are static. allow_libtool_libs_with_static_runtimes=$enable_shared_with_static_runtimes_CXX # Compiler flag to allow reflexive dlopens. export_dynamic_flag_spec=$lt_export_dynamic_flag_spec_CXX # Compiler flag to generate shared objects directly from archives. whole_archive_flag_spec=$lt_whole_archive_flag_spec_CXX # Whether the compiler copes with passing no objects directly. compiler_needs_object=$lt_compiler_needs_object_CXX # Create an old-style archive from a shared archive. old_archive_from_new_cmds=$lt_old_archive_from_new_cmds_CXX # Create a temporary old-style archive to link instead of a shared archive. old_archive_from_expsyms_cmds=$lt_old_archive_from_expsyms_cmds_CXX # Commands used to build a shared archive. archive_cmds=$lt_archive_cmds_CXX archive_expsym_cmds=$lt_archive_expsym_cmds_CXX # Commands used to build a loadable module if different from building # a shared archive. module_cmds=$lt_module_cmds_CXX module_expsym_cmds=$lt_module_expsym_cmds_CXX # Whether we are building with GNU ld or not. with_gnu_ld=$lt_with_gnu_ld_CXX # Flag that allows shared libraries with undefined symbols to be built. allow_undefined_flag=$lt_allow_undefined_flag_CXX # Flag that enforces no undefined symbols. no_undefined_flag=$lt_no_undefined_flag_CXX # Flag to hardcode \$libdir into a binary during linking. # This must work even if \$libdir does not exist hardcode_libdir_flag_spec=$lt_hardcode_libdir_flag_spec_CXX # Whether we need a single "-rpath" flag with a separated argument. hardcode_libdir_separator=$lt_hardcode_libdir_separator_CXX # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary. hardcode_direct=$hardcode_direct_CXX # Set to "yes" if using DIR/libNAME\$shared_ext during linking hardcodes # DIR into the resulting binary and the resulting library dependency is # "absolute",i.e impossible to change by setting \$shlibpath_var if the # library is relocated. hardcode_direct_absolute=$hardcode_direct_absolute_CXX # Set to "yes" if using the -LDIR flag during linking hardcodes DIR # into the resulting binary. hardcode_minus_L=$hardcode_minus_L_CXX # Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR # into the resulting binary. hardcode_shlibpath_var=$hardcode_shlibpath_var_CXX # Set to "yes" if building a shared library automatically hardcodes DIR # into the library and all subsequent libraries and executables linked # against it. hardcode_automatic=$hardcode_automatic_CXX # Set to yes if linker adds runtime paths of dependent libraries # to runtime path list. inherit_rpath=$inherit_rpath_CXX # Whether libtool must link a program against all its dependency libraries. link_all_deplibs=$link_all_deplibs_CXX # Set to "yes" if exported symbols are required. always_export_symbols=$always_export_symbols_CXX # The commands to list exported symbols. export_symbols_cmds=$lt_export_symbols_cmds_CXX # Symbols that should not be listed in the preloaded symbols. exclude_expsyms=$lt_exclude_expsyms_CXX # Symbols that must always be exported. include_expsyms=$lt_include_expsyms_CXX # Commands necessary for linking programs (against libraries) with templates. prelink_cmds=$lt_prelink_cmds_CXX # Commands necessary for finishing linking programs. postlink_cmds=$lt_postlink_cmds_CXX # Specify filename containing input files. file_list_spec=$lt_file_list_spec_CXX # How to hardcode a shared library path into an executable. hardcode_action=$hardcode_action_CXX # The directories searched by this compiler when creating a shared library. compiler_lib_search_dirs=$lt_compiler_lib_search_dirs_CXX # Dependencies to place before and after the objects being linked to # create a shared library. predep_objects=$lt_predep_objects_CXX postdep_objects=$lt_postdep_objects_CXX predeps=$lt_predeps_CXX postdeps=$lt_postdeps_CXX # The library search path used internally by the compiler when linking # a shared library. compiler_lib_search_path=$lt_compiler_lib_search_path_CXX # ### END LIBTOOL TAG CONFIG: CXX _LT_EOF ;; "$ac_stdint_h":C) { $as_echo "$as_me:${as_lineno-$LINENO}: creating $ac_stdint_h : $_ac_stdint_h" >&5 $as_echo "$as_me: creating $ac_stdint_h : $_ac_stdint_h" >&6;} ac_stdint=$tmp/_stdint.h echo "#ifndef" $_ac_stdint_h >$ac_stdint echo "#define" $_ac_stdint_h "1" >>$ac_stdint echo "#ifndef" _GENERATED_STDINT_H >>$ac_stdint echo "#define" _GENERATED_STDINT_H '"'$PACKAGE $VERSION'"' >>$ac_stdint echo "/* generated $ac_cv_stdint_message */" >>$ac_stdint if test "_$ac_cv_header_stdint_t" != "_" ; then echo "#define _STDINT_HAVE_STDINT_H" "1" >>$ac_stdint echo "#include " >>$ac_stdint echo "#endif" >>$ac_stdint echo "#endif" >>$ac_stdint else cat >>$ac_stdint < #else #include /* .................... configured part ............................ */ STDINT_EOF echo "/* whether we have a C99 compatible stdint header file */" >>$ac_stdint if test "_$ac_cv_header_stdint_x" != "_" ; then ac_header="$ac_cv_header_stdint_x" echo "#define _STDINT_HEADER_INTPTR" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_INTPTR */" >>$ac_stdint fi echo "/* whether we have a C96 compatible inttypes header file */" >>$ac_stdint if test "_$ac_cv_header_stdint_o" != "_" ; then ac_header="$ac_cv_header_stdint_o" echo "#define _STDINT_HEADER_UINT32" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_UINT32 */" >>$ac_stdint fi echo "/* whether we have a BSD compatible inet types header */" >>$ac_stdint if test "_$ac_cv_header_stdint_u" != "_" ; then ac_header="$ac_cv_header_stdint_u" echo "#define _STDINT_HEADER_U_INT32" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_U_INT32 */" >>$ac_stdint fi echo "" >>$ac_stdint if test "_$ac_header" != "_" ; then if test "$ac_header" != "stddef.h" ; then echo "#include <$ac_header>" >>$ac_stdint echo "" >>$ac_stdint fi fi echo "/* which 64bit typedef has been found */" >>$ac_stdint if test "$ac_cv_type_uint64_t" = "yes" ; then echo "#define _STDINT_HAVE_UINT64_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_UINT64_T */" >>$ac_stdint fi if test "$ac_cv_type_u_int64_t" = "yes" ; then echo "#define _STDINT_HAVE_U_INT64_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_U_INT64_T */" >>$ac_stdint fi echo "" >>$ac_stdint echo "/* which type model has been detected */" >>$ac_stdint if test "_$ac_cv_char_data_model" != "_" ; then echo "#define _STDINT_CHAR_MODEL" "$ac_cv_char_data_model" >>$ac_stdint echo "#define _STDINT_LONG_MODEL" "$ac_cv_long_data_model" >>$ac_stdint else echo "/* #undef _STDINT_CHAR_MODEL // skipped */" >>$ac_stdint echo "/* #undef _STDINT_LONG_MODEL // skipped */" >>$ac_stdint fi echo "" >>$ac_stdint echo "/* whether int_least types were detected */" >>$ac_stdint if test "$ac_cv_type_int_least32_t" = "yes"; then echo "#define _STDINT_HAVE_INT_LEAST32_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INT_LEAST32_T */" >>$ac_stdint fi echo "/* whether int_fast types were detected */" >>$ac_stdint if test "$ac_cv_type_int_fast32_t" = "yes"; then echo "#define _STDINT_HAVE_INT_FAST32_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INT_FAST32_T */" >>$ac_stdint fi echo "/* whether intmax_t type was detected */" >>$ac_stdint if test "$ac_cv_type_intmax_t" = "yes"; then echo "#define _STDINT_HAVE_INTMAX_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INTMAX_T */" >>$ac_stdint fi echo "" >>$ac_stdint cat >>$ac_stdint <= 199901L #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef long long int64_t; typedef unsigned long long uint64_t; #elif !defined __STRICT_ANSI__ #if defined _MSC_VER || defined __WATCOMC__ || defined __BORLANDC__ #define _HAVE_UINT64_T typedef __int64 int64_t; typedef unsigned __int64 uint64_t; #elif defined __GNUC__ || defined __MWERKS__ || defined __ELF__ /* note: all ELF-systems seem to have loff-support which needs 64-bit */ #if !defined _NO_LONGLONG #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef long long int64_t; typedef unsigned long long uint64_t; #endif #elif defined __alpha || (defined __mips && defined _ABIN32) #if !defined _NO_LONGLONG typedef long int64_t; typedef unsigned long uint64_t; #endif /* compiler/cpu type to define int64_t */ #endif #endif #endif #if defined _STDINT_HAVE_U_INT_TYPES /* int8_t int16_t int32_t defined by inet code, redeclare the u_intXX types */ typedef u_int8_t uint8_t; typedef u_int16_t uint16_t; typedef u_int32_t uint32_t; /* glibc compatibility */ #ifndef __int8_t_defined #define __int8_t_defined #endif #endif #ifdef _STDINT_NEED_INT_MODEL_T /* we must guess all the basic types. Apart from byte-adressable system, */ /* there a few 32-bit-only dsp-systems that we guard with BYTE_MODEL 8-} */ /* (btw, those nibble-addressable systems are way off, or so we assume) */ #if defined _STDINT_BYTE_MODEL #if _STDINT_LONG_MODEL+0 == 242 /* 2:4:2 = IP16 = a normal 16-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned long uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef long int32_t; #endif #elif _STDINT_LONG_MODEL+0 == 244 || _STDINT_LONG_MODEL == 444 /* 2:4:4 = LP32 = a 32-bit system derived from a 16-bit */ /* 4:4:4 = ILP32 = a normal 32-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif #elif _STDINT_LONG_MODEL+0 == 484 || _STDINT_LONG_MODEL+0 == 488 /* 4:8:4 = IP32 = a 32-bit system prepared for 64-bit */ /* 4:8:8 = LP64 = a normal 64-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif /* this system has a "long" of 64bit */ #ifndef _HAVE_UINT64_T #define _HAVE_UINT64_T typedef unsigned long uint64_t; typedef long int64_t; #endif #elif _STDINT_LONG_MODEL+0 == 448 /* LLP64 a 64-bit system derived from a 32-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif /* assuming the system has a "long long" */ #ifndef _HAVE_UINT64_T #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef unsigned long long uint64_t; typedef long long int64_t; #endif #else #define _STDINT_NO_INT32_T #endif #else #define _STDINT_NO_INT8_T #define _STDINT_NO_INT32_T #endif #endif /* * quote from SunOS-5.8 sys/inttypes.h: * Use at your own risk. As of February 1996, the committee is squarely * behind the fixed sized types; the "least" and "fast" types are still being * discussed. The probability that the "fast" types may be removed before * the standard is finalized is high enough that they are not currently * implemented. */ #if defined _STDINT_NEED_INT_LEAST_T typedef int8_t int_least8_t; typedef int16_t int_least16_t; typedef int32_t int_least32_t; #ifdef _HAVE_UINT64_T typedef int64_t int_least64_t; #endif typedef uint8_t uint_least8_t; typedef uint16_t uint_least16_t; typedef uint32_t uint_least32_t; #ifdef _HAVE_UINT64_T typedef uint64_t uint_least64_t; #endif /* least types */ #endif #if defined _STDINT_NEED_INT_FAST_T typedef int8_t int_fast8_t; typedef int int_fast16_t; typedef int32_t int_fast32_t; #ifdef _HAVE_UINT64_T typedef int64_t int_fast64_t; #endif typedef uint8_t uint_fast8_t; typedef unsigned uint_fast16_t; typedef uint32_t uint_fast32_t; #ifdef _HAVE_UINT64_T typedef uint64_t uint_fast64_t; #endif /* fast types */ #endif #ifdef _STDINT_NEED_INTMAX_T #ifdef _HAVE_UINT64_T typedef int64_t intmax_t; typedef uint64_t uintmax_t; #else typedef long intmax_t; typedef unsigned long uintmax_t; #endif #endif #ifdef _STDINT_NEED_INTPTR_T #ifndef __intptr_t_defined #define __intptr_t_defined /* we encourage using "long" to store pointer values, never use "int" ! */ #if _STDINT_LONG_MODEL+0 == 242 || _STDINT_LONG_MODEL+0 == 484 typedef unsigned int uintptr_t; typedef int intptr_t; #elif _STDINT_LONG_MODEL+0 == 244 || _STDINT_LONG_MODEL+0 == 444 typedef unsigned long uintptr_t; typedef long intptr_t; #elif _STDINT_LONG_MODEL+0 == 448 && defined _HAVE_UINT64_T typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else /* matches typical system types ILP32 and LP64 - but not IP16 or LLP64 */ typedef unsigned long uintptr_t; typedef long intptr_t; #endif #endif #endif /* The ISO C99 standard specifies that in C++ implementations these should only be defined if explicitly requested. */ #if !defined __cplusplus || defined __STDC_CONSTANT_MACROS #ifndef UINT32_C /* Signed. */ # define INT8_C(c) c # define INT16_C(c) c # define INT32_C(c) c # ifdef _HAVE_LONGLONG_UINT64_T # define INT64_C(c) c ## L # else # define INT64_C(c) c ## LL # endif /* Unsigned. */ # define UINT8_C(c) c ## U # define UINT16_C(c) c ## U # define UINT32_C(c) c ## U # ifdef _HAVE_LONGLONG_UINT64_T # define UINT64_C(c) c ## UL # else # define UINT64_C(c) c ## ULL # endif /* Maximal type. */ # ifdef _HAVE_LONGLONG_UINT64_T # define INTMAX_C(c) c ## L # define UINTMAX_C(c) c ## UL # else # define INTMAX_C(c) c ## LL # define UINTMAX_C(c) c ## ULL # endif /* literalnumbers */ #endif #endif /* These limits are merily those of a two complement byte-oriented system */ /* Minimum of signed integral types. */ # define INT8_MIN (-128) # define INT16_MIN (-32767-1) # define INT32_MIN (-2147483647-1) #ifndef INT64_MIN # define INT64_MIN (-__INT64_C(9223372036854775807)-1) #endif /* Maximum of signed integral types. */ # define INT8_MAX (127) # define INT16_MAX (32767) # define INT32_MAX (2147483647) #ifndef INT64_MAX # define INT64_MAX (__INT64_C(9223372036854775807)) #endif /* Maximum of unsigned integral types. */ #ifndef UINT8_MAX # define UINT8_MAX (255) #endif #ifndef UINT16_MAX # define UINT16_MAX (65535) #endif # define UINT32_MAX (4294967295U) #ifndef UINT64_MAX # define UINT64_MAX (__UINT64_C(18446744073709551615)) #endif /* Minimum of signed integral types having a minimum size. */ # define INT_LEAST8_MIN INT8_MIN # define INT_LEAST16_MIN INT16_MIN # define INT_LEAST32_MIN INT32_MIN # define INT_LEAST64_MIN INT64_MIN /* Maximum of signed integral types having a minimum size. */ # define INT_LEAST8_MAX INT8_MAX # define INT_LEAST16_MAX INT16_MAX # define INT_LEAST32_MAX INT32_MAX # define INT_LEAST64_MAX INT64_MAX /* Maximum of unsigned integral types having a minimum size. */ # define UINT_LEAST8_MAX UINT8_MAX # define UINT_LEAST16_MAX UINT16_MAX # define UINT_LEAST32_MAX UINT32_MAX # define UINT_LEAST64_MAX UINT64_MAX /* shortcircuit*/ #endif /* once */ #endif #endif STDINT_EOF fi if cmp -s $ac_stdint_h $ac_stdint 2>/dev/null; then { $as_echo "$as_me:${as_lineno-$LINENO}: $ac_stdint_h is unchanged" >&5 $as_echo "$as_me: $ac_stdint_h is unchanged" >&6;} else ac_dir=`$as_dirname -- "$ac_stdint_h" || $as_expr X"$ac_stdint_h" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$ac_stdint_h" : 'X\(//\)[^/]' \| \ X"$ac_stdint_h" : 'X\(//\)$' \| \ X"$ac_stdint_h" : 'X\(/\)' \| . 2>/dev/null || $as_echo X"$ac_stdint_h" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q'` as_dir="$ac_dir"; as_fn_mkdir_p rm -f $ac_stdint_h mv $ac_stdint $ac_stdint_h fi ;; "$ax_create_pkgconfig_generate":C) pkgconfig_generate="$ax_create_pkgconfig_generate" if test ! -f "$pkgconfig_generate.in" then generate="true" elif grep ' generated by configure ' $pkgconfig_generate.in >/dev/null then generate="true" else generate="false"; fi if $generate ; then { $as_echo "$as_me:${as_lineno-$LINENO}: creating $pkgconfig_generate.in" >&5 $as_echo "$as_me: creating $pkgconfig_generate.in" >&6;} cat > $pkgconfig_generate.in <&5 $as_echo "$as_me: creating $pkgconfig_generate" >&6;} cat >conftest.sed < $pkgconfig_generate if test ! -s $pkgconfig_generate ; then as_fn_error $? "$pkgconfig_generate is empty" "$LINENO" 5 fi ; rm conftest.sed # DONE generate $pkgconfig_generate pkgconfig_uninstalled=`echo $pkgconfig_generate |sed 's/.pc$/-uninstalled.pc/'` { $as_echo "$as_me:${as_lineno-$LINENO}: creating $pkgconfig_uninstalled" >&5 $as_echo "$as_me: creating $pkgconfig_uninstalled" >&6;} cat >conftest.sed < $pkgconfig_uninstalled if test ! -s $pkgconfig_uninstalled ; then as_fn_error $? "$pkgconfig_uninstalled is empty" "$LINENO" 5 fi ; rm conftest.sed # DONE generate $pkgconfig_uninstalled pkgconfig_requires_add=`echo ${pkgconfig_requires}` if test ".$pkgconfig_requires_add" != "." ; then pkgconfig_requires_add="pkg-config $pkgconfig_requires_add" else pkgconfig_requires_add=":" ; fi pkgconfig_uninstalled=`echo $pkgconfig_generate |sed 's/.pc$/-uninstalled.sh/'` { $as_echo "$as_me:${as_lineno-$LINENO}: creating $pkgconfig_uninstalled" >&5 $as_echo "$as_me: creating $pkgconfig_uninstalled" >&6;} cat >conftest.sed <Name:>for option\\; do case \"\$option\" in --list-all|--name) echo > s>Description: *>\\;\\; --help) pkg-config --help \\; echo Buildscript Of > s>Version: *>\\;\\; --modversion|--version) echo > s>Requires:>\\;\\; --requires) echo $pkgconfig_requires_add> s>Libs: *>\\;\\; --libs) echo > s>Cflags: *>\\;\\; --cflags) echo > /--libs)/a\\ $pkgconfig_requires_add /--cflags)/a\\ $pkgconfig_requires_add\\ ;; --variable=*) eval echo '\$'\`echo \$option | sed -e 's/.*=//'\`\\ ;; --uninstalled) exit 0 \\ ;; *) ;; esac done AXEOF sed -f conftest.sed $pkgconfig_generate.in > $pkgconfig_uninstalled if test ! -s $pkgconfig_uninstalled ; then as_fn_error $? "$pkgconfig_uninstalled is empty" "$LINENO" 5 fi ; rm conftest.sed # DONE generate $pkgconfig_uninstalled ;; "bound_test.sh":F) chmod +x bound_test.sh ;; "codegen_test.sh":F) chmod +x codegen_test.sh ;; "pip_test.sh":F) chmod +x pip_test.sh ;; esac done # for ac_tag as_fn_exit 0 _ACEOF ac_clean_files=$ac_clean_files_save test $ac_write_fail = 0 || as_fn_error $? "write failure creating $CONFIG_STATUS" "$LINENO" 5 ac_configure_args="$ac_configure_args $isl_configure_args" # configure is writing to config.log, and then calls config.status. # config.status does its own redirection, appending to config.log. # Unfortunately, on DOS this fails, as config.log is still kept open # by configure, so config.status won't be able to write to it; its # output is simply discarded. So we exec the FD to /dev/null, # effectively closing config.log, so it can be properly (re)opened and # appended to by config.status. When coming back to configure, we # need to make the FD available again. if test "$no_create" != yes; then ac_cs_success=: ac_config_status_args= test "$silent" = yes && ac_config_status_args="$ac_config_status_args --quiet" exec 5>/dev/null $SHELL $CONFIG_STATUS $ac_config_status_args || ac_cs_success=false exec 5>>config.log # Use ||, not &&, to avoid exiting from the if with $? = 1, which # would make configure fail if this is the last instruction. $ac_cs_success || as_fn_exit 1 fi if test -n "$ac_unrecognized_opts" && test "$enable_option_checking" != no; then { $as_echo "$as_me:${as_lineno-$LINENO}: WARNING: unrecognized options: $ac_unrecognized_opts" >&5 $as_echo "$as_me: WARNING: unrecognized options: $ac_unrecognized_opts" >&2;} fi isl-0.16.1/isl_list_templ.h0000664000175000017500000000044312645737060012520 00000000000000#define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xLIST(EL) EL ## _list #define LIST(EL) xLIST(EL) struct LIST(EL) { int ref; isl_ctx *ctx; int n; size_t size; struct EL *p[1]; }; __isl_give LIST(EL) *FN(LIST(EL),dup)(__isl_keep LIST(EL) *list); isl-0.16.1/isl_deprecated.c0000664000175000017500000000127612645737060012444 00000000000000#include #include /* This function was never documented and has been replaced by * isl_basic_set_add_dims. */ __isl_give isl_basic_set *isl_basic_set_add(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n) { return isl_basic_set_add_dims(bset, type, n); } /* This function was replaced by isl_constraint_alloc_equality. */ __isl_give isl_constraint *isl_equality_alloc(__isl_take isl_local_space *ls) { return isl_constraint_alloc_equality(ls); } /* This function was replaced by isl_constraint_alloc_inequality. */ __isl_give isl_constraint *isl_inequality_alloc(__isl_take isl_local_space *ls) { return isl_constraint_alloc_inequality(ls); } isl-0.16.1/isl_mat_private.h0000664000175000017500000000275212645737061012665 00000000000000#include #include struct isl_mat { int ref; struct isl_ctx *ctx; #define ISL_MAT_BORROWED (1 << 0) unsigned flags; unsigned n_row; unsigned n_col; isl_int **row; /* actual size of the rows in memory; n_col <= max_col */ unsigned max_col; struct isl_blk block; }; __isl_give isl_mat *isl_mat_sub_alloc(__isl_keep isl_mat *mat, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col); __isl_give isl_mat *isl_mat_sub_alloc6(isl_ctx *ctx, isl_int **row, unsigned first_row, unsigned n_row, unsigned first_col, unsigned n_col); void isl_mat_sub_copy(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col); void isl_mat_sub_neg(struct isl_ctx *ctx, isl_int **dst, isl_int **src, unsigned n_row, unsigned dst_col, unsigned src_col, unsigned n_col); __isl_give isl_mat *isl_mat_diag(isl_ctx *ctx, unsigned n_row, isl_int d); __isl_give isl_mat *isl_mat_scale_down_row(__isl_take isl_mat *mat, int row, isl_int m); __isl_give isl_vec *isl_mat_get_row(__isl_keep isl_mat *mat, unsigned row); int isl_mat_is_scaled_identity(__isl_keep isl_mat *mat); void isl_mat_col_mul(struct isl_mat *mat, int dst_col, isl_int f, int src_col); void isl_mat_col_submul(struct isl_mat *mat, int dst_col, isl_int f, int src_col); int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v); __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v); isl-0.16.1/test_inputs/0000755000175000017500000000000012645737061011763 500000000000000isl-0.16.1/test_inputs/equality5.pwqp0000664000175000017500000000015512645737061014541 00000000000000[m,n] -> { [x,y,z] -> x^2 * y + z + m + 13 * n: n = 2x + 4y and 0 <= x,y <= 10 and 3 n = 5 m and z = x + y } isl-0.16.1/test_inputs/fimmel.pip0000644000175000017500000000015611427503105013653 000000000000000 4 -1 7 6 1 2 6 0 0 -9 1 5 -3 0 0 0 1 2 -10 0 0 15 1 -2 6 0 0 -3 1 -2 -6 0 0 17 1 0 1 -1 0 0 1 1 0 0 -1 0 isl-0.16.1/test_inputs/basicLinear.pwqp0000664000175000017500000000010412645737061015025 00000000000000[P, Q] -> { [n, m] -> n : n >= 1 and m >= n and m <= P and m <= Q } isl-0.16.1/test_inputs/basicLinear2.pwqp0000664000175000017500000000011112645737061015105 00000000000000[P, Q] -> { [n, m] -> n : n >= 1 and m >= n and m <= P and n >= -1 + Q } isl-0.16.1/test_inputs/philippeNeg.pwqp0000664000175000017500000000012112645737061015054 00000000000000[N] -> { [i, j] -> ((1/2 * i + 1/2 * i^2) + j) : i <= N and j >= -1 and j <= i } isl-0.16.1/test_inputs/convex11.polylib0000644000175000017500000000014111242575471014734 000000000000003 4 1 0 -1 6 1 -1 1 1 1 1 1 -10 3 4 1 1 0 -4 1 -1 -1 8 1 -1 1 1 3 4 1 0 -1 6 1 1 0 -4 1 -1 1 1 isl-0.16.1/test_inputs/max.pip0000644000175000017500000000010511427503105013161 000000000000000 3 -1 4 5 1 -1 0 1 0 1 0 -1 1 0 1 -1 3 -2 12 1 2 -1 -1 3 isl-0.16.1/test_inputs/philippePolynomialCoeff.pwqp0000664000175000017500000000015412645737061017437 00000000000000[N, M] -> { [i, j] -> ((N * i + (1/5 * N + N^2) * i^2) + 5 * j) : i <= N and j >= 0 and j <= i and M >= 0 } isl-0.16.1/test_inputs/small.pip0000644000175000017500000000007111427503105013506 000000000000000 2 -1 4 4 1 1 0 0 1 0 1 0 1 1 -3 12 1 -2 1 3 isl-0.16.1/test_inputs/ex.pip0000644000175000017500000000013311427503105013011 000000000000001 5 1 -1 1 1 0 -1 3 7 1 0 -1 0 1 0 0 1 -1 0 0 0 1 0 1 1 1 -1 0 0 0 isl-0.16.1/test_inputs/negative.pip0000644000175000017500000000013111427503105014175 000000000000001 3 # n 1 1 1 -1 # n >= 1 -1 2 4 # i n 1 1 1 0 1 # i >= -1 1 -1 1 0 # i <= n isl-0.16.1/test_inputs/convex2.polylib0000644000175000017500000000066611242575471014670 00000000000000# {i,j,N | 1<=i<=N; 0<=j<=N-1; 2<=N} 6 5 1 1 0 0 -1 1 -1 0 1 0 1 0 1 0 0 1 0 -1 1 -1 1 0 0 1 -2 1 0 0 0 1 # {i,j,N | 1<=i<=N; 1<=j<=N; 2<=N} 6 5 1 1 0 0 -1 1 -1 0 1 0 1 0 1 0 -1 1 0 -1 1 0 1 0 0 1 -2 1 0 0 0 1 # {i,j,N | 1<=i<=N; 0<=j<=N; 2<=N} 6 5 1 0 0 1 -2 1 -1 0 1 0 1 0 -1 1 0 1 1 0 0 -1 1 0 1 0 0 1 0 0 0 1 isl-0.16.1/test_inputs/product.pwqp0000664000175000017500000000017512645737061014301 00000000000000[N] -> { [i0, i1, i2] -> (i0^3 * i1^2 + N * i1 * i2) : i0 >= 0 and i0 <= N and i1 >= 0 and i1 <= N and i2 >= 0 and i2 <= N } isl-0.16.1/test_inputs/convex0.polylib0000644000175000017500000000006611242575471014660 000000000000002 3 1 1 0 1 -1 1 2 3 1 1 -1 1 -1 2 2 3 1 1 0 1 -1 2 isl-0.16.1/test_inputs/affine.polylib0000644000175000017500000000025411242575471014525 00000000000000# the affine hull of {[a,b] : a=b && 1 <= a <= 163} ... 3 4 0 1 -1 0 1 1 0 -1 1 -1 0 163 # ... is {[a,b] : a=b} (and not {[In_1,In_2]}, as Omega 1.2 claims) 1 4 0 1 -1 0 isl-0.16.1/test_inputs/philippe3vars3pars.pwqp0000664000175000017500000000022112645737061016353 00000000000000[N, M, L] -> { [i, j, k] -> (((1/2 * i + 1/2 * i^2) + j) + k^3) : i >= 0 and k >= -N + i and k >= -M - j and j <= L + i and L >= 0 and L >= -M } isl-0.16.1/test_inputs/set.omega0000644000175000017500000000004411242575471013503 00000000000000{[y]: Exists ( alpha : 2alpha = y)} isl-0.16.1/test_inputs/affine2.polylib0000644000175000017500000000011311242575471014601 000000000000005 5 1 -2 0 1 0 1 2 0 -1 1 1 0 -2 1 0 1 0 2 -1 1 1 0 0 1 -1 1 5 0 1 -1 0 0 isl-0.16.1/test_inputs/convex13.polylib0000644000175000017500000000041211242575471014737 000000000000003 5 1 0 0 -1 3 1 0 -1 0 2 1 1 1 1 -4 3 5 1 0 0 1 0 1 1 0 0 -1 1 1 2 0 1 6 5 1 3 2 0 -1 1 3 0 2 -3 1 1 0 1 -1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 isl-0.16.1/test_inputs/test3Deg3Var.pwqp0000664000175000017500000000007612645737061015037 00000000000000[p] -> { [n, m] -> (n + n^3) : n >= 1 and m >= n and m <= p } isl-0.16.1/test_inputs/convex4.polylib0000644000175000017500000000006211242575471014660 000000000000001 4 1 1 1 -6 2 4 0 1 0 -1 0 0 1 -4 1 4 1 1 1 -5 isl-0.16.1/test_inputs/seghir-vd.pip0000664000175000017500000000031012645737061014301 000000000000000 6 -1 9 8 0 0 0 1 1 0 0 2 1 2 1 0 0 1 0 0 1 0 1 0 -1 0 0 -1 1 -2 -1 0 0 0 0 -1 1 7 3 0 0 0 0 -1 1 -6 -4 0 1 0 3 1 1 -7 -3 0 0 1 6 4 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 Urs_parms Urs_unknowns isl-0.16.1/test_inputs/cg1.pip0000644000175000017500000000032711427503105013054 000000000000002 4 1 1 0 -1 1 -1 1 0 -1 8 7 1 0 1 0 -1 0 0 1 0 -1 0 1 0 0 1 1 0 0 0 -1 0 1 -1 0 0 0 1 0 1 0 1 0 0 0 -1 1 0 -1 0 0 1 0 1 0 -1 1 0 0 -1 1 0 0 -1 0 1 0 isl-0.16.1/test_inputs/faddeev.pwqp0000664000175000017500000000024312645737061014213 00000000000000[N] -> { [i, j, k] -> (((4 + 6 * N + 2 * N^2) + (-2 - 2 * N) * j) + ((-2 - N) + j) * k) : j = 1 + i and k = 1 + i and i >= 3 and N <= 100 and i <= N and N >= 10 } isl-0.16.1/test_inputs/equality2.pwqp0000664000175000017500000000007512645737061014537 00000000000000[n] -> { [x,y] -> x^2 * y : n = 2x + 4y and 0 <= x,y <= 10 } isl-0.16.1/test_inputs/equality3.pwqp0000664000175000017500000000011512645737061014533 00000000000000[m,n] -> { [x,y] -> x^2 * y : n = 2x + 4y and 0 <= x,y <= 10 and 3 n = 5 m } isl-0.16.1/test_inputs/boulet.pip0000644000175000017500000000015611427503105013674 000000000000000 3 -1 5 6 1 1 -1 2 0 0 1 0 1 1 4 20 1 0 -1 -1 0 0 1 0 1 -1 2 10 1 0 -1 1 2 10 Urs_parms Urs_unknowns isl-0.16.1/test_inputs/unexpanded.pwqp0000664000175000017500000000013312645737061014746 00000000000000{ [x, y] -> ((x - x^2) * y + (-x + x^2) * y^2) : x >= 0 and x <= 2 and y >= 0 and y <= 2 } isl-0.16.1/test_inputs/square.pip0000644000175000017500000000010511427503105013674 000000000000000 3 -1 4 5 1 1 0 0 0 1 -1 0 1 0 1 0 1 0 0 1 0 -1 1 0 isl-0.16.1/test_inputs/basicTestParameterPosNeg.pwqp0000664000175000017500000000007712645737061017520 00000000000000[p] -> { [n, m] -> (n + n^3) : n >= -1 and m >= n and m <= p } isl-0.16.1/test_inputs/basicTest.pwqp0000664000175000017500000000007612645737061014542 00000000000000[p] -> { [n, m] -> (n + n^2) : n >= 1 and m >= n and m <= p } isl-0.16.1/test_inputs/toplas.pwqp0000664000175000017500000000034112645737061014116 00000000000000[n] -> { [i0, i1] -> (((4 * n - n^2) + (-3/2 + 2 * n) * i0 - 1/2 * i0^2) - i1) : i1 >= -1 + 3n - i0 and i1 >= -1 + 2n - i0 and i0 >= 0 and i1 <= -2 + 4n - i0 and i0 <= -2 + 4n and i0 <= -1 + 3n and i1 >= 0 and i1 <= -1 + n } isl-0.16.1/test_inputs/neg.pwqp0000664000175000017500000000011412645737061013363 00000000000000[n] -> { [i0] -> i0^2 : i0 >= -20 - n and i0 <= n and i0 <= -1 and n >= 0 } isl-0.16.1/test_inputs/convex1.polylib0000644000175000017500000000037111242575471014660 00000000000000# {j,N | 0<=j<=N-1; 2<=N} 4 4 1 1 0 0 1 -1 1 -1 1 0 1 -2 1 0 0 1 # {j, N | 1<=j<=N; 1<=N} 4 4 1 1 0 -1 1 -1 1 0 1 0 1 -1 1 0 0 1 # {j,N | 0<=j<=N; 2<=j+N} 3 4 1 1 1 -2 1 1 0 0 1 -1 1 0 isl-0.16.1/test_inputs/split.pwqp0000664000175000017500000000006512645737061013752 00000000000000[n] -> { [x] -> -1 + [(x+5)/7] : -n - 20 <= x <= n } isl-0.16.1/test_inputs/convex10.polylib0000644000175000017500000000022211242575471014733 000000000000003 4 1 54 1 -4 1 2 -1 58 1 0 -1 6 4 4 1 54 1 -4 1 2 -1 58 1 0 1 -7 1 -4 1 0 4 4 1 54 1 -4 1 2 -1 58 1 0 -1 116 1 0 0 1 isl-0.16.1/test_inputs/convex12.polylib0000644000175000017500000000024111242575471014736 000000000000003 5 1 0 0 1 1 1 0 1 0 1 1 -1 -1 0 -2 3 5 1 0 0 1 2 1 1 -1 0 0 1 1 0 0 -1 1 5 1 0 0 1 2 isl-0.16.1/test_inputs/convex15.polylib0000664000175000017500000000506012645737061014752 0000000000000017 8 1 -1 -8 0 16 0 0 37 1 1 0 -48 0 2 0 -3 1 0 -16 -32 16 1 0 14 1 -1 24 0 0 1 0 18 1 -1 8 16 0 0 1 21 1 0 0 -16 0 1 1 -2 1 1 32 16 -32 0 0 -1 1 -1 16 16 0 0 0 28 1 1 -8 -32 0 1 0 -1 1 0 0 0 0 1 0 -1 1 0 16 16 -16 0 1 -1 1 1 8 0 -16 0 0 0 1 0 3 2 -2 0 0 0 1 0 1 2 -1 0 0 0 1 0 -1 -1 1 0 0 0 1 -1 8 0 0 1 2 4 1 -1 -24 -32 32 1 0 36 13 8 1 -1 0 0 0 1 3 -4 1 1 0 -48 0 2 0 -2 1 0 0 0 0 1 0 -1 1 0 -8 0 0 0 1 -1 1 0 3 2 -2 0 0 0 1 1 -16 -16 0 0 0 0 1 1 -24 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 -3 -2 2 0 0 1 1 -1 0 16 0 0 2 13 1 -1 24 0 0 1 0 20 1 -1 16 16 0 0 0 29 1 -1 0 48 0 0 0 45 31 8 1 0 1 0 0 0 0 0 1 0 0 -16 0 1 1 -2 1 0 0 0 0 1 0 -1 1 -1 8 0 0 1 2 4 1 0 3 2 -2 0 0 0 1 -1 24 0 0 1 0 20 1 1 0 -48 0 2 0 -2 1 -1 -24 -32 32 1 0 36 1 0 0 0 0 0 1 -1 1 -1 24 64 -16 0 0 45 1 -15 120 112 0 15 38 52 1 1 24 32 -32 0 0 0 1 0 -2 -2 2 0 0 1 1 -1 8 16 0 0 1 21 1 -15 120 352 0 0 23 307 1 1 -8 -32 0 1 0 -1 1 1 -8 0 0 0 0 0 1 1 -8 -16 0 0 0 0 1 0 16 16 -16 0 1 -1 1 -1 16 16 0 0 0 29 1 -1 -8 0 16 0 0 37 1 -1 8 32 0 0 0 37 1 1 8 0 -16 0 0 0 1 -15 360 592 -240 0 23 307 1 -1 -6 2 14 0 2 20 1 -15 360 352 -240 15 38 52 1 -1 8 48 0 0 0 45 1 0 -16 -32 16 1 0 14 1 -1 -6 -14 14 1 3 3 1 1 -38 -78 30 2 0 13 1 1 -3 -50 2 2 0 -1 isl-0.16.1/test_inputs/esced.pip0000644000175000017500000000115011427503105013460 000000000000000 2 -1 16 18 1 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 1 -1 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 isl-0.16.1/test_inputs/gist1.polylib0000644000175000017500000000015511242575471014324 000000000000004 5 0 1 0 0 -1 0 0 1 0 1 0 0 0 1 -3 1 0 0 0 1 4 5 0 1 0 0 -1 0 0 1 1 -2 1 0 0 1 0 1 0 0 -1 3 1 5 0 0 1 0 1 isl-0.16.1/test_inputs/equality1.pwqp0000664000175000017500000000010612645737061014531 00000000000000[n] -> { [x] -> 1 + [(x+1)/3] : exists a : x = 3a +1 && 0 <= x <= n } isl-0.16.1/test_inputs/convex6.polylib0000644000175000017500000000031611242575471014664 000000000000003 4 1 1 1 -2 1 -1 1 2 1 0 -1 2 3 4 1 0 1 -1 1 1 -1 1 1 -1 -1 5 6 4 1 -1 0 4 1 1 0 0 1 1 2 -2 1 -1 2 2 1 1 -2 4 1 -1 -2 8 isl-0.16.1/test_inputs/affine3.polylib0000644000175000017500000000005411242575471014606 000000000000003 4 1 1 0 0 1 -7 4 2 1 5 -4 2 1 4 0 3 -2 0 isl-0.16.1/test_inputs/philippe.pwqp0000664000175000017500000000012012645737061014421 00000000000000[N] -> { [i, j] -> ((1/2 * i + 1/2 * i^2) + j) : i <= N and j >= 0 and j <= i } isl-0.16.1/test_inputs/convex9.polylib0000644000175000017500000000013611242575471014667 000000000000004 4 1 1 0 0 1 -1 0 1 1 0 1 0 1 0 -1 10 2 4 1 1 0 -10 0 0 -1 5 3 4 1 1 0 0 1 0 1 0 1 0 -1 10 isl-0.16.1/test_inputs/convex8.polylib0000644000175000017500000000061211242575471014665 000000000000004 5 1 1 1 1 0 1 0 -1 0 0 1 -1 0 0 2 1 1 1 -1 0 4 5 1 -1 1 0 2 1 1 -2 -2 -1 1 -1 0 2 3 1 1 0 0 -1 10 5 1 1 0 1 0 1 1 1 0 0 1 0 1 1 2 1 -3 1 -1 8 1 -3 1 1 8 1 0 1 -1 2 1 1 0 -1 0 1 1 -2 -1 0 1 -1 -3 2 6 1 1 -5 -2 2 isl-0.16.1/test_inputs/linearExample.pwqp0000664000175000017500000000021312645737061015400 00000000000000[N, M, L] -> { [i, j, k] -> ((1/2 * i + 5 * j) + 1/7 * k) : i >= 0 and k >= -N + i and k >= -M - j and j <= L + i and L >= 0 and L >= -M } isl-0.16.1/test_inputs/brisebarre.pip0000664000175000017500000000173712645737061014547 00000000000000# ---------------------- CONTEXT ---------------------- 1 2 1 0 -1 # ----------------------- DOMAIN ---------------------- 26 6 1 3 0 0 0 -98300 1 -3 0 0 0 98308 1 432 36 6 1 -14757611 1 -432 -36 -6 -1 14758510 1 54 9 3 1 -1923190 1 -54 -9 -3 -1 1923303 1 48 12 6 3 -1782238 1 -48 -12 -6 -3 1782339 1 27 9 6 4 -1045164 1 -27 -9 -6 -4 1045221 1 432 180 150 125 -17434139 1 -432 -180 -150 -125 17435038 1 6 3 3 3 -252443 1 -6 -3 -3 -3 252456 1 432 252 294 343 -18949275 1 -432 -252 -294 -343 18950174 1 27 18 24 32 -1234720 1 -27 -18 -24 -32 1234777 1 48 36 54 81 -2288453 1 -48 -36 -54 -81 2288554 1 54 45 75 125 -2684050 1 -54 -45 -75 -125 2684163 1 432 396 726 1331 -22386005 1 -432 -396 -726 -1331 22386904 1 3 3 6 12 -162072 1 -3 -3 -6 -12 162080 isl-0.16.1/test_inputs/codegen/0000775000175000017500000000000012645737414013373 500000000000000isl-0.16.1/test_inputs/codegen/atomic4.in0000664000175000017500000000031312645737061015176 00000000000000# Check that isl is not confused by inconsistent separate and atomic options. { sync[] -> [i, 0] : 0 <= i <= 64 } { : } { [i, 0] -> separate[1] : 1 <= i <= 62; [i, 0] -> atomic[1] : i <= 10 or i >= 20 } isl-0.16.1/test_inputs/codegen/separate2.c0000664000175000017500000000105512645737414015346 00000000000000for (int c0 = 0; c0 <= 1; c0 += 1) for (int c5 = 0; c5 <= 31; c5 += 1) for (int c6 = max(0, 2 * (length % 16) + 2 * c5 - 62); c6 <= 30; c6 += 1) { if (2 * length + c6 >= 2 * (length % 16) + 2 && c6 + 62 >= 2 * (length % 16) + 2 * c5 && 2 * (length % 16) >= c6 + 2 && 2 * (length % 16) + 2 * c5 >= c6 && 2 * (length % 32) + c6 == 2 * (length % 16) + 2 * c5 && (2 * c5 - c6) % 32 == 0) S_3(c0, 0, (c6 / 2) - (length % 16) + length); if (length <= 15 && length >= c5 + 1 && c6 >= 1 && length >= c6) S_0(c0, c5, c6 - 1); } isl-0.16.1/test_inputs/codegen/isolate2.c0000664000175000017500000000047412645737061015204 00000000000000for (int c0 = 0; c0 <= 99; c0 += 1) { if (c0 >= 4 && c0 <= 6) { for (int c1 = 0; c1 <= 99; c1 += 1) A(c0, c1); } else if (c0 >= 7 || c0 <= 3) { if (c0 >= 7) { for (int c1 = 0; c1 <= 99; c1 += 1) A(c0, c1); } else for (int c1 = 0; c1 <= 99; c1 += 1) A(c0, c1); } } isl-0.16.1/test_inputs/codegen/component3.c0000664000175000017500000000007312645737061015542 00000000000000{ A(); for (int c0 = 0; c0 <= 9; c0 += 1) B(c0); } isl-0.16.1/test_inputs/codegen/separation_class4.in0000664000175000017500000000144312645737061017261 00000000000000# Check that isl is not confused by the combination of separation classes # and unroll. { S_0[t, i] -> [o0, 1, o9, t] : 4o0 >= -3 + t and 4o0 <= t and i >= 60 and i <= 65 and 6o9 >= 5 + t - 4o0 and 6o9 <= 10 + t - 4o0 and 4o0 <= -62 + t + i and 4o0 >= 59 + t - i and o0 >= 0 and o0 <= 127 and t <= 511 and t >= 0 and 4o0 >= -66 + t + i and 4o0 <= 63 + t - i; S_0[t, i] -> [o0, 0, o9, t] : 4o0 >= -1 + t and 4o0 <= 2 + t and i >= 57 and i <= 62 and 6o9 >= 7 + t - 4o0 and 6o9 <= 12 + t - 4o0 and t >= 0 and t <= 511 and 4o0 <= -57 + t + i and 4o0 >= 58 + t - i and o0 >= 0 and o0 <= 128 and 4o0 >= -61 + t + i and 4o0 <= 62 + t - i } { : } { [i0, i1, i2, t] -> unroll[1]; [i0, 1, i2, t] -> separation_class[[1] -> [0]] : 0 <= i0 <= 127; [i0, 0, i2, t] -> separation_class[[1] -> [0]] : 1 <= i0 <= 127} isl-0.16.1/test_inputs/codegen/atomic4.c0000664000175000017500000000005612645737061015016 00000000000000for (int c0 = 0; c0 <= 64; c0 += 1) sync(); isl-0.16.1/test_inputs/codegen/stride5.c0000664000175000017500000000014412645737061015033 00000000000000if (n % 2 == 0) for (int c0 = (n / 2) + 2 * floord(-n - 1, 4) + 2; c0 <= 100; c0 += 2) S(c0); isl-0.16.1/test_inputs/codegen/stride5.in0000664000175000017500000000012412645737061015215 00000000000000[n] -> { S[t] -> [t] : exists e : 2 t - n = 4e and 0 <= t <= 100 } [n] -> { : } { } isl-0.16.1/test_inputs/codegen/shift_unroll.in0000664000175000017500000000015312645737061016350 00000000000000{ A[i,j] -> [2i,0,j]: 0 <= i,j < 10; B[i,j] -> [2i+1,1,j] : 0 <= i,j < 10 } { : } { [i,0,j] -> unroll[2] } isl-0.16.1/test_inputs/codegen/empty.c0000664000175000017500000000012512645737061014611 00000000000000for (int c0 = 0; c0 <= 10; c0 += 1) { S0(c0); if (c0 == 5) S2(); S1(c0); } isl-0.16.1/test_inputs/codegen/stride6.c0000664000175000017500000000052112645737061015033 00000000000000for (int c1 = -1024; c1 <= 0; c1 += 32) for (int c2 = max(-((niter - 1) % 32) + niter - 1, -((niter - c1) % 32) + niter - c1 - 32); c2 <= min(niter + 1022, niter - c1 - 1); c2 += 32) for (int c5 = max(max(0, -c1 - 1023), niter - c1 - c2 - 32); c5 <= min(min(31, -c1), niter - c1 - c2 - 1); c5 += 1) S_4(niter - 1, -c1 - c5); isl-0.16.1/test_inputs/codegen/unroll8.c0000664000175000017500000000013012645737061015052 00000000000000for (int c0 = 0; c0 <= 99; c0 += 1) { A(c0, 0); A(c0, 1); B(c0, 0); B(c0, 1); } isl-0.16.1/test_inputs/codegen/separate2.in0000664000175000017500000000222412645737061015527 00000000000000# Check that rational affine expressions are printer properly. [tsteps, length] -> { S_0[iter, i, j] -> [iter, 0, o2, o3, 0, o5, o6, 4] : exists (e0 = [(o2)/32], e1 = [(o3)/32], e2 = [(-i + o5)/32], e3 = [(-31 + j - o6)/32]: tsteps = 2 and 32e0 = o2 and 32e1 = o3 and 32e2 = -i + o5 and 32e3 = -31 + j - o6 and o2 <= i and o2 >= -31 + i and o3 <= 1 + j and o3 >= -30 + j and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 31 and i <= -1 + length and i >= 0 and iter >= 0 and iter <= 1 and j <= -1 + length and j >= 0 and o2 >= -31 + length and o3 >= -30 + 2length); S_3[iter, 0, j] -> [iter, 0, o2, o3, o4, o5, o6, 2] : exists (e0 = [(o2)/32], e1 = [(o3)/32], e2 = [(o4)/32], e3 = [(-2o5 + o6)/32], e4 = [(j - o5)/32]: tsteps = 2 and 32e0 = o2 and 32e1 = o3 and 32e2 = o4 and 32e3 = -2o5 + o6 and 32e4 = j - o5 and iter <= 1 and j <= -1 + length and o2 <= j and o2 >= -31 + j and o3 <= 2j and o3 >= -30 + 2j and o4 >= 0 and o4 <= 31 and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 30 and j >= 1 and iter >= 0 and o2 >= -31 + length and o3 >= -30 + 2length) } [tsteps, length] -> { : length >= 1 and length <= 1024 and tsteps = 2 } { [o0,o1,o2,o3,o4,o5,o6,o7] -> separate[x] } isl-0.16.1/test_inputs/codegen/unroll6.c0000664000175000017500000000057312645737061015063 00000000000000{ if (g >= 0 && nn >= 128 * g + 6 && nn >= ((t1 + 127) % 128) + 128 * g + 3) for (int c1 = 393214; c1 < nn - 1; c1 += 393216) A(c1, ((t1 + 127) % 128) + 128 * g + 1, ((t1 + 127) % 128) + 1); if (t1 >= 1 && t1 <= 2 && nn >= t1 + 128 * g + 130 && t1 + 128 * g >= -127) for (int c1 = 393214; c1 < nn - 1; c1 += 393216) A(c1, t1 + 128 * g + 128, t1 + 128); } isl-0.16.1/test_inputs/codegen/isolate3.st0000664000175000017500000000031012645737061015376 00000000000000# Check use of options specific to isolated part domain: "{ A[i] : 0 <= i < 100 }" child: schedule: "[{ A[i] -> [i] }]" options: "{ isolate[[] -> [x]] : 10 <= x <= 20; [isolate[] -> unroll[x]] }" isl-0.16.1/test_inputs/codegen/unroll8.st0000664000175000017500000000041712645737061015266 00000000000000# Check that options are adjusted by shifted stride detection domain: "{ A[i,j] : 0 <= i < 100 and 0 <= j < 2; B[i,j] : 0 <= i < 100 and 0 <= j < 2 }" child: schedule: "[{ A[i,j] -> [2i]; B[i,j] -> [2i+1] }, { A[i,j] -> [j]; B[i,j] -> [j]}]" options: "{ unroll[1] }" isl-0.16.1/test_inputs/codegen/shift.c0000664000175000017500000000007112645737061014570 00000000000000for (int c0 = 0; c0 <= 9; c0 += 1) { A(c0); B(c0); } isl-0.16.1/test_inputs/codegen/component4.c0000664000175000017500000000022112645737061015536 00000000000000{ for (int c1 = 0; c1 <= 9; c1 += 1) A(c1); for (int c0 = 0; c0 <= 9; c0 += 1) for (int c2 = 0; c2 <= 9; c2 += 1) B(c0, c2); } isl-0.16.1/test_inputs/codegen/isolate2.st0000664000175000017500000000037312645737061015406 00000000000000# Check that the isolate option is adjusted by schedule space scaling domain: "{ A[i,j] : 0 <= i,j < 100 }" child: schedule: "[{ A[i,j] -> [3i] }]" child: schedule: "[{ A[i,j] -> [3j] }]" options: "{ isolate[[x] -> [y]] : 10 <= x <= 20 }" isl-0.16.1/test_inputs/codegen/component0.c0000664000175000017500000000007312645737061015537 00000000000000{ A(); for (int c0 = 0; c0 <= 9; c0 += 1) B(c0); } isl-0.16.1/test_inputs/codegen/unroll.in0000664000175000017500000000033412645737061015154 00000000000000# Test that unrolling takes into account stride constraints. # If it didn't, it would run essentially forever on this example. [n] -> { A[i] -> [i] : exists a : i = 100000000 a and 0 <= a <= 2 } {:} { [i] -> unroll[0] } isl-0.16.1/test_inputs/codegen/dwt.in0000664000175000017500000000035212645737061014437 00000000000000[Ncl] -> { S[j, 28] -> [j] : j <= -2 + Ncl and Ncl <= 256 and Ncl >= 40 and j >= 1; S[0, 26] -> [0] : Ncl <= 256 and Ncl >= 40; S[-1 + Ncl, 27] -> [-1 + Ncl] : Ncl <= 256 and Ncl >= 40 } [Ncl] -> { : Ncl >= 40 and Ncl <= 256 } { } isl-0.16.1/test_inputs/codegen/component4.st0000664000175000017500000000027212645737061015750 00000000000000domain: "{ A[i] : 0 <= i < 10; B[i,j] : 0 <= i,j < 10 }" child: schedule: "[{ A[i] -> [0]; B[i,j] -> [i] }]" child: sequence: - filter: "{ A[i] }" - filter: "{ B[i,j] }" isl-0.16.1/test_inputs/codegen/component0.st0000664000175000017500000000013112645737061015736 00000000000000domain: "{ A[]; B[i] : 0 <= i < 10 }" child: schedule: "[{ A[] -> [0]; B[i] -> [i] }]" isl-0.16.1/test_inputs/codegen/isolate6.c0000664000175000017500000000162712645737061015211 00000000000000{ for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) { A(c2, 10 * c1); A(c2, 10 * c1 + 1); A(c2, 10 * c1 + 2); A(c2, 10 * c1 + 3); A(c2, 10 * c1 + 4); A(c2, 10 * c1 + 5); A(c2, 10 * c1 + 6); A(c2, 10 * c1 + 7); A(c2, 10 * c1 + 8); A(c2, 10 * c1 + 9); } for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } isl-0.16.1/test_inputs/codegen/unroll3.c0000664000175000017500000000010712645737414015053 00000000000000if ((t1 + 121) % 128 <= 123) write_shared_A(((t1 + 121) % 128) + 1); isl-0.16.1/test_inputs/codegen/unroll10.st0000664000175000017500000000036612645737061015342 00000000000000# Check that all information is taken into account while trying to unroll domain: "[m,n] -> { A[i] : 0 <= i < n,m }" child: context: "[m,n] -> { [] : m <= 10 or n <= 10 }" child: schedule: "[{ A[i] -> [i] }]" options: "{ unroll[x] }" isl-0.16.1/test_inputs/codegen/unroll4.c0000664000175000017500000000164612645737414015065 00000000000000{ write_shared_A(3, ((t1 + 3) % 4) + 1, ((t2 + 31) % 32) + 1); if (t2 >= 1 && t2 <= 2 && t1 % 3 == 0) write_shared_A(3, (-t1 / 3) + 4, t2 + 32); if ((t1 >= 1 && t1 <= 2 && t2 >= 3 && t2 <= 4) || ((-((t1 + 3) % 4) + t2 + 30) % 32) + t1 >= -4 * ((-t1 + 4) / 4) + 4) write_shared_A(3, ((t1 + 3) % 4) + 5, -((((t1 + 3) % 4) - t2 + 33) % 32) + t1 + 4 * ((-t1 + 4) / 4) + 32); if (t1 >= 1 && t2 >= t1 + 1 && t2 <= 4) write_shared_A(3, t1 + 4, t2 + 32); write_shared_A(4, ((t1 + 3) % 4) + 1, ((t2 + 31) % 32) + 1); if (t2 >= 1 && t2 <= 2 && t1 % 3 == 0) write_shared_A(4, (-t1 / 3) + 4, t2 + 32); if ((t1 >= 1 && t1 <= 2 && t2 >= 3 && t2 <= 4) || ((-((t1 + 3) % 4) + t2 + 30) % 32) + t1 >= -4 * ((-t1 + 4) / 4) + 4) write_shared_A(4, ((t1 + 3) % 4) + 5, -((((t1 + 3) % 4) - t2 + 33) % 32) + t1 + 4 * ((-t1 + 4) / 4) + 32); if (t1 >= 1 && t2 >= t1 + 1 && t2 <= 4) write_shared_A(4, t1 + 4, t2 + 32); } isl-0.16.1/test_inputs/codegen/separation_class4.c0000664000175000017500000000164412645737061017100 00000000000000for (int c0 = 0; c0 <= 128; c0 += 1) { if (c0 <= 127) { if (c0 == 0) { for (int c3 = 0; c3 <= 1; c3 += 1) for (int c5 = c3 + 58; c5 <= -c3 + 61; c5 += 1) S_0(c3, c5); } else for (int c2 = 1; c2 <= 2; c2 += 1) for (int c3 = max(4 * c0 - 2, 4 * c0 + 6 * c2 - 12); c3 <= min(4 * c0 + 1, 4 * c0 + 6 * c2 - 7); c3 += 1) for (int c5 = max(4 * c0 - c3 + 57, -4 * c0 + c3 + 58); c5 <= min(4 * c0 - c3 + 61, -4 * c0 + c3 + 62); c5 += 1) S_0(c3, c5); for (int c2 = 1; c2 <= 2; c2 += 1) for (int c3 = max(4 * c0, 4 * c0 + 6 * c2 - 10); c3 <= min(4 * c0 + 3, 4 * c0 + 6 * c2 - 5); c3 += 1) for (int c5 = max(-4 * c0 + c3 + 59, 4 * c0 - c3 + 62); c5 <= min(-4 * c0 + c3 + 63, 4 * c0 - c3 + 66); c5 += 1) S_0(c3, c5); } else for (int c3 = 510; c3 <= 511; c3 += 1) for (int c5 = -c3 + 569; c5 < c3 - 449; c5 += 1) S_0(c3, c5); } isl-0.16.1/test_inputs/codegen/hoist2.in0000664000175000017500000000111412645737061015046 00000000000000# Check that the constraints hoisted from the inner loop # do not end up involving the inner loop iterator. [t1, b] -> { A[i1, i2] -> [i1, 8 - 64b + i2] : exists (e0, e1 = [(-8 + t1 - i2)/64]: 64e1 = -8 + t1 - i2 and i2 >= 1 and i2 <= 127 and 2e0 >= -3 + i1 and 2e0 >= -1 - i1 and 2e0 <= 8 - i1 and 2e0 <= 6 + i1 and 2e0 >= -65 - 64b + i2 and 2e0 >= -1 + 64b - i2 and e0 <= 1 and e0 >= 0 and 2e0 <= 62 + 64b - i2 and b <= 1 and b >= 0 and i1 >= 1 and i1 <= 2046 and t1 >= 5 and t1 <= 8) } [t1, b] -> { : b >= 0 and b <= 1 and t1 >= 5 and t1 <= 8 } [t1] -> { [i0, i1, i5, a] -> atomic[x]} isl-0.16.1/test_inputs/codegen/shift_unroll.c0000664000175000017500000000032312645737061016163 00000000000000for (int c0 = 0; c0 <= 9; c0 += 1) { A(c0, 0); A(c0, 1); A(c0, 2); A(c0, 3); A(c0, 4); A(c0, 5); A(c0, 6); A(c0, 7); A(c0, 8); A(c0, 9); for (int c2 = 0; c2 <= 9; c2 += 1) B(c0, c2); } isl-0.16.1/test_inputs/codegen/separate.c0000664000175000017500000000013112645737061015254 00000000000000{ a(0); for (int c0 = 1; c0 <= 9; c0 += 1) { b(c0 - 1); a(c0); } b(9); } isl-0.16.1/test_inputs/codegen/omega/0000775000175000017500000000000012645737414014463 500000000000000isl-0.16.1/test_inputs/codegen/omega/stride6-2.c0000664000175000017500000000013512645737061016263 00000000000000for (int c0 = 2; c0 <= 100; c0 += 2) for (int c1 = c0; c1 <= 400; c1 += 2) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/gist-2.in0000664000175000017500000000041612645737061016037 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/256], e1 = [(-1 + In_2)/8]: 256e0 = -1 + In_1 and 8e1 = -1 + In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/wak1-0.c0000664000175000017500000000133212645737061015544 00000000000000{ for (int c0 = a2; c0 <= min(min(a1 - 1, a3 - 1), b2); c0 += 1) s1(c0); for (int c0 = a1; c0 <= min(b1, a3 - 1); c0 += 1) { s0(c0); if (c0 >= a2 && b2 >= c0) s1(c0); } for (int c0 = max(max(a1, b1 + 1), a2); c0 <= min(a3 - 1, b2); c0 += 1) s1(c0); for (int c0 = a3; c0 <= b3; c0 += 1) { if (c0 >= a1 && b1 >= c0) s0(c0); if (c0 >= a2 && b2 >= c0) s1(c0); s2(c0); } for (int c0 = max(max(a3, b3 + 1), a2); c0 <= min(a1 - 1, b2); c0 += 1) s1(c0); for (int c0 = max(max(a1, a3), b3 + 1); c0 <= b1; c0 += 1) { s0(c0); if (c0 >= a2 && b2 >= c0) s1(c0); } for (int c0 = max(max(max(max(a1, b1 + 1), a3), b3 + 1), a2); c0 <= b2; c0 += 1) s1(c0); } isl-0.16.1/test_inputs/codegen/omega/floor_bound-1.c0000664000175000017500000000007012645737061017210 00000000000000for (int c0 = floord(m, 4); c0 <= n; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/lift2-0.c0000664000175000017500000000050212645737061015717 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); if (c0 >= 5 && c0 <= 60) s0(c0, c1, c2, c3, c4); } isl-0.16.1/test_inputs/codegen/omega/lift2-4.c0000664000175000017500000000141212645737061015724 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (c0 >= 61) { for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else if (c0 <= 4) { for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/if_then-3.c0000664000175000017500000000040512645737061016320 00000000000000if (n >= 2) { for (int c0 = 1; c0 <= 100; c0 += 1) { s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { s1(c0, c1); s2(c0, c1); } } } else for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) s2(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lift1-2.in0000664000175000017500000000103312645737061016104 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/ts1d-mp-i_ts-m_b-0.in0000664000175000017500000000312012645737061020036 00000000000000[T, N] -> { s1[2, t, 1, i, 1] -> [2, tb, 1, proc, t + i, t - 500tb, 0] : 4000proc >= 3000 + t + i - 1000tb and 500tb <= t and 4000proc <= 3999 - t + i and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T; s0[1, -1, c, 0, 0] -> [1, -1, c, 0, 0, 0, 0] : c >= 0 and c <= -1 + N; s0[1, b, 0, 0, 0] -> [1, b, 0, 0, 0, 0, 0] : b >= 0 and b <= -1 + T; s0[1, b, -1 + N, 0, 0] -> [1, b, -1 + N, 0, 0, 0, 0] : b >= 0 and b <= -1 + T; s6[2, -1 + T, 1, i, 1] -> [3, tb, 7, proc, -1 + T + i, -1 + T - 500tb, 0] : 500tb <= -1 + T and 500tb >= -500 + T and 4000proc >= 1 - T + i and 4000proc <= 4000 - T + i and i >= 1 and i <= -2 + N and T >= 1; s3[2, t, 1, i, 1] -> [2, tb, 3, proc, t + i, t - 500tb, 0] : 500tb <= t and 500tb >= -499 + t and 4000proc <= 2999 + t + i - 1000tb and 4000proc >= t + i - 1000tb and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T; s2[2, t, 1, i, 1] -> [2, tb, 2, proc, t + i, t - 500tb, 0] : 500tb <= t and 500tb >= -499 + t and 4000proc <= 3999 - t + i and 4000proc >= 3998 - t + i and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T; s4[2, t, 1, i, 1] -> [2, tb, 4, Out_4, t + i, t - 500tb, 0] : 500tb <= t and 500tb >= -499 + t and 4000Out_4 <= -1 - t + i and 4000Out_4 >= -2 - t + i and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T; s5[2, t, 1, i, 1] -> [2, tb, 5, proc, t + i, t - 500tb, 0] : 500tb >= -499 + t and 4000proc <= -1 + t + i - 1000tb and 4000proc >= -t + i and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T } [T, N] -> { : T >= 0 and N >= 4 } [N, T] -> { [i0, i1, i2, i3, i4, i5, i6] -> atomic[o0] : o0 <= 5; [i0, i1, i2, i3, i4, i5, i6] -> separate[o0] : o0 >= 6 } isl-0.16.1/test_inputs/codegen/omega/lu_spmd-1.in0000664000175000017500000000121012645737061016524 00000000000000[n, lb, ub] -> { s1[k, i, j] -> [k, i, 1, j, 0, 0, 0, 0] : k >= 1 and j >= k and j <= n and j <= ub and i >= k and i <= n and j >= lb; s3[k, i, lb, k, i] -> [k, i, 1, lb, -1, k, i, 0] : k >= 1 and k <= -1 + lb and lb <= n and ub >= lb and i >= k and i <= n; s0[k, i] -> [k, i, 0, 0, 0, 0, 0, 0] : k >= 1 and k >= lb and i >= 1 + k and i <= n and k <= ub; s2[k, i] -> [k, i, 0, 0, 1, 0, 0, 0] : k >= 1 and k >= lb and k <= ub and ub <= -1 + n and i >= 1 + k and i <= n } [lb, n, ub] -> { : ub <= n and lb >= 1 } [n, lb, ub] -> { [i0, i1, i2, i3, i4, i5, i6, i7] -> atomic[o0] : o0 <= 6; [i0, i1, i2, i3, i4, i5, i6, i7] -> separate[o0] : o0 >= 7 } isl-0.16.1/test_inputs/codegen/omega/olda-1.in0000664000175000017500000000050412645737061016005 00000000000000[np, morb] -> { s0[mp, mq, mi] -> [mi, mq, mp, 0] : mq >= 1 and mq <= mp and mp <= np and mi >= 1 and mi <= morb; s1[mp, mq, mi] -> [mi, mp, mq, 1] : mq >= 1 and mq <= mp and mp <= np and mi >= 1 and mi <= morb } { : } [np, morb] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/m7-0.in0000664000175000017500000000040112645737061015404 00000000000000{ s0[i, j] -> [j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : exists (e0 = [(j)/2]: 2e0 = j and i >= 1 and i <= 9 and j >= 2 and j <= 8) } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/gist-3.c0000664000175000017500000000013412645737061015651 00000000000000for (int c0 = 1; c0 < n; c0 += 4) for (int c1 = c0 + 1; c1 <= n; c1 += 6) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lu-1.in0000664000175000017500000000106112645737061015505 00000000000000[n] -> { s1[k, i, j] -> [t1, t2, j, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n); s0[k, i] -> [t1, t2, k, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and k >= 1 and i >= 1 + k and i <= n) } { : } [n] -> { [t1, t2, i2, i3, i4] -> separate[o0] : o0 >= 4; [t1, t2, i2, i3, i4] -> atomic[o0] : o0 <= 3 } isl-0.16.1/test_inputs/codegen/omega/wak4-1.in0000664000175000017500000000067312645737061015743 00000000000000[a1, a2, a3, a4, a5, b1, b2, b3, b4, b5] -> { s0[i] -> [i, 0] : i >= a1 and i >= a2 and i >= a3 and i >= a4 and i >= a5 and i <= b1 and i <= b2 and i <= b3 and i <= b4 and i <= b5; s1[i] -> [i, 1] : i >= a1 and i >= a2 and i >= a3 and i >= a4 and i >= a5 and i <= b1 and i <= b2 and i <= b3 and i <= b4 and i <= b5 } { : } [a1, a2, a3, a4, a5, b1, b2, b3, b4, b5] -> { [i0, i1] -> separate[o0] : o0 >= 0; [i0, i1] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/m9-0.c0000664000175000017500000000015612645737061015231 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/m8-1.in0000664000175000017500000000044412645737061015415 00000000000000{ s0[i, j] -> [j, i, 0] : exists (e0 = [(j)/4]: 4e0 = j and i >= 1 and i <= 9 and j >= 4 and j <= 8); s1[i, j] -> [j, i, 1] : exists (e0 = [(j)/2]: 2e0 = j and i >= 1 and i <= 9 and j >= 2 and j <= 8) } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/m4-1.in0000664000175000017500000000033612645737061015411 00000000000000{ s0[i, j] -> [j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/stride7-0.in0000664000175000017500000000033712645737061016452 00000000000000{ s0[i, j] -> [4j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/stride6-1.in0000664000175000017500000000037212645737061016451 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/2], e1 = [(In_2)/2]: 2e0 = In_1 and 2e1 = In_2 and In_1 >= 2 and In_2 >= In_1 and In_2 <= 400 and In_1 <= 100) } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m3-0.in0000664000175000017500000000027212645737061015406 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_2 >= 1 - In_1 and In_2 >= 1 and In_2 <= 10 - In_1 and In_2 <= 10 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-3.c0000664000175000017500000000011712645737061017214 00000000000000for (int c0 = 3 * floord(m, 3) + 4 * floord(m, 4); c0 <= n; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/iter1-0.c0000664000175000017500000000005512645737061015726 00000000000000for (int c0 = 2; c0 <= 9; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/floor_bound-0.c0000664000175000017500000000012012645737061017203 00000000000000for (int c0 = 4 * floord(m - 1, 12) + 4; c0 <= floord(n, 3); c0 += 4) s0(c0); isl-0.16.1/test_inputs/codegen/omega/lefur04-0.in0000664000175000017500000000121412645737061016345 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5, In_6, In_7, In_8] -> [In_1, In_2, In_3, In_4, In_5, In_6, In_7, In_8] : In_7 >= 1000In_5 and In_8 >= In_7 and In_8 <= 501 + 500In_6 and In_8 <= 1 + 2In_7 and In_7 <= 999 + 1000In_5 and In_7 <= 1000 and In_8 >= 1000In_1 - In_7 and In_8 <= 999 + 1000In_1 - In_7 and 2In_8 >= 1000In_2 + In_7 and 2In_8 <= 999 + 1000In_2 + In_7 and 3In_7 >= -1 + 1000In_3 and 3In_7 <= 998 + 1000In_3 and In_8 >= 2 + 500In_6 and In_6 >= 0 and In_8 >= 2 + 1000In_4 - 2In_7 and In_8 <= 1001 + 1000In_4 - 2In_7 } { : } { [i0, i1, i2, i3, i4, i5, i6, i7] -> atomic[o0] : o0 <= 6; [i0, i1, i2, i3, i4, i5, i6, i7] -> separate[o0] : o0 >= 7 } isl-0.16.1/test_inputs/codegen/omega/x-0.c0000664000175000017500000000103512645737061015150 00000000000000for (int c0 = 1; c0 <= 11; c0 += 1) { for (int c1 = max(1, c0 - 3); c1 <= min(c0, -c0 + 8); c1 += 1) s1(c1, c0 - c1 + 1); for (int c1 = max(1, -c0 + 9); c1 <= min(c0 - 4, -c0 + 12); c1 += 1) s0(c1, c0 + c1 - 8); for (int c1 = max(c0 - 3, -c0 + 9); c1 <= min(c0, -c0 + 12); c1 += 1) { s0(c1, c0 + c1 - 8); s1(c1, c0 - c1 + 1); } for (int c1 = max(c0 - 3, -c0 + 13); c1 <= min(8, c0); c1 += 1) s1(c1, c0 - c1 + 1); for (int c1 = max(c0 + 1, -c0 + 9); c1 <= min(8, -c0 + 12); c1 += 1) s0(c1, c0 + c1 - 8); } isl-0.16.1/test_inputs/codegen/omega/lu-0.c0000664000175000017500000000064012645737061015322 00000000000000for (int c0 = 1; c0 < n; c0 += 64) for (int c1 = c0 - 1; c1 <= n; c1 += 64) for (int c2 = c0; c2 <= n; c2 += 1) { for (int c3 = c0; c3 <= min(min(c0 + 63, c1 + 62), c2 - 1); c3 += 1) for (int c4 = max(c1, c3 + 1); c4 <= min(n, c1 + 63); c4 += 1) s1(c3, c4, c2); if (c0 + 63 >= c2) for (int c4 = max(c1, c2 + 1); c4 <= min(n, c1 + 63); c4 += 1) s0(c2, c4); } isl-0.16.1/test_inputs/codegen/omega/stride4-0.c0000664000175000017500000000005712645737061016262 00000000000000for (int c0 = 18; c0 <= 98; c0 += 5) s0(c0); isl-0.16.1/test_inputs/codegen/omega/floor_bound-2.in0000664000175000017500000000030712645737061017400 00000000000000[m, n] -> { s0[In_1] -> [In_1] : exists (e0 = [(m)/4]: 4e0 <= m and 4e0 >= -3 + m and 4e0 <= In_1 and In_1 <= n) } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/iter7-0.in0000664000175000017500000000027012645737061016117 00000000000000{ s0[In_1, In_2] -> [In_1, o1] : 2In_2 = 15 - 3In_1 and 2o1 = 15 - 3In_1 and In_1 <= 3 and In_1 >= 1 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-5.c0000664000175000017500000000007512645737061017221 00000000000000for (int c0 = 4 * floord(m, 32); c0 <= n; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/ts1d-mp-i_ts-m_b-0.c0000664000175000017500000000535312645737061017664 00000000000000{ for (int c1 = -1; c1 < T; c1 += 1) for (int c2 = 0; c2 < N; c2 += 1) { if (c1 == -1) { s0(1, -1, c2, 0, 0); } else if (c2 == 0) { s0(1, c1, 0, 0, 0); } else if (c2 + 1 == N) s0(1, c1, N - 1, 0, 0); } for (int c1 = 0; c1 <= floord(T - 1, 500); c1 += 1) { for (int c3 = -((c1 + 9) / 8) + 2; c3 <= floord(N - 500 * c1 - 3, 4000) + 1; c3 += 1) for (int c4 = max(500 * c1 + 1, 1000 * c1 + 4000 * c3 - 3999); c4 <= min(min(N + T - 3, 1000 * c1 + 4000 * c3 - 3000), 2 * N - 4000 * c3 + 3995); c4 += 1) for (int c5 = max(0, -N - 500 * c1 + c4 + 2); c5 <= min(min(T - 500 * c1 - 1, -500 * c1 + c4 - 1), -500 * c1 - 2000 * c3 + (c4 + 1) / 2 + 1999); c5 += 1) s1(2, 500 * c1 + c5, 1, -500 * c1 + c4 - c5, 1); for (int c3 = max(-((T + 4000) / 4000) + 2, -((c1 + 9) / 8) + 2); c3 <= floord(N - 500 * c1 - 3, 4000) + 1; c3 += 1) for (int c4 = max(1000 * c1 + 4000 * c3 - 3999, -4000 * c3 + 4000); c4 <= min(min(2 * T + 4000 * c3 - 4000, 1000 * c1 + 4000 * c3 - 3000), 2 * N - 4000 * c3 + 3995); c4 += 1) s2(2, -2000 * c3 + (c4 + 1) / 2 + 1999, 1, 2000 * c3 + c4 - (c4 + 1) / 2 - 1999, 1); for (int c3 = -((c1 + 7) / 8) + 1; c3 <= min(floord(N + T - 1000 * c1 - 1004, 4000) + 1, floord(N - 500 * c1 - 504, 4000) + 1); c3 += 1) for (int c4 = max(500 * c1 + 1, 1000 * c1 + 4000 * c3 - 2999); c4 <= min(min(N + T - 3, N + 500 * c1 + 497), 1000 * c1 + 4000 * c3); c4 += 1) for (int c5 = max(0, -N - 500 * c1 + c4 + 2); c5 <= min(min(499, T - 500 * c1 - 1), -500 * c1 + c4 - 1); c5 += 1) s3(2, 500 * c1 + c5, 1, -500 * c1 + c4 - c5, 1); for (int c3 = max(-((T + 4000) / 4000) + 1, -((c1 + 9) / 8) + 1); c3 <= floord(N - 500 * c1 - 3, 4000); c3 += 1) for (int c4 = max(-4000 * c3, 1000 * c1 + 4000 * c3 + 1); c4 <= min(min(2 * N - 4000 * c3 - 5, 2 * T + 4000 * c3), 1000 * c1 + 4000 * c3 + 1000); c4 += 1) s4(2, -2000 * c3 + (c4 + 1) / 2 - 1, 1, 2000 * c3 + c4 - (c4 + 1) / 2 + 1, 1); for (int c3 = -((c1 + 8) / 8) + 1; c3 <= min(floord(N + T - 1000 * c1 - 4, 4000), floord(N - 500 * c1 + 496, 4000)); c3 += 1) for (int c4 = max(1000 * c1 + 4000 * c3 + 1, -4000 * c3 + 2); c4 <= min(min(min(N + T - 3, N + 500 * c1 + 497), 2 * T + 4000 * c3 - 2), 1000 * c1 + 4000 * c3 + 998); c4 += 1) for (int c5 = max(-N - 500 * c1 + c4 + 2, -500 * c1 - 2000 * c3 + (c4 + 1) / 2); c5 <= min(min(499, T - 500 * c1 - 1), -500 * c1 + c4 - 1); c5 += 1) s5(2, 500 * c1 + c5, 1, -500 * c1 + c4 - c5, 1); } if (T >= 1) for (int c3 = -((T + 3998) / 4000) + 1; c3 <= floord(N - T - 2, 4000) + 1; c3 += 1) for (int c4 = max(T, 2 * T + 4000 * c3 - 4001); c4 < min(N + T - 2, 2 * T + 4000 * c3 - 1); c4 += 1) s6(2, T - 1, 1, -T + c4 + 1, 1); } isl-0.16.1/test_inputs/codegen/omega/gist-0.c0000664000175000017500000000013112645737061015643 00000000000000for (int c0 = 1; c0 <= n; c0 += 4) for (int c1 = c0; c1 <= n; c1 += 3) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/m11-0.in0000664000175000017500000000106512645737061015466 00000000000000[m] -> { s0[In_1, In_2, In_3, In_4, In_5, In_6, 5 - 5In_2 - 5In_3 + In_5] -> [In_1, In_2, In_3, In_4, In_5, In_6, 5 - 5In_2 - 5In_3 + In_5] : In_2 >= 1 and 2In_3 >= 1 - In_2 and In_2 <= 2 and 2In_3 <= 6 - In_2 and In_4 <= 30 and In_1 >= 1 and 2In_6 <= 18 - 17In_1 + 2In_4 and 2In_6 >= 17 - 17In_1 + 2In_4 and In_5 <= 5In_2 + 10In_3 and In_5 >= -4 + 5In_2 + 10In_3 and 2In_4 <= 17In_1 and 2In_4 >= -16 + 17In_1 and In_5 <= 1 + m - In_4 } { : } [m] -> { [i0, i1, i2, i3, i4, i5, i6] -> atomic[o0] : o0 <= 5; [i0, i1, i2, i3, i4, i5, i6] -> separate[o0] : o0 >= 6 } isl-0.16.1/test_inputs/codegen/omega/gist-5.c0000664000175000017500000000013212645737061015651 00000000000000for (int c0 = 1; c0 <= n; c0 += 12) for (int c1 = c0; c1 <= n; c1 += 8) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lift2-3.c0000664000175000017500000000127612645737061015733 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) { if (c0 >= 61) { for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else if (c0 <= 4) { for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/lift2-1.c0000664000175000017500000000103212645737061015717 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) { if (c0 >= 61) { for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else if (c0 <= 4) { for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/stride6-2.in0000664000175000017500000000037212645737061016452 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/2], e1 = [(In_2)/2]: 2e0 = In_1 and 2e1 = In_2 and In_1 >= 2 and In_2 >= In_1 and In_2 <= 400 and In_1 <= 100) } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m2-0.c0000664000175000017500000000033412645737061015220 00000000000000for (int c0 = 2; c0 <= 9; c0 += 1) { if (c0 >= 5) { s1(c0, 1); for (int c1 = 2; c1 <= 9; c1 += 1) { s1(c0, c1); s0(c0, c1); } } else for (int c1 = 2; c1 <= 9; c1 += 1) s0(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/code_gen-2.c0000664000175000017500000000062412645737061016451 00000000000000{ for (int c1 = 0; c1 <= 7; c1 += 1) s0(1, c1); for (int c0 = 2; c0 <= 6; c0 += 1) { for (int c1 = 0; c1 < c0 - 1; c1 += 1) s1(c0, c1); for (int c1 = c0 - 1; c1 <= 4; c1 += 1) { s1(c0, c1); s0(c0, c1); } for (int c1 = 5; c1 <= 7; c1 += 1) s0(c0, c1); } for (int c0 = 7; c0 <= 8; c0 += 1) for (int c1 = c0 - 1; c1 <= 7; c1 += 1) s0(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/iter7-0.c0000664000175000017500000000010112645737061015724 00000000000000for (int c0 = 1; c0 <= 3; c0 += 2) s0(c0, (-3 * c0 + 15) / 2); isl-0.16.1/test_inputs/codegen/omega/stride4-0.in0000664000175000017500000000026012645737061016442 00000000000000{ s0[In_1] -> [In_1] : exists (e0 = [(-3 + In_1)/5]: 5e0 = -3 + In_1 and In_1 >= 18 and In_1 <= 98) } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lefur00-0.c0000664000175000017500000000101112645737061016150 00000000000000for (int c0 = 0; c0 <= 15; c0 += 1) for (int c1 = max(2 * c0 - 15, c0 / 2); c1 <= min(15, c0 + 1); c1 += 1) for (int c2 = max(max(max(1, 67 * c0 - (c0 + 1) / 3), 67 * c1 - (c1 + 2) / 3), 133 * c0 - 67 * c1 + (c0 + c1 + 1) / 3 - 66); c2 <= min(min(1000, 100 * c0 + 99), 133 * c0 - 67 * c1 + (c0 + c1 + 2) / 3 + 132); c2 += 1) for (int c3 = max(max(c2, 200 * c0 - c2), 100 * c1 + (c2 + 1) / 2); c3 <= min(min(2 * c2 + 1, 200 * c0 - c2 + 199), 100 * c1 + (c2 + 1) / 2 + 99); c3 += 1) s0(c0, c1, c2, c3); isl-0.16.1/test_inputs/codegen/omega/substitution-1.in0000664000175000017500000000023412645737061017642 00000000000000{ s0[i, j] -> [2i + j, i + 2j] : i >= 0 and i <= 4 and j >= 0 and j <= 6 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m2-1.c0000664000175000017500000000035712645737061015226 00000000000000{ for (int c0 = 2; c0 <= 4; c0 += 1) for (int c1 = 2; c1 <= 9; c1 += 1) s0(c0, c1); for (int c0 = 5; c0 <= 9; c0 += 1) { s1(c0, 1); for (int c1 = 2; c1 <= 9; c1 += 1) { s1(c0, c1); s0(c0, c1); } } } isl-0.16.1/test_inputs/codegen/omega/stride3-0.c0000664000175000017500000000015012645737061016253 00000000000000for (int c0 = 3; c0 <= n; c0 += 32) for (int c1 = c0; c1 <= min(n, c0 + 31); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lift2-5.c0000664000175000017500000000144512645737061015733 00000000000000{ for (int c0 = 1; c0 <= 4; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); for (int c0 = 5; c0 <= 60; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } for (int c0 = 61; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } isl-0.16.1/test_inputs/codegen/omega/lu_ijk-1.c0000664000175000017500000000027412645737061016163 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) for (int c1 = 2; c1 <= n; c1 += 1) { for (int c3 = 1; c3 < min(c0, c1); c3 += 1) s1(c3, c1, c0); if (c1 >= c0 + 1) s0(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/lu_ijk-0.c0000664000175000017500000000027412645737061016162 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) for (int c1 = 2; c1 <= n; c1 += 1) { for (int c3 = 1; c3 < min(c0, c1); c3 += 1) s1(c3, c1, c0); if (c1 >= c0 + 1) s0(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/m1-0.c0000664000175000017500000000020012645737061015207 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c0, c1); if (c0 == 5) s1(5, c1); } isl-0.16.1/test_inputs/codegen/omega/if_then-1.c0000664000175000017500000000024212645737061016315 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (n >= 2) s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { if (n >= 2) s1(c0, c1); s2(c0, c1); } } isl-0.16.1/test_inputs/codegen/omega/lift1-2.c0000664000175000017500000000072212645737061015724 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) { if (c0 >= 61) { for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/x-1.in0000664000175000017500000000035712645737061015343 00000000000000{ s0[i, j] -> [8 - i + j, i, 0] : i >= 1 and i <= 8 and j >= 1 and j <= 4; s1[i, j] -> [-1 + i + j, i, 1] : i >= 1 and i <= 8 and j >= 1 and j <= 4 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/fc1-1.c0000664000175000017500000000072512645737061015360 00000000000000{ for (int c3 = 1; c3 <= n; c3 += 1) s2(c3); for (int c0 = 0; c0 < n - 1; c0 += 1) { for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) s0(c0 + 1, n - c3); for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) for (int c6 = c0 + 2; c6 <= n; c6 += 1) s1(c0 + 1, n - c3, c6); } for (int c0 = n - 1; c0 < 2 * n - 1; c0 += 1) { if (c0 >= n) for (int c2 = -n + c0 + 2; c2 <= n; c2 += 1) s3(c2, -n + c0 + 1); s4(-n + c0 + 2); } } isl-0.16.1/test_inputs/codegen/omega/lu_ijk-0.in0000664000175000017500000000041112645737061016337 00000000000000[n] -> { s0[k, j] -> [k, j, 1, 0] : k >= 1 and j >= 1 + k and j <= n; s1[k, j, i] -> [i, j, 0, k] : j >= 1 + k and i >= 1 + k and k >= 1 and j <= n and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/m2-0.in0000664000175000017500000000040012645737061015376 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 5 and In_1 <= 9 and In_2 >= 1 and In_2 <= 9; s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_1 <= 9 and In_2 >= 2 and In_2 <= 9 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/lu-3.c0000664000175000017500000000112512645737061015324 00000000000000for (int c0 = 1; c0 < n; c0 += 64) for (int c1 = c0 - 1; c1 <= n; c1 += 64) { for (int c2 = c0; c2 <= min(n, c0 + 63); c2 += 1) { for (int c3 = c0; c3 <= min(c1 + 62, c2 - 1); c3 += 1) for (int c4 = max(c1, c3 + 1); c4 <= min(n, c1 + 63); c4 += 1) s1(c3, c4, c2); for (int c4 = max(c1, c2 + 1); c4 <= min(n, c1 + 63); c4 += 1) s0(c2, c4); } for (int c2 = c0 + 64; c2 <= n; c2 += 1) for (int c3 = c0; c3 <= min(c0 + 63, c1 + 62); c3 += 1) for (int c4 = max(c1, c3 + 1); c4 <= min(n, c1 + 63); c4 += 1) s1(c3, c4, c2); } isl-0.16.1/test_inputs/codegen/omega/floor_bound-0.in0000664000175000017500000000027212645737061017377 00000000000000[m, n] -> { s0[In_1] -> [In_1] : exists (e0 = [(In_1)/4]: 4e0 = In_1 and 3In_1 >= m and 3In_1 <= n) } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lift2-5.in0000664000175000017500000000103412645737061016111 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 0; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/gist-4.in0000664000175000017500000000043412645737061016041 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/6], e1 = [(-2 - In_1 + 3In_2)/12]: 6e0 = -1 + In_1 and 12e1 = -2 - In_1 + 3In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m10-1.c0000664000175000017500000000053312645737061015301 00000000000000for (int c0 = 1; c0 <= 18; c0 += 1) { if (c0 >= 2 && c0 <= 9) { for (int c1 = 1; c1 <= 9; c1 += 1) { if (c0 % 2 == 0) s0(c1, c0 / 2); s1(c1, c0); } } else if (c0 == 1) { for (int c1 = 1; c1 <= 9; c1 += 1) s1(c1, 1); } else if (c0 % 2 == 0) for (int c1 = 1; c1 <= 9; c1 += 1) s0(c1, c0 / 2); } isl-0.16.1/test_inputs/codegen/omega/ge-0.c0000664000175000017500000000027412645737061015300 00000000000000for (int c0 = 2; c0 <= n; c0 += 1) for (int c1 = 1; c1 <= n; c1 += 1) { for (int c3 = 1; c3 < min(c0, c1); c3 += 1) s1(c3, c0, c1); if (c0 >= c1 + 1) s0(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/chosol-1.in0000664000175000017500000000041312645737061016354 00000000000000[n] -> { s0[i] -> [0, i, 0, 0] : i >= 2 and i <= n; s1[i, j] -> [1, j, 0, i] : j >= 1 and j <= -1 + i and i <= n; s2[i] -> [1, -1 + i, 1, 0] : i >= 2 and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/substitution-4.in0000664000175000017500000000027512645737061017652 00000000000000[n] -> { s0[i] -> [i] : exists (e0 = [(-1 - n + i)/18]: 18e0 = -1 - n + i and i <= 16 + n and i >= 1 + n) } { : } [n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lefur01-1.c0000664000175000017500000000101112645737061016152 00000000000000for (int c0 = 0; c0 <= 15; c0 += 1) for (int c1 = max(2 * c0 - 15, c0 / 2); c1 <= min(15, c0 + 1); c1 += 1) for (int c2 = max(max(max(1, 67 * c0 - (c0 + 1) / 3), 67 * c1 - (c1 + 2) / 3), 133 * c0 - 67 * c1 + (c0 + c1 + 1) / 3 - 66); c2 <= min(min(1000, 100 * c0 + 99), 133 * c0 - 67 * c1 + (c0 + c1 + 2) / 3 + 132); c2 += 1) for (int c3 = max(max(c2, 200 * c0 - c2), 100 * c1 + (c2 + 1) / 2); c3 <= min(min(2 * c2 + 1, 200 * c0 - c2 + 199), 100 * c1 + (c2 + 1) / 2 + 99); c3 += 1) s0(c0, c1, c2, c3); isl-0.16.1/test_inputs/codegen/omega/m12-0.in0000664000175000017500000000033212645737061015463 00000000000000[m, n] -> { s0[1, In_2, In_3, 0] -> [1, In_2, In_3, 0] : In_3 >= 1 and In_3 <= m and In_2 >= 1 and In_2 <= n } { : } [m, n] -> { [i0, i1, i2, i3] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/ts1d-check0-0.c0000664000175000017500000000114212645737414016710 00000000000000{ for (int c1 = 0; c1 < N; c1 += 1) s0(1, c1, 1, 0, 0); for (int c1 = 0; c1 <= floord(T - 1, 500); c1 += 1) for (int c2 = 1000 * c1; c2 <= min(N + 2 * T - 3, N + 1000 * c1 + 997); c2 += 1) { for (int c3 = max(0, -((N + c2) % 2) - N - 1000 * c1 + c2 + 2); c3 <= min(min(998, 2 * T - 1000 * c1 - 2), -1000 * c1 + c2 - 2); c3 += 2) { s1(2, 1000 * c1 + c3, 0, -1000 * c1 + c2 - c3, 1); s2(2, 1000 * c1 + c3 + 1, 0, -1000 * c1 + c2 - c3 - 1, 1); } if (2 * T >= c2 + 1 && 1000 * c1 + 999 >= c2) s1(2, ((c2 + 1) % 2) + c2 - 1, 0, -((c2 + 1) % 2) + 1, 1); } } isl-0.16.1/test_inputs/codegen/omega/x-0.in0000664000175000017500000000035712645737061015342 00000000000000{ s0[i, j] -> [8 - i + j, i, 0] : i >= 1 and i <= 8 and j >= 1 and j <= 4; s1[i, j] -> [-1 + i + j, i, 1] : i >= 1 and i <= 8 and j >= 1 and j <= 4 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/p.delft-0.c0000664000175000017500000000025112645737061016234 00000000000000if (P2 >= 0 && P2 <= 3 && P1 == P2) for (int c0 = 0; c0 <= min(2, -P2 + 4); c0 += 1) for (int c2 = (-P2 - c0 + 6) % 3; c2 <= 3; c2 += 3) s0(c0, c0, c2, c2); isl-0.16.1/test_inputs/codegen/omega/gc-0.c0000664000175000017500000000005512645737061015273 00000000000000for (int c0 = 2; c0 <= 8; c0 += 2) s0(c0); isl-0.16.1/test_inputs/codegen/omega/iter3-0.c0000664000175000017500000000013512645737061015727 00000000000000for (int c0 = 2; c0 <= 8; c0 += 1) for (int c1 = c0 + 1; c1 <= 9; c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/iter3-0.in0000664000175000017500000000024312645737061016113 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_2 >= 1 + In_1 and In_2 <= 9 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/stride7-0.c0000664000175000017500000000052112645737061016261 00000000000000for (int c0 = 1; c0 <= 36; c0 += 1) { if (c0 <= 3) { for (int c1 = 1; c1 <= 9; c1 += 1) s1(c1, c0); } else if (c0 <= 9) { for (int c1 = 1; c1 <= 9; c1 += 1) { if (c0 % 4 == 0) s0(c1, c0 / 4); s1(c1, c0); } } else if (c0 % 4 == 0) for (int c1 = 1; c1 <= 9; c1 += 1) s0(c1, c0 / 4); } isl-0.16.1/test_inputs/codegen/omega/wak1-1.c0000664000175000017500000000336412645737061015554 00000000000000{ for (int c0 = a2; c0 <= min(min(a1 - 1, a3 - 1), b2); c0 += 1) s1(c0); for (int c0 = a3; c0 <= min(min(a1 - 1, b3), a2 - 1); c0 += 1) s2(c0); for (int c0 = max(a3, a2); c0 <= min(min(a1 - 1, b3), b2); c0 += 1) { s1(c0); s2(c0); } for (int c0 = a1; c0 <= min(min(b1, a3 - 1), a2 - 1); c0 += 1) s0(c0); for (int c0 = max(a1, a2); c0 <= min(min(b1, a3 - 1), b2); c0 += 1) { s0(c0); s1(c0); } for (int c0 = max(max(a1, b1 + 1), a2); c0 <= min(a3 - 1, b2); c0 += 1) s1(c0); for (int c0 = max(a1, a3); c0 <= min(min(b1, b3), a2 - 1); c0 += 1) { s0(c0); s2(c0); } for (int c0 = max(max(a1, b1 + 1), a3); c0 <= min(b3, a2 - 1); c0 += 1) s2(c0); for (int c0 = max(max(a1, a3), a2); c0 <= min(min(b1, b3), b2); c0 += 1) { s0(c0); s1(c0); s2(c0); } for (int c0 = max(max(max(a1, b1 + 1), a3), a2); c0 <= min(b3, b2); c0 += 1) { s1(c0); s2(c0); } for (int c0 = max(max(a3, a2), b2 + 1); c0 <= min(a1 - 1, b3); c0 += 1) s2(c0); for (int c0 = max(max(a1, a2), b2 + 1); c0 <= min(b1, a3 - 1); c0 += 1) s0(c0); for (int c0 = max(max(max(a1, a3), a2), b2 + 1); c0 <= min(b1, b3); c0 += 1) { s0(c0); s2(c0); } for (int c0 = max(max(max(max(a1, b1 + 1), a3), a2), b2 + 1); c0 <= b3; c0 += 1) s2(c0); for (int c0 = max(max(a3, b3 + 1), a2); c0 <= min(a1 - 1, b2); c0 += 1) s1(c0); for (int c0 = max(max(a1, a3), b3 + 1); c0 <= min(b1, a2 - 1); c0 += 1) s0(c0); for (int c0 = max(max(max(a1, a3), b3 + 1), a2); c0 <= min(b1, b2); c0 += 1) { s0(c0); s1(c0); } for (int c0 = max(max(max(max(a1, b1 + 1), a3), b3 + 1), a2); c0 <= b2; c0 += 1) s1(c0); for (int c0 = max(max(max(max(a1, a3), b3 + 1), a2), b2 + 1); c0 <= b1; c0 += 1) s0(c0); } isl-0.16.1/test_inputs/codegen/omega/m2-1.in0000664000175000017500000000040112645737061015400 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 5 and In_1 <= 9 and In_2 >= 1 and In_2 <= 9; s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_1 <= 9 and In_2 >= 2 and In_2 <= 9 } { : } { [i0, i1] -> atomic[o0] : o0 <= -1; [i0, i1] -> separate[o0] : o0 >= 0 } isl-0.16.1/test_inputs/codegen/omega/substitution-3.in0000664000175000017500000000016312645737061017645 00000000000000[n] -> { s0[19 + n] -> [19 + n] } { : } [n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/stride5-0.c0000664000175000017500000000017012645737061016257 00000000000000for (int c0 = 2; c0 <= min(100, -2 * n + 400); c0 += 2) for (int c1 = 2 * n + c0; c1 <= 400; c1 += 2) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/iter1-0.in0000664000175000017500000000017312645737061016113 00000000000000{ s0[In_1] -> [In_1] : In_1 >= 2 and In_1 <= 9 } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lefur00-0.in0000664000175000017500000000053212645737061016343 00000000000000{ s0[In_1, In_2, In_3, In_4] -> [In_1, In_2, In_3, In_4] : In_3 >= 1 and In_4 >= In_3 and In_4 <= 1 + 2In_3 and In_3 <= 1000 and In_4 >= 200In_1 - In_3 and In_4 <= 199 + 200In_1 - In_3 and 2In_4 >= 200In_2 + In_3 and 2In_4 <= 199 + 200In_2 + In_3 } { : } { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/guard1-1.in0000664000175000017500000000025712645737061016256 00000000000000[n, m] -> { s0[n, m] -> [n, m] : exists (e0 = [(-1 - n + m)/2]: 2e0 = -1 - n + m) } { : } [n, m] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/collard-0.in0000664000175000017500000000070012645737061016503 00000000000000[n] -> { s1[i, j, k] -> [1, i, 1, n - j, k] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n; s2[i] -> [0, 0, 0, 0, i] : i >= 1 and i <= n; s4[i] -> [2, i, 0, 0, 0] : i >= 1 and i <= n; s0[i, j] -> [1, i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s3[i, j] -> [2, j, 1, i, j] : j >= 1 and j <= -1 + i and i <= n } { : } [n] -> { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 4; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 3 } isl-0.16.1/test_inputs/codegen/omega/lift2-1.in0000664000175000017500000000103312645737061016104 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 4; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 3 } isl-0.16.1/test_inputs/codegen/omega/wak2-0.in0000664000175000017500000000037012645737061015732 00000000000000[a2, b2, c2, d2, a1, b1, c1, d1] -> { s0[i, j] -> [i, j, 0] : i >= a1 and i <= b1 and j >= c1 and j <= d1; s1[i, j] -> [i, j, 1] : i >= a2 and i <= b2 and j >= c2 and j <= d2 } { : } [a1, b1, c1, d1] -> { [i0, i1, i2] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/README0000664000175000017500000000036312645737061015263 00000000000000The tests in this directory have been adapted from the corresponding omega+ test cases. The options have been derived semi-automatically and may not always correspond to the intended meaning of the specified "effort" in the omega+ test cases. isl-0.16.1/test_inputs/codegen/omega/p6-0.c0000664000175000017500000000023312645737061015225 00000000000000{ for (int c0 = 5; c0 <= 8; c0 += 1) s0(c0); for (int c0 = 10; c0 <= 16; c0 += 2) s0(c0); for (int c0 = 20; c0 <= 25; c0 += 1) s0(c0); } isl-0.16.1/test_inputs/codegen/omega/floor_bound-1.in0000664000175000017500000000022512645737061017376 00000000000000[m, n] -> { s0[In_1] -> [In_1] : 4In_1 >= -3 + m and In_1 <= n } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/m7-0.c0000664000175000017500000000020512645737061015222 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); if (c0 % 2 == 0) s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/floor_bound-6.c0000664000175000017500000000014412645737061017217 00000000000000if (m >= 8 * floord(m + 1, 8)) for (int c0 = 4 * floord(m + 1, 32); c0 <= n; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/if_then-4.in0000664000175000017500000000054512645737061016512 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-2 + In_1)/4]: 4e0 = -2 + In_1 and In_1 >= 10 and In_1 <= 98 and In_2 >= 10 and In_2 <= 100); s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/4]: 4e0 = In_1 and In_1 >= 4 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100) } { : } { [i0, i1] -> atomic[o0] : o0 <= 1; [i0, i1] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/lift1-5.c0000664000175000017500000000105412645737061015726 00000000000000{ for (int c0 = 1; c0 <= 60; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } for (int c0 = 61; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } isl-0.16.1/test_inputs/codegen/omega/iter9-0.c0000664000175000017500000000035012645737061015734 00000000000000for (int c0 = 1; c0 <= 15; c0 += 1) { if (((-exprVar1 + 15) % 8) + c0 <= 15) { s4(c0); s0(c0); s3(c0); s2(c0); s1(c0); } if (((-exprVar1 + 15) % 8) + c0 <= 15 || (exprVar1 - c0 + 1) % 8 == 0) s5(c0); } isl-0.16.1/test_inputs/codegen/omega/syr2k-0.c0000664000175000017500000000035112645737061015753 00000000000000for (int c0 = 1; c0 <= min(n, 2 * b - 1); c0 += 1) for (int c1 = max(-n + 1, -b + 1); c1 <= min(b - c0, n - c0); c1 += 1) for (int c2 = max(1, c0 + c1); c2 <= min(n, n + c1); c2 += 1) s0(-c0 - c1 + c2 + 1, -c1 + c2, c2); isl-0.16.1/test_inputs/codegen/omega/wak3-1.c0000664000175000017500000000073712645737061015557 00000000000000{ for (int c0 = a; c0 <= min(a + 9, b); c0 += 1) s0(c0); for (int c0 = a + 10; c0 <= min(a + 19, b); c0 += 1) { s0(c0); s1(c0); } for (int c0 = max(a + 10, b + 1); c0 <= min(a + 19, b + 10); c0 += 1) s1(c0); for (int c0 = a + 20; c0 <= b; c0 += 1) { s0(c0); s1(c0); s2(c0); } for (int c0 = max(a + 20, b + 1); c0 <= b + 10; c0 += 1) { s1(c0); s2(c0); } for (int c0 = max(a + 20, b + 11); c0 <= b + 20; c0 += 1) s2(c0); } isl-0.16.1/test_inputs/codegen/omega/code_gen-1.c0000664000175000017500000000055112645737061016447 00000000000000for (int c0 = 1; c0 <= 8; c0 += 1) { if (c0 >= 2) { if (c0 <= 6) for (int c1 = 0; c1 < c0 - 1; c1 += 1) s1(c0, c1); for (int c1 = c0 - 1; c1 <= 4; c1 += 1) { s1(c0, c1); s0(c0, c1); } for (int c1 = max(5, c0 - 1); c1 <= 7; c1 += 1) s0(c0, c1); } else for (int c1 = 0; c1 <= 7; c1 += 1) s0(1, c1); } isl-0.16.1/test_inputs/codegen/omega/lift1-1.in0000664000175000017500000000103312645737061016103 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 4; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 3 } isl-0.16.1/test_inputs/codegen/omega/iter8-0.c0000664000175000017500000000016612645737061015740 00000000000000for (int c0 = max(exprVar2 + 1, exprVar2 + 8 * floord(-exprVar2 + exprVar1 - 1, 8) + 9); c0 <= 16; c0 += 8) s0(c0); isl-0.16.1/test_inputs/codegen/omega/fc2-0.c0000664000175000017500000000034612645737061015357 00000000000000for (int c0 = 0; c0 < n - 1; c0 += 1) { for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) s0(c0 + 1, n - c3); for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) for (int c6 = c0 + 2; c6 <= n; c6 += 1) s1(c0 + 1, n - c3, c6); } isl-0.16.1/test_inputs/codegen/omega/lift1-1.c0000664000175000017500000000065112645737061015724 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) { if (c0 >= 61) { for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/lu_spmd-0.c0000664000175000017500000000053012645737061016343 00000000000000if (ub >= lb) for (int c0 = 1; c0 <= ub; c0 += 1) for (int c1 = c0; c1 <= n; c1 += 1) { if (c0 >= lb && c1 >= c0 + 1) { s0(c0, c1); if (n >= ub + 1) s2(c0, c1); } else if (lb >= c0 + 1) s3(c0, c1, lb, c0, c1); for (int c3 = max(lb, c0); c3 <= ub; c3 += 1) s1(c0, c1, c3); } isl-0.16.1/test_inputs/codegen/omega/stride7-1.in0000664000175000017500000000034012645737061016445 00000000000000{ s0[i, j] -> [4j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 0; [i0, i1, i2] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/stride6-0.in0000664000175000017500000000033212645737061016444 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_2)/2]: 2e0 = In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= 400 and In_1 <= 101) } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/lefur04-0.c0000664000175000017500000000236312645737414016171 00000000000000for (int c0 = 0; c0 <= 3; c0 += 1) for (int c1 = max(0, 2 * c0 - 3); c1 <= min(c0 + 1, -c0 + 6); c1 += 1) for (int c2 = c0; c2 <= min(min(3, 2 * c0 - c1 + 1), c0 + c0 / 2 + 1); c2 += 1) for (int c3 = max(max(max(0, c1 - (-c1 + 3) / 3), c0 - (-c2 + 3) / 3), c2 + floord(3 * c1 - c2 - 1, 6)); c3 <= min(3, c0 + c2 / 3 + 1); c3 += 1) for (int c5 = max(max(max(max(0, 2 * c3 - 4), c1 - (-c1 + 3) / 3), c2 - (c2 + 3) / 3), c3 - (c3 + 3) / 3); c5 <= min(min(c1 + 1, c3), -c2 + 2 * c3 - (c2 + 3) / 3 + 2); c5 += 1) for (int c6 = max(max(max(max(max(-200 * c1 + 400 * c3 - 199, 250 * c3 + 1), 1000 * c0 - 500 * c5 - 501), 667 * c0 - 333 * c1 - (c0 + c1 + 3) / 3 - 332), 333 * c1 + c1 / 3), 333 * c2 + (c2 + 1) / 3); c6 <= min(min(min(min(min(min(1000, 500 * c0 + 499), -200 * c1 + 400 * c3 + 400), 500 * c5 + 501), 1000 * c0 - 500 * c5 + 997), 333 * c2 - (-c2 + 3) / 3 + 333), 333 * c3 - (-c3 + 3) / 3 + 334); c6 += 1) for (int c7 = max(max(max(max(500 * c5 + 2, c6), 1000 * c0 - c6), 1000 * c3 - 2 * c6 + 2), 500 * c1 + (c6 + 1) / 2); c7 <= min(min(min(min(500 * c5 + 501, 2 * c6 + 1), 1000 * c0 - c6 + 999), 1000 * c3 - 2 * c6 + 1001), 500 * c1 + (c6 + 1) / 2 + 499); c7 += 1) s0(c0, c1, c2, c3, c2 / 3, c5, c6, c7); isl-0.16.1/test_inputs/codegen/omega/lu-2.in0000664000175000017500000000106112645737061015506 00000000000000[n] -> { s1[k, i, j] -> [t1, t2, j, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n); s0[k, i] -> [t1, t2, k, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and k >= 1 and i >= 1 + k and i <= n) } { : } [n] -> { [t1, t2, i2, i3, i4] -> separate[o0] : o0 >= 3; [t1, t2, i2, i3, i4] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/chosol-0.in0000664000175000017500000000041312645737061016353 00000000000000[n] -> { s0[i] -> [0, i, 0, 0] : i >= 2 and i <= n; s1[i, j] -> [1, j, 0, i] : j >= 1 and j <= -1 + i and i <= n; s2[i] -> [1, -1 + i, 1, 0] : i >= 2 and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/lift2-3.in0000664000175000017500000000103312645737061016106 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 2; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/m1-0.in0000664000175000017500000000031012645737061015375 00000000000000{ s0[i, j] -> [i, j, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[5, j] -> [5, j, 1] : j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/gist-1.in0000664000175000017500000000042012645737061016031 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/4], e1 = [(-In_1 + In_2)/8]: 4e0 = -1 + In_1 and 8e1 = -In_1 + In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/fc2-0.in0000664000175000017500000000044312645737061015541 00000000000000[n] -> { s0[i, j] -> [-1 + i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s1[i, j, k] -> [-1 + i, 1, n - i, n - j] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/substitution-0.c0000664000175000017500000000021412645737061017453 00000000000000for (int c0 = 0; c0 <= 10; c0 += 1) for (int c1 = max(2 * c0 - 4, c0); c1 <= min(2 * c0, c0 + 6); c1 += 1) s0(2 * c0 - c1, -c0 + c1); isl-0.16.1/test_inputs/codegen/omega/substitution-3.c0000664000175000017500000000001412645737061017454 00000000000000s0(n + 19); isl-0.16.1/test_inputs/codegen/omega/m8-1.c0000664000175000017500000000032112645737061015223 00000000000000for (int c0 = 2; c0 <= 8; c0 += 2) { if (c0 % 4 == 0) { for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } } else for (int c1 = 1; c1 <= 9; c1 += 1) s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/if_then-0.in0000664000175000017500000000064612645737061016510 00000000000000[n, m] -> { s2[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= n and In_2 >= 1 and In_2 <= n and m <= 1; s0[In_1, In_2] -> [In_1, In_2] : m >= 2 and m <= -1 + n and In_1 >= 1 and In_1 <= n and In_2 >= 1 and In_2 <= n; s1[In_1, In_2] -> [In_1, In_2] : In_1 <= n and In_2 <= n and m >= n and In_1 >= 1 and In_2 >= 1 and m >= 2 } { : } [n, m] -> { [i0, i1] -> atomic[o0] : o0 <= 1; [i0, i1] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/lu_spmd-0.in0000664000175000017500000000121012645737061016523 00000000000000[n, lb, ub] -> { s1[k, i, j] -> [k, i, 1, j, 0, 0, 0, 0] : k >= 1 and j >= k and j <= n and j <= ub and i >= k and i <= n and j >= lb; s3[k, i, lb, k, i] -> [k, i, 1, lb, -1, k, i, 0] : k >= 1 and k <= -1 + lb and lb <= n and ub >= lb and i >= k and i <= n; s0[k, i] -> [k, i, 0, 0, 0, 0, 0, 0] : k >= 1 and k >= lb and i >= 1 + k and i <= n and k <= ub; s2[k, i] -> [k, i, 0, 0, 1, 0, 0, 0] : k >= 1 and k >= lb and k <= ub and ub <= -1 + n and i >= 1 + k and i <= n } [lb, n, ub] -> { : ub <= n and lb >= 1 } [n, lb, ub] -> { [i0, i1, i2, i3, i4, i5, i6, i7] -> atomic[o0] : o0 <= 7; [i0, i1, i2, i3, i4, i5, i6, i7] -> separate[o0] : o0 >= 8 } isl-0.16.1/test_inputs/codegen/omega/gist-1.c0000664000175000017500000000013112645737061015644 00000000000000for (int c0 = 1; c0 <= n; c0 += 4) for (int c1 = c0; c1 <= n; c1 += 8) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/iter4-0.in0000664000175000017500000000026512645737061016120 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_2 >= 1 + In_1 and In_2 <= 2In_1 and In_1 <= 9 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/wak3-1.in0000664000175000017500000000035412645737061015736 00000000000000[a, b] -> { s2[i] -> [i, 2] : i >= 20 + a and i <= 20 + b; s0[i] -> [i, 0] : i >= a and i <= b; s1[i] -> [i, 1] : i >= 10 + a and i <= 10 + b } { : } [a, b] -> { [i0, i1] -> atomic[o0] : o0 <= -1; [i0, i1] -> separate[o0] : o0 >= 0 } isl-0.16.1/test_inputs/codegen/omega/syr2k-1.c0000664000175000017500000000031712645737061015756 00000000000000for (int c0 = 1; c0 <= min(n, 2 * b - 1); c0 += 1) for (int c1 = -b + 1; c1 <= b - c0; c1 += 1) for (int c2 = max(1, c0 + c1); c2 <= min(n, n + c1); c2 += 1) s0(-c0 - c1 + c2 + 1, -c1 + c2, c2); isl-0.16.1/test_inputs/codegen/omega/lift2-0.in0000664000175000017500000000103312645737061016103 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 5; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 4 } isl-0.16.1/test_inputs/codegen/omega/ts1d-check-sblock-0.c0000664000175000017500000000101112645737061020074 00000000000000{ for (int c1 = 0; c1 <= 1; c1 += 1) { if (c1 == 1) { s0(1, 1, 1, 0, 0); s0(1, 1, 1, N - 1, 0); } else for (int c3 = 0; c3 < N; c3 += 1) s0(1, 0, 1, c3, 0); } for (int c1 = 0; c1 <= floord(T - 1, 1000); c1 += 1) for (int c2 = 1000 * c1 + 1; c2 <= min(N + T - 3, N + 1000 * c1 + 997); c2 += 1) for (int c3 = max(0, -N - 1000 * c1 + c2 + 2); c3 <= min(min(999, T - 1000 * c1 - 1), -1000 * c1 + c2 - 1); c3 += 1) s1(2, 1000 * c1 + c3, 1, -1000 * c1 + c2 - c3, 1); } isl-0.16.1/test_inputs/codegen/omega/dagstuhl1-0.c0000664000175000017500000000007412645737061016577 00000000000000for (int c0 = 0; c0 <= 99; c0 += 1) s0(c0 % 10, c0 / 10); isl-0.16.1/test_inputs/codegen/omega/if_then-5.in0000664000175000017500000000054512645737061016513 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-2 + In_1)/4]: 4e0 = -2 + In_1 and In_1 >= 10 and In_1 <= 98 and In_2 >= 10 and In_2 <= 100); s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/4]: 4e0 = In_1 and In_1 >= 4 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100) } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m11-0.c0000664000175000017500000000076512645737061015310 00000000000000for (int c0 = 1; c0 <= min(4, floord(2 * m - 1, 17) + 1); c0 += 1) for (int c1 = 1; c1 <= 2; c1 += 1) for (int c2 = 0; c2 <= min(2, -c0 - c1 + (2 * m + 3 * c0 + 10 * c1 + 6) / 20 + 1); c2 += 1) for (int c3 = 8 * c0 + (c0 + 1) / 2 - 8; c3 <= min(min(30, m - 5 * c1 - 10 * c2 + 5), 8 * c0 + c0 / 2); c3 += 1) for (int c4 = 5 * c1 + 10 * c2 - 4; c4 <= min(5 * c1 + 10 * c2, m - c3 + 1); c4 += 1) s0(c0, c1, c2, c3, c4, -9 * c0 + c3 + c0 / 2 + 9, -5 * c1 - 5 * c2 + c4 + 5); isl-0.16.1/test_inputs/codegen/omega/substitution-4.c0000664000175000017500000000001312645737061017454 00000000000000s0(n + 1); isl-0.16.1/test_inputs/codegen/omega/m8-0.c0000664000175000017500000000020512645737061015223 00000000000000for (int c0 = 2; c0 <= 8; c0 += 2) for (int c1 = 1; c1 <= 9; c1 += 1) { if (c0 % 4 == 0) s0(c1, c0); s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/p6-0.in0000664000175000017500000000034412645737061015414 00000000000000{ s0[In_1] -> [In_1] : (In_1 >= 5 and In_1 <= 8) or (exists (e0 = [(In_1)/2]: 2e0 = In_1 and In_1 >= 10 and In_1 <= 16)) or (In_1 >= 20 and In_1 <= 25) } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lift1-0.in0000664000175000017500000000103312645737061016102 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 5; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 4 } isl-0.16.1/test_inputs/codegen/omega/p6-1.in0000664000175000017500000000027212645737061015415 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_2 >= 1 - In_1 and In_2 >= 1 and In_2 <= 10 - In_1 and In_2 <= 10 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/substitution-0.in0000664000175000017500000000023312645737061017640 00000000000000{ s0[i, j] -> [i + j, i + 2j] : i >= 0 and i <= 4 and j >= 0 and j <= 6 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/stride3-0.in0000664000175000017500000000037012645737061016443 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-3 + In_1)/32]: 32e0 = -3 + In_1 and In_2 <= 31 + In_1 and In_1 >= 3 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/ts1d-orig0-0.in0000664000175000017500000000070712645737061016763 00000000000000[T, N] -> { s1[2, In_2, 0, In_4, 1] -> [2, In_2, 0, In_4, 1] : In_4 >= 0 and In_4 <= -1 + N and In_2 >= 0 and In_2 <= -1 + T; s0[1, In_2, 1, 0, 0] -> [1, In_2, 1, 0, 0] : In_2 >= 0 and In_2 <= -1 + N; s2[2, In_2, 1, In_4, 1] -> [2, In_2, 1, In_4, 1] : In_4 >= 1 and In_4 <= -2 + N and In_2 >= 0 and In_2 <= -1 + T } [T, N] -> { : T >= 0 and N >= 4 } [N] -> { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 4; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 3 } isl-0.16.1/test_inputs/codegen/omega/lefur01-0.c0000664000175000017500000000101112645737061016151 00000000000000for (int c0 = 0; c0 <= 15; c0 += 1) for (int c1 = max(2 * c0 - 15, c0 / 2); c1 <= min(15, c0 + 1); c1 += 1) for (int c2 = max(max(max(1, 67 * c0 - (c0 + 1) / 3), 67 * c1 - (c1 + 2) / 3), 133 * c0 - 67 * c1 + (c0 + c1 + 1) / 3 - 66); c2 <= min(min(1000, 100 * c0 + 99), 133 * c0 - 67 * c1 + (c0 + c1 + 2) / 3 + 132); c2 += 1) for (int c3 = max(max(c2, 200 * c0 - c2), 100 * c1 + (c2 + 1) / 2); c3 <= min(min(2 * c2 + 1, 200 * c0 - c2 + 199), 100 * c1 + (c2 + 1) / 2 + 99); c3 += 1) s0(c0, c1, c2, c3); isl-0.16.1/test_inputs/codegen/omega/lu_ijk-2.in0000664000175000017500000000041112645737061016341 00000000000000[n] -> { s0[k, j] -> [k, j, 1, 0] : k >= 1 and j >= 1 + k and j <= n; s1[k, j, i] -> [i, j, 0, k] : j >= 1 + k and i >= 1 + k and k >= 1 and j <= n and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 0; [i0, i1, i2, i3] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/substitution-1.c0000664000175000017500000000026712645737061017464 00000000000000for (int c0 = 0; c0 <= 14; c0 += 1) for (int c1 = max(2 * c0 - 12, -c0 + 3 * ((c0 + 1) / 2)); c1 <= min(2 * c0, c0 / 2 + 9); c1 += 3) s0((2 * c0 - c1) / 3, (-c0 + 2 * c1) / 3); isl-0.16.1/test_inputs/codegen/omega/fc1-1.in0000664000175000017500000000071112645737061015537 00000000000000[n] -> { s1[i, j, k] -> [-1 + i, 1, n - i, n - j] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n; s3[i, j] -> [-1 + n + j, 0, i, j] : j >= 1 and j <= -1 + i and i <= n; s4[i] -> [-2 + n + i, 1, 0, 0] : i >= 1 and i <= n; s0[i, j] -> [-1 + i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s2[i] -> [0, 0, 0, i] : i >= 1 and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/wak2-1.c0000664000175000017500000000223712645737061015553 00000000000000{ for (int c0 = a1; c0 <= min(b1, a2 - 1); c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); if (c2 >= d2 + 1) { for (int c0 = max(a1, a2); c0 <= min(b1, b2); c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); } else for (int c0 = a2; c0 <= b2; c0 += 1) { if (a1 >= c0 + 1) { for (int c1_0 = c2; c1_0 <= d2; c1_0 += 1) s1(c0, c1_0); } else if (c0 >= b1 + 1) { for (int c1_0 = c2; c1_0 <= d2; c1_0 += 1) s1(c0, c1_0); } else { for (int c1_0 = c1; c1_0 <= min(d1, c2 - 1); c1_0 += 1) s0(c0, c1_0); for (int c1_0 = c2; c1_0 <= min(c1 - 1, d2); c1_0 += 1) s1(c0, c1_0); for (int c1_0 = max(c1, c2); c1_0 <= min(d1, d2); c1_0 += 1) { s0(c0, c1_0); s1(c0, c1_0); } for (int c1_0 = max(c1, d2 + 1); c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); for (int c1_0 = max(max(c1, d1 + 1), c2); c1_0 <= d2; c1_0 += 1) s1(c0, c1_0); } } for (int c0 = max(max(a1, a2), b2 + 1); c0 <= b1; c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); } isl-0.16.1/test_inputs/codegen/omega/m10-0.c0000664000175000017500000000023512645737061015277 00000000000000for (int c0 = 1; c0 <= 18; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { if (c0 % 2 == 0) s0(c1, c0 / 2); if (c0 <= 9) s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/gist-3.in0000664000175000017500000000043412645737061016040 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/4], e1 = [(-1 - In_1 + In_2)/6]: 4e0 = -1 + In_1 and 6e1 = -1 - In_1 + In_2 and In_1 >= 1 and In_2 >= 1 + In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/syr2k-0.in0000664000175000017500000000036312645737061016142 00000000000000[n, b] -> { s0[i, j, k] -> [1 - i + j, -j + k, k] : i >= 1 and j >= i and j <= n and k >= 1 and k <= n and k <= -1 + b + i and k >= 1 - b + j } { : } [n, b] -> { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/lift2-2.in0000664000175000017500000000103312645737061016105 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-3.in0000664000175000017500000000037212645737061017403 00000000000000[m, n] -> { s0[In_1] -> [In_1] : exists (e0 = [(m)/3], e1 = [(m)/4]: 4e1 <= m and 3e0 <= m and 4e1 >= -3 + m and 3e0 >= -2 + m and In_1 <= n and 4e1 <= In_1 - 3e0) } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/iter6-1.c0000664000175000017500000000010612645737061015731 00000000000000for (int c0 = 46; c0 <= 70; c0 += 12) s0(c0, (17 * c0 - 170) / 12); isl-0.16.1/test_inputs/codegen/omega/m4-0.c0000664000175000017500000000015612645737061015224 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/gist-4.c0000664000175000017500000000013112645737061015647 00000000000000for (int c0 = 1; c0 <= n; c0 += 6) for (int c1 = c0; c1 <= n; c1 += 4) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/m10-1.in0000664000175000017500000000034012645737061015461 00000000000000{ s0[i, j] -> [4j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [2j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/p.delft2-0.in0000664000175000017500000000250612645737061016507 00000000000000[P1, P2] -> { s0[In_1, P2, In_3, In_4, In_5, In_6] -> [In_1, P2, In_3, In_4, In_5, In_6] : (exists (e0 = [(8 + 4In_1 + 16In_3 + In_5)/9], e1 = [(12 - 4P1 + 9e0)/16], e2 = [(-2In_1 - 2In_3 + In_5)/3], e3 = [(-5P2 - 2In_4 + In_6)/9]: 3e2 = -2In_1 - 2In_3 + In_5 and 9e3 = -5P2 - 2In_4 + In_6 and P1 >= 0 and In_1 >= 1 + P1 and In_1 <= 3 and P2 >= 0 and P2 <= 3 and In_6 >= 0 and In_6 <= 3 and In_5 >= 0 and In_5 <= 3 and In_5 >= 1 - 4In_1 - 16In_3 and In_5 <= 126 - 4In_1 - 16In_3 and In_6 <= 126 - 4P2 - 16In_4 and 16e1 <= -4P1 + 9e0 and 2In_6 <= P2 + 4In_4 and 9e0 <= 3 + 4In_1 + 16In_3 + In_5 and 9e0 >= 4In_1 + 16In_3 + In_5 and 16e1 >= -3 - 4P1 + 9e0)) or (exists (e0 = [(8 + 4In_1 + 16In_3 + In_5)/9], e1 = [(12 - 4P1 + 9e0)/16], e2 = [(-2In_1 - 2In_3 + In_5)/3], e3 = [(-5P2 - 2In_4 + In_6)/9]: 3e2 = -2In_1 - 2In_3 + In_5 and 9e3 = -5P2 - 2In_4 + In_6 and In_1 >= 0 and In_1 <= -1 + P1 and P1 <= 3 and In_6 >= 0 and In_6 <= 3 and In_6 <= 1 + 2In_4 and P2 >= 0 and P2 <= 3 and In_5 >= 0 and In_5 <= 3 and In_5 >= 1 - 4In_1 - 16In_3 and In_5 <= 126 - 4In_1 - 16In_3 and In_6 <= 126 - 4P2 - 16In_4 and 16e1 <= -4P1 + 9e0 and 9e0 <= 3 + 4In_1 + 16In_3 + In_5 and 9e0 >= 4In_1 + 16In_3 + In_5 and 16e1 >= -3 - 4P1 + 9e0)) } { : } [P1, P2] -> { [i0, i1, i2, i3, i4, i5] -> atomic[o0] : o0 <= 4; [i0, i1, i2, i3, i4, i5] -> separate[o0] : o0 >= 5 } isl-0.16.1/test_inputs/codegen/omega/gc-0.in0000664000175000017500000000024412645737061015457 00000000000000{ s0[In_1] -> [In_1] : exists (e0 = [(In_1)/2]: 2e0 = In_1 and In_1 >= 2 and In_1 <= 8) } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/m7-1.in0000664000175000017500000000040112645737061015405 00000000000000{ s0[i, j] -> [j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : exists (e0 = [(j)/2]: 2e0 = j and i >= 1 and i <= 9 and j >= 2 and j <= 8) } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/chosol-0.c0000664000175000017500000000025512645737061016173 00000000000000{ for (int c1 = 2; c1 <= n; c1 += 1) s0(c1); for (int c1 = 1; c1 < n; c1 += 1) { for (int c3 = c1 + 1; c3 <= n; c3 += 1) s1(c3, c1); s2(c1 + 1); } } isl-0.16.1/test_inputs/codegen/omega/stride7-1.c0000664000175000017500000000052512645737061016266 00000000000000{ for (int c0 = 1; c0 <= 3; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) s1(c1, c0); for (int c0 = 4; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { if (c0 % 4 == 0) s0(c1, c0 / 4); s1(c1, c0); } for (int c0 = 3; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) s0(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/if_then-1.in0000664000175000017500000000053412645737061016505 00000000000000[n] -> { s0[In_1] -> [In_1,0] : In_1 >= 1 and In_1 <= 100 and n >= 2; s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and n >= 2; s2[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 } { : } [n] -> { [i0,i1] -> separate[o0] : o0 >= 2; [i0,i1] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/stride1-0.in0000664000175000017500000000024412645737061016441 00000000000000{ s0[In_1] -> [In_1] : exists (e0 = [(In_1)/3]: 3e0 = In_1 and In_1 >= 3 and In_1 <= 9) } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/lu-3.in0000664000175000017500000000106112645737061015507 00000000000000[n] -> { s1[k, i, j] -> [t1, t2, j, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n); s0[k, i] -> [t1, t2, k, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and k >= 1 and i >= 1 + k and i <= n) } { : } [n] -> { [t1, t2, i2, i3, i4] -> separate[o0] : o0 >= 2; [t1, t2, i2, i3, i4] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/wak4-1.c0000664000175000017500000000020512645737061015546 00000000000000for (int c0 = max(max(max(max(a1, a2), a3), a4), a5); c0 <= min(min(min(min(b1, b2), b3), b4), b5); c0 += 1) { s0(c0); s1(c0); } isl-0.16.1/test_inputs/codegen/omega/p6-1.c0000664000175000017500000000016712645737061015234 00000000000000for (int c0 = -9; c0 <= 9; c0 += 1) for (int c1 = max(1, -c0 + 1); c1 <= min(10, -c0 + 10); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/fc1-2.in0000664000175000017500000000071112645737061015540 00000000000000[n] -> { s1[i, j, k] -> [-1 + i, 1, n - i, n - j] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n; s3[i, j] -> [-1 + n + j, 0, i, j] : j >= 1 and j <= -1 + i and i <= n; s4[i] -> [-2 + n + i, 1, 0, 0] : i >= 1 and i <= n; s0[i, j] -> [-1 + i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s2[i] -> [0, 0, 0, i] : i >= 1 and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/basics-1.in0000664000175000017500000000027212645737061016334 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_2 >= 1 - In_1 and In_2 >= 1 and In_2 <= 10 - In_1 and In_2 <= 10 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/if_then-3.in0000664000175000017500000000053512645737061016510 00000000000000[n] -> { s0[In_1] -> [In_1,0] : In_1 >= 1 and In_1 <= 100 and n >= 2; s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and n >= 2; s2[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 } { : } [n] -> { [i0,i1] -> separate[o0] : o0 >= 0; [i0,i1] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/stride6-1.c0000664000175000017500000000013512645737061016262 00000000000000for (int c0 = 2; c0 <= 100; c0 += 2) for (int c1 = c0; c1 <= 400; c1 += 2) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/gist-0.in0000664000175000017500000000043412645737061016035 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/4], e1 = [(-3 - In_1 + 4In_2)/12]: 4e0 = -1 + In_1 and 12e1 = -3 - In_1 + 4In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/dagstuhl1-1.in0000664000175000017500000000020312645737061016756 00000000000000{s0[p,i,j] -> [p,i,j] : 0 <= i,j <= 9 && p = i+10j} { : } { [p,i,j] -> separate[o0] : o0 >= 2; [p,i,j] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/m4-1.c0000664000175000017500000000015612645737061015225 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/iter5-0.c0000664000175000017500000000015312645737061015731 00000000000000for (int c0 = 2; c0 <= 9; c0 += 1) for (int c1 = c0 + 1; c1 <= min(16, 2 * c0); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/ts1d-orig0-0.c0000664000175000017500000000036012645737061016572 00000000000000{ for (int c1 = 0; c1 < N; c1 += 1) s0(1, c1, 1, 0, 0); for (int c1 = 0; c1 < T; c1 += 1) { for (int c3 = 0; c3 < N; c3 += 1) s1(2, c1, 0, c3, 1); for (int c3 = 1; c3 < N - 1; c3 += 1) s2(2, c1, 1, c3, 1); } } isl-0.16.1/test_inputs/codegen/omega/guard1-0.in0000664000175000017500000000025712645737061016255 00000000000000[n, m] -> { s0[n, m] -> [n, m] : exists (e0 = [(-2 - n + m)/3]: 3e0 = -2 - n + m) } { : } [n, m] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/wak2-1.in0000664000175000017500000000037012645737061015733 00000000000000[a2, b2, c2, d2, a1, b1, c1, d1] -> { s0[i, j] -> [i, j, 0] : i >= a1 and i <= b1 and j >= c1 and j <= d1; s1[i, j] -> [i, j, 1] : i >= a2 and i <= b2 and j >= c2 and j <= d2 } { : } [a1, b1, c1, d1] -> { [i0, i1, i2] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/basics-1.c0000664000175000017500000000016712645737061016153 00000000000000for (int c0 = -9; c0 <= 9; c0 += 1) for (int c1 = max(1, -c0 + 1); c1 <= min(10, -c0 + 10); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/guard1-0.c0000664000175000017500000000004612645737061016065 00000000000000if ((n - m + 2) % 3 == 0) s0(n, m); isl-0.16.1/test_inputs/codegen/omega/olda-1.c0000664000175000017500000000037212645737061015624 00000000000000for (int c0 = 1; c0 <= morb; c0 += 1) for (int c1 = 1; c1 <= np; c1 += 1) { for (int c2 = 1; c2 < c1; c2 += 1) s1(c1, c2, c0); s0(c1, c1, c0); s1(c1, c1, c0); for (int c2 = c1 + 1; c2 <= np; c2 += 1) s0(c2, c1, c0); } isl-0.16.1/test_inputs/codegen/omega/lu-1.c0000664000175000017500000000064012645737061015323 00000000000000for (int c0 = 1; c0 < n; c0 += 64) for (int c1 = c0 - 1; c1 <= n; c1 += 64) for (int c2 = c0; c2 <= n; c2 += 1) { for (int c3 = c0; c3 <= min(min(c0 + 63, c1 + 62), c2 - 1); c3 += 1) for (int c4 = max(c1, c3 + 1); c4 <= min(n, c1 + 63); c4 += 1) s1(c3, c4, c2); if (c0 + 63 >= c2) for (int c4 = max(c1, c2 + 1); c4 <= min(n, c1 + 63); c4 += 1) s0(c2, c4); } isl-0.16.1/test_inputs/codegen/omega/wak3-0.c0000664000175000017500000000022712645737061015550 00000000000000for (int c0 = a; c0 <= b + 20; c0 += 1) { if (b >= c0) s0(c0); if (c0 >= a + 10 && b + 10 >= c0) s1(c0); if (c0 >= a + 20) s2(c0); } isl-0.16.1/test_inputs/codegen/omega/ts1d-check0-0.in0000664000175000017500000000116712645737061017101 00000000000000[T, N] -> { s1[2, t, 0, i, 1] -> [2, tb, t + i, t - 1000tb, 1] : exists (e0 = [(t - 1000tb)/2]: 2e0 = t - 1000tb and 1000tb <= t and 1000tb >= -999 + t and i >= 0 and i <= -1 + N and t >= 0 and t <= -2 + 2T); s0[1, In_2, 1, 0, 0] -> [1, In_2, 1, 0, 0] : In_2 >= 0 and In_2 <= -1 + N; s2[2, t, 0, i, 1] -> [2, tb, t + i, t - 1000tb, 1] : exists (e0 = [(-1 + t - 1000tb)/2]: 2e0 = -1 + t - 1000tb and 1000tb <= t and 1000tb >= -999 + t and i >= 1 and i <= -2 + N and t >= 1 and t <= -1 + 2T) } [T, N] -> { : T >= 0 and N >= 4 } [N] -> { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/lift1-4.in0000664000175000017500000000103312645737061016106 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 1; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/m9-1.c0000664000175000017500000000015612645737061015232 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/dagstuhl1-0.in0000664000175000017500000000021612645737061016761 00000000000000{ s0[i, j] -> [i + 10j] : i >= 0 and i <= 9 and j >= 0 and j <= 9 } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/iter5-0.in0000664000175000017500000000030412645737061016113 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_2 >= 1 + In_1 and In_2 <= 2In_1 and In_2 <= 16 and In_1 <= 9 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/olda-0.in0000664000175000017500000000050412645737061016004 00000000000000[np, morb] -> { s0[mp, mq, mi] -> [mi, mq, mp, 0] : mq >= 1 and mq <= mp and mp <= np and mi >= 1 and mi <= morb; s1[mp, mq, mi] -> [mi, mp, mq, 1] : mq >= 1 and mq <= mp and mp <= np and mi >= 1 and mi <= morb } { : } [np, morb] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/lift1-3.in0000664000175000017500000000103312645737061016105 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 2; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/if_then-0.c0000664000175000017500000000051012645737061016312 00000000000000if (m <= 1) { for (int c0 = 1; c0 <= n; c0 += 1) for (int c1 = 1; c1 <= n; c1 += 1) s2(c0, c1); } else if (n >= m + 1) { for (int c0 = 1; c0 <= n; c0 += 1) for (int c1 = 1; c1 <= n; c1 += 1) s0(c0, c1); } else for (int c0 = 1; c0 <= n; c0 += 1) for (int c1 = 1; c1 <= n; c1 += 1) s1(c0, c1); isl-0.16.1/test_inputs/codegen/omega/fc2-1.c0000664000175000017500000000072512645737061015361 00000000000000{ for (int c3 = 1; c3 <= n; c3 += 1) s2(c3); for (int c0 = 0; c0 < n - 1; c0 += 1) { for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) s0(c0 + 1, n - c3); for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) for (int c6 = c0 + 2; c6 <= n; c6 += 1) s1(c0 + 1, n - c3, c6); } for (int c0 = n - 1; c0 < 2 * n - 1; c0 += 1) { if (c0 >= n) for (int c2 = -n + c0 + 2; c2 <= n; c2 += 1) s3(c2, -n + c0 + 1); s4(-n + c0 + 2); } } isl-0.16.1/test_inputs/codegen/omega/gist-5.in0000664000175000017500000000043612645737061016044 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(-1 + In_1)/12], e1 = [(-2 - In_1 + 3In_2)/24]: 12e0 = -1 + In_1 and 24e1 = -2 - In_1 + 3In_2 and In_1 >= 1 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/code_gen-2.in0000664000175000017500000000037312645737061016636 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_1 <= 6 and In_2 >= 0 and In_2 <= 4; s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_2 >= -1 + In_1 and In_2 <= 7 } { : } { [i0, i1] -> atomic[o0] : o0 <= -1; [i0, i1] -> separate[o0] : o0 >= 0 } isl-0.16.1/test_inputs/codegen/omega/substitution-2.c0000664000175000017500000000006712645737061017463 00000000000000for (int c0 = -3; c0 <= 96; c0 += 1) s0(c0, c0 + 4); isl-0.16.1/test_inputs/codegen/omega/p.delft2-0.c0000664000175000017500000000106612645737414016325 00000000000000if (P1 >= 0 && P1 <= 3 && P2 >= 0 && P2 <= 3) for (int c0 = P1 - 1; c0 <= 3; c0 += 1) for (int c2 = 0; c2 <= 7; c2 += 1) for (int c3 = 0; c3 <= 7; c3 += 1) if ((5 * P2 + 2 * c3) % 9 <= 3) { if (P1 >= 1 && c0 + 1 == P1 && (5 * P1 + 2 * c2) % 9 <= 2) { s0(P1 - 1, P2, c2, c3, ((5 * P1 + 2 * c2 + 9) % 9) + 1, -4 * P2 + 2 * c3 - 9 * floord(-4 * P2 + 2 * c3, 9)); } else if (P1 == 0 && c0 == 3 && c2 % 4 == 0) s0(3, P2, c2, c3, (-c2 / 4) + 3, -4 * P2 + 2 * c3 - 9 * floord(-4 * P2 + 2 * c3, 9)); } isl-0.16.1/test_inputs/codegen/omega/if_then-2.c0000664000175000017500000000033612645737061016322 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (n >= 2) { s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { s1(c0, c1); s2(c0, c1); } } else for (int c1 = 1; c1 <= 100; c1 += 1) s2(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/fc2-1.in0000664000175000017500000000071112645737061015540 00000000000000[n] -> { s1[i, j, k] -> [-1 + i, 1, n - i, n - j] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n; s3[i, j] -> [-1 + n + j, 0, i, j] : j >= 1 and j <= -1 + i and i <= n; s4[i] -> [-2 + n + i, 1, 0, 0] : i >= 1 and i <= n; s0[i, j] -> [-1 + i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s2[i] -> [0, 0, 0, i] : i >= 1 and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/chosol-1.c0000664000175000017500000000025512645737061016174 00000000000000{ for (int c1 = 2; c1 <= n; c1 += 1) s0(c1); for (int c1 = 1; c1 < n; c1 += 1) { for (int c3 = c1 + 1; c3 <= n; c3 += 1) s1(c3, c1); s2(c1 + 1); } } isl-0.16.1/test_inputs/codegen/omega/m7-1.c0000664000175000017500000000032112645737061015222 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) { if (c0 % 2 == 0) { for (int c1 = 1; c1 <= 9; c1 += 1) { s0(c1, c0); s1(c1, c0); } } else for (int c1 = 1; c1 <= 9; c1 += 1) s0(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/wak3-0.in0000664000175000017500000000035312645737061015734 00000000000000[a, b] -> { s2[i] -> [i, 2] : i >= 20 + a and i <= 20 + b; s0[i] -> [i, 0] : i >= a and i <= b; s1[i] -> [i, 1] : i >= 10 + a and i <= 10 + b } { : } [a, b] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/lift2-2.c0000664000175000017500000000115612645737061015727 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) { if (c0 >= 61) { for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else if (c0 <= 4) { for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/olda-0.c0000664000175000017500000000032412645737061015620 00000000000000for (int c0 = 1; c0 <= morb; c0 += 1) for (int c1 = 1; c1 <= np; c1 += 1) for (int c2 = 1; c2 <= np; c2 += 1) { if (c2 >= c1) s0(c2, c1, c0); if (c1 >= c2) s1(c1, c2, c0); } isl-0.16.1/test_inputs/codegen/omega/hpf-0.in0000664000175000017500000000055012645737061015643 00000000000000[P1, P2] -> { s0[In_1, In_1, In_3, In_3] -> [In_1, In_1, In_3, In_3] : exists (e0 = [(-2P2 - 2In_1 + In_3)/3]: P1 = P2 and 3e0 = -2P2 - 2In_1 + In_3 and P2 >= 0 and P2 <= 3 and In_1 <= 4 - P2 and In_1 >= 0 and In_1 <= 2 and In_3 >= 0 and In_3 <= 3) } { : } [P2, P1] -> { [i0, i1, i2, i3] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/iter6-1.in0000664000175000017500000000030212645737061016113 00000000000000{ s0[In_1, In_2] -> [In_1, o1] : 12In_2 = -170 + 17In_1 and 12o1 = -170 + 17In_1 and In_1 >= 46 and In_1 <= 70 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/guard1-1.c0000664000175000017500000000004612645737061016066 00000000000000if ((n - m + 1) % 2 == 0) s0(n, m); isl-0.16.1/test_inputs/codegen/omega/iter2-0.c0000664000175000017500000000013412645737061015725 00000000000000for (int c0 = 1; c0 <= 10; c0 += 1) for (int c1 = 10; c1 <= 100; c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/code_gen-0.c0000664000175000017500000000025712645737061016451 00000000000000for (int c0 = 1; c0 <= 8; c0 += 1) for (int c1 = 0; c1 <= 7; c1 += 1) { if (c0 >= 2 && c0 <= 6 && c1 <= 4) s1(c0, c1); if (c1 + 1 >= c0) s0(c0, c1); } isl-0.16.1/test_inputs/codegen/omega/iter9-0.in0000664000175000017500000000215312645737061016123 00000000000000[exprVar2, exprVar1] -> { s3[In_1] -> [In_1] : exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1); s4[In_1] -> [In_1] : exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1); s1[In_1] -> [In_1] : exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1); s5[In_1] -> [In_1] : (exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1)) or (exists (e0 = [(-1 - exprVar1 + In_1)/8]: exprVar2 = 0 and 8e0 = -1 - exprVar1 + In_1 and In_1 >= 1 + exprVar1 and In_1 >= 1 and In_1 <= 15)); s0[In_1] -> [In_1] : exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1); s2[In_1] -> [In_1] : exists (e0: exprVar2 = 0 and 8e0 >= -15 + exprVar1 and exprVar1 <= 15 and In_1 >= 1 and 8e0 <= exprVar1 - In_1) } [exprVar2, exprVar1] -> { : exprVar2 = 0 and exprVar1 <= 15 } [exprVar2, exprVar1] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/if_then-4.c0000664000175000017500000000027312645737061016324 00000000000000for (int c0 = 4; c0 <= 100; c0 += 4) { for (int c1 = 1; c1 <= 100; c1 += 1) s0(c0, c1); if (c0 >= 8 && c0 <= 96) for (int c1 = 10; c1 <= 100; c1 += 1) s1(c0 + 2, c1); } isl-0.16.1/test_inputs/codegen/omega/wak2-0.c0000664000175000017500000000154412645737061015552 00000000000000{ for (int c0 = a1; c0 <= min(b1, a2 - 1); c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); if (c2 >= d2 + 1) { for (int c0 = max(a1, a2); c0 <= min(b1, b2); c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); } else for (int c0 = a2; c0 <= b2; c0 += 1) { if (c0 >= a1 && b1 >= c0) for (int c1_0 = c1; c1_0 <= min(d1, c2 - 1); c1_0 += 1) s0(c0, c1_0); for (int c1_0 = c2; c1_0 <= d2; c1_0 += 1) { if (c0 >= a1 && b1 >= c0 && c1_0 >= c1 && d1 >= c1_0) s0(c0, c1_0); s1(c0, c1_0); } if (c0 >= a1 && b1 >= c0) for (int c1_0 = max(c1, d2 + 1); c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); } for (int c0 = max(max(a1, a2), b2 + 1); c0 <= b1; c0 += 1) for (int c1_0 = c1; c1_0 <= d1; c1_0 += 1) s0(c0, c1_0); } isl-0.16.1/test_inputs/codegen/omega/lift1-4.c0000664000175000017500000000103612645737061015725 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (c0 >= 61) { for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/m8-0.in0000664000175000017500000000044412645737061015414 00000000000000{ s0[i, j] -> [j, i, 0] : exists (e0 = [(j)/4]: 4e0 = j and i >= 1 and i <= 9 and j >= 4 and j <= 8); s1[i, j] -> [j, i, 1] : exists (e0 = [(j)/2]: 2e0 = j and i >= 1 and i <= 9 and j >= 2 and j <= 8) } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-6.in0000664000175000017500000000040012645737061017376 00000000000000[m, n] -> { s0[In_1] -> [In_1] : exists (e0 = [(1 + m)/8], e1 = [(e0)/4]: 8e0 <= m and 8e0 >= -6 + m and 4e1 <= In_1 and In_1 <= n and 32e1 <= 1 + m and 32e1 >= -30 + m) } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/hpf-0.c0000664000175000017500000000025112645737061015455 00000000000000if (P2 >= 0 && P2 <= 3 && P1 == P2) for (int c0 = 0; c0 <= min(2, -P2 + 4); c0 += 1) for (int c2 = (-P2 - c0 + 6) % 3; c2 <= 3; c2 += 3) s0(c0, c0, c2, c2); isl-0.16.1/test_inputs/codegen/omega/lu_ijk-1.in0000664000175000017500000000041112645737061016340 00000000000000[n] -> { s0[k, j] -> [k, j, 1, 0] : k >= 1 and j >= 1 + k and j <= n; s1[k, j, i] -> [i, j, 0, k] : j >= 1 + k and i >= 1 + k and k >= 1 and j <= n and i <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/m9-0.in0000664000175000017500000000034012645737061015410 00000000000000{ s0[i, j] -> [2j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [2j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/basics-0.in0000664000175000017500000000034412645737061016333 00000000000000{ s0[In_1] -> [In_1] : (In_1 >= 5 and In_1 <= 8) or (exists (e0 = [(In_1)/2]: 2e0 = In_1 and In_1 >= 10 and In_1 <= 16)) or (In_1 >= 20 and In_1 <= 25) } { : } { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/syr2k-2.c0000664000175000017500000000035112645737061015755 00000000000000for (int c0 = 1; c0 <= min(n, 2 * b - 1); c0 += 1) for (int c1 = max(-n + 1, -b + 1); c1 <= min(b - c0, n - c0); c1 += 1) for (int c2 = max(1, c0 + c1); c2 <= min(n, n + c1); c2 += 1) s0(-c0 - c1 + c2 + 1, -c1 + c2, c2); isl-0.16.1/test_inputs/codegen/omega/code_gen-1.in0000664000175000017500000000037212645737061016634 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_1 <= 6 and In_2 >= 0 and In_2 <= 4; s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_2 >= -1 + In_1 and In_2 <= 7 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-5.in0000664000175000017500000000031312645737061017400 00000000000000[m, n] -> { s0[In_1] -> [In_1] : exists (e0 = [(m)/32]: 32e0 <= m and 32e0 >= -31 + m and 4e0 <= In_1 and In_1 <= n) } { : } [m, n] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/ge-0.in0000664000175000017500000000041112645737061015455 00000000000000[n] -> { s0[k, i] -> [i, k, 1, 0] : k >= 1 and i >= 1 + k and i <= n; s1[k, i, j] -> [i, j, 0, k] : i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/m9-1.in0000664000175000017500000000034012645737061015411 00000000000000{ s0[i, j] -> [2j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [2j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/m1-1.c0000664000175000017500000000043412645737061015221 00000000000000for (int c0 = 1; c0 <= 9; c0 += 1) { if (c0 >= 6) { for (int c1 = 1; c1 <= 9; c1 += 1) s0(c0, c1); } else if (c0 <= 4) { for (int c1 = 1; c1 <= 9; c1 += 1) s0(c0, c1); } else for (int c1 = 1; c1 <= 9; c1 += 1) { s0(5, c1); s1(5, c1); } } isl-0.16.1/test_inputs/codegen/omega/wak4-0.c0000664000175000017500000000020512645737061015545 00000000000000for (int c0 = max(max(max(max(a1, a2), a3), a4), a5); c0 <= min(min(min(min(b1, b2), b3), b4), b5); c0 += 1) { s0(c0); s1(c0); } isl-0.16.1/test_inputs/codegen/omega/m12-1.c0000664000175000017500000000103312645737061015277 00000000000000{ for (int c1 = 1; c1 <= n; c1 += 1) for (int c2 = 1; c2 <= m; c2 += 1) { s0(1, c1, c2, 0); s1(1, c1, c2, 0); } for (int c1 = 1; c1 <= n; c1 += 1) { s3(2, c1, 0, 0); s2(2, c1, 0, 0); } for (int c1 = 1; c1 <= m; c1 += 1) { for (int c3 = 1; c3 <= n; c3 += 1) { s5(3, c1, 1, c3); s4(3, c1, 1, c3); } for (int c3 = 1; c3 <= n; c3 += 1) { s7(3, c1, 2, c3); s6(3, c1, 2, c3); } } for (int c1 = 1; c1 <= m; c1 += 1) { s8(4, c1, 0, 0); s9(4, c1, 0, 0); } } isl-0.16.1/test_inputs/codegen/omega/lefur03-0.c0000664000175000017500000000163612645737414016172 00000000000000for (int c0 = 0; c0 <= 3; c0 += 1) for (int c1 = max(0, 2 * c0 - 3); c1 <= min(3, c0 + c0 / 2 + 1); c1 += 1) for (int c2 = c0; c2 <= min(min(3, 2 * c0 - c1 + 1), 3 * c1 + 2); c2 += 1) for (int c3 = max(max(max(0, c1 - (-c1 + 3) / 3), c0 - (-c2 + 3) / 3), c2 + floord(3 * c1 - c2 - 1, 6)); c3 <= min(3, c0 + 1); c3 += 1) for (int c4 = max(max(max(max(-200 * c1 + 400 * c3 - 199, 250 * c3 + 1), 667 * c0 - 333 * c1 - (c0 + c1 + 3) / 3 - 332), 333 * c1 + c1 / 3), 333 * c2 + (c2 + 1) / 3); c4 <= min(min(min(min(1000, 500 * c0 + 499), -200 * c1 + 400 * c3 + 400), 333 * c2 - (-c2 + 3) / 3 + 333), 333 * c3 - (-c3 + 3) / 3 + 334); c4 += 1) for (int c5 = max(max(max(c4, 1000 * c0 - c4), 1000 * c3 - 2 * c4 + 2), 500 * c1 + (c4 + 1) / 2); c5 <= min(min(min(2 * c4 + 1, 1000 * c0 - c4 + 999), 1000 * c3 - 2 * c4 + 1001), 500 * c1 + (c4 + 1) / 2 + 499); c5 += 1) s0(c0, c1, c2, c3, c4, c5); isl-0.16.1/test_inputs/codegen/omega/syr2k-1.in0000664000175000017500000000041612645737061016142 00000000000000[n, b] -> { s0[i, j, k] -> [1 - i + j, -j + k, k] : i >= 1 and j >= i and j <= n and k >= 1 and k <= n and k <= -1 + b + i and k >= 1 - b + j } [b, n] -> { : b >= 1 and n >= b } [n, b] -> { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/wak1-0.in0000664000175000017500000000031712645737061015732 00000000000000[a3, b3, a2, b2, a1, b1] -> { s2[i] -> [i, 2] : i >= a3 and i <= b3; s0[i] -> [i, 0] : i >= a1 and i <= b1; s1[i] -> [i, 1] : i >= a2 and i <= b2 } { : } [a1, b1] -> { [i0, i1] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/lift1-5.in0000664000175000017500000000103412645737061016110 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 0; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/stride1-0.c0000664000175000017500000000005512645737061016255 00000000000000for (int c0 = 3; c0 <= 9; c0 += 3) s0(c0); isl-0.16.1/test_inputs/codegen/omega/wak1-1.in0000664000175000017500000000031712645737061015733 00000000000000[a3, b3, a2, b2, a1, b1] -> { s2[i] -> [i, 2] : i >= a3 and i <= b3; s0[i] -> [i, 0] : i >= a1 and i <= b1; s1[i] -> [i, 1] : i >= a2 and i <= b2 } { : } [a1, b1] -> { [i0, i1] -> separate[o0] : o0 >= 0 } isl-0.16.1/test_inputs/codegen/omega/m4-0.in0000664000175000017500000000033612645737061015410 00000000000000{ s0[i, j] -> [j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/iter8-0.in0000664000175000017500000000075112645737061016124 00000000000000[exprVar2, exprVar3, exprVar1] -> { s0[In_1] -> [In_1] : exists (e0 = [(-1 - exprVar2 + In_1)/8]: exprVar3 = 0 and 8e0 = -1 - exprVar2 + In_1 and exprVar1 >= 1 and In_1 >= 1 + exprVar1 and In_1 <= 16 and In_1 >= 1 + exprVar2) } [exprVar3, exprVar2, exprVar1] -> { : exists (e0: exprVar3 = 0 and 8e0 >= -15 + exprVar2 and exprVar2 <= 15 and exprVar1 >= 1 and 8e0 <= exprVar2 - exprVar1) } [exprVar2, exprVar3, exprVar1] -> { [i0] -> separate[o0] : o0 >= 0; [i0] -> atomic[o0] : o0 <= -1 } isl-0.16.1/test_inputs/codegen/omega/dagstuhl1-1.c0000664000175000017500000000010012645737414016570 00000000000000for (int c0 = 0; c0 <= 99; c0 += 1) s0(c0, c0 % 10, c0 / 10); isl-0.16.1/test_inputs/codegen/omega/ge-1.in0000664000175000017500000000041112645737061015456 00000000000000[n] -> { s0[k, i] -> [i, k, 1, 0] : k >= 1 and i >= 1 + k and i <= n; s1[k, i, j] -> [i, j, 0, k] : i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/stride2-0.c0000664000175000017500000000015012645737061016252 00000000000000for (int c0 = 0; c0 <= n; c0 += 32) for (int c1 = c0; c1 <= min(n, c0 + 31); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/substitution-2.in0000664000175000017500000000020612645737061017642 00000000000000{ s0[i, 4 + i] -> [i, 4 + i] : i >= -3 and i <= 96 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/wak4-0.in0000664000175000017500000000067212645737061015741 00000000000000[a1, a2, a3, a4, a5, b1, b2, b3, b4, b5] -> { s0[i] -> [i, 0] : i >= a1 and i >= a2 and i >= a3 and i >= a4 and i >= a5 and i <= b1 and i <= b2 and i <= b3 and i <= b4 and i <= b5; s1[i] -> [i, 1] : i >= a1 and i >= a2 and i >= a3 and i >= a4 and i >= a5 and i <= b1 and i <= b2 and i <= b3 and i <= b4 and i <= b5 } { : } [a1, a2, a3, a4, a5, b1, b2, b3, b4, b5] -> { [i0, i1] -> separate[o0] : o0 >= 1; [i0, i1] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/syr2k-3.in0000664000175000017500000000041612645737061016144 00000000000000[n, b] -> { s0[i, j, k] -> [1 - i + j, -j + k, k] : i >= 1 and j >= i and j <= n and k >= 1 and k <= n and k <= -1 + b + i and k >= 1 - b + j } [b, n] -> { : b >= 1 and n >= b } [n, b] -> { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/m12-0.c0000664000175000017500000000013612645737061015301 00000000000000for (int c1 = 1; c1 <= n; c1 += 1) for (int c2 = 1; c2 <= m; c2 += 1) s0(1, c1, c2, 0); isl-0.16.1/test_inputs/codegen/omega/p.delft-0.in0000664000175000017500000000055012645737061016422 00000000000000[P2, P1] -> { s0[In_1, In_1, In_3, In_3] -> [In_1, In_1, In_3, In_3] : exists (e0 = [(-2P2 - 2In_1 + In_3)/3]: P1 = P2 and 3e0 = -2P2 - 2In_1 + In_3 and P2 >= 0 and P2 <= 3 and In_1 <= 4 - P2 and In_1 >= 0 and In_1 <= 2 and In_3 >= 0 and In_3 <= 3) } { : } [P2, P1] -> { [i0, i1, i2, i3] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-2.c0000664000175000017500000000007412645737061017215 00000000000000for (int c0 = 4 * floord(m, 4); c0 <= n; c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/iter2-0.in0000664000175000017500000000025612645737061016116 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 10 and In_2 >= 10 and In_2 <= 100 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/iter6-0.in0000664000175000017500000000025412645737061016120 00000000000000{ s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 5 and In_2 >= 12 and In_2 <= 17 } { : } { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/x-1.c0000664000175000017500000000103512645737061015151 00000000000000for (int c0 = 1; c0 <= 11; c0 += 1) { for (int c1 = max(1, c0 - 3); c1 <= min(c0, -c0 + 8); c1 += 1) s1(c1, c0 - c1 + 1); for (int c1 = max(1, -c0 + 9); c1 <= min(c0 - 4, -c0 + 12); c1 += 1) s0(c1, c0 + c1 - 8); for (int c1 = max(c0 - 3, -c0 + 9); c1 <= min(c0, -c0 + 12); c1 += 1) { s0(c1, c0 + c1 - 8); s1(c1, c0 - c1 + 1); } for (int c1 = max(c0 - 3, -c0 + 13); c1 <= min(8, c0); c1 += 1) s1(c1, c0 - c1 + 1); for (int c1 = max(c0 + 1, -c0 + 9); c1 <= min(8, -c0 + 12); c1 += 1) s0(c1, c0 + c1 - 8); } isl-0.16.1/test_inputs/codegen/omega/code_gen-0.in0000664000175000017500000000037212645737061016633 00000000000000{ s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 2 and In_1 <= 6 and In_2 >= 0 and In_2 <= 4; s0[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_2 >= -1 + In_1 and In_2 <= 7 } { : } { [i0, i1] -> atomic[o0] : o0 <= 1; [i0, i1] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/stride5-0.in0000664000175000017500000000041512645737061016445 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/2], e1 = [(In_2)/2]: 2e0 = In_1 and 2e1 = In_2 and In_1 >= 2 and In_1 <= 100 and In_2 <= 400 and In_2 >= 2n + In_1) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/m10-0.in0000664000175000017500000000034012645737061015460 00000000000000{ s0[i, j] -> [4j, i, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[i, j] -> [2j, i, 1] : i >= 1 and i <= 9 and j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/ts1d-check-sblock-0.in0000664000175000017500000000071012645737061020265 00000000000000[T, N] -> { s1[2, t, 1, i, 1] -> [2, tb, t + i, t - 1000tb, 0] : 1000tb <= t and 1000tb >= -999 + t and i >= 1 and i <= -2 + N and t >= 0 and t <= -1 + T; s0[1, 0, 1, In_4, 0] -> [1, 0, 1, In_4, 0] : In_4 >= 0 and In_4 <= -1 + N; s0[1, 1, 1, 0, 0] -> [1, 1, 1, 0, 0]; s0[1, 1, 1, -1 + N, 0] -> [1, 1, 1, -1 + N, 0] } [T, N] -> { : T >= 0 and N >= 4 } [N] -> { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/m3-0.c0000664000175000017500000000016712645737061015225 00000000000000for (int c0 = -9; c0 <= 9; c0 += 1) for (int c1 = max(1, -c0 + 1); c1 <= min(10, -c0 + 10); c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lefur01-1.in0000664000175000017500000000053212645737061016345 00000000000000{ s0[In_1, In_2, In_3, In_4] -> [In_1, In_2, In_3, In_4] : In_3 >= 1 and In_4 >= In_3 and In_4 <= 1 + 2In_3 and In_3 <= 1000 and In_4 >= 200In_1 - In_3 and In_4 <= 199 + 200In_1 - In_3 and 2In_4 >= 200In_2 + In_3 and 2In_4 <= 199 + 200In_2 + In_3 } { : } { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 1; [i0, i1, i2, i3] -> separate[o0] : o0 >= 2 } isl-0.16.1/test_inputs/codegen/omega/stride6-0.c0000664000175000017500000000016312645737061016262 00000000000000for (int c0 = 1; c0 <= 101; c0 += 1) for (int c1 = -((c0 - 1) % 2) + c0 + 1; c1 <= 400; c1 += 2) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/m12-1.in0000664000175000017500000000170412645737061015470 00000000000000[m, n] -> { s1[1, In_2, In_3, 0] -> [1, In_2, In_3, 0] : In_3 >= 1 and In_3 <= m and In_2 >= 1 and In_2 <= n; s2[2, In_2, 0, 0] -> [2, In_2, 0, 0] : In_2 >= 1 and In_2 <= n; s3[2, In_2, 0, 0] -> [2, In_2, 0, 0] : In_2 >= 1 and In_2 <= n; s8[4, In_2, 0, 0] -> [4, In_2, 0, 0] : In_2 >= 1 and In_2 <= m; s0[1, In_2, In_3, 0] -> [1, In_2, In_3, 0] : In_3 >= 1 and In_3 <= m and In_2 >= 1 and In_2 <= n; s7[3, In_2, 2, In_4] -> [3, In_2, 2, In_4] : In_4 >= 1 and In_4 <= n and In_2 >= 1 and In_2 <= m; s4[3, In_2, 1, In_4] -> [3, In_2, 1, In_4] : In_4 >= 1 and In_4 <= n and In_2 >= 1 and In_2 <= m; s6[3, In_2, 2, In_4] -> [3, In_2, 2, In_4] : In_4 >= 1 and In_4 <= n and In_2 >= 1 and In_2 <= m; s9[4, In_2, 0, 0] -> [4, In_2, 0, 0] : In_2 >= 1 and In_2 <= m; s5[3, In_2, 1, In_4] -> [3, In_2, 1, In_4] : In_4 >= 1 and In_4 <= n and In_2 >= 1 and In_2 <= m } { : } [m, n] -> { [i0, i1, i2, i3] -> separate[o0] : o0 >= 3; [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2 } isl-0.16.1/test_inputs/codegen/omega/fc1-0.c0000664000175000017500000000034612645737061015356 00000000000000for (int c0 = 0; c0 < n - 1; c0 += 1) { for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) s0(c0 + 1, n - c3); for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) for (int c6 = c0 + 2; c6 <= n; c6 += 1) s1(c0 + 1, n - c3, c6); } isl-0.16.1/test_inputs/codegen/omega/stride2-0.in0000664000175000017500000000035612645737061016446 00000000000000[n] -> { s0[In_1, In_2] -> [In_1, In_2] : exists (e0 = [(In_1)/32]: 32e0 = In_1 and In_2 <= 31 + In_1 and In_1 >= 0 and In_2 >= In_1 and In_2 <= n) } { : } [n] -> { [i0, i1] -> atomic[o0] : o0 <= 0; [i0, i1] -> separate[o0] : o0 >= 1 } isl-0.16.1/test_inputs/codegen/omega/lift2-4.in0000664000175000017500000000103312645737061016107 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 5 and In_1 <= 60 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100; s1[In_1, In_2, In_3, In_4, In_5] -> [In_1, In_2, In_3, In_4, In_5] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and In_3 >= 1 and In_3 <= 100 and In_4 >= 1 and In_4 <= 100 and In_5 >= 1 and In_5 <= 100 } { : } { [i0, i1, i2, i3, i4] -> separate[o0] : o0 >= 1; [i0, i1, i2, i3, i4] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/gist-2.c0000664000175000017500000000013312645737061015647 00000000000000for (int c0 = 1; c0 <= n; c0 += 256) for (int c1 = c0; c1 <= n; c1 += 8) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/lu_ijk-2.c0000664000175000017500000000044712645737061016166 00000000000000if (n >= 2) for (int c0 = 1; c0 <= n; c0 += 1) { for (int c1 = 2; c1 <= c0; c1 += 1) for (int c3 = 1; c3 < c1; c3 += 1) s1(c3, c1, c0); for (int c1 = c0 + 1; c1 <= n; c1 += 1) { for (int c3 = 1; c3 < c0; c3 += 1) s1(c3, c1, c0); s0(c0, c1); } } isl-0.16.1/test_inputs/codegen/omega/floor_bound-4.in0000664000175000017500000000031312645737061017377 00000000000000[n, m] -> { s0[In_1] -> [In_1] : exists (e0 = [(1 + n)/3]: In_1 >= m and 5e0 >= In_1 and 3e0 <= n and 3e0 >= -1 + n) } { : } [n, m] -> { [i0] -> atomic[o0] : o0 <= -1; [i0] -> separate[o0] : o0 >= 0 } isl-0.16.1/test_inputs/codegen/omega/m1-1.in0000664000175000017500000000031012645737061015376 00000000000000{ s0[i, j] -> [i, j, 0] : i >= 1 and i <= 9 and j >= 1 and j <= 9; s1[5, j] -> [5, j, 1] : j >= 1 and j <= 9 } { : } { [i0, i1, i2] -> separate[o0] : o0 >= 1; [i0, i1, i2] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/fc1-0.in0000664000175000017500000000044312645737061015540 00000000000000[n] -> { s0[i, j] -> [-1 + i, 0, n - i, n - j] : i >= 1 and j >= 1 + i and j <= n; s1[i, j, k] -> [-1 + i, 1, n - i, n - j] : j >= 1 + i and k >= 1 + i and i >= 1 and j <= n and k <= n } { : } [n] -> { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/lu-2.c0000664000175000017500000000064012645737061015324 00000000000000for (int c0 = 1; c0 < n; c0 += 64) for (int c1 = c0 - 1; c1 <= n; c1 += 64) for (int c2 = c0; c2 <= n; c2 += 1) { for (int c3 = c0; c3 <= min(min(c0 + 63, c1 + 62), c2 - 1); c3 += 1) for (int c4 = max(c1, c3 + 1); c4 <= min(n, c1 + 63); c4 += 1) s1(c3, c4, c2); if (c0 + 63 >= c2) for (int c4 = max(c1, c2 + 1); c4 <= min(n, c1 + 63); c4 += 1) s0(c2, c4); } isl-0.16.1/test_inputs/codegen/omega/lefur03-0.in0000664000175000017500000000100212645737061016337 00000000000000{ s0[In_1, In_2, In_3, In_4, In_5, In_6] -> [In_1, In_2, In_3, In_4, In_5, In_6] : In_6 >= In_5 and In_6 <= 1 + 2In_5 and In_5 <= 1000 and In_6 >= 1000In_1 - In_5 and In_6 <= 999 + 1000In_1 - In_5 and In_6 >= 2 + 1000In_4 - 2In_5 and In_6 <= 1001 + 1000In_4 - 2In_5 and In_4 >= 0 and 2In_6 >= 1000In_2 + In_5 and 2In_6 <= 999 + 1000In_2 + In_5 and 3In_5 >= -1 + 1000In_3 and 3In_5 <= 998 + 1000In_3 } { : } { [i0, i1, i2, i3, i4, i5] -> separate[o0] : o0 >= 5; [i0, i1, i2, i3, i4, i5] -> atomic[o0] : o0 <= 4 } isl-0.16.1/test_inputs/codegen/omega/iter4-0.c0000664000175000017500000000014212645737061015726 00000000000000for (int c0 = 2; c0 <= 9; c0 += 1) for (int c1 = c0 + 1; c1 <= 2 * c0; c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/ge-1.c0000664000175000017500000000027412645737061015301 00000000000000for (int c0 = 2; c0 <= n; c0 += 1) for (int c1 = 1; c1 <= n; c1 += 1) { for (int c3 = 1; c3 < min(c0, c1); c3 += 1) s1(c3, c0, c1); if (c0 >= c1 + 1) s0(c1, c0); } isl-0.16.1/test_inputs/codegen/omega/collard-0.c0000664000175000017500000000061212645737061016321 00000000000000{ for (int c4 = 1; c4 <= n; c4 += 1) s2(c4); for (int c1 = 1; c1 < n; c1 += 1) { for (int c4 = 0; c4 < n - c1; c4 += 1) s0(c1, n - c4); for (int c3 = 0; c3 < n - c1; c3 += 1) for (int c4 = c1 + 1; c4 <= n; c4 += 1) s1(c1, n - c3, c4); } for (int c1 = 1; c1 <= n; c1 += 1) { s4(c1); for (int c3 = c1 + 1; c3 <= n; c3 += 1) s3(c3, c1); } } isl-0.16.1/test_inputs/codegen/omega/lift1-3.c0000664000175000017500000000077112645737061015731 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) { if (c0 >= 61) { for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) s1(c0, c1, c2, c3, c4); } else for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); s0(c0, c1, c2, c3, c4); } } isl-0.16.1/test_inputs/codegen/omega/syr2k-2.in0000664000175000017500000000036312645737061016144 00000000000000[n, b] -> { s0[i, j, k] -> [1 - i + j, -j + k, k] : i >= 1 and j >= i and j <= n and k >= 1 and k <= n and k <= -1 + b + i and k >= 1 - b + j } { : } [n, b] -> { [i0, i1, i2] -> separate[o0] : o0 >= 2; [i0, i1, i2] -> atomic[o0] : o0 <= 1 } isl-0.16.1/test_inputs/codegen/omega/iter6-0.c0000664000175000017500000000013212645737061015727 00000000000000for (int c0 = 1; c0 <= 5; c0 += 1) for (int c1 = 12; c1 <= 17; c1 += 1) s0(c0, c1); isl-0.16.1/test_inputs/codegen/omega/basics-0.c0000664000175000017500000000023312645737061016144 00000000000000{ for (int c0 = 5; c0 <= 8; c0 += 1) s0(c0); for (int c0 = 10; c0 <= 16; c0 += 2) s0(c0); for (int c0 = 20; c0 <= 25; c0 += 1) s0(c0); } isl-0.16.1/test_inputs/codegen/omega/fc1-2.c0000664000175000017500000000072512645737061015361 00000000000000{ for (int c3 = 1; c3 <= n; c3 += 1) s2(c3); for (int c0 = 0; c0 < n - 1; c0 += 1) { for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) s0(c0 + 1, n - c3); for (int c3 = 0; c3 < n - c0 - 1; c3 += 1) for (int c6 = c0 + 2; c6 <= n; c6 += 1) s1(c0 + 1, n - c3, c6); } for (int c0 = n - 1; c0 < 2 * n - 1; c0 += 1) { if (c0 >= n) for (int c2 = -n + c0 + 2; c2 <= n; c2 += 1) s3(c2, -n + c0 + 1); s4(-n + c0 + 2); } } isl-0.16.1/test_inputs/codegen/omega/if_then-5.c0000664000175000017500000000027312645737061016325 00000000000000for (int c0 = 4; c0 <= 100; c0 += 4) { for (int c1 = 1; c1 <= 100; c1 += 1) s0(c0, c1); if (c0 >= 8 && c0 <= 96) for (int c1 = 10; c1 <= 100; c1 += 1) s1(c0 + 2, c1); } isl-0.16.1/test_inputs/codegen/omega/lefur01-0.in0000664000175000017500000000053212645737061016344 00000000000000{ s0[In_1, In_2, In_3, In_4] -> [In_1, In_2, In_3, In_4] : In_3 >= 1 and In_4 >= In_3 and In_4 <= 1 + 2In_3 and In_3 <= 1000 and In_4 >= 200In_1 - In_3 and In_4 <= 199 + 200In_1 - In_3 and 2In_4 >= 200In_2 + In_3 and 2In_4 <= 199 + 200In_2 + In_3 } { : } { [i0, i1, i2, i3] -> atomic[o0] : o0 <= 2; [i0, i1, i2, i3] -> separate[o0] : o0 >= 3 } isl-0.16.1/test_inputs/codegen/omega/lu_spmd-1.c0000664000175000017500000000053012645737061016344 00000000000000if (ub >= lb) for (int c0 = 1; c0 <= ub; c0 += 1) for (int c1 = c0; c1 <= n; c1 += 1) { if (c0 >= lb && c1 >= c0 + 1) { s0(c0, c1); if (n >= ub + 1) s2(c0, c1); } else if (lb >= c0 + 1) s3(c0, c1, lb, c0, c1); for (int c3 = max(lb, c0); c3 <= ub; c3 += 1) s1(c0, c1, c3); } isl-0.16.1/test_inputs/codegen/omega/lift1-0.c0000664000175000017500000000046712645737061015730 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) for (int c2 = 1; c2 <= 100; c2 += 1) for (int c3 = 1; c3 <= 100; c3 += 1) for (int c4 = 1; c4 <= 100; c4 += 1) { s1(c0, c1, c2, c3, c4); if (c0 <= 60) s0(c0, c1, c2, c3, c4); } isl-0.16.1/test_inputs/codegen/omega/if_then-2.in0000664000175000017500000000053412645737061016506 00000000000000[n] -> { s0[In_1] -> [In_1,0] : In_1 >= 1 and In_1 <= 100 and n >= 2; s1[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 and n >= 2; s2[In_1, In_2] -> [In_1, In_2] : In_1 >= 1 and In_1 <= 100 and In_2 >= 1 and In_2 <= 100 } { : } [n] -> { [i0,i1] -> separate[o0] : o0 >= 1; [i0,i1] -> atomic[o0] : o0 <= 0 } isl-0.16.1/test_inputs/codegen/omega/lu-0.in0000664000175000017500000000106112645737061015504 00000000000000[n] -> { s1[k, i, j] -> [t1, t2, j, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and i >= 1 + k and j >= 1 + k and k >= 1 and i <= n and j <= n); s0[k, i] -> [t1, t2, k, k, i] : exists (e0 = [(-1 + t1)/64], e1 = [(t2)/64]: 64e0 = -1 + t1 and 64e1 = t2 and t1 >= -63 + k and t1 <= k and t2 >= -63 + i and t2 <= i and k >= 1 and i >= 1 + k and i <= n) } { : } [n] -> { [t1, t2, i2, i3, i4] -> separate[o0] : o0 >= 5; [t1, t2, i2, i3, i4] -> atomic[o0] : o0 <= 4 } isl-0.16.1/test_inputs/codegen/omega/floor_bound-4.c0000664000175000017500000000014312645737061017214 00000000000000if (n >= 3 * floord(n + 1, 3)) for (int c0 = m; c0 <= 5 * floord(n + 1, 3); c0 += 1) s0(c0); isl-0.16.1/test_inputs/codegen/omega/syr2k-3.c0000664000175000017500000000031712645737061015760 00000000000000for (int c0 = 1; c0 <= min(n, 2 * b - 1); c0 += 1) for (int c1 = -b + 1; c1 <= b - c0; c1 += 1) for (int c2 = max(1, c0 + c1); c2 <= min(n, n + c1); c2 += 1) s0(-c0 - c1 + c2 + 1, -c1 + c2, c2); isl-0.16.1/test_inputs/codegen/shift.in0000664000175000017500000000010612645737061014753 00000000000000{ A[i] -> [2i]: 0 <= i < 10; B[i] -> [2i+1] : 0 <= i < 10 } { : } { } isl-0.16.1/test_inputs/codegen/isolate7.st0000664000175000017500000000231012645737061015404 00000000000000# Check that no expressions of the form ((-n + 2147483648) % 32) are produced. domain: "[n] -> { S_2[i] : i >= 0 and i <= -1 + n; S_1[i, j] : j >= 0 and j <= -1 + n and i >= 0 and i <= -1 + n }" child: context: "[n] -> { [] : n <= 2147483647 and n >= 0 }" child: schedule: "[n] -> [{ S_1[i, j] -> [(32*floor((i)/32))]; S_2[i] -> [(32*floor((i)/32))] }, { S_1[i, j] -> [(32*floor((j)/32))]; S_2[i] -> [(32*floor((n)/32))] }]" permutable: 1 options: "[n] -> { atomic[i0] : i0 >= 0 and i0 <= 1; isolate[[] -> [i0, i1]] : (exists (e0 = floor((i0)/32), e1 = floor((i1)/32): 32e0 = i0 and 32e1 = i1 and i0 >= 0 and i0 <= -32 + n and i1 >= 0 and i1 <= n)) or (exists (e0 = floor((i0)/32), e1 = floor((i1)/32): 32e0 = i0 and 32e1 = i1 and i0 >= 0 and i0 <= -32 + n and i1 >= -31 + n and i1 <= -31 + 2n)) }" child: schedule: "[n] -> [{ S_1[i, j] -> [(i - 32*floor((i)/32))]; S_2[i] -> [(i - 32*floor((i)/32))] }, { S_1[i, j] -> [(j - 32*floor((j)/32))]; S_2[i] -> [(n - 32*floor((n)/32))] }]" permutable: 1 options: "{ separate[i0] : i0 >= 0 and i0 <= 1 }" child: sequence: - filter: "[n] -> { S_1[i, j] }" - filter: "[n] -> { S_2[i] }" isl-0.16.1/test_inputs/codegen/separation_class.in0000664000175000017500000000037012645737061017173 00000000000000{ A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and i + j <= 100 } { : } { [a,b,c,d] -> separation_class[[0]->[0]] : exists b': 0 <= 10a,10b' and 10a+9+10b'+9 <= 100; [a,b,c,d] -> separation_class[[1]->[0]] : 0 <= 10a,10b and 10a+9+10b+9 <= 100 } isl-0.16.1/test_inputs/codegen/atomic.st0000664000175000017500000000020612645737061015133 00000000000000domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }" child: schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]" options: "{ atomic[x] }" isl-0.16.1/test_inputs/codegen/hoist.in0000664000175000017500000000103112645737061014762 00000000000000# check that the shared conditions ni >= t0 + 1 and nj >= t1 + 1 # are hoisted out of the loop [ni, nj, nk, t0, t1] -> { S_1[i, j, k] -> [t0, t1, k, i, j] : exists (e0 = [(-t0 + i)/16], e1 = [(-t1 + j)/16]: 16e0 = -t0 + i and 16e1 = -t1 + j and k >= 0 and j >= 0 and j <= -1 + nj and i >= 0 and i <= -1 + ni and k <= -1 + nk and ni >= 1 and nj >= 1 and nk >= 1 and j <= 63 and t1 >= 0 and i <= 63 and k <= 15 and t0 >= 0 and t1 <= 15 and t0 <= 15) } [t0, t1] -> { : 0 <= t0, t1 <= 15 } { [t0, t1, i5, i6, i7] -> unroll[x] : x >= 3} isl-0.16.1/test_inputs/codegen/unroll7.in0000664000175000017500000000034712645737061015247 00000000000000# Check that some code is generated. # Older versions of isl would abort on unknown divs. { S[i,j] -> [i,j]: exists (alpha, beta: j=i+4alpha +3beta and 0 <= alpha < 24 and 0 <= beta and 0 <= i,j < 5) } { : } { [i,j] -> unroll[x] } isl-0.16.1/test_inputs/codegen/mod.in0000664000175000017500000000021312645737061014414 00000000000000# check that modulo constraint is generated correctly [n, m] -> { A[] -> [] : 2 * (n % 100) = 3 * (m % 200) } [n, m] -> { : m, n >= 0 } {} isl-0.16.1/test_inputs/codegen/filter.c0000664000175000017500000000031712645737061014743 00000000000000if (n >= m + 1) { for (int c0 = 0; c0 < n; c0 += 1) for (int c2 = 0; c2 < n; c2 += 1) A(c0, c2); } else for (int c0 = 0; c0 < n; c0 += 1) for (int c2 = 0; c2 < n; c2 += 1) A(c0, c2); isl-0.16.1/test_inputs/codegen/separation_class3.c0000664000175000017500000000165612645737061017102 00000000000000for (int c0 = 0; c0 <= 4; c0 += 1) { if (c0 == 0) { S_0(0, 4); } else { S_0(2 * c0 - 1, 1); if (c0 == 4) { for (int c6 = 3; c6 <= 5; c6 += 1) S_0(7, c6); } else for (int c4 = 2 * c0 - 1; c4 <= 2 * c0; c4 += 1) for (int c6 = -2 * c0 + c4 + 4; c6 <= 2 * c0 - c4 + 4; c6 += 1) S_0(c4, c6); } for (int c4 = max(0, 2 * c0 - 1); c4 <= min(7, 2 * c0); c4 += 1) for (int c6 = -2 * c0 + c4 + 8; c6 <= 8; c6 += 1) S_0(c4, c6); if (c0 >= 1 && c0 <= 3) { for (int c2 = 0; c2 <= 1; c2 += 1) for (int c4 = 2 * c0 - 1; c4 <= 2 * c0; c4 += 1) for (int c6 = 2 * c0 + 4 * c2 - c4 + 1; c6 <= -2 * c0 + 4 * c2 + c4 + 3; c6 += 1) S_0(c4, c6); } else if (c0 == 4) { for (int c2 = 0; c2 <= 1; c2 += 1) S_0(7, 4 * c2 + 2); } else for (int c2 = 0; c2 <= 1; c2 += 1) for (int c6 = 4 * c2 + 1; c6 <= 4 * c2 + 3; c6 += 1) S_0(0, c6); } isl-0.16.1/test_inputs/codegen/isolate1.st0000664000175000017500000000030412645737061015377 00000000000000# Check that the isolate option is adjusted by schedule space scaling domain: "{ A[i] : 0 <= i < 100 }" child: schedule: "[{ A[i] -> [3i] }]" options: "{ isolate[[] -> [x]] : 10 <= x <= 20 }" isl-0.16.1/test_inputs/codegen/hoist2.c0000664000175000017500000000022512645737061014664 00000000000000for (int c0 = 1; c0 <= 5; c0 += 1) for (int c1 = t1 - 64 * b + 64; c1 <= min(70, -((c0 - 1) % 2) - c0 + 73); c1 += 64) A(c0, 64 * b + c1 - 8); isl-0.16.1/test_inputs/codegen/single_valued.c0000664000175000017500000000011312645737061016271 00000000000000if (2 * ((t1 - 1) % 64) + 8 >= t1) S(-(2 * ((t1 - 1) % 64)) + t1 + 126); isl-0.16.1/test_inputs/codegen/component1.st0000664000175000017500000000024112645737061015741 00000000000000domain: "{ A[]; B[i] : 0 <= i < 10 }" child: schedule: "[{ A[] -> [0]; B[i] -> [i] }]" child: sequence: - filter: "{ A[] }" - filter: "{ B[i] }" isl-0.16.1/test_inputs/codegen/lu.c0000664000175000017500000000140312645737061014073 00000000000000for (int c0 = 0; c0 < n - 1; c0 += 32) for (int c1 = c0; c1 < n; c1 += 32) for (int c2 = c0; c2 < n; c2 += 32) { if (c1 >= c0 + 32) { for (int c3 = c0; c3 <= min(c0 + 31, c2 + 30); c3 += 1) for (int c4 = c1; c4 <= min(n - 1, c1 + 31); c4 += 1) for (int c5 = max(c2, c3 + 1); c5 <= min(n - 1, c2 + 31); c5 += 1) S_6(c3, c4, c5); } else for (int c3 = c0; c3 <= min(min(n - 2, c0 + 31), c2 + 30); c3 += 1) { for (int c5 = max(c2, c3 + 1); c5 <= min(n - 1, c2 + 31); c5 += 1) S_2(c3, c5); for (int c4 = c3 + 1; c4 <= min(n - 1, c0 + 31); c4 += 1) for (int c5 = max(c2, c3 + 1); c5 <= min(n - 1, c2 + 31); c5 += 1) S_6(c3, c4, c5); } } isl-0.16.1/test_inputs/codegen/pldi2012/0000775000175000017500000000000012645737414014630 500000000000000isl-0.16.1/test_inputs/codegen/pldi2012/figure8_a.in0000664000175000017500000000022212645737061016743 00000000000000[n] -> { s0[i,j] -> [i,j] : exists alpha, beta: 1 <= i <= n and i <= j <= n and i = 1 + 4 alpha and j = i + 3 beta} [n] -> { : } [n] -> {} isl-0.16.1/test_inputs/codegen/pldi2012/figure8_a.c0000664000175000017500000000013112645737061016556 00000000000000for (int c0 = 1; c0 <= n; c0 += 4) for (int c1 = c0; c1 <= n; c1 += 3) s0(c0, c1); isl-0.16.1/test_inputs/codegen/pldi2012/figure7_c.in0000664000175000017500000000030212645737061016743 00000000000000[n] -> { s0[i] -> [i,0] : 1 <= i <= 100 and n > 1; s1[i,j] -> [i,j] : 1 <= i,j <= 100 and n > 1; s2[i,j] -> [i,j] : 1 <= i,j <= 100 } [n] -> { : } [n] -> { [i,j] -> separate[x] : x >= 1 } isl-0.16.1/test_inputs/codegen/pldi2012/README0000664000175000017500000000012512645737061015424 00000000000000These examples are taken from the "Polyhedra Scanning Revisited" paper by Chun Chen. isl-0.16.1/test_inputs/codegen/pldi2012/figure8_b.c0000664000175000017500000000020412645737414016562 00000000000000{ for (int c0 = 2; c0 < n - 1; c0 += 4) { s1(c0); s0(c0 + 2); } if (n >= 1 && n % 4 >= 2) s1(-(n % 4) + n + 2); } isl-0.16.1/test_inputs/codegen/pldi2012/figure7_c.c0000664000175000017500000000033612645737061016566 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (n >= 2) { s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { s1(c0, c1); s2(c0, c1); } } else for (int c1 = 1; c1 <= 100; c1 += 1) s2(c0, c1); } isl-0.16.1/test_inputs/codegen/pldi2012/figure7_b.in0000664000175000017500000000030212645737061016742 00000000000000[n] -> { s0[i] -> [i,0] : 1 <= i <= 100 and n > 1; s1[i,j] -> [i,j] : 1 <= i,j <= 100 and n > 1; s2[i,j] -> [i,j] : 1 <= i,j <= 100 } [n] -> { : } [n] -> { [i,j] -> separate[x] : x >= 2 } isl-0.16.1/test_inputs/codegen/pldi2012/figure8_b.in0000664000175000017500000000023412645737061016747 00000000000000[n] -> { s0[i] -> [i] : exists alpha: 1 <= i <= n and i = 4 alpha; s1[i] -> [i] : exists alpha: 1 <= i <= n and i = 4 alpha + 2 } [n] -> { : } [n] -> { } isl-0.16.1/test_inputs/codegen/pldi2012/figure7_d.in0000664000175000017500000000030212645737061016744 00000000000000[n] -> { s0[i] -> [i,0] : 1 <= i <= 100 and n > 1; s1[i,j] -> [i,j] : 1 <= i,j <= 100 and n > 1; s2[i,j] -> [i,j] : 1 <= i,j <= 100 } [n] -> { : } [n] -> { [i,j] -> separate[x] : x >= 0 } isl-0.16.1/test_inputs/codegen/pldi2012/figure7_d.c0000664000175000017500000000040512645737061016564 00000000000000if (n >= 2) { for (int c0 = 1; c0 <= 100; c0 += 1) { s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { s1(c0, c1); s2(c0, c1); } } } else for (int c0 = 1; c0 <= 100; c0 += 1) for (int c1 = 1; c1 <= 100; c1 += 1) s2(c0, c1); isl-0.16.1/test_inputs/codegen/pldi2012/figure7_b.c0000664000175000017500000000024212645737061016561 00000000000000for (int c0 = 1; c0 <= 100; c0 += 1) { if (n >= 2) s0(c0); for (int c1 = 1; c1 <= 100; c1 += 1) { if (n >= 2) s1(c0, c1); s2(c0, c1); } } isl-0.16.1/test_inputs/codegen/separation_class.c0000664000175000017500000000131112645737061017003 00000000000000{ for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) for (int c3 = 10 * c1; c3 <= 10 * c1 + 9; c3 += 1) A(c2, c3); for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } isl-0.16.1/test_inputs/codegen/stride7.c0000664000175000017500000000024312645737061015035 00000000000000for (int c0 = 2; c0 <= 200; c0 += 64) { for (int c2 = c0 - 1; c2 <= 120; c2 += 1) s2(c0, c2); for (int c2 = 122; c2 <= c0 + 62; c2 += 1) s4(c0, c2); } isl-0.16.1/test_inputs/codegen/isolate6.st0000664000175000017500000000046412645737061015413 00000000000000# Example from the manual domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }" child: schedule: "[{ A[i,j] -> [floor(i/10)] }, \ { A[i,j] -> [floor(j/10)] }, \ { A[i,j] -> [i] }, { A[i,j] -> [j] }]" options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \ 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }" isl-0.16.1/test_inputs/codegen/component1.c0000664000175000017500000000007312645737061015540 00000000000000{ A(); for (int c0 = 0; c0 <= 9; c0 += 1) B(c0); } isl-0.16.1/test_inputs/codegen/atomic2.in0000664000175000017500000000050012645737061015172 00000000000000# Check that isl properly handles atomic domains that are unions. [nn, b0] -> { A[a] -> [a, 0, b0] : exists (e0 = [(b0 - a)/32768]: 32768e0 = b0 - a and a >= 1 and b0 >= 0 and b0 <= 32767 and a <= 65534) } [nn, b0] -> { : b0 >= 0 and b0 <= 32767 } [nn, b0] -> { [a, b, c] -> atomic[2] : c >= 1; [a, 0, c] -> atomic[2] } isl-0.16.1/test_inputs/codegen/atomic.in0000664000175000017500000000012612645737061015114 00000000000000{ a[i] -> [i] : 0 <= i < 10; b[i] -> [i+1] : 0 <= i < 10 } { : } { [i] -> atomic[x] } isl-0.16.1/test_inputs/codegen/unroll3.in0000664000175000017500000000074312645737061015243 00000000000000# Check that the entire schedule is completely unrolled and # in particular that no spurious loop is introduced. [t1] -> { write_shared_A[i2] -> [1, 3, 6 + i2, 0, t1] : (exists (e0 = [(-6 + t1 - i2)/128]: 128e0 = -6 + t1 - i2 and i2 <= 122 and i2 >= 1 and t1 >= 0 and t1 <= 127)) or (exists (e0 = [(-6 + t1 - i2)/128]: 128e0 = -6 + t1 - i2 and i2 >= 123 and i2 <= 124 and t1 <= 127 and t1 >= 0 )) } [t1] -> { : t1 >= 0 and t1 <= 127 } [t1] -> { [i0, i1, i2, i3, i4] -> unroll[o0] } isl-0.16.1/test_inputs/codegen/component2.c0000664000175000017500000000011012645737061015531 00000000000000for (int c0 = 0; c0 <= 9; c0 += 1) { B(c0); if (c0 == 0) A(); } isl-0.16.1/test_inputs/codegen/separation_class2.c0000664000175000017500000000100612645737414017070 00000000000000{ for (int c0 = 0; c0 < -(n % 8) + n; c0 += 8) { for (int c1 = 0; c1 < -(n % 8) + n; c1 += 8) for (int c2 = 0; c2 <= 7; c2 += 1) for (int c3 = 0; c3 <= 7; c3 += 1) A(c0 + c2, c1 + c3); for (int c2 = 0; c2 <= 7; c2 += 1) for (int c3 = 0; c3 < n % 8; c3 += 1) A(c0 + c2, -(n % 8) + n + c3); } for (int c1 = 0; c1 < n; c1 += 8) for (int c2 = 0; c2 < n % 8; c2 += 1) for (int c3 = 0; c3 <= min(7, n - c1 - 1); c3 += 1) A(-(n % 8) + n + c2, c1 + c3); } isl-0.16.1/test_inputs/codegen/isolate1.c0000664000175000017500000000022512645737061015175 00000000000000{ for (int c0 = 0; c0 <= 3; c0 += 1) A(c0); for (int c0 = 4; c0 <= 6; c0 += 1) A(c0); for (int c0 = 7; c0 <= 99; c0 += 1) A(c0); } isl-0.16.1/test_inputs/codegen/component3.st0000664000175000017500000000023412645737061015745 00000000000000domain: "{ A[]; B[i] : 0 <= i < 10 }" child: schedule: "[{ A[] -> [0]; B[i] -> [i] }]" child: set: - filter: "{ B[i] }" - filter: "{ A[] }" isl-0.16.1/test_inputs/codegen/empty.in0000664000175000017500000000035012645737061014775 00000000000000# Earlier versions of isl would end up with an empty partial # executed relation and fail to detect this emptiness. [M] -> { S0[i] -> [i, -M] : 0 <= i <= 10; S1[i] -> [i, 0] : 0 <= i <= 10; S2[] -> [5, 0] } [M] -> { : M >= 1 } { } isl-0.16.1/test_inputs/codegen/gemm.st0000664000175000017500000000117112645737061014606 00000000000000domain: "[ni, nj, nk] -> { S_4[i, j, k] : k <= -1 + nk and k >= 0 and j <= -1 + nj and j >= 0 and i <= -1 + ni and i >= 0; S_2[i, j] : j <= -1 + nj and j >= 0 and i <= -1 + ni and i >= 0 }" child: set: - filter: "[ni, nj, nk] -> { S_4[i, j, k]; S_2[i, j] }" child: schedule: "[ni, nj, nk] -> [{ S_4[i, j, k] -> [(i)]; S_2[i, j] -> [(i)] }, { S_4[i, j, k] -> [(j)]; S_2[i, j] -> [(j)] }, { S_4[i, j, k] -> [(k)]; S_2[i, j] -> [(0)] }]" permutable: 1 coincident: [ 1, 1, 0 ] child: sequence: - filter: "[ni, nj, nk] -> { S_2[i, j] }" - filter: "[ni, nj, nk] -> { S_4[i, j, k] }" isl-0.16.1/test_inputs/codegen/gemm.c0000664000175000017500000000023512645737061014402 00000000000000for (int c0 = 0; c0 < ni; c0 += 1) for (int c1 = 0; c1 < nj; c1 += 1) { S_2(c0, c1); for (int c2 = 0; c2 < nk; c2 += 1) S_4(c0, c1, c2); } isl-0.16.1/test_inputs/codegen/atomic3.c0000664000175000017500000000017712645737061015021 00000000000000for (int c0 = 0; c0 <= 64; c0 += 1) { if (c0 >= 63) { sync(); } else if (c0 >= 1) { sync(); } else sync(); } isl-0.16.1/test_inputs/codegen/isolate4.c0000664000175000017500000000020112645737061015172 00000000000000{ A(0); A(1); A(2); A(3); A(4); for (int c0 = 5; c0 <= 15; c0 += 1) A(c0); A(16); A(17); A(18); A(19); } isl-0.16.1/test_inputs/codegen/isolate7.c0000664000175000017500000000144412645737414015211 00000000000000{ for (int c0 = 0; c0 < n - 31; c0 += 32) for (int c1 = 0; c1 <= n; c1 += 32) { if (n >= c1 + 32) { for (int c2 = 0; c2 <= 31; c2 += 1) for (int c3 = 0; c3 <= 31; c3 += 1) S_1(c0 + c2, c1 + c3); } else for (int c2 = 0; c2 <= 31; c2 += 1) { for (int c3 = 0; c3 < n - c1; c3 += 1) S_1(c0 + c2, c1 + c3); S_2(c0 + c2); } } for (int c1 = 0; c1 < n; c1 += 32) { if (n >= c1 + 32) { for (int c2 = 0; c2 < (n + 32) % 32; c2 += 1) for (int c3 = 0; c3 <= 31; c3 += 1) S_1(-((n + 32) % 32) + n + c2, c1 + c3); } else for (int c2 = 0; c2 < n - c1; c2 += 1) { for (int c3 = 0; c3 < n - c1; c3 += 1) S_1(c1 + c2, c1 + c3); S_2(c1 + c2); } } } isl-0.16.1/test_inputs/codegen/dwt.c0000664000175000017500000000023412645737061014252 00000000000000for (int c0 = 0; c0 < Ncl; c0 += 1) { if (Ncl >= c0 + 2 && c0 >= 1) { S(c0, 28); } else if (c0 == 0) { S(0, 26); } else S(Ncl - 1, 27); } isl-0.16.1/test_inputs/codegen/redundant.c0000664000175000017500000000152512645737414015446 00000000000000for (int c0 = 0; c0 <= 2; c0 += 1) { if (b0 <= 1) { for (int c1 = 0; c1 <= 1; c1 += 1) { if (b0 == 1 && 4 * c0 + c1 >= 1) for (int c2 = 1; c2 <= 2; c2 += 1) for (int c3 = 1; c3 <= 14; c3 += 1) write(c0, c1, c2 + 3, c3); for (int c2 = max(max(3, -8 * b0 + 6), 8 * c0 - 12); c2 <= min(7, 8 * c0 + 6); c2 += 1) if (4 * c0 + c1 >= 2 * floord(2 * c1 + c2 - 5, 4) + 1 && 2 * ((2 * c1 + c2 - 1) / 4) + 7 >= 4 * c0 + c1 && 2 * c1 + c2 >= 4 * ((2 * c1 + c2 - 1) / 4) + 2 && ((-2 * c1 - c2 + 8) % 4) + 2 * c2 <= 14) for (int c3 = 1; c3 <= 14; c3 += 1) write(c0, c1, 8 * b0 + c2 - 5, c3); } } else for (int c1 = max(0, -4 * c0 + 1); c1 <= 1; c1 += 1) for (int c2 = 1; c2 <= 2; c2 += 1) for (int c3 = 1; c3 <= 14; c3 += 1) write(c0, c1, c2 + 11, c3); } isl-0.16.1/test_inputs/codegen/unroll2.c0000664000175000017500000000017412645737061015054 00000000000000{ A(0); A(1); A(2); A(3); for (int c0 = 4; c0 <= 99996; c0 += 1) A(c0); A(99997); A(99998); A(99999); } isl-0.16.1/test_inputs/codegen/stride7.in0000664000175000017500000000047012645737061015223 00000000000000# Check that no redundant guards are introduced { s4[a, b] -> [a, 2, b] : exists (e0 = floor((-2 + a)/64): 64e0 = -2 + a and a <= 200 and b <= 62 + a and b >= 122); s2[a, b] -> [a, 2, b] : exists (e0 = floor((-2 + a)/64): 64e0 = -2 + a and a >= 2 and b <= 120 and b >= -1 + a and a <= 100) } { : } { } isl-0.16.1/test_inputs/codegen/unroll2.in0000664000175000017500000000024612645737061015240 00000000000000# Check that the different disjuncts in the unroll option # are handled separately. { A[i] -> [i] : 0 <= i < 100000 } { : } { [i] -> unroll[0] : i < 4 or i > 99996 } isl-0.16.1/test_inputs/codegen/single_valued.in0000664000175000017500000000033712645737061016465 00000000000000# Check that isl recognizes that the inverse schedule is single-valued # and does not end up in an infinite recursion. [t1] -> {S[c2] -> [c2]: t1 <= c2 <= 134 and (c2+t1) % 128 = 0 and c2 > 0} [t1] -> {: t1 > 0} [t1] -> {} isl-0.16.1/test_inputs/codegen/redundant.st0000664000175000017500000000456612645737061015660 00000000000000# Check that b1 >= 1 is not dropped by mistake in 4 * c0 + c1 >= 1 part domain: "[b0] -> { write[i0, o1, o2, o3] : ((exists (e0 = floor((4 + o2)/8), e1 = floor((5 + o2)/8), e2 = floor((4 + o2)/262144), e3, e4: o1 <= 1 and o1 >= 0 and o2 <= 12 and o2 >= 1 and o3 <= 14 and o3 >= 1 and 8e0 <= 4 + o2 and 8e1 <= 5 + o2 and 262144e2 <= 4 - 8b0 + o2 and 262144e2 >= -262139 + o2 and 262144e2 <= 4 + o2 and 262144e2 >= -3 - 8b0 + o2 and 4e4 <= 1 - 8i0 + 2o1 - o2 + 8e0 and 4e4 <= 4 - 8i0 + 2o1 + o2 - 8e0 and 4e4 >= 2o1 + o2 - 8e1 - 8e3 and 4e4 >= -3 + 2o1 + o2 - 8e0 - 8e3 and 4e4 >= -6 + 2o1 - o2 + 8e0 - 8e3 and 2e4 >= -9 + o1 and 2e4 <= -1 + o1 and 4e4 <= -6 + 2o1 - o2 + 8e1 - 8e3 and 4e4 >= -3 - 8i0 + 2o1 + o2 - 8e0 and 4e4 >= -6 - 8i0 + 2o1 - o2 + 8e0)) or (exists (e0 = floor((4 + o2)/8), e1 = floor((5 + o2)/8), e2 = floor((4 + o2)/262144), e3, e4: o1 <= 1 and o1 >= 0 and o2 <= 12 and o2 >= 1 and o3 <= 14 and o3 >= 1 and 8e0 <= 4 + o2 and 8e1 >= -2 + o2 and 262144e2 <= 4 - 8b0 + o2 and 262144e2 >= -262139 + o2 and 262144e2 <= 4 + o2 and 262144e2 >= -3 - 8b0 + o2 and 4e4 <= 1 - 8i0 + 2o1 - o2 + 8e0 and 4e4 <= 4 - 8i0 + 2o1 + o2 - 8e0 and 4e4 >= -3 + 2o1 + o2 - 8e0 - 8e3 and 4e4 >= -6 + 2o1 - o2 + 8e0 - 8e3 and 2e4 >= -9 + o1 and 2e4 <= -1 + o1 and 4e4 <= 1 + 2o1 - o2 + 8e0 - 8e3 and 4e4 <= 4 + 2o1 + o2 - 8e0 - 8e3 and 4e4 <= -1 + 2o1 + o2 - 8e1 - 8e3 and 4e4 >= -3 - 8i0 + 2o1 + o2 - 8e0 and 4e4 >= -6 - 8i0 + 2o1 - o2 + 8e0)) or (exists (e0 = floor((2 + o2)/8), e1 = floor((4 + o2)/8), e2 = floor((4 + o2)/262144), e3, e4: o1 <= 1 and o1 >= 0 and o2 <= 13 and o2 >= 3 and o3 <= 14 and o3 >= 1 and 8e0 >= -5 + o2 and 8e1 <= 4 + o2 and 262144e2 <= 4 - 8b0 + o2 and 262144e2 >= -262139 + o2 and 262144e2 <= 4 + o2 and 262144e2 >= -3 - 8b0 + o2 and 4e4 <= 1 - 8i0 + 2o1 - o2 + 8e1 and 4e4 <= 4 - 8i0 + 2o1 + o2 - 8e1 and 4e4 >= -3 + 2o1 + o2 - 8e1 - 8e3 and 4e4 >= -6 + 2o1 - o2 + 8e1 - 8e3 and 2e4 >= -9 + o1 and 2e4 <= -1 + o1 and 4e4 <= 1 + 2o1 - o2 + 8e1 - 8e3 and 4e4 <= -4 + 2o1 + o2 - 8e0 - 8e3 and 4e4 <= 4 + 2o1 + o2 - 8e1 - 8e3 and 4e4 >= -3 - 8i0 + 2o1 + o2 - 8e1 and 4e4 >= -6 - 8i0 + 2o1 - o2 + 8e1))) and b0 >= 0 and i0 <= 2 and i0 >= 0 and b0 <= 2 }" child: context: "[b0] -> { [] : b0 <= 2 and b0 >= 0 }" child: schedule: "[b0] -> [{ write[i0, o1, o2, o3] -> [i0] }, { write[i0, i1, i2, i3] -> [(i1)] }, { write[i0, i1, i2, i3] -> [(5 - 8b0 + i2)] }, { write[i0,i1, i2, i3] -> [(i3)] }]" isl-0.16.1/test_inputs/codegen/unroll6.in0000664000175000017500000000130012645737061015234 00000000000000# Check that the right lower bound is chosen for unrolling. # Older versions of isl would pick a lower bound that resulted # in a number of slices that exceeds the maximal value of an integer # and then only generated code for a truncated number (zero) of slices. [nn, t1, g] -> { A[a, b, c] -> [c] : exists (e0 = [(2 + a)/393216], e1 = [(t1 - c)/128]: 128g = b - c and 393216e0 = 2 + a and 128e1 = t1 - c and c <= 130 and c >= 6 - nn + b and c <= 128 + b and nn >= 137 and t1 >= 0 and c >= 1 and a <= -2 + nn and a >= 1 and nn <= 9223372036854775807 and b >= 1 and b <= -2 + nn and t1 <= 127) } [nn, t1, g] -> { : nn <= 9223372036854775807 and nn >= 137 and t1 >= 0 and t1 <= 127 } { [c] -> unroll[x] } isl-0.16.1/test_inputs/codegen/separate.st0000664000175000017500000000021012645737061015456 00000000000000domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }" child: schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]" options: "{ separate[x] }" isl-0.16.1/test_inputs/codegen/separation_class2.in0000664000175000017500000000043012645737061017252 00000000000000[n] -> { A[i,j] -> [it,jt, ip, jp] : 0 <= i,j < n and ip = i % 8 and it = i - ip and jp = j % 8 and jt = j - jp} [n] -> { : n >= 10} [n] -> { [it, jt, ip, jp] -> separation_class[[x]->[1]]: (exists id, jd: 0 <= x <= 3 and it < n - id and jt < n - jd and id = n %8 and jd = n %8)} isl-0.16.1/test_inputs/codegen/isolate3.c0000664000175000017500000000031112645737061015173 00000000000000{ for (int c0 = 0; c0 <= 9; c0 += 1) A(c0); A(10); A(11); A(12); A(13); A(14); A(15); A(16); A(17); A(18); A(19); A(20); for (int c0 = 21; c0 <= 99; c0 += 1) A(c0); } isl-0.16.1/test_inputs/codegen/unroll10.in0000664000175000017500000000025112645737061015313 00000000000000# Check that all information is taken into account while trying to unroll [m,n] -> { A[i] -> [i] : 0 <= i < n,m } [m,n] -> { : m <= 10 or n <= 10 } { [i] -> unroll[x] } isl-0.16.1/test_inputs/codegen/unroll9.st0000664000175000017500000000052012645737061015262 00000000000000# Check that options are interpreted locally domain: "{ A[i,j,k] : 0 <= i,k < 100 and 0 <= j < 2; B[i,j,k] : 0 <= i,k < 100 and 0 <= j < 2 }" child: schedule: "[{ A[i,j,k] -> [k]; B[i,j,k] -> [k] }]" child: schedule: "[{ A[i,j,k] -> [2i]; B[i,j,k] -> [2i+1] }, { A[i,j,k] -> [j]; B[i,j,k] -> [j]}]" options: "{ unroll[1] }" isl-0.16.1/test_inputs/codegen/unroll11.c0000664000175000017500000000016212645737061015131 00000000000000{ if (t1 >= 126) S(0, t1 - 384); S(0, t1 - 256); if (t1 >= 126) S(1, t1 - 384); S(1, t1 - 256); } isl-0.16.1/test_inputs/codegen/unroll4.in0000664000175000017500000000144312645737061015242 00000000000000# Check that the generated code does not contain two declarations # of the same variable in the same scope. [t1, t2, g] -> { write_shared_A[a, b, c] -> [0, a, b, c] : exists (e0, e1 = [(-t1 + b)/4], e2 = [(-t2 + c)/32]: 4e1 = -t1 + b and 32e2 = -t2 + c and e0 <= 2 + 3g and e0 >= 3g and a <= 4 and a >= 3 and t2 >= 0 and t1 <= 3 and 2e0 >= 5 - c + 6g and 2e0 <= 36 - c + 6g and 2e0 >= 5 - b + 6g and 2e0 <= 8 - b + 6g and 2e0 <= 638 - c and 2e0 <= 638 - b and 2e0 >= 2 - a + 6g and 2e0 >= -8 + a + 6g and 2e0 <= 1 + a + 6g and 2e0 <= 11 - a + 6g and e0 >= 0 and e0 <= 254 and t1 >= 0 and t2 <= 31 and b >= 1 and b <= 126 and c >= 1 and c <= 126 and g <= 3 and g >= 0) } [t1, t2, g] -> { : g <= 3 and g >= 0 and t1 >= 0 and t1 <= 3 and t2 >= 0 and t2 <= 5 } [t1, t2] -> { [i0, i1, i2, i3] -> unroll[x] } isl-0.16.1/test_inputs/codegen/stride.c0000664000175000017500000000022512645737061014746 00000000000000for (int c0 = 0; c0 <= 100; c0 += 2) { for (int c3 = 0; c3 <= 100; c3 += 1) A(c0, c3); for (int c2 = 0; c2 <= 100; c2 += 1) B(c0, c2); } isl-0.16.1/test_inputs/codegen/unroll.c0000664000175000017500000000005412645737061014767 00000000000000{ A(0); A(100000000); A(200000000); } isl-0.16.1/test_inputs/codegen/filter.st0000664000175000017500000000106412645737061015147 00000000000000# Check proper handling of filters that turn out to be empty on their paths domain: "[n,m] -> { A[i,j] : 0 <= i,j < n }" child: set: - filter: "[n,m] -> { A[i,j] : m < n }" child: schedule: "[{ A[i,j] -> [i] }]" child: set: - filter: "[n,m] -> { A[i,j] : m < n }" - filter: "[n,m] -> { A[i,j] : m >= n }" - filter: "[n,m] -> { A[i,j] : m >= n }" child: schedule: "[{ A[i,j] -> [i] }]" child: set: - filter: "[n,m] -> { A[i,j] : m < n }" - filter: "[n,m] -> { A[i,j] : m >= n }" isl-0.16.1/test_inputs/codegen/isolate4.st0000664000175000017500000000030412645737061015402 00000000000000# Check that generic options are not applied to isolated part domain: "{ A[i] : 0 <= i < 20 }" child: schedule: "[{ A[i] -> [i] }]" options: "{ isolate[[] -> [x]] : 5 <= x <= 15; unroll[x] }" isl-0.16.1/test_inputs/codegen/shift2.c0000664000175000017500000000401112645737061014650 00000000000000for (int c0 = 0; c0 <= 1; c0 += 1) { for (int c2 = 0; c2 <= length; c2 += 32) { if (length >= c2 + 1) { for (int c3 = 0; c3 <= length; c3 += 32) { for (int c5 = 0; c5 <= min(31, length - c2 - 1); c5 += 1) { for (int c6 = max(0, -c3 + 1); c6 <= min(min(31, length - c3), 2 * c2 - c3 + 2 * c5 - 1); c6 += 1) S_0(c0, c2 + c5, c3 + c6 - 1); if (c2 + c5 >= 1 && 2 * c2 + 2 * c5 >= c3 && c3 + 30 >= 2 * c2 + 2 * c5) { S_3(c0, 0, c2 + c5); if (length >= 2 * c2 + 2 * c5) S_0(c0, c2 + c5, 2 * c2 + 2 * c5 - 1); } for (int c6 = max(0, 2 * c2 - c3 + 2 * c5 + 1); c6 <= min(31, length - c3); c6 += 1) S_0(c0, c2 + c5, c3 + c6 - 1); } if (length <= 15 && c2 == 0 && c3 == 0) S_4(c0); if (c3 >= 2 * c2 && 2 * c2 + 32 >= c3) for (int c4 = 1; c4 <= min(min(31, length - 2), (c3 / 2) + 14); c4 += 1) for (int c5 = max((c3 / 2) - c2, -c2 + c4 + 1); c5 <= min(length - c2 - 1, (c3 / 2) - c2 + 15); c5 += 1) S_3(c0, c4, c2 + c5); } for (int c3 = max(2 * c2, -(length % 32) + length + 32); c3 <= min(2 * length - 2, 2 * c2 + 62); c3 += 32) for (int c4 = 0; c4 <= min(31, length - 2); c4 += 1) { for (int c5 = max((c3 / 2) - c2, -c2 + c4 + 1); c5 <= min(length - c2 - 1, (c3 / 2) - c2 + 15); c5 += 1) S_3(c0, c4, c2 + c5); if (c3 + 30 >= 2 * length && c4 == 0) S_4(c0); } if (c2 + 16 == length && (length - 16) % 32 == 0) S_4(c0); } else if (length == 0) { S_4(c0); } else S_4(c0); } for (int c1 = 32; c1 < length - 1; c1 += 32) for (int c2 = c1; c2 < length; c2 += 32) for (int c3 = c2; c3 <= min(length - 1, c2 + 31); c3 += 16) for (int c4 = 0; c4 <= min(min(31, length - c1 - 2), -c1 + c3 + 14); c4 += 1) for (int c5 = max(-c2 + c3, c1 - c2 + c4 + 1); c5 <= min(length - c2 - 1, -c2 + c3 + 15); c5 += 1) S_3(c0, c1 + c4, c2 + c5); } isl-0.16.1/test_inputs/codegen/component5.c0000664000175000017500000000017312645737061015545 00000000000000for (int c0 = 0; c0 <= 9; c0 += 1) for (int c1 = 0; c1 <= 9; c1 += 1) { if (c0 == 0) A(c1); B(c0, c1); } isl-0.16.1/test_inputs/codegen/hoist.c0000664000175000017500000000223412645737061014604 00000000000000if (ni >= t0 + 1 && nj >= t1 + 1) for (int c2 = 0; c2 <= min(15, nk - 1); c2 += 1) { S_1(t0, t1, c2); if (nj >= t1 + 17) { S_1(t0, t1 + 16, c2); if (nj >= t1 + 33) { S_1(t0, t1 + 32, c2); if (nj >= t1 + 49) S_1(t0, t1 + 48, c2); } } if (ni >= t0 + 17) { S_1(t0 + 16, t1, c2); if (nj >= t1 + 17) { S_1(t0 + 16, t1 + 16, c2); if (nj >= t1 + 33) { S_1(t0 + 16, t1 + 32, c2); if (nj >= t1 + 49) S_1(t0 + 16, t1 + 48, c2); } } if (ni >= t0 + 33) { S_1(t0 + 32, t1, c2); if (nj >= t1 + 17) { S_1(t0 + 32, t1 + 16, c2); if (nj >= t1 + 33) { S_1(t0 + 32, t1 + 32, c2); if (nj >= t1 + 49) S_1(t0 + 32, t1 + 48, c2); } } if (ni >= t0 + 49) { S_1(t0 + 48, t1, c2); if (nj >= t1 + 17) { S_1(t0 + 48, t1 + 16, c2); if (nj >= t1 + 33) { S_1(t0 + 48, t1 + 32, c2); if (nj >= t1 + 49) S_1(t0 + 48, t1 + 48, c2); } } } } } } isl-0.16.1/test_inputs/codegen/cloog/0000775000175000017500000000000012645737414014476 500000000000000isl-0.16.1/test_inputs/codegen/cloog/multi-stride.st0000664000175000017500000000041012645737061017401 00000000000000domain: "{ S1[i0, i1, i2] : 2i1 = -1 + i0 and 6i2 = -2 + i0 and i0 >= 0 and i0 <= 100 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/mxm-shared.c0000664000175000017500000000020412645737061016621 00000000000000if (N >= g0 + t1 + 1 && t1 <= 7 && g4 % 4 == 0) for (int c0 = t0; c0 <= min(127, N - g1 - 1); c0 += 16) S1(g0 + t1, g1 + c0); isl-0.16.1/test_inputs/codegen/cloog/merge.c0000664000175000017500000000014412645737061015656 00000000000000{ S1(0); for (int c0 = 0; c0 <= 10; c0 += 1) { if (c0 >= 2) S2(c0); S3(c0); } } isl-0.16.1/test_inputs/codegen/cloog/wavefront.c0000664000175000017500000000017412645737061016575 00000000000000for (int c0 = 2; c0 <= n + m; c0 += 1) for (int c1 = max(1, -m + c0); c1 <= min(n, c0 - 1); c1 += 1) S1(c1, c0 - c1); isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-resid.st0000664000175000017500000000245212645737061020514 00000000000000domain: "[M, N, O] -> { S3[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + M; S2[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 1 and i2 <= M; S1[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 1 and i2 <= M }" child: context: "[M, N, O] -> { [] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O] -> { separate[i0] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(2i1)]; S2[i0, i1, i2] -> [(-1 + 2i1)]; S1[i0, i1, i2] -> [(-1 + 2i1)] }]" options: "[M, N, O] -> { separate[i0] }" child: sequence: - filter: "[M, N, O] -> { S2[i0, i1, i2]; S1[i0, i1, i2] }" child: schedule: "[M, N, O] -> [{ S2[i0, i1, i2] -> [(i2)]; S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O] -> { separate[i0] }" child: sequence: - filter: "[M, N, O] -> { S1[i0, i1, i2] }" - filter: "[M, N, O] -> { S2[i0, i1, i2] }" - filter: "[M, N, O] -> { S3[i0, i1, i2] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/youcefn.st0000664000175000017500000000110412645737061016430 00000000000000domain: "[n, m] -> { S1[i0, i0] : i0 >= 1 and i0 <= n; S3[i0, n] : i0 >= 1 and i0 <= m; S2[i0, i1] : i0 >= 1 and i0 <= n and i1 >= i0 and i1 <= n }" child: context: "[n, m] -> { [] : n >= 2 and m >= n }" child: schedule: "[n, m] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)]; S3[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)]; S3[i0, i1] -> [(i1)] }]" options: "[n, m] -> { separate[i0] }" child: sequence: - filter: "[n, m] -> { S1[i0, i1] }" - filter: "[n, m] -> { S2[i0, i1] }" - filter: "[n, m] -> { S3[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/esced.c0000664000175000017500000000014612645737061015644 00000000000000for (int c0 = 1; c0 <= m; c0 += 1) { S1(c0); for (int c1 = 1; c1 <= n; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-fusion1.c0000664000175000017500000000022712645737061020163 00000000000000{ for (int c0 = 0; c0 <= M; c0 += 1) S1(c0); for (int c0 = 1; c0 <= M; c0 += 1) S2(c0); for (int c0 = 0; c0 <= M; c0 += 1) S3(c0); } isl-0.16.1/test_inputs/codegen/cloog/block3.c0000664000175000017500000000010512645737061015731 00000000000000{ S1(); for (int c0 = 0; c0 <= 1; c0 += 1) S3(c0); S2(); } isl-0.16.1/test_inputs/codegen/cloog/0D-3.st0000664000175000017500000000011612645737061015365 00000000000000domain: "[M] -> { S1[] : M >= 0 }" child: context: "[M] -> { [] : M >= 0 }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-QR.c0000664000175000017500000000226512645737061017125 00000000000000if (N >= 1) { S1(0); if (N == 1) { for (int c1 = 0; c1 < M; c1 += 1) S2(0, c1); S3(0); for (int c1 = 0; c1 < M; c1 += 1) S4(0, c1); S10(0); S5(0); } else { for (int c1 = 0; c1 < M; c1 += 1) S2(0, c1); S3(0); for (int c1 = 0; c1 < M; c1 += 1) S4(0, c1); S10(0); S1(1); S5(0); } for (int c0 = 2; c0 < N; c0 += 1) { for (int c1 = c0 - 1; c1 < N; c1 += 1) { S6(c0 - 2, c1); for (int c2 = c0 - 2; c2 < M; c2 += 1) S7(c0 - 2, c1, c2); S8(c0 - 2, c1); for (int c2 = c0 - 2; c2 < M; c2 += 1) S9(c0 - 2, c1, c2); } for (int c1 = c0 - 1; c1 < M; c1 += 1) S2(c0 - 1, c1); S3(c0 - 1); for (int c1 = c0 - 1; c1 < M; c1 += 1) S4(c0 - 1, c1); S10(c0 - 1); S1(c0); S5(c0 - 1); } if (N >= 2) { S6(N - 2, N - 1); for (int c2 = N - 2; c2 < M; c2 += 1) S7(N - 2, N - 1, c2); S8(N - 2, N - 1); for (int c2 = N - 2; c2 < M; c2 += 1) S9(N - 2, N - 1, c2); for (int c1 = N - 1; c1 < M; c1 += 1) S2(N - 1, c1); S3(N - 1); for (int c1 = N - 1; c1 < M; c1 += 1) S4(N - 1, c1); S10(N - 1); S5(N - 1); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-jacobi3.st0000664000175000017500000000200512645737061020311 00000000000000domain: "[M, N] -> { S2[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + N; S1[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + N }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(2i0)]; S2[i0, i1, i2] -> [(1 + 2i0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S2[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/forwardsub-1-1-2.c0000664000175000017500000000022312645737061017366 00000000000000{ S3(1, 1); for (int c0 = 2; c0 <= M; c0 += 1) { S1(c0, 1); for (int c1 = 2; c1 < c0; c1 += 1) S2(c0, c1); S4(c0, c0); } } isl-0.16.1/test_inputs/codegen/cloog/yosr2.st0000664000175000017500000000074012645737061016043 00000000000000domain: "[M] -> { S4[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M; S3[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M and i2 >= 1 and i2 <= -1 + i0; S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= -1 + i0; S2[i0] : i0 >= 1 and i0 <= M }" child: context: "[M] -> { [] : M >= 2 }" child: schedule: "[M] -> [{ S2[i0] -> [(0)]; S1[i0, i1] -> [(i0)]; S4[i0, i1] -> [(i1)]; S3[i0, i1, i2] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/guide.st0000664000175000017500000000062012645737061016057 00000000000000domain: "[M, N] -> { S1[i0] : (i0 >= 1 and i0 <= N and i0 <= 2M) or (i0 >= M and i0 >= 1 and i0 <= N); S2[i0] : i0 >= 1 + N and i0 <= 2N }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S2[i0] -> [(i0)]; S1[i0] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0] }" - filter: "[M, N] -> { S2[i0] }" isl-0.16.1/test_inputs/codegen/cloog/youcef.st0000664000175000017500000000075212645737061016262 00000000000000domain: "{ S2[i0, i1] : i0 >= 0 and i0 <= 5 and i1 >= i0 and i1 <= 5; S1[i0, i0] : i0 >= 0 and i0 <= 5; S3[i0, 5] : i0 >= 0 and i0 <= 5 }" child: context: "{ [] }" child: schedule: "[{ S3[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S3[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1] }" - filter: "{ S2[i0, i1] }" - filter: "{ S3[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali6.st0000664000175000017500000000203112645737061020507 00000000000000domain: "[M, N] -> { S2[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + N; S1[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + N }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(2i0)]; S2[i0, i1, i2] -> [(1 + 2i0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S2[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali1.c0000664000175000017500000000034212645737061020301 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 < 2 * N; c1 += 1) { for (int c2 = max(1, -N + c1); c2 < (c1 + 1) / 2; c2 += 1) S1(c0, c1 - c2, c2); if ((c1 - 1) % 2 == 0) S2(c0, (c1 + 1) / 2); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-jacobi2.c0000664000175000017500000000012612645737061020106 00000000000000for (int c0 = 0; c0 < M; c0 += 1) for (int c1 = 0; c1 < M; c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/yosr.c0000664000175000017500000000047612645737061015563 00000000000000{ for (int c0 = 1; c0 < n; c0 += 1) { for (int c1 = 1; c1 < c0; c1 += 1) for (int c2 = c1 + 1; c2 <= n; c2 += 1) S2(c1, c2, c0); for (int c2 = c0 + 1; c2 <= n; c2 += 1) S1(c0, c2); } for (int c1 = 1; c1 < n; c1 += 1) for (int c2 = c1 + 1; c2 <= n; c2 += 1) S2(c1, c2, n); } isl-0.16.1/test_inputs/codegen/cloog/min-4-1.c0000664000175000017500000000007712645737061015646 00000000000000for (int c0 = max(-M, -N); c0 <= min(N, O); c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/reservoir-stride.c0000664000175000017500000000007312645737061020070 00000000000000for (int c0 = 2; c0 <= M; c0 += 7) S1(c0, (c0 - 2) / 7); isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-1.c0000664000175000017500000000005512645737061017267 00000000000000for (int c0 = 0; c0 <= 2; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/forwardsub-3-1-2.st0000664000175000017500000000126312645737061017601 00000000000000domain: "[M] -> { S4[i0, i1] : 2i1 = i0 and M >= 3 and i0 <= 2M and i0 >= 4; S1[i0, 1] : M >= 3 and i0 <= 1 + M and i0 >= 3; S3[2, 1] : M >= 3; S2[i0, i1] : 2i1 <= -1 + i0 and i1 >= 2 and i1 >= -M + i0 }" child: context: "[M] -> { [] : M >= 3 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S4[i0, i1] -> [(i0)]; S3[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S4[i0, i1] -> [(i1)]; S3[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" - filter: "[M] -> { S3[i0, i1] }" - filter: "[M] -> { S4[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-cholesky2.st0000664000175000017500000000156612645737061020715 00000000000000domain: "[M] -> { S3[i0, i1, i2] : i0 >= 1 and i1 <= M and i2 >= 1 + i0 and i2 <= i1; S2[i0, i1] : i0 >= 1 and i1 >= 1 + i0 and i1 <= M; S1[i0] : i0 >= 1 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0] -> [(-1 + 3i0)]; S3[i0, i1, i2] -> [(-1 + i0 + i1 + i2)]; S2[i0, i1] -> [(-2 + 2i0 + i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0] }" - filter: "[M] -> { S3[i0, i1, i2] }" child: schedule: "[M] -> [{ S3[i0, i1, i2] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/mod4.c0000664000175000017500000000031512645737061015422 00000000000000for (int c0 = 2; c0 <= 10; c0 += 3) { S1(c0, (c0 + 1) / 3, (c0 + 1) / 3, 2, (c0 - 2) / 3); S2(c0, (c0 + 1) / 3, (c0 + 1) / 3, 2, (c0 - 2) / 3); S3(c0, (c0 + 1) / 3, (c0 + 1) / 3, 2, (c0 - 2) / 3); } isl-0.16.1/test_inputs/codegen/cloog/union.c0000664000175000017500000000017612645737061015714 00000000000000if (M >= 11) { for (int c0 = -100; c0 <= 0; c0 += 1) S1(-c0); } else for (int c0 = 0; c0 <= 100; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/darte.c0000664000175000017500000000102312645737061015653 00000000000000for (int c0 = -n + 1; c0 <= n; c0 += 1) { if (c0 <= 0) for (int c2 = -c0 + 4; c2 <= 2 * n - c0 + 2; c2 += 2) S1(1, -c0 + 1, ((c0 + c2) / 2) - 1); for (int c1 = max(c0 + 2, -c0 + 4); c1 <= min(2 * n - c0, 2 * n + c0); c1 += 2) { for (int c2 = c1 + 2; c2 <= 2 * n + c1; c2 += 2) S1((c0 + c1) / 2, (-c0 + c1) / 2, (-c1 + c2) / 2); for (int c2 = 1; c2 <= n; c2 += 1) S2(((c0 + c1) / 2) - 1, (-c0 + c1) / 2, c2); } if (c0 >= 1) for (int c2 = 1; c2 <= n; c2 += 1) S2(n, n - c0 + 1, c2); } isl-0.16.1/test_inputs/codegen/cloog/pouchet.st0000664000175000017500000000147512645737061016442 00000000000000domain: "[Ny] -> { S1[i0, i1, 2i0, -2i0 + 2i1, i4] : i0 >= 0 and i0 <= 1 and i1 >= 1 + i0 and 2i1 <= -1 + Ny + 2i0 and i4 >= 1 and i4 <= 2; S2[i0, i1, 2i0, -1 - 2i0 + 2i1, i4] : i0 >= 0 and i0 <= 1 and i1 >= 1 + i0 and 2i1 <= Ny + 2i0 and i4 >= 1 and i4 <= 2 }" child: context: "[Ny] -> { [] }" child: schedule: "[Ny] -> [{ S1[i0, i1, i2, i3, i4] -> [(i0 + i1)]; S2[i0, i1, i2, i3, i4] -> [(i0 + i1)] }, { S1[i0, i1, i2, i3, i4] -> [(i1)]; S2[i0, i1, i2, i3, i4] -> [(i1)] }, { S1[i0, i1, i2, i3, i4] -> [(i4)]; S2[i0, i1, i2, i3, i4] -> [(i4)] }, { S1[i0, i1, i2, i3, i4] -> [(i2)]; S2[i0, i1, i2, i3, i4] -> [(i2)] }, { S1[i0, i1, i2, i3, i4] -> [(i3)]; S2[i0, i1, i2, i3, i4] -> [(1 + i3)] }, { S1[i0, i1, i2, i3, i4] -> [(i4)]; S2[i0, i1, i2, i3, i4] -> [(1 + i4)] }]" options: "[Ny] -> { separate[x] : x >= 2 }" isl-0.16.1/test_inputs/codegen/cloog/gesced2.st0000664000175000017500000000055512645737061016305 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 5 and i1 <= -10 + M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 5 and i1 <= -10 + M }" child: context: "[M] -> { [] : M >= 16 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i1)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i0 - i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/walters2.c0000664000175000017500000000036412645737061016326 00000000000000{ for (int c1 = 0; c1 <= 51; c1 += 1) S2(0, c1); for (int c0 = 1; c0 <= 24; c0 += 1) { S2(c0, 0); for (int c1 = 1; c1 <= 50; c1 += 1) S1(c0, c1); S2(c0, 51); } for (int c1 = 0; c1 <= 51; c1 += 1) S2(25, c1); } isl-0.16.1/test_inputs/codegen/cloog/lex.c0000664000175000017500000000007412645737061015351 00000000000000for (int c0 = 0; c0 <= 10; c0 += 1) { S2(c0); S1(c0); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-fusion2.st0000664000175000017500000000122712645737061020371 00000000000000domain: "[M, N] -> { S1[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M; S2[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(1 + i0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S2[i0, i1] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S1[i0, i1] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-two.st0000664000175000017500000000040412645737061017611 00000000000000domain: "{ S1[i0, i1, i2] : 2i1 = 3 - i0 and 2i2 = 9 + i0 and i0 >= 0 and i0 <= 1 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/yosr2.c0000664000175000017500000000047712645737061015646 00000000000000{ for (int c1 = 1; c1 <= M; c1 += 1) S2(c1); for (int c0 = 2; c0 <= M; c0 += 1) { for (int c2 = c0 + 1; c2 <= M; c2 += 1) for (int c3 = 1; c3 < c0; c3 += 1) S3(c0, c2, c3); for (int c1 = 1; c1 < c0; c1 += 1) S4(c1, c0); for (int c2 = 1; c2 < c0; c2 += 1) S1(c0, c2); } } isl-0.16.1/test_inputs/codegen/cloog/levenshtein-1-2-3.st0000664000175000017500000000302112645737061017741 00000000000000domain: "[M, N] -> { S5[i0, i1] : 2i1 = -N + i0 and i0 >= 2 + N and i0 <= -2 + 2M - N and N >= 1; S3[i0, i0] : i0 >= 1 and i0 <= N and N <= -2 + M; S7[i0, i1] : i0 >= 1 + N and 2i1 <= -1 - N + i0 and i0 <= -2 + 2M - N and 2i1 >= -2 - N + i0 and N <= -2 + M and N >= 1; S6[i0, i1] : 2i1 <= -1 + N + i0 and i1 <= -1 + i0 and i1 >= 1 - M + i0 and 2i1 >= 1 - N + i0 and i1 >= 1 and i1 <= -1 + M and N <= -2 + M; S1[0, 0] : N <= -2 + M and N >= 1; S2[i0, 0] : i0 >= 1 and i0 <= N and N <= -2 + M; S4[i0, i1] : 2i1 = N + i0 and i0 >= 2 + N and i0 <= -2 + 2M - N and N >= 1; S8[i0, i1] : i0 >= 1 + N and 2i1 <= N + i0 and 2i1 >= -N + i0 and i0 <= -2 + 2M - N and N <= -2 + M and N >= 1 }" child: context: "[M, N] -> { [] : N <= -2 + M and N >= 1 }" child: schedule: "[M, N] -> [{ S7[i0, i1] -> [(i0)]; S5[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)]; S3[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)]; S4[i0, i1] -> [(i0)]; S8[i0, i1] -> [(i0)]; S6[i0, i1] -> [(i0)] }, { S7[i0, i1] -> [(i1)]; S5[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)]; S3[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)]; S4[i0, i1] -> [(i1)]; S8[i0, i1] -> [(i1)]; S6[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1] }" - filter: "[M, N] -> { S2[i0, i1] }" - filter: "[M, N] -> { S3[i0, i1] }" - filter: "[M, N] -> { S4[i0, i1] }" - filter: "[M, N] -> { S5[i0, i1] }" - filter: "[M, N] -> { S6[i0, i1] }" - filter: "[M, N] -> { S7[i0, i1] }" - filter: "[M, N] -> { S8[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/lineality-1-2.c0000664000175000017500000000026212645737061017047 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { for (int c1 = 1; c1 < c0; c1 += 1) S1(c0, c1); S1(c0, c0); S2(c0, c0); for (int c1 = c0 + 1; c1 <= M; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/vasilache.st0000664000175000017500000000401512645737061016723 00000000000000domain: "[M, N] -> { S5[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N; S8[]; S2[]; S7[i0, i1, i2, i3] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N and i3 >= 0 and i3 <= -1 + N and i3 >= 32i2 and i3 <= 31 + 32i2; S4[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N; S1[]; S3[] : M >= 79; S6[i0, i1, i2, i3] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N and i3 >= 0 and i3 <= -1 + N and i3 >= 32i2 and i3 <= 31 + 32i2 }" child: context: "[M, N] -> { [] : M <= 3 and N >= 100 }" child: sequence: - filter: "[M, N] -> { S1[] }" - filter: "[M, N] -> { S2[] }" - filter: "[M, N] -> { S3[] }" - filter: "[M, N] -> { S5[i0, i1]; S4[i0, i1] }" child: schedule: "[M, N] -> [{ S5[i0, i1] -> [(i0)]; S4[i0, i1] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S5[i0, i1] -> [(i1)]; S4[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S4[i0, i1] }" - filter: "[M, N] -> { S5[i0, i1] }" - filter: "[M, N] -> { S7[i0, i1, i2, i3]; S6[i0, i1, i2, i3] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2, i3] -> [(i0)]; S6[i0, i1, i2, i3] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2, i3] -> [(i1)]; S6[i0, i1, i2, i3] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2, i3] -> [(i2)]; S6[i0, i1, i2, i3] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2, i3] -> [(i3)]; S6[i0, i1, i2, i3] -> [(1 + i3)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S6[i0, i1, i2, i3] }" - filter: "[M, N] -> { S7[i0, i1, i2, i3] }" - filter: "[M, N] -> { S8[] }" isl-0.16.1/test_inputs/codegen/cloog/donotsimp.st0000664000175000017500000000065612645737061017007 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= 10 and i1 >= 1 and i1 <= i0; S2[i0, i1] : i0 >= 1 and i0 <= 10 and i1 >= 11 and i1 <= M }" child: context: "[M] -> { [] : M >= 20 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-psinv.c0000664000175000017500000000041112645737061020332 00000000000000for (int c0 = 2; c0 < O; c0 += 1) for (int c1 = 3; c1 < 2 * N - 2; c1 += 2) { for (int c3 = 1; c3 <= M; c3 += 1) { S1(c0, (c1 + 1) / 2, c3); S2(c0, (c1 + 1) / 2, c3); } for (int c3 = 2; c3 < M; c3 += 1) S3(c0, (c1 + 1) / 2, c3); } isl-0.16.1/test_inputs/codegen/cloog/lux.c0000664000175000017500000000032712645737061015372 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { for (int c1 = 1; c1 < c0; c1 += 1) for (int c2 = c1 + 1; c2 <= M; c2 += 1) S2(c0, c1, c2, c2, c0); for (int c3 = c0 + 1; c3 <= M; c3 += 1) S1(c0, c0, M, c3); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali2.st0000664000175000017500000000132112645737061020504 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M }" child: context: "[M] -> { [] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/levenshtein-1-2-3.c0000664000175000017500000000137412645737061017546 00000000000000{ S1(0, 0); for (int c0 = 1; c0 <= N; c0 += 1) { S2(c0, 0); for (int c1 = 1; c1 < c0; c1 += 1) S6(c0, c1); S3(c0, c0); } S7(N + 1, 0); for (int c1 = 1; c1 <= N; c1 += 1) { S6(N + 1, c1); S8(N + 1, c1); } for (int c0 = N + 2; c0 < 2 * M - N - 1; c0 += 1) { S7(c0, -N + (N + c0 + 1) / 2 - 1); if ((N - c0) % 2 == 0) { S5(c0, (-N + c0) / 2); S8(c0, (-N + c0) / 2); } for (int c1 = -N + (N + c0) / 2 + 1; c1 < (N + c0 + 1) / 2; c1 += 1) { S6(c0, c1); S8(c0, c1); } if ((N - c0) % 2 == 0) { S4(c0, (N + c0) / 2); S8(c0, (N + c0) / 2); } } for (int c0 = 2 * M - N - 1; c0 < 2 * M - 1; c0 += 1) for (int c1 = -M + c0 + 1; c1 < M; c1 += 1) S6(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/stride2.c0000664000175000017500000000022112645737061016127 00000000000000{ for (int c0 = 3; c0 <= 26; c0 += 3) S2(c0, c0 / 3); S1(27); S2(27, 9); for (int c0 = 30; c0 <= 100; c0 += 3) S2(c0, c0 / 3); } isl-0.16.1/test_inputs/codegen/cloog/largeur.st0000664000175000017500000000036612645737061016432 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= i0 and i1 <= M }" child: context: "[M] -> { [] : M >= 0 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }, { S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/min-3-1.c0000664000175000017500000000015212645737061015637 00000000000000for (int c0 = 0; c0 <= min(10, M); c0 += 1) for (int c1 = 0; c1 <= min(10, M); c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/0D-2.st0000664000175000017500000000010512645737061015362 00000000000000domain: "[M] -> { S1[] : M >= 0 }" child: context: "[M] -> { [] }" isl-0.16.1/test_inputs/codegen/cloog/unroll2.st0000664000175000017500000000030512645737061016357 00000000000000domain: "[n] -> { S1[i] : i >= n and i <= 1 + n and n <= 9 and i >= 0 }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i] -> [(i)] }]" options: "[n] -> { unroll[i0] }" isl-0.16.1/test_inputs/codegen/cloog/classen2.c0000664000175000017500000000211212645737061016266 00000000000000for (int c0 = max(max(max(max(max(max(4, 5 * outerTimeTileScatter), 5 * outerProcTileScatter1), 5 * outerProcTileScatter2 + 1), 5 * outerProcTileScatter1 + 5 * outerProcTileScatter2 - N), 10 * outerProcTileScatter2 - N + 1), 10 * outerProcTileScatter1 - 2 * N + 2); c0 <= min(min(min(min(min(min(5 * outerTimeTileScatter + 4, 10 * outerProcTileScatter1 + 4), 5 * outerProcTileScatter1 + 5 * outerProcTileScatter2 + 5), 5 * outerProcTileScatter1 + M + 2), 2 * M + 2 * N - 6), 5 * outerProcTileScatter2 + M + N), 10 * outerProcTileScatter2 + N + 3); c0 += 1) for (int c1 = max(max(max(max(5 * outerProcTileScatter1, 5 * outerProcTileScatter2 + 1), -5 * outerProcTileScatter2 + c0 - 1), -M + c0 + 2), (c0 + 1) / 2 + 2); c1 <= min(min(min(min(5 * outerProcTileScatter1 + 4, 5 * outerProcTileScatter2 + N + 2), -5 * outerProcTileScatter2 + N + c0), c0), N + c0 / 2 - 1); c1 += 1) for (int c2 = max(max(5 * outerProcTileScatter2, -N + c1 + 2), c0 - c1 + 3); c2 <= min(min(5 * outerProcTileScatter2 + 4, c1 - 1), N + c0 - c1); c2 += 1) S1(c0 - c1 + 1, -c0 + c1 + c2 - 2, c1 - c2, c0, c1, c2); isl-0.16.1/test_inputs/codegen/cloog/stride2.st0000664000175000017500000000036212645737061016341 00000000000000domain: "{ S2[i0, i1] : 3i1 = i0 and i0 >= 3 and i0 <= 100; S1[27] }" child: context: "{ [] }" child: schedule: "[{ S2[i0, i1] -> [(i0)]; S1[i0] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0] -> [(0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_basic1.c0000664000175000017500000000006512645737061016601 00000000000000for (int c0 = 0; c0 <= M; c0 += 2) S1(c0, c0 / 2); isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali4.c0000664000175000017500000000030012645737061020276 00000000000000{ for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-interp.c0000664000175000017500000000510612645737061020502 00000000000000{ if (N >= 2) for (int c0 = 1; c0 < O; c0 += 1) { for (int c3 = 1; c3 <= M; c3 += 1) S1(c0, 1, c3); for (int c3 = 1; c3 < M; c3 += 1) { S6(c0, 1, c3); S7(c0, 1, c3); } if (N >= 3) { for (int c3 = 1; c3 <= M; c3 += 1) S3(c0, 1, c3); for (int c3 = 1; c3 <= M; c3 += 1) S1(c0, 2, c3); for (int c3 = 1; c3 < M; c3 += 1) { S6(c0, 2, c3); S7(c0, 2, c3); } for (int c3 = 1; c3 < M; c3 += 1) S11(c0, 1, c3); } else { for (int c3 = 1; c3 <= M; c3 += 1) S3(c0, 1, c3); for (int c3 = 1; c3 < M; c3 += 1) S11(c0, 1, c3); } for (int c1 = 3; c1 < 2 * N - 4; c1 += 2) { for (int c3 = 1; c3 < M; c3 += 1) S10(c0, (c1 - 1) / 2, c3); for (int c3 = 1; c3 <= M; c3 += 1) S3(c0, (c1 + 1) / 2, c3); for (int c3 = 1; c3 <= M; c3 += 1) S1(c0, (c1 + 3) / 2, c3); for (int c3 = 1; c3 < M; c3 += 1) { S6(c0, (c1 + 3) / 2, c3); S7(c0, (c1 + 3) / 2, c3); } for (int c3 = 1; c3 < M; c3 += 1) S11(c0, (c1 + 1) / 2, c3); } if (N >= 3) { for (int c3 = 1; c3 < M; c3 += 1) S10(c0, N - 2, c3); for (int c3 = 1; c3 <= M; c3 += 1) S3(c0, N - 1, c3); for (int c3 = 1; c3 < M; c3 += 1) S11(c0, N - 1, c3); } for (int c3 = 1; c3 < M; c3 += 1) S10(c0, N - 1, c3); } for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) { for (int c3 = 1; c3 <= M; c3 += 1) S2(c0, c1, c3); for (int c3 = 1; c3 < M; c3 += 1) S8(c0, c1, c3); for (int c3 = 1; c3 < M; c3 += 1) S9(c0, c1, c3); } for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S4(c0, c1, c2); for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S5(c0, c1, c2); for (int c0 = R; c0 < O; c0 += 1) for (int c1 = Q; c1 < N; c1 += 1) for (int c2 = P; c2 < M; c2 += 1) S12(c0, c1, c2); for (int c0 = R; c0 < O; c0 += 1) for (int c1 = Q; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S13(c0, c1, c2); for (int c0 = R; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = P; c2 < M; c2 += 1) S14(c0, c1, c2); for (int c0 = R; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S15(c0, c1, c2); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-long.st0000664000175000017500000000505112645737061017742 00000000000000domain: "[M, N, O, P, Q, R, S, T, U] -> { S1[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S3[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S4[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S2[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M }" child: context: "[M, N, O, P, Q, R, S, T, U] -> { [] : M >= 10 and N >= 10 and O >= 10 and P >= 1 and P <= 2 and Q >= 1 and Q <= 2 and R >= 1 and R <= 2 and S >= 0 and S <= 1 and T >= 0 and T <= 1 and U >= 0 and U <= 1 }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)]; S3[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S1[i0, i1, i2]; S2[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i1)]; S1[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S1[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S2[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S3[i0, i1, i2]; S4[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i1)]; S3[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S3[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S4[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_complex1.c0000664000175000017500000000031512645737061017165 00000000000000for (int c0 = 0; c0 <= 5 * n; c0 += 1) for (int c1 = max(-((5 * n - c0 + 1) % 2) - n + c0 + 1, 2 * ((c0 + 2) / 3)); c1 <= min(c0, n + c0 - (n + c0 + 2) / 3); c1 += 2) S1((3 * c1 / 2) - c0, c0 - c1); isl-0.16.1/test_inputs/codegen/cloog/backtrack.c0000664000175000017500000000000712645737061016502 00000000000000S1(0); isl-0.16.1/test_inputs/codegen/cloog/mod.st0000664000175000017500000000033012645737061015537 00000000000000domain: "{ S1[i0] : exists (e0 = floor((1 + i0)/3): 3e0 <= i0 and 3e0 >= -1 + i0 and i0 >= 0 and i0 <= 3) }" child: context: "{ [] }" child: schedule: "[{ S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/test.st0000664000175000017500000000071312645737061015744 00000000000000domain: "[M, N] -> { S1[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M; S2[i0, i0] : i0 >= 3 and i0 <= N }" child: context: "[M, N] -> { [] : N >= M and M >= 4 }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/logopar.c0000664000175000017500000000064012645737061016223 00000000000000{ for (int c1 = 0; c1 <= m; c1 += 1) S1(1, c1); for (int c0 = 2; c0 <= n; c0 += 1) { for (int c1 = 0; c1 < c0 - 1; c1 += 1) S2(c0, c1); for (int c1 = c0 - 1; c1 <= n; c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = n + 1; c1 <= m; c1 += 1) S1(c0, c1); } for (int c0 = n + 1; c0 <= m + 1; c0 += 1) for (int c1 = c0 - 1; c1 <= m; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/logo.c0000664000175000017500000000062412645737061015522 00000000000000{ for (int c1 = 0; c1 <= 7; c1 += 1) S1(1, c1); for (int c0 = 2; c0 <= 6; c0 += 1) { for (int c1 = 0; c1 < c0 - 1; c1 += 1) S2(c0, c1); for (int c1 = c0 - 1; c1 <= 4; c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = 5; c1 <= 7; c1 += 1) S1(c0, c1); } for (int c0 = 7; c0 <= 8; c0 += 1) for (int c1 = c0 - 1; c1 <= 7; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/sor1d.c0000664000175000017500000000146412645737061015615 00000000000000if (M >= 1 && N >= 3) for (int c0 = -1; c0 <= (3 * M + N - 5) / 100; c0 += 1) { for (int c1 = max(max(0, c0 - (2 * M + N + 95) / 100 + 1), floord(-N + 100 * c0 + 106, 300)); c1 <= min(min(c0, M / 100), (c0 + 1) / 3); c1 += 1) for (int c2 = max(200 * c1 - 3, 100 * c0 - 100 * c1); c2 <= min(min(2 * M + N - 5, 100 * c0 - 100 * c1 + 99), N + 200 * c1 + 193); c2 += 1) { if (c1 >= 1 && N + 200 * c1 >= c2 + 7) S3(c0 - c1, c1 - 1, c1, 100 * c1 - 1, -200 * c1 + c2 + 6); for (int c3 = max(max(1, 100 * c1), -N + (N + c2) / 2 + 3); c3 <= min(min(M, 100 * c1 + 99), c2 / 2 + 1); c3 += 1) S1(c0 - c1, c1, c3, c2 - 2 * c3 + 4); if (M >= 100 * c1 + 100 && c2 >= 200 * c1 + 197) S2(c0 - c1, c1, c1 + 1, 100 * c1 + 99, -200 * c1 + c2 - 194); } S4(c0); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-jacobi2.st0000664000175000017500000000051512645737061020314 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 0 and i0 <= -1 + M and i1 >= 0 and i1 <= -1 + M }" child: context: "[M] -> { [] : M >= 1 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/equality.st0000664000175000017500000000054112645737061016621 00000000000000domain: "{ S2[i0, 4] : i0 >= 0 and i0 <= 5; S1[i0, 2i0] : i0 >= 0 and i0 <= 5 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "{ atomic[i0] }" child: sequence: - filter: "{ S1[i0, i1] }" - filter: "{ S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/mod3.st0000664000175000017500000000066412645737061015634 00000000000000domain: "[h0] -> { S1[i0, i1] : exists (e0 = floor((32 + 32h0 - i0)/64): 64e0 <= 31 + 32h0 - i0 and 64e0 >= -31 + 32h0 - i0 and i0 >= 0 and i0 <= 999 and i0 >= -2015 + 32h0 and 32e0 >= -999 + 32h0 - i0 and i1 >= 0 and i1 <= 999 and i0 <= 32 + 32h0) }" child: context: "[h0] -> { [] : h0 <= 93 and h0 >= 0 }" child: schedule: "[h0] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[h0] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/param-split.c0000664000175000017500000000015312645737061017010 00000000000000for (int c0 = 0; c0 <= (M <= 0 ? 0 : M); c0 += 1) { if (M >= c0) S1(c0); if (c0 == 0) S2(0); } isl-0.16.1/test_inputs/codegen/cloog/vivien2.st0000664000175000017500000000160612645737061016351 00000000000000domain: "[n] -> { S2[i, j] : 29j >= 1 - i and i <= n and j >= 1 and j <= -1 + i; S1[i] : i >= 1 - 27n and i <= 28 + n; S4[i, j] : i >= 1 and i <= n and j >= 1 + i and j <= n; S5[i, j, k] : i >= 1 and i <= n and j >= 1 + i and j <= n and k >= 1 and k <= -1 + i; S6[i, j] : i >= 1 and i <= n and j >= 1 + i and j <= n; S3[i] : i >= 1 and i <= n }" child: context: "[n] -> { [] : n >= 30 }" child: schedule: "[n] -> [{ S1[i0] -> [(2 + 2i0)]; S4[i0, i1] -> [(2i0 + 2i1)]; S6[i0, i1] -> [(2i0 + 2i1)]; S3[i0] -> [(1 + 4i0)]; S5[i0, i1, i2] -> [(2i0 + 2i1)]; S2[i0, i1] -> [(1 + 2i0 + 2i1)] }, { S1[i0] -> [(0)]; S4[i0, i1] -> [(-i0)]; S6[i0, i1] -> [(2 - i0)]; S3[i0] -> [(0)]; S5[i0, i1, i2] -> [(1 - i0)]; S2[i0, i1] -> [(i1)] }, { S1[i0] -> [(0)]; S4[i0, i1] -> [(0)]; S6[i0, i1] -> [(0)]; S3[i0] -> [(0)]; S5[i0, i1, i2] -> [(i2)]; S2[i0, i1] -> [(0)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/emploi.c0000664000175000017500000000014612645737061016046 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) { S1(c0); for (int c1 = 1; c1 <= m; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam2.st0000664000175000017500000000170112645737061020413 00000000000000domain: "[M, N] -> { S3[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= -1 + N; S1[i0] : i0 >= 1 and i0 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 2 and i1 <= N }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: sequence: - filter: "[M, N] -> { S1[i0] }" child: schedule: "[M, N] -> [{ S1[i0] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S2[i0, i1] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S3[i0, i1] }" child: schedule: "[M, N] -> [{ S3[i0, i1] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S3[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/union.st0000664000175000017500000000035712645737061016121 00000000000000domain: "[M] -> { S1[i0] : i0 >= 0 and i0 <= 100 }" child: context: "[M] -> { [] : M >= 1 or M <= -1 }" child: schedule: "[M] -> [{ S1[i0] -> [(i0)] : M <= 10; S1[i0] -> [(-i0)] : M >= 11 }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/1point-1.c0000664000175000017500000000001612645737061016125 00000000000000S1(2 * M, M); isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-interp.st0000664000175000017500000002061712645737061020712 00000000000000domain: "[M, N, O, P, Q, R, S, T, U] -> { S8[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S12[i0, i1, i2] : i0 >= R and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S5[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S10[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S6[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S1[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= M; S3[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= M; S4[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S15[i0, i1, i2] : i0 >= R and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S11[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S2[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= M; S7[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S9[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S14[i0, i1, i2] : i0 >= R and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S13[i0, i1, i2] : i0 >= R and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M }" child: context: "[M, N, O, P, Q, R, S, T, U] -> { [] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S10[i0, i1, i2]; S6[i0, i1, i2]; S3[i0, i1, i2]; S1[i0, i1, i2]; S11[i0, i1, i2]; S7[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S11[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)]; S6[i0, i1, i2] -> [(i0)]; S10[i0, i1, i2] -> [(i0)]; S3[i0, i1, i2] -> [(i0)]; S7[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S11[i0, i1, i2] -> [(2i1)]; S1[i0, i1, i2] -> [(-3 + 2i1)]; S6[i0, i1, i2] -> [(-2 + 2i1)]; S10[i0, i1, i2] -> [(1 + 2i1)]; S3[i0, i1, i2] -> [(-1 + 2i1)]; S7[i0, i1, i2] -> [(-2 + 2i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S10[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S10[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S3[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S6[i0, i1, i2]; S1[i0, i1, i2]; S7[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S1[i0, i1, i2] -> [(i2)]; S6[i0, i1, i2] -> [(i2)]; S7[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S6[i0, i1, i2]; S1[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S7[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S11[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S11[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S2[i0, i1, i2]; S9[i0, i1, i2]; S8[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i0)]; S8[i0, i1, i2] -> [(i0)]; S9[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(2i1)]; S8[i0, i1, i2] -> [(2i1)]; S9[i0, i1, i2] -> [(1 + 2i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S2[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S8[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S8[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S9[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S9[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S4[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S5[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S5[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S5[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S5[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S12[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S12[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S12[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S12[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S13[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S13[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S13[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S13[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S14[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S14[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S14[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S14[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S15[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S15[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S15[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S15[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-tang-xue1.st0000664000175000017500000000116212645737061020613 00000000000000domain: "{ S1[i0, i1, i2, i3] : i3 <= 4 - 2i0 - 2i1 and i3 >= i2 and i2 <= 9 - 2i0 and i2 >= 0 and i2 >= 1 - 2i0 and i3 <= 1 + i2 and i2 <= 1 and i3 >= 1 - 2i0 - 2i1 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2, i3] -> [(2i0)] }]" options: "{ separate[i0] }" child: schedule: "[{ S1[i0, i1, i2, i3] -> [(2i0 + 2i1)] }]" options: "{ separate[i0] }" child: schedule: "[{ S1[i0, i1, i2, i3] -> [(2i0 + i2)] }]" options: "{ separate[i0] }" child: schedule: "[{ S1[i0, i1, i2, i3] -> [(2i0 + 2i1 + i3)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_lcpc.st0000664000175000017500000000111312645737061016557 00000000000000domain: "[m, n, p] -> { S1[i, k, j] : 2k = -1 + i and i >= 1 and i <= m and j >= 1 and j <= p; S2[i, k, j] : 2k = -1 + i and i >= 1 and i <= n and j >= 1 and j <= i }" child: context: "[m, n, p] -> { [] : n = 6 and m >= 7 and p >= 7 }" child: schedule: "[m, n, p] -> [{ S1[i, k, j] -> [(i)]; S2[i, k, j] -> [(i)] }, { S1[i, k, j] -> [(k)]; S2[i, k, j] -> [(k)] }, { S1[i, k, j] -> [(j)]; S2[i, k, j] -> [(j)] }]" options: "[m, n, p] -> { separate[i0] }" child: sequence: - filter: "[m, n, p] -> { S1[i, k, j] }" - filter: "[m, n, p] -> { S2[i, k, j] }" isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-5.st0000664000175000017500000000033112645737061017474 00000000000000domain: "[M] -> { S1[1, i1] : 2i1 >= M and 2i1 <= 1 + M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/no_lindep.c0000664000175000017500000000001312645737061016521 00000000000000S1(N + 2); isl-0.16.1/test_inputs/codegen/cloog/emploi.st0000664000175000017500000000073212645737061016253 00000000000000domain: "[m, n] -> { S1[i0] : (i0 >= 1 and i0 <= n and i0 <= 2m) or (i0 >= m and i0 >= 1 and i0 <= n); S2[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 and i1 <= m }" child: context: "[m, n] -> { [] }" child: schedule: "[m, n] -> [{ S1[i0] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0] -> [(0)]; S2[i0, i1] -> [(i1)] }]" options: "[m, n] -> { separate[i0] }" child: sequence: - filter: "[m, n] -> { S1[i0] }" - filter: "[m, n] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali5.st0000664000175000017500000000223412645737061020513 00000000000000domain: "[M] -> { S3[i0, i1, i2] : i1 >= 1 and i1 <= -1 + i0 and i2 >= 1 + i0 and i2 <= M; S2[i0, i1] : i0 <= M and i1 >= 1 and i1 <= -1 + i0; S1[i0, i1, i2] : i1 >= 1 and i1 <= -1 + i0 and i2 >= 1 + i0 and i2 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i0 + i1)]; S3[i0, i1, i2] -> [(i0 + i1)]; S2[i0, i1] -> [(i0 + i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1, i2] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S3[i0, i1, i2] }" child: schedule: "[M] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_complex1.st0000664000175000017500000000037212645737061017374 00000000000000domain: "[n] -> { S1[i0, i1] : i0 >= 0 and i0 <= n and i1 >= 0 and i1 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i0, i1] -> [(2i0 + 3i1)] }, { S1[i0, i1] -> [(2i0 + 2i1)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/forwardsub-2-1-2-3.c0000664000175000017500000000030212645737061017525 00000000000000{ S3(1, 0); for (int c2 = 2; c2 <= M; c2 += 1) S1(1, 1, c2); for (int c0 = 2; c0 <= M; c0 += 1) { S4(c0, 0); for (int c2 = c0 + 1; c2 <= M; c2 += 1) S2(c0, 1, c2); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali1.st0000664000175000017500000000133412645737061020507 00000000000000domain: "[M, N] -> { S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= N; S1[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 <= N and i2 >= 1 and i2 <= -1 + i1 }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i0)]; S1[i0, i1, i2] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(-1 + 2i1)]; S1[i0, i1, i2] -> [(i1 + i2)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam4.st0000664000175000017500000000157212645737061020423 00000000000000domain: "[M] -> { S2[i0, i1, i2] : i0 >= 1 and i0 <= -1 + M and i1 >= 0 and i2 >= 1 + i1 and i2 <= -1 + M; S1[i0, i1, i2] : i0 >= 1 and i0 <= -1 + M and i1 >= 0 and i2 >= 0 and i2 <= -1 + M - i1 }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i0 + i1 + i2)]; S2[i0, i1, i2] -> [(i0 + i2)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(-i2)]; S2[i0, i1, i2] -> [(i1 - i2)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1, i2] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1, i2] }" child: schedule: "[M] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/equality2.st0000664000175000017500000000531412645737061016706 00000000000000domain: "{ S1[i0, i1, 1, 2, i0, i5, -999 + i1, i0, -999 + i1, i9, i10] : 2i5 = 2 + i1 and 2i9 = -998 + i1 and 2i10 = -998 + i1 and i0 >= 1 and i0 <= 10000 and i1 >= 1000 and i1 <= 1016; S2[i0, i1, -1999 + 2i1, 1, i0, -1000 + 2i1, 1, 2, i0, -499 + i1, -1999 + 2i1, i0, -1999 + 2i1, -999 + i1, -999 + i1] : i0 >= 1 and i0 <= 10000 and i1 >= 1000 and i1 <= 1008 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i0)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i1)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i1)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i2)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i2)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i3)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i3)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i4)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i4)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i5)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i5)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i6)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i6)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i7)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i7)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i8)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i8)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i9)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i9)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(i10)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i10)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i11)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i12)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i13)] }, { S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] -> [(0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] -> [(i14)] }]" options: "{ atomic[i0] }" child: sequence: - filter: "{ S1[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10] }" - filter: "{ S2[i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14] }" isl-0.16.1/test_inputs/codegen/cloog/mxm-shared.st0000664000175000017500000000323412645737061017033 00000000000000domain: "[N, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { S1[g0 + t1, i1] : (exists (e0 = floor((g1)/128), e1 = floor((128b1 - g1)/4096), e2 = floor((-8b0 + g0)/128), e3 = floor((-t0 + i1)/16): g3 = 128b1 and g4 = 0 and g2 = 8b0 and 128e0 = g1 and 4096e1 = 128b1 - g1 and 128e2 = -8b0 + g0 and 16e3 = -t0 + i1 and b0 <= 15 and b0 >= 0 and b1 <= 31 and b1 >= 0 and g0 >= 8b0 and g1 >= 128b1 and t0 <= 15 and t0 >= 0 and t1 <= 7 and t1 >= 0 and t1 <= -1 + N - g0 and i1 >= g1 and i1 <= 127 + g1 and i1 <= -1 + N)) or (exists (e0 = floor((g1)/128), e1 = floor((128b1 - g1)/4096), e2 = floor((g4)/4), e3 = floor((-8b0 + g0)/128), e4 = floor((-t0 + i1)/16): g3 = 128b1 and g2 = 8b0 and 128e0 = g1 and 4096e1 = 128b1 - g1 and 4e2 = g4 and 128e3 = -8b0 + g0 and 16e4 = -t0 + i1 and b0 <= 15 and b0 >= 0 and b1 <= 31 and b1 >= 0 and g0 >= 8b0 and g1 >= 128b1 and g4 >= 0 and g4 <= -1 + N and t0 <= 15 and t0 >= 0 and t1 <= 7 and t1 >= 0 and t1 <= -1 + N - g0 and i1 >= g1 and i1 <= 127 + g1 and i1 <= -1 + N)) }" child: context: "[N, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { [] : exists (e0 = floor((g0)/8), e1 = floor((-128b1 + g1)/4096), e2 = floor((8b0 - g0)/128): g2 = 8b0 and g3 = 128b1 and 8e0 = g0 and 4096e1 = -128b1 + g1 and 128e2 = 8b0 - g0 and b0 >= 0 and g4 <= -1 + N and b0 <= 15 and g1 <= -1 + N and g4 >= 0 and b1 <= 31 and g0 <= -1 + N and g1 >= 128b1 and b1 >= 0 and g0 >= 8b0 and t0 >= 0 and t0 <= 15 and t1 >= 0 and t1 <= 15) }" child: schedule: "[N, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> [{ S1[i0, i1] -> [(-g1 + i1)] }, { S1[i0, i1] -> [(t1)] }, { S1[i0, i1] -> [(t0)] }, { S1[i0, i1] -> [(t1)] }]" options: "[N, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam4.c0000664000175000017500000000062612645737061020216 00000000000000for (int c0 = 1; c0 < 2 * M - 1; c0 += 1) { for (int c1 = max(-M + 1, -c0 + 1); c1 < 0; c1 += 1) { for (int c3 = max(1, -M + c0 + 1); c3 <= min(M - 1, c0 + c1); c3 += 1) S1(c3, c0 + c1 - c3, -c1); for (int c2 = max(-M + c0 + 1, -c1); c2 < min(M, c0); c2 += 1) S2(c0 - c2, c1 + c2, c2); } for (int c3 = max(1, -M + c0 + 1); c3 <= min(M - 1, c0); c3 += 1) S1(c3, c0 - c3, 0); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali3.c0000664000175000017500000000035712645737061020311 00000000000000{ for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) for (int c2 = 1; c2 <= M; c2 += 1) S2(c0, c1, c2); } isl-0.16.1/test_inputs/codegen/cloog/gesced.st0000664000175000017500000000060612645737061016220 00000000000000domain: "[M, N] -> { S3[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M; S1[i0] : i0 >= 1 and i0 <= N; S2[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M }" child: context: "[M, N] -> { [] : N <= M and M >= 2 and N >= 2 }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(N + i1)]; S3[i0, i1] -> [(2N + i1)]; S1[i0] -> [(i0)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/1point-1.st0000664000175000017500000000027512645737061016340 00000000000000domain: "[M] -> { S1[2M, M] }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-interp2.c0000664000175000017500000000105412645737061020562 00000000000000{ for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = Q; c1 < N; c1 += 1) for (int c2 = P; c2 < M; c2 += 1) S1(c0, c1, c2); for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = Q; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S2(c0, c1, c2); for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = P; c2 < M; c2 += 1) S3(c0, c1, c2); for (int c0 = 1; c0 < O; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) for (int c2 = 1; c2 < M; c2 += 1) S4(c0, c1, c2); } isl-0.16.1/test_inputs/codegen/cloog/mod3.c0000664000175000017500000000025512645737061015424 00000000000000for (int c0 = max(0, 32 * h0 - 1991); c0 <= min(999, 32 * h0 + 31); c0 += 1) if ((32 * h0 - c0 + 32) % 64 >= 1) for (int c1 = 0; c1 <= 999; c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-4.c0000664000175000017500000000006112645737061017267 00000000000000for (int c0 = 0; c0 <= M + 1; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/cholesky.st0000664000175000017500000000260312645737061016606 00000000000000domain: "[n] -> { S2[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 and i1 <= -1 + i0; S1[i0] : i0 >= 1 and i0 <= n; S4[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 + i0 and i1 <= n; S5[i0, i1, i2] : i0 >= 1 and i0 <= n and i1 >= 1 + i0 and i1 <= n and i2 >= 1 and i2 <= -1 + i0; S6[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 + i0 and i1 <= n; S3[i0] : i0 >= 1 and i0 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i0] -> [(i0)]; S4[i0, i1] -> [(i0)]; S6[i0, i1] -> [(i0)]; S3[i0] -> [(i0)]; S5[i0, i1, i2] -> [(i0)]; S2[i0, i1] -> [(i0)] }]" options: "[n] -> { separate[i0] }" child: sequence: - filter: "[n] -> { S1[i0] }" - filter: "[n] -> { S2[i0, i1] }" child: schedule: "[n] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[n] -> { separate[i0] }" - filter: "[n] -> { S3[i0] }" - filter: "[n] -> { S4[i0, i1]; S5[i0, i1, i2]; S6[i0, i1] }" child: schedule: "[n] -> [{ S4[i0, i1] -> [(i1)]; S6[i0, i1] -> [(i1)]; S5[i0, i1, i2] -> [(i1)] }]" options: "[n] -> { separate[i0] }" child: sequence: - filter: "[n] -> { S4[i0, i1] }" - filter: "[n] -> { S5[i0, i1, i2] }" child: schedule: "[n] -> [{ S5[i0, i1, i2] -> [(i2)] }]" options: "[n] -> { separate[i0] }" - filter: "[n] -> { S6[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner3.c0000664000175000017500000000025312645737061020460 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 2; c1 <= M + c0; c1 += 1) for (int c2 = max(1, -c0 + c1); c2 <= min(M, c1 - 1); c2 += 1) S1(c0, c2, c1 - c2); isl-0.16.1/test_inputs/codegen/cloog/block.c0000664000175000017500000000004612645737061015652 00000000000000{ S1(); S3(0); S2(); S3(1); } isl-0.16.1/test_inputs/codegen/cloog/mod4.st0000664000175000017500000000266012645737061015633 00000000000000domain: "{ S1[j, div41, div42, 2, mod6_a] : 3mod6_a = -2 + j and j >= 1 and j <= 10 and 3div41 >= j and 3div42 >= -1 + j and 3div42 <= 1 + j and 3div41 <= 2 + j; S2[j, div41, div42, 2, mod6_a] : 3div42 = 1 + j and 3mod6_a = -2 + j and 3div41 >= 1 + j and 3div41 <= 2 + j and j >= 1 and j <= 10; S3[j, div41, div42, 2, mod6_a] : 3mod6_a = -2 + j and j >= 1 and j <= 10 and 3div41 >= j and 3div42 >= -1 + j and 3div42 <= 1 + j and 3div41 <= 2 + j }" child: context: "{ [] }" child: schedule: "[{ S1[j, div41, div42, mod6, mod6_a] -> [(j)]; S3[j, div41, div42, mod6, mod6_a] -> [(j)]; S2[j, div41, div42, mod6, mod6_a] -> [(j)] }, { S1[j, div41, div42, mod6, mod6_a] -> [(div41)]; S3[j, div41, div42, mod6, mod6_a] -> [(div41)]; S2[j, div41, div42, mod6, mod6_a] -> [(div41)] }, { S1[j, div41, div42, mod6, mod6_a] -> [(div42)]; S3[j, div41, div42, mod6, mod6_a] -> [(div42)]; S2[j, div41, div42, mod6, mod6_a] -> [(div42)] }, { S1[j, div41, div42, mod6, mod6_a] -> [(mod6)]; S3[j, div41, div42, mod6, mod6_a] -> [(mod6)]; S2[j, div41, div42, mod6, mod6_a] -> [(mod6)] }, { S1[j, div41, div42, mod6, mod6_a] -> [(mod6_a)]; S3[j, div41, div42, mod6, mod6_a] -> [(mod6_a)]; S2[j, div41, div42, mod6, mod6_a] -> [(mod6_a)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[j, div41, div42, mod6, mod6_a] }" - filter: "{ S2[j, div41, div42, mod6, mod6_a] }" - filter: "{ S3[j, div41, div42, mod6, mod6_a] }" isl-0.16.1/test_inputs/codegen/cloog/stride4.c0000664000175000017500000000011512645737061016133 00000000000000if (t >= 0 && t <= 15) for (int c0 = t; c0 <= 99; c0 += 16) S1(c0, t); isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-psinv.st0000664000175000017500000000245212645737061020545 00000000000000domain: "[M, N, O] -> { S3[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + M; S2[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 1 and i2 <= M; S1[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 1 and i2 <= M }" child: context: "[M, N, O] -> { [] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O] -> { separate[i0] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(2i1)]; S2[i0, i1, i2] -> [(-1 + 2i1)]; S1[i0, i1, i2] -> [(-1 + 2i1)] }]" options: "[M, N, O] -> { separate[i0] }" child: sequence: - filter: "[M, N, O] -> { S2[i0, i1, i2]; S1[i0, i1, i2] }" child: schedule: "[M, N, O] -> [{ S2[i0, i1, i2] -> [(i2)]; S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O] -> { separate[i0] }" child: sequence: - filter: "[M, N, O] -> { S1[i0, i1, i2] }" - filter: "[M, N, O] -> { S2[i0, i1, i2] }" - filter: "[M, N, O] -> { S3[i0, i1, i2] }" child: schedule: "[M, N, O] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/1point-2.c0000664000175000017500000000002212645737061016123 00000000000000S1(2 * M, N + 2); isl-0.16.1/test_inputs/codegen/cloog/stride3.st0000664000175000017500000000031012645737061016333 00000000000000domain: "[m, n] -> { S1[i] : i >= 1 and i <= n and i >= m }" child: context: "[m, n] -> { [] }" child: schedule: "[m, n] -> [{ S1[i0] -> [(50i0)] }]" options: "[m, n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam1.c0000664000175000017500000000034712645737061020213 00000000000000for (int c0 = -99; c0 <= 100; c0 += 1) { if (c0 >= 1) S2(c0, 1); for (int c1 = max(1, -c0 + 1); c1 <= min(99, -c0 + 100); c1 += 1) { S1(c0 + c1, c1); S2(c0 + c1, c1 + 1); } if (c0 <= 0) S1(c0 + 100, 100); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam1.st0000664000175000017500000000077012645737061020417 00000000000000domain: "{ S2[i0, i1] : i0 >= 1 and i0 <= 100 and i1 >= 1 and i1 <= 100; S1[i0, i1] : i0 >= 1 and i0 <= 100 and i1 >= 1 and i1 <= 100 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1] -> [(i0 - i1)]; S2[i0, i1] -> [(1 + i0 - i1)] }]" options: "{ separate[i0] }" child: schedule: "[{ S1[i0, i1] -> [(2i1)]; S2[i0, i1] -> [(-1 + 2i1)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1] }" - filter: "{ S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/cholesky2.st0000664000175000017500000000156112645737061016672 00000000000000domain: "[M] -> { S4[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M; S5[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M and i2 >= 1 and i2 <= -1 + i0; S6[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M; S3[i0] : i0 >= 1 and i0 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= -1 + i0; S1[i0] : i0 >= 1 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0] -> [(0)]; S3[i0] -> [(-2 + 3i0)]; S4[i0, i1] -> [(0)]; S5[i0, i1, i2] -> [(-1 + 3i2)]; S2[i0, i1] -> [(3i1)]; S6[i0, i1] -> [(-1 + 3i0)] }, { S1[i0] -> [(i0)]; S3[i0] -> [(0)]; S4[i0, i1] -> [(i0)]; S5[i0, i1, i2] -> [(i1)]; S2[i0, i1] -> [(i0)]; S6[i0, i1] -> [(i1)] }, { S1[i0] -> [(0)]; S3[i0] -> [(0)]; S4[i0, i1] -> [(i1)]; S5[i0, i1, i2] -> [(i2)]; S2[i0, i1] -> [(0)]; S6[i0, i1] -> [(0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/tiling.st0000664000175000017500000000036712645737061016260 00000000000000domain: "[n] -> { S1[ii, i] : i >= 0 and i <= n and i <= 9 + 10ii and i >= 10ii }" child: context: "[n] -> { [] : n >= 0 }" child: schedule: "[n] -> [{ S1[ii, i] -> [(ii)] }, { S1[ii, i] -> [(i)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali4.st0000664000175000017500000000133212645737061020510 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M }" child: context: "[M] -> { [] : M >= 2 }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/mode.st0000664000175000017500000000072012645737061015707 00000000000000domain: "[M, N] -> { S1[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 0 and i1 <= i0; S2[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 0 and i1 <= N }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/guide.c0000664000175000017500000000015612645737061015657 00000000000000{ for (int c0 = 1; c0 <= N; c0 += 1) S1(c0); for (int c0 = N + 1; c0 <= 2 * N; c0 += 1) S2(c0); } isl-0.16.1/test_inputs/codegen/cloog/stride3.c0000664000175000017500000000006512645737061016136 00000000000000for (int c0 = max(1, m); c0 <= n; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/1point-2.st0000664000175000017500000000031512645737061016334 00000000000000domain: "[M, N] -> { S1[2M, 2 + N] }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/durbin_e_s.c0000664000175000017500000000072112645737061016671 00000000000000{ S4(1, 0, 0); S7(1, 0, 0); S8(1, 0, 3); for (int c0 = 2; c0 <= 9; c0 += 1) { S2(c0, -7, 0); for (int c1 = -7; c1 < c0 - 8; c1 += 1) S3(c0, c1, 1); S6(c0, c0 - 9, 2); S8(c0, 0, 3); for (int c1 = 1; c1 < c0; c1 += 1) S5(c0, c1, 3); } S2(10, -7, 0); for (int c1 = -7; c1 <= 1; c1 += 1) S3(10, c1, 1); S6(10, 1, 2); for (int c1 = 1; c1 <= 9; c1 += 1) { S5(10, c1, 3); S1(10, c1, 4); } S1(10, 10, 4); } isl-0.16.1/test_inputs/codegen/cloog/min-4-1.st0000664000175000017500000000034412645737061016047 00000000000000domain: "[M, N, O] -> { S1[i0] : i0 >= -M and i0 >= -N and i0 <= N and i0 <= O }" child: context: "[M, N, O] -> { [] }" child: schedule: "[M, N, O] -> [{ S1[i0] -> [(i0)] }]" options: "[M, N, O] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/cholesky.c0000664000175000017500000000037512645737061016406 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) { S1(c0); for (int c1 = 1; c1 < c0; c1 += 1) S2(c0, c1); S3(c0); for (int c1 = c0 + 1; c1 <= n; c1 += 1) { S4(c0, c1); for (int c2 = 1; c2 < c0; c2 += 1) S5(c0, c1, c2); S6(c0, c1); } } isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-6.c0000664000175000017500000000001012645737061017263 00000000000000S1(-1); isl-0.16.1/test_inputs/codegen/cloog/README0000664000175000017500000000012712645737061015274 00000000000000The tests in this directory have been adapted from the corresponding CLooG test cases. isl-0.16.1/test_inputs/codegen/cloog/stride.st0000664000175000017500000000036212645737061016257 00000000000000domain: "{ S2[i0, i1] : 3i1 = i0 and i0 >= 3 and i0 <= 100; S1[25] }" child: context: "{ [] }" child: schedule: "[{ S2[i0, i1] -> [(i0)]; S1[i0] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0] -> [(0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-resid.c0000664000175000017500000000041112645737061020301 00000000000000for (int c0 = 2; c0 < O; c0 += 1) for (int c1 = 3; c1 < 2 * N - 2; c1 += 2) { for (int c3 = 1; c3 <= M; c3 += 1) { S1(c0, (c1 + 1) / 2, c3); S2(c0, (c1 + 1) / 2, c3); } for (int c3 = 2; c3 < M; c3 += 1) S3(c0, (c1 + 1) / 2, c3); } isl-0.16.1/test_inputs/codegen/cloog/walters3.c0000664000175000017500000000016712645737061016330 00000000000000{ for (int c0 = 2; c0 <= 8; c0 += 2) { S1(c0, c0 / 2, c0 / 2); S2(c0, c0 / 2, c0 / 2); } S2(10, 5, 5); } isl-0.16.1/test_inputs/codegen/cloog/merge.st0000664000175000017500000000052112645737061016061 00000000000000domain: "{ S3[i0] : i0 >= 0 and i0 <= 10; S1[0]; S2[i0] : i0 >= 2 and i0 <= 10 }" child: context: "{ [] }" child: schedule: "[{ S2[i0] -> [(i0)]; S3[i0] -> [(i0)]; S1[i0] -> [(i0)] }]" options: "{ atomic[i0] }" child: sequence: - filter: "{ S1[i0] }" - filter: "{ S2[i0] }" - filter: "{ S3[i0] }" isl-0.16.1/test_inputs/codegen/cloog/classen.c0000664000175000017500000000647412645737061016223 00000000000000if (m >= 1) { if (m == 1) { S1(0, 1, 1, 1); S8(0, 1); } else { S1(0, 1, 1, 1); S4(0, 1, 2, 2, 1, 1, 2, 2); S3(0, 1, 1, 2, 1, 1, 1, 2); S2(0, 1, 1, 1, 1, 1, 2, 1); S8(0, 1); } for (int c0 = 1; c0 < 2 * m - 3; c0 += 1) { if (c0 + 1 == m) { S5(m - 2, 1, m - 1, 1, m - 1, 1, m, 1); S1(m - 1, 1, m, 1); S3(m - 1, 1, m, 2, m, 1, m, 2); } else if (m >= c0 + 2) { S5(c0 - 1, 1, c0, 1, c0, 1, c0 + 1, 1); S1(c0, 1, c0 + 1, 1); S4(c0, 1, c0 + 2, 2, c0 + 1, 1, c0 + 2, 2); S2(c0, 1, c0 + 1, 1, c0 + 1, 1, c0 + 2, 1); S3(c0, 1, c0 + 1, 2, c0 + 1, 1, c0 + 1, 2); } else { S5(c0 - 1, -m + c0 + 2, c0, -m + c0 + 2, m - 1, -m + c0 + 2, m, -m + c0 + 2); S6(c0 - 1, -m + c0 + 1, c0, -m + c0 + 2, m, -m + c0 + 1, m, -m + c0 + 2); S1(c0, -m + c0 + 2, m, -m + c0 + 2); S3(c0, -m + c0 + 2, c0 + 1, -m + c0 + 3, m, -m + c0 + 2, m, -m + c0 + 3); } for (int c1 = max(2, -m + c0 + 3); c1 <= min(m - 1, c0); c1 += 1) { S5(c0 - 1, c1, c0, c1, c0 - c1 + 1, c1, c0 - c1 + 2, c1); S6(c0 - 1, c1 - 1, c0, c1, c0 - c1 + 2, c1 - 1, c0 - c1 + 2, c1); S7(c0 - 1, c1 - 1, c0 + 1, c1, c0 - c1 + 2, c1 - 1, c0 - c1 + 3, c1); S1(c0, c1, c0 - c1 + 2, c1); S4(c0, c1, c0 + 2, c1 + 1, c0 - c1 + 2, c1, c0 - c1 + 3, c1 + 1); S2(c0, c1, c0 + 1, c1, c0 - c1 + 2, c1, c0 - c1 + 3, c1); S3(c0, c1, c0 + 1, c1 + 1, c0 - c1 + 2, c1, c0 - c1 + 2, c1 + 1); } if (c0 + 1 == m) { S7(m - 2, m - 1, m, m, 1, m - 1, 2, m); S6(m - 2, m - 1, m - 1, m, 1, m - 1, 1, m); S1(m - 1, m, 1, m); S2(m - 1, m, m, m, 1, m, 2, m); } else if (m >= c0 + 2) { S7(c0 - 1, c0, c0 + 1, c0 + 1, 1, c0, 2, c0 + 1); S6(c0 - 1, c0, c0, c0 + 1, 1, c0, 1, c0 + 1); S1(c0, c0 + 1, 1, c0 + 1); S4(c0, c0 + 1, c0 + 2, c0 + 2, 1, c0 + 1, 2, c0 + 2); S2(c0, c0 + 1, c0 + 1, c0 + 1, 1, c0 + 1, 2, c0 + 1); S3(c0, c0 + 1, c0 + 1, c0 + 2, 1, c0 + 1, 1, c0 + 2); } else { S5(c0 - 1, m, c0, m, -m + c0 + 1, m, -m + c0 + 2, m); S7(c0 - 1, m - 1, c0 + 1, m, -m + c0 + 2, m - 1, -m + c0 + 3, m); S6(c0 - 1, m - 1, c0, m, -m + c0 + 2, m - 1, -m + c0 + 2, m); S1(c0, m, -m + c0 + 2, m); S2(c0, m, c0 + 1, m, -m + c0 + 2, m, -m + c0 + 3, m); } for (int c2 = max(1, -m + c0 + 2); c2 <= min(m, c0 + 1); c2 += 1) S8(c0, c2); } if (m >= 2) { if (m >= 3) { S5(2 * m - 4, m - 1, 2 * m - 3, m - 1, m - 1, m - 1, m, m - 1); S6(2 * m - 4, m - 2, 2 * m - 3, m - 1, m, m - 2, m, m - 1); S1(2 * m - 3, m - 1, m, m - 1); S3(2 * m - 3, m - 1, 2 * m - 2, m, m, m - 1, m, m); S5(2 * m - 4, m, 2 * m - 3, m, m - 2, m, m - 1, m); S7(2 * m - 4, m - 1, 2 * m - 2, m, m - 1, m - 1, m, m); S6(2 * m - 4, m - 1, 2 * m - 3, m, m - 1, m - 1, m - 1, m); S1(2 * m - 3, m, m - 1, m); } else { S5(0, 1, 1, 1, 1, 1, 2, 1); S1(1, 1, 2, 1); S3(1, 1, 2, 2, 2, 1, 2, 2); S7(0, 1, 2, 2, 1, 1, 2, 2); S6(0, 1, 1, 2, 1, 1, 1, 2); S1(1, 2, 1, 2); } S2(2 * m - 3, m, 2 * m - 2, m, m - 1, m, m, m); for (int c2 = m - 1; c2 <= m; c2 += 1) S8(2 * m - 3, c2); S5(2 * m - 3, m, 2 * m - 2, m, m - 1, m, m, m); S6(2 * m - 3, m - 1, 2 * m - 2, m, m, m - 1, m, m); S1(2 * m - 2, m, m, m); S8(2 * m - 2, m); } } isl-0.16.1/test_inputs/codegen/cloog/equality.c0000664000175000017500000000030412645737061016412 00000000000000for (int c0 = 0; c0 <= 5; c0 += 1) for (int c1 = c0 <= 2 ? 2 * c0 : 4; c1 <= (c0 >= 2 ? 2 * c0 : 4); c1 += 1) { if (c1 == 2 * c0) S1(c0, 2 * c0); if (c1 == 4) S2(c0, 4); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam5.c0000664000175000017500000000043612645737061020216 00000000000000{ for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S3(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/jacobi-shared.c0000664000175000017500000000037612645737414017263 00000000000000if (((t1 + 31) % 32) + g2 >= 2 && N >= ((t1 + 31) % 32) + g2 + 2 && (h0 - 1) % 2 == 0) for (int c0 = max(((t0 + 15) % 16) + 1, ((g1 + t0 + 13) % 16) - g1 + 3); c0 <= min(32, N - g1 - 1); c0 += 16) S1(g1 + c0 - 1, -((g2 - t1 + 32) % 32) + g2 + 31); isl-0.16.1/test_inputs/codegen/cloog/walters.st0000664000175000017500000000304012645737061016442 00000000000000domain: "{ S2[i, div36, div37, div38] : 3div37 = 2 + i and i >= 1 and i <= 10 and 3div36 >= -2 + i and 3div38 <= 1 + i and 3div38 >= -1 + i and 3div36 <= i; S4[i, div36, div37, div38] : i >= 1 and i <= 10 and 3div36 <= i and 3div36 >= -2 + i and 3div37 <= 2 + i and 3div37 >= i and 3div38 <= 1 + i and 3div38 >= -1 + i; S1[i, div36, div37, div38] : 3div36 = i and i >= 3 and i <= 10 and 3div37 >= i and 3div38 <= 1 + i and 3div37 <= 2 + i and 3div38 >= -1 + i; S3[i, div36, div37, div38] : 3div38 = 1 + i and i <= 10 and i >= 2 and 3div36 >= -2 + i and 3div37 <= 2 + i and 3div36 <= i and 3div37 >= i }" child: context: "{ [] }" child: schedule: "[{ S1[i, div36, div37, div38] -> [(i)]; S4[i, div36, div37, div38] -> [(i)]; S3[i, div36, div37, div38] -> [(i)]; S2[i, div36, div37, div38] -> [(i)] }, { S1[i, div36, div37, div38] -> [(div36)]; S4[i, div36, div37, div38] -> [(div36)]; S3[i, div36, div37, div38] -> [(div36)]; S2[i, div36, div37, div38] -> [(div36)] }, { S1[i, div36, div37, div38] -> [(div37)]; S4[i, div36, div37, div38] -> [(div37)]; S3[i, div36, div37, div38] -> [(div37)]; S2[i, div36, div37, div38] -> [(div37)] }, { S1[i, div36, div37, div38] -> [(div38)]; S4[i, div36, div37, div38] -> [(div38)]; S3[i, div36, div37, div38] -> [(div38)]; S2[i, div36, div37, div38] -> [(div38)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i, div36, div37, div38] }" - filter: "{ S2[i, div36, div37, div38] }" - filter: "{ S3[i, div36, div37, div38] }" - filter: "{ S4[i, div36, div37, div38] }" isl-0.16.1/test_inputs/codegen/cloog/classen.st0000664000175000017500000001020012645737061016405 00000000000000domain: "[m] -> { S2[coordT1, coordP1, 1 + coordT1, coordP1, 2 + coordT1 - coordP1, coordP1, 3 + coordT1 - coordP1, coordP1] : m >= 1 and coordT1 <= -3 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= m and coordP1 >= 3 - m + coordT1 and coordP1 >= 1; S4[coordT1, coordP1, 2 + coordT1, 1 + coordP1, 2 + coordT1 - coordP1, coordP1, 3 + coordT1 - coordP1, 1 + coordP1] : m >= 1 and coordT1 <= -4 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= -1 + m and coordP1 >= 3 - m + coordT1 and coordP1 >= 1; S6[coordT1, coordP1, 1 + coordT1, 1 + coordP1, 2 + coordT1 - coordP1, coordP1, 2 + coordT1 - coordP1, 1 + coordP1] : m >= 1 and coordT1 <= -3 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= -1 + m and coordP1 >= 2 - m + coordT1 and coordP1 >= 1; S1[coordT1, coordP1, 2 + coordT1 - coordP1, coordP1] : m >= 1 and coordP1 >= 2 - m + coordT1 and coordP1 <= 1 + coordT1 and coordP1 <= m and coordP1 >= 1; S8[coordT1, coordP1] : coordT1 <= -2 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= m and coordP1 >= 2 - m + coordT1 and coordP1 >= 1; S5[coordT1, coordP1, 1 + coordT1, coordP1, 2 + coordT1 - coordP1, coordP1, 3 + coordT1 - coordP1, coordP1] : m >= 1 and coordT1 <= -3 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= m and coordP1 >= 3 - m + coordT1 and coordP1 >= 1; S7[coordT1, coordP1, 2 + coordT1, 1 + coordP1, 2 + coordT1 - coordP1, coordP1, 3 + coordT1 - coordP1, 1 + coordP1] : m >= 1 and coordT1 <= -4 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= -1 + m and coordP1 >= 3 - m + coordT1 and coordP1 >= 1; S3[coordT1, coordP1, 1 + coordT1, 1 + coordP1, 2 + coordT1 - coordP1, coordP1, 2 + coordT1 - coordP1, 1 + coordP1] : m >= 1 and coordT1 <= -3 + 2m and coordT1 >= 0 and coordP1 <= 1 + coordT1 and coordP1 <= -1 + m and coordP1 >= 2 - m + coordT1 and coordP1 >= 1 }" child: context: "[m] -> { [] : m >= 0 }" child: schedule: "[m] -> [{ S7[i0, i1, i2, i3, i4, i5, i6, i7] -> [(1 + i0)]; S4[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i0)]; S8[i0, i1] -> [(i0)]; S3[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i0)]; S1[i0, i1, i2, i3] -> [(i0)]; S2[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i0)]; S5[i0, i1, i2, i3, i4, i5, i6, i7] -> [(1 + i0)]; S6[i0, i1, i2, i3, i4, i5, i6, i7] -> [(1 + i0)] }]" options: "[m] -> { separate[i0] }" child: sequence: - filter: "[m] -> { S2[i0, i1, i2, i3, i4, i5, i6, i7]; S6[i0, i1, i2, i3, i4, i5, i6, i7]; S4[i0, i1, i2, i3, i4, i5, i6, i7]; S1[i0, i1, i2, i3]; S7[i0, i1, i2, i3, i4, i5, i6, i7]; S5[i0, i1, i2, i3, i4, i5, i6, i7]; S3[i0, i1, i2, i3, i4, i5, i6, i7] }" child: schedule: "[m] -> [{ S7[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i3)]; S4[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i1)]; S3[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i1)]; S1[i0, i1, i2, i3] -> [(i1)]; S2[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i1)]; S5[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i3)]; S6[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i3)] }]" options: "[m] -> { separate[i0] }" child: sequence: - filter: "[m] -> { S6[i0, i1, i2, i3, i4, i5, i6, i7]; S5[i0, i1, i2, i3, i4, i5, i6, i7]; S7[i0, i1, i2, i3, i4, i5, i6, i7] }" child: schedule: "[m] -> [{ S7[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)]; S5[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)]; S6[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)] }, { S7[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)]; S5[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)]; S6[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)] }]" options: "[m] -> { separate[i0] }" - filter: "[m] -> { S1[i0, i1, i2, i3] }" - filter: "[m] -> { S2[i0, i1, i2, i3, i4, i5, i6, i7]; S4[i0, i1, i2, i3, i4, i5, i6, i7]; S3[i0, i1, i2, i3, i4, i5, i6, i7] }" child: schedule: "[m] -> [{ S4[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)]; S3[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)]; S2[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i4)] }, { S4[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)]; S3[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)]; S2[i0, i1, i2, i3, i4, i5, i6, i7] -> [(i5)] }]" options: "[m] -> { separate[i0] }" - filter: "[m] -> { S8[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/gesced3.c0000664000175000017500000000035112645737061016074 00000000000000{ for (int c0 = M + 1; c0 <= 2 * M; c0 += 1) S1(-M + c0); for (int c0 = 2 * M + 1; c0 <= M + N; c0 += 1) { S2(-2 * M + c0); S1(-M + c0); } for (int c0 = M + N + 1; c0 <= 2 * M + N; c0 += 1) S2(-2 * M + c0); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali6.c0000664000175000017500000000034712645737061020313 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { for (int c2 = 2; c2 < N; c2 += 1) for (int c3 = 2; c3 < N; c3 += 1) S1(c0, c2, c3); for (int c2 = 2; c2 < N; c2 += 1) for (int c3 = 2; c3 < N; c3 += 1) S2(c0, c2, c3); } isl-0.16.1/test_inputs/codegen/cloog/forwardsub-2-1-2-3.st0000664000175000017500000000143012645737061017734 00000000000000domain: "[M] -> { S4[i0, 0] : i0 >= 2 and M >= 3 and i0 <= M; S3[1, 0] : M >= 3; S2[i0, 1, i2] : i2 >= 1 + i0 and i0 >= 2 and i2 <= M; S1[1, 1, i2] : M >= 3 and i2 <= M and i2 >= 2 }" child: context: "[M] -> { [] : M >= 3 }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i0)]; S4[i0, i1] -> [(i0)]; S3[i0, i1] -> [(i0)]; S2[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)]; S4[i0, i1] -> [(i1)]; S3[i0, i1] -> [(i1)]; S2[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)]; S4[i0, i1] -> [(0)]; S3[i0, i1] -> [(0)]; S2[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1, i2] }" - filter: "[M] -> { S2[i0, i1, i2] }" - filter: "[M] -> { S3[i0, i1] }" - filter: "[M] -> { S4[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/singleton.st0000664000175000017500000000017512645737061016771 00000000000000domain: "{ S1[]; S2[] }" child: context: "{ [] }" child: sequence: - filter: "{ S2[] }" - filter: "{ S1[] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner3.st0000664000175000017500000000071212645737061020664 00000000000000domain: "[M] -> { S1[i0, i1, i2] : i0 <= M and i1 >= 1 and i1 <= M and i2 >= 1 and i2 <= i0 }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i1 + i2)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/0D-3.c0000664000175000017500000000000612645737061015157 00000000000000S1(); isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam3.c0000664000175000017500000000110612645737061020207 00000000000000for (int c0 = 5; c0 <= 5 * M; c0 += 1) { for (int c1 = max(2, floord(-M + c0, 4)); c1 < min(-((5 * M - c0 + 1) % 2) + M, (c0 + 1) / 3 - 2); c1 += 1) for (int c2 = max(1, -M - c1 + (M + c0) / 2 - 2); c2 < min(c1, -2 * c1 + (c0 + c1) / 2 - 2); c2 += 1) S1(c0 - 2 * c1 - 2 * c2 - 5, c1, c2); for (int c1 = max(1, floord(-M + c0, 4)); c1 < (c0 + 1) / 5; c1 += 1) S2(c0 - 4 * c1 - 3, c1); if (c0 % 5 == 0) S4(c0 / 5); for (int c1 = max(-3 * M - c0 + 3 * ((M + c0) / 2) + 1, -((c0 - 1) % 3) + 3); c1 < (c0 + 1) / 5; c1 += 3) S3((c0 - 2 * c1 - 1) / 3, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-liu-zhuge1.st0000664000175000017500000000143412645737061020776 00000000000000domain: "[M, N] -> { S3[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 0 and i1 <= N; S1[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 0 and i1 <= N; S2[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 0 and i1 <= N }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(-4 + 3i0 + i1)]; S2[i0, i1] -> [(3i0 + i1)]; S3[i0, i1] -> [(3i0 + i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1]; S2[i0, i1] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S3[i0, i1] }" child: schedule: "[M, N] -> [{ S3[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali2.c0000664000175000017500000000030012645737061020274 00000000000000{ for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/uday_scalars.c0000664000175000017500000000016212645737061017231 00000000000000{ for (int c0 = 0; c0 <= n; c0 += 1) S1(c0, 0, 0); for (int c0 = 0; c0 <= n; c0 += 1) S2(0, c0, 0); } isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-1.st0000664000175000017500000000022612645737061017473 00000000000000domain: "{ S1[i0] : i0 >= 0 and i0 <= 2 }" child: context: "{ [] }" child: schedule: "[{ S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/walters2.st0000664000175000017500000000070312645737061016527 00000000000000domain: "{ S2[j, 51] : j <= 24 and j >= 1; S2[25, i] : i <= 51 and i >= 1; S2[j, 0] : j <= 25 and j >= 1; S2[0, i] : i <= 51 and i >= 0; S1[j, i] : j >= 1 and j <= 24 and i >= 1 and i <= 50 }" child: context: "{ [] }" child: schedule: "[{ S1[j, i] -> [(j)]; S2[j, i] -> [(j)] }, { S1[j, i] -> [(i)]; S2[j, i] -> [(i)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[j, i] }" - filter: "{ S2[j, i] }" isl-0.16.1/test_inputs/codegen/cloog/jacobi-shared.st0000664000175000017500000000275512645737061017470 00000000000000domain: "[T, N, h0, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { S1[i0, i1] : exists (e0 = floor((-1 + h0)/2), e1 = floor((-32b0 + g1)/2048), e2 = floor((-32b1 + g2)/1024), e3 = floor((-15 - t0 + i0)/16), e4 = floor((-31 - t1 + i1)/32): g0 = h0 and 2e0 = -1 + h0 and 2048e1 = -32b0 + g1 and 1024e2 = -32b1 + g2 and 16e3 = -15 - t0 + i0 and 32e4 = -31 - t1 + i1 and h0 >= 1 and h0 <= -1 + 2T and i0 >= 2 and i0 <= -2 + N and i1 >= 2 and i1 <= -2 + N and b1 <= 31 and b1 >= 0 and b0 <= 63 and b0 >= 0 and i1 <= 31 + g2 and i1 >= g2 and N >= 4 and i0 >= g1 and i0 <= 31 + g1 and g2 <= -2 + N and g2 >= -29 and g1 <= -2 + N and g1 >= -29 and g1 >= 32b0 and g2 >= 32b1 and 32b0 <= -2 + N and 32b1 <= -2 + N and t0 >= 0 and t0 <= 15 and t1 >= 0 and t1 <= 31) }" child: context: "[T, N, h0, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { [] : exists (e0 = floor((-32b0 + g1)/2048), e1 = floor((-32b1 + g2)/1024): g0 = h0 and 2048e0 = -32b0 + g1 and 1024e1 = -32b1 + g2 and g2 <= -2 + N and g2 >= -29 and g1 <= -2 + N and g1 >= -29 and b1 >= 0 and b1 <= 31 and b0 <= 63 and 32b1 <= -2 + N and 32b0 <= -2 + N and b0 >= 0 and N >= 4 and h0 >= 0 and h0 <= -1 + 2T and g2 >= 32b1 and g1 >= 32b0 and t0 >= 0 and t0 <= 15 and t1 >= 0 and t1 <= 31) }" child: schedule: "[T, N, h0, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> [{ S1[i0, i1] -> [(1 - g1 + i0)] }, { S1[i0, i1] -> [(1 - g2 + i1)] }, { S1[i0, i1] -> [(t0)] }, { S1[i0, i1] -> [(t1)] }]" options: "[T, N, h0, b0, b1, g0, g1, g2, g3, g4, t0, t1] -> { separate[x] : x >= 3 }" isl-0.16.1/test_inputs/codegen/cloog/logo.st0000664000175000017500000000066712645737061015735 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i1 <= 7 and i1 >= -1 + i0; S2[i0, i1] : i0 >= 2 and i0 <= 6 and i1 >= 0 and i1 <= 4 }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/classen2.st0000664000175000017500000000226612645737061016504 00000000000000domain: "[outerTimeTileScatter, outerProcTileScatter1, outerProcTileScatter2, M, N] -> { S1[compIter1, compIter2, compIter3, 2compIter1 + compIter2 + compIter3, 1 + compIter1 + compIter2 + compIter3, 1 + compIter1 + compIter2] : N >= 3 and compIter3 <= 3 + 5outerProcTileScatter1 - compIter1 - compIter2 and compIter2 >= -1 + 5outerProcTileScatter2 - compIter1 and M >= 2 and compIter3 <= 4 + 5outerTimeTileScatter - 2compIter1 - compIter2 and compIter2 <= 3 + 5outerProcTileScatter2 - compIter1 and compIter3 >= 1 and compIter3 <= -2 + N and compIter2 >= 1 and compIter2 <= -2 + N and compIter1 >= 1 and compIter1 <= -1 + M and compIter3 >= 5outerTimeTileScatter - 2compIter1 - compIter2 and compIter3 >= -1 + 5outerProcTileScatter1 - compIter1 - compIter2 }" child: context: "[outerTimeTileScatter, outerProcTileScatter1, outerProcTileScatter2, M, N] -> { [] }" child: schedule: "[outerTimeTileScatter, outerProcTileScatter1, outerProcTileScatter2, M, N] -> [{ S1[i0, i1, i2, i3, i4, i5] -> [(i3)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i4)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i5)] }]" options: "[outerTimeTileScatter, outerProcTileScatter1, outerProcTileScatter2, M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-liu-zhuge1.c0000664000175000017500000000160312645737414020572 00000000000000if (M >= 0 && N >= 0) for (int c0 = -4; c0 <= 3 * M + N; c0 += 1) { if (c0 >= 0 && 3 * M + 1 >= c0 && (c0 + 1) % 3 >= 1 && N + 1 >= (c0 + 1) % 3) S2((c0 + 3) / 3 - 1, c0 % 3); for (int c1 = max(-3 * M + c0 - 2, (c0 + 4) % 3); c1 <= min(min(N - 2, c0 - 2), -3 * M + c0 + 3); c1 += 3) S2((c0 - c1 - 2) / 3, c1 + 2); for (int c1 = max(-3 * M + c0 + 4, (c0 + 4) % 3); c1 < min(N - 1, c0 - 1); c1 += 3) { S1((c0 - c1 + 4) / 3, c1); S2((c0 - c1 - 2) / 3, c1 + 2); } if (3 * M + N >= c0 + 4 && c0 >= N + 1 && ((-N + c0) % 3) + N >= 2 && (-N + c0) % 3 >= 1) S1((-N + c0 - 1) / 3 + 2, ((-N + c0 - 1) % 3) + N - 1); for (int c1 = max(max(c0 + 1, -3 * M + c0 + 4), (c0 + 4) % 3); c1 <= min(N, c0 + 4); c1 += 3) S1((c0 - c1 + 4) / 3, c1); for (int c1 = max(-3 * M + c0, (c0 + 6) % 3); c1 <= min(N, c0); c1 += 3) S3((c0 - c1) / 3, c1); } isl-0.16.1/test_inputs/codegen/cloog/cholesky2.c0000664000175000017500000000067312645737061016471 00000000000000{ for (int c1 = 1; c1 <= M; c1 += 1) { S1(c1); for (int c2 = c1 + 1; c2 <= M; c2 += 1) S4(c1, c2); } for (int c0 = 1; c0 < 3 * M - 1; c0 += 3) { S3((c0 + 2) / 3); for (int c1 = (c0 + 5) / 3; c1 <= M; c1 += 1) { S6((c0 + 2) / 3, c1); for (int c4 = (c0 + 5) / 3; c4 < c1; c4 += 1) S5(c4, c1, (c0 + 2) / 3); } for (int c1 = (c0 + 5) / 3; c1 <= M; c1 += 1) S2(c1, (c0 + 2) / 3); } } isl-0.16.1/test_inputs/codegen/cloog/iftest.c0000664000175000017500000000005512645737061016056 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/orc.c0000664000175000017500000000043612645737061015346 00000000000000{ for (int c0 = 0; c0 <= 2; c0 += 1) { S1(c0); for (int c1 = 0; c1 <= -c0 + 11; c1 += 1) { S2(c0, c1); S3(c0, c1); } S4(c0); } for (int c0 = 0; c0 <= 14; c0 += 1) { S5(c0); for (int c1 = 0; c1 <= 9; c1 += 1) S6(c0, c1); S7(c0); } } isl-0.16.1/test_inputs/codegen/cloog/lu.c0000664000175000017500000000031412645737061015176 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) { for (int c1 = 2; c1 <= n; c1 += 1) for (int c2 = 1; c2 < min(c0, c1); c2 += 1) S2(c2, c1, c0); for (int c3 = c0 + 1; c3 <= n; c3 += 1) S1(c0, c3); } isl-0.16.1/test_inputs/codegen/cloog/mod2.c0000664000175000017500000000011012645737061015411 00000000000000for (int c0 = 0; c0 <= 3; c0 += 1) if ((c0 + 1) % 3 >= 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/otl.c0000664000175000017500000000207112645737061015356 00000000000000if (M >= 3 && N >= 4) for (int c0 = 1; c0 < (2 * M + 2 * N - 2) / 5; c0 += 1) for (int c1 = max(c0 - (M + 2) / 5, (c0 + 1) / 2); c1 <= min(min(c0, (M + 2 * N) / 5 - 1), (2 * N + 5 * c0 + 1) / 10); c1 += 1) for (int c2 = max(max(max(max(0, c0 - c1 - 1), c1 - (N + 6) / 5 + 1), c0 - (M + N + 4) / 5 + 1), floord(-N + 5 * c0 - 3, 10) + 1); c2 <= min(min(min(c1, (M + N - 2) / 5), c0 - c1 + (N - 1) / 5 + 1), (N + 5 * c0 + 3) / 10); c2 += 1) for (int c3 = max(max(max(c0, 2 * c1 - (2 * N + 5) / 5 + 1), c1 + c2 - (N + 3) / 5), 2 * c2 - (N + 2) / 5); c3 <= min(min(min(min(min(c0 + 1, c1 + c2 + 1), c1 + (M - 2) / 5 + 1), 2 * c2 + (N - 2) / 5 + 1), (2 * M + 2 * N - 1) / 5 - 1), c2 + (M + N) / 5); c3 += 1) for (int c4 = max(max(max(max(c1, c0 - c2), c0 - (M + 6) / 5 + 1), c3 - (M + 2) / 5), (c3 + 1) / 2); c4 <= min(min(min(min(min(min(min(c0, c1 + 1), -c2 + c3 + (N - 1) / 5 + 1), c0 - c2 + N / 5 + 1), (M + 2 * N + 1) / 5 - 1), c2 + (N + 2) / 5), (2 * N + 5 * c0 + 3) / 10), (2 * N + 5 * c3 + 2) / 10); c4 += 1) S1(c0, c1, c2, c3, c4, c2); isl-0.16.1/test_inputs/codegen/cloog/thomasset.c0000664000175000017500000000060112645737061016564 00000000000000{ for (int c0 = 0; c0 <= floord(n - 1, 3); c0 += 1) for (int c2 = 3 * c0 + 1; c2 <= min(n, 3 * c0 + 3); c2 += 1) S1(c2, c0); for (int c0 = floord(n, 3); c0 <= 2 * floord(n, 3); c0 += 1) for (int c1 = 0; c1 < n; c1 += 1) for (int c3 = max(1, (n % 3) - n + 3 * c0); c3 <= min(n, (n % 3) - n + 3 * c0 + 2); c3 += 1) S2(c1 + 1, c3, 0, n / 3, c0 - n / 3); } isl-0.16.1/test_inputs/codegen/cloog/constant.st0000664000175000017500000000141412645737061016615 00000000000000domain: "[M] -> { S4[i0] : i0 >= 0 and i0 <= 1023 and i0 <= 1024 + M; S5[i0] : i0 >= 0 and i0 <= 1023 and i0 >= 1025 + M; S3[i0] : i0 >= 0 and i0 <= 1023; S2[i0] : i0 >= 0 and i0 <= 1023 and i0 >= 1025 + M; S1[i0] : i0 >= 0 and i0 <= 1023 and i0 <= 1024 + M; S6[i0] : i0 >= 0 and i0 <= 1023 }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S2[i0] -> [(-1)]; S4[i0] -> [(i0)]; S1[i0] -> [(-1)]; S3[i0] -> [(-1)]; S6[i0] -> [(i0)]; S5[i0] -> [(i0)] }, { S2[i0] -> [(i0)]; S4[i0] -> [(0)]; S1[i0] -> [(i0)]; S3[i0] -> [(i0)]; S6[i0] -> [(0)]; S5[i0] -> [(0)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S4[i0]; S1[i0] }" - filter: "[M] -> { S5[i0]; S2[i0] }" - filter: "[M] -> { S3[i0]; S6[i0] }" isl-0.16.1/test_inputs/codegen/cloog/faber.c0000664000175000017500000001456512645737414015654 00000000000000{ for (int c0 = 0; c0 <= 36; c0 += 1) { for (int c1 = -6; c1 < c0 / 14 - 5; c1 += 1) { for (int c2 = -((-2 * c1 + 3) / 5) + 9; c2 <= c1 + 12; c2 += 1) S6(c0, c1, c2); for (int c2 = c1 + 24; c2 <= -2 * c1 + 24; c2 += 1) S2(c0, c1, c2); for (int c2 = -2 * c1 + 30; c2 <= c1 + 48; c2 += 1) S1(c0, c1, c2); } for (int c1 = c0 / 14 - 5; c1 < 0; c1 += 1) { if (c1 >= -3 && 2 * c0 >= 7 * c1 + 42) S7(c0, c1, 6); for (int c2 = max(c1 - (6 * c0 + 77) / 77 + 13, -((-2 * c1 + 3) / 5) + 9); c2 <= c1 + 12; c2 += 1) S6(c0, c1, c2); for (int c2 = c1 - (3 * c0 + 14) / 14 + 49; c2 <= c1 + 48; c2 += 1) S1(c0, c1, c2); } S3(c0, 0, 0); S10(c0, 0, 0); for (int c2 = 1; c2 <= 5; c2 += 1) S3(c0, 0, c2); for (int c2 = 6; c2 <= 2 * c0 / 21 + 4; c2 += 1) { S3(c0, 0, c2); S7(c0, 0, c2); } for (int c2 = max(6, 2 * c0 / 21 + 5); c2 <= -((6 * c0 + 77) / 77) + 12; c2 += 1) S3(c0, 0, c2); for (int c2 = -((6 * c0 + 77) / 77) + 13; c2 <= 12; c2 += 1) { S3(c0, 0, c2); S6(c0, 0, c2); } for (int c2 = 13; c2 <= 24; c2 += 1) S3(c0, 0, c2); for (int c2 = -((3 * c0 + 14) / 14) + 49; c2 <= 48; c2 += 1) S1(c0, 0, c2); for (int c1 = 1; c1 <= 18; c1 += 1) { for (int c2 = -8 * c1; c2 <= min(6, -8 * c1 + 24); c2 += 1) S3(c0, c1, c2); if (c0 <= 34 && c1 == 1) { S3(c0, 1, 7); } else if (c1 == 2) { S3(c0, 2, 7); } else if (c0 >= 35 && c1 == 1) { S3(c0, 1, 7); S7(c0, 1, 7); } for (int c2 = 8; c2 <= min(-8 * c1 + 24, c1 - (6 * c0 + 77) / 77 + 12); c2 += 1) S3(c0, c1, c2); if (c1 == 1) { for (int c2 = -((6 * c0 + 77) / 77) + 14; c2 <= 13; c2 += 1) { S3(c0, 1, c2); S6(c0, 1, c2); } for (int c2 = 14; c2 <= 16; c2 += 1) S3(c0, 1, c2); } for (int c2 = max(-8 * c1 + 25, c1 - (6 * c0 + 77) / 77 + 13); c2 <= c1 + 12; c2 += 1) S6(c0, c1, c2); for (int c2 = c1 - (3 * c0 + 14) / 14 + 49; c2 <= c1 + 48; c2 += 1) S1(c0, c1, c2); } for (int c1 = 19; c1 <= 24; c1 += 1) { for (int c2 = -8 * c1; c2 <= -8 * c1 + 24; c2 += 1) S3(c0, c1, c2); for (int c2 = c1 - (6 * c0 + 77) / 77 + 13; c2 <= 30; c2 += 1) S6(c0, c1, c2); } } for (int c0 = 37; c0 <= 218; c0 += 1) { for (int c1 = (c0 + 5) / 14 - 8; c1 < min(0, c0 / 14 - 5); c1 += 1) { if (c0 <= 46 && c1 == -3) S7(c0, -3, 6); if (-77 * ((-3 * c1 + 1) / 5) + 447 >= 6 * c0) S6(c0, c1, -((-2 * c1 + 3) / 5) + 9); for (int c2 = c1 + 24; c2 <= -2 * c1 + 24; c2 += 1) S2(c0, c1, c2); for (int c2 = -2 * c1 + 30; c2 <= c1 - (3 * c0 + 17) / 14 + 56; c2 += 1) S1(c0, c1, c2); } if (c0 <= 148) for (int c1 = max(0, (c0 + 5) / 14 - 8); c1 < c0 / 14 - 5; c1 += 1) { if (c1 == 0) S2(c0, 0, 24); for (int c2 = max(c1 + 24, -2 * c1 + 30); c2 <= c1 - (3 * c0 + 17) / 14 + 56; c2 += 1) S1(c0, c1, c2); } if (c0 >= 70 && c0 % 14 >= 9) for (int c2 = max(c0 / 14 + 19, -((3 * c0 + 14) / 14) + c0 / 14 + 44); c2 <= -((3 * c0 + 17) / 14) + c0 / 14 + 51; c2 += 1) S1(c0, c0 / 14 - 5, c2); for (int c1 = c0 / 14 - 5; c1 < 0; c1 += 1) { if (7 * c1 + 114 >= 2 * c0) S7(c0, c1, 6); for (int c2 = max(8, c1 - (6 * c0 + 77) / 77 + 13); c2 <= c1 - (6 * c0 + 91) / 77 + 15; c2 += 1) S6(c0, c1, c2); for (int c2 = c1 - (3 * c0 + 14) / 14 + 49; c2 <= c1 - (3 * c0 + 17) / 14 + 56; c2 += 1) S1(c0, c1, c2); } for (int c1 = max(0, (c0 + 5) / 14 - 5); c1 < c0 / 14 - 2; c1 += 1) { for (int c2 = max(c1, -2 * c1 + 6); c2 <= min(c1 + 5, -2 * c1 + 24); c2 += 1) S9(c0, c1, c2); for (int c2 = c1 + 6; c2 <= min((2 * c1 + 1) / 5 + 7, (2 * c0 - 7 * c1 - 10) / 21 + 1); c2 += 1) S9(c0, c1, c2); for (int c2 = max(c1 + 6, (2 * c0 - 7 * c1 - 10) / 21 + 2); c2 <= (2 * c1 + 1) / 5 + 7; c2 += 1) { S7(c0, c1, c2); S9(c0, c1, c2); } if (c1 <= 3) S9(c0, c1, (2 * c1 + 1) / 5 + 8); for (int c2 = (2 * c1 + 1) / 5 + 9; c2 <= c1 - (6 * c0 + 91) / 77 + 15; c2 += 1) { S6(c0, c1, c2); S9(c0, c1, c2); } for (int c2 = max(max(c1 + 6, c1 - (6 * c0 + 91) / 77 + 16), (2 * c1 + 1) / 5 + 9); c2 <= -2 * c1 + 24; c2 += 1) S9(c0, c1, c2); for (int c2 = max(c1, -2 * c1 + 30); c2 <= min(c1 + 24, c1 - (3 * c0 + 17) / 14 + 47); c2 += 1) S8(c0, c1, c2); for (int c2 = max(c1 + 24, c1 - (3 * c0 + 14) / 14 + 49); c2 <= c1 - (3 * c0 + 17) / 14 + 56; c2 += 1) S1(c0, c1, c2); } for (int c1 = c0 / 14 - 2; c1 <= 18; c1 += 1) { for (int c2 = max(6, (c0 + 5) / 14 + 1); c2 <= min(min(c1, c0 / 14 + 3), -c1 + c1 / 2 + 18); c2 += 1) S5(c0, c1, c2); for (int c2 = c1 + 6; c2 <= min((2 * c1 + 1) / 5 + 7, (2 * c0 - 7 * c1 + 63) / 21 + 1); c2 += 1) S7(c0, c1, c2); for (int c2 = max(max(c1 + 6, c1 - (6 * c0 + 77) / 77 + 13), (2 * c1 + 1) / 5 + 9); c2 <= c1 - (6 * c0 + 91) / 77 + 15; c2 += 1) S6(c0, c1, c2); for (int c2 = max(c1 + (3 * c0 + 3) / 14 - 40, -c1 + (c1 + 1) / 2 + 21); c2 <= min(c1, c1 + 3 * c0 / 14 - 33); c2 += 1) S4(c0, c1, c2); for (int c2 = max(c1, c1 - (3 * c0 + 14) / 14 + 40); c2 <= min(c1 + 24, c1 - (3 * c0 + 17) / 14 + 47); c2 += 1) S8(c0, c1, c2); for (int c2 = max(c1 + 24, c1 - (3 * c0 + 14) / 14 + 49); c2 <= c1 - (3 * c0 + 17) / 14 + 56; c2 += 1) S1(c0, c1, c2); } for (int c1 = 19; c1 <= 24; c1 += 1) { for (int c2 = max(c1 - 12, (c0 + 5) / 14 + 1); c2 <= min(c0 / 14 + 3, -c1 + c1 / 2 + 18); c2 += 1) S5(c0, c1, c2); for (int c2 = max(max(c1 - 12, c1 + (3 * c0 + 3) / 14 - 40), -c1 + (c1 + 1) / 2 + 21); c2 <= min(c1, c1 + 3 * c0 / 14 - 33); c2 += 1) S4(c0, c1, c2); for (int c2 = max(c1 + 6, c1 - (6 * c0 + 77) / 77 + 13); c2 <= min(30, c1 - (6 * c0 + 91) / 77 + 15); c2 += 1) S6(c0, c1, c2); for (int c2 = max(c1, c1 - (3 * c0 + 14) / 14 + 40); c2 <= min(c1 + 24, c1 - (3 * c0 + 17) / 14 + 47); c2 += 1) S8(c0, c1, c2); } for (int c1 = 25; c1 <= min(42, -((3 * c0 + 17) / 14) + 71); c1 += 1) for (int c2 = max(c1 - 12, c1 + (3 * c0 + 3) / 14 - 40); c2 <= min(min(30, c1), c1 + 3 * c0 / 14 - 33); c2 += 1) S4(c0, c1, c2); } } isl-0.16.1/test_inputs/codegen/cloog/byu98-1-2-3.c0000664000175000017500000000063612645737061016202 00000000000000{ for (int c0 = 2; c0 <= 3; c0 += 1) for (int c1 = -c0 + 6; c1 <= 6; c1 += 1) S1(c0, c1); for (int c0 = 4; c0 <= 8; c0 += 1) { if (c0 >= 6) { S2(c0, -c0 + 9); } else { if (c0 == 4) for (int c1 = 3; c1 <= 4; c1 += 1) S1(4, c1); S1(c0, -c0 + 9); S2(c0, -c0 + 9); } for (int c1 = max(c0 - 1, -c0 + 10); c1 <= 6; c1 += 1) S1(c0, c1); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-fusion2.c0000664000175000017500000000043112645737061020161 00000000000000if (N >= 1) { for (int c1 = 1; c1 <= M; c1 += 1) S1(1, c1); for (int c0 = 2; c0 <= N; c0 += 1) { for (int c1 = 1; c1 <= M; c1 += 1) S2(c0 - 1, c1); for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); } for (int c1 = 1; c1 <= M; c1 += 1) S2(N, c1); } isl-0.16.1/test_inputs/codegen/cloog/square+triangle-1-1-2-3.c0000664000175000017500000000027212645737061020455 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { S1(c0, 1); for (int c1 = 2; c1 <= c0; c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = c0 + 1; c1 <= M; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/min-3-1.st0000664000175000017500000000041712645737061016047 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 0 and i0 <= M and i0 <= 10 and i1 >= 0 and i1 <= M and i1 <= 10 }" child: context: "[M] -> { [] : M >= 0 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/christian.st0000664000175000017500000000050412645737061016747 00000000000000domain: "[N] -> { S1[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N; S2[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= 0 and i1 <= -1 + N }" child: context: "[N] -> { [] }" child: schedule: "[N] -> [{ S1[i0, i1] -> [(i0 - i1)]; S2[i0, i1] -> [(1 + i0 - i1)] }]" options: "[N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/infinite2.st0000664000175000017500000000065612645737061016662 00000000000000domain: "[M, N] -> { S1[i0] : i0 >= 1; S2[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i0)]; S1[i0] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0] -> [(0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/gauss.st0000664000175000017500000000065712645737061016116 00000000000000domain: "[M] -> { S2[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 1 + i0 and i1 <= M and i2 >= 1 + i0 and i2 <= M; S1[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= -1 + i0 and i2 >= 1 + i0 and i2 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i2)]; S2[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/block2.st0000664000175000017500000000071712645737061016145 00000000000000domain: "{ S2[i0, 1] : i0 >= 0 and i0 <= 9; S1[i0, 1] : i0 >= 0 and i0 <= 9; S3[i0, 1] : i0 >= 0 and i0 <= 9 }" child: context: "{ [] }" child: schedule: "[{ S3[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S3[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1] }" - filter: "{ S3[i0, i1] }" - filter: "{ S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner5.c0000664000175000017500000000026412645737061020464 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) for (int c2 = 1; c2 <= M; c2 += 1) for (int c3 = 1; c3 <= M; c3 += 1) S1(c1, c2, c0, c3); isl-0.16.1/test_inputs/codegen/cloog/multi-stride2.st0000664000175000017500000000041012645737061017463 00000000000000domain: "{ S1[i0, i1, i2] : 2i1 = -1 + i0 and 3i2 = -2 + i0 and i0 >= 0 and i0 <= 100 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner4.c0000664000175000017500000000033012645737061020455 00000000000000for (int c0 = 2; c0 <= 2 * M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) for (int c2 = 1; c2 <= M; c2 += 1) for (int c3 = max(1, -M + c0); c3 <= min(M, c0 - 1); c3 += 1) S1(c2, c1, c3, c0 - c3); isl-0.16.1/test_inputs/codegen/cloog/multi-stride.c0000664000175000017500000000000412645737061017174 00000000000000{ } isl-0.16.1/test_inputs/codegen/cloog/usvd_e_t.c0000664000175000017500000001510512645737061016372 00000000000000{ for (int c0 = 0; c0 <= 2; c0 += 1) { S1(c0, 0, 0); for (int c1 = 0; c1 <= 4; c1 += 1) S2(c0, c1, 0); } S1(3, 0, 0); for (int c1 = 0; c1 <= 4; c1 += 1) S2(3, c1, 0); for (int c1 = 7; c1 <= 11; c1 += 1) S8(3, c1, 0); S1(4, 0, 0); S2(4, 0, 0); S3(4, 0, 0); S5(4, 0, 0); for (int c1 = 1; c1 <= 4; c1 += 1) { S2(4, c1, 0); S5(4, c1, 0); } for (int c1 = 7; c1 <= 11; c1 += 1) S8(4, c1, 0); for (int c0 = 5; c0 <= 6; c0 += 1) { for (int c1 = -4; c1 < c0 - 8; c1 += 1) S6(c0, c1, 0); for (int c1 = c0 - 9; c1 < 0; c1 += 1) S7(c0, c1, 0); S3(c0, 0, 0); S7(c0, 0, 0); for (int c1 = 1; c1 < c0 - 3; c1 += 1) S4(c0, c1, -1); for (int c1 = c0 - 4; c1 <= 4; c1 += 1) S5(c0, c1, 0); for (int c1 = 7; c1 <= 11; c1 += 1) S8(c0, c1, 0); } for (int c1 = -4; c1 < -1; c1 += 1) S6(7, c1, 0); for (int c1 = -2; c1 < 0; c1 += 1) S7(7, c1, 0); S3(7, 0, 0); S7(7, 0, 0); for (int c1 = 1; c1 <= 3; c1 += 1) S4(7, c1, -1); for (int c1 = 3; c1 <= 4; c1 += 1) S5(7, c1, 0); S9(7, 4, 0); S10(7, 4, 0); S11(7, 4, 0); S21(7, 4, 0); S23(7, 4, 0); S11(7, 4, 1); S16(7, 4, 1); S17(7, 4, 1); for (int c2 = 2; c2 <= 4; c2 += 1) S11(7, 4, c2); S12(7, 5, 0); S21(7, 5, 0); S22(7, 5, 0); S23(7, 5, 0); S12(7, 5, 1); S16(7, 5, 1); S17(7, 5, 1); for (int c2 = 2; c2 <= 4; c2 += 1) S12(7, 5, c2); S21(7, 6, 0); S22(7, 6, 0); S23(7, 6, 0); for (int c1 = 7; c1 <= 8; c1 += 1) { S8(7, c1, 0); S21(7, c1, 0); S22(7, c1, 0); S23(7, c1, 0); } S8(7, 9, 0); S22(7, 9, 0); for (int c1 = 10; c1 <= 11; c1 += 1) S8(7, c1, 0); for (int c1 = -4; c1 < 0; c1 += 1) S6(8, c1, 0); S7(8, -1, 0); S3(8, 0, 0); S7(8, 0, 0); S19(8, 1, -2); S4(8, 1, -1); S19(8, 1, -1); S19(8, 1, 0); S15(8, 1, 4); S18(8, 1, 4); for (int c2 = -4; c2 < -2; c2 += 1) { S14(8, 2, c2); S20(8, 2, c2); } S14(8, 2, -2); S19(8, 2, -2); S20(8, 2, -2); S4(8, 2, -1); S14(8, 2, -1); S19(8, 2, -1); S20(8, 2, -1); S14(8, 2, 0); S19(8, 2, 0); S20(8, 2, 0); S15(8, 2, 4); S18(8, 2, 4); for (int c2 = -4; c2 < -1; c2 += 1) { S14(8, 3, c2); S20(8, 3, c2); } S4(8, 3, -1); S14(8, 3, -1); S20(8, 3, -1); S14(8, 3, 0); S20(8, 3, 0); S15(8, 3, 4); S18(8, 3, 4); for (int c2 = -4; c2 < -1; c2 += 1) { S14(8, 4, c2); S20(8, 4, c2); } S4(8, 4, -1); S14(8, 4, -1); S20(8, 4, -1); S5(8, 4, 0); S9(8, 4, 0); S10(8, 4, 0); S14(8, 4, 0); S20(8, 4, 0); S23(8, 4, 0); S13(8, 4, 1); S21(8, 4, 1); S23(8, 4, 1); S24(8, 4, 1); S13(8, 4, 2); S16(8, 4, 2); S17(8, 4, 2); S24(8, 4, 2); S13(8, 4, 3); S24(8, 4, 3); S13(8, 4, 4); S15(8, 4, 4); S23(8, 5, 0); S11(8, 5, 1); S21(8, 5, 1); S22(8, 5, 1); S23(8, 5, 1); S24(8, 5, 1); S11(8, 5, 2); S16(8, 5, 2); S17(8, 5, 2); S24(8, 5, 2); S11(8, 5, 3); S24(8, 5, 3); S11(8, 5, 4); S15(8, 5, 4); S23(8, 6, 0); S12(8, 6, 1); S21(8, 6, 1); S22(8, 6, 1); S23(8, 6, 1); S24(8, 6, 1); S12(8, 6, 2); S16(8, 6, 2); S17(8, 6, 2); S24(8, 6, 2); S12(8, 6, 3); S24(8, 6, 3); S12(8, 6, 4); for (int c1 = 7; c1 <= 8; c1 += 1) { S23(8, c1, 0); S21(8, c1, 1); S22(8, c1, 1); S23(8, c1, 1); for (int c2 = 1; c2 <= 3; c2 += 1) S24(8, c1, c2); } S22(8, 9, 1); S7(9, 0, 0); for (int c1 = 1; c1 <= 2; c1 += 1) { for (int c2 = -1; c2 <= 0; c2 += 1) S19(9, c1, c2); for (int c2 = 4; c2 <= 5; c2 += 1) { S15(9, c1, c2); S18(9, c1, c2); } } S20(9, 3, -4); for (int c2 = -3; c2 < -1; c2 += 1) { S14(9, 3, c2); S20(9, 3, c2); } for (int c2 = -1; c2 <= 0; c2 += 1) { S14(9, 3, c2); S19(9, 3, c2); S20(9, 3, c2); } for (int c2 = 4; c2 <= 5; c2 += 1) { S15(9, 3, c2); S18(9, 3, c2); } S20(9, 4, -4); for (int c2 = -3; c2 < 0; c2 += 1) { S14(9, 4, c2); S20(9, 4, c2); } S9(9, 4, 0); S10(9, 4, 0); S14(9, 4, 0); S20(9, 4, 0); for (int c2 = 0; c2 <= 1; c2 += 1) S23(9, 4, c2); S13(9, 4, 2); S21(9, 4, 2); S23(9, 4, 2); S24(9, 4, 2); S13(9, 4, 3); S16(9, 4, 3); S17(9, 4, 3); S24(9, 4, 3); S13(9, 4, 4); for (int c2 = 4; c2 <= 5; c2 += 1) { S15(9, 4, c2); S18(9, 4, c2); } for (int c2 = 0; c2 <= 1; c2 += 1) S23(9, 5, c2); S13(9, 5, 2); S21(9, 5, 2); S22(9, 5, 2); S23(9, 5, 2); S24(9, 5, 2); S13(9, 5, 3); S16(9, 5, 3); S17(9, 5, 3); S24(9, 5, 3); S13(9, 5, 4); for (int c2 = 4; c2 <= 5; c2 += 1) S15(9, 5, c2); for (int c2 = 0; c2 <= 1; c2 += 1) S23(9, 6, c2); S11(9, 6, 2); S21(9, 6, 2); S22(9, 6, 2); S23(9, 6, 2); S24(9, 6, 2); S11(9, 6, 3); S16(9, 6, 3); S17(9, 6, 3); S24(9, 6, 3); S11(9, 6, 4); for (int c2 = 0; c2 <= 1; c2 += 1) S23(9, 7, c2); S12(9, 7, 2); S21(9, 7, 2); S22(9, 7, 2); S23(9, 7, 2); S24(9, 7, 2); S12(9, 7, 3); S16(9, 7, 3); S17(9, 7, 3); S24(9, 7, 3); S12(9, 7, 4); for (int c2 = 0; c2 <= 1; c2 += 1) S23(9, 8, c2); S21(9, 8, 2); S22(9, 8, 2); S23(9, 8, 2); for (int c2 = 2; c2 <= 3; c2 += 1) S24(9, 8, c2); S22(9, 9, 2); for (int c1 = 1; c1 <= 3; c1 += 1) { S19(10, c1, 0); S26(10, c1, 3); S15(10, c1, 4); S18(10, c1, 4); S25(10, c1, 4); for (int c2 = 5; c2 <= 6; c2 += 1) { S15(10, c1, c2); S18(10, c1, c2); } } for (int c2 = -4; c2 < -2; c2 += 1) S20(10, 4, c2); for (int c2 = -2; c2 < 0; c2 += 1) { S14(10, 4, c2); S20(10, 4, c2); } S9(10, 4, 0); S10(10, 4, 0); S14(10, 4, 0); S19(10, 4, 0); S20(10, 4, 0); S13(10, 4, 3); S21(10, 4, 3); S24(10, 4, 3); S26(10, 4, 3); S13(10, 4, 4); S15(10, 4, 4); S16(10, 4, 4); S17(10, 4, 4); S18(10, 4, 4); S25(10, 4, 4); for (int c2 = 5; c2 <= 6; c2 += 1) { S15(10, 4, c2); S18(10, 4, c2); } S13(10, 5, 3); S21(10, 5, 3); S22(10, 5, 3); S24(10, 5, 3); S26(10, 5, 3); S13(10, 5, 4); S15(10, 5, 4); S16(10, 5, 4); S17(10, 5, 4); S18(10, 5, 4); S25(10, 5, 4); for (int c2 = 5; c2 <= 6; c2 += 1) { S15(10, 5, c2); S18(10, 5, c2); } S13(10, 6, 3); S21(10, 6, 3); S22(10, 6, 3); S24(10, 6, 3); S13(10, 6, 4); S16(10, 6, 4); S17(10, 6, 4); S11(10, 7, 3); S21(10, 7, 3); S22(10, 7, 3); S24(10, 7, 3); S11(10, 7, 4); S16(10, 7, 4); S17(10, 7, 4); S12(10, 8, 3); S21(10, 8, 3); S22(10, 8, 3); S24(10, 8, 3); S12(10, 8, 4); S16(10, 8, 4); S17(10, 8, 4); S22(10, 9, 3); for (int c0 = 11; c0 <= 14; c0 += 1) for (int c1 = 1; c1 <= 5; c1 += 1) { S26(c0, c1, 3); S25(c0, c1, 4); } } isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-2.st0000664000175000017500000000017712645737061017501 00000000000000domain: "{ S1[0] }" child: context: "{ [] }" child: schedule: "[{ S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/block.st0000664000175000017500000000043112645737061016054 00000000000000domain: "{ S1[]; S3[i0] : i0 >= 0 and i0 <= 1; S2[] }" child: context: "{ [] }" child: schedule: "[{ S2[] -> [(1)]; S3[i0] -> [(i0)]; S1[] -> [(0)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[]; S2[] }" - filter: "{ S3[i0] }" isl-0.16.1/test_inputs/codegen/cloog/test.c0000664000175000017500000000056512645737061015545 00000000000000{ for (int c0 = 1; c0 <= 2; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 3; c0 <= N; c0 += 1) { for (int c1 = 1; c1 <= min(M, c0 - 1); c1 += 1) S1(c0, c1); if (M >= c0) { S1(c0, c0); S2(c0, c0); } for (int c1 = c0 + 1; c1 <= M; c1 += 1) S1(c0, c1); if (c0 >= M + 1) S2(c0, c0); } } isl-0.16.1/test_inputs/codegen/cloog/lineality-2-1-2.st0000664000175000017500000000066212645737061017416 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i1 >= 1 and i0 <= M and i1 <= M; S2[i0, 2 + i0] : i0 >= 1 and i0 <= M }" child: context: "[M] -> { [] : M >= 2 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-bastoul3.st0000664000175000017500000000043012645737061020533 00000000000000domain: "{ S1[i0, i1, i2] : 2i2 = i0 - i1 and i1 >= 1 and i1 <= 3 and i1 <= -2 + i0 and i1 >= -6 + i0 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/0D-1.st0000664000175000017500000000005612645737061015366 00000000000000domain: "{ S1[] }" child: context: "{ [] }" isl-0.16.1/test_inputs/codegen/cloog/rectangle.st0000664000175000017500000000034012645737061016725 00000000000000domain: "[n] -> { S1[i0, i1] : i0 >= 0 and i0 <= n and i1 >= 0 and i1 <= n }" child: context: "[n] -> { [] : n >= 0 }" child: schedule: "[n] -> [{ S1[i0, i1] -> [(i0 + i1)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/constbound.c0000664000175000017500000000042612645737061016740 00000000000000for (int c0 = 0; c0 <= 199; c0 += 1) { for (int c1 = 50 * c0; c1 <= 50 * c0 + 24; c1 += 1) for (int c2 = 0; c2 <= c1; c2 += 1) S1(c0, c1, c2); for (int c1 = 50 * c0 + 25; c1 <= 50 * c0 + 49; c1 += 1) for (int c2 = 0; c2 <= c1; c2 += 1) S2(c0, c1, c2); } isl-0.16.1/test_inputs/codegen/cloog/yosr.st0000664000175000017500000000053312645737061015761 00000000000000domain: "[n] -> { S1[i0, i1] : i0 >= 1 and i0 <= -1 + n and i1 >= 1 + i0 and i1 <= n; S2[i0, i1, i2] : i0 >= 1 and i0 <= -1 + n and i1 >= 1 + i0 and i1 <= n and i2 >= 1 + i0 and i2 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S2[i0, i1, i2] -> [(i2)]; S1[i0, i1] -> [(i0)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/lux.st0000664000175000017500000000137712645737061015604 00000000000000domain: "[M] -> { S1[i0, i0, M, i3] : i0 >= 1 and i0 <= M and i3 >= 1 + i0 and i3 <= M; S2[i0, i1, i2, i2, i0] : i1 >= 1 and i1 <= M and i2 >= 1 + i1 and i2 <= M and i1 <= -1 + i0 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i0)]; S2[i0, i1, i2, i3, i4] -> [(i0)] }, { S1[i0, i1, i2, i3] -> [(i1)]; S2[i0, i1, i2, i3, i4] -> [(i1)] }, { S1[i0, i1, i2, i3] -> [(i2)]; S2[i0, i1, i2, i3, i4] -> [(i2)] }, { S1[i0, i1, i2, i3] -> [(i3)]; S2[i0, i1, i2, i3, i4] -> [(i3)] }, { S1[i0, i1, i2, i3] -> [(0)]; S2[i0, i1, i2, i3, i4] -> [(i4)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1, i2, i3] }" - filter: "[M] -> { S2[i0, i1, i2, i3, i4] }" isl-0.16.1/test_inputs/codegen/cloog/tiling.c0000664000175000017500000000016512645737061016050 00000000000000for (int c0 = 0; c0 <= n / 10; c0 += 1) for (int c1 = 10 * c0; c1 <= min(n, 10 * c0 + 9); c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/vivien.st0000664000175000017500000000157412645737061016273 00000000000000domain: "[n] -> { S2[i, j] : 29j >= 1 - i and i <= n and j >= 1 and j <= -1 + i; S1[i] : i >= 1 - 27n and i <= 28 + n; S4[i, j] : i >= 1 and i <= n and j >= 1 + i and j <= n; S5[i, j, k] : i >= 1 and i <= n and j >= 1 + i and j <= n and k >= 1 and k <= -1 + i; S6[i, j] : i >= 1 and i <= n and j >= 1 + i and j <= n; S3[i] : i >= 1 and i <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i0] -> [(2 + 2i0)]; S4[i0, i1] -> [(2i0 + 2i1)]; S6[i0, i1] -> [(2i0 + 2i1)]; S3[i0] -> [(1 + 4i0)]; S5[i0, i1, i2] -> [(2i0 + 2i1)]; S2[i0, i1] -> [(1 + 2i0 + 2i1)] }, { S1[i0] -> [(0)]; S4[i0, i1] -> [(-i0)]; S6[i0, i1] -> [(2 - i0)]; S3[i0] -> [(0)]; S5[i0, i1, i2] -> [(1 - i0)]; S2[i0, i1] -> [(i1)] }, { S1[i0] -> [(0)]; S4[i0, i1] -> [(0)]; S6[i0, i1] -> [(0)]; S3[i0] -> [(0)]; S5[i0, i1, i2] -> [(i2)]; S2[i0, i1] -> [(0)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-interp2.st0000664000175000017500000000537112645737061020774 00000000000000domain: "[M, N, O, P, Q, R, S, T, U] -> { S1[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S3[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= P and i2 <= -1 + M; S4[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= 1 and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M; S2[i0, i1, i2] : i0 >= 1 and i0 <= -1 + O and i1 >= Q and i1 <= -1 + N and i2 >= 1 and i2 <= -1 + M }" child: context: "[M, N, O, P, Q, R, S, T, U] -> { [] }" child: sequence: - filter: "[M, N, O, P, Q, R, S, T, U] -> { S1[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S1[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S1[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S2[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S3[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S3[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S3[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S3[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R, S, T, U] -> { S4[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R, S, T, U] -> [{ S4[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R, S, T, U] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-stride.st0000664000175000017500000000031412645737061020272 00000000000000domain: "[M] -> { S1[i0, i1] : 7i1 = -2 + i0 and i0 >= 2 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/lu.st0000664000175000017500000000060412645737061015404 00000000000000domain: "[n] -> { S1[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 + i0 and i1 <= n; S2[i0, i1, i2] : i0 >= 1 and i0 <= n and i1 >= 1 + i0 and i1 <= n and i2 >= 1 + i0 and i2 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S2[i0, i1, i2] -> [(i2)]; S1[i0, i1] -> [(i0)] }, { S2[i0, i1, i2] -> [(i1)]; S1[i0, i1] -> [(n)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-5.c0000664000175000017500000000003112645737061017265 00000000000000S1(1, floord(M + 1, 2)); isl-0.16.1/test_inputs/codegen/cloog/forwardsub-1-1-2.st0000664000175000017500000000123212645737061017573 00000000000000domain: "[M] -> { S4[i0, i0] : M >= 3 and i0 <= M and i0 >= 2; S1[i0, 1] : M >= 3 and i0 <= M and i0 >= 2; S3[1, 1] : M >= 3; S2[i0, i1] : i1 <= -1 + i0 and i1 >= 2 and i0 <= M }" child: context: "[M] -> { [] : M >= 3 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S4[i0, i1] -> [(i0)]; S3[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S4[i0, i1] -> [(i1)]; S3[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" - filter: "[M] -> { S3[i0, i1] }" - filter: "[M] -> { S4[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/constant.c0000664000175000017500000000053012645737061016407 00000000000000{ for (int c1 = 0; c1 <= min(1023, M + 1024); c1 += 1) { S1(c1); S3(c1); } for (int c1 = max(0, M + 1025); c1 <= 1023; c1 += 1) { S2(c1); S3(c1); } for (int c0 = 0; c0 <= min(1023, M + 1024); c0 += 1) { S4(c0); S6(c0); } for (int c0 = max(0, M + 1025); c0 <= 1023; c0 += 1) { S5(c0); S6(c0); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-QR.st0000664000175000017500000000436212645737061017331 00000000000000domain: "[M, N] -> { S5[i0] : i0 >= 0 and i0 <= -1 + N; S1[i0] : i0 >= 0 and i0 <= -1 + N; S3[i0] : i0 >= 0 and i0 <= -1 + N; S2[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= i0 and i1 <= -1 + M; S6[i0, i1] : i0 >= 0 and i1 >= 1 + i0 and i1 <= -1 + N; S9[i0, i1, i2] : i0 >= 0 and i1 >= 1 + i0 and i1 <= -1 + N and i2 >= i0 and i2 <= -1 + M; S4[i0, i1] : i0 >= 0 and i0 <= -1 + N and i1 >= i0 and i1 <= -1 + M; S8[i0, i1] : i0 >= 0 and i1 >= 1 + i0 and i1 <= -1 + N; S10[i0] : i0 >= 0 and i0 <= -1 + N; S7[i0, i1, i2] : i0 >= 0 and i1 >= 1 + i0 and i1 <= -1 + N and i2 >= i0 and i2 <= -1 + M }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S3[i0] -> [(1 + i0)]; S10[i0] -> [(1 + i0)]; S5[i0] -> [(1 + i0)]; S7[i0, i1, i2] -> [(2 + i0)]; S9[i0, i1, i2] -> [(2 + i0)]; S2[i0, i1] -> [(1 + i0)]; S4[i0, i1] -> [(1 + i0)]; S8[i0, i1] -> [(2 + i0)]; S1[i0] -> [(i0)]; S6[i0, i1] -> [(2 + i0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S6[i0, i1]; S9[i0, i1, i2]; S8[i0, i1]; S7[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2] -> [(i1)]; S9[i0, i1, i2] -> [(i1)]; S8[i0, i1] -> [(i1)]; S6[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S6[i0, i1] }" - filter: "[M, N] -> { S7[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S7[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S8[i0, i1] }" - filter: "[M, N] -> { S9[i0, i1, i2] }" child: schedule: "[M, N] -> [{ S9[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S2[i0, i1] }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S3[i0] }" - filter: "[M, N] -> { S4[i0, i1] }" child: schedule: "[M, N] -> [{ S4[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" - filter: "[M, N] -> { S10[i0] }" - filter: "[M, N] -> { S1[i0] }" - filter: "[M, N] -> { S5[i0] }" isl-0.16.1/test_inputs/codegen/cloog/gesced.c0000664000175000017500000000071612645737061016016 00000000000000{ for (int c0 = 1; c0 <= N; c0 += 1) S1(c0); for (int c0 = N + 1; c0 <= 2 * N; c0 += 1) for (int c1 = 1; c1 <= N; c1 += 1) S2(c1, -N + c0); for (int c0 = 2 * N + 1; c0 <= M + N; c0 += 1) { for (int c1 = 1; c1 <= N; c1 += 1) S3(c1, -2 * N + c0); for (int c1 = 1; c1 <= N; c1 += 1) S2(c1, -N + c0); } for (int c0 = M + N + 1; c0 <= M + 2 * N; c0 += 1) for (int c1 = 1; c1 <= N; c1 += 1) S3(c1, -2 * N + c0); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-two.c0000664000175000017500000000001512645737061017403 00000000000000S1(1, 1, 5); isl-0.16.1/test_inputs/codegen/cloog/lineality-2-1-2.c0000664000175000017500000000041312645737061017204 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { for (int c1 = 1; c1 <= min(M, c0 + 1); c1 += 1) S1(c0, c1); if (M >= c0 + 2) { S1(c0, c0 + 2); S2(c0, c0 + 2); } for (int c1 = c0 + 3; c1 <= M; c1 += 1) S1(c0, c1); if (c0 + 1 >= M) S2(c0, c0 + 2); } isl-0.16.1/test_inputs/codegen/cloog/4-param.c0000664000175000017500000000053312645737061016022 00000000000000{ for (int c0 = m; c0 <= min(n, p - 1); c0 += 1) S1(c0); for (int c0 = p; c0 <= min(m - 1, q); c0 += 1) S2(c0); for (int c0 = max(m, p); c0 <= min(n, q); c0 += 1) { S1(c0); S2(c0); } for (int c0 = max(max(m, p), q + 1); c0 <= n; c0 += 1) S1(c0); for (int c0 = max(max(m, n + 1), p); c0 <= q; c0 += 1) S2(c0); } isl-0.16.1/test_inputs/codegen/cloog/ex1.st0000664000175000017500000000071712645737061015466 00000000000000domain: "[n] -> { S1[i0, i1] : i0 >= 0 and i0 <= n and i1 >= 0 and i1 <= -15 + n; S2[i0, i1] : i0 >= 15 and i0 <= n and i1 >= 10 and i1 <= n }" child: context: "[n] -> { [] : n >= 25 }" child: schedule: "[n] -> [{ S2[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)] }]" options: "[n] -> { separate[i0] }" child: sequence: - filter: "[n] -> { S1[i0, i1] }" - filter: "[n] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/walters3.st0000664000175000017500000000072212645737061016531 00000000000000domain: "{ S2[j, a, b] : 2a = j and j >= 1 and j <= 10 and 2b <= j and 2b >= -1 + j; S1[j, a, b] : 2a = j and 2b = j and j <= 8 and j >= 2 }" child: context: "{ [] }" child: schedule: "[{ S1[j, a, b] -> [(j)]; S2[j, a, b] -> [(j)] }, { S1[j, a, b] -> [(a)]; S2[j, a, b] -> [(a)] }, { S1[j, a, b] -> [(b)]; S2[j, a, b] -> [(b)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[j, a, b] }" - filter: "{ S2[j, a, b] }" isl-0.16.1/test_inputs/codegen/cloog/dot.c0000664000175000017500000000022612645737061015346 00000000000000{ for (int c1 = 1; c1 <= M; c1 += 1) S1(0, c1); for (int c0 = 1; c0 <= N; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/darte.st0000664000175000017500000000077112645737061016070 00000000000000domain: "[n] -> { S1[i0, i1, i2] : i0 >= 1 and i0 <= n and i1 >= 1 and i1 <= n and i2 >= 1 and i2 <= n; S2[i0, i1, i2] : i0 >= 1 and i0 <= n and i1 >= 1 and i1 <= n and i2 >= 1 and i2 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i0, i1, i2] -> [(i0 - i1)]; S2[i0, i1, i2] -> [(1 + i0 - i1)] }, { S1[i0, i1, i2] -> [(i0 + i1)]; S2[i0, i1, i2] -> [(2 + i0 + i1)] }, { S1[i0, i1, i2] -> [(i0 + i1 + 2i2)]; S2[i0, i1, i2] -> [(i2)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/donotsimp.c0000664000175000017500000000022412645737061016572 00000000000000for (int c0 = 1; c0 <= 10; c0 += 1) { for (int c1 = 1; c1 <= c0; c1 += 1) S1(c0, c1); for (int c1 = 11; c1 <= M; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali3.st0000664000175000017500000000156712645737061020521 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1, i2] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M and i2 >= 1 and i2 <= M }" child: context: "[M] -> { [] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1, i2] }" child: schedule: "[M] -> [{ S2[i0, i1, i2] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1, i2] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/sor1d.st0000664000175000017500000000724512645737061016024 00000000000000domain: "[M, N] -> { S2[i0, i1, 1 + i1, 99 + 100i1, i4] : i4 >= 3 and i4 >= -193 - 200i1 and i4 >= -194 + 100i0 - 200i1 and 100i0 >= -284 - 3N and i4 <= -1 + N and i4 <= -201 + 2M + N - 200i1 and i4 <= -95 + 100i0 - 200i1 and 100i0 >= -94 - N and 50i0 >= -45 - N and 3N >= -134 - M and i1 >= 0 and N >= 4 and 200i1 >= -192 - N and 200i1 >= -193 - N + 100i0 and 100i0 <= -7 + 2M + N and 7N >= -463 - 2M and 100i1 <= -100 + M and i0 >= 0 and 200i1 <= -204 + 2M + N and 2i1 <= -1 + i0 and 5N >= -75 - 2M and N >= 8 - 2M and 50i0 <= -6 + M + N and 50i0 <= 89 + M + 2N and 100i0 <= -15 + 2M + 3N and M >= 2 and 100i1 <= -5 + M + N and 2N >= -39 - M and 200i1 <= 96 + N + 100i0 and 3N >= 16 - 2M and 100i1 >= -94 - N + 50i0 and N >= 6 - M and 100i1 >= -94 - N; S3[i0, i1, 1 + i1, 99 + 100i1, i4] : i4 >= 3 and i4 >= -193 - 200i1 and i4 >= -194 + 100i0 - 200i1 and 100i0 >= -284 - 3N and i4 <= -1 + N and i4 <= -201 + 2M + N - 200i1 and i4 <= -95 + 100i0 - 200i1 and 100i0 >= -94 - N and 50i0 >= -45 - N and 3N >= -134 - M and i1 >= 0 and N >= 4 and 200i1 >= -192 - N and 200i1 >= -193 - N + 100i0 and 100i0 <= -7 + 2M + N and 7N >= -463 - 2M and 100i1 <= -100 + M and i0 >= 0 and 200i1 <= -204 + 2M + N and 2i1 <= -1 + i0 and 5N >= -75 - 2M and N >= 8 - 2M and 50i0 <= -6 + M + N and 50i0 <= 89 + M + 2N and 100i0 <= -15 + 2M + 3N and M >= 2 and 100i1 <= -5 + M + N and 2N >= -39 - M and 200i1 <= 96 + N + 100i0 and 3N >= 16 - 2M and 100i1 >= -94 - N + 50i0 and N >= 6 - M and 100i1 >= -94 - N; S4[i0] : 200i0 >= -781 - 3N and 200i0 >= -391 - N and 50i0 >= -268 - N and 100i0 >= -392 - N and i0 >= -1 and 200i0 <= 377 + 6M + 5N and 100i0 <= 335 + 3M + 3N and 100i0 <= 190 + 3M + 2N and 200i0 <= -13 + 6M + 3N and 100i0 <= -5 + 3M + N and 3N >= -484 - 2M and N >= -95 - M and N >= -192 - 3M and 5N >= -873 - 3M and 2N >= -189 - 3M and 7N >= -1062 - 6M and 5N >= -771 - 6M and 4N >= -579 - 3M and N >= 3 and N >= 5 - 2M and M >= 1; S1[i0, i1, i2, i3] : i3 >= 4 + 100i0 - 2i2 and i3 >= 2 and i3 <= 103 + 100i0 - 2i2 and i3 <= -1 + N and i2 >= 1 and i2 >= 100i1 and 2i2 >= 5 - N + 100i0 and i2 <= M and i2 <= 99 + 100i1 and i2 <= 50 + 50i0 and i1 >= 0 and 200i1 >= -193 - N + 100i0 and 100i1 <= M and 2i1 <= 1 + i0 and i0 >= 0 and 100i0 <= -5 + 2M + N and N >= 3 and N >= -94 - 2M and M >= 1 }" child: context: "[M, N] -> { [] : M >= 0 and N >= 0 }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2, i3, i4] -> [(i0 + i1)]; S1[i0, i1, i2, i3] -> [(i0 + i1)]; S3[i0, i1, i2, i3, i4] -> [(1 + i0 + i1)]; S4[i0] -> [(i0)] }]" options: "[M, N] -> { atomic[i0] }" child: sequence: - filter: "[M, N] -> { S2[i0, i1, i2, i3, i4]; S3[i0, i1, i2, i3, i4]; S1[i0, i1, i2, i3] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2, i3, i4] -> [(i1)]; S1[i0, i1, i2, i3] -> [(i1)]; S3[i0, i1, i2, i3, i4] -> [(i2)] }, { S2[i0, i1, i2, i3, i4] -> [(-4 + 2i3 + i4)]; S1[i0, i1, i2, i3] -> [(-4 + 2i2 + i3)]; S3[i0, i1, i2, i3, i4] -> [(-4 + 2i3 + i4)] }, { S2[i0, i1, i2, i3, i4] -> [(i3)]; S1[i0, i1, i2, i3] -> [(i2)]; S3[i0, i1, i2, i3, i4] -> [(i3)] }]" options: "[M, N] -> { atomic[i0] }" child: sequence: - filter: "[M, N] -> { S3[i0, i1, i2, i3, i4] }" child: schedule: "[M, N] -> [{ S3[i0, i1, i2, i3, i4] -> [(i1)] }, { S3[i0, i1, i2, i3, i4] -> [(i4)] }]" options: "[M, N] -> { atomic[i0] }" - filter: "[M, N] -> { S1[i0, i1, i2, i3] }" - filter: "[M, N] -> { S2[i0, i1, i2, i3, i4] }" child: schedule: "[M, N] -> [{ S2[i0, i1, i2, i3, i4] -> [(i2)] }, { S2[i0, i1, i2, i3, i4] -> [(i4)] }]" options: "[M, N] -> { atomic[i0] }" - filter: "[M, N] -> { S4[i0] }" isl-0.16.1/test_inputs/codegen/cloog/thomasset.st0000664000175000017500000000067312645737061017001 00000000000000domain: "[n] -> { S1[i, j] : i <= n and i >= 1 and 3j <= -1 + i and 3j >= -3 + i; S2[i, j, 0, p, q] : i <= n and j <= n and j >= 1 and i >= 1 and 3q <= j and 3q >= -2 + j and 3p <= n and 3p >= -2 + n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S2[i0, i1, i2, i3, i4] -> [(i2 + i3 + i4)]; S1[i0, i1] -> [(i1)] }, { S2[i0, i1, i2, i3, i4] -> [(-1 + i0)]; S1[i0, i1] -> [(0)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/iftest2.c0000664000175000017500000000013012645737061016132 00000000000000for (int c0 = 1; c0 <= N; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/0D-2.c0000664000175000017500000000002412645737061015156 00000000000000if (M >= 0) S1(); isl-0.16.1/test_inputs/codegen/cloog/reservoir-tang-xue1.c0000664000175000017500000000045112645737061020407 00000000000000for (int c0 = 0; c0 <= 9; c0 += 2) for (int c1 = 0; c1 <= min(4, c0 + 3); c1 += 2) for (int c2 = max(1, c0); c2 <= min(c0 + 1, c0 - c1 + 4); c2 += 1) for (int c3 = max(1, -c0 + c1 + c2); c3 <= min(4, -c0 + c1 + c2 + 1); c3 += 1) S1(c0 / 2, (-c0 + c1) / 2, -c0 + c2, -c1 + c3); isl-0.16.1/test_inputs/codegen/cloog/0D-1.c0000664000175000017500000000000612645737061015155 00000000000000S1(); isl-0.16.1/test_inputs/codegen/cloog/lineality-1-2.st0000664000175000017500000000065612645737061017262 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i1 >= 1 and i0 <= M and i1 <= M; S2[i0, i0] : i0 >= 1 and i0 <= M }" child: context: "[M] -> { [] : M >= 2 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/param-split.st0000664000175000017500000000045412645737061017220 00000000000000domain: "[M] -> { S2[0]; S1[i0] : i0 >= 0 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S2[i0] -> [(i0)]; S1[i0] -> [(i0)] }]" options: "[M] -> { atomic[i0] }" child: sequence: - filter: "[M] -> { S1[i0] }" - filter: "[M] -> { S2[i0] }" isl-0.16.1/test_inputs/codegen/cloog/durbin_e_s.st0000664000175000017500000000250712645737061017101 00000000000000domain: "{ S2[i0, -7, 0] : i0 >= 2 and i0 <= 10; S4[1, 0, 0]; S6[i0, -9 + i0, 2] : i0 >= 2 and i0 <= 10; S1[10, i1, 4] : i1 >= 1 and i1 <= 10; S5[i0, i1, 3] : i1 <= -1 + i0 and i0 <= 10 and i1 >= 1; S7[1, 0, 0]; S8[i0, 0, 3] : i0 >= 1 and i0 <= 9; S3[i0, i1, 1] : i1 >= -7 and i0 <= 10 and i1 <= -9 + i0 }" child: context: "{ [] }" child: schedule: "[{ S6[i0, i1, i2] -> [(i0)]; S8[i0, i1, i2] -> [(i0)]; S5[i0, i1, i2] -> [(i0)]; S4[i0, i1, i2] -> [(i0)]; S7[i0, i1, i2] -> [(i0)]; S3[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)] }, { S6[i0, i1, i2] -> [(i1)]; S8[i0, i1, i2] -> [(i1)]; S5[i0, i1, i2] -> [(i1)]; S4[i0, i1, i2] -> [(i1)]; S7[i0, i1, i2] -> [(i1)]; S3[i0, i1, i2] -> [(i1)]; S1[i0, i1, i2] -> [(i1)]; S2[i0, i1, i2] -> [(i1)] }, { S6[i0, i1, i2] -> [(i2)]; S8[i0, i1, i2] -> [(i2)]; S5[i0, i1, i2] -> [(i2)]; S4[i0, i1, i2] -> [(i2)]; S7[i0, i1, i2] -> [(i2)]; S3[i0, i1, i2] -> [(i2)]; S1[i0, i1, i2] -> [(i2)]; S2[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1, i2] }" - filter: "{ S2[i0, i1, i2] }" - filter: "{ S3[i0, i1, i2] }" - filter: "{ S4[i0, i1, i2] }" - filter: "{ S5[i0, i1, i2] }" - filter: "{ S6[i0, i1, i2] }" - filter: "{ S7[i0, i1, i2] }" - filter: "{ S8[i0, i1, i2] }" isl-0.16.1/test_inputs/codegen/cloog/rectangle.c0000664000175000017500000000017012645737061016522 00000000000000for (int c0 = 0; c0 <= 2 * n; c0 += 1) for (int c1 = max(0, -n + c0); c1 <= min(n, c0); c1 += 1) S1(c1, c0 - c1); isl-0.16.1/test_inputs/codegen/cloog/reservoir-cholesky2.c0000664000175000017500000000057412645737061020507 00000000000000for (int c0 = 2; c0 < 3 * M; c0 += 1) { if ((c0 - 2) % 3 == 0) S1((c0 + 1) / 3); for (int c1 = (c0 + 1) / 3 + 1; c1 <= min(M, c0 - 2); c1 += 1) for (int c2 = -c1 + (c0 + c1 + 1) / 2 + 1; c2 <= min(c1, c0 - c1); c2 += 1) S3(c0 - c1 - c2 + 1, c1, c2); for (int c1 = -c0 + 2 * ((2 * c0 + 1) / 3) + 2; c1 <= min(M, c0); c1 += 2) S2(((c0 - c1) / 2) + 1, c1); } isl-0.16.1/test_inputs/codegen/cloog/4-param.st0000664000175000017500000000057312645737061016232 00000000000000domain: "[m, n, p, q] -> { S1[i0] : i0 >= m and i0 <= n; S2[i0] : i0 >= p and i0 <= q }" child: context: "[m, n, p, q] -> { [] }" child: schedule: "[m, n, p, q] -> [{ S2[i0] -> [(i0)]; S1[i0] -> [(i0)] }]" options: "[m, n, p, q] -> { separate[i0] }" child: sequence: - filter: "[m, n, p, q] -> { S1[i0] }" - filter: "[m, n, p, q] -> { S2[i0] }" isl-0.16.1/test_inputs/codegen/cloog/dot2.c0000664000175000017500000000042312645737061015427 00000000000000{ for (int c0 = 1; c0 <= min(M, N); c0 += 1) { S1(c0); for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } for (int c0 = N + 1; c0 <= M; c0 += 1) S1(c0); for (int c0 = M + 1; c0 <= N; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-4.st0000664000175000017500000000027712645737061017504 00000000000000domain: "[M] -> { S1[i0] : i0 >= 0 and i0 <= 1 + M }" child: context: "[M] -> { [] : M >= 0 }" child: schedule: "[M] -> [{ S1[i0] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-pingali5.c0000664000175000017500000000060012645737061020302 00000000000000for (int c0 = 3; c0 < 2 * M; c0 += 1) { for (int c1 = c0 / 2 + 2; c1 <= M; c1 += 1) for (int c3 = c0 / 2 + 1; c3 < min(c0, c1); c3 += 1) S1(c3, c0 - c3, c1); for (int c1 = max(1, -M + c0); c1 < (c0 + 1) / 2; c1 += 1) S2(c0 - c1, c1); for (int c1 = c0 / 2 + 2; c1 <= M; c1 += 1) for (int c3 = c0 / 2 + 1; c3 < min(c0, c1); c3 += 1) S3(c3, c0 - c3, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-jacobi3.c0000664000175000017500000000034712645737061020114 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) { for (int c2 = 2; c2 < N; c2 += 1) for (int c3 = 2; c3 < N; c3 += 1) S1(c0, c2, c3); for (int c2 = 2; c2 < N; c2 += 1) for (int c3 = 2; c3 < N; c3 += 1) S2(c0, c2, c3); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-fusion1.st0000664000175000017500000000112412645737061020364 00000000000000domain: "[M] -> { S3[i0] : i0 >= 0 and i0 <= M; S2[i0] : i0 >= 1 and i0 <= M; S1[i0] : i0 >= 0 and i0 <= M }" child: context: "[M] -> { [] : M >= 1 }" child: sequence: - filter: "[M] -> { S1[i0] }" child: schedule: "[M] -> [{ S1[i0] -> [(i0)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0] }" child: schedule: "[M] -> [{ S2[i0] -> [(i0)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S3[i0] }" child: schedule: "[M] -> [{ S3[i0] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/square+triangle-1-1-2-3.st0000664000175000017500000000067312645737061020666 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1] : i1 >= 2 and i1 <= i0 and i0 <= M }" child: context: "[M] -> { [] : M >= 1 }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" - filter: "[M] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/unroll2.c0000664000175000017500000000010112645737061016145 00000000000000if (n >= -1 && n <= 9) { if (n >= 0) S1(n); S1(n + 1); } isl-0.16.1/test_inputs/codegen/cloog/block2.c0000664000175000017500000000011612645737061015732 00000000000000for (int c0 = 0; c0 <= 9; c0 += 1) { S1(c0, 1); S3(c0, 1); S2(c0, 1); } isl-0.16.1/test_inputs/codegen/cloog/vivien.c0000664000175000017500000000500012645737061016053 00000000000000{ for (int c0 = -27 * n + 2; c0 <= 1; c0 += 1) S1(c0 - 1); for (int c0 = 2; c0 <= min(2 * n, n + 29); c0 += 1) { if (c0 >= 3) { if (2 * n >= c0 + 1) { S4(c0 - c0 / 2 - 1, c0 / 2 + 1); if (c0 + 2 >= 2 * n) { for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } else if (c0 >= 5) { S4(c0 - c0 / 2 - 2, c0 / 2 + 2); for (int c2 = 1; c2 < c0 - c0 / 2 - 1; c2 += 1) S5(c0 - c0 / 2 - 1, c0 / 2 + 1, c2); } } for (int c1 = -c0 + c0 / 2 + 3; c1 <= min(-1, n - c0); c1 += 1) { S4(-c1, c0 + c1); S6(-c1 + 2, c0 + c1 - 2); for (int c2 = 1; c2 <= -c1; c2 += 1) S5(-c1 + 1, c0 + c1 - 1, c2); } if (2 * n >= c0 + 3 && c0 >= n + 2) { S6(-n + c0 + 1, n - 1); for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } if (n >= 3 && c0 == n + 2) { S6(2, n); S1(n + 1); } else { if (c0 >= n + 3 && 2 * n >= c0 + 1) S6(-n + c0, n); if (c0 >= n + 3) { S1(c0 - 1); } else { if (n + 1 >= c0 && c0 <= 4) { S1(c0 - 1); } else if (c0 >= 5 && n + 1 >= c0) { S6(2, c0 - 2); S1(c0 - 1); } if (n + 1 >= c0) S6(1, c0 - 1); } } if (n == 2 && c0 == 4) S1(3); } else S1(1); if (c0 % 2 == 0) S3(c0 / 2); for (int c1 = max(1, -n + c0); c1 < (c0 + 1) / 2; c1 += 1) S2(c0 - c1, c1); } for (int c0 = max(2 * n + 1, -27 * n + 2); c0 <= n + 29; c0 += 1) S1(c0 - 1); for (int c0 = n + 30; c0 <= 2 * n; c0 += 1) { if (2 * n >= c0 + 1) { S4(c0 - c0 / 2 - 1, c0 / 2 + 1); if (c0 + 2 >= 2 * n) { for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } else { S4(c0 - c0 / 2 - 2, c0 / 2 + 2); for (int c2 = 1; c2 < c0 - c0 / 2 - 1; c2 += 1) S5(c0 - c0 / 2 - 1, c0 / 2 + 1, c2); } for (int c1 = -c0 + c0 / 2 + 3; c1 <= n - c0; c1 += 1) { S4(-c1, c0 + c1); S6(-c1 + 2, c0 + c1 - 2); for (int c2 = 1; c2 <= -c1; c2 += 1) S5(-c1 + 1, c0 + c1 - 1, c2); } if (2 * n >= c0 + 3) { S6(-n + c0 + 1, n - 1); for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } S6(-n + c0, n); } if (c0 % 2 == 0) S3(c0 / 2); for (int c1 = -n + c0; c1 < (c0 + 1) / 2; c1 += 1) S2(c0 - c1, c1); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-rprj3.st0000664000175000017500000000405012645737061020442 00000000000000domain: "[M, N, O, P, Q, R] -> { S2[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= M; S4[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + M; S1[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= M; S5[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + M; S3[i0, i1, i2] : i0 >= 2 and i0 <= -1 + O and i1 >= 2 and i1 <= -1 + N and i2 >= 2 and i2 <= -1 + M }" child: context: "[M, N, O, P, Q, R] -> { [] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S5[i0, i1, i2] -> [(i0)]; S3[i0, i1, i2] -> [(i0)]; S4[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S5[i0, i1, i2] -> [(1 + i1)]; S3[i0, i1, i2] -> [(1 + i1)]; S4[i0, i1, i2] -> [(1 + i1)]; S1[i0, i1, i2] -> [(i1)]; S2[i0, i1, i2] -> [(1 + i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S2[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S2[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" - filter: "[M, N, O, P, Q, R] -> { S4[i0, i1, i2]; S5[i0, i1, i2]; S3[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S5[i0, i1, i2] -> [(i2)]; S3[i0, i1, i2] -> [(i2)]; S4[i0, i1, i2] -> [(-1 + i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S3[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S5[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S4[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S1[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/lu2.st0000664000175000017500000000140012645737061015461 00000000000000domain: "[n] -> { S2[i0, i1, i2, i1, i0] : i2 >= 1 and i2 <= n and i2 <= -1 + i1 and i1 <= n and i2 <= -1 + i0 and i0 <= n; S1[i0, n, i0, i3] : i0 >= 1 and i0 <= n and i3 >= 1 + i0 and i3 <= n }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S2[i0, i1, i2, i3, i4] -> [(i0)]; S1[i0, i1, i2, i3] -> [(i0)] }, { S2[i0, i1, i2, i3, i4] -> [(i1)]; S1[i0, i1, i2, i3] -> [(i1)] }, { S2[i0, i1, i2, i3, i4] -> [(i2)]; S1[i0, i1, i2, i3] -> [(i2)] }, { S2[i0, i1, i2, i3, i4] -> [(i3)]; S1[i0, i1, i2, i3] -> [(i3)] }, { S2[i0, i1, i2, i3, i4] -> [(i4)]; S1[i0, i1, i2, i3] -> [(0)] }]" options: "[n] -> { separate[i0] }" child: sequence: - filter: "[n] -> { S1[i0, i1, i2, i3] }" - filter: "[n] -> { S2[i0, i1, i2, i3, i4] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-bastoul3.c0000664000175000017500000000021512645737061020330 00000000000000for (int c0 = 3; c0 <= 9; c0 += 1) for (int c1 = max(c0 - 6, -(c0 % 2) + 2); c1 <= min(3, c0 - 2); c1 += 2) S1(c0, c1, (c0 - c1) / 2); isl-0.16.1/test_inputs/codegen/cloog/gauss.c0000664000175000017500000000032112645737061015676 00000000000000for (int c0 = 1; c0 < M; c0 += 1) for (int c1 = c0 + 1; c1 <= M; c1 += 1) { for (int c3 = 1; c3 < c0; c3 += 1) S1(c0, c3, c1); for (int c3 = c0 + 1; c3 <= M; c3 += 1) S2(c0, c3, c1); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam6.c0000664000175000017500000000030012645737061020205 00000000000000{ for (int c0 = 0; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S1(c0, c1); for (int c0 = 0; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= M; c1 += 1) S2(c1, c0); } isl-0.16.1/test_inputs/codegen/cloog/esced.st0000664000175000017500000000064612645737061016055 00000000000000domain: "[n, m] -> { S1[i0] : i0 >= 1 and i0 <= m; S2[i0, i1] : i0 >= 1 and i0 <= m and i1 >= 1 and i1 <= n }" child: context: "[n, m] -> { [] }" child: schedule: "[n, m] -> [{ S2[i0, i1] -> [(i0)]; S1[i0] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0] -> [(0)] }]" options: "[n, m] -> { separate[i0] }" child: sequence: - filter: "[n, m] -> { S1[i0] }" - filter: "[n, m] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/unroll.st0000664000175000017500000000025412645737061016300 00000000000000domain: "[n] -> { S1[i] : i >= 0 and i <= 10 }" child: context: "[n] -> { [] }" child: schedule: "[n] -> [{ S1[i] -> [(i)] }]" options: "[n] -> { unroll[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam5.st0000664000175000017500000000202312645737061020414 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S3[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M }" child: context: "[M] -> { [] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S3[i0, i1] }" child: schedule: "[M] -> [{ S3[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S3[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner4.st0000664000175000017500000000117112645737061020665 00000000000000domain: "[M] -> { S1[i0, i1, i2, i3] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M and i2 >= 1 and i2 <= M and i3 >= 1 and i3 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i2 + i3)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i2)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-long.c0000664000175000017500000000055212645737061017537 00000000000000for (int c0 = 1; c0 < O; c0 += 1) { for (int c1 = Q; c1 < N; c1 += 1) { for (int c2 = P; c2 < M; c2 += 1) S1(c0, c1, c2); for (int c2 = 1; c2 < M; c2 += 1) S2(c0, c1, c2); } for (int c1 = 1; c1 < N; c1 += 1) { for (int c2 = P; c2 < M; c2 += 1) S3(c0, c1, c2); for (int c2 = 1; c2 < M; c2 += 1) S4(c0, c1, c2); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam2.c0000664000175000017500000000036012645737061020207 00000000000000{ for (int c0 = 1; c0 <= M; c0 += 1) S1(c0); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 2; c1 <= N; c1 += 1) S2(c0, c1); for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 < N; c1 += 1) S3(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/iftest2.st0000664000175000017500000000047012645737061016345 00000000000000domain: "[M, N] -> { S1[i0, i1] : (i0 >= M and i0 <= N and i1 >= 1 and i1 <= M) or (i0 >= 1 and i0 <= N and i0 <= 2M and i1 >= 1 and i1 <= M) }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam3.st0000664000175000017500000000214712645737061020421 00000000000000domain: "[M] -> { S4[i0] : i0 >= 1 and i0 <= M; S3[i0, i1] : i0 <= M and i1 >= 1 and i1 <= -1 + i0; S2[i0, i1] : i0 <= M and i1 >= 1 and i1 <= -1 + i0; S1[i0, i1, i2] : i0 <= M and i1 <= -1 + i0 and i2 >= 1 and i2 <= -1 + i1 }" child: context: "[M] -> { [] : M >= 1 }" child: schedule: "[M] -> [{ S4[i0] -> [(5i0)]; S1[i0, i1, i2] -> [(5 + i0 + 2i1 + 2i2)]; S3[i0, i1] -> [(1 + 3i0 + 2i1)]; S2[i0, i1] -> [(3 + i0 + 4i1)] }]" options: "[M] -> { separate[i0] }" child: sequence: - filter: "[M] -> { S1[i0, i1, i2] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2] -> [(i2)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S4[i0]; S3[i0, i1] }" child: schedule: "[M] -> [{ S4[i0] -> [(0)]; S3[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/reservoir-mg-rprj3.c0000664000175000017500000000157612645737061020250 00000000000000if (M >= 2 && N >= 3) for (int c0 = 2; c0 < O; c0 += 1) { for (int c2 = 2; c2 <= M; c2 += 1) S1(c0, 2, c2); for (int c1 = 3; c1 < N; c1 += 1) { for (int c2 = 2; c2 <= M; c2 += 1) S2(c0, c1 - 1, c2); if (M >= 3) S4(c0, c1 - 1, 2); for (int c2 = 2; c2 < M - 1; c2 += 1) { S3(c0, c1 - 1, c2); S5(c0, c1 - 1, c2); S4(c0, c1 - 1, c2 + 1); } if (M >= 3) { S3(c0, c1 - 1, M - 1); S5(c0, c1 - 1, M - 1); } for (int c2 = 2; c2 <= M; c2 += 1) S1(c0, c1, c2); } for (int c2 = 2; c2 <= M; c2 += 1) S2(c0, N - 1, c2); if (M >= 3) S4(c0, N - 1, 2); for (int c2 = 2; c2 < M - 1; c2 += 1) { S3(c0, N - 1, c2); S5(c0, N - 1, c2); S4(c0, N - 1, c2 + 1); } if (M >= 3) { S3(c0, N - 1, M - 1); S5(c0, N - 1, M - 1); } } isl-0.16.1/test_inputs/codegen/cloog/multi-stride2.c0000664000175000017500000000011312645737061017257 00000000000000for (int c0 = 5; c0 <= 100; c0 += 6) S1(c0, (c0 - 1) / 2, (c0 - 2) / 3); isl-0.16.1/test_inputs/codegen/cloog/reservoir-lim-lam6.st0000664000175000017500000000132112645737061020415 00000000000000domain: "[M] -> { S1[i0, i1] : i0 >= 0 and i0 <= M and i1 >= 1 and i1 <= M; S2[i0, i1] : i0 >= 1 and i0 <= M and i1 >= 0 and i1 <= M }" child: context: "[M] -> { [] }" child: sequence: - filter: "[M] -> { S1[i0, i1] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" - filter: "[M] -> { S2[i0, i1] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S2[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/forwardsub-3-1-2.c0000664000175000017500000000055712645737061017402 00000000000000{ S3(2, 1); S1(3, 1); for (int c0 = 4; c0 <= M + 1; c0 += 1) { S1(c0, 1); for (int c1 = 2; c1 < (c0 + 1) / 2; c1 += 1) S2(c0, c1); if (c0 % 2 == 0) S4(c0, c0 / 2); } for (int c0 = M + 2; c0 <= 2 * M; c0 += 1) { for (int c1 = -M + c0; c1 < (c0 + 1) / 2; c1 += 1) S2(c0, c1); if (c0 % 2 == 0) S4(c0, c0 / 2); } } isl-0.16.1/test_inputs/codegen/cloog/lex.st0000664000175000017500000000043512645737061015556 00000000000000domain: "{ S1[i0] : i0 >= 0 and i0 <= 10; S2[i0] : i0 >= 0 and i0 <= 10 }" child: context: "{ [] }" child: schedule: "[{ S2[i0] -> [(i0)]; S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S2[i0] }" - filter: "{ S1[i0] }" isl-0.16.1/test_inputs/codegen/cloog/dealII.st0000664000175000017500000000120312645737061016107 00000000000000domain: "[T_2, T_67, T_66] -> { S1[scat_0] : (scat_0 >= 0 and scat_0 <= -1 + T_2) or (scat_0 <= -T_67 and scat_0 >= 0); S2[scat_0] : (scat_0 >= 0 and scat_0 <= T_66 and scat_0 <= -1 + T_2) or (scat_0 >= 0 and scat_0 <= T_66 and scat_0 <= -1 + T_67) }" child: context: "[T_2, T_67, T_66] -> { [] : T_2 <= 4 and T_2 >= 0 and T_67 <= 4 and T_67 >= 0 }" child: schedule: "[T_2, T_67, T_66] -> [{ S2[scat_0] -> [(scat_0)]; S1[scat_0] -> [(scat_0)] }]" options: "[T_2, T_67, T_66] -> { separate[i0] }" child: sequence: - filter: "[T_2, T_67, T_66] -> { S1[scat_0] }" - filter: "[T_2, T_67, T_66] -> { S2[scat_0] }" isl-0.16.1/test_inputs/codegen/cloog/gesced3.st0000664000175000017500000000041312645737061016277 00000000000000domain: "[M, N] -> { S1[i0] : i0 >= 1 and i0 <= N; S2[i0] : i0 >= 1 and i0 <= N }" child: context: "[M, N] -> { [] : N >= M and M >= 2 }" child: schedule: "[M, N] -> [{ S2[i0] -> [(2M + i0)]; S1[i0] -> [(M + i0)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/min-2-1.c0000664000175000017500000000026112645737061015637 00000000000000for (int c0 = 1; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= min(min(M, c0), N - c0); c1 += 1) for (int c2 = 0; c2 <= min(min(M, c0), N - c0); c2 += 1) S1(c0, c1, c2); isl-0.16.1/test_inputs/codegen/cloog/lu2.c0000664000175000017500000000033312645737061015261 00000000000000for (int c0 = 1; c0 <= n; c0 += 1) { for (int c1 = 2; c1 <= n; c1 += 1) for (int c2 = 1; c2 < min(c0, c1); c2 += 1) S2(c0, c1, c2, c1, c0); for (int c3 = c0 + 1; c3 <= n; c3 += 1) S1(c0, n, c0, c3); } isl-0.16.1/test_inputs/codegen/cloog/equality2.c0000664000175000017500000000070212645737061016476 00000000000000for (int c0 = 1; c0 <= 10000; c0 += 1) for (int c1 = 1000; c1 <= 1016; c1 += 1) for (int c2 = 1; c2 < 2 * c1 - 1998; c2 += 1) { if (c1 <= 1008 && c2 + 1999 == 2 * c1) S2(c0, c1, 2 * c1 - 1999, 1, c0, 2 * c1 - 1000, 1, 2, c0, c1 - 499, 2 * c1 - 1999, c0, 2 * c1 - 1999, c1 - 999, c1 - 999); if (c2 == 1 && c1 % 2 == 0) S1(c0, c1, 1, 2, c0, (c1 / 2) + 1, c1 - 999, c0, c1 - 999, (c1 / 2) - 499, (c1 / 2) - 499); } isl-0.16.1/test_inputs/codegen/cloog/stride.c0000664000175000017500000000020412645737061016046 00000000000000{ for (int c0 = 3; c0 <= 24; c0 += 3) S2(c0, c0 / 3); S1(25); for (int c0 = 27; c0 <= 100; c0 += 3) S2(c0, c0 / 3); } isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-3.st0000664000175000017500000000027312645737061017477 00000000000000domain: "[M] -> { S1[i0] : i0 >= 0 and i0 <= M }" child: context: "[M] -> { [] : M >= 0 }" child: schedule: "[M] -> [{ S1[i0] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/unroll.c0000664000175000017500000000015012645737061016067 00000000000000{ S1(0); S1(1); S1(2); S1(3); S1(4); S1(5); S1(6); S1(7); S1(8); S1(9); S1(10); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-loechner5.st0000664000175000017500000000116412645737061020670 00000000000000domain: "[M] -> { S1[i0, i1, i2, i3] : i0 >= 1 and i0 <= M and i1 >= 1 and i1 <= M and i2 >= 1 and i2 <= M and i3 >= 1 and i3 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i2)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i0)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i1)] }]" options: "[M] -> { separate[i0] }" child: schedule: "[M] -> [{ S1[i0, i1, i2, i3] -> [(i3)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/min-1-1.st0000664000175000017500000000041212645737061016040 00000000000000domain: "[M, N] -> { S1[i0, i1] : i0 >= 1 and i1 >= 0 and i1 <= M and i1 <= i0 and i1 <= N - i0 }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/mod2.st0000664000175000017500000000032012645737061015620 00000000000000domain: "{ S1[i] : exists (e0 = floor((1 + i)/3): 3e0 <= i and 3e0 >= -1 + i and i >= 0 and i <= 3) }" child: context: "{ [] }" child: schedule: "[{ S1[i] -> [(i)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_lcpc.c0000664000175000017500000000052712645737061016363 00000000000000{ for (int c0 = 1; c0 <= 6; c0 += 2) { for (int c2 = 1; c2 <= c0; c2 += 1) { S1(c0, (c0 - 1) / 2, c2); S2(c0, (c0 - 1) / 2, c2); } for (int c2 = c0 + 1; c2 <= p; c2 += 1) S1(c0, (c0 - 1) / 2, c2); } for (int c0 = 7; c0 <= m; c0 += 2) for (int c2 = 1; c2 <= p; c2 += 1) S1(c0, (c0 - 1) / 2, c2); } isl-0.16.1/test_inputs/codegen/cloog/infinite2.c0000664000175000017500000000024312645737061016446 00000000000000{ for (int c0 = 1; c0 <= N; c0 += 1) { S1(c0); for (int c1 = 1; c1 <= M; c1 += 1) S2(c0, c1); } for (int c0 = N + 1; 1; c0 += 1) S1(c0); } isl-0.16.1/test_inputs/codegen/cloog/faber.st0000664000175000017500000000635612645737061016055 00000000000000domain: "{ S2[idx4, idx5, idx6] : 14idx5 <= -84 + idx4 and 14idx5 >= -120 + idx4 and idx6 >= 24 + idx5 and idx6 <= 48 + idx5 and idx5 >= -6 and idx5 <= 18 and idx6 <= 24 - 2idx5; S4[idx4, idx5, idx6] : 14idx6 <= -462 + 3idx4 + 14idx5 and 14idx6 >= -570 + 3idx4 + 14idx5 and idx6 <= idx5 and idx6 >= -12 + idx5 and idx6 >= 6 and idx6 <= 30 and 2idx6 >= 42 - idx5; S6[idx4, idx5, idx6] : 77idx6 >= 924 - 6idx4 + 77idx5 and 77idx6 <= 1140 - 6idx4 + 77idx5 and idx6 <= 12 + idx5 and idx6 >= 6 + idx5 and idx6 >= 6 and idx6 <= 30 and 5idx6 >= 42 + 2idx5; S1[idx4, idx5, idx6] : 14idx6 >= 672 - 3idx4 + 14idx5 and 14idx6 <= 780 - 3idx4 + 14idx5 and idx6 >= 24 + idx5 and idx6 <= 48 + idx5 and idx5 >= -6 and idx5 <= 18 and idx6 >= 30 - 2idx5; S5[idx4, idx5, idx6] : 14idx6 <= 42 + idx4 and 14idx6 >= 6 + idx4 and idx6 <= idx5 and idx6 >= -12 + idx5 and idx6 >= 6 and idx6 <= 30 and 2idx6 <= 36 - idx5; S7[idx4, idx5, idx6] : 21idx6 <= 84 + 2idx4 - 7idx5 and 21idx6 >= 12 + 2idx4 - 7idx5 and idx6 <= 12 + idx5 and idx6 >= 6 + idx5 and idx6 >= 6 and idx6 <= 30 and 5idx6 <= 36 + 2idx5; S8[idx4, idx5, idx6] : 14idx6 >= 546 - 3idx4 + 14idx5 and 14idx6 <= 654 - 3idx4 + 14idx5 and idx6 >= idx5 and idx6 <= 24 + idx5 and idx5 >= 0 and idx5 <= 24 and idx6 >= 30 - 2idx5; S3[idx4, idx5, idx6] : idx4 >= 0 and idx4 <= 36 and idx6 >= -8idx5 and idx6 <= 24 - 8idx5 and idx5 >= 0 and idx5 <= 24; S9[idx4, idx5, idx6] : 14idx5 <= -42 + idx4 and 14idx5 >= -78 + idx4 and idx6 >= idx5 and idx6 <= 24 + idx5 and idx5 >= 0 and idx5 <= 24 and idx6 <= 24 - 2idx5 and idx6 >= 6 - 2idx5; S10[idx4, idx5, idx6] : 7idx6 <= idx4 - 28idx5 and 7idx6 >= -36 + idx4 - 28idx5 and idx6 >= idx5 and idx6 <= 24 + idx5 and idx5 >= 0 and idx5 <= 24 and idx6 <= -2idx5 }" child: context: "{ [] }" child: schedule: "[{ S6[idx4, idx5, idx6] -> [(idx4)]; S8[idx4, idx5, idx6] -> [(idx4)]; S5[idx4, idx5, idx6] -> [(idx4)]; S9[idx4, idx5, idx6] -> [(idx4)]; S4[idx4, idx5, idx6] -> [(idx4)]; S10[idx4, idx5, idx6] -> [(idx4)]; S7[idx4, idx5, idx6] -> [(idx4)]; S3[idx4, idx5, idx6] -> [(idx4)]; S1[idx4, idx5, idx6] -> [(idx4)]; S2[idx4, idx5, idx6] -> [(idx4)] }, { S6[idx4, idx5, idx6] -> [(idx5)]; S8[idx4, idx5, idx6] -> [(idx5)]; S5[idx4, idx5, idx6] -> [(idx5)]; S9[idx4, idx5, idx6] -> [(idx5)]; S4[idx4, idx5, idx6] -> [(idx5)]; S10[idx4, idx5, idx6] -> [(idx5)]; S7[idx4, idx5, idx6] -> [(idx5)]; S3[idx4, idx5, idx6] -> [(idx5)]; S1[idx4, idx5, idx6] -> [(idx5)]; S2[idx4, idx5, idx6] -> [(idx5)] }, { S6[idx4, idx5, idx6] -> [(idx6)]; S8[idx4, idx5, idx6] -> [(idx6)]; S5[idx4, idx5, idx6] -> [(idx6)]; S9[idx4, idx5, idx6] -> [(idx6)]; S4[idx4, idx5, idx6] -> [(idx6)]; S10[idx4, idx5, idx6] -> [(idx6)]; S7[idx4, idx5, idx6] -> [(idx6)]; S3[idx4, idx5, idx6] -> [(idx6)]; S1[idx4, idx5, idx6] -> [(idx6)]; S2[idx4, idx5, idx6] -> [(idx6)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[idx4, idx5, idx6] }" - filter: "{ S2[idx4, idx5, idx6] }" - filter: "{ S3[idx4, idx5, idx6] }" - filter: "{ S4[idx4, idx5, idx6] }" - filter: "{ S5[idx4, idx5, idx6] }" - filter: "{ S6[idx4, idx5, idx6] }" - filter: "{ S7[idx4, idx5, idx6] }" - filter: "{ S8[idx4, idx5, idx6] }" - filter: "{ S9[idx4, idx5, idx6] }" - filter: "{ S10[idx4, idx5, idx6] }" isl-0.16.1/test_inputs/codegen/cloog/block3.st0000664000175000017500000000030012645737061016132 00000000000000domain: "{ S1[]; S3[i0] : i0 >= 0 and i0 <= 1; S2[] }" child: context: "{ [] }" child: schedule: "[{ S2[] -> [(1)]; S3[i0] -> [(i0)]; S1[] -> [(0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/orc.st0000664000175000017500000000161312645737061015550 00000000000000domain: "{ S5[i] : i >= 0 and i <= 14; S6[i, j] : i >= 0 and i <= 14 and j >= 0 and j <= 9; S7[i] : i >= 0 and i <= 14; S4[i] : i >= 0 and i <= 2; S2[i, j] : i >= 0 and i <= 2 and j >= 0 and j <= 11 - i; S1[i] : i >= 0 and i <= 2; S3[i, j] : i >= 0 and i <= 2 and j >= 0 and j <= 11 - i }" child: context: "{ [] }" child: sequence: - filter: "{ S4[i0]; S2[i0, i1]; S1[i0]; S3[i0, i1] }" child: schedule: "[{ S3[i0, i1] -> [(1 + 3i0)]; S2[i0, i1] -> [(1 + 3i0)]; S1[i0] -> [(3i0)]; S4[i0] -> [(2 + 3i0)] }, { S3[i0, i1] -> [(1 + 2i1)]; S2[i0, i1] -> [(2i1)]; S1[i0] -> [(0)]; S4[i0] -> [(0)] }]" options: "{ separate[i0] }" - filter: "{ S5[i0]; S6[i0, i1]; S7[i0] }" child: schedule: "[{ S6[i0, i1] -> [(1 + 3i0)]; S7[i0] -> [(2 + 3i0)]; S5[i0] -> [(3i0)] }, { S6[i0, i1] -> [(i1)]; S7[i0] -> [(0)]; S5[i0] -> [(0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-6.st0000664000175000017500000000020012645737061017470 00000000000000domain: "{ S1[-1] }" child: context: "{ [] }" child: schedule: "[{ S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/vasilache.c0000664000175000017500000000111412645737061016514 00000000000000{ S1(); S2(); for (int c0 = 0; c0 < N; c0 += 1) for (int c1 = 0; c1 < N; c1 += 1) { S4(c0, c1); S5(c0, c1); } for (int c0 = 0; c0 < N; c0 += 1) for (int c1 = 0; c1 < N; c1 += 1) for (int c2 = 0; c2 <= (N - 1) / 32; c2 += 1) { S7(c0, c1, c2, 32 * c2); for (int c3 = 32 * c2 + 1; c3 <= min(N - 1, 32 * c2 + 31); c3 += 1) { S6(c0, c1, c2, c3 - 1); S7(c0, c1, c2, c3); } if (32 * c2 + 31 >= N) { S6(c0, c1, c2, N - 1); } else S6(c0, c1, c2, 32 * c2 + 31); } S8(); } isl-0.16.1/test_inputs/codegen/cloog/iftest.st0000664000175000017500000000036212645737061016263 00000000000000domain: "[m, n] -> { S1[i0] : (i0 >= m and i0 >= 1 and i0 <= n) or (i0 >= 1 and i0 <= n and i0 <= 2m) }" child: context: "[m, n] -> { [] }" child: schedule: "[m, n] -> [{ S1[i0] -> [(i0)] }]" options: "[m, n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/youcefn.c0000664000175000017500000000030012645737061016221 00000000000000{ for (int c0 = 1; c0 <= n; c0 += 1) { S1(c0, c0); for (int c1 = c0; c1 <= n; c1 += 1) S2(c0, c1); S3(c0, n); } for (int c0 = n + 1; c0 <= m; c0 += 1) S3(c0, n); } isl-0.16.1/test_inputs/codegen/cloog/largeur.c0000664000175000017500000000013112645737061016214 00000000000000for (int c0 = 1; c0 <= M; c0 += 1) for (int c1 = 1; c1 <= c0; c1 += 1) S1(c1, c0); isl-0.16.1/test_inputs/codegen/cloog/logopar.st0000664000175000017500000000075012645737061016431 00000000000000domain: "[m, n] -> { S1[i0, i1] : i0 >= 1 and i1 <= m and i1 >= -1 + i0; S2[i0, i1] : i0 >= 2 and i0 <= n and i1 >= 0 and i1 <= n }" child: context: "[m, n] -> { [] : n <= m and m >= 0 and n >= 2 }" child: schedule: "[m, n] -> [{ S2[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)] }]" options: "[m, n] -> { separate[i0] }" child: sequence: - filter: "[m, n] -> { S1[i0, i1] }" - filter: "[m, n] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/backtrack.st0000664000175000017500000000017712645737061016716 00000000000000domain: "{ S1[0] }" child: context: "{ [] }" child: schedule: "[{ S1[i0] -> [(i0)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/singleton.c0000664000175000017500000000002412645737061016556 00000000000000{ S2(); S1(); } isl-0.16.1/test_inputs/codegen/cloog/dot2.st0000664000175000017500000000067212645737061015641 00000000000000domain: "[M, N] -> { S1[i0] : i0 >= 1 and i0 <= M; S2[i0, i1] : i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= M }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: schedule: "[M, N] -> [{ S2[i0, i1] -> [(i0)]; S1[i0] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0] -> [(0)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/constbound.st0000664000175000017500000000133612645737061017145 00000000000000domain: "{ S2[i0, i1, i2] : i1 >= 0 and i1 <= 9999 and i2 >= 0 and i2 <= i1 and i1 >= 25 + 50i0 and i1 <= 49 + 50i0; S1[i0, i1, i2] : i1 >= 0 and i1 <= 9999 and i2 >= 0 and i2 <= i1 and i1 >= 50i0 and i1 <= 24 + 50i0 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1, i2] }" child: schedule: "[{ S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" - filter: "{ S2[i0, i1, i2] }" child: schedule: "[{ S2[i0, i1, i2] -> [(i1)] }, { S2[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/nul_basic1.st0000664000175000017500000000034112645737061017002 00000000000000domain: "[M] -> { S1[i0, i1] : 2i1 = i0 and i0 >= 0 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/multi-mm-1.c0000664000175000017500000000026512645737061016462 00000000000000for (int c0 = 0; c0 <= M; c0 += 1) { for (int c1 = 0; c1 <= min(N, c0); c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = N + 1; c1 <= c0; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/min-2-1.st0000664000175000017500000000055212645737061016046 00000000000000domain: "[M, N] -> { S1[i0, i1, i2] : i0 >= 1 and i1 >= 0 and i1 <= M and i1 <= i0 and i1 <= N - i0 and i2 >= 0 and i2 <= M and i2 <= i0 and i2 <= N - i0 }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2] -> [(i0)] }, { S1[i0, i1, i2] -> [(i1)] }, { S1[i0, i1, i2] -> [(i2)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-3.c0000664000175000017500000000005512645737061017271 00000000000000for (int c0 = 0; c0 <= M; c0 += 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/wavefront.st0000664000175000017500000000037512645737061017004 00000000000000domain: "[n, m] -> { S1[i0, i1] : i0 >= 1 and i0 <= n and i1 >= 1 and i1 <= m }" child: context: "[n, m] -> { [] }" child: schedule: "[n, m] -> [{ S1[i0, i1] -> [(i0 + i1)] }, { S1[i0, i1] -> [(i0)] }]" options: "[n, m] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/swim.st0000664000175000017500000005376212645737061015760 00000000000000domain: "[M, N, O, P, Q, R] -> { S40[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S106[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S99[i0] : M = 1 and i0 >= 2 and i0 <= P; S83[i0] : M = 1 and i0 >= 2 and i0 <= P; S86[i0] : M = 1 and i0 >= 2 and i0 <= P; S56[i0] : M = 1 and i0 >= 2 and i0 <= P; S124[i0] : M = 1 and i0 >= 2 and i0 <= P; S66[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S46[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S64[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S22[] : M = 1; S15[] : M = 1; S30[i0, i1] : M = 1 and i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= N; S14[] : M = 1; S12[] : M = 1; S87[i0] : M = 1 and i0 >= 2 and i0 <= P; S110[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S73[i0] : M = 1 and i0 >= 2 and i0 <= P; S44[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S31[i0] : M = 1 and i0 >= 1 and i0 <= N; S118[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S8[] : M = 1; S125[i0] : M = 1 and i0 >= 2 and i0 <= P; S63[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S25[] : M = 1; S51[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S91[i0] : M = 1 and i0 >= 2 and i0 <= P; S84[i0] : M = 1 and i0 >= 2 and i0 <= P; S35[] : M = 1 and O <= 1; S97[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= N and i2 >= 1 and i2 <= N; S75[i0] : M = 1 and i0 >= 2 and i0 <= P; S19[] : M = 1; S50[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S114[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S13[] : M = 1; S72[i0] : M = 1 and i0 >= 2 and i0 <= P; S78[i0] : M = 1 and i0 >= 2 and i0 <= P; S39[i0] : M = 1 and i0 >= 2 and i0 <= P; S102[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S107[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S68[i0] : M = 1 and i0 >= 2 and i0 <= P; S32[] : M = 1; S41[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S69[i0] : M = 1 and i0 >= 2 and i0 <= P; S3[] : M = 1; S100[i0] : M = 1 and i0 >= 2 and i0 <= P; S11[] : M = 1; S76[i0] : M = 1 and i0 >= 2 and i0 <= P; S88[i0] : M = 1 and i0 >= 2 and i0 <= P; S49[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S45[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S10[] : M = 1; S80[i0] : M = 1 and i0 >= 2 and i0 <= P; S61[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S67[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S70[i0] : M = 1 and i0 >= 2 and i0 <= P; S29[i0, i1] : M = 1 and i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= N; S60[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S21[] : M = 1; S92[i0] : M = 1 and i0 >= 2 and i0 <= P; S47[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S24[] : M = 1; S16[] : M = 1; S105[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S18[] : M = 1; S48[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S5[] : M = 1; S113[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S7[] : M = 1; S38[i0] : M = 1 and i0 >= 2 and i0 <= P; S54[i0] : M = 1 and i0 >= 2 and i0 <= P; S109[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S23[] : M = 1; S82[i0] : M = 1 and i0 >= 2 and i0 <= P; S59[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S77[i0] : M = 1 and i0 >= 2 and i0 <= P; S101[i0] : M = 1 and i0 >= 2 and i0 <= P; S37[] : M = 1; S71[i0] : M = 1 and i0 >= 2 and i0 <= P; S121[i0] : M = 1 and i0 >= 2 and i0 <= P; S115[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S104[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S94[i0] : M = 1 and i0 >= 2 and i0 <= P; S6[] : M = 1; S43[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S1[] : M = 1; S98[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= N; S55[i0] : M = 1 and i0 >= 2 and i0 <= P; S58[i0] : M = 1 and i0 >= 2 and i0 <= P; S42[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S89[i0] : M = 1 and i0 >= 2 and i0 <= P; S53[i0] : M = 1 and i0 >= 2 and i0 <= P; S111[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S52[i0] : M = 1 and i0 >= 2 and i0 <= P; S85[i0] : M = 1 and i0 >= 2 and i0 <= P; S26[] : M = 1; S79[i0] : M = 1 and i0 >= 2 and i0 <= P; S81[i0] : M = 1 and i0 >= 2 and i0 <= P; S57[i0] : M = 1 and i0 >= 2 and i0 <= P; S4[] : M = 1; S123[i0] : M = 1 and i0 >= 2 and i0 <= P; S36[] : M = 1; S65[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S34[] : M = 1; S119[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S9[] : M = 1; S28[i0, i1] : M = 1 and i0 >= 1 and i0 <= N and i1 >= 1 and i1 <= N; S20[] : M = 1; S117[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S112[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S103[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q and i2 >= 1 and i2 <= R; S17[] : M = 1; S96[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= N and i2 >= 1 and i2 <= N; S95[i0, i1, i2] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= N and i2 >= 1 and i2 <= N; S62[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S90[i0] : M = 1 and i0 >= 2 and i0 <= P; S120[i0] : M = 1 and i0 >= 2 and i0 <= P; S116[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= R; S108[i0, i1] : M = 1 and i0 >= 2 and i0 <= P and i1 >= 1 and i1 <= Q; S74[i0] : M = 1 and i0 >= 2 and i0 <= P; S93[i0] : M = 1 and i0 >= 2 and i0 <= P; S2[] : M = 1; S27[] : M = 1; S122[i0] : M = 1 and i0 >= 2 and i0 <= P; S33[] : M = 1 }" child: context: "[M, N, O, P, Q, R] -> { [] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S1[] }" - filter: "[M, N, O, P, Q, R] -> { S2[] }" - filter: "[M, N, O, P, Q, R] -> { S3[] }" - filter: "[M, N, O, P, Q, R] -> { S4[] }" - filter: "[M, N, O, P, Q, R] -> { S5[] }" - filter: "[M, N, O, P, Q, R] -> { S6[] }" - filter: "[M, N, O, P, Q, R] -> { S7[] }" - filter: "[M, N, O, P, Q, R] -> { S8[] }" - filter: "[M, N, O, P, Q, R] -> { S9[] }" - filter: "[M, N, O, P, Q, R] -> { S10[] }" - filter: "[M, N, O, P, Q, R] -> { S11[] }" - filter: "[M, N, O, P, Q, R] -> { S12[] }" - filter: "[M, N, O, P, Q, R] -> { S13[] }" - filter: "[M, N, O, P, Q, R] -> { S14[] }" - filter: "[M, N, O, P, Q, R] -> { S15[] }" - filter: "[M, N, O, P, Q, R] -> { S16[] }" - filter: "[M, N, O, P, Q, R] -> { S17[] }" - filter: "[M, N, O, P, Q, R] -> { S18[] }" - filter: "[M, N, O, P, Q, R] -> { S19[] }" - filter: "[M, N, O, P, Q, R] -> { S20[] }" - filter: "[M, N, O, P, Q, R] -> { S21[] }" - filter: "[M, N, O, P, Q, R] -> { S22[] }" - filter: "[M, N, O, P, Q, R] -> { S23[] }" - filter: "[M, N, O, P, Q, R] -> { S24[] }" - filter: "[M, N, O, P, Q, R] -> { S25[] }" - filter: "[M, N, O, P, Q, R] -> { S26[] }" - filter: "[M, N, O, P, Q, R] -> { S27[] }" - filter: "[M, N, O, P, Q, R] -> { S30[i0, i1]; S28[i0, i1]; S31[i0]; S29[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S31[i0] -> [(i0)]; S29[i0, i1] -> [(i0)]; S30[i0, i1] -> [(i0)]; S28[i0, i1] -> [(i0)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S30[i0, i1]; S28[i0, i1]; S29[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S29[i0, i1] -> [(i1)]; S30[i0, i1] -> [(i1)]; S28[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S28[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S29[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S30[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S31[i0] }" - filter: "[M, N, O, P, Q, R] -> { S32[] }" - filter: "[M, N, O, P, Q, R] -> { S33[] }" - filter: "[M, N, O, P, Q, R] -> { S34[] }" - filter: "[M, N, O, P, Q, R] -> { S35[] }" - filter: "[M, N, O, P, Q, R] -> { S36[] }" - filter: "[M, N, O, P, Q, R] -> { S37[] }" - filter: "[M, N, O, P, Q, R] -> { S58[i0]; S116[i0, i1]; S120[i0]; S106[i0, i1, i2]; S102[i0, i1, i2]; S114[i0, i1]; S113[i0, i1]; S122[i0]; S83[i0]; S103[i0, i1, i2]; S71[i0]; S50[i0, i1]; S98[i0, i1]; S65[i0, i1]; S82[i0]; S109[i0, i1]; S51[i0, i1]; S60[i0, i1, i2]; S91[i0]; S78[i0]; S101[i0]; S123[i0]; S111[i0, i1]; S97[i0, i1, i2]; S67[i0, i1]; S117[i0, i1]; S88[i0]; S79[i0]; S46[i0, i1]; S56[i0]; S45[i0, i1]; S74[i0]; S49[i0, i1]; S75[i0]; S115[i0, i1]; S119[i0, i1]; S42[i0, i1, i2]; S57[i0]; S62[i0, i1]; S99[i0]; S107[i0, i1, i2]; S100[i0]; S104[i0, i1, i2]; S70[i0]; S89[i0]; S125[i0]; S44[i0, i1]; S93[i0]; S90[i0]; S84[i0]; S105[i0, i1, i2]; S95[i0, i1, i2]; S66[i0, i1]; S77[i0]; S38[i0]; S41[i0, i1, i2]; S92[i0]; S87[i0]; S47[i0, i1]; S108[i0, i1]; S54[i0]; S76[i0]; S112[i0, i1]; S80[i0]; S55[i0]; S39[i0]; S59[i0, i1, i2]; S121[i0]; S86[i0]; S110[i0, i1]; S48[i0, i1]; S68[i0]; S53[i0]; S72[i0]; S85[i0]; S52[i0]; S69[i0]; S61[i0, i1, i2]; S43[i0, i1, i2]; S124[i0]; S73[i0]; S81[i0]; S63[i0, i1]; S118[i0, i1]; S96[i0, i1, i2]; S40[i0, i1, i2]; S94[i0]; S64[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S99[i0] -> [(i0)]; S97[i0, i1, i2] -> [(i0)]; S53[i0] -> [(i0)]; S101[i0] -> [(i0)]; S60[i0, i1, i2] -> [(i0)]; S40[i0, i1, i2] -> [(i0)]; S103[i0, i1, i2] -> [(i0)]; S55[i0] -> [(i0)]; S89[i0] -> [(i0)]; S56[i0] -> [(i0)]; S87[i0] -> [(i0)]; S115[i0, i1] -> [(i0)]; S123[i0] -> [(i0)]; S88[i0] -> [(i0)]; S70[i0] -> [(i0)]; S59[i0, i1, i2] -> [(i0)]; S52[i0] -> [(i0)]; S54[i0] -> [(i0)]; S63[i0, i1] -> [(i0)]; S92[i0] -> [(i0)]; S93[i0] -> [(i0)]; S119[i0, i1] -> [(i0)]; S76[i0] -> [(i0)]; S57[i0] -> [(i0)]; S44[i0, i1] -> [(i0)]; S79[i0] -> [(i0)]; S61[i0, i1, i2] -> [(i0)]; S69[i0] -> [(i0)]; S117[i0, i1] -> [(i0)]; S121[i0] -> [(i0)]; S84[i0] -> [(i0)]; S83[i0] -> [(i0)]; S43[i0, i1, i2] -> [(i0)]; S98[i0, i1] -> [(i0)]; S78[i0] -> [(i0)]; S114[i0, i1] -> [(i0)]; S66[i0, i1] -> [(i0)]; S77[i0] -> [(i0)]; S109[i0, i1] -> [(i0)]; S42[i0, i1, i2] -> [(i0)]; S58[i0] -> [(i0)]; S71[i0] -> [(i0)]; S68[i0] -> [(i0)]; S116[i0, i1] -> [(i0)]; S81[i0] -> [(i0)]; S125[i0] -> [(i0)]; S80[i0] -> [(i0)]; S73[i0] -> [(i0)]; S110[i0, i1] -> [(i0)]; S72[i0] -> [(i0)]; S51[i0, i1] -> [(i0)]; S122[i0] -> [(i0)]; S38[i0] -> [(i0)]; S39[i0] -> [(i0)]; S90[i0] -> [(i0)]; S113[i0, i1] -> [(i0)]; S46[i0, i1] -> [(i0)]; S47[i0, i1] -> [(i0)]; S96[i0, i1, i2] -> [(i0)]; S45[i0, i1] -> [(i0)]; S49[i0, i1] -> [(i0)]; S118[i0, i1] -> [(i0)]; S50[i0, i1] -> [(i0)]; S102[i0, i1, i2] -> [(i0)]; S112[i0, i1] -> [(i0)]; S86[i0] -> [(i0)]; S124[i0] -> [(i0)]; S41[i0, i1, i2] -> [(i0)]; S100[i0] -> [(i0)]; S104[i0, i1, i2] -> [(i0)]; S75[i0] -> [(i0)]; S62[i0, i1] -> [(i0)]; S85[i0] -> [(i0)]; S105[i0, i1, i2] -> [(i0)]; S82[i0] -> [(i0)]; S111[i0, i1] -> [(i0)]; S48[i0, i1] -> [(i0)]; S65[i0, i1] -> [(i0)]; S120[i0] -> [(i0)]; S107[i0, i1, i2] -> [(i0)]; S106[i0, i1, i2] -> [(i0)]; S95[i0, i1, i2] -> [(i0)]; S108[i0, i1] -> [(i0)]; S91[i0] -> [(i0)]; S67[i0, i1] -> [(i0)]; S74[i0] -> [(i0)]; S64[i0, i1] -> [(i0)]; S94[i0] -> [(i0)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S38[i0] }" - filter: "[M, N, O, P, Q, R] -> { S39[i0] }" - filter: "[M, N, O, P, Q, R] -> { S40[i0, i1, i2]; S41[i0, i1, i2]; S43[i0, i1, i2]; S42[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S43[i0, i1, i2] -> [(i1)]; S41[i0, i1, i2] -> [(i1)]; S40[i0, i1, i2] -> [(i1)]; S42[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S43[i0, i1, i2] -> [(i2)]; S41[i0, i1, i2] -> [(i2)]; S40[i0, i1, i2] -> [(i2)]; S42[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S40[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S41[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S42[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S43[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S46[i0, i1]; S45[i0, i1]; S44[i0, i1]; S47[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S47[i0, i1] -> [(i1)]; S46[i0, i1] -> [(i1)]; S44[i0, i1] -> [(i1)]; S45[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S44[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S45[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S46[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S47[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S51[i0, i1]; S49[i0, i1]; S50[i0, i1]; S48[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S51[i0, i1] -> [(i1)]; S49[i0, i1] -> [(i1)]; S48[i0, i1] -> [(i1)]; S50[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S48[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S49[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S50[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S51[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S52[i0] }" - filter: "[M, N, O, P, Q, R] -> { S53[i0] }" - filter: "[M, N, O, P, Q, R] -> { S54[i0] }" - filter: "[M, N, O, P, Q, R] -> { S55[i0] }" - filter: "[M, N, O, P, Q, R] -> { S56[i0] }" - filter: "[M, N, O, P, Q, R] -> { S57[i0] }" - filter: "[M, N, O, P, Q, R] -> { S58[i0] }" - filter: "[M, N, O, P, Q, R] -> { S60[i0, i1, i2]; S59[i0, i1, i2]; S61[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S61[i0, i1, i2] -> [(i1)]; S59[i0, i1, i2] -> [(i1)]; S60[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S61[i0, i1, i2] -> [(i2)]; S59[i0, i1, i2] -> [(i2)]; S60[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S59[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S60[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S61[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S62[i0, i1]; S63[i0, i1]; S64[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S64[i0, i1] -> [(i1)]; S62[i0, i1] -> [(i1)]; S63[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S62[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S63[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S64[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S65[i0, i1]; S66[i0, i1]; S67[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S66[i0, i1] -> [(i1)]; S65[i0, i1] -> [(i1)]; S67[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S65[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S66[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S67[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S68[i0] }" - filter: "[M, N, O, P, Q, R] -> { S69[i0] }" - filter: "[M, N, O, P, Q, R] -> { S70[i0] }" - filter: "[M, N, O, P, Q, R] -> { S71[i0] }" - filter: "[M, N, O, P, Q, R] -> { S72[i0] }" - filter: "[M, N, O, P, Q, R] -> { S73[i0] }" - filter: "[M, N, O, P, Q, R] -> { S74[i0] }" - filter: "[M, N, O, P, Q, R] -> { S75[i0] }" - filter: "[M, N, O, P, Q, R] -> { S76[i0] }" - filter: "[M, N, O, P, Q, R] -> { S77[i0] }" - filter: "[M, N, O, P, Q, R] -> { S78[i0] }" - filter: "[M, N, O, P, Q, R] -> { S79[i0] }" - filter: "[M, N, O, P, Q, R] -> { S80[i0] }" - filter: "[M, N, O, P, Q, R] -> { S81[i0] }" - filter: "[M, N, O, P, Q, R] -> { S82[i0] }" - filter: "[M, N, O, P, Q, R] -> { S83[i0] }" - filter: "[M, N, O, P, Q, R] -> { S84[i0] }" - filter: "[M, N, O, P, Q, R] -> { S85[i0] }" - filter: "[M, N, O, P, Q, R] -> { S86[i0] }" - filter: "[M, N, O, P, Q, R] -> { S87[i0] }" - filter: "[M, N, O, P, Q, R] -> { S88[i0] }" - filter: "[M, N, O, P, Q, R] -> { S89[i0] }" - filter: "[M, N, O, P, Q, R] -> { S90[i0] }" - filter: "[M, N, O, P, Q, R] -> { S91[i0] }" - filter: "[M, N, O, P, Q, R] -> { S92[i0] }" - filter: "[M, N, O, P, Q, R] -> { S93[i0] }" - filter: "[M, N, O, P, Q, R] -> { S94[i0] }" - filter: "[M, N, O, P, Q, R] -> { S96[i0, i1, i2]; S98[i0, i1]; S97[i0, i1, i2]; S95[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S98[i0, i1] -> [(i1)]; S95[i0, i1, i2] -> [(i1)]; S96[i0, i1, i2] -> [(i1)]; S97[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S96[i0, i1, i2]; S97[i0, i1, i2]; S95[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S95[i0, i1, i2] -> [(i2)]; S96[i0, i1, i2] -> [(i2)]; S97[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S95[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S96[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S97[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S98[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S99[i0] }" - filter: "[M, N, O, P, Q, R] -> { S100[i0] }" - filter: "[M, N, O, P, Q, R] -> { S101[i0] }" - filter: "[M, N, O, P, Q, R] -> { S107[i0, i1, i2]; S105[i0, i1, i2]; S102[i0, i1, i2]; S104[i0, i1, i2]; S106[i0, i1, i2]; S103[i0, i1, i2] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S102[i0, i1, i2] -> [(i1)]; S103[i0, i1, i2] -> [(i1)]; S104[i0, i1, i2] -> [(i1)]; S107[i0, i1, i2] -> [(i1)]; S106[i0, i1, i2] -> [(i1)]; S105[i0, i1, i2] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S102[i0, i1, i2] -> [(i2)]; S103[i0, i1, i2] -> [(i2)]; S104[i0, i1, i2] -> [(i2)]; S107[i0, i1, i2] -> [(i2)]; S106[i0, i1, i2] -> [(i2)]; S105[i0, i1, i2] -> [(i2)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S102[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S103[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S104[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S105[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S106[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S107[i0, i1, i2] }" - filter: "[M, N, O, P, Q, R] -> { S113[i0, i1]; S112[i0, i1]; S108[i0, i1]; S111[i0, i1]; S110[i0, i1]; S109[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S110[i0, i1] -> [(i1)]; S112[i0, i1] -> [(i1)]; S111[i0, i1] -> [(i1)]; S113[i0, i1] -> [(i1)]; S109[i0, i1] -> [(i1)]; S108[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S108[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S109[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S110[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S111[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S112[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S113[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S119[i0, i1]; S114[i0, i1]; S117[i0, i1]; S115[i0, i1]; S118[i0, i1]; S116[i0, i1] }" child: schedule: "[M, N, O, P, Q, R] -> [{ S115[i0, i1] -> [(i1)]; S116[i0, i1] -> [(i1)]; S118[i0, i1] -> [(i1)]; S117[i0, i1] -> [(i1)]; S119[i0, i1] -> [(i1)]; S114[i0, i1] -> [(i1)] }]" options: "[M, N, O, P, Q, R] -> { separate[i0] }" child: sequence: - filter: "[M, N, O, P, Q, R] -> { S114[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S115[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S116[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S117[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S118[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S119[i0, i1] }" - filter: "[M, N, O, P, Q, R] -> { S120[i0] }" - filter: "[M, N, O, P, Q, R] -> { S121[i0] }" - filter: "[M, N, O, P, Q, R] -> { S122[i0] }" - filter: "[M, N, O, P, Q, R] -> { S123[i0] }" - filter: "[M, N, O, P, Q, R] -> { S124[i0] }" - filter: "[M, N, O, P, Q, R] -> { S125[i0] }" isl-0.16.1/test_inputs/codegen/cloog/usvd_e_t.st0000664000175000017500000001150312645737061016574 00000000000000domain: "{ S22[i0, i1, -7 + i0] : i0 >= 7 and i1 >= 5 and i1 <= 9 and i0 <= 10; S21[i0, i1, -7 + i0] : i0 <= 10 and i1 >= 4 and i1 <= 8 and i0 >= 7; S4[i0, i1, -1] : i0 <= 8 and i1 >= 1 and i1 <= -4 + i0; S8[i0, i1, 0] : i0 >= 3 and i0 <= 7 and i1 >= 7 and i1 <= 11; S25[i0, i1, 4] : i0 >= 10 and i0 <= 14 and i1 >= 1 and i1 <= 5; S15[i0, i1, i2] : i0 <= 10 and i1 >= 1 and i1 <= 5 and i2 >= 4 and i2 <= -4 + i0; S6[i0, i1, 0] : i0 <= 8 and i1 >= -4 and i1 <= -9 + i0; S16[i0, i1, -6 + i0] : i0 <= 10 and i1 >= 4 and i0 >= 7 and i1 <= -2 + i0; S7[i0, i1, 0] : i0 >= 5 and i1 <= 0 and i1 >= -9 + i0; S1[i0, 0, 0] : i0 >= 0 and i0 <= 4; S2[i0, i1, 0] : i0 >= 0 and i0 <= 4 and i1 >= 0 and i1 <= 4; S26[i0, i1, 3] : i0 >= 10 and i0 <= 14 and i1 >= 1 and i1 <= 5; S10[i0, 4, 0] : i0 >= 7 and i0 <= 10; S12[i0, -2 + i0, i2] : i0 >= 7 and i0 <= 10 and i2 <= 4 and i2 >= -7 + i0; S23[i0, i1, i2] : i0 <= 9 and i1 >= 4 and i1 <= 8 and i2 >= 0 and i2 <= -7 + i0; S13[i0, i1, i2] : i0 <= 10 and i1 >= 4 and i2 <= 4 and i2 >= -7 + i0 and i1 <= -4 + i0; S20[i0, i1, i2] : i0 >= 8 and i1 <= 4 and i2 >= -4 and i2 <= 0 and i1 >= -6 + i0; S24[i0, i1, i2] : i0 >= 8 and i1 >= 4 and i1 <= 8 and i2 <= 3 and i2 >= -7 + i0; S19[i0, i1, i2] : i0 >= 8 and i1 >= 1 and i2 <= 0 and i2 >= -10 + i0 and i1 <= -6 + i0; S11[i0, -3 + i0, i2] : i0 <= 10 and i0 >= 7 and i2 <= 4 and i2 >= -7 + i0; S14[i0, i1, i2] : i0 >= 8 and i1 <= 4 and i2 <= 0 and i2 >= -12 + i0 and i1 >= -6 + i0; S3[i0, 0, 0] : i0 >= 4 and i0 <= 8; S9[i0, 4, 0] : i0 >= 7 and i0 <= 10; S18[i0, i1, i2] : i0 <= 10 and i1 >= 1 and i2 >= 4 and i2 <= -4 + i0 and i1 <= -5 + i0; S5[i0, i1, 0] : i0 >= 4 and i1 <= 4 and i1 >= -4 + i0; S17[i0, i1, -6 + i0] : i0 >= 7 and i1 >= 4 and i0 <= 10 and i1 <= -2 + i0 }" child: context: "{ [] }" child: schedule: "[{ S8[i0, i1, i2] -> [(i0)]; S21[i0, i1, i2] -> [(i0)]; S9[i0, i1, i2] -> [(i0)]; S10[i0, i1, i2] -> [(i0)]; S24[i0, i1, i2] -> [(i0)]; S15[i0, i1, i2] -> [(i0)]; S12[i0, i1, i2] -> [(i0)]; S7[i0, i1, i2] -> [(i0)]; S6[i0, i1, i2] -> [(i0)]; S23[i0, i1, i2] -> [(i0)]; S22[i0, i1, i2] -> [(i0)]; S16[i0, i1, i2] -> [(i0)]; S17[i0, i1, i2] -> [(i0)]; S25[i0, i1, i2] -> [(i0)]; S18[i0, i1, i2] -> [(i0)]; S26[i0, i1, i2] -> [(i0)]; S5[i0, i1, i2] -> [(i0)]; S2[i0, i1, i2] -> [(i0)]; S4[i0, i1, i2] -> [(i0)]; S13[i0, i1, i2] -> [(i0)]; S3[i0, i1, i2] -> [(i0)]; S14[i0, i1, i2] -> [(i0)]; S19[i0, i1, i2] -> [(i0)]; S20[i0, i1, i2] -> [(i0)]; S11[i0, i1, i2] -> [(i0)]; S1[i0, i1, i2] -> [(i0)] }, { S8[i0, i1, i2] -> [(i1)]; S21[i0, i1, i2] -> [(i1)]; S9[i0, i1, i2] -> [(i1)]; S10[i0, i1, i2] -> [(i1)]; S24[i0, i1, i2] -> [(i1)]; S15[i0, i1, i2] -> [(i1)]; S12[i0, i1, i2] -> [(i1)]; S7[i0, i1, i2] -> [(i1)]; S6[i0, i1, i2] -> [(i1)]; S23[i0, i1, i2] -> [(i1)]; S22[i0, i1, i2] -> [(i1)]; S16[i0, i1, i2] -> [(i1)]; S17[i0, i1, i2] -> [(i1)]; S25[i0, i1, i2] -> [(i1)]; S18[i0, i1, i2] -> [(i1)]; S26[i0, i1, i2] -> [(i1)]; S5[i0, i1, i2] -> [(i1)]; S2[i0, i1, i2] -> [(i1)]; S4[i0, i1, i2] -> [(i1)]; S13[i0, i1, i2] -> [(i1)]; S3[i0, i1, i2] -> [(i1)]; S14[i0, i1, i2] -> [(i1)]; S19[i0, i1, i2] -> [(i1)]; S20[i0, i1, i2] -> [(i1)]; S11[i0, i1, i2] -> [(i1)]; S1[i0, i1, i2] -> [(i1)] }, { S8[i0, i1, i2] -> [(i2)]; S21[i0, i1, i2] -> [(i2)]; S9[i0, i1, i2] -> [(i2)]; S10[i0, i1, i2] -> [(i2)]; S24[i0, i1, i2] -> [(i2)]; S15[i0, i1, i2] -> [(i2)]; S12[i0, i1, i2] -> [(i2)]; S7[i0, i1, i2] -> [(i2)]; S6[i0, i1, i2] -> [(i2)]; S23[i0, i1, i2] -> [(i2)]; S22[i0, i1, i2] -> [(i2)]; S16[i0, i1, i2] -> [(i2)]; S17[i0, i1, i2] -> [(i2)]; S25[i0, i1, i2] -> [(i2)]; S18[i0, i1, i2] -> [(i2)]; S26[i0, i1, i2] -> [(i2)]; S5[i0, i1, i2] -> [(i2)]; S2[i0, i1, i2] -> [(i2)]; S4[i0, i1, i2] -> [(i2)]; S13[i0, i1, i2] -> [(i2)]; S3[i0, i1, i2] -> [(i2)]; S14[i0, i1, i2] -> [(i2)]; S19[i0, i1, i2] -> [(i2)]; S20[i0, i1, i2] -> [(i2)]; S11[i0, i1, i2] -> [(i2)]; S1[i0, i1, i2] -> [(i2)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1, i2] }" - filter: "{ S2[i0, i1, i2] }" - filter: "{ S3[i0, i1, i2] }" - filter: "{ S4[i0, i1, i2] }" - filter: "{ S5[i0, i1, i2] }" - filter: "{ S6[i0, i1, i2] }" - filter: "{ S7[i0, i1, i2] }" - filter: "{ S8[i0, i1, i2] }" - filter: "{ S9[i0, i1, i2] }" - filter: "{ S10[i0, i1, i2] }" - filter: "{ S11[i0, i1, i2] }" - filter: "{ S12[i0, i1, i2] }" - filter: "{ S13[i0, i1, i2] }" - filter: "{ S14[i0, i1, i2] }" - filter: "{ S15[i0, i1, i2] }" - filter: "{ S16[i0, i1, i2] }" - filter: "{ S17[i0, i1, i2] }" - filter: "{ S18[i0, i1, i2] }" - filter: "{ S19[i0, i1, i2] }" - filter: "{ S20[i0, i1, i2] }" - filter: "{ S21[i0, i1, i2] }" - filter: "{ S22[i0, i1, i2] }" - filter: "{ S23[i0, i1, i2] }" - filter: "{ S24[i0, i1, i2] }" - filter: "{ S25[i0, i1, i2] }" - filter: "{ S26[i0, i1, i2] }" isl-0.16.1/test_inputs/codegen/cloog/nul_basic2.st0000664000175000017500000000066012645737061017007 00000000000000domain: "[n] -> { S1[i0, i1] : 2i1 = i0 and i0 >= 1 and i0 <= n; S2[i0, i1] : 4i1 = i0 and i0 >= 1 and i0 <= n }" child: context: "[n] -> { [] : n >= 2 }" child: schedule: "[n] -> [{ S2[i0, i1] -> [(i0)]; S1[i0, i1] -> [(i0)] }, { S2[i0, i1] -> [(i1)]; S1[i0, i1] -> [(i1)] }]" options: "[n] -> { separate[i0] }" child: sequence: - filter: "[n] -> { S1[i0, i1] }" - filter: "[n] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/dot.st0000664000175000017500000000072512645737061015556 00000000000000domain: "[M, N] -> { S1[0, i1] : i1 <= M and N >= 0 and i1 >= 1; S2[i0, i1] : i0 >= 1 and i1 <= M and i0 <= N and i1 >= 1 }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/nul_basic2.c0000664000175000017500000000014012645737061016574 00000000000000for (int c0 = 2; c0 <= n; c0 += 2) { if (c0 % 4 == 0) S2(c0, c0 / 4); S1(c0, c0 / 2); } isl-0.16.1/test_inputs/codegen/cloog/stride4.st0000664000175000017500000000043712645737061016346 00000000000000domain: "[t] -> { S1[i0, t] : exists (e0 = floor((t - i0)/16): 16e0 = t - i0 and i0 >= 0 and i0 <= 99 and t >= 0 and t <= 15) }" child: context: "[t] -> { [] }" child: schedule: "[t] -> [{ S1[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)] }]" options: "[t] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/min-1-1.c0000664000175000017500000000015612645737061015641 00000000000000for (int c0 = 1; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= min(min(M, c0), N - c0); c1 += 1) S1(c0, c1); isl-0.16.1/test_inputs/codegen/cloog/basic-bounds-2.c0000664000175000017500000000000712645737061017265 00000000000000S1(0); isl-0.16.1/test_inputs/codegen/cloog/walters.c0000664000175000017500000000063212645737061016242 00000000000000{ S2(1, 0, 1, 0); S4(1, 0, 1, 0); S3(2, 0, 1, 1); S4(2, 0, 1, 1); for (int c0 = 3; c0 <= 10; c0 += 1) { if (c0 % 3 == 0) { S1(c0, c0 / 3, c0 / 3, c0 / 3); } else if ((c0 - 1) % 3 == 0) { S2(c0, (c0 - 1) / 3, (c0 + 2) / 3, (c0 - 1) / 3); } else S3(c0, (c0 - 2) / 3, (c0 + 1) / 3, (c0 + 1) / 3); S4(c0, c0 / 3, (c0 - 1) / 3 + 1, c0 - (c0 - 1) / 3 - c0 / 3 - 1); } } isl-0.16.1/test_inputs/codegen/cloog/no_lindep.st0000664000175000017500000000030312645737061016727 00000000000000domain: "[M, N] -> { S1[2 + N] }" child: context: "[M, N] -> { [] }" child: schedule: "[M, N] -> [{ S1[i0] -> [(1 + M)] }, { S1[i0] -> [(N)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/vivien2.c0000664000175000017500000000432512645737061016146 00000000000000{ for (int c0 = -27 * n + 2; c0 <= 1; c0 += 1) S1(c0 - 1); for (int c0 = 2; c0 <= n + 29; c0 += 1) { if (c0 >= 3) { S4(c0 - c0 / 2 - 1, c0 / 2 + 1); if (c0 >= 5 && 2 * n >= c0 + 3) { S4(c0 - c0 / 2 - 2, c0 / 2 + 2); for (int c2 = 1; c2 < c0 - c0 / 2 - 1; c2 += 1) S5(c0 - c0 / 2 - 1, c0 / 2 + 1, c2); } for (int c1 = -c0 + c0 / 2 + 3; c1 <= min(-1, n - c0); c1 += 1) { S4(-c1, c0 + c1); S6(-c1 + 2, c0 + c1 - 2); for (int c2 = 1; c2 <= -c1; c2 += 1) S5(-c1 + 1, c0 + c1 - 1, c2); } if (2 * n >= c0 + 3 && c0 >= n + 2) { S6(-n + c0 + 1, n - 1); for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); if (c0 == n + 2) { S6(2, n); S1(n + 1); } } else if (c0 + 2 >= 2 * n) for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); if (c0 >= n + 3) { S6(-n + c0, n); S1(c0 - 1); } else { if (c0 <= 4) { S1(c0 - 1); } else if (n + 1 >= c0) { S6(2, c0 - 2); S1(c0 - 1); } if (n + 1 >= c0) S6(1, c0 - 1); } } else S1(1); if (c0 % 2 == 0) S3(c0 / 2); for (int c1 = max(1, -n + c0); c1 < (c0 + 1) / 2; c1 += 1) S2(c0 - c1, c1); } for (int c0 = n + 30; c0 <= 2 * n; c0 += 1) { if (2 * n >= c0 + 1) { S4(c0 - c0 / 2 - 1, c0 / 2 + 1); if (c0 + 2 >= 2 * n) { for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } else { S4(c0 - c0 / 2 - 2, c0 / 2 + 2); for (int c2 = 1; c2 < c0 - c0 / 2 - 1; c2 += 1) S5(c0 - c0 / 2 - 1, c0 / 2 + 1, c2); } for (int c1 = -c0 + c0 / 2 + 3; c1 <= n - c0; c1 += 1) { S4(-c1, c0 + c1); S6(-c1 + 2, c0 + c1 - 2); for (int c2 = 1; c2 <= -c1; c2 += 1) S5(-c1 + 1, c0 + c1 - 1, c2); } if (2 * n >= c0 + 3) { S6(-n + c0 + 1, n - 1); for (int c2 = 1; c2 < -n + c0; c2 += 1) S5(-n + c0, n, c2); } S6(-n + c0, n); } if (c0 % 2 == 0) S3(c0 / 2); for (int c1 = -n + c0; c1 < (c0 + 1) / 2; c1 += 1) S2(c0 - c1, c1); } } isl-0.16.1/test_inputs/codegen/cloog/dealII.c0000664000175000017500000000067312645737414015717 00000000000000{ for (int c0 = 0; c0 <= min(min(T_2 - 1, T_67 - 1), T_66); c0 += 1) { S1(c0); S2(c0); } for (int c0 = max(0, T_66 + 1); c0 < min(T_2, T_67); c0 += 1) S1(c0); for (int c0 = T_67; c0 <= min(T_2 - 1, T_66); c0 += 1) { S1(c0); S2(c0); } for (int c0 = max(T_67, T_66 + 1); c0 < T_2; c0 += 1) S1(c0); for (int c0 = T_2; c0 <= min(T_67 - 1, T_66); c0 += 1) S2(c0); if (T_2 == 0 && T_67 == 0) S1(0); } isl-0.16.1/test_inputs/codegen/cloog/swim.c0000664000175000017500000000521112645737061015536 00000000000000if (M == 1) { S1(); S2(); S3(); S4(); S5(); S6(); S7(); S8(); S9(); S10(); S11(); S12(); S13(); S14(); S15(); S16(); S17(); S18(); S19(); S20(); S21(); S22(); S23(); S24(); S25(); S26(); S27(); for (int c0 = 1; c0 <= N; c0 += 1) { for (int c1 = 1; c1 <= N; c1 += 1) { S28(c0, c1); S29(c0, c1); S30(c0, c1); } S31(c0); } S32(); S33(); S34(); if (O <= 1) S35(); S36(); S37(); for (int c0 = 2; c0 <= P; c0 += 1) { S38(c0); S39(c0); for (int c1 = 1; c1 <= Q; c1 += 1) for (int c2 = 1; c2 <= R; c2 += 1) { S40(c0, c1, c2); S41(c0, c1, c2); S42(c0, c1, c2); S43(c0, c1, c2); } for (int c1 = 1; c1 <= Q; c1 += 1) { S44(c0, c1); S45(c0, c1); S46(c0, c1); S47(c0, c1); } for (int c1 = 1; c1 <= R; c1 += 1) { S48(c0, c1); S49(c0, c1); S50(c0, c1); S51(c0, c1); } S52(c0); S53(c0); S54(c0); S55(c0); S56(c0); S57(c0); S58(c0); for (int c1 = 1; c1 <= Q; c1 += 1) for (int c2 = 1; c2 <= R; c2 += 1) { S59(c0, c1, c2); S60(c0, c1, c2); S61(c0, c1, c2); } for (int c1 = 1; c1 <= Q; c1 += 1) { S62(c0, c1); S63(c0, c1); S64(c0, c1); } for (int c1 = 1; c1 <= R; c1 += 1) { S65(c0, c1); S66(c0, c1); S67(c0, c1); } S68(c0); S69(c0); S70(c0); S71(c0); S72(c0); S73(c0); S74(c0); S75(c0); S76(c0); S77(c0); S78(c0); S79(c0); S80(c0); S81(c0); S82(c0); S83(c0); S84(c0); S85(c0); S86(c0); S87(c0); S88(c0); S89(c0); S90(c0); S91(c0); S92(c0); S93(c0); S94(c0); for (int c1 = 1; c1 <= N; c1 += 1) { for (int c2 = 1; c2 <= N; c2 += 1) { S95(c0, c1, c2); S96(c0, c1, c2); S97(c0, c1, c2); } S98(c0, c1); } S99(c0); S100(c0); S101(c0); for (int c1 = 1; c1 <= Q; c1 += 1) for (int c2 = 1; c2 <= R; c2 += 1) { S102(c0, c1, c2); S103(c0, c1, c2); S104(c0, c1, c2); S105(c0, c1, c2); S106(c0, c1, c2); S107(c0, c1, c2); } for (int c1 = 1; c1 <= Q; c1 += 1) { S108(c0, c1); S109(c0, c1); S110(c0, c1); S111(c0, c1); S112(c0, c1); S113(c0, c1); } for (int c1 = 1; c1 <= R; c1 += 1) { S114(c0, c1); S115(c0, c1); S116(c0, c1); S117(c0, c1); S118(c0, c1); S119(c0, c1); } S120(c0); S121(c0); S122(c0); S123(c0); S124(c0); S125(c0); } } isl-0.16.1/test_inputs/codegen/cloog/reservoir-stride2.st0000664000175000017500000000031412645737061020354 00000000000000domain: "[M] -> { S1[i0, i1] : 7i1 = -2 + i0 and i0 >= 0 and i0 <= M }" child: context: "[M] -> { [] }" child: schedule: "[M] -> [{ S1[i0, i1] -> [(i0)] }]" options: "[M] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/ex1.c0000664000175000017500000000054212645737061015256 00000000000000{ for (int c0 = 0; c0 <= 14; c0 += 1) for (int c1 = 0; c1 < n - 14; c1 += 1) S1(c0, c1); for (int c0 = 15; c0 <= n; c0 += 1) { for (int c1 = 0; c1 <= 9; c1 += 1) S1(c0, c1); for (int c1 = 10; c1 < n - 14; c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = n - 14; c1 <= n; c1 += 1) S2(c0, c1); } } isl-0.16.1/test_inputs/codegen/cloog/uday_scalars.st0000664000175000017500000000070712645737061017442 00000000000000domain: "[n] -> { S1[j, 0, 0] : j >= 0 and j <= n; S2[0, l, 0] : l >= 0 and l <= n }" child: context: "[n] -> { [] }" child: sequence: - filter: "[n] -> { S1[i0, i1, i2] }" child: schedule: "[n] -> [{ S1[i0, i1, i2] -> [(i0)] }]" options: "[n] -> { separate[i0] }" - filter: "[n] -> { S2[i0, i1, i2] }" child: schedule: "[n] -> [{ S2[i0, i1, i2] -> [(i1)] }]" options: "[n] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/otl.st0000664000175000017500000000577612645737061015601 00000000000000domain: "[M, N] -> { S1[outerTimeTileIter, outerProcTileIter1, outerProcTileIter2, innerTimeTileIter, innerProcTileIter1, outerProcTileIter2] : 5outerTimeTileIter <= -7 + 2M + 2N and innerProcTileIter1 >= outerTimeTileIter - outerProcTileIter2 and 10outerProcTileIter2 >= -2 - N + 5outerTimeTileIter and outerProcTileIter2 >= -1 + outerTimeTileIter - outerProcTileIter1 and 2innerProcTileIter1 >= outerTimeTileIter and outerTimeTileIter >= 1 and outerProcTileIter1 >= 1 and 2outerProcTileIter1 >= outerTimeTileIter and outerProcTileIter2 >= 0 and 5outerProcTileIter2 >= 1 - M - N + 5outerTimeTileIter and 5innerProcTileIter1 >= -1 - M + 5outerTimeTileIter and innerTimeTileIter >= outerTimeTileIter and 5outerProcTileIter1 >= -2 - M + 5outerTimeTileIter and innerTimeTileIter >= 1 and 5innerTimeTileIter >= -3 - N + 5outerProcTileIter1 + 5outerProcTileIter2 and 5outerProcTileIter2 <= 4 + N + 5outerTimeTileIter - 5outerProcTileIter1 and innerProcTileIter1 >= 1 and outerProcTileIter2 <= outerTimeTileIter and 5innerTimeTileIter >= -2N + 10outerProcTileIter1 and 5outerProcTileIter1 <= -5 + M + 2N and 10outerProcTileIter1 <= 1 + 2N + 5outerTimeTileIter and 5outerProcTileIter2 >= -1 - N + 5outerProcTileIter1 and innerProcTileIter1 >= outerProcTileIter1 and innerTimeTileIter >= outerProcTileIter1 and outerProcTileIter2 <= outerProcTileIter1 and outerProcTileIter1 <= outerTimeTileIter and 5innerProcTileIter1 <= 4 + N - 5outerProcTileIter2 + 5innerTimeTileIter and 5innerProcTileIter1 <= 5 + N + 5outerTimeTileIter - 5outerProcTileIter2 and 5innerTimeTileIter >= -2 - N + 10outerProcTileIter2 and 5outerProcTileIter2 <= -2 + M + N and 10outerProcTileIter2 <= 3 + N + 5outerTimeTileIter and N >= 4 and innerProcTileIter1 >= outerProcTileIter2 and innerTimeTileIter >= outerProcTileIter2 and M >= 3 and innerProcTileIter1 <= outerTimeTileIter and 5innerTimeTileIter <= -6 + 2M + 2N and innerProcTileIter1 >= -1 - outerProcTileIter2 + innerTimeTileIter and 5innerTimeTileIter <= 3 + N + 10outerProcTileIter2 and innerTimeTileIter <= 1 + outerProcTileIter1 + outerProcTileIter2 and innerProcTileIter1 <= 1 + outerProcTileIter1 and 2innerProcTileIter1 >= innerTimeTileIter and 5innerProcTileIter1 <= 2 + N + 5outerProcTileIter2 and innerTimeTileIter <= 1 + 2outerProcTileIter1 and innerProcTileIter1 <= innerTimeTileIter and 5innerTimeTileIter <= M + N + 5outerProcTileIter2 and 5innerProcTileIter1 >= -2 - M + 5innerTimeTileIter and 10innerProcTileIter1 <= 3 + 2N + 5outerTimeTileIter and innerTimeTileIter <= 1 + outerTimeTileIter and 5innerTimeTileIter <= 3 + M + 5outerProcTileIter1 and 5innerProcTileIter1 <= -4 + M + 2N and 10innerProcTileIter1 <= 2 + 2N + 5innerTimeTileIter }" child: context: "[M, N] -> { [] : M >= 1 and N >= 1 }" child: schedule: "[M, N] -> [{ S1[i0, i1, i2, i3, i4, i5] -> [(i0)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i1)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i2)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i3)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i4)] }, { S1[i0, i1, i2, i3, i4, i5] -> [(i5)] }]" options: "[M, N] -> { separate[i0] }" isl-0.16.1/test_inputs/codegen/cloog/gesced2.c0000664000175000017500000000106212645737061016073 00000000000000{ for (int c0 = 1; c0 <= 4; c0 += 1) for (int c1 = 5; c1 < M - 9; c1 += 1) S1(c0, c1); for (int c0 = 5; c0 < M - 9; c0 += 1) { for (int c1 = -c0 + 1; c1 <= 4; c1 += 1) S2(c0 + c1, c0); for (int c1 = 5; c1 <= min(M - 10, M - c0); c1 += 1) { S1(c0, c1); S2(c0 + c1, c0); } for (int c1 = M - c0 + 1; c1 < M - 9; c1 += 1) S1(c0, c1); for (int c1 = M - 9; c1 <= M - c0; c1 += 1) S2(c0 + c1, c0); } for (int c0 = M - 9; c0 <= M; c0 += 1) for (int c1 = 5; c1 < M - 9; c1 += 1) S1(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/multi-mm-1.st0000664000175000017500000000073112645737061016664 00000000000000domain: "[M, N] -> { S1[i0, i1] : i1 >= 0 and i1 <= i0 and i0 <= M; S2[i0, i1] : i1 >= 0 and i1 <= i0 and i0 <= M and i1 <= N }" child: context: "[M, N] -> { [] : N <= M and N >= 1 }" child: schedule: "[M, N] -> [{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "[M, N] -> { separate[i0] }" child: sequence: - filter: "[M, N] -> { S1[i0, i1] }" - filter: "[M, N] -> { S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/cloog/youcef.c0000664000175000017500000000017012645737061016050 00000000000000for (int c0 = 0; c0 <= 5; c0 += 1) { S1(c0, c0); for (int c1 = c0; c1 <= 5; c1 += 1) S2(c0, c1); S3(c0, 5); } isl-0.16.1/test_inputs/codegen/cloog/pouchet.c0000664000175000017500000000075412645737061016235 00000000000000for (int c0 = 1; c0 <= floord(Ny, 2) + 2; c0 += 1) for (int c1 = max(c0 - 1, c0 / 2 + 1); c1 <= min(c0, (Ny + 2 * c0) / 4); c1 += 1) { if (Ny + 2 * c0 >= 4 * c1 + 1) { for (int c2 = 1; c2 <= 2; c2 += 1) { S1(c0 - c1, c1, 2 * c0 - 2 * c1, -2 * c0 + 4 * c1, c2); S2(c0 - c1, c1, 2 * c0 - 2 * c1, -2 * c0 + 4 * c1 - 1, c2); } } else for (int c2 = 1; c2 <= 2; c2 += 1) S2((-Ny + 2 * c0) / 4, (Ny + 2 * c0) / 4, (-Ny / 2) + c0, Ny - 1, c2); } isl-0.16.1/test_inputs/codegen/cloog/reservoir-stride2.c0000664000175000017500000000007312645737061020152 00000000000000for (int c0 = 2; c0 <= M; c0 += 7) S1(c0, (c0 - 2) / 7); isl-0.16.1/test_inputs/codegen/cloog/christian.c0000664000175000017500000000033012645737061016540 00000000000000for (int c0 = -N + 1; c0 <= N; c0 += 1) { for (int c1 = max(0, c0); c1 < min(N, N + c0); c1 += 1) S1(c1, -c0 + c1); for (int c1 = max(0, c0 - 1); c1 < min(N, N + c0 - 1); c1 += 1) S2(c1, -c0 + c1 + 1); } isl-0.16.1/test_inputs/codegen/cloog/mod.c0000664000175000017500000000011012645737061015327 00000000000000for (int c0 = 0; c0 <= 3; c0 += 1) if ((c0 + 1) % 3 >= 1) S1(c0); isl-0.16.1/test_inputs/codegen/cloog/mode.c0000664000175000017500000000036712645737061015512 00000000000000for (int c0 = 0; c0 <= M; c0 += 1) { for (int c1 = 0; c1 <= min(N, c0); c1 += 1) { S1(c0, c1); S2(c0, c1); } for (int c1 = max(0, N + 1); c1 <= c0; c1 += 1) S1(c0, c1); for (int c1 = c0 + 1; c1 <= N; c1 += 1) S2(c0, c1); } isl-0.16.1/test_inputs/codegen/cloog/byu98-1-2-3.st0000664000175000017500000000062612645737061016405 00000000000000domain: "{ S2[i0, 9 - i0] : i0 <= 8 and i0 >= 4; S1[i0, i1] : i1 >= 6 - i0 and i0 >= 2 and i1 >= 3 and i1 <= 6 and i1 >= -1 + i0 }" child: context: "{ [] }" child: schedule: "[{ S1[i0, i1] -> [(i0)]; S2[i0, i1] -> [(i0)] }, { S1[i0, i1] -> [(i1)]; S2[i0, i1] -> [(i1)] }]" options: "{ separate[i0] }" child: sequence: - filter: "{ S1[i0, i1] }" - filter: "{ S2[i0, i1] }" isl-0.16.1/test_inputs/codegen/isolate5.st0000664000175000017500000000046112645737061015407 00000000000000# Check that use of isolate option prevents shifted stride detection domain: "{ A[i,j] : 0 <= i < 100 and 0 <= j < 2; B[i,j] : 0 <= i < 100 and 0 <= j < 2 }" child: schedule: "[{ A[i,j] -> [2i]; B[i,j] -> [2i+1] }, { A[i,j] -> [j]; B[i,j] -> [j]}]" options: "{ isolate[[] -> [x, y]] : 10 <= x < 90 }" isl-0.16.1/test_inputs/codegen/separate.in0000664000175000017500000000013012645737061015437 00000000000000{ a[i] -> [i] : 0 <= i < 10; b[i] -> [i+1] : 0 <= i < 10 } { : } { [i] -> separate[x] } isl-0.16.1/test_inputs/codegen/component5.st0000664000175000017500000000037412645737061015754 00000000000000domain: "{ A[i] : 0 <= i < 10; B[i,j] : 0 <= i,j < 10 }" child: schedule: "[{ A[i] -> [0]; B[i,j] -> [i] }]" child: schedule: "[{ A[i] -> [i]; B[i,j] -> [j] }]" child: sequence: - filter: "{ A[i] }" - filter: "{ B[i,j] }" isl-0.16.1/test_inputs/codegen/unroll9.c0000664000175000017500000000023012645737061015054 00000000000000for (int c0 = 0; c0 <= 99; c0 += 1) for (int c1 = 0; c1 <= 99; c1 += 1) { A(c1, 0, c0); A(c1, 1, c0); B(c1, 0, c0); B(c1, 1, c0); } isl-0.16.1/test_inputs/codegen/lu.in0000664000175000017500000000127412645737061014265 00000000000000# Check that the stride of the second loop is properly detected [n] -> { S_2[k, j] -> [o0, o0, o2, k, k, j, 1] : exists (e0 = floor((o2)/32), e1 = floor((o0)/32): 32e0 = o2 and 32e1 = o0 and o0 <= k and o0 >= -31 + k and k >= 0 and j <= -1 + n and o2 <= j and o2 >= -31 + j and j >= 1 + k); S_6[k, i, j] -> [o0, o1, o2, k, i, j, 0] : exists (e0 = floor((o0)/32), e1 = floor((o1)/32), e2 = floor((o2)/32): 32e0 = o0 and 32e1 = o1 and 32e2 = o2 and o0 <= k and o0 >= -31 + k and o1 <= i and o1 >= -31 + i and o2 <= j and o2 >= -31 + j and k >= 0 and i >= 1 + k and j <= -1 + n and j >= 1 + k and i <= -1 + n) } { : } { [a,b,c,d,e,f,g] -> atomic[x] : x < 3; [a,b,c,d,e,f,g] -> separate[x] : x >= 3 } isl-0.16.1/test_inputs/codegen/atomic.c0000664000175000017500000000014012645737061014724 00000000000000for (int c0 = 0; c0 <= 10; c0 += 1) { if (c0 >= 1) b(c0 - 1); if (c0 <= 9) a(c0); } isl-0.16.1/test_inputs/codegen/component6.st0000664000175000017500000000045412645737061015754 00000000000000# Check that components are still detected in presence of nested context node domain: "{ A[]; B[i] : 0 <= i < 10 }" child: schedule: "[{ A[] -> [0]; B[i] -> [i] }]" child: context: "[n] -> { [i] : 0 <= n <= i }" child: sequence: - filter: "{ A[] }" - filter: "{ B[i] }" isl-0.16.1/test_inputs/codegen/atomic2.c0000664000175000017500000000011512645737061015010 00000000000000for (int c0 = ((b0 + 32767) % 32768) + 1; c0 <= 65534; c0 += 32768) A(c0); isl-0.16.1/test_inputs/codegen/unroll11.in0000664000175000017500000000046412645737061015322 00000000000000# Check that the most appropriate lower bound is selected [t1,t2]->{ S[i,j] -> [i,j] : exists (alpha, beta : 0 <= i <= 1 && t1 = j+128alpha && 0 <= j+2beta < 128 && 510 <= t2+2beta <= 514 && 0 <= 2beta - t2 <= 5 )} [t1,t2] -> {: 125 <= t1 <= 127 and 254 <= t2 < 257} {[i,j] -> unroll[x]} isl-0.16.1/test_inputs/codegen/atomic3.in0000664000175000017500000000032012645737061015173 00000000000000# Check that isl is not confused by inconsistent # separation_class and atomic options. { sync[] -> [i, 0] : 0 <= i <= 64 } { : } { [i, 0] -> separation_class[[1] -> [0]] : 1 <= i <= 62; [i, 0] -> atomic[1]} isl-0.16.1/test_inputs/codegen/roman.in0000664000175000017500000000707612645737061014767 00000000000000# Older versions of isl would get confused on this input due to disappearing # div constraints. [np1, i] -> { S_17[i0, i1, i2] -> [0, i0, 2, i1, 1, i2, 1] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296], e2 = [(i1)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i2 >= 0 and 4294967296e2 <= i1 and 4294967296e2 >= -4294967295 + i1 and 4294967296e2 <= i1 - i2 and i2 <= 19 and i0 >= 2 - i and i2 <= -1 + i1); S_18[i0, i1] -> [0, i0, 2, i1, 2, 0, 0] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i0 >= 2 - i); S_24[i0, i1] -> [0, i0, 2, i1, 3, 0, 0] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i0 >= 2 - i); S_15[i0, i1] -> [0, i0, 2, i1, 0, 0, 0] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i0 >= 2 - i); S_9[i0] -> [0, i0, 0, 0, 0, 0, 0] : exists (e0 = [(np1 - i)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20); S_10[i0] -> [0, i0, 1, 0, 0, 0, 0] : exists (e0 = [(np1 - i)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i0 >= 2 - i); S_19[i0, i1] -> [0, i0, 2, i1, 4, 0, 0] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i0 >= 2 - i and i1 <= -3 + i + i0); S_12[i0] -> [0, i0, 3, 0, 0, 0, 0] : exists (e0 = [(np1 - i)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20); S_16[i0, i1, i2] -> [0, i0, 2, i1, 1, i2, 0] : exists (e0 = [(np1 - i)/4294967296], e1 = [(-2 + i + i0)/4294967296], e2 = [(i1)/4294967296]: i0 >= 0 and 4294967296e0 <= np1 - i and 4294967296e0 >= -4294967295 + np1 - i and 4294967296e0 <= np1 - i - i0 and i0 <= 20 and i1 >= 0 and 4294967296e1 <= -2 + i + i0 and 4294967296e1 >= -4294967297 + i + i0 and 4294967296e1 <= -2 + i + i0 - i1 and i1 <= 19 and i2 >= 0 and 4294967296e2 <= i1 and 4294967296e2 >= -4294967295 + i1 and 4294967296e2 <= i1 - i2 and i2 <= 19 and i0 >= 2 - i) } [np1, i] -> { : exists (e0 = [(np1 - i)/4294967296]: 4294967296e0 <= np1 - i and 4294967296e0 >= -20 + np1 - i and np1 >= -2147483648 and np1 <= 2147483647 and i >= -2147483648 and i <= 2147483647) } [np1, i] -> { [i0, i1, i2, i3, i4, i5, i6] -> separate[o0] } isl-0.16.1/test_inputs/codegen/component2.st0000664000175000017500000000024112645737061015742 00000000000000domain: "{ A[]; B[i] : 0 <= i < 10 }" child: schedule: "[{ A[] -> [0]; B[i] -> [i] }]" child: sequence: - filter: "{ B[i] }" - filter: "{ A[] }" isl-0.16.1/test_inputs/codegen/disjuncts.c0000664000175000017500000000054412645737061015466 00000000000000for (int c0 = 0; c0 <= n; c0 += 1) for (int c1 = 0; c1 <= n; c1 += 1) if (c1 == n || c0 == n || c1 == 0 || c0 == 0) { for (int c3 = 0; c3 <= n; c3 += 1) for (int c4 = 0; c4 <= n; c4 += 1) a(c0, c1, c3, c4); for (int c3 = 0; c3 <= n; c3 += 1) for (int c4 = 0; c4 <= n; c4 += 1) b(c0, c1, c3, c4); } isl-0.16.1/test_inputs/codegen/unroll10.c0000664000175000017500000000111612645737061015130 00000000000000if (m >= 1 && n >= 1) { A(0); if (m >= 2 && n >= 2) { A(1); if (m >= 3 && n >= 3) { A(2); if (m >= 4 && n >= 4) { A(3); if (m >= 5 && n >= 5) { A(4); if (m >= 6 && n >= 6) { A(5); if (m >= 7 && n >= 7) { A(6); if (m >= 8 && n >= 8) { A(7); if (m >= 9 && n >= 9) { A(8); if (m >= 10 && n >= 10) A(9); } } } } } } } } } isl-0.16.1/test_inputs/codegen/separation_class3.in0000664000175000017500000000112212645737061017252 00000000000000{ S_0[t, i] -> [o0, 1, o2, 0, t, 0, i] : 4o2 >= -4 + t + i - 2o0 and 4o2 >= -3 - t + i + 2o0 and 2o0 <= 1 + t and 2o0 >= t and 4o2 <= -1 + t + i - 2o0 and t >= 0 and t <= 7 and i >= 1 and i <= 8; S_0[t, i] -> [o0, 0, o2, 0, t, 0, i] : 4o2 >= t + i - 2o0 and 4o2 <= -t + i + 2o0 and 2o0 <= 1 + t and 2o0 >= t and t >= 0 and t <= 7 and i >= 1 and i <= 8 } {:} { [i0, 1, i2, i3, i4, i5, i6] -> separation_class[[2] -> [0]] : i2 <= 1 and i2 >= 0 and i0 <= 3 and i0 >= 1; [i0, 0, 1, i3, i4, i5, i6] -> separation_class[[2] -> [0]] : i0 <= 3 and i0 >= 1; [i0, i1, i2, i3, i4, i5, i6] -> unroll[1] } isl-0.16.1/test_inputs/codegen/component6.c0000664000175000017500000000007312645737061015545 00000000000000{ A(); for (int c0 = 0; c0 <= 9; c0 += 1) B(c0); } isl-0.16.1/test_inputs/codegen/stride.in0000664000175000017500000000034712645737061015137 00000000000000# Check that we find a common stride on the first dimension # even if it is imposed by different inner dimensions { A[i,k] -> [i,0,j,k] : 0 <= i,k <= 100 and i = 2 j; B[i,k] -> [i,1,k,j] : 0 <= i,k <= 100 and i = 2 j } { : } { } isl-0.16.1/test_inputs/codegen/unroll7.c0000664000175000017500000000013412645737061015055 00000000000000{ S(0, 0); S(0, 3); S(0, 4); S(1, 1); S(1, 4); S(2, 2); S(3, 3); S(4, 4); } isl-0.16.1/test_inputs/codegen/disjuncts.in0000664000175000017500000000044412645737061015651 00000000000000# Check that conditions are hoisted up from the innermost loop [n] -> { a[i,j,k,l] -> [i,j,0,k,l] : 0 <= i,j,k,l <= n and (i = 0 or j = 0 or i = n or j = n); b[i,j,k,l] -> [i,j,1,k,l] : 0 <= i,j,k,l <= n and (i = 0 or j = 0 or i = n or j = n) } { : } { [i,j,t,k,l] -> atomic[x] } isl-0.16.1/test_inputs/codegen/isolate5.c0000664000175000017500000000102312645737061015176 00000000000000{ for (int c0 = 0; c0 <= 9; c0 += 1) for (int c1 = 0; c1 <= 1; c1 += 1) { if (c0 % 2 == 0) { A(c0 / 2, c1); } else B((c0 - 1) / 2, c1); } for (int c0 = 10; c0 <= 89; c0 += 1) for (int c1 = 0; c1 <= 1; c1 += 1) { if (c0 % 2 == 0) { A(c0 / 2, c1); } else B((c0 - 1) / 2, c1); } for (int c0 = 90; c0 <= 199; c0 += 1) for (int c1 = 0; c1 <= 1; c1 += 1) { if (c0 % 2 == 0) { A(c0 / 2, c1); } else B((c0 - 1) / 2, c1); } } isl-0.16.1/test_inputs/codegen/shift2.in0000664000175000017500000000301512645737061015037 00000000000000# Check that the shifting code is not confused by domains that # have a non-obviously fixed value. [tsteps, length] -> { S_4[iter] -> [iter, 0, o2, o3, 0, o5, o6, 3] : exists (e0 = [(o2)/32], e1 = [(o3)/32], e2 = [(-length + o5)/32], e3 = [(-2length + o6)/32]: tsteps = 2 and 32e0 = o2 and 32e1 = o3 and 32e2 = -length + o5 and 32e3 = -2length + o6 and o2 <= length and o2 >= -31 + length and o3 <= 2length and o3 >= -30 + 2length and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 30 and iter <= 1 and iter >= 0); S_3[iter, i, j] -> [iter, o1, o2, o3, o4, o5, o6, 2] : exists (e0 = [(o1)/32], e1 = [(o2)/32], e2 = [(o3)/32], e3 = [(-i + o4)/32], e4 = [(-j + o5)/32], e5 = [(-2j + o6)/32]: tsteps = 2 and 32e0 = o1 and 32e1 = o2 and 32e2 = o3 and 32e3 = -i + o4 and 32e4 = -j + o5 and 32e5 = -2j + o6 and o1 <= i and o1 >= -31 + i and o2 <= j and o2 >= -31 + j and o3 <= 2j and o3 >= -30 + 2j and o4 >= 0 and o4 <= 31 and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 30 and j >= 1 + i and i >= 0 and iter <= 1 and iter >= 0 and j <= -1 + length); S_0[iter, i, j] -> [iter, 0, o2, o3, 0, o5, o6, 4] : exists (e0 = [(o2)/32], e1 = [(o3)/32], e2 = [(-i + o5)/32], e3 = [(-31 + j - o6)/32]: tsteps = 2 and 32e0 = o2 and 32e1 = o3 and 32e2 = -i + o5 and 32e3 = -31 + j - o6 and o2 <= i and o2 >= -31 + i and o3 <= 1 + j and o3 >= -30 + j and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 31 and i <= -1 + length and i >= 0 and iter >= 0 and iter <= 1 and j <= -1 + length and j >= 0) } [tsteps, length] -> { : length >= 0 and length <= 1024 and tsteps = 2 } { } isl-0.16.1/test_inputs/codegen/stride6.in0000664000175000017500000000137512645737061015227 00000000000000[niter] -> { S_4[-1 + niter, i] -> [o0, o1, o2, o3, o4, o5, o6, o7, 4] : exists (e0 = [(o0)/32], e1 = [(o1)/32], e2 = [(o2)/32], e3 = [(o3)/32], e4 = [(-31i + o5)/32], e5 = [(-i - o4 + o6)/32], e6 = [(-o4 + o7)/32], e7 = [(-1 + niter - o4)/32]: 32e0 = o0 and 32e1 = o1 and 32e2 = o2 and 32e3 = o3 and 32e4 = -31i + o5 and 32e5 = -i - o4 + o6 and 32e6 = -o4 + o7 and 32e7 = -1 + niter - o4 and o0 <= -1 + niter and o0 >= -32 + niter and o1 <= -i and o1 >= -31 - i and o2 <= -1 + niter + i and o2 >= -32 + niter + i and o3 <= 1023 + niter and o3 >= 992 + niter and o4 >= 0 and o4 <= 31 and o5 >= 0 and o5 <= 31 and o6 >= 0 and o6 <= 31 and o7 >= 0 and o7 <= 31 and i <= 1023 and i >= 0 and niter >= 1) } [niter] -> { : niter <= 8192 and niter >= 1 } [niter] -> { } isl-0.16.1/test_inputs/codegen/roman.c0000664000175000017500000000143212645737061014571 00000000000000{ for (int c1 = 0; c1 <= min(np1 - i, -i + 1); c1 += 1) { S_9(c1); S_12(c1); } for (int c1 = max(0, -i + 2); c1 <= -((-np1 + i + 4294967295) % 4294967296) + 4294967295; c1 += 1) { S_9(c1); S_10(c1); for (int c3 = 0; c3 <= min(19, i + c1 - 3); c3 += 1) { S_15(c1, c3); for (int c5 = 0; c5 < c3; c5 += 1) { S_16(c1, c3, c5); S_17(c1, c3, c5); } S_16(c1, c3, c3); S_18(c1, c3); S_24(c1, c3); S_19(c1, c3); } if (i + c1 <= 21) { S_15(c1, i + c1 - 2); for (int c5 = 0; c5 < i + c1 - 2; c5 += 1) { S_16(c1, i + c1 - 2, c5); S_17(c1, i + c1 - 2, c5); } S_16(c1, i + c1 - 2, i + c1 - 2); S_18(c1, i + c1 - 2); S_24(c1, i + c1 - 2); } S_12(c1); } } isl-0.16.1/test_inputs/codegen/mod.c0000664000175000017500000000005312645737061014232 00000000000000if (2 * (n % 100) == 3 * (m % 200)) A(); isl-0.16.1/test_inputs/application.omega0000644000175000017500000000010011242575471015204 00000000000000{[x]} {[x] -> [y] : y = 2x} {[y]: Exists ( alpha : 2alpha = y)} isl-0.16.1/test_inputs/devos.pwqp0000664000175000017500000000015712645737061013741 00000000000000[U] -> { [i0] -> ((1/3 * U + 2/3 * i0) - [(U + 2i0)/3]) : 2i0 >= -3 - U and 2i0 <= -U and U >= 0 and U <= 10 } isl-0.16.1/test_inputs/philippePolynomialCoeff1P.pwqp0000664000175000017500000000013612645737061017640 00000000000000[N] -> { [i, j] -> ((N * i + (1/5 * N + N^2) * i^2) + 5 * j) : i <= N and j >= 0 and j <= i } isl-0.16.1/test_inputs/convex14.polylib0000644000175000017500000000013111242575471014736 000000000000003 4 0 1 0 2 1 0 1 0 1 0 -1 2 3 4 1 1 0 0 1 0 1 0 1 0 -1 2 3 4 1 1 0 2 1 0 1 0 1 0 -1 2 isl-0.16.1/test_inputs/convex3.polylib0000644000175000017500000000007411242575471014662 000000000000001 4 1 1 1 -6 3 4 1 1 1 -3 1 1 0 -5 1 -1 0 10 1 4 1 1 1 -3 isl-0.16.1/test_inputs/application2.omega0000644000175000017500000000015211242575471015275 00000000000000{[x] : x >= 0 && x <= 20 } {[x] -> [y] : y = 2x} {[y]: Exists ( alpha : 2alpha = y && 0 <= y && y <= 40)} isl-0.16.1/test_inputs/sor1d.pip0000644000175000017500000000061611427503105013433 000000000000002 4 1 1 0 0 1 0 1 0 -1 20 8 0 -1 0 0 0 0 0 2 0 0 -1 0 0 0 0 1 0 0 0 -1 0 0 0 2 0 0 0 0 -1 0 0 4 1 0 0 0 1 0 0 -2 1 -2 0 2 1 0 0 -4 1 0 0 0 -1 0 1 -1 1 2 0 -2 -1 0 0 5 1 0 0 1 0 0 0 -1 1 0 -2 1 0 0 0 0 1 -2 0 2 0 0 1 -5 1 0 0 -1 0 1 0 0 1 0 2 -1 0 0 0 1 1 2 0 -2 0 0 0 3 1 0 1 0 0 0 0 0 1 -2 4 0 0 0 1 -3 1 0 -2 0 0 1 0 0 1 2 -4 0 0 0 0 3 1 2 0 0 0 0 0 1 1 -2 0 0 0 2 1 -5 isl-0.16.1/test_inputs/convex7.polylib0000644000175000017500000000006211242575471014663 000000000000001 4 0 0 1 0 2 4 1 1 -1 1 1 -1 -1 1 1 4 1 0 -1 1 isl-0.16.1/test_inputs/equality4.pwqp0000664000175000017500000000013112645737061014532 00000000000000[m,n] -> { [x,y] -> x^2 * y + m + 13 * n: n = 2x + 4y and 0 <= x,y <= 10 and 3 n = 5 m } isl-0.16.1/test_inputs/convex5.polylib0000644000175000017500000000012011242575471014654 000000000000002 4 0 1 0 -2 0 0 1 -6 2 4 0 1 0 -1 0 0 1 -4 3 4 0 -2 1 -2 1 1 0 -1 1 -1 0 2 isl-0.16.1/test_inputs/sven.pip0000644000175000017500000000003511427503105013351 000000000000000 3 -1 2 3 1 1 -4 1 -1 10 isl-0.16.1/test_inputs/ex2.pip0000644000175000017500000000010511427503105013072 000000000000001 5 1 -1 1 1 0 -1 3 7 1 0 -1 0 1 0 0 1 -1 0 0 0 1 0 1 1 1 -1 0 0 0 isl-0.16.1/test_inputs/philippe3vars.pwqp0000664000175000017500000000015412645737061015407 00000000000000[N] -> { [i, j, k] -> (((1/2 * i + 1/2 * i^2) + j) + k^3) : i >= 0 and k >= -N + i and k >= -j and j <= i } isl-0.16.1/test_inputs/tobi.pip0000664000175000017500000000035712645737061013361 000000000000002 3 1 1 -281 1 -1 14000 -1 6 6 0 -392 0 8 -1 0 0 392 8 0 1 0 1 -1 0 0 0 0 1 1 0 0 0 35 1 392 0 0 1 0 1 -392 0 0 -1 280 Urs_unknowns isl-0.16.1/include/0000775000175000017500000000000012645755104011025 500000000000000isl-0.16.1/include/isl/0000775000175000017500000000000012645755104011614 500000000000000isl-0.16.1/include/isl/union_map.h0000664000175000017500000002734112645737234013705 00000000000000#ifndef ISL_UNION_MAP_H #define ISL_UNION_MAP_H #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif unsigned isl_union_map_dim(__isl_keep isl_union_map *umap, enum isl_dim_type type); isl_bool isl_union_map_involves_dims(__isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_id *isl_union_map_get_dim_id(__isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned pos); __isl_constructor __isl_give isl_union_map *isl_union_map_from_basic_map( __isl_take isl_basic_map *bmap); __isl_constructor __isl_give isl_union_map *isl_union_map_from_map(__isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_empty(__isl_take isl_space *dim); __isl_give isl_union_map *isl_union_map_copy(__isl_keep isl_union_map *umap); __isl_null isl_union_map *isl_union_map_free(__isl_take isl_union_map *umap); isl_ctx *isl_union_map_get_ctx(__isl_keep isl_union_map *umap); __isl_give isl_space *isl_union_map_get_space(__isl_keep isl_union_map *umap); __isl_give isl_union_map *isl_union_map_reset_user( __isl_take isl_union_map *umap); int isl_union_map_find_dim_by_name(__isl_keep isl_union_map *umap, enum isl_dim_type type, const char *name); __isl_give isl_union_map *isl_union_map_universe( __isl_take isl_union_map *umap); __isl_give isl_set *isl_union_map_params(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_set *isl_union_map_domain(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_set *isl_union_map_range(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_domain_map( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_pw_multi_aff *isl_union_map_domain_map_union_pw_multi_aff( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_range_map( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_set_wrapped_domain_map( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_from_domain( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_from_range( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_affine_hull( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_polyhedral_hull( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_remove_redundancies( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_simple_hull( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_coalesce( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_compute_divs( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_lexmin(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_lexmax(__isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_add_map(__isl_take isl_union_map *umap, __isl_take isl_map *map); __isl_export __isl_give isl_union_map *isl_union_map_union(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_subtract( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_intersect( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_intersect_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_export __isl_give isl_union_map *isl_union_map_product(__isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_flat_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_flat_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_domain_factor_domain( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_domain_factor_range( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_range_factor_domain( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_range_factor_range( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_factor_domain( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_factor_range( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_gist(__isl_take isl_union_map *umap, __isl_take isl_union_map *context); __isl_export __isl_give isl_union_map *isl_union_map_gist_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_export __isl_give isl_union_map *isl_union_map_gist_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_gist_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_intersect_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_intersect_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_subtract_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); __isl_export __isl_give isl_union_map *isl_union_map_subtract_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); __isl_export __isl_give isl_union_map *isl_union_map_apply_domain( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_export __isl_give isl_union_map *isl_union_map_apply_range( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_preimage_domain_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma); __isl_give isl_union_map *isl_union_map_preimage_range_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma); __isl_give isl_union_map *isl_union_map_preimage_domain_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map *isl_union_map_preimage_range_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map *isl_union_map_preimage_domain_multi_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_union_map *isl_union_map_preimage_domain_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_map *isl_union_map_preimage_range_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma); __isl_export __isl_give isl_union_map *isl_union_map_reverse(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_map_from_domain_and_range( __isl_take isl_union_set *domain, __isl_take isl_union_set *range); __isl_export __isl_give isl_union_map *isl_union_map_detect_equalities( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_set *isl_union_map_deltas(__isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_deltas_map( __isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_set_identity(__isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_project_out( __isl_take isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n); __isl_export isl_bool isl_union_map_is_empty(__isl_keep isl_union_map *umap); __isl_export isl_bool isl_union_map_is_single_valued(__isl_keep isl_union_map *umap); isl_bool isl_union_map_plain_is_injective(__isl_keep isl_union_map *umap); __isl_export isl_bool isl_union_map_is_injective(__isl_keep isl_union_map *umap); __isl_export isl_bool isl_union_map_is_bijective(__isl_keep isl_union_map *umap); __isl_export isl_bool isl_union_map_is_subset(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); __isl_export isl_bool isl_union_map_is_equal(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); isl_bool isl_union_map_is_disjoint(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); __isl_export isl_bool isl_union_map_is_strict_subset(__isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); int isl_union_map_n_map(__isl_keep isl_union_map *umap); __isl_export isl_stat isl_union_map_foreach_map(__isl_keep isl_union_map *umap, isl_stat (*fn)(__isl_take isl_map *map, void *user), void *user); __isl_give int isl_union_map_contains(__isl_keep isl_union_map *umap, __isl_keep isl_space *dim); __isl_give isl_map *isl_union_map_extract_map(__isl_keep isl_union_map *umap, __isl_take isl_space *dim); __isl_give isl_map *isl_map_from_union_map(__isl_take isl_union_map *umap); __isl_give isl_basic_map *isl_union_map_sample(__isl_take isl_union_map *umap); __isl_overload __isl_give isl_union_map *isl_union_map_fixed_power_val( __isl_take isl_union_map *umap, __isl_take isl_val *exp); __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap, int *exact); __isl_give isl_union_map *isl_union_map_transitive_closure( __isl_take isl_union_map *umap, int *exact); __isl_give isl_union_map *isl_union_map_lex_lt_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_lex_le_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_lex_gt_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_lex_ge_union_map( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_eq_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_map *isl_union_map_lex_lt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_map *isl_union_map_lex_gt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_map *isl_union_map_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_union_map *isl_union_map_read_from_str(isl_ctx *ctx, const char *str); __isl_give char *isl_union_map_to_str(__isl_keep isl_union_map *umap); __isl_give isl_printer *isl_printer_print_union_map(__isl_take isl_printer *p, __isl_keep isl_union_map *umap); void isl_union_map_dump(__isl_keep isl_union_map *umap); __isl_export __isl_give isl_union_set *isl_union_map_wrap(__isl_take isl_union_map *umap); __isl_export __isl_give isl_union_map *isl_union_set_unwrap(__isl_take isl_union_set *uset); __isl_export __isl_give isl_union_map *isl_union_map_zip(__isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_curry(__isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_range_curry( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_uncurry(__isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_align_params( __isl_take isl_union_map *umap, __isl_take isl_space *model); __isl_give isl_union_set *isl_union_set_align_params( __isl_take isl_union_set *uset, __isl_take isl_space *model); ISL_DECLARE_LIST_FN(union_map) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/hmap.h0000664000175000017500000000340012645737060012630 00000000000000#include #include #if defined(__cplusplus) extern "C" { #endif #define ISL_xCAT(A,B) A ## B #define ISL_CAT(A,B) ISL_xCAT(A,B) #define ISL_KEY ISL_CAT(isl_,ISL_KEY_BASE) #define ISL_VAL ISL_CAT(isl_,ISL_VAL_BASE) #define ISL_xFN(TYPE,NAME) TYPE ## _ ## NAME #define ISL_FN(TYPE,NAME) ISL_xFN(TYPE,NAME) #define ISL_xHMAP(KEY,VAL_BASE) KEY ## _to_ ## VAL_BASE #define ISL_yHMAP(KEY,VAL_BASE) ISL_xHMAP(KEY,VAL_BASE) #define ISL_HMAP ISL_yHMAP(ISL_KEY,ISL_VAL_BASE) #define ISL_HMAP_BASE ISL_yHMAP(ISL_KEY_BASE,ISL_VAL_BASE) struct ISL_HMAP; typedef struct ISL_HMAP ISL_HMAP; __isl_give ISL_HMAP *ISL_FN(ISL_HMAP,alloc)(isl_ctx *ctx, int min_size); __isl_give ISL_HMAP *ISL_FN(ISL_HMAP,copy)(__isl_keep ISL_HMAP *hmap); __isl_null ISL_HMAP *ISL_FN(ISL_HMAP,free)(__isl_take ISL_HMAP *hmap); isl_ctx *ISL_FN(ISL_HMAP,get_ctx)(__isl_keep ISL_HMAP *hmap); isl_bool ISL_FN(ISL_HMAP,has)(__isl_keep ISL_HMAP *hmap, __isl_keep ISL_KEY *key); __isl_give ISL_VAL *ISL_FN(ISL_HMAP,get)(__isl_keep ISL_HMAP *hmap, __isl_take ISL_KEY *key); __isl_give ISL_HMAP *ISL_FN(ISL_HMAP,set)(__isl_take ISL_HMAP *hmap, __isl_take ISL_KEY *key, __isl_take ISL_VAL *val); __isl_give ISL_HMAP *ISL_FN(ISL_HMAP,drop)(__isl_take ISL_HMAP *hmap, __isl_take ISL_KEY *key); isl_stat ISL_FN(ISL_HMAP,foreach)(__isl_keep ISL_HMAP *hmap, isl_stat (*fn)(__isl_take ISL_KEY *key, __isl_take ISL_VAL *val, void *user), void *user); __isl_give isl_printer *ISL_FN(isl_printer_print,ISL_HMAP_BASE)( __isl_take isl_printer *p, __isl_keep ISL_HMAP *hmap); void ISL_FN(ISL_HMAP,dump)(__isl_keep ISL_HMAP *hmap); #undef ISL_xCAT #undef ISL_CAT #undef ISL_KEY #undef ISL_VAL #undef ISL_xFN #undef ISL_FN #undef ISL_xHMAP #undef ISL_yHMAP #undef ISL_HMAP #if defined(__cplusplus) } #endif isl-0.16.1/include/isl/id_to_pw_aff.h0000664000175000017500000000034012645737060014323 00000000000000#ifndef ISL_ID_TO_PW_AFF_H #define ISL_ID_TO_PW_AFF_H #include #include #define ISL_KEY_BASE id #define ISL_VAL_BASE pw_aff #include #undef ISL_KEY_BASE #undef ISL_VAL_BASE #endif isl-0.16.1/include/isl/space.h0000664000175000017500000001662212645737234013013 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_SPACE_H #define ISL_SPACE_H #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_space; typedef struct isl_space isl_space; enum isl_dim_type { isl_dim_cst, isl_dim_param, isl_dim_in, isl_dim_out, isl_dim_set = isl_dim_out, isl_dim_div, isl_dim_all }; isl_ctx *isl_space_get_ctx(__isl_keep isl_space *dim); __isl_give isl_space *isl_space_alloc(isl_ctx *ctx, unsigned nparam, unsigned n_in, unsigned n_out); __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim); __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx, unsigned nparam); __isl_give isl_space *isl_space_copy(__isl_keep isl_space *dim); __isl_null isl_space *isl_space_free(__isl_take isl_space *space); isl_bool isl_space_is_params(__isl_keep isl_space *space); isl_bool isl_space_is_set(__isl_keep isl_space *space); isl_bool isl_space_is_map(__isl_keep isl_space *space); __isl_give isl_space *isl_space_set_tuple_name(__isl_take isl_space *dim, enum isl_dim_type type, const char *s); isl_bool isl_space_has_tuple_name(__isl_keep isl_space *space, enum isl_dim_type type); const char *isl_space_get_tuple_name(__isl_keep isl_space *dim, enum isl_dim_type type); __isl_give isl_space *isl_space_set_tuple_id(__isl_take isl_space *dim, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_space *isl_space_reset_tuple_id(__isl_take isl_space *dim, enum isl_dim_type type); isl_bool isl_space_has_tuple_id(__isl_keep isl_space *dim, enum isl_dim_type type); __isl_give isl_id *isl_space_get_tuple_id(__isl_keep isl_space *dim, enum isl_dim_type type); __isl_give isl_space *isl_space_reset_user(__isl_take isl_space *space); __isl_give isl_space *isl_space_set_dim_id(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_space_has_dim_id(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_space_get_dim_id(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos); int isl_space_find_dim_by_id(__isl_keep isl_space *dim, enum isl_dim_type type, __isl_keep isl_id *id); int isl_space_find_dim_by_name(__isl_keep isl_space *space, enum isl_dim_type type, const char *name); isl_bool isl_space_has_dim_name(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, __isl_keep const char *name); __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos); __isl_give isl_space *isl_space_extend(__isl_take isl_space *dim, unsigned nparam, unsigned n_in, unsigned n_out); __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned n); __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *dim, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_space *isl_space_join(__isl_take isl_space *left, __isl_take isl_space *right); __isl_give isl_space *isl_space_product(__isl_take isl_space *left, __isl_take isl_space *right); __isl_give isl_space *isl_space_domain_product(__isl_take isl_space *left, __isl_take isl_space *right); __isl_give isl_space *isl_space_range_product(__isl_take isl_space *left, __isl_take isl_space *right); __isl_give isl_space *isl_space_factor_domain(__isl_take isl_space *space); __isl_give isl_space *isl_space_factor_range(__isl_take isl_space *space); __isl_give isl_space *isl_space_domain_factor_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_domain_factor_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_range_factor_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_range_factor_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_map_from_set(__isl_take isl_space *dim); __isl_give isl_space *isl_space_map_from_domain_and_range( __isl_take isl_space *domain, __isl_take isl_space *range); __isl_give isl_space *isl_space_reverse(__isl_take isl_space *dim); __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned first, unsigned num); __isl_give isl_space *isl_space_drop_inputs(__isl_take isl_space *dim, unsigned first, unsigned n); __isl_give isl_space *isl_space_drop_outputs(__isl_take isl_space *dim, unsigned first, unsigned n); __isl_give isl_space *isl_space_domain(__isl_take isl_space *dim); __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *dim); __isl_give isl_space *isl_space_range(__isl_take isl_space *dim); __isl_give isl_space *isl_space_from_range(__isl_take isl_space *dim); __isl_give isl_space *isl_space_domain_map(__isl_take isl_space *space); __isl_give isl_space *isl_space_range_map(__isl_take isl_space *space); __isl_give isl_space *isl_space_params(__isl_take isl_space *space); __isl_give isl_space *isl_space_set_from_params(__isl_take isl_space *space); __isl_give isl_space *isl_space_align_params(__isl_take isl_space *dim1, __isl_take isl_space *dim2); isl_bool isl_space_is_wrapping(__isl_keep isl_space *dim); isl_bool isl_space_domain_is_wrapping(__isl_keep isl_space *space); isl_bool isl_space_range_is_wrapping(__isl_keep isl_space *space); __isl_give isl_space *isl_space_wrap(__isl_take isl_space *dim); __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *dim); isl_bool isl_space_can_zip(__isl_keep isl_space *dim); __isl_give isl_space *isl_space_zip(__isl_take isl_space *dim); isl_bool isl_space_can_curry(__isl_keep isl_space *space); __isl_give isl_space *isl_space_curry(__isl_take isl_space *space); isl_bool isl_space_can_range_curry(__isl_keep isl_space *space); __isl_give isl_space *isl_space_range_curry(__isl_take isl_space *space); isl_bool isl_space_can_uncurry(__isl_keep isl_space *space); __isl_give isl_space *isl_space_uncurry(__isl_take isl_space *space); isl_bool isl_space_is_domain(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_is_range(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_is_equal(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_tuple_is_equal(__isl_keep isl_space *space1, enum isl_dim_type type1, __isl_keep isl_space *space2, enum isl_dim_type type2); int isl_space_match(__isl_keep isl_space *dim1, enum isl_dim_type dim1_type, __isl_keep isl_space *dim2, enum isl_dim_type dim2_type); ISL_DEPRECATED int isl_space_tuple_match(__isl_keep isl_space *space1, enum isl_dim_type type1, __isl_keep isl_space *space2, enum isl_dim_type type2); int isl_space_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2); unsigned isl_space_dim(__isl_keep isl_space *dim, enum isl_dim_type type); __isl_give char *isl_space_to_str(__isl_keep isl_space *space); __isl_give isl_printer *isl_printer_print_space(__isl_take isl_printer *p, __isl_keep isl_space *dim); void isl_space_dump(__isl_keep isl_space *dim); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/version.h0000664000175000017500000000024512645737060013374 00000000000000#ifndef ISL_VERSION_H #define ISL_VERSION_H #if defined(__cplusplus) extern "C" { #endif const char *isl_version(void); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/printer.h0000664000175000017500000000520112645737060013367 00000000000000#ifndef ISL_PRINTER_H #define ISL_PRINTER_H #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_printer; typedef struct isl_printer isl_printer; __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx, FILE *file); __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx); __isl_null isl_printer *isl_printer_free(__isl_take isl_printer *printer); isl_ctx *isl_printer_get_ctx(__isl_keep isl_printer *printer); FILE *isl_printer_get_file(__isl_keep isl_printer *printer); __isl_give char *isl_printer_get_str(__isl_keep isl_printer *printer); __isl_give isl_printer *isl_printer_set_indent(__isl_take isl_printer *p, int indent); __isl_give isl_printer *isl_printer_indent(__isl_take isl_printer *p, int indent); #define ISL_FORMAT_ISL 0 #define ISL_FORMAT_POLYLIB 1 #define ISL_FORMAT_POLYLIB_CONSTRAINTS 2 #define ISL_FORMAT_OMEGA 3 #define ISL_FORMAT_C 4 #define ISL_FORMAT_LATEX 5 #define ISL_FORMAT_EXT_POLYLIB 6 __isl_give isl_printer *isl_printer_set_output_format(__isl_take isl_printer *p, int output_format); int isl_printer_get_output_format(__isl_keep isl_printer *p); #define ISL_YAML_STYLE_BLOCK 0 #define ISL_YAML_STYLE_FLOW 1 __isl_give isl_printer *isl_printer_set_yaml_style(__isl_take isl_printer *p, int yaml_style); int isl_printer_get_yaml_style(__isl_keep isl_printer *p); __isl_give isl_printer *isl_printer_set_indent_prefix(__isl_take isl_printer *p, const char *prefix); __isl_give isl_printer *isl_printer_set_prefix(__isl_take isl_printer *p, const char *prefix); __isl_give isl_printer *isl_printer_set_suffix(__isl_take isl_printer *p, const char *suffix); __isl_give isl_printer *isl_printer_set_isl_int_width(__isl_take isl_printer *p, int width); __isl_give isl_printer *isl_printer_start_line(__isl_take isl_printer *p); __isl_give isl_printer *isl_printer_end_line(__isl_take isl_printer *p); __isl_give isl_printer *isl_printer_print_double(__isl_take isl_printer *p, double d); __isl_give isl_printer *isl_printer_print_int(__isl_take isl_printer *p, int i); __isl_give isl_printer *isl_printer_print_str(__isl_take isl_printer *p, const char *s); __isl_give isl_printer *isl_printer_yaml_start_mapping( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_end_mapping( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_start_sequence( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_end_sequence( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_next(__isl_take isl_printer *p); __isl_give isl_printer *isl_printer_flush(__isl_take isl_printer *p); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/options.h0000664000175000017500000000245612645737060013410 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_OPTIONS_H #define ISL_OPTIONS_H #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_options; ISL_ARG_DECL(isl_options, struct isl_options, isl_options_args) #define ISL_BOUND_BERNSTEIN 0 #define ISL_BOUND_RANGE 1 isl_stat isl_options_set_bound(isl_ctx *ctx, int val); int isl_options_get_bound(isl_ctx *ctx); #define ISL_ON_ERROR_WARN 0 #define ISL_ON_ERROR_CONTINUE 1 #define ISL_ON_ERROR_ABORT 2 isl_stat isl_options_set_on_error(isl_ctx *ctx, int val); int isl_options_get_on_error(isl_ctx *ctx); isl_stat isl_options_set_gbr_only_first(isl_ctx *ctx, int val); int isl_options_get_gbr_only_first(isl_ctx *ctx); #define ISL_SCHEDULE_ALGORITHM_ISL 0 #define ISL_SCHEDULE_ALGORITHM_FEAUTRIER 1 isl_stat isl_options_set_schedule_algorithm(isl_ctx *ctx, int val); int isl_options_get_schedule_algorithm(isl_ctx *ctx); isl_stat isl_options_set_coalesce_bounded_wrapping(isl_ctx *ctx, int val); int isl_options_get_coalesce_bounded_wrapping(isl_ctx *ctx); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/constraint.h0000664000175000017500000001374112645737060014100 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_CONSTRAINT_H #define ISL_CONSTRAINT_H #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_constraint; typedef struct isl_constraint isl_constraint; ISL_DECLARE_LIST(constraint) isl_ctx *isl_constraint_get_ctx(__isl_keep isl_constraint *c); __isl_give isl_constraint *isl_constraint_alloc_equality( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_constraint_alloc_inequality( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_equality_alloc(__isl_take isl_local_space *ls); __isl_give isl_constraint *isl_inequality_alloc(__isl_take isl_local_space *ls); struct isl_constraint *isl_constraint_cow(struct isl_constraint *c); struct isl_constraint *isl_constraint_copy(struct isl_constraint *c); __isl_null isl_constraint *isl_constraint_free(__isl_take isl_constraint *c); int isl_basic_map_n_constraint(__isl_keep isl_basic_map *bmap); int isl_basic_set_n_constraint(__isl_keep isl_basic_set *bset); isl_stat isl_basic_map_foreach_constraint(__isl_keep isl_basic_map *bmap, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user); isl_stat isl_basic_set_foreach_constraint(__isl_keep isl_basic_set *bset, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user); __isl_give isl_constraint_list *isl_basic_map_get_constraint_list( __isl_keep isl_basic_map *bmap); __isl_give isl_constraint_list *isl_basic_set_get_constraint_list( __isl_keep isl_basic_set *bset); int isl_constraint_is_equal(struct isl_constraint *constraint1, struct isl_constraint *constraint2); isl_stat isl_basic_set_foreach_bound_pair(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_stat (*fn)(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user), void *user); __isl_give isl_basic_map *isl_basic_map_add_constraint( __isl_take isl_basic_map *bmap, __isl_take isl_constraint *constraint); __isl_give isl_basic_set *isl_basic_set_add_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint); __isl_give isl_map *isl_map_add_constraint(__isl_take isl_map *map, __isl_take isl_constraint *constraint); __isl_give isl_set *isl_set_add_constraint(__isl_take isl_set *set, __isl_take isl_constraint *constraint); int isl_basic_map_has_defining_equality( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, int pos, __isl_give isl_constraint **c); int isl_basic_set_has_defining_equality( struct isl_basic_set *bset, enum isl_dim_type type, int pos, struct isl_constraint **constraint); int isl_basic_set_has_defining_inequalities( struct isl_basic_set *bset, enum isl_dim_type type, int pos, struct isl_constraint **lower, struct isl_constraint **upper); __isl_give isl_space *isl_constraint_get_space( __isl_keep isl_constraint *constraint); __isl_give isl_local_space *isl_constraint_get_local_space( __isl_keep isl_constraint *constraint); int isl_constraint_dim(struct isl_constraint *constraint, enum isl_dim_type type); isl_bool isl_constraint_involves_dims(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned first, unsigned n); const char *isl_constraint_get_dim_name(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); __isl_give isl_val *isl_constraint_get_constant_val( __isl_keep isl_constraint *constraint); __isl_give isl_val *isl_constraint_get_coefficient_val( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); __isl_give isl_constraint *isl_constraint_set_constant_si( __isl_take isl_constraint *constraint, int v); __isl_give isl_constraint *isl_constraint_set_constant_val( __isl_take isl_constraint *constraint, __isl_take isl_val *v); __isl_give isl_constraint *isl_constraint_set_coefficient_si( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, int v); __isl_give isl_constraint *isl_constraint_set_coefficient_val( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_aff *isl_constraint_get_div(__isl_keep isl_constraint *constraint, int pos); struct isl_constraint *isl_constraint_negate(struct isl_constraint *constraint); isl_bool isl_constraint_is_equality(__isl_keep isl_constraint *constraint); int isl_constraint_is_div_constraint(__isl_keep isl_constraint *constraint); isl_bool isl_constraint_is_lower_bound(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); isl_bool isl_constraint_is_upper_bound(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); __isl_give isl_basic_map *isl_basic_map_from_constraint( __isl_take isl_constraint *constraint); struct isl_basic_set *isl_basic_set_from_constraint( struct isl_constraint *constraint); __isl_give isl_aff *isl_constraint_get_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); __isl_give isl_aff *isl_constraint_get_aff( __isl_keep isl_constraint *constraint); __isl_give isl_constraint *isl_equality_from_aff(__isl_take isl_aff *aff); __isl_give isl_constraint *isl_inequality_from_aff(__isl_take isl_aff *aff); __isl_give isl_basic_set *isl_basic_set_drop_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint); int isl_constraint_plain_cmp(__isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2); int isl_constraint_cmp_last_non_zero(__isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2); __isl_give isl_printer *isl_printer_print_constraint(__isl_take isl_printer *p, __isl_keep isl_constraint *c); void isl_constraint_dump(__isl_keep isl_constraint *c); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/mat.h0000664000175000017500000001022512645737060012467 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_MAT_H #define ISL_MAT_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_mat; typedef struct isl_mat isl_mat; isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat); __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx, unsigned n_row, unsigned n_col); struct isl_mat *isl_mat_dup(struct isl_mat *mat); struct isl_mat *isl_mat_extend(struct isl_mat *mat, unsigned n_row, unsigned n_col); struct isl_mat *isl_mat_identity(struct isl_ctx *ctx, unsigned n_row); __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat); struct isl_mat *isl_mat_cow(struct isl_mat *mat); __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat); int isl_mat_rows(__isl_keep isl_mat *mat); int isl_mat_cols(__isl_keep isl_mat *mat); __isl_give isl_val *isl_mat_get_element_val(__isl_keep isl_mat *mat, int row, int col); __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v); __isl_give isl_mat *isl_mat_set_element_val(__isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v); struct isl_mat *isl_mat_swap_cols(struct isl_mat *mat, unsigned i, unsigned j); struct isl_mat *isl_mat_swap_rows(struct isl_mat *mat, unsigned i, unsigned j); struct isl_vec *isl_mat_vec_product(struct isl_mat *mat, struct isl_vec *vec); struct isl_vec *isl_vec_mat_product(struct isl_vec *vec, struct isl_mat *mat); __isl_give isl_vec *isl_mat_vec_inverse_product(__isl_take isl_mat *mat, __isl_take isl_vec *vec); struct isl_mat *isl_mat_aff_direct_sum(struct isl_mat *left, struct isl_mat *right); __isl_give isl_mat *isl_mat_diagonal(__isl_take isl_mat *mat1, __isl_take isl_mat *mat2); struct isl_mat *isl_mat_left_hermite(struct isl_mat *M, int neg, struct isl_mat **U, struct isl_mat **Q); struct isl_mat *isl_mat_lin_to_aff(struct isl_mat *mat); struct isl_mat *isl_mat_inverse_product(struct isl_mat *left, struct isl_mat *right); __isl_give isl_mat *isl_mat_product(__isl_take isl_mat *left, __isl_take isl_mat *right); struct isl_mat *isl_mat_transpose(struct isl_mat *mat); __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat); __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat); __isl_give isl_mat *isl_mat_normalize(__isl_take isl_mat *mat); __isl_give isl_mat *isl_mat_normalize_row(__isl_take isl_mat *mat, int row); struct isl_mat *isl_mat_drop_cols(struct isl_mat *mat, unsigned col, unsigned n); struct isl_mat *isl_mat_drop_rows(struct isl_mat *mat, unsigned row, unsigned n); __isl_give isl_mat *isl_mat_insert_cols(__isl_take isl_mat *mat, unsigned col, unsigned n); __isl_give isl_mat *isl_mat_insert_rows(__isl_take isl_mat *mat, unsigned row, unsigned n); __isl_give isl_mat *isl_mat_move_cols(__isl_take isl_mat *mat, unsigned dst_col, unsigned src_col, unsigned n); __isl_give isl_mat *isl_mat_add_rows(__isl_take isl_mat *mat, unsigned n); __isl_give isl_mat *isl_mat_insert_zero_cols(__isl_take isl_mat *mat, unsigned first, unsigned n); __isl_give isl_mat *isl_mat_add_zero_cols(__isl_take isl_mat *mat, unsigned n); __isl_give isl_mat *isl_mat_insert_zero_rows(__isl_take isl_mat *mat, unsigned row, unsigned n); __isl_give isl_mat *isl_mat_add_zero_rows(__isl_take isl_mat *mat, unsigned n); void isl_mat_col_add(__isl_keep isl_mat *mat, int dst_col, int src_col); struct isl_mat *isl_mat_unimodular_complete(struct isl_mat *M, int row); __isl_give isl_mat *isl_mat_from_row_vec(__isl_take isl_vec *vec); __isl_give isl_mat *isl_mat_concat(__isl_take isl_mat *top, __isl_take isl_mat *bot); __isl_give isl_mat *isl_mat_vec_concat(__isl_take isl_mat *top, __isl_take isl_vec *bot); int isl_mat_is_equal(__isl_keep isl_mat *mat1, __isl_keep isl_mat *mat2); int isl_mat_initial_non_zero_cols(__isl_keep isl_mat *mat); void isl_mat_print_internal(__isl_keep isl_mat *mat, FILE *out, int indent); void isl_mat_dump(__isl_keep isl_mat *mat); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/band.h0000664000175000017500000000320212645737060012607 00000000000000#ifndef ISL_BAND_H #define ISL_BAND_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_band; typedef struct isl_band isl_band; ISL_DECLARE_LIST(band) __isl_give isl_band *isl_band_copy(__isl_keep isl_band *band); __isl_null isl_band *isl_band_free(__isl_take isl_band *band); isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band); int isl_band_has_children(__isl_keep isl_band *band); __isl_give isl_band_list *isl_band_get_children( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_prefix_schedule( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_partial_schedule( __isl_keep isl_band *band); __isl_give isl_union_map *isl_band_get_suffix_schedule( __isl_keep isl_band *band); isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx, int val); int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx); isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx, int val); int isl_options_get_tile_shift_point_loops(isl_ctx *ctx); int isl_band_tile(__isl_keep isl_band *band, __isl_take isl_vec *sizes); int isl_band_split(__isl_keep isl_band *band, int pos); int isl_band_n_member(__isl_keep isl_band *band); int isl_band_member_is_coincident(__isl_keep isl_band *band, int pos); int isl_band_list_foreach_band(__isl_keep isl_band_list *list, int (*fn)(__isl_keep isl_band *band, void *user), void *user); __isl_give isl_printer *isl_printer_print_band(__isl_take isl_printer *p, __isl_keep isl_band *band); void isl_band_dump(__isl_keep isl_band *band); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/schedule_node.h0000664000175000017500000002470112645737477014527 00000000000000#ifndef ISL_SCHEDULE_NODE_H #define ISL_SCHEDULE_NODE_H #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_schedule_node *isl_schedule_node_from_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule_node *isl_schedule_node_from_extension( __isl_take isl_union_map *extension); __isl_give isl_schedule_node *isl_schedule_node_copy( __isl_keep isl_schedule_node *node); __isl_null isl_schedule_node *isl_schedule_node_free( __isl_take isl_schedule_node *node); isl_bool isl_schedule_node_is_equal(__isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2); isl_ctx *isl_schedule_node_get_ctx(__isl_keep isl_schedule_node *node); enum isl_schedule_node_type isl_schedule_node_get_type( __isl_keep isl_schedule_node *node); enum isl_schedule_node_type isl_schedule_node_get_parent_type( __isl_keep isl_schedule_node *node); __isl_export __isl_give isl_schedule *isl_schedule_node_get_schedule( __isl_keep isl_schedule_node *node); isl_stat isl_schedule_node_foreach_descendant_top_down( __isl_keep isl_schedule_node *node, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); isl_stat isl_schedule_node_foreach_ancestor_top_down( __isl_keep isl_schedule_node *node, isl_stat (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); __isl_give isl_schedule_node *isl_schedule_node_map_descendant_bottom_up( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node, void *user), void *user); int isl_schedule_node_get_tree_depth(__isl_keep isl_schedule_node *node); isl_bool isl_schedule_node_has_parent(__isl_keep isl_schedule_node *node); isl_bool isl_schedule_node_has_children(__isl_keep isl_schedule_node *node); isl_bool isl_schedule_node_has_previous_sibling( __isl_keep isl_schedule_node *node); isl_bool isl_schedule_node_has_next_sibling(__isl_keep isl_schedule_node *node); int isl_schedule_node_n_children(__isl_keep isl_schedule_node *node); int isl_schedule_node_get_child_position(__isl_keep isl_schedule_node *node); int isl_schedule_node_get_ancestor_child_position( __isl_keep isl_schedule_node *node, __isl_keep isl_schedule_node *ancestor); __isl_give isl_schedule_node *isl_schedule_node_get_child( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node *isl_schedule_node_get_shared_ancestor( __isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2); __isl_give isl_schedule_node *isl_schedule_node_root( __isl_take isl_schedule_node *node); __isl_export __isl_give isl_schedule_node *isl_schedule_node_parent( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_ancestor( __isl_take isl_schedule_node *node, int generation); __isl_export __isl_give isl_schedule_node *isl_schedule_node_child( __isl_take isl_schedule_node *node, int pos); __isl_give isl_schedule_node *isl_schedule_node_first_child( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_previous_sibling( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_next_sibling( __isl_take isl_schedule_node *node); isl_bool isl_schedule_node_is_subtree_anchored( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_group( __isl_take isl_schedule_node *node, __isl_take isl_id *group_id); __isl_give isl_schedule_node *isl_schedule_node_sequence_splice_child( __isl_take isl_schedule_node *node, int pos); __isl_give isl_space *isl_schedule_node_band_get_space( __isl_keep isl_schedule_node *node); __isl_give isl_multi_union_pw_aff *isl_schedule_node_band_get_partial_schedule( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_band_get_partial_schedule_union_map( __isl_keep isl_schedule_node *node); enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node *isl_schedule_node_band_member_set_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type); enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node * isl_schedule_node_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type); __isl_give isl_union_set *isl_schedule_node_band_get_ast_build_options( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_band_set_ast_build_options( __isl_take isl_schedule_node *node, __isl_take isl_union_set *options); unsigned isl_schedule_node_band_n_member(__isl_keep isl_schedule_node *node); __isl_export isl_bool isl_schedule_node_band_member_get_coincident( __isl_keep isl_schedule_node *node, int pos); __isl_export __isl_give isl_schedule_node *isl_schedule_node_band_member_set_coincident( __isl_take isl_schedule_node *node, int pos, int coincident); isl_bool isl_schedule_node_band_get_permutable( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_band_set_permutable( __isl_take isl_schedule_node *node, int permutable); isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx, int val); int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx); isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx, int val); int isl_options_get_tile_shift_point_loops(isl_ctx *ctx); __isl_give isl_schedule_node *isl_schedule_node_band_scale( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); __isl_give isl_schedule_node *isl_schedule_node_band_scale_down( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); __isl_give isl_schedule_node *isl_schedule_node_band_mod( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); __isl_give isl_schedule_node *isl_schedule_node_band_shift( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *shift); __isl_give isl_schedule_node *isl_schedule_node_band_tile( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes); __isl_give isl_schedule_node *isl_schedule_node_band_sink( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_band_split( __isl_take isl_schedule_node *node, int pos); __isl_give isl_set *isl_schedule_node_context_get_context( __isl_keep isl_schedule_node *node); __isl_give isl_union_set *isl_schedule_node_domain_get_domain( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_expansion_get_expansion( __isl_keep isl_schedule_node *node); __isl_give isl_union_pw_multi_aff *isl_schedule_node_expansion_get_contraction( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_extension_get_extension( __isl_keep isl_schedule_node *node); __isl_give isl_union_set *isl_schedule_node_filter_get_filter( __isl_keep isl_schedule_node *node); __isl_give isl_set *isl_schedule_node_guard_get_guard( __isl_keep isl_schedule_node *node); __isl_give isl_id *isl_schedule_node_mark_get_id( __isl_keep isl_schedule_node *node); int isl_schedule_node_get_schedule_depth(__isl_keep isl_schedule_node *node); __isl_give isl_union_set *isl_schedule_node_get_domain( __isl_keep isl_schedule_node *node); __isl_give isl_union_set *isl_schedule_node_get_universe_domain( __isl_keep isl_schedule_node *node); __isl_export __isl_give isl_multi_union_pw_aff * isl_schedule_node_get_prefix_schedule_multi_union_pw_aff( __isl_keep isl_schedule_node *node); __isl_export __isl_give isl_union_pw_multi_aff * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff( __isl_keep isl_schedule_node *node); __isl_export __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_union_map( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_relation( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_get_subtree_schedule_union_map( __isl_keep isl_schedule_node *node); __isl_give isl_union_map *isl_schedule_node_get_subtree_expansion( __isl_keep isl_schedule_node *node); __isl_give isl_union_pw_multi_aff *isl_schedule_node_get_subtree_contraction( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_insert_context( __isl_take isl_schedule_node *node, __isl_take isl_set *context); __isl_give isl_schedule_node *isl_schedule_node_insert_partial_schedule( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *schedule); __isl_give isl_schedule_node *isl_schedule_node_insert_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); __isl_give isl_schedule_node *isl_schedule_node_insert_guard( __isl_take isl_schedule_node *node, __isl_take isl_set *context); __isl_give isl_schedule_node *isl_schedule_node_insert_mark( __isl_take isl_schedule_node *node, __isl_take isl_id *mark); __isl_give isl_schedule_node *isl_schedule_node_insert_sequence( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters); __isl_give isl_schedule_node *isl_schedule_node_insert_set( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters); __isl_give isl_schedule_node *isl_schedule_node_cut( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_delete( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_order_before( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); __isl_give isl_schedule_node *isl_schedule_node_order_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); __isl_give isl_schedule_node *isl_schedule_node_graft_before( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft); __isl_give isl_schedule_node *isl_schedule_node_graft_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft); __isl_give isl_schedule_node *isl_schedule_node_reset_user( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_align_params( __isl_take isl_schedule_node *node, __isl_take isl_space *space); __isl_give isl_printer *isl_printer_print_schedule_node( __isl_take isl_printer *p, __isl_keep isl_schedule_node *node); void isl_schedule_node_dump(__isl_keep isl_schedule_node *node); __isl_give char *isl_schedule_node_to_str(__isl_keep isl_schedule_node *node); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/schedule.h0000664000175000017500000001475112645737477013526 00000000000000#ifndef ISL_SCHEDULE_H #define ISL_SCHEDULE_H #include #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_schedule_constraints; typedef struct isl_schedule_constraints isl_schedule_constraints; isl_stat isl_options_set_schedule_max_coefficient(isl_ctx *ctx, int val); int isl_options_get_schedule_max_coefficient(isl_ctx *ctx); isl_stat isl_options_set_schedule_max_constant_term(isl_ctx *ctx, int val); int isl_options_get_schedule_max_constant_term(isl_ctx *ctx); isl_stat isl_options_set_schedule_maximize_band_depth(isl_ctx *ctx, int val); int isl_options_get_schedule_maximize_band_depth(isl_ctx *ctx); isl_stat isl_options_set_schedule_outer_coincidence(isl_ctx *ctx, int val); int isl_options_get_schedule_outer_coincidence(isl_ctx *ctx); isl_stat isl_options_set_schedule_split_scaled(isl_ctx *ctx, int val); int isl_options_get_schedule_split_scaled(isl_ctx *ctx); isl_stat isl_options_set_schedule_separate_components(isl_ctx *ctx, int val); int isl_options_get_schedule_separate_components(isl_ctx *ctx); isl_stat isl_options_set_schedule_serialize_sccs(isl_ctx *ctx, int val); int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx); __isl_give isl_schedule_constraints *isl_schedule_constraints_copy( __isl_keep isl_schedule_constraints *sc); __isl_give isl_schedule_constraints *isl_schedule_constraints_on_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule_constraints *isl_schedule_constraints_set_context( __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context); __isl_give isl_schedule_constraints *isl_schedule_constraints_set_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *validity); __isl_give isl_schedule_constraints *isl_schedule_constraints_set_coincidence( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *coincidence); __isl_give isl_schedule_constraints *isl_schedule_constraints_set_proximity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *proximity); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_conditional_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *condition, __isl_take isl_union_map *validity); __isl_null isl_schedule_constraints *isl_schedule_constraints_free( __isl_take isl_schedule_constraints *sc); isl_ctx *isl_schedule_constraints_get_ctx( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_set *isl_schedule_constraints_get_domain( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map *isl_schedule_constraints_get_validity( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map *isl_schedule_constraints_get_coincidence( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map *isl_schedule_constraints_get_conditional_validity( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map * isl_schedule_constraints_get_conditional_validity_condition( __isl_keep isl_schedule_constraints *sc); void isl_schedule_constraints_dump(__isl_keep isl_schedule_constraints *sc); __isl_give isl_schedule *isl_schedule_constraints_compute_schedule( __isl_take isl_schedule_constraints *sc); __isl_give isl_schedule *isl_union_set_compute_schedule( __isl_take isl_union_set *domain, __isl_take isl_union_map *validity, __isl_take isl_union_map *proximity); __isl_give isl_schedule *isl_schedule_empty(__isl_take isl_space *space); __isl_give isl_schedule *isl_schedule_from_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule *isl_schedule_copy(__isl_keep isl_schedule *sched); __isl_null isl_schedule *isl_schedule_free(__isl_take isl_schedule *sched); __isl_export __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched); isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *sched); isl_bool isl_schedule_plain_is_equal(__isl_keep isl_schedule *schedule1, __isl_keep isl_schedule *schedule2); __isl_export __isl_give isl_schedule_node *isl_schedule_get_root( __isl_keep isl_schedule *schedule); __isl_give isl_union_set *isl_schedule_get_domain( __isl_keep isl_schedule *schedule); isl_stat isl_schedule_foreach_schedule_node_top_down( __isl_keep isl_schedule *sched, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); __isl_give isl_schedule *isl_schedule_map_schedule_node_bottom_up( __isl_take isl_schedule *schedule, __isl_give isl_schedule_node *(*fn)( __isl_take isl_schedule_node *node, void *user), void *user); __isl_give isl_schedule *isl_schedule_insert_context( __isl_take isl_schedule *schedule, __isl_take isl_set *context); __isl_give isl_schedule *isl_schedule_insert_partial_schedule( __isl_take isl_schedule *schedule, __isl_take isl_multi_union_pw_aff *partial); __isl_give isl_schedule *isl_schedule_insert_guard( __isl_take isl_schedule *schedule, __isl_take isl_set *guard); __isl_give isl_schedule *isl_schedule_sequence( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2); __isl_give isl_schedule *isl_schedule_set( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2); __isl_give isl_schedule *isl_schedule_intersect_domain( __isl_take isl_schedule *schedule, __isl_take isl_union_set *domain); __isl_give isl_schedule *isl_schedule_gist_domain_params( __isl_take isl_schedule *schedule, __isl_take isl_set *context); __isl_give isl_schedule *isl_schedule_reset_user( __isl_take isl_schedule *schedule); __isl_give isl_schedule *isl_schedule_align_params( __isl_take isl_schedule *schedule, __isl_take isl_space *space); __isl_overload __isl_give isl_schedule *isl_schedule_pullback_union_pw_multi_aff( __isl_take isl_schedule *schedule, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_band_list *isl_schedule_get_band_forest( __isl_keep isl_schedule *schedule); __isl_give isl_schedule *isl_schedule_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_schedule *isl_schedule_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p, __isl_keep isl_schedule *schedule); void isl_schedule_dump(__isl_keep isl_schedule *schedule); __isl_give char *isl_schedule_to_str(__isl_keep isl_schedule *schedule); int isl_schedule_foreach_band(__isl_keep isl_schedule *sched, int (*fn)(__isl_keep isl_band *band, void *user), void *user); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/0000775000175000017500000000000012645755104013714 500000000000000isl-0.16.1/include/isl/deprecated/point_int.h0000664000175000017500000000066712645737060016022 00000000000000#ifndef ISL_DEPRECATED_POINT_INT_H #define ISL_DEPRECATED_POINT_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_point_get_coordinate(__isl_keep isl_point *pnt, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_point *isl_point_set_coordinate(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, isl_int v); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/aff_int.h0000664000175000017500000000303212645737060015412 00000000000000#ifndef ISL_DEPRECATED_AFF_INT_H #define ISL_DEPRECATED_AFF_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v); int isl_aff_get_coefficient(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos, isl_int *v); int isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v); __isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_aff *isl_aff_set_denominator(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_constant_num(__isl_take isl_aff *aff, isl_int v); __isl_give isl_aff *isl_aff_add_coefficient(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v); __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int mod); __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f); __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f); __isl_give isl_pw_aff *isl_pw_aff_mod(__isl_take isl_pw_aff *pwaff, isl_int mod); __isl_give isl_pw_aff *isl_pw_aff_scale(__isl_take isl_pw_aff *pwaff, isl_int f); __isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff, isl_int f); __isl_give isl_multi_aff *isl_multi_aff_scale(__isl_take isl_multi_aff *maff, isl_int f); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/int.h0000664000175000017500000001041712645737060014603 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_DEPRECATED_INT_H #define ISL_DEPRECATED_INT_H #include #include #include #if defined(__cplusplus) #include #endif #if defined(__cplusplus) extern "C" { #endif #ifndef mp_get_memory_functions void mp_get_memory_functions( void *(**alloc_func_ptr) (size_t), void *(**realloc_func_ptr) (void *, size_t, size_t), void (**free_func_ptr) (void *, size_t)); #endif /* isl_int is the basic integer type. It currently always corresponds * to a gmp mpz_t, but in the future, different types such as long long * or cln::cl_I will be supported. */ typedef mpz_t isl_int; #define isl_int_init(i) mpz_init(i) #define isl_int_clear(i) mpz_clear(i) #define isl_int_set(r,i) mpz_set(r,i) #define isl_int_set_gmp(r,i) mpz_set(r,i) #define isl_int_set_si(r,i) mpz_set_si(r,i) #define isl_int_set_ui(r,i) mpz_set_ui(r,i) #define isl_int_get_gmp(i,g) mpz_set(g,i) #define isl_int_get_si(r) mpz_get_si(r) #define isl_int_get_ui(r) mpz_get_ui(r) #define isl_int_get_d(r) mpz_get_d(r) #define isl_int_get_str(r) mpz_get_str(0, 10, r) typedef void (*isl_int_print_gmp_free_t)(void *, size_t); #define isl_int_free_str(s) \ do { \ isl_int_print_gmp_free_t gmp_free; \ mp_get_memory_functions(NULL, NULL, &gmp_free); \ (*gmp_free)(s, strlen(s) + 1); \ } while (0) #define isl_int_abs(r,i) mpz_abs(r,i) #define isl_int_neg(r,i) mpz_neg(r,i) #define isl_int_swap(i,j) mpz_swap(i,j) #define isl_int_swap_or_set(i,j) mpz_swap(i,j) #define isl_int_add_ui(r,i,j) mpz_add_ui(r,i,j) #define isl_int_sub_ui(r,i,j) mpz_sub_ui(r,i,j) #define isl_int_add(r,i,j) mpz_add(r,i,j) #define isl_int_sub(r,i,j) mpz_sub(r,i,j) #define isl_int_mul(r,i,j) mpz_mul(r,i,j) #define isl_int_mul_2exp(r,i,j) mpz_mul_2exp(r,i,j) #define isl_int_mul_ui(r,i,j) mpz_mul_ui(r,i,j) #define isl_int_pow_ui(r,i,j) mpz_pow_ui(r,i,j) #define isl_int_addmul(r,i,j) mpz_addmul(r,i,j) #define isl_int_submul(r,i,j) mpz_submul(r,i,j) #define isl_int_gcd(r,i,j) mpz_gcd(r,i,j) #define isl_int_lcm(r,i,j) mpz_lcm(r,i,j) #define isl_int_divexact(r,i,j) mpz_divexact(r,i,j) #define isl_int_divexact_ui(r,i,j) mpz_divexact_ui(r,i,j) #define isl_int_tdiv_q(r,i,j) mpz_tdiv_q(r,i,j) #define isl_int_cdiv_q(r,i,j) mpz_cdiv_q(r,i,j) #define isl_int_fdiv_q(r,i,j) mpz_fdiv_q(r,i,j) #define isl_int_fdiv_r(r,i,j) mpz_fdiv_r(r,i,j) #define isl_int_fdiv_q_ui(r,i,j) mpz_fdiv_q_ui(r,i,j) #define isl_int_read(r,s) mpz_set_str(r,s,10) #define isl_int_print(out,i,width) \ do { \ char *s; \ s = mpz_get_str(0, 10, i); \ fprintf(out, "%*s", width, s); \ isl_int_free_str(s); \ } while (0) #define isl_int_sgn(i) mpz_sgn(i) #define isl_int_cmp(i,j) mpz_cmp(i,j) #define isl_int_cmp_si(i,si) mpz_cmp_si(i,si) #define isl_int_eq(i,j) (mpz_cmp(i,j) == 0) #define isl_int_ne(i,j) (mpz_cmp(i,j) != 0) #define isl_int_lt(i,j) (mpz_cmp(i,j) < 0) #define isl_int_le(i,j) (mpz_cmp(i,j) <= 0) #define isl_int_gt(i,j) (mpz_cmp(i,j) > 0) #define isl_int_ge(i,j) (mpz_cmp(i,j) >= 0) #define isl_int_abs_eq(i,j) (mpz_cmpabs(i,j) == 0) #define isl_int_abs_ne(i,j) (mpz_cmpabs(i,j) != 0) #define isl_int_abs_lt(i,j) (mpz_cmpabs(i,j) < 0) #define isl_int_abs_gt(i,j) (mpz_cmpabs(i,j) > 0) #define isl_int_abs_ge(i,j) (mpz_cmpabs(i,j) >= 0) #define isl_int_is_zero(i) (isl_int_sgn(i) == 0) #define isl_int_is_one(i) (isl_int_cmp_si(i,1) == 0) #define isl_int_is_negone(i) (isl_int_cmp_si(i,-1) == 0) #define isl_int_is_pos(i) (isl_int_sgn(i) > 0) #define isl_int_is_neg(i) (isl_int_sgn(i) < 0) #define isl_int_is_nonpos(i) (isl_int_sgn(i) <= 0) #define isl_int_is_nonneg(i) (isl_int_sgn(i) >= 0) #define isl_int_is_divisible_by(i,j) mpz_divisible_p(i,j) uint32_t isl_gmp_hash(mpz_t v, uint32_t hash); #define isl_int_hash(v,h) isl_gmp_hash(v,h) #if defined(__cplusplus) } #endif #if defined(__cplusplus) extern "C" { typedef void (*isl_gmp_free_t)(void *, size_t); } static inline std::ostream &operator<<(std::ostream &os, isl_int i) { char *s; s = mpz_get_str(0, 10, i); os << s; isl_int_free_str(s); return os; } #endif #endif isl-0.16.1/include/isl/deprecated/ast_int.h0000664000175000017500000000042712645737060015452 00000000000000#ifndef ISL_DEPRECATED_AST_INT_H #define ISL_DEPRECATED_AST_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr, isl_int *v); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/map_int.h0000664000175000017500000000117112645737060015435 00000000000000#ifndef ISL_DEPRECATED_MAP_INT_H #define ISL_DEPRECATED_MAP_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_basic_map_plain_is_fixed(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, isl_int *val); __isl_give isl_map *isl_map_fix(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, isl_int value); int isl_map_plain_is_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_int *val); __isl_give isl_map *isl_map_fixed_power(__isl_take isl_map *map, isl_int exp); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/union_map_int.h0000664000175000017500000000051512645737060016646 00000000000000#ifndef ISL_DEPRECATED_UNION_MAP_INT_H #define ISL_DEPRECATED_UNION_MAP_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_union_map *isl_union_map_fixed_power( __isl_take isl_union_map *umap, isl_int exp); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/set_int.h0000664000175000017500000000144712645737060015461 00000000000000#ifndef ISL_DEPRECATED_SET_INT_H #define ISL_DEPRECATED_SET_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_basic_set *isl_basic_set_fix(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_lower_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_upper_bound(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_fix(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); int isl_set_plain_is_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos, isl_int *val); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/val_int.h0000664000175000017500000000053112645737060015441 00000000000000#ifndef ISL_DEPRECATED_VAL_INT_H #define ISL_DEPRECATED_VAL_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_val *isl_val_int_from_isl_int(isl_ctx *ctx, isl_int n); int isl_val_get_num_isl_int(__isl_keep isl_val *v, isl_int *n); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/vec_int.h0000664000175000017500000000077612645737060015447 00000000000000#ifndef ISL_DEPRECATED_VEC_INT_H #define ISL_DEPRECATED_VEC_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_vec_get_element(__isl_keep isl_vec *vec, int pos, isl_int *v); __isl_give isl_vec *isl_vec_set_element(__isl_take isl_vec *vec, int pos, isl_int v); __isl_give isl_vec *isl_vec_set(__isl_take isl_vec *vec, isl_int v); __isl_give isl_vec *isl_vec_fdiv_r(__isl_take isl_vec *vec, isl_int m); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/ilp_int.h0000664000175000017500000000102612645737060015443 00000000000000#ifndef ISL_DEPRECATED_ILP_INT_H #define ISL_DEPRECATED_ILP_INT_H #include #include #include #if defined(__cplusplus) extern "C" { #endif enum isl_lp_result isl_basic_set_max(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj, isl_int *opt); enum isl_lp_result isl_set_min(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt); enum isl_lp_result isl_set_max(__isl_keep isl_set *set, __isl_keep isl_aff *obj, isl_int *opt); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/constraint_int.h0000664000175000017500000000126412645737060017047 00000000000000#ifndef ISL_DEPRECATED_CONSTRAINT_INT_H #define ISL_DEPRECATED_CONSTRAINT_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif void isl_constraint_get_constant(__isl_keep isl_constraint *constraint, isl_int *v); void isl_constraint_get_coefficient(__isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int *v); __isl_give isl_constraint *isl_constraint_set_constant( __isl_take isl_constraint *constraint, isl_int v); __isl_give isl_constraint *isl_constraint_set_coefficient( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int v); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/polynomial_int.h0000664000175000017500000000165412645737060017051 00000000000000#ifndef ISL_DEPRECATED_POLYNOMIAL_INT_H #define ISL_DEPRECATED_POLYNOMIAL_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( __isl_take isl_space *space, const isl_int n, const isl_int d); int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, isl_int *n, isl_int *d); __isl_give isl_qpolynomial *isl_qpolynomial_scale( __isl_take isl_qpolynomial *qp, isl_int v); void isl_term_get_num(__isl_keep isl_term *term, isl_int *n); void isl_term_get_den(__isl_keep isl_term *term, isl_int *d); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale( __isl_take isl_qpolynomial_fold *fold, isl_int v); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fix_dim( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, unsigned n, isl_int v); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/deprecated/mat_int.h0000664000175000017500000000060212645737060015437 00000000000000#ifndef ISL_DEPRECATED_MAT_INT_H #define ISL_DEPRECATED_MAT_INT_H #include #include #if defined(__cplusplus) extern "C" { #endif int isl_mat_get_element(__isl_keep isl_mat *mat, int row, int col, isl_int *v); __isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat, int row, int col, isl_int v); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/point.h0000664000175000017500000000247712645737234013054 00000000000000#ifndef ISL_POINT_H #define ISL_POINT_H #include #include #include #if defined(__cplusplus) extern "C" { #endif struct __isl_subclass(isl_basic_set) isl_point; typedef struct isl_point isl_point; isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt); __isl_give isl_space *isl_point_get_space(__isl_keep isl_point *pnt); __isl_give isl_point *isl_point_zero(__isl_take isl_space *dim); __isl_give isl_point *isl_point_copy(__isl_keep isl_point *pnt); void isl_point_free(__isl_take isl_point *pnt); __isl_give isl_val *isl_point_get_coordinate_val(__isl_keep isl_point *pnt, enum isl_dim_type type, int pos); __isl_give isl_point *isl_point_set_coordinate_val(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_point *isl_point_add_ui(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); __isl_give isl_point *isl_point_sub_ui(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); __isl_give isl_point *isl_point_void(__isl_take isl_space *dim); isl_bool isl_point_is_void(__isl_keep isl_point *pnt); __isl_give isl_printer *isl_printer_print_point( __isl_take isl_printer *printer, __isl_keep isl_point *pnt); void isl_point_dump(__isl_keep isl_point *pnt); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/ast_type.h0000664000175000017500000000273612645737060013546 00000000000000#ifndef ISL_AST_TYPE_H #define ISL_AST_TYPE_H #include #if defined(__cplusplus) extern "C" { #endif struct isl_ast_expr; typedef struct isl_ast_expr isl_ast_expr; struct isl_ast_node; typedef struct isl_ast_node isl_ast_node; enum isl_ast_op_type { isl_ast_op_error = -1, isl_ast_op_and, isl_ast_op_and_then, isl_ast_op_or, isl_ast_op_or_else, isl_ast_op_max, isl_ast_op_min, isl_ast_op_minus, isl_ast_op_add, isl_ast_op_sub, isl_ast_op_mul, isl_ast_op_div, isl_ast_op_fdiv_q, /* Round towards -infty */ isl_ast_op_pdiv_q, /* Dividend is non-negative */ isl_ast_op_pdiv_r, /* Dividend is non-negative */ isl_ast_op_zdiv_r, /* Result only compared against zero */ isl_ast_op_cond, isl_ast_op_select, isl_ast_op_eq, isl_ast_op_le, isl_ast_op_lt, isl_ast_op_ge, isl_ast_op_gt, isl_ast_op_call, isl_ast_op_access, isl_ast_op_member, isl_ast_op_address_of }; enum isl_ast_expr_type { isl_ast_expr_error = -1, isl_ast_expr_op, isl_ast_expr_id, isl_ast_expr_int }; enum isl_ast_node_type { isl_ast_node_error = -1, isl_ast_node_for = 1, isl_ast_node_if, isl_ast_node_block, isl_ast_node_mark, isl_ast_node_user }; enum isl_ast_loop_type { isl_ast_loop_error = -1, isl_ast_loop_default = 0, isl_ast_loop_atomic, isl_ast_loop_unroll, isl_ast_loop_separate }; struct isl_ast_print_options; typedef struct isl_ast_print_options isl_ast_print_options; ISL_DECLARE_LIST(ast_expr) ISL_DECLARE_LIST(ast_node) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/polynomial.h0000664000175000017500000007417612645737513014113 00000000000000#ifndef ISL_POLYNOMIAL_H #define ISL_POLYNOMIAL_H #include #include #include #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp); __isl_give isl_space *isl_qpolynomial_get_domain_space( __isl_keep isl_qpolynomial *qp); __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp); unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type); isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_val *isl_qpolynomial_get_constant_val( __isl_keep isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(__isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(__isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(__isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(__isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(__isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( __isl_take isl_space *space, __isl_take isl_val *val); __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos); __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp); __isl_null isl_qpolynomial *isl_qpolynomial_free( __isl_take isl_qpolynomial *qp); isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1, __isl_keep isl_qpolynomial *qp2); isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp); isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp); isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp); isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp); int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp, unsigned power); __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v); __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v); __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_qpolynomial *isl_qpolynomial_add_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n); __isl_give isl_qpolynomial *isl_qpolynomial_move_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params( __isl_take isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_qpolynomial *isl_qpolynomial_substitute( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs); int isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp, __isl_keep isl_basic_set *bset, int (*fn)(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user), void *user); __isl_give isl_qpolynomial *isl_qpolynomial_homogenize( __isl_take isl_qpolynomial *poly); __isl_give isl_qpolynomial *isl_qpolynomial_align_params( __isl_take isl_qpolynomial *qp, __isl_take isl_space *model); isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term); __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term); void isl_term_free(__isl_take isl_term *term); unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type); __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term); int isl_term_get_exp(__isl_keep isl_term *term, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos); isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp, isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user); __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp, __isl_take isl_point *pnt); __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_qpolynomial *isl_qpolynomial_gist( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint( __isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos); __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term); __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff); __isl_give isl_basic_map *isl_basic_map_from_qpolynomial( __isl_take isl_qpolynomial *qp); __isl_give isl_printer *isl_printer_print_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp); void isl_qpolynomial_print(__isl_keep isl_qpolynomial *qp, FILE *out, unsigned output_format); void isl_qpolynomial_dump(__isl_keep isl_qpolynomial *qp); isl_ctx *isl_pw_qpolynomial_get_ctx(__isl_keep isl_pw_qpolynomial *pwqp); isl_bool isl_pw_qpolynomial_plain_is_equal(__isl_keep isl_pw_qpolynomial *pwqp1, __isl_keep isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(__isl_take isl_space *dim); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial( __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy( __isl_keep isl_pw_qpolynomial *pwqp); __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free( __isl_take isl_pw_qpolynomial *pwqp); isl_bool isl_pw_qpolynomial_is_zero(__isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_get_domain_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_get_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_reset_domain_space( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_space *dim); unsigned isl_pw_qpolynomial_dim(__isl_keep isl_pw_qpolynomial *pwqp, enum isl_dim_type type); isl_bool isl_pw_qpolynomial_involves_dims(__isl_keep isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned first, unsigned n); int isl_pw_qpolynomial_has_equal_space(__isl_keep isl_pw_qpolynomial *pwqp1, __isl_keep isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_set_dim_name( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned pos, const char *s); int isl_pw_qpolynomial_find_dim_by_name(__isl_keep isl_pw_qpolynomial *pwqp, enum isl_dim_type type, const char *name); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_reset_user( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_set *isl_pw_qpolynomial_domain(__isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_params( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_subtract_domain( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_domain_on_params( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_drop_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_scale_val( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_scale_down_val( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_insert_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned n); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_move_dims( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned n, __isl_take isl_val *v); __isl_give isl_val *isl_pw_qpolynomial_eval( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_point *pnt); __isl_give isl_val *isl_pw_qpolynomial_max(__isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_val *isl_pw_qpolynomial_min(__isl_take isl_pw_qpolynomial *pwqp); isl_stat isl_pw_qpolynomial_foreach_piece(__isl_keep isl_pw_qpolynomial *pwqp, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); isl_stat isl_pw_qpolynomial_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial *pwqp, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_constructor __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_read_from_file(isl_ctx *ctx, FILE *input); __isl_give isl_printer *isl_printer_print_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp); void isl_pw_qpolynomial_print(__isl_keep isl_pw_qpolynomial *pwqp, FILE *out, unsigned output_format); void isl_pw_qpolynomial_dump(__isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_coalesce( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods( __isl_take isl_pw_qpolynomial *pwqp, int max_periods); __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call( __isl_take isl_basic_set *bset, __isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset)); isl_ctx *isl_qpolynomial_fold_get_ctx(__isl_keep isl_qpolynomial_fold *fold); enum isl_fold isl_qpolynomial_fold_get_type(__isl_keep isl_qpolynomial_fold *fold); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_empty(enum isl_fold type, __isl_take isl_space *dim); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_qpolynomial *qp); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy( __isl_keep isl_qpolynomial_fold *fold); void isl_qpolynomial_fold_free(__isl_take isl_qpolynomial_fold *fold); int isl_qpolynomial_fold_is_empty(__isl_keep isl_qpolynomial_fold *fold); isl_bool isl_qpolynomial_fold_is_nan(__isl_keep isl_qpolynomial_fold *fold); int isl_qpolynomial_fold_plain_is_equal(__isl_keep isl_qpolynomial_fold *fold1, __isl_keep isl_qpolynomial_fold *fold2); __isl_give isl_space *isl_qpolynomial_fold_get_domain_space( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_space *isl_qpolynomial_fold_get_space( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold( __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_scale_down_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_move_dims( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute( __isl_take isl_qpolynomial_fold *fold, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_qpolynomial **subs); __isl_give isl_val *isl_qpolynomial_fold_eval( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_point *pnt); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist_params( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); isl_stat isl_qpolynomial_fold_foreach_qpolynomial( __isl_keep isl_qpolynomial_fold *fold, isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user); __isl_give isl_printer *isl_printer_print_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_qpolynomial_fold *fold); void isl_qpolynomial_fold_print(__isl_keep isl_qpolynomial_fold *fold, FILE *out, unsigned output_format); void isl_qpolynomial_fold_dump(__isl_keep isl_qpolynomial_fold *fold); isl_ctx *isl_pw_qpolynomial_fold_get_ctx(__isl_keep isl_pw_qpolynomial_fold *pwf); isl_bool isl_pw_qpolynomial_fold_plain_is_equal( __isl_keep isl_pw_qpolynomial_fold *pwf1, __isl_keep isl_pw_qpolynomial_fold *pwf2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_from_pw_qpolynomial( enum isl_fold type, __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_alloc( enum isl_fold type, __isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_null isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_free( __isl_take isl_pw_qpolynomial_fold *pwf); isl_bool isl_pw_qpolynomial_fold_is_zero( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_pw_qpolynomial_fold_get_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_reset_space( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_space *dim); unsigned isl_pw_qpolynomial_fold_dim(__isl_keep isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type); int isl_pw_qpolynomial_fold_has_equal_space( __isl_keep isl_pw_qpolynomial_fold *pwf1, __isl_keep isl_pw_qpolynomial_fold *pwf2); size_t isl_pw_qpolynomial_fold_size(__isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_zero( __isl_take isl_space *dim, enum isl_fold type); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_set_dim_name( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, unsigned pos, const char *s); int isl_pw_qpolynomial_fold_find_dim_by_name( __isl_keep isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, const char *name); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_reset_user( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_set *isl_pw_qpolynomial_fold_domain( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_intersect_domain( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_intersect_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_subtract_domain( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add_disjoint( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_scale_val( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_scale_down_val( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_project_domain_on_params( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_drop_dims( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_move_dims( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_val *isl_pw_qpolynomial_fold_eval( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_point *pnt); isl_stat isl_pw_qpolynomial_fold_foreach_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf); void isl_pw_qpolynomial_fold_print(__isl_keep isl_pw_qpolynomial_fold *pwf, FILE *out, unsigned output_format); void isl_pw_qpolynomial_fold_dump(__isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_val *isl_pw_qpolynomial_fold_max( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_val *isl_pw_qpolynomial_fold_min( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound( __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type, int *tight); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound( __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_pw_qpolynomial_fold *isl_set_apply_pw_qpolynomial_fold( __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_pw_qpolynomial_fold *isl_map_apply_pw_qpolynomial_fold( __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( __isl_take isl_pw_qpolynomial *pwqp, int sign); isl_ctx *isl_union_pw_qpolynomial_get_ctx( __isl_keep isl_union_pw_qpolynomial *upwqp); unsigned isl_union_pw_qpolynomial_dim( __isl_keep isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type); isl_bool isl_union_pw_qpolynomial_plain_is_equal( __isl_keep isl_union_pw_qpolynomial *upwqp1, __isl_keep isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(__isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero( __isl_take isl_space *dim); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy( __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_null isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_free( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_constructor __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_neg( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_scale_val( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_scale_down_val( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_val *v); __isl_give isl_union_set *isl_union_pw_qpolynomial_domain( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_params( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_subtract_domain( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_union_set *uset); __isl_give isl_space *isl_union_pw_qpolynomial_get_space( __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_set_dim_name( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, unsigned pos, const char *s); int isl_union_pw_qpolynomial_find_dim_by_name( __isl_keep isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, const char *name); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_drop_dims( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_reset_user( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_val *isl_union_pw_qpolynomial_eval( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_point *pnt); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_union_set *context); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist_params( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_align_params( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_space *model); int isl_union_pw_qpolynomial_n_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp); isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user), void *user); __isl_give isl_pw_qpolynomial *isl_union_pw_qpolynomial_extract_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, __isl_take isl_space *dim); __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial *upwqp); isl_ctx *isl_union_pw_qpolynomial_fold_get_ctx( __isl_keep isl_union_pw_qpolynomial_fold *upwf); unsigned isl_union_pw_qpolynomial_fold_dim( __isl_keep isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type); isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal( __isl_keep isl_union_pw_qpolynomial_fold *upwf1, __isl_keep isl_union_pw_qpolynomial_fold *upwf2); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_from_pw_qpolynomial_fold(__isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_zero( __isl_take isl_space *dim, enum isl_fold type); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( __isl_take isl_union_pw_qpolynomial_fold *upwqp, __isl_take isl_pw_qpolynomial_fold *pwqp); __isl_null isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_free( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy( __isl_keep isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold( __isl_take isl_union_pw_qpolynomial_fold *upwf1, __isl_take isl_union_pw_qpolynomial_fold *upwf2); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_add_union_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_scale_val( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_scale_down_val( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_val *v); __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_intersect_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_subtract_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *uset); enum isl_fold isl_union_pw_qpolynomial_fold_get_type( __isl_keep isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space( __isl_keep isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_set_dim_name( __isl_take isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, unsigned pos, const char *s); int isl_union_pw_qpolynomial_fold_find_dim_by_name( __isl_keep isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, const char *name); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_drop_dims( __isl_take isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_reset_user( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_point *pnt); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *context); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_gist_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_align_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_space *model); int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf); isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf, isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf, void *user), void *user); __isl_give isl_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_extract_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_space *dim); __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_fold type, int *tight); __isl_give isl_union_pw_qpolynomial_fold *isl_union_set_apply_union_pw_qpolynomial_fold( __isl_take isl_union_set *uset, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); __isl_give isl_union_pw_qpolynomial_fold *isl_union_map_apply_union_pw_qpolynomial_fold( __isl_take isl_union_map *umap, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial( __isl_take isl_union_pw_qpolynomial *upwqp, int sign); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/arg.h0000664000175000017500000002034012645737060012456 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_ARG_H #define ISL_ARG_H #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_arg_choice { const char *name; unsigned value; }; struct isl_arg_flags { const char *name; unsigned mask; unsigned value; }; enum isl_arg_type { isl_arg_end, isl_arg_alias, isl_arg_arg, isl_arg_bool, isl_arg_child, isl_arg_choice, isl_arg_flags, isl_arg_footer, isl_arg_int, isl_arg_user, isl_arg_long, isl_arg_ulong, isl_arg_str, isl_arg_str_list, isl_arg_version }; struct isl_args; struct isl_arg { enum isl_arg_type type; char short_name; const char *long_name; const char *argument_name; size_t offset; const char *help_msg; #define ISL_ARG_SINGLE_DASH (1 << 0) #define ISL_ARG_BOOL_ARG (1 << 1) #define ISL_ARG_HIDDEN (1 << 2) unsigned flags; union { struct { struct isl_arg_choice *choice; unsigned default_value; unsigned default_selected; int (*set)(void *opt, unsigned val); } choice; struct { struct isl_arg_flags *flags; unsigned default_value; } flags; struct { unsigned default_value; int (*set)(void *opt, unsigned val); } b; struct { int default_value; } i; struct { long default_value; long default_selected; int (*set)(void *opt, long val); } l; struct { unsigned long default_value; } ul; struct { const char *default_value; } str; struct { size_t offset_n; } str_list; struct { struct isl_args *child; } child; struct { void (*print_version)(void); } version; struct { int (*init)(void*); void (*clear)(void*); } user; } u; }; struct isl_args { size_t options_size; struct isl_arg *args; }; #define ISL_ARGS_START(s,name) \ struct isl_arg name ## LIST[]; \ struct isl_args name = { sizeof(s), name ## LIST }; \ struct isl_arg name ## LIST[] = { #define ISL_ARGS_END \ { isl_arg_end } }; #define ISL_ARG_ALIAS(l) { \ .type = isl_arg_alias, \ .long_name = l, \ }, #define ISL_ARG_ARG(st,f,a,d) { \ .type = isl_arg_arg, \ .argument_name = a, \ .offset = offsetof(st, f), \ .u = { .str = { .default_value = d } } \ }, #define ISL_ARG_FOOTER(h) { \ .type = isl_arg_footer, \ .help_msg = h, \ }, #define ISL_ARG_CHOICE(st,f,s,l,c,d,h) { \ .type = isl_arg_choice, \ .short_name = s, \ .long_name = l, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .choice = { .choice = c, .default_value = d, \ .default_selected = d, .set = NULL } } \ }, #define ISL_ARG_OPT_CHOICE(st,f,s,l,c,d,ds,h) { \ .type = isl_arg_choice, \ .short_name = s, \ .long_name = l, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .choice = { .choice = c, .default_value = d, \ .default_selected = ds, .set = NULL } } \ }, #define ISL_ARG_PHANTOM_USER_CHOICE_F(s,l,c,setter,d,h,fl) { \ .type = isl_arg_choice, \ .short_name = s, \ .long_name = l, \ .offset = -1, \ .help_msg = h, \ .flags = fl, \ .u = { .choice = { .choice = c, .default_value = d, \ .default_selected = d, .set = setter } } \ }, #define ISL_ARG_USER_OPT_CHOICE(st,f,s,l,c,setter,d,ds,h) { \ .type = isl_arg_choice, \ .short_name = s, \ .long_name = l, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .choice = { .choice = c, .default_value = d, \ .default_selected = ds, .set = setter } } \ }, #define _ISL_ARG_BOOL_F(o,s,l,setter,d,h,fl) { \ .type = isl_arg_bool, \ .short_name = s, \ .long_name = l, \ .offset = o, \ .help_msg = h, \ .flags = fl, \ .u = { .b = { .default_value = d, .set = setter } } \ }, #define ISL_ARG_BOOL_F(st,f,s,l,d,h,fl) \ _ISL_ARG_BOOL_F(offsetof(st, f),s,l,NULL,d,h,fl) #define ISL_ARG_BOOL(st,f,s,l,d,h) \ ISL_ARG_BOOL_F(st,f,s,l,d,h,0) #define ISL_ARG_PHANTOM_BOOL_F(s,l,setter,h,fl) \ _ISL_ARG_BOOL_F(-1,s,l,setter,0,h,fl) #define ISL_ARG_PHANTOM_BOOL(s,l,setter,h) \ ISL_ARG_PHANTOM_BOOL_F(s,l,setter,h,0) #define ISL_ARG_INT_F(st,f,s,l,a,d,h,fl) { \ .type = isl_arg_int, \ .short_name = s, \ .long_name = l, \ .argument_name = a, \ .offset = offsetof(st, f), \ .help_msg = h, \ .flags = fl, \ .u = { .ul = { .default_value = d } } \ }, #define ISL_ARG_INT(st,f,s,l,a,d,h) \ ISL_ARG_INT_F(st,f,s,l,a,d,h,0) #define ISL_ARG_LONG(st,f,s,lo,d,h) { \ .type = isl_arg_long, \ .short_name = s, \ .long_name = lo, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .l = { .default_value = d, .default_selected = d, \ .set = NULL } } \ }, #define ISL_ARG_USER_LONG(st,f,s,lo,setter,d,h) { \ .type = isl_arg_long, \ .short_name = s, \ .long_name = lo, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .l = { .default_value = d, .default_selected = d, \ .set = setter } } \ }, #define ISL_ARG_OPT_LONG(st,f,s,lo,d,ds,h) { \ .type = isl_arg_long, \ .short_name = s, \ .long_name = lo, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .l = { .default_value = d, .default_selected = ds, \ .set = NULL } } \ }, #define ISL_ARG_ULONG(st,f,s,l,d,h) { \ .type = isl_arg_ulong, \ .short_name = s, \ .long_name = l, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .ul = { .default_value = d } } \ }, #define ISL_ARG_STR_F(st,f,s,l,a,d,h,fl) { \ .type = isl_arg_str, \ .short_name = s, \ .long_name = l, \ .argument_name = a, \ .offset = offsetof(st, f), \ .help_msg = h, \ .flags = fl, \ .u = { .str = { .default_value = d } } \ }, #define ISL_ARG_STR(st,f,s,l,a,d,h) \ ISL_ARG_STR_F(st,f,s,l,a,d,h,0) #define ISL_ARG_STR_LIST(st,f_n,f_l,s,l,a,h) { \ .type = isl_arg_str_list, \ .short_name = s, \ .long_name = l, \ .argument_name = a, \ .offset = offsetof(st, f_l), \ .help_msg = h, \ .u = { .str_list = { .offset_n = offsetof(st, f_n) } } \ }, #define _ISL_ARG_CHILD(o,l,c,h,fl) { \ .type = isl_arg_child, \ .long_name = l, \ .offset = o, \ .help_msg = h, \ .flags = fl, \ .u = { .child = { .child = c } } \ }, #define ISL_ARG_CHILD(st,f,l,c,h) \ _ISL_ARG_CHILD(offsetof(st, f),l,c,h,0) #define ISL_ARG_GROUP_F(l,c,h,fl) \ _ISL_ARG_CHILD(-1,l,c,h,fl) #define ISL_ARG_GROUP(l,c,h) \ ISL_ARG_GROUP_F(l,c,h,0) #define ISL_ARG_FLAGS(st,f,s,l,c,d,h) { \ .type = isl_arg_flags, \ .short_name = s, \ .long_name = l, \ .offset = offsetof(st, f), \ .help_msg = h, \ .u = { .flags = { .flags = c, .default_value = d } } \ }, #define ISL_ARG_USER(st,f,i,c) { \ .type = isl_arg_user, \ .offset = offsetof(st, f), \ .u = { .user = { .init = i, .clear = c} } \ }, #define ISL_ARG_VERSION(print) { \ .type = isl_arg_version, \ .u = { .version = { .print_version = print } } \ }, #define ISL_ARG_ALL (1 << 0) #define ISL_ARG_SKIP_HELP (1 << 1) void isl_args_set_defaults(struct isl_args *args, void *opt); void isl_args_free(struct isl_args *args, void *opt); int isl_args_parse(struct isl_args *args, int argc, char **argv, void *opt, unsigned flags); #define ISL_ARG_DECL(prefix,st,args) \ extern struct isl_args args; \ st *prefix ## _new_with_defaults(void); \ void prefix ## _free(st *opt); \ int prefix ## _parse(st *opt, int argc, char **argv, unsigned flags); #define ISL_ARG_DEF(prefix,st,args) \ st *prefix ## _new_with_defaults() \ { \ st *opt = (st *)calloc(1, sizeof(st)); \ if (opt) \ isl_args_set_defaults(&(args), opt); \ return opt; \ } \ \ void prefix ## _free(st *opt) \ { \ isl_args_free(&(args), opt); \ } \ \ int prefix ## _parse(st *opt, int argc, char **argv, unsigned flags) \ { \ return isl_args_parse(&(args), argc, argv, opt, flags); \ } #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/ilp.h0000664000175000017500000000135412645737060012475 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_ILP_H #define ISL_ILP_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj); __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj); __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set, __isl_keep isl_aff *obj); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/schedule_type.h0000664000175000017500000000124212645737234014545 00000000000000#ifndef ISL_SCHEDULE_TYPE_H #define ISL_SCHEDULE_TYPE_H #if defined(__cplusplus) extern "C" { #endif enum isl_schedule_node_type { isl_schedule_node_error = -1, isl_schedule_node_band, isl_schedule_node_context, isl_schedule_node_domain, isl_schedule_node_expansion, isl_schedule_node_extension, isl_schedule_node_filter, isl_schedule_node_leaf, isl_schedule_node_guard, isl_schedule_node_mark, isl_schedule_node_sequence, isl_schedule_node_set }; struct __isl_export isl_schedule_node; typedef struct isl_schedule_node isl_schedule_node; struct __isl_export isl_schedule; typedef struct isl_schedule isl_schedule; #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/ast_build.h0000664000175000017500000001125412645737060013657 00000000000000#ifndef ISL_AST_CONTEXT_H #define ISL_AST_CONTEXT_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_ast_build; typedef struct isl_ast_build isl_ast_build; isl_stat isl_options_set_ast_build_atomic_upper_bound(isl_ctx *ctx, int val); int isl_options_get_ast_build_atomic_upper_bound(isl_ctx *ctx); isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx, int val); int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx); isl_stat isl_options_set_ast_build_exploit_nested_bounds(isl_ctx *ctx, int val); int isl_options_get_ast_build_exploit_nested_bounds(isl_ctx *ctx); isl_stat isl_options_set_ast_build_group_coscheduled(isl_ctx *ctx, int val); int isl_options_get_ast_build_group_coscheduled(isl_ctx *ctx); #define ISL_AST_BUILD_SEPARATION_BOUNDS_EXPLICIT 0 #define ISL_AST_BUILD_SEPARATION_BOUNDS_IMPLICIT 1 isl_stat isl_options_set_ast_build_separation_bounds(isl_ctx *ctx, int val); int isl_options_get_ast_build_separation_bounds(isl_ctx *ctx); isl_stat isl_options_set_ast_build_scale_strides(isl_ctx *ctx, int val); int isl_options_get_ast_build_scale_strides(isl_ctx *ctx); isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_else(isl_ctx *ctx); isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_or(isl_ctx *ctx); isl_ctx *isl_ast_build_get_ctx(__isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_alloc(isl_ctx *ctx); __isl_give isl_ast_build *isl_ast_build_from_context(__isl_take isl_set *set); __isl_give isl_space *isl_ast_build_get_schedule_space( __isl_keep isl_ast_build *build); __isl_give isl_union_map *isl_ast_build_get_schedule( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_restrict( __isl_take isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_build *isl_ast_build_copy( __isl_keep isl_ast_build *build); __isl_null isl_ast_build *isl_ast_build_free( __isl_take isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_set_options( __isl_take isl_ast_build *build, __isl_take isl_union_map *options); __isl_give isl_ast_build *isl_ast_build_set_iterators( __isl_take isl_ast_build *build, __isl_take isl_id_list *iterators); __isl_give isl_ast_build *isl_ast_build_set_at_each_domain( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build *isl_ast_build_set_before_each_for( __isl_take isl_ast_build *build, __isl_give isl_id *(*fn)(__isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build *isl_ast_build_set_after_each_for( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build *isl_ast_build_set_before_each_mark( __isl_take isl_ast_build *build, isl_stat (*fn)(__isl_keep isl_id *mark, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build *isl_ast_build_set_after_each_mark( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build *isl_ast_build_set_create_leaf( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)(__isl_take isl_ast_build *build, void *user), void *user); __isl_give isl_ast_expr *isl_ast_build_expr_from_set( __isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa); __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_ast_node *isl_ast_build_node_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule); __isl_give isl_ast_node *isl_ast_build_node_from_schedule_map( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule); __isl_give isl_ast_node *isl_ast_build_ast_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/val_gmp.h0000664000175000017500000000066312645737060013340 00000000000000#ifndef ISL_VAL_GMP_H #define ISL_VAL_GMP_H #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx, mpz_t z); __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx, const mpz_t n, const mpz_t d); int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z); int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/val.h0000664000175000017500000001212712645737234012476 00000000000000#ifndef ISL_VAL_H #define ISL_VAL_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct __isl_export isl_val; typedef struct isl_val isl_val; ISL_DECLARE_LIST(val) struct __isl_export isl_multi_val; typedef struct isl_multi_val isl_multi_val; ISL_DECLARE_MULTI(val) ISL_DECLARE_MULTI_NEG(val) ISL_DECLARE_MULTI_DIMS(val) ISL_DECLARE_MULTI_WITH_DOMAIN(val) __isl_export __isl_give isl_val *isl_val_zero(isl_ctx *ctx); __isl_export __isl_give isl_val *isl_val_one(isl_ctx *ctx); __isl_export __isl_give isl_val *isl_val_negone(isl_ctx *ctx); __isl_export __isl_give isl_val *isl_val_nan(isl_ctx *ctx); __isl_export __isl_give isl_val *isl_val_infty(isl_ctx *ctx); __isl_export __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx); __isl_constructor __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx, long i); __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx, unsigned long u); __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx, size_t n, size_t size, const void *chunks); __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v); __isl_null isl_val *isl_val_free(__isl_take isl_val *v); isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val); long isl_val_get_num_si(__isl_keep isl_val *v); long isl_val_get_den_si(__isl_keep isl_val *v); __isl_give isl_val *isl_val_get_den_val(__isl_keep isl_val *v); double isl_val_get_d(__isl_keep isl_val *v); size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v, size_t size); int isl_val_get_abs_num_chunks(__isl_keep isl_val *v, size_t size, void *chunks); __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v, long i); __isl_give isl_val *isl_val_abs(__isl_take isl_val *v); __isl_give isl_val *isl_val_neg(__isl_take isl_val *v); __isl_give isl_val *isl_val_inv(__isl_take isl_val *v); __isl_give isl_val *isl_val_floor(__isl_take isl_val *v); __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v); __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v); __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v); __isl_give isl_val *isl_val_min(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_max(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_div(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1, __isl_take isl_val *v2, __isl_give isl_val **x, __isl_give isl_val **y); int isl_val_sgn(__isl_keep isl_val *v); isl_bool isl_val_is_zero(__isl_keep isl_val *v); isl_bool isl_val_is_one(__isl_keep isl_val *v); isl_bool isl_val_is_negone(__isl_keep isl_val *v); isl_bool isl_val_is_nonneg(__isl_keep isl_val *v); isl_bool isl_val_is_nonpos(__isl_keep isl_val *v); isl_bool isl_val_is_pos(__isl_keep isl_val *v); isl_bool isl_val_is_neg(__isl_keep isl_val *v); isl_bool isl_val_is_int(__isl_keep isl_val *v); isl_bool isl_val_is_rat(__isl_keep isl_val *v); isl_bool isl_val_is_nan(__isl_keep isl_val *v); isl_bool isl_val_is_infty(__isl_keep isl_val *v); isl_bool isl_val_is_neginfty(__isl_keep isl_val *v); int isl_val_cmp_si(__isl_keep isl_val *v, long i); isl_bool isl_val_lt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_le(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_gt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_ge(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_ne(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_abs_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1, __isl_keep isl_val *v2); __isl_constructor __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_val(__isl_take isl_printer *p, __isl_keep isl_val *v); void isl_val_dump(__isl_keep isl_val *v); __isl_give char *isl_val_to_str(__isl_keep isl_val *v); __isl_give isl_multi_val *isl_multi_val_add_val(__isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_mod_val(__isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_multi_val(__isl_take isl_printer *p, __isl_keep isl_multi_val *mv); void isl_multi_val_dump(__isl_keep isl_multi_val *mv); __isl_give char *isl_multi_val_to_str(__isl_keep isl_multi_val *mv); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/id.h0000664000175000017500000000164012645737060012303 00000000000000#ifndef ISL_ID_H #define ISL_ID_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_id; typedef struct isl_id isl_id; ISL_DECLARE_LIST(id) isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id); uint32_t isl_id_get_hash(__isl_keep isl_id *id); __isl_give isl_id *isl_id_alloc(isl_ctx *ctx, __isl_keep const char *name, void *user); __isl_give isl_id *isl_id_copy(isl_id *id); __isl_null isl_id *isl_id_free(__isl_take isl_id *id); void *isl_id_get_user(__isl_keep isl_id *id); __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id); __isl_give isl_id *isl_id_set_free_user(__isl_take isl_id *id, __isl_give void (*free_user)(void *user)); __isl_give isl_printer *isl_printer_print_id(__isl_take isl_printer *p, __isl_keep isl_id *id); void isl_id_dump(__isl_keep isl_id *id); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/ctx.h0000664000175000017500000001713412645737234012515 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_CTX_H #define ISL_CTX_H #include #include #include #ifndef __isl_give #define __isl_give #endif #ifndef __isl_take #define __isl_take #endif #ifndef __isl_keep #define __isl_keep #endif #ifndef __isl_null #define __isl_null #endif #ifndef __isl_export #define __isl_export #endif #ifndef __isl_overload #define __isl_overload #endif #ifndef __isl_constructor #define __isl_constructor #endif #ifndef __isl_subclass #define __isl_subclass(super) #endif #if defined(__cplusplus) extern "C" { #endif /* Nearly all isa functions require a struct isl_ctx allocated using * isl_ctx_alloc. This ctx contains (or will contain) options that * control the behavior of the library and some caches. * * An object allocated within a given ctx should never be used inside * another ctx. Functions for moving objects from one ctx to another * will be added as the need arises. * * A given context should only be used inside a single thread. * A global context for synchronization between different threads * as well as functions for moving a context to a different thread * will be added as the need arises. * * If anything goes wrong (out of memory, failed assertion), then * the library will currently simply abort. This will be made * configurable in the future. * Users of the library should expect functions that return * a pointer to a structure, to return NULL, indicating failure. * Any function accepting a pointer to a structure will treat * a NULL argument as a failure, resulting in the function freeing * the remaining structures (if any) and returning NULL itself * (in case of pointer return type). * The only exception is the isl_ctx argument, which should never be NULL. */ struct isl_stats { long gbr_solved_lps; }; enum isl_error { isl_error_none = 0, isl_error_abort, isl_error_alloc, isl_error_unknown, isl_error_internal, isl_error_invalid, isl_error_quota, isl_error_unsupported }; typedef enum { isl_stat_error = -1, isl_stat_ok = 0 } isl_stat; typedef enum { isl_bool_error = -1, isl_bool_false = 0, isl_bool_true = 1 } isl_bool; struct isl_ctx; typedef struct isl_ctx isl_ctx; /* Some helper macros */ #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1) #define ISL_DEPRECATED __attribute__((__deprecated__)) #else #define ISL_DEPRECATED #endif #define ISL_FL_INIT(l, f) (l) = (f) /* Specific flags location. */ #define ISL_FL_SET(l, f) ((l) |= (f)) #define ISL_FL_CLR(l, f) ((l) &= ~(f)) #define ISL_FL_ISSET(l, f) (!!((l) & (f))) #define ISL_F_INIT(p, f) ISL_FL_INIT((p)->flags, f) /* Structure element flags. */ #define ISL_F_SET(p, f) ISL_FL_SET((p)->flags, f) #define ISL_F_CLR(p, f) ISL_FL_CLR((p)->flags, f) #define ISL_F_ISSET(p, f) ISL_FL_ISSET((p)->flags, f) void *isl_malloc_or_die(isl_ctx *ctx, size_t size); void *isl_calloc_or_die(isl_ctx *ctx, size_t nmemb, size_t size); void *isl_realloc_or_die(isl_ctx *ctx, void *ptr, size_t size); #define isl_alloc(ctx,type,size) ((type *)isl_malloc_or_die(ctx, size)) #define isl_calloc(ctx,type,size) ((type *)isl_calloc_or_die(ctx,\ 1, size)) #define isl_realloc(ctx,ptr,type,size) ((type *)isl_realloc_or_die(ctx,\ ptr, size)) #define isl_alloc_type(ctx,type) isl_alloc(ctx,type,sizeof(type)) #define isl_calloc_type(ctx,type) isl_calloc(ctx,type,sizeof(type)) #define isl_realloc_type(ctx,ptr,type) isl_realloc(ctx,ptr,type,sizeof(type)) #define isl_alloc_array(ctx,type,n) isl_alloc(ctx,type,(n)*sizeof(type)) #define isl_calloc_array(ctx,type,n) ((type *)isl_calloc_or_die(ctx,\ n, sizeof(type))) #define isl_realloc_array(ctx,ptr,type,n) \ isl_realloc(ctx,ptr,type,(n)*sizeof(type)) #define isl_die(ctx,errno,msg,code) \ do { \ isl_handle_error(ctx, errno, msg, __FILE__, __LINE__); \ code; \ } while (0) void isl_handle_error(isl_ctx *ctx, enum isl_error error, const char *msg, const char *file, int line); #define isl_assert4(ctx,test,code,errno) \ do { \ if (test) \ break; \ isl_die(ctx, errno, "Assertion \"" #test "\" failed", code); \ } while (0) #define isl_assert(ctx,test,code) \ isl_assert4(ctx,test,code,isl_error_unknown) #define isl_min(a,b) ((a < b) ? (a) : (b)) /* struct isl_ctx functions */ struct isl_options *isl_ctx_options(isl_ctx *ctx); isl_ctx *isl_ctx_alloc_with_options(struct isl_args *args, __isl_take void *opt); isl_ctx *isl_ctx_alloc(void); void *isl_ctx_peek_options(isl_ctx *ctx, struct isl_args *args); int isl_ctx_parse_options(isl_ctx *ctx, int argc, char **argv, unsigned flags); void isl_ctx_ref(struct isl_ctx *ctx); void isl_ctx_deref(struct isl_ctx *ctx); void isl_ctx_free(isl_ctx *ctx); void isl_ctx_abort(isl_ctx *ctx); void isl_ctx_resume(isl_ctx *ctx); int isl_ctx_aborted(isl_ctx *ctx); void isl_ctx_set_max_operations(isl_ctx *ctx, unsigned long max_operations); unsigned long isl_ctx_get_max_operations(isl_ctx *ctx); void isl_ctx_reset_operations(isl_ctx *ctx); #define ISL_ARG_CTX_DECL(prefix,st,args) \ st *isl_ctx_peek_ ## prefix(isl_ctx *ctx); #define ISL_ARG_CTX_DEF(prefix,st,args) \ st *isl_ctx_peek_ ## prefix(isl_ctx *ctx) \ { \ return (st *)isl_ctx_peek_options(ctx, &(args)); \ } #define ISL_CTX_GET_INT_DEF(prefix,st,args,field) \ int prefix ## _get_ ## field(isl_ctx *ctx) \ { \ st *options; \ options = isl_ctx_peek_ ## prefix(ctx); \ if (!options) \ isl_die(ctx, isl_error_invalid, \ "isl_ctx does not reference " #prefix, \ return -1); \ return options->field; \ } #define ISL_CTX_SET_INT_DEF(prefix,st,args,field) \ isl_stat prefix ## _set_ ## field(isl_ctx *ctx, int val) \ { \ st *options; \ options = isl_ctx_peek_ ## prefix(ctx); \ if (!options) \ isl_die(ctx, isl_error_invalid, \ "isl_ctx does not reference " #prefix, \ return isl_stat_error); \ options->field = val; \ return isl_stat_ok; \ } #define ISL_CTX_GET_STR_DEF(prefix,st,args,field) \ const char *prefix ## _get_ ## field(isl_ctx *ctx) \ { \ st *options; \ options = isl_ctx_peek_ ## prefix(ctx); \ if (!options) \ isl_die(ctx, isl_error_invalid, \ "isl_ctx does not reference " #prefix, \ return NULL); \ return options->field; \ } #define ISL_CTX_SET_STR_DEF(prefix,st,args,field) \ isl_stat prefix ## _set_ ## field(isl_ctx *ctx, const char *val) \ { \ st *options; \ options = isl_ctx_peek_ ## prefix(ctx); \ if (!options) \ isl_die(ctx, isl_error_invalid, \ "isl_ctx does not reference " #prefix, \ return isl_stat_error); \ if (!val) \ return isl_stat_error; \ free(options->field); \ options->field = strdup(val); \ if (!options->field) \ return isl_stat_error; \ return isl_stat_ok; \ } #define ISL_CTX_GET_BOOL_DEF(prefix,st,args,field) \ ISL_CTX_GET_INT_DEF(prefix,st,args,field) #define ISL_CTX_SET_BOOL_DEF(prefix,st,args,field) \ ISL_CTX_SET_INT_DEF(prefix,st,args,field) #define ISL_CTX_GET_CHOICE_DEF(prefix,st,args,field) \ ISL_CTX_GET_INT_DEF(prefix,st,args,field) #define ISL_CTX_SET_CHOICE_DEF(prefix,st,args,field) \ ISL_CTX_SET_INT_DEF(prefix,st,args,field) enum isl_error isl_ctx_last_error(isl_ctx *ctx); void isl_ctx_reset_error(isl_ctx *ctx); void isl_ctx_set_error(isl_ctx *ctx, enum isl_error error); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/list.h0000664000175000017500000000544512645737060012671 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_LIST_H #define ISL_LIST_H #include #include #if defined(__cplusplus) extern "C" { #endif #define ISL_DECLARE_LIST_TYPE(EL) \ struct isl_##EL; \ struct isl_##EL##_list; \ typedef struct isl_##EL##_list isl_##EL##_list; #define ISL_DECLARE_LIST_FN(EL) \ isl_ctx *isl_##EL##_list_get_ctx(__isl_keep isl_##EL##_list *list); \ __isl_give isl_##EL##_list *isl_##EL##_list_from_##EL( \ __isl_take struct isl_##EL *el); \ __isl_give isl_##EL##_list *isl_##EL##_list_alloc(isl_ctx *ctx, int n); \ __isl_give isl_##EL##_list *isl_##EL##_list_copy( \ __isl_keep isl_##EL##_list *list); \ __isl_null isl_##EL##_list *isl_##EL##_list_free( \ __isl_take isl_##EL##_list *list); \ __isl_give isl_##EL##_list *isl_##EL##_list_add( \ __isl_take isl_##EL##_list *list, \ __isl_take struct isl_##EL *el); \ __isl_give isl_##EL##_list *isl_##EL##_list_insert( \ __isl_take isl_##EL##_list *list, unsigned pos, \ __isl_take struct isl_##EL *el); \ __isl_give isl_##EL##_list *isl_##EL##_list_drop( \ __isl_take isl_##EL##_list *list, unsigned first, unsigned n); \ __isl_give isl_##EL##_list *isl_##EL##_list_concat( \ __isl_take isl_##EL##_list *list1, \ __isl_take isl_##EL##_list *list2); \ int isl_##EL##_list_n_##EL(__isl_keep isl_##EL##_list *list); \ __isl_give struct isl_##EL *isl_##EL##_list_get_##EL( \ __isl_keep isl_##EL##_list *list, int index); \ __isl_give struct isl_##EL##_list *isl_##EL##_list_set_##EL( \ __isl_take struct isl_##EL##_list *list, int index, \ __isl_take struct isl_##EL *el); \ isl_stat isl_##EL##_list_foreach(__isl_keep isl_##EL##_list *list, \ isl_stat (*fn)(__isl_take struct isl_##EL *el, void *user), \ void *user); \ __isl_give isl_##EL##_list *isl_##EL##_list_sort( \ __isl_take isl_##EL##_list *list, \ int (*cmp)(__isl_keep struct isl_##EL *a, \ __isl_keep struct isl_##EL *b, \ void *user), void *user); \ isl_stat isl_##EL##_list_foreach_scc(__isl_keep isl_##EL##_list *list, \ isl_bool (*follows)(__isl_keep struct isl_##EL *a, \ __isl_keep struct isl_##EL *b, void *user), \ void *follows_user, \ isl_stat (*fn)(__isl_take isl_##EL##_list *scc, void *user), \ void *fn_user); \ __isl_give isl_printer *isl_printer_print_##EL##_list( \ __isl_take isl_printer *p, __isl_keep isl_##EL##_list *list); \ void isl_##EL##_list_dump(__isl_keep isl_##EL##_list *list); #define ISL_DECLARE_LIST(EL) \ ISL_DECLARE_LIST_TYPE(EL) \ ISL_DECLARE_LIST_FN(EL) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/vertices.h0000664000175000017500000000306212645737060013533 00000000000000#ifndef ISL_VERTICES_H #define ISL_VERTICES_H #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_external_vertex; typedef struct isl_external_vertex isl_vertex; struct isl_cell; typedef struct isl_cell isl_cell; struct isl_vertices; typedef struct isl_vertices isl_vertices; isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex); int isl_vertex_get_id(__isl_keep isl_vertex *vertex); __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex); __isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex); void isl_vertex_free(__isl_take isl_vertex *vertex); __isl_give isl_vertices *isl_basic_set_compute_vertices( __isl_keep isl_basic_set *bset); isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices); int isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices); isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); void isl_vertices_free(__isl_take isl_vertices *vertices); isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell); __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell); isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); void isl_cell_free(__isl_take isl_cell *cell); isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/union_set_type.h0000664000175000017500000000014312645737060014750 00000000000000#ifndef ISL_UNION_SET_TYPE_H #define ISL_UNION_SET_TYPE_H #include #endif isl-0.16.1/include/isl/stream.h0000664000175000017500000000664112645737060013210 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_STREAM_H #define ISL_STREAM_H #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif enum isl_token_type { ISL_TOKEN_ERROR = -1, ISL_TOKEN_UNKNOWN = 256, ISL_TOKEN_VALUE, ISL_TOKEN_IDENT, ISL_TOKEN_GE, ISL_TOKEN_LE, ISL_TOKEN_GT, ISL_TOKEN_LT, ISL_TOKEN_NE, ISL_TOKEN_EQ_EQ, ISL_TOKEN_LEX_GE, ISL_TOKEN_LEX_LE, ISL_TOKEN_LEX_GT, ISL_TOKEN_LEX_LT, ISL_TOKEN_TO, ISL_TOKEN_AND, ISL_TOKEN_OR, ISL_TOKEN_EXISTS, ISL_TOKEN_NOT, ISL_TOKEN_DEF, ISL_TOKEN_INFTY, ISL_TOKEN_NAN, ISL_TOKEN_MIN, ISL_TOKEN_MAX, ISL_TOKEN_RAT, ISL_TOKEN_TRUE, ISL_TOKEN_FALSE, ISL_TOKEN_CEILD, ISL_TOKEN_FLOORD, ISL_TOKEN_MOD, ISL_TOKEN_STRING, ISL_TOKEN_MAP, ISL_TOKEN_AFF, ISL_TOKEN_CEIL, ISL_TOKEN_FLOOR, ISL_TOKEN_IMPLIES, ISL_TOKEN_LAST }; struct isl_token; __isl_give isl_val *isl_token_get_val(isl_ctx *ctx, struct isl_token *tok); __isl_give char *isl_token_get_str(isl_ctx *ctx, struct isl_token *tok); int isl_token_get_type(struct isl_token *tok); void isl_token_free(struct isl_token *tok); struct isl_stream; typedef struct isl_stream isl_stream; __isl_give isl_stream *isl_stream_new_file(isl_ctx *ctx, FILE *file); __isl_give isl_stream *isl_stream_new_str(isl_ctx *ctx, const char *str); void isl_stream_free(__isl_take isl_stream *s); isl_ctx *isl_stream_get_ctx(__isl_keep isl_stream *s); void isl_stream_error(__isl_keep isl_stream *s, struct isl_token *tok, char *msg); struct isl_token *isl_stream_next_token(__isl_keep isl_stream *s); struct isl_token *isl_stream_next_token_on_same_line(__isl_keep isl_stream *s); int isl_stream_next_token_is(__isl_keep isl_stream *s, int type); void isl_stream_push_token(__isl_keep isl_stream *s, struct isl_token *tok); void isl_stream_flush_tokens(__isl_keep isl_stream *s); int isl_stream_eat_if_available(__isl_keep isl_stream *s, int type); char *isl_stream_read_ident_if_available(__isl_keep isl_stream *s); int isl_stream_eat(__isl_keep isl_stream *s, int type); int isl_stream_is_empty(__isl_keep isl_stream *s); int isl_stream_skip_line(__isl_keep isl_stream *s); enum isl_token_type isl_stream_register_keyword(__isl_keep isl_stream *s, const char *name); struct isl_obj isl_stream_read_obj(__isl_keep isl_stream *s); __isl_give isl_val *isl_stream_read_val(__isl_keep isl_stream *s); __isl_give isl_multi_aff *isl_stream_read_multi_aff(__isl_keep isl_stream *s); __isl_give isl_map *isl_stream_read_map(__isl_keep isl_stream *s); __isl_give isl_set *isl_stream_read_set(__isl_keep isl_stream *s); __isl_give isl_pw_qpolynomial *isl_stream_read_pw_qpolynomial( __isl_keep isl_stream *s); __isl_give isl_union_map *isl_stream_read_union_map(__isl_keep isl_stream *s); __isl_give isl_schedule *isl_stream_read_schedule(isl_stream *s); int isl_stream_yaml_read_start_mapping(__isl_keep isl_stream *s); int isl_stream_yaml_read_end_mapping(__isl_keep isl_stream *s); int isl_stream_yaml_read_start_sequence(__isl_keep isl_stream *s); int isl_stream_yaml_read_end_sequence(__isl_keep isl_stream *s); int isl_stream_yaml_next(__isl_keep isl_stream *s); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/polynomial_type.h0000664000175000017500000000137612645737060015141 00000000000000#ifndef ISL_POLYNOMIAL_TYPE_H #define ISL_POLYNOMIAL_TYPE_H struct isl_qpolynomial; typedef struct isl_qpolynomial isl_qpolynomial; struct isl_term; typedef struct isl_term isl_term; struct __isl_export isl_pw_qpolynomial; typedef struct isl_pw_qpolynomial isl_pw_qpolynomial; enum isl_fold { isl_fold_min, isl_fold_max, isl_fold_list }; struct isl_qpolynomial_fold; typedef struct isl_qpolynomial_fold isl_qpolynomial_fold; struct isl_pw_qpolynomial_fold; typedef struct isl_pw_qpolynomial_fold isl_pw_qpolynomial_fold; struct __isl_export isl_union_pw_qpolynomial; typedef struct isl_union_pw_qpolynomial isl_union_pw_qpolynomial; struct isl_union_pw_qpolynomial_fold; typedef struct isl_union_pw_qpolynomial_fold isl_union_pw_qpolynomial_fold; #endif isl-0.16.1/include/isl/multi.h0000664000175000017500000001472312645737234013052 00000000000000#ifndef ISL_MULTI_H #define ISL_MULTI_H #include #include #include #if defined(__cplusplus) extern "C" { #endif #define ISL_DECLARE_MULTI(BASE) \ unsigned isl_multi_##BASE##_dim(__isl_keep isl_multi_##BASE *multi, \ enum isl_dim_type type); \ isl_ctx *isl_multi_##BASE##_get_ctx( \ __isl_keep isl_multi_##BASE *multi); \ __isl_give isl_space *isl_multi_##BASE##_get_space( \ __isl_keep isl_multi_##BASE *multi); \ __isl_give isl_space *isl_multi_##BASE##_get_domain_space( \ __isl_keep isl_multi_##BASE *multi); \ int isl_multi_##BASE##_find_dim_by_name( \ __isl_keep isl_multi_##BASE *multi, \ enum isl_dim_type type, const char *name); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_from_##BASE##_list( \ __isl_take isl_space *space, __isl_take isl_##BASE##_list *list); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_zero( \ __isl_take isl_space *space); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_copy( \ __isl_keep isl_multi_##BASE *multi); \ __isl_null isl_multi_##BASE *isl_multi_##BASE##_free( \ __isl_take isl_multi_##BASE *multi); \ isl_bool isl_multi_##BASE##_plain_is_equal( \ __isl_keep isl_multi_##BASE *multi1, \ __isl_keep isl_multi_##BASE *multi2); \ int isl_multi_##BASE##_find_dim_by_id( \ __isl_keep isl_multi_##BASE *multi, enum isl_dim_type type, \ __isl_keep isl_id *id); \ __isl_give isl_id *isl_multi_##BASE##_get_dim_id( \ __isl_take isl_multi_##BASE *multi, \ enum isl_dim_type type, unsigned pos); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_set_dim_name( \ __isl_take isl_multi_##BASE *multi, \ enum isl_dim_type type, unsigned pos, const char *s); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_set_dim_id( \ __isl_take isl_multi_##BASE *multi, \ enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); \ const char *isl_multi_##BASE##_get_tuple_name( \ __isl_keep isl_multi_##BASE *multi, enum isl_dim_type type); \ isl_bool isl_multi_##BASE##_has_tuple_id( \ __isl_keep isl_multi_##BASE *multi, enum isl_dim_type type); \ __isl_give isl_id *isl_multi_##BASE##_get_tuple_id( \ __isl_keep isl_multi_##BASE *multi, enum isl_dim_type type); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_set_tuple_name( \ __isl_take isl_multi_##BASE *multi, \ enum isl_dim_type type, const char *s); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_set_tuple_id( \ __isl_take isl_multi_##BASE *multi, \ enum isl_dim_type type, __isl_take isl_id *id); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_reset_tuple_id( \ __isl_take isl_multi_##BASE *multi, enum isl_dim_type type); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_reset_user( \ __isl_take isl_multi_##BASE *multi); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_drop_dims( \ __isl_take isl_multi_##BASE *multi, enum isl_dim_type type, \ unsigned first, unsigned n); \ __isl_give isl_##BASE *isl_multi_##BASE##_get_##BASE( \ __isl_keep isl_multi_##BASE *multi, int pos); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_set_##BASE( \ __isl_take isl_multi_##BASE *multi, int pos, \ __isl_take isl_##BASE *el); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_range_splice( \ __isl_take isl_multi_##BASE *multi1, unsigned pos, \ __isl_take isl_multi_##BASE *multi2); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_flatten_range( \ __isl_take isl_multi_##BASE *multi); \ __isl_export \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_flat_range_product( \ __isl_take isl_multi_##BASE *multi1, \ __isl_take isl_multi_##BASE *multi2); \ __isl_export \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_range_product( \ __isl_take isl_multi_##BASE *multi1, \ __isl_take isl_multi_##BASE *multi2); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_factor_range( \ __isl_take isl_multi_##BASE *multi); \ isl_bool isl_multi_##BASE##_range_is_wrapping( \ __isl_keep isl_multi_##BASE *multi); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_range_factor_domain( \ __isl_take isl_multi_##BASE *multi); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_range_factor_range( \ __isl_take isl_multi_##BASE *multi); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_scale_val( \ __isl_take isl_multi_##BASE *multi, __isl_take isl_val *v); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_scale_down_val( \ __isl_take isl_multi_##BASE *multi, __isl_take isl_val *v); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_scale_multi_val( \ __isl_take isl_multi_##BASE *multi, \ __isl_take isl_multi_val *mv); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_scale_down_multi_val( \ __isl_take isl_multi_##BASE *multi, \ __isl_take isl_multi_val *mv); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_mod_multi_val( \ __isl_take isl_multi_##BASE *multi, \ __isl_take isl_multi_val *mv); \ __isl_export \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_add( \ __isl_take isl_multi_##BASE *multi1, \ __isl_take isl_multi_##BASE *multi2); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_sub( \ __isl_take isl_multi_##BASE *multi1, \ __isl_take isl_multi_##BASE *multi2); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_align_params( \ __isl_take isl_multi_##BASE *multi, \ __isl_take isl_space *model); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_from_range( \ __isl_take isl_multi_##BASE *multi); #define ISL_DECLARE_MULTI_NEG(BASE) \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_neg( \ __isl_take isl_multi_##BASE *multi); #define ISL_DECLARE_MULTI_DIMS(BASE) \ isl_bool isl_multi_##BASE##_involves_dims( \ __isl_keep isl_multi_##BASE *multi, enum isl_dim_type type, \ unsigned first, unsigned n); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_insert_dims( \ __isl_take isl_multi_##BASE *multi, enum isl_dim_type type, \ unsigned first, unsigned n); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_add_dims( \ __isl_take isl_multi_##BASE *multi, enum isl_dim_type type, \ unsigned n); #define ISL_DECLARE_MULTI_WITH_DOMAIN(BASE) \ __isl_export \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_product( \ __isl_take isl_multi_##BASE *multi1, \ __isl_take isl_multi_##BASE *multi2); \ __isl_give isl_multi_##BASE *isl_multi_##BASE##_splice( \ __isl_take isl_multi_##BASE *multi1, unsigned in_pos, \ unsigned out_pos, __isl_take isl_multi_##BASE *multi2); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/union_set.h0000664000175000017500000001447512645737234013727 00000000000000#ifndef ISL_UNION_SET_H #define ISL_UNION_SET_H #include #include #if defined(__cplusplus) extern "C" { #endif unsigned isl_union_set_dim(__isl_keep isl_union_set *uset, enum isl_dim_type type); __isl_constructor __isl_give isl_union_set *isl_union_set_from_basic_set( __isl_take isl_basic_set *bset); __isl_constructor __isl_give isl_union_set *isl_union_set_from_set(__isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_empty(__isl_take isl_space *dim); __isl_give isl_union_set *isl_union_set_copy(__isl_keep isl_union_set *uset); __isl_null isl_union_set *isl_union_set_free(__isl_take isl_union_set *uset); isl_ctx *isl_union_set_get_ctx(__isl_keep isl_union_set *uset); __isl_give isl_space *isl_union_set_get_space(__isl_keep isl_union_set *uset); __isl_give isl_union_set *isl_union_set_reset_user( __isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_universe( __isl_take isl_union_set *uset); __isl_give isl_set *isl_union_set_params(__isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_detect_equalities( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_affine_hull( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_polyhedral_hull( __isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_remove_redundancies( __isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_simple_hull( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_coalesce( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_compute_divs( __isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_lexmin(__isl_take isl_union_set *uset); __isl_export __isl_give isl_union_set *isl_union_set_lexmax(__isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_add_set(__isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_export __isl_give isl_union_set *isl_union_set_union(__isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_export __isl_give isl_union_set *isl_union_set_subtract( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_export __isl_give isl_union_set *isl_union_set_intersect( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_export __isl_give isl_union_set *isl_union_set_intersect_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_product(__isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_export __isl_give isl_union_set *isl_union_set_gist(__isl_take isl_union_set *uset, __isl_take isl_union_set *context); __isl_export __isl_give isl_union_set *isl_union_set_gist_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_export __isl_give isl_union_set *isl_union_set_apply( __isl_take isl_union_set *uset, __isl_take isl_union_map *umap); __isl_give isl_union_set *isl_union_set_preimage_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_multi_aff *ma); __isl_give isl_union_set *isl_union_set_preimage_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_set *isl_union_set_preimage_union_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_set *isl_union_set_project_out( __isl_take isl_union_set *uset, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_union_set_is_params(__isl_keep isl_union_set *uset); __isl_export isl_bool isl_union_set_is_empty(__isl_keep isl_union_set *uset); __isl_export isl_bool isl_union_set_is_subset(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); __isl_export isl_bool isl_union_set_is_equal(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); isl_bool isl_union_set_is_disjoint(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); __isl_export isl_bool isl_union_set_is_strict_subset(__isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); int isl_union_set_n_set(__isl_keep isl_union_set *uset); __isl_export isl_stat isl_union_set_foreach_set(__isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_set *set, void *user), void *user); __isl_give int isl_union_set_contains(__isl_keep isl_union_set *uset, __isl_keep isl_space *dim); __isl_give isl_set *isl_union_set_extract_set(__isl_keep isl_union_set *uset, __isl_take isl_space *dim); __isl_give isl_set *isl_set_from_union_set(__isl_take isl_union_set *uset); __isl_export isl_stat isl_union_set_foreach_point(__isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user); __isl_give isl_basic_set *isl_union_set_sample(__isl_take isl_union_set *uset); __isl_export __isl_give isl_point *isl_union_set_sample_point( __isl_take isl_union_set *uset); __isl_constructor __isl_give isl_union_set *isl_union_set_from_point(__isl_take isl_point *pnt); __isl_give isl_union_set *isl_union_set_lift(__isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_set_lex_lt_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_map *isl_union_set_lex_le_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_map *isl_union_set_lex_gt_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_map *isl_union_set_lex_ge_union_set( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_set *isl_union_set_coefficients( __isl_take isl_union_set *bset); __isl_give isl_union_set *isl_union_set_solutions( __isl_take isl_union_set *bset); __isl_give isl_union_set *isl_union_set_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_union_set *isl_union_set_read_from_str(isl_ctx *ctx, const char *str); __isl_give char *isl_union_set_to_str(__isl_keep isl_union_set *uset); __isl_give isl_printer *isl_printer_print_union_set(__isl_take isl_printer *p, __isl_keep isl_union_set *uset); void isl_union_set_dump(__isl_keep isl_union_set *uset); ISL_DECLARE_LIST_FN(union_set) __isl_give isl_union_set *isl_union_set_list_union( __isl_take isl_union_set_list *list); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/map_to_basic_set.h0000664000175000017500000000036212645737060015202 00000000000000#ifndef ISL_MAP_TO_BASIC_SET_H #define ISL_MAP_TO_BASIC_SET_H #include #include #define ISL_KEY_BASE map #define ISL_VAL_BASE basic_set #include #undef ISL_KEY_BASE #undef ISL_VAL_BASE #endif isl-0.16.1/include/isl/set_type.h0000664000175000017500000000012112645737060013534 00000000000000#ifndef ISL_SET_TYPE_H #define ISL_SET_TYPE_H #include #endif isl-0.16.1/include/isl/ast.h0000664000175000017500000001673112645737060012505 00000000000000#ifndef ISL_AST_H #define ISL_AST_H #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif isl_stat isl_options_set_ast_iterator_type(isl_ctx *ctx, const char *val); const char *isl_options_get_ast_iterator_type(isl_ctx *ctx); isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx, int val); int isl_options_get_ast_always_print_block(isl_ctx *ctx); __isl_give isl_ast_expr *isl_ast_expr_from_val(__isl_take isl_val *v); __isl_give isl_ast_expr *isl_ast_expr_from_id(__isl_take isl_id *id); __isl_give isl_ast_expr *isl_ast_expr_neg(__isl_take isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_add(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_sub(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_mul(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_div(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_and(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_and_then(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_or(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_or_else(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_le(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_lt(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_ge(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_gt(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_eq(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_access(__isl_take isl_ast_expr *array, __isl_take isl_ast_expr_list *indices); __isl_give isl_ast_expr *isl_ast_expr_call(__isl_take isl_ast_expr *function, __isl_take isl_ast_expr_list *arguments); __isl_give isl_ast_expr *isl_ast_expr_address_of(__isl_take isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_copy(__isl_keep isl_ast_expr *expr); __isl_null isl_ast_expr *isl_ast_expr_free(__isl_take isl_ast_expr *expr); isl_ctx *isl_ast_expr_get_ctx(__isl_keep isl_ast_expr *expr); enum isl_ast_expr_type isl_ast_expr_get_type(__isl_keep isl_ast_expr *expr); __isl_give isl_val *isl_ast_expr_get_val(__isl_keep isl_ast_expr *expr); __isl_give isl_id *isl_ast_expr_get_id(__isl_keep isl_ast_expr *expr); enum isl_ast_op_type isl_ast_expr_get_op_type(__isl_keep isl_ast_expr *expr); int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(__isl_keep isl_ast_expr *expr, int pos); __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(__isl_take isl_ast_expr *expr, int pos, __isl_take isl_ast_expr *arg); isl_bool isl_ast_expr_is_equal(__isl_keep isl_ast_expr *expr1, __isl_keep isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_substitute_ids( __isl_take isl_ast_expr *expr, __isl_take isl_id_to_ast_expr *id2expr); __isl_give isl_printer *isl_printer_print_ast_expr(__isl_take isl_printer *p, __isl_keep isl_ast_expr *expr); void isl_ast_expr_dump(__isl_keep isl_ast_expr *expr); __isl_give char *isl_ast_expr_to_str(__isl_keep isl_ast_expr *expr); __isl_give isl_ast_node *isl_ast_node_alloc_user(__isl_take isl_ast_expr *expr); __isl_give isl_ast_node *isl_ast_node_copy(__isl_keep isl_ast_node *node); __isl_null isl_ast_node *isl_ast_node_free(__isl_take isl_ast_node *node); isl_ctx *isl_ast_node_get_ctx(__isl_keep isl_ast_node *node); enum isl_ast_node_type isl_ast_node_get_type(__isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_set_annotation( __isl_take isl_ast_node *node, __isl_take isl_id *annotation); __isl_give isl_id *isl_ast_node_get_annotation(__isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_iterator( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_init( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_inc( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_for_get_body( __isl_keep isl_ast_node *node); isl_bool isl_ast_node_for_is_degenerate(__isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_if_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_then( __isl_keep isl_ast_node *node); isl_bool isl_ast_node_if_has_else(__isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_else( __isl_keep isl_ast_node *node); __isl_give isl_ast_node_list *isl_ast_node_block_get_children( __isl_keep isl_ast_node *node); __isl_give isl_id *isl_ast_node_mark_get_id(__isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_mark_get_node( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_user_get_expr( __isl_keep isl_ast_node *node); __isl_give isl_printer *isl_printer_print_ast_node(__isl_take isl_printer *p, __isl_keep isl_ast_node *node); void isl_ast_node_dump(__isl_keep isl_ast_node *node); __isl_give isl_ast_print_options *isl_ast_print_options_alloc(isl_ctx *ctx); __isl_give isl_ast_print_options *isl_ast_print_options_copy( __isl_keep isl_ast_print_options *options); __isl_null isl_ast_print_options *isl_ast_print_options_free( __isl_take isl_ast_print_options *options); isl_ctx *isl_ast_print_options_get_ctx( __isl_keep isl_ast_print_options *options); __isl_give isl_ast_print_options *isl_ast_print_options_set_print_user( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_user)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); __isl_give isl_ast_print_options *isl_ast_print_options_set_print_for( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_for)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); isl_stat isl_ast_node_foreach_ast_op_type(__isl_keep isl_ast_node *node, isl_stat (*fn)(enum isl_ast_op_type type, void *user), void *user); __isl_give isl_printer *isl_ast_op_type_print_macro( enum isl_ast_op_type type, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print_macros( __isl_keep isl_ast_node *node, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_for_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_if_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/lp.h0000664000175000017500000000135112645737060012321 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_LP_H #define ISL_LP_H #include #include #include enum isl_lp_result { isl_lp_error = -1, isl_lp_ok = 0, isl_lp_unbounded, isl_lp_empty }; #if defined(__cplusplus) extern "C" { #endif __isl_give isl_val *isl_basic_set_min_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj); __isl_give isl_val *isl_basic_set_max_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/id_to_ast_expr.h0000664000175000017500000000034612645737060014714 00000000000000#ifndef ISL_ID_TO_AST_EXPR_H #define ISL_ID_TO_AST_EXPR_H #include #include #define ISL_KEY_BASE id #define ISL_VAL_BASE ast_expr #include #undef ISL_KEY_BASE #undef ISL_VAL_BASE #endif isl-0.16.1/include/isl/flow.h0000664000175000017500000001235712645737414012670 00000000000000#ifndef ISL_FLOW_H #define ISL_FLOW_H #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif /* Let n (>= 0) be the number of iterators shared by first and second. * If first precedes second textually return 2 * n + 1, * otherwise return 2 * n. */ typedef int (*isl_access_level_before)(void *first, void *second); struct isl_restriction; typedef struct isl_restriction isl_restriction; __isl_null isl_restriction *isl_restriction_free( __isl_take isl_restriction *restr); __isl_give isl_restriction *isl_restriction_empty( __isl_take isl_map *source_map); __isl_give isl_restriction *isl_restriction_none( __isl_take isl_map *source_map); __isl_give isl_restriction *isl_restriction_input( __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr); __isl_give isl_restriction *isl_restriction_output( __isl_take isl_set *source_restr); isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr); typedef __isl_give isl_restriction *(*isl_access_restrict)( __isl_keep isl_map *source_map, __isl_keep isl_set *sink, void *source_user, void *user); struct isl_access_info; typedef struct isl_access_info isl_access_info; struct isl_flow; typedef struct isl_flow isl_flow; __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink, void *sink_user, isl_access_level_before fn, int max_source); __isl_give isl_access_info *isl_access_info_set_restrict( __isl_take isl_access_info *acc, isl_access_restrict fn, void *user); __isl_give isl_access_info *isl_access_info_add_source( __isl_take isl_access_info *acc, __isl_take isl_map *source, int must, void *source_user); __isl_null isl_access_info *isl_access_info_free( __isl_take isl_access_info *acc); isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc); __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc); isl_stat isl_flow_foreach(__isl_keep isl_flow *deps, isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), void *user); __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must); void isl_flow_free(__isl_take isl_flow *deps); isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps); struct __isl_export isl_union_access_info; typedef struct isl_union_access_info isl_union_access_info; struct __isl_export isl_union_flow; typedef struct isl_union_flow isl_union_flow; __isl_constructor __isl_give isl_union_access_info *isl_union_access_info_from_sink( __isl_take isl_union_map *sink); __isl_export __isl_give isl_union_access_info *isl_union_access_info_set_must_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *must_source); __isl_export __isl_give isl_union_access_info *isl_union_access_info_set_may_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *may_source); __isl_export __isl_give isl_union_access_info *isl_union_access_info_set_schedule( __isl_take isl_union_access_info *access, __isl_take isl_schedule *schedule); __isl_export __isl_give isl_union_access_info *isl_union_access_info_set_schedule_map( __isl_take isl_union_access_info *access, __isl_take isl_union_map *schedule_map); __isl_give isl_union_access_info *isl_union_access_info_copy( __isl_keep isl_union_access_info *access); __isl_null isl_union_access_info *isl_union_access_info_free( __isl_take isl_union_access_info *access); isl_ctx *isl_union_access_info_get_ctx( __isl_keep isl_union_access_info *access); __isl_give isl_printer *isl_printer_print_union_access_info( __isl_take isl_printer *p, __isl_keep isl_union_access_info *access); __isl_give char *isl_union_access_info_to_str( __isl_keep isl_union_access_info *access); __isl_export __isl_give isl_union_flow *isl_union_access_info_compute_flow( __isl_take isl_union_access_info *access); isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_must_dependence( __isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_may_dependence( __isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_full_must_dependence( __isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_full_may_dependence( __isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_must_no_source( __isl_keep isl_union_flow *flow); __isl_export __isl_give isl_union_map *isl_union_flow_get_may_no_source( __isl_keep isl_union_flow *flow); __isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow); __isl_give isl_printer *isl_printer_print_union_flow( __isl_take isl_printer *p, __isl_keep isl_union_flow *flow); __isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow); int isl_union_map_compute_flow(__isl_take isl_union_map *sink, __isl_take isl_union_map *must_source, __isl_take isl_union_map *may_source, __isl_take isl_union_map *schedule, __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, __isl_give isl_union_map **must_no_source, __isl_give isl_union_map **may_no_source); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/local_space.h0000664000175000017500000000660012645737060014155 00000000000000#ifndef ISL_LOCAL_SPACE_H #define ISL_LOCAL_SPACE_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_local_space; typedef struct isl_local_space isl_local_space; isl_ctx *isl_local_space_get_ctx(__isl_keep isl_local_space *ls); __isl_give isl_local_space *isl_local_space_from_space(__isl_take isl_space *dim); __isl_give isl_local_space *isl_local_space_copy( __isl_keep isl_local_space *ls); __isl_null isl_local_space *isl_local_space_free( __isl_take isl_local_space *ls); isl_bool isl_local_space_is_params(__isl_keep isl_local_space *ls); isl_bool isl_local_space_is_set(__isl_keep isl_local_space *ls); __isl_give isl_local_space *isl_local_space_set_tuple_id( __isl_take isl_local_space *ls, enum isl_dim_type type, __isl_take isl_id *id); int isl_local_space_dim(__isl_keep isl_local_space *ls, enum isl_dim_type type); isl_bool isl_local_space_has_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); const char *isl_local_space_get_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_local_space *isl_local_space_set_dim_name( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, const char *s); isl_bool isl_local_space_has_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_local_space_get_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_local_space *isl_local_space_set_dim_id( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_space *isl_local_space_get_space(__isl_keep isl_local_space *ls); __isl_give isl_aff *isl_local_space_get_div(__isl_keep isl_local_space *ls, int pos); int isl_local_space_find_dim_by_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, const char *name); __isl_give isl_local_space *isl_local_space_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_range( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_from_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_add_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n); __isl_give isl_local_space *isl_local_space_drop_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_local_space *isl_local_space_insert_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_local_space *isl_local_space_intersect( __isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2); __isl_give isl_local_space *isl_local_space_wrap( __isl_take isl_local_space *ls); isl_bool isl_local_space_is_equal(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2); __isl_give isl_basic_map *isl_local_space_lifting( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_flatten_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_flatten_range( __isl_take isl_local_space *ls); __isl_give isl_printer *isl_printer_print_local_space(__isl_take isl_printer *p, __isl_keep isl_local_space *ls); void isl_local_space_dump(__isl_keep isl_local_space *ls); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/obj.h0000664000175000017500000000377712645737060012476 00000000000000#ifndef ISL_OBJ_H #define ISL_OBJ_H #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_obj_vtable { void *(*copy)(void *v1); void *(*add)(void *v1, void *v2); __isl_give isl_printer *(*print)(__isl_take isl_printer *p, void *v); void (*free)(void *v); }; typedef struct isl_obj_vtable *isl_obj_type; extern struct isl_obj_vtable isl_obj_none_vtable; #define isl_obj_none (&isl_obj_none_vtable) extern struct isl_obj_vtable isl_obj_int_vtable; #define isl_obj_int (&isl_obj_int_vtable) extern struct isl_obj_vtable isl_obj_val_vtable; #define isl_obj_val (&isl_obj_val_vtable) extern struct isl_obj_vtable isl_obj_set_vtable; #define isl_obj_set (&isl_obj_set_vtable) extern struct isl_obj_vtable isl_obj_union_set_vtable; #define isl_obj_union_set (&isl_obj_union_set_vtable) extern struct isl_obj_vtable isl_obj_map_vtable; #define isl_obj_map (&isl_obj_map_vtable) extern struct isl_obj_vtable isl_obj_union_map_vtable; #define isl_obj_union_map (&isl_obj_union_map_vtable) extern struct isl_obj_vtable isl_obj_pw_multi_aff_vtable; #define isl_obj_pw_multi_aff (&isl_obj_pw_multi_aff_vtable) extern struct isl_obj_vtable isl_obj_pw_qpolynomial_vtable; #define isl_obj_pw_qpolynomial (&isl_obj_pw_qpolynomial_vtable) extern struct isl_obj_vtable isl_obj_union_pw_qpolynomial_vtable; #define isl_obj_union_pw_qpolynomial (&isl_obj_union_pw_qpolynomial_vtable) extern struct isl_obj_vtable isl_obj_pw_qpolynomial_fold_vtable; #define isl_obj_pw_qpolynomial_fold (&isl_obj_pw_qpolynomial_fold_vtable) extern struct isl_obj_vtable isl_obj_union_pw_qpolynomial_fold_vtable; #define isl_obj_union_pw_qpolynomial_fold (&isl_obj_union_pw_qpolynomial_fold_vtable) extern struct isl_obj_vtable isl_obj_schedule_vtable; #define isl_obj_schedule (&isl_obj_schedule_vtable) struct isl_obj { isl_obj_type type; void *v; }; #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/hash.h0000664000175000017500000000415412645737060012635 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_HASH_H #define ISL_HASH_H #include #include #include #if defined(__cplusplus) extern "C" { #endif #define isl_hash_init() (2166136261u) #define isl_hash_byte(h,b) do { \ h *= 16777619; \ h ^= b; \ } while(0) #define isl_hash_hash(h,h2) \ do { \ isl_hash_byte(h, (h2) & 0xFF); \ isl_hash_byte(h, ((h2) >> 8) & 0xFF); \ isl_hash_byte(h, ((h2) >> 16) & 0xFF); \ isl_hash_byte(h, ((h2) >> 24) & 0xFF); \ } while(0) #define isl_hash_bits(h,bits) \ ((bits) == 32) ? (h) : \ ((bits) >= 16) ? \ ((h) >> (bits)) ^ ((h) & (((uint32_t)1 << (bits)) - 1)) : \ (((h) >> (bits)) ^ (h)) & (((uint32_t)1 << (bits)) - 1) uint32_t isl_hash_string(uint32_t hash, const char *s); uint32_t isl_hash_mem(uint32_t hash, const void *p, size_t len); #define isl_hash_builtin(h,l) isl_hash_mem(h, &l, sizeof(l)) struct isl_hash_table_entry { uint32_t hash; void *data; }; struct isl_hash_table { int bits; int n; struct isl_hash_table_entry *entries; }; struct isl_hash_table *isl_hash_table_alloc(struct isl_ctx *ctx, int min_size); void isl_hash_table_free(struct isl_ctx *ctx, struct isl_hash_table *table); int isl_hash_table_init(struct isl_ctx *ctx, struct isl_hash_table *table, int min_size); void isl_hash_table_clear(struct isl_hash_table *table); struct isl_hash_table_entry *isl_hash_table_find(struct isl_ctx *ctx, struct isl_hash_table *table, uint32_t key_hash, int (*eq)(const void *entry, const void *val), const void *val, int reserve); isl_stat isl_hash_table_foreach(isl_ctx *ctx, struct isl_hash_table *table, isl_stat (*fn)(void **entry, void *user), void *user); void isl_hash_table_remove(struct isl_ctx *ctx, struct isl_hash_table *table, struct isl_hash_table_entry *entry); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/union_map_type.h0000664000175000017500000000067512645737060014744 00000000000000#ifndef ISL_UNION_MAP_TYPE_H #define ISL_UNION_MAP_TYPE_H #include #include #if defined(__cplusplus) extern "C" { #endif struct __isl_export isl_union_map; typedef struct isl_union_map isl_union_map; ISL_DECLARE_LIST_TYPE(union_map) #ifndef isl_union_set struct __isl_export isl_union_set; typedef struct isl_union_set isl_union_set; ISL_DECLARE_LIST_TYPE(union_set) #endif #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/aff_type.h0000664000175000017500000000244612645737234013514 00000000000000#ifndef ISL_AFF_TYPE_H #define ISL_AFF_TYPE_H #include #if defined(__cplusplus) extern "C" { #endif struct __isl_subclass(isl_multi_aff) __isl_subclass(isl_pw_aff) isl_aff; typedef struct isl_aff isl_aff; ISL_DECLARE_LIST(aff) struct __isl_subclass(isl_pw_multi_aff) __isl_subclass(isl_multi_pw_aff) __isl_subclass(isl_union_pw_aff) isl_pw_aff; typedef struct isl_pw_aff isl_pw_aff; ISL_DECLARE_LIST(pw_aff) struct __isl_subclass(isl_multi_union_pw_aff) __isl_subclass(isl_union_pw_multi_aff) isl_union_pw_aff; typedef struct isl_union_pw_aff isl_union_pw_aff; ISL_DECLARE_LIST_TYPE(union_pw_aff) struct __isl_subclass(isl_pw_multi_aff) __isl_subclass(isl_multi_pw_aff) isl_multi_aff; typedef struct isl_multi_aff isl_multi_aff; struct __isl_subclass(isl_union_pw_multi_aff) __isl_subclass(isl_multi_pw_aff) isl_pw_multi_aff; typedef struct isl_pw_multi_aff isl_pw_multi_aff; struct __isl_export isl_union_pw_multi_aff; typedef struct isl_union_pw_multi_aff isl_union_pw_multi_aff; ISL_DECLARE_LIST_TYPE(union_pw_multi_aff) struct __isl_subclass(isl_multi_union_pw_aff) isl_multi_pw_aff; typedef struct isl_multi_pw_aff isl_multi_pw_aff; struct __isl_export isl_multi_union_pw_aff; typedef struct isl_multi_union_pw_aff isl_multi_union_pw_aff; #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/map.h0000664000175000017500000007400012645737450012467 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_MAP_H #define ISL_MAP_H #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif /* General notes: * * All structures are reference counted to allow reuse without duplication. * A *_copy operation will increase the reference count, while a *_free * operation will decrease the reference count and only actually release * the structures when the reference count drops to zero. * * Functions that return an isa structure will in general _destroy_ * all argument isa structures (the obvious execption begin the _copy * functions). A pointer passed to such a function may therefore * never be used after the function call. If you want to keep a * reference to the old structure(s), use the appropriate _copy function. */ unsigned isl_basic_map_n_in(const struct isl_basic_map *bmap); unsigned isl_basic_map_n_out(const struct isl_basic_map *bmap); unsigned isl_basic_map_n_param(const struct isl_basic_map *bmap); unsigned isl_basic_map_n_div(const struct isl_basic_map *bmap); unsigned isl_basic_map_total_dim(const struct isl_basic_map *bmap); unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap, enum isl_dim_type type); unsigned isl_map_n_in(const struct isl_map *map); unsigned isl_map_n_out(const struct isl_map *map); unsigned isl_map_n_param(const struct isl_map *map); unsigned isl_map_dim(__isl_keep isl_map *map, enum isl_dim_type type); isl_ctx *isl_basic_map_get_ctx(__isl_keep isl_basic_map *bmap); isl_ctx *isl_map_get_ctx(__isl_keep isl_map *map); __isl_give isl_space *isl_basic_map_get_space(__isl_keep isl_basic_map *bmap); __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map); __isl_give isl_aff *isl_basic_map_get_div(__isl_keep isl_basic_map *bmap, int pos); __isl_give isl_local_space *isl_basic_map_get_local_space( __isl_keep isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_set_tuple_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, const char *s); const char *isl_basic_map_get_tuple_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type); isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type); const char *isl_map_get_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_map *isl_map_set_tuple_name(__isl_take isl_map *map, enum isl_dim_type type, const char *s); const char *isl_basic_map_get_dim_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); isl_bool isl_map_has_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); const char *isl_map_get_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_basic_map *isl_basic_map_set_dim_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_map *isl_map_set_dim_name(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_basic_map *isl_basic_map_set_tuple_id( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_map *isl_map_set_dim_id(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_basic_map_has_dim_id(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); isl_bool isl_map_has_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_map_get_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_map *isl_map_set_tuple_id(__isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_map *isl_map_reset_tuple_id(__isl_take isl_map *map, enum isl_dim_type type); isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_id *isl_map_get_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_map *isl_map_reset_user(__isl_take isl_map *map); int isl_basic_map_find_dim_by_name(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, const char *name); int isl_map_find_dim_by_id(__isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_id *id); int isl_map_find_dim_by_name(__isl_keep isl_map *map, enum isl_dim_type type, const char *name); int isl_basic_map_is_rational(__isl_keep isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_identity(__isl_take isl_space *dim); __isl_null isl_basic_map *isl_basic_map_free(__isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_copy(__isl_keep isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_equal( __isl_take isl_space *dim, unsigned n_equal); __isl_give isl_basic_map *isl_basic_map_less_at(__isl_take isl_space *dim, unsigned pos); __isl_give isl_basic_map *isl_basic_map_more_at(__isl_take isl_space *dim, unsigned pos); __isl_give isl_basic_map *isl_basic_map_empty(__isl_take isl_space *dim); __isl_give isl_basic_map *isl_basic_map_universe(__isl_take isl_space *dim); __isl_give isl_basic_map *isl_basic_map_nat_universe(__isl_take isl_space *dim); __isl_give isl_basic_map *isl_basic_map_remove_redundancies( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_remove_redundancies(__isl_take isl_map *map); __isl_give isl_basic_map *isl_map_simple_hull(__isl_take isl_map *map); __isl_give isl_basic_map *isl_map_unshifted_simple_hull( __isl_take isl_map *map); __isl_give isl_basic_map *isl_map_unshifted_simple_hull_from_map_list( __isl_take isl_map *map, __isl_take isl_map_list *list); __isl_export __isl_give isl_basic_map *isl_basic_map_intersect_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_export __isl_give isl_basic_map *isl_basic_map_intersect_range( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_export __isl_give isl_basic_map *isl_basic_map_intersect( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_list_intersect( __isl_take isl_basic_map_list *list); __isl_export __isl_give isl_map *isl_basic_map_union( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_export __isl_give isl_basic_map *isl_basic_map_apply_domain( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_export __isl_give isl_basic_map *isl_basic_map_apply_range( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_export __isl_give isl_basic_map *isl_basic_map_affine_hull( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_preimage_domain_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma); __isl_give isl_basic_map *isl_basic_map_preimage_range_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma); __isl_export __isl_give isl_basic_map *isl_basic_map_reverse(__isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_map_domain(__isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_map_range(__isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_domain_map( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_range_map( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_remove_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_eliminate( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_from_basic_set( __isl_take isl_basic_set *bset, __isl_take isl_space *dim); __isl_export __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap); __isl_export __isl_give isl_basic_map *isl_basic_map_detect_equalities( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_basic_map *isl_basic_map_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_map *isl_map_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx, const char *str); void isl_basic_map_dump(__isl_keep isl_basic_map *bmap); void isl_map_dump(__isl_keep isl_map *map); __isl_give isl_printer *isl_printer_print_basic_map( __isl_take isl_printer *printer, __isl_keep isl_basic_map *bmap); __isl_give char *isl_map_to_str(__isl_keep isl_map *map); __isl_give isl_printer *isl_printer_print_map(__isl_take isl_printer *printer, __isl_keep isl_map *map); __isl_give isl_basic_map *isl_basic_map_fix_si(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_fix_val(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); __isl_give isl_basic_map *isl_basic_map_lower_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_upper_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); struct isl_basic_map *isl_basic_map_sum( struct isl_basic_map *bmap1, struct isl_basic_map *bmap2); struct isl_basic_map *isl_basic_map_neg(struct isl_basic_map *bmap); __isl_give isl_map *isl_map_sum(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_neg(__isl_take isl_map *map); __isl_give isl_map *isl_map_floordiv_val(__isl_take isl_map *map, __isl_take isl_val *d); __isl_export isl_bool isl_basic_map_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); __isl_give isl_map *isl_basic_map_partial_lexmax( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_basic_map_partial_lexmin( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmax( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmin( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_export __isl_give isl_map *isl_basic_map_lexmin(__isl_take isl_basic_map *bmap); __isl_export __isl_give isl_map *isl_basic_map_lexmax(__isl_take isl_basic_map *bmap); __isl_export __isl_give isl_map *isl_map_lexmin(__isl_take isl_map *map); __isl_export __isl_give isl_map *isl_map_lexmax(__isl_take isl_map *map); __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexmax_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_basic_map_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap); __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff( __isl_take isl_map *map); __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff( __isl_take isl_map *map); void isl_basic_map_print_internal(__isl_keep isl_basic_map *bmap, FILE *out, int indent); struct isl_basic_map *isl_map_copy_basic_map(struct isl_map *map); __isl_give isl_map *isl_map_drop_basic_map(__isl_take isl_map *map, __isl_keep isl_basic_map *bmap); __isl_give isl_val *isl_basic_map_plain_get_val_if_fixed( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); int isl_basic_map_image_is_bounded(__isl_keep isl_basic_map *bmap); isl_bool isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap); isl_bool isl_basic_map_plain_is_empty(__isl_keep isl_basic_map *bmap); __isl_export isl_bool isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap); __isl_export isl_bool isl_basic_map_is_subset(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_basic_map_is_strict_subset(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); __isl_give isl_map *isl_map_universe(__isl_take isl_space *dim); __isl_give isl_map *isl_map_nat_universe(__isl_take isl_space *dim); __isl_give isl_map *isl_map_empty(__isl_take isl_space *dim); __isl_give isl_map *isl_map_identity(__isl_take isl_space *dim); __isl_give isl_map *isl_map_lex_lt_first(__isl_take isl_space *dim, unsigned n); __isl_give isl_map *isl_map_lex_le_first(__isl_take isl_space *dim, unsigned n); __isl_give isl_map *isl_map_lex_lt(__isl_take isl_space *set_dim); __isl_give isl_map *isl_map_lex_le(__isl_take isl_space *set_dim); __isl_give isl_map *isl_map_lex_gt_first(__isl_take isl_space *dim, unsigned n); __isl_give isl_map *isl_map_lex_ge_first(__isl_take isl_space *dim, unsigned n); __isl_give isl_map *isl_map_lex_gt(__isl_take isl_space *set_dim); __isl_give isl_map *isl_map_lex_ge(__isl_take isl_space *set_dim); __isl_null isl_map *isl_map_free(__isl_take isl_map *map); __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map); __isl_export __isl_give isl_map *isl_map_reverse(__isl_take isl_map *map); __isl_export __isl_give isl_map *isl_map_union( __isl_take isl_map *map1, __isl_take isl_map *map2); struct isl_map *isl_map_union_disjoint( struct isl_map *map1, struct isl_map *map2); __isl_export __isl_give isl_map *isl_map_intersect_domain( __isl_take isl_map *map, __isl_take isl_set *set); __isl_export __isl_give isl_map *isl_map_intersect_range( __isl_take isl_map *map, __isl_take isl_set *set); __isl_export __isl_give isl_map *isl_map_apply_domain( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_export __isl_give isl_map *isl_map_apply_range( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_preimage_domain_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma); __isl_give isl_map *isl_map_preimage_range_multi_aff(__isl_take isl_map *map, __isl_take isl_multi_aff *ma); __isl_give isl_map *isl_map_preimage_domain_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_map_preimage_range_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_map_preimage_domain_multi_pw_aff( __isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_basic_map *isl_basic_map_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_product(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_basic_map *isl_basic_map_domain_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_basic_map *isl_basic_map_flat_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_product(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_basic_map *isl_basic_map_flat_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_domain_product(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_flat_range_product(__isl_take isl_map *map1, __isl_take isl_map *map2); isl_bool isl_map_domain_is_wrapping(__isl_keep isl_map *map); isl_bool isl_map_range_is_wrapping(__isl_keep isl_map *map); __isl_give isl_map *isl_map_factor_domain(__isl_take isl_map *map); __isl_give isl_map *isl_map_factor_range(__isl_take isl_map *map); __isl_give isl_map *isl_map_domain_factor_domain(__isl_take isl_map *map); __isl_give isl_map *isl_map_domain_factor_range(__isl_take isl_map *map); __isl_give isl_map *isl_map_range_factor_domain(__isl_take isl_map *map); __isl_give isl_map *isl_map_range_factor_range(__isl_take isl_map *map); __isl_export __isl_give isl_map *isl_map_intersect(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_export __isl_give isl_map *isl_map_intersect_params(__isl_take isl_map *map, __isl_take isl_set *params); __isl_export __isl_give isl_map *isl_map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_subtract_domain(__isl_take isl_map *map, __isl_take isl_set *dom); __isl_give isl_map *isl_map_subtract_range(__isl_take isl_map *map, __isl_take isl_set *dom); __isl_export __isl_give isl_map *isl_map_complement(__isl_take isl_map *map); struct isl_map *isl_map_fix_input_si(struct isl_map *map, unsigned input, int value); __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_fix_val(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); __isl_give isl_map *isl_map_lower_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_upper_bound_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_export __isl_give isl_basic_set *isl_basic_map_deltas(__isl_take isl_basic_map *bmap); __isl_export __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_map_deltas_map( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_deltas_map(__isl_take isl_map *map); __isl_export __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map); __isl_export __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map); __isl_give isl_basic_map *isl_map_convex_hull(__isl_take isl_map *map); __isl_export __isl_give isl_basic_map *isl_map_polyhedral_hull(__isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_map_add_dims(__isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned n); __isl_give isl_map *isl_map_add_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned n); __isl_give isl_basic_map *isl_basic_map_insert_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_map *isl_map_insert_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_map *isl_basic_map_move_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_map *isl_map_move_dims(__isl_take isl_map *map, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_basic_map *isl_basic_map_project_out( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_remove_divs( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_remove_unknown_divs(__isl_take isl_map *map); __isl_give isl_map *isl_map_remove_divs(__isl_take isl_map *map); __isl_give isl_map *isl_map_eliminate(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_remove_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_remove_divs_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_remove_divs_involving_dims(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); struct isl_map *isl_map_remove_inputs(struct isl_map *map, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_equate(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_order_ge(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_ge(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_le(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_equate(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_order_gt(__isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_export __isl_give isl_map *isl_set_identity(__isl_take isl_set *set); __isl_export isl_bool isl_basic_set_is_wrapping(__isl_keep isl_basic_set *bset); __isl_export isl_bool isl_set_is_wrapping(__isl_keep isl_set *set); __isl_give isl_basic_set *isl_basic_map_wrap(__isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_wrap(__isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_set_unwrap(__isl_take isl_basic_set *bset); __isl_give isl_map *isl_set_unwrap(__isl_take isl_set *set); __isl_export __isl_give isl_basic_map *isl_basic_map_flatten(__isl_take isl_basic_map *bmap); __isl_export __isl_give isl_map *isl_map_flatten(__isl_take isl_map *map); __isl_export __isl_give isl_basic_map *isl_basic_map_flatten_domain( __isl_take isl_basic_map *bmap); __isl_export __isl_give isl_basic_map *isl_basic_map_flatten_range( __isl_take isl_basic_map *bmap); __isl_export __isl_give isl_map *isl_map_flatten_domain(__isl_take isl_map *map); __isl_export __isl_give isl_map *isl_map_flatten_range(__isl_take isl_map *map); __isl_export __isl_give isl_basic_set *isl_basic_set_flatten(__isl_take isl_basic_set *bset); __isl_export __isl_give isl_set *isl_set_flatten(__isl_take isl_set *set); __isl_give isl_map *isl_set_flatten_map(__isl_take isl_set *set); __isl_give isl_set *isl_map_params(__isl_take isl_map *map); __isl_give isl_set *isl_map_domain(__isl_take isl_map *bmap); __isl_give isl_set *isl_map_range(__isl_take isl_map *map); __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map); __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map); __isl_give isl_map *isl_set_wrapped_domain_map(__isl_take isl_set *set); __isl_constructor __isl_give isl_map *isl_map_from_basic_map(__isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_from_domain(__isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_from_domain( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_from_range( __isl_take isl_basic_set *bset); __isl_give isl_map *isl_map_from_range(__isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_from_domain_and_range( __isl_take isl_basic_set *domain, __isl_take isl_basic_set *range); __isl_give isl_map *isl_map_from_domain_and_range(__isl_take isl_set *domain, __isl_take isl_set *range); __isl_give isl_map *isl_map_from_set(__isl_take isl_set *set, __isl_take isl_space *dim); __isl_export __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map); isl_bool isl_map_plain_is_empty(__isl_keep isl_map *map); isl_bool isl_map_plain_is_universe(__isl_keep isl_map *map); __isl_export isl_bool isl_map_is_empty(__isl_keep isl_map *map); __isl_export isl_bool isl_map_is_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2); __isl_export isl_bool isl_map_is_strict_subset(__isl_keep isl_map *map1, __isl_keep isl_map *map2); __isl_export isl_bool isl_map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2); __isl_export isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2); isl_bool isl_basic_map_is_single_valued(__isl_keep isl_basic_map *bmap); isl_bool isl_map_plain_is_single_valued(__isl_keep isl_map *map); __isl_export isl_bool isl_map_is_single_valued(__isl_keep isl_map *map); isl_bool isl_map_plain_is_injective(__isl_keep isl_map *map); __isl_export isl_bool isl_map_is_injective(__isl_keep isl_map *map); __isl_export isl_bool isl_map_is_bijective(__isl_keep isl_map *map); int isl_map_is_translation(__isl_keep isl_map *map); int isl_map_has_equal_space(__isl_keep isl_map *map1, __isl_keep isl_map *map2); isl_bool isl_basic_map_can_zip(__isl_keep isl_basic_map *bmap); isl_bool isl_map_can_zip(__isl_keep isl_map *map); __isl_give isl_basic_map *isl_basic_map_zip(__isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_zip(__isl_take isl_map *map); isl_bool isl_basic_map_can_curry(__isl_keep isl_basic_map *bmap); isl_bool isl_map_can_curry(__isl_keep isl_map *map); __isl_give isl_basic_map *isl_basic_map_curry(__isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_curry(__isl_take isl_map *map); isl_bool isl_map_can_range_curry(__isl_keep isl_map *map); __isl_give isl_map *isl_map_range_curry(__isl_take isl_map *map); isl_bool isl_basic_map_can_uncurry(__isl_keep isl_basic_map *bmap); isl_bool isl_map_can_uncurry(__isl_keep isl_map *map); __isl_give isl_basic_map *isl_basic_map_uncurry(__isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_uncurry(__isl_take isl_map *map); __isl_give isl_map *isl_map_make_disjoint(__isl_take isl_map *map); __isl_give isl_map *isl_basic_map_compute_divs(__isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_compute_divs(__isl_take isl_map *map); __isl_give isl_map *isl_map_align_divs(__isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_drop_constraints_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_basic_map_involves_dims(__isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_map_involves_dims(__isl_keep isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); void isl_map_print_internal(__isl_keep isl_map *map, FILE *out, int indent); __isl_give isl_val *isl_map_plain_get_val_if_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_basic_map *isl_basic_map_gist_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context); __isl_export __isl_give isl_basic_map *isl_basic_map_gist(__isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context); __isl_export __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, __isl_take isl_map *context); __isl_export __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *context); __isl_export __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map); isl_bool isl_map_plain_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2); uint32_t isl_map_get_hash(__isl_keep isl_map *map); int isl_map_n_basic_map(__isl_keep isl_map *map); __isl_export isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map, isl_stat (*fn)(__isl_take isl_basic_map *bmap, void *user), void *user); __isl_give isl_map *isl_set_lifting(__isl_take isl_set *set); __isl_give isl_map *isl_map_fixed_power_val(__isl_take isl_map *map, __isl_take isl_val *exp); __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact); __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map, int *exact); __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map, int *exact); __isl_give isl_map *isl_map_lex_le_map(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_lex_lt_map(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_lex_ge_map(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_lex_gt_map(__isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_basic_map *isl_basic_map_align_params( __isl_take isl_basic_map *bmap, __isl_take isl_space *model); __isl_give isl_map *isl_map_align_params(__isl_take isl_map *map, __isl_take isl_space *model); __isl_give isl_mat *isl_basic_map_equalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); __isl_give isl_mat *isl_basic_map_inequalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); __isl_give isl_basic_map *isl_basic_map_from_aff(__isl_take isl_aff *aff); __isl_give isl_basic_map *isl_basic_map_from_multi_aff( __isl_take isl_multi_aff *maff); __isl_give isl_basic_map *isl_basic_map_from_aff_list( __isl_take isl_space *domain_dim, __isl_take isl_aff_list *list); __isl_give isl_map *isl_map_from_aff(__isl_take isl_aff *aff); __isl_give isl_map *isl_map_from_multi_aff(__isl_take isl_multi_aff *maff); __isl_give isl_pw_aff *isl_map_dim_max(__isl_take isl_map *map, int pos); ISL_DECLARE_LIST_FN(basic_map) ISL_DECLARE_LIST_FN(map) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/vec.h0000664000175000017500000000506312645737060012467 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_VEC_H #define ISL_VEC_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif struct isl_vec; typedef struct isl_vec isl_vec; __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx, unsigned size); __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec); __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec); isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec); int isl_vec_size(__isl_keep isl_vec *vec); __isl_give isl_val *isl_vec_get_element_val(__isl_keep isl_vec *vec, int pos); __isl_give isl_vec *isl_vec_set_element_si(__isl_take isl_vec *vec, int pos, int v); __isl_give isl_vec *isl_vec_set_element_val(__isl_take isl_vec *vec, int pos, __isl_take isl_val *v); isl_bool isl_vec_is_equal(__isl_keep isl_vec *vec1, __isl_keep isl_vec *vec2); int isl_vec_cmp_element(__isl_keep isl_vec *vec1, __isl_keep isl_vec *vec2, int pos); void isl_vec_dump(__isl_keep isl_vec *vec); __isl_give isl_printer *isl_printer_print_vec(__isl_take isl_printer *printer, __isl_keep isl_vec *vec); struct isl_vec *isl_vec_ceil(struct isl_vec *vec); struct isl_vec *isl_vec_normalize(struct isl_vec *vec); __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec, int v); __isl_give isl_vec *isl_vec_set_val(__isl_take isl_vec *vec, __isl_take isl_val *v); __isl_give isl_vec *isl_vec_clr(__isl_take isl_vec *vec); __isl_give isl_vec *isl_vec_neg(__isl_take isl_vec *vec); __isl_give isl_vec *isl_vec_add(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2); __isl_give isl_vec *isl_vec_extend(__isl_take isl_vec *vec, unsigned size); __isl_give isl_vec *isl_vec_zero_extend(__isl_take isl_vec *vec, unsigned size); __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2); __isl_give isl_vec *isl_vec_sort(__isl_take isl_vec *vec); __isl_give isl_vec *isl_vec_read_from_file(isl_ctx *ctx, FILE *input); __isl_give isl_vec *isl_vec_drop_els(__isl_take isl_vec *vec, unsigned pos, unsigned n); __isl_give isl_vec *isl_vec_insert_els(__isl_take isl_vec *vec, unsigned pos, unsigned n); __isl_give isl_vec *isl_vec_insert_zero_els(__isl_take isl_vec *vec, unsigned pos, unsigned n); __isl_give isl_vec *isl_vec_move_els(__isl_take isl_vec *vec, unsigned dst_col, unsigned src_col, unsigned n); #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/aff.h0000664000175000017500000012153012645737234012447 00000000000000#ifndef ISL_AFF_H #define ISL_AFF_H #include #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif __isl_give isl_aff *isl_aff_zero_on_domain(__isl_take isl_local_space *ls); __isl_give isl_aff *isl_aff_val_on_domain(__isl_take isl_local_space *ls, __isl_take isl_val *val); __isl_give isl_aff *isl_aff_var_on_domain(__isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_aff_nan_on_domain(__isl_take isl_local_space *ls); __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff); __isl_null isl_aff *isl_aff_free(__isl_take isl_aff *aff); isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff); int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type); isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_space *isl_aff_get_domain_space(__isl_keep isl_aff *aff); __isl_give isl_space *isl_aff_get_space(__isl_keep isl_aff *aff); __isl_give isl_local_space *isl_aff_get_domain_local_space( __isl_keep isl_aff *aff); __isl_give isl_local_space *isl_aff_get_local_space(__isl_keep isl_aff *aff); const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned pos); __isl_give isl_val *isl_aff_get_constant_val(__isl_keep isl_aff *aff); __isl_give isl_val *isl_aff_get_coefficient_val(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos); int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos); __isl_give isl_val *isl_aff_get_denominator_val(__isl_keep isl_aff *aff); __isl_give isl_aff *isl_aff_set_constant_si(__isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_set_constant_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_set_coefficient_si(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_set_coefficient_val(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_add_constant_si(__isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_constant_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_add_constant_num_si(__isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_coefficient_si(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_add_coefficient_val(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff); __isl_give isl_aff *isl_aff_set_tuple_id(__isl_take isl_aff *aff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_aff *isl_aff_set_dim_name(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_aff *isl_aff_set_dim_id(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff, enum isl_dim_type type, const char *name); isl_bool isl_aff_plain_is_equal(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2); isl_bool isl_aff_plain_is_zero(__isl_keep isl_aff *aff); isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff); __isl_give isl_aff *isl_aff_get_div(__isl_keep isl_aff *aff, int pos); __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff, __isl_take isl_val *mod); __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_export __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_scale_down_ui(__isl_take isl_aff *aff, unsigned f); __isl_give isl_aff *isl_aff_scale_down_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_insert_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_aff *isl_aff_add_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned n); __isl_give isl_aff *isl_aff_move_dims(__isl_take isl_aff *aff, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_aff *isl_aff_drop_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_aff *isl_aff_project_domain_on_params(__isl_take isl_aff *aff); __isl_give isl_aff *isl_aff_align_params(__isl_take isl_aff *aff, __isl_take isl_space *model); __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_aff *isl_aff_gist_params(__isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_aff *isl_aff_pullback_aff(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_overload __isl_give isl_aff *isl_aff_pullback_multi_aff(__isl_take isl_aff *aff, __isl_take isl_multi_aff *ma); __isl_give isl_basic_set *isl_aff_zero_basic_set(__isl_take isl_aff *aff); __isl_give isl_basic_set *isl_aff_neg_basic_set(__isl_take isl_aff *aff); __isl_give isl_basic_set *isl_aff_le_basic_set(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_basic_set *isl_aff_ge_basic_set(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_constructor __isl_give isl_aff *isl_aff_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_aff(__isl_take isl_printer *p, __isl_keep isl_aff *aff); void isl_aff_dump(__isl_keep isl_aff *aff); isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_pw_aff_get_domain_space(__isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_pw_aff_get_space(__isl_keep isl_pw_aff *pwaff); __isl_constructor __isl_give isl_pw_aff *isl_pw_aff_from_aff(__isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_empty(__isl_take isl_space *dim); __isl_give isl_pw_aff *isl_pw_aff_alloc(__isl_take isl_set *set, __isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain( __isl_take isl_local_space *ls); __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(__isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(__isl_take isl_local_space *ls); __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(__isl_take isl_set *domain, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_set_indicator_function(__isl_take isl_set *set); const char *isl_pw_aff_get_dim_name(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_aff_get_dim_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_pw_aff *isl_pw_aff_set_dim_id(__isl_take isl_pw_aff *pma, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, const char *name); isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff); isl_bool isl_pw_aff_involves_nan(__isl_keep isl_pw_aff *pa); int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2); isl_bool isl_pw_aff_plain_is_equal(__isl_keep isl_pw_aff *pwaff1, __isl_keep isl_pw_aff *pwaff2); int isl_pw_aff_is_equal(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_union_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_union_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_export __isl_give isl_pw_aff *isl_pw_aff_union_add(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_copy(__isl_keep isl_pw_aff *pwaff); __isl_null isl_pw_aff *isl_pw_aff_free(__isl_take isl_pw_aff *pwaff); unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff, enum isl_dim_type type); isl_bool isl_pw_aff_involves_dims(__isl_keep isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_align_params(__isl_take isl_pw_aff *pwaff, __isl_take isl_space *model); isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type); __isl_give isl_id *isl_pw_aff_get_tuple_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type); __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id(__isl_take isl_pw_aff *pwaff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id(__isl_take isl_pw_aff *pa, enum isl_dim_type type); __isl_give isl_pw_aff *isl_pw_aff_reset_user(__isl_take isl_pw_aff *pa); __isl_give isl_set *isl_pw_aff_params(__isl_take isl_pw_aff *pwa); __isl_give isl_set *isl_pw_aff_domain(__isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_from_range(__isl_take isl_pw_aff *pwa); __isl_give isl_pw_aff *isl_pw_aff_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_mul(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_div(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_export __isl_give isl_pw_aff *isl_pw_aff_add(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_sub(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_neg(__isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_ceil(__isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_floor(__isl_take isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_mod_val(__isl_take isl_pw_aff *pa, __isl_take isl_val *mod); __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_intersect_params(__isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_pw_aff *isl_pw_aff_intersect_domain(__isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_pw_aff *isl_pw_aff_subtract_domain(__isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_pw_aff *isl_pw_aff_cond(__isl_take isl_pw_aff *cond, __isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false); __isl_give isl_pw_aff *isl_pw_aff_scale_val(__isl_take isl_pw_aff *pa, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_pw_aff_scale_down_val(__isl_take isl_pw_aff *pa, __isl_take isl_val *f); __isl_give isl_pw_aff *isl_pw_aff_insert_dims(__isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_add_dims(__isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_move_dims(__isl_take isl_pw_aff *pa, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_drop_dims(__isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_coalesce(__isl_take isl_pw_aff *pwqp); __isl_give isl_pw_aff *isl_pw_aff_gist(__isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_give isl_pw_aff *isl_pw_aff_gist_params(__isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_overload __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_aff *ma); __isl_overload __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_pw_multi_aff *pma); __isl_overload __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa); int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff); isl_stat isl_pw_aff_foreach_piece(__isl_keep isl_pw_aff *pwaff, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user), void *user); __isl_give isl_set *isl_set_from_pw_aff(__isl_take isl_pw_aff *pwaff); __isl_give isl_map *isl_map_from_pw_aff(__isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_pos_set(__isl_take isl_pw_aff *pa); __isl_give isl_set *isl_pw_aff_nonneg_set(__isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_zero_set(__isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_non_zero_set(__isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_le_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_lt_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_map *isl_pw_aff_eq_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_map *isl_pw_aff_lt_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_map *isl_pw_aff_gt_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_constructor __isl_give isl_pw_aff *isl_pw_aff_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_pw_aff(__isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff); void isl_pw_aff_dump(__isl_keep isl_pw_aff *pwaff); __isl_give isl_pw_aff *isl_pw_aff_list_min(__isl_take isl_pw_aff_list *list); __isl_give isl_pw_aff *isl_pw_aff_list_max(__isl_take isl_pw_aff_list *list); __isl_give isl_set *isl_pw_aff_list_eq_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ne_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_le_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_lt_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ge_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_gt_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); ISL_DECLARE_MULTI(aff) ISL_DECLARE_MULTI_NEG(aff) ISL_DECLARE_MULTI_DIMS(aff) ISL_DECLARE_MULTI_WITH_DOMAIN(aff) __isl_constructor __isl_give isl_multi_aff *isl_multi_aff_from_aff(__isl_take isl_aff *aff); __isl_give isl_multi_aff *isl_multi_aff_identity(__isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_domain_map(__isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_range_map(__isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_multi_val_on_space( __isl_take isl_space *space, __isl_take isl_multi_val *mv); __isl_give isl_multi_aff *isl_multi_aff_floor(__isl_take isl_multi_aff *ma); __isl_give isl_multi_aff *isl_multi_aff_gist_params( __isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_multi_aff *isl_multi_aff_gist(__isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_multi_aff *isl_multi_aff_lift(__isl_take isl_multi_aff *maff, __isl_give isl_local_space **ls); __isl_overload __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_move_dims(__isl_take isl_multi_aff *ma, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_set *isl_multi_aff_lex_le_set(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_set *isl_multi_aff_lex_ge_set(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give char *isl_multi_aff_to_str(__isl_keep isl_multi_aff *aff); __isl_give isl_printer *isl_printer_print_multi_aff(__isl_take isl_printer *p, __isl_keep isl_multi_aff *maff); __isl_constructor __isl_give isl_multi_aff *isl_multi_aff_read_from_str(isl_ctx *ctx, const char *str); void isl_multi_aff_dump(__isl_keep isl_multi_aff *maff); ISL_DECLARE_MULTI(pw_aff) ISL_DECLARE_MULTI_NEG(pw_aff) ISL_DECLARE_MULTI_DIMS(pw_aff) ISL_DECLARE_MULTI_WITH_DOMAIN(pw_aff) __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(__isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); __isl_constructor __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_aff( __isl_take isl_multi_aff *ma); __isl_constructor __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc(__isl_take isl_set *set, __isl_take isl_multi_aff *maff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy( __isl_keep isl_pw_multi_aff *pma); __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free( __isl_take isl_pw_multi_aff *pma); unsigned isl_pw_multi_aff_dim(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff( __isl_keep isl_pw_multi_aff *pma, int pos); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff( __isl_take isl_pw_multi_aff *pma, unsigned pos, __isl_take isl_pw_aff *pa); isl_ctx *isl_pw_multi_aff_get_ctx(__isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_pw_multi_aff_get_domain_space( __isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_pw_multi_aff_get_space( __isl_keep isl_pw_multi_aff *pma); isl_bool isl_pw_multi_aff_has_tuple_name(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); const char *isl_pw_multi_aff_get_tuple_name(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_id *isl_pw_multi_aff_get_tuple_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); isl_bool isl_pw_multi_aff_has_tuple_id(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_tuple_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user( __isl_take isl_pw_multi_aff *pma); int isl_pw_multi_aff_find_dim_by_name(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, const char *name); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_pw_multi_aff_domain(__isl_take isl_pw_multi_aff *pma); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty(__isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_multi_val_on_domain( __isl_take isl_set *domain, __isl_take isl_multi_val *mv); const char *isl_pw_multi_aff_get_dim_name(__isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_multi_aff_get_dim_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_dim_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_pw_multi_aff_plain_is_equal(__isl_keep isl_pw_multi_aff *pma1, __isl_keep isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos, int value); __isl_export __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg( __isl_take isl_pw_multi_aff *pma); __isl_export __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_val *v); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_val *v); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_multi_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_val *mv); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_aff *isl_multi_aff_flatten_domain( __isl_take isl_multi_aff *ma); __isl_export __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_export __isl_give isl_pw_multi_aff *isl_pw_multi_aff_flat_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_export __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_subtract_domain( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_domain_on_params( __isl_take isl_pw_multi_aff *pma); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_space *model); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce( __isl_take isl_pw_multi_aff *pma); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_overload __isl_give isl_pw_multi_aff *isl_pw_multi_aff_pullback_multi_aff( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_aff *ma); __isl_overload __isl_give isl_pw_multi_aff *isl_pw_multi_aff_pullback_pw_multi_aff( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); isl_stat isl_pw_multi_aff_foreach_piece(__isl_keep isl_pw_multi_aff *pma, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_multi_aff *maff, void *user), void *user); __isl_give isl_map *isl_map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_set_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma); __isl_give isl_printer *isl_printer_print_pw_multi_aff(__isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(__isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(__isl_take isl_map *map); __isl_constructor __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(isl_ctx *ctx, const char *str); void isl_pw_multi_aff_dump(__isl_keep isl_pw_multi_aff *pma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_empty( __isl_take isl_space *space); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_aff( __isl_take isl_aff *aff); __isl_constructor __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_domain( __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_copy( __isl_keep isl_union_pw_multi_aff *upma); __isl_null isl_union_pw_multi_aff *isl_union_pw_multi_aff_free( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff *isl_union_set_identity_union_pw_multi_aff( __isl_take isl_union_set *uset); __isl_give isl_union_pw_aff *isl_union_pw_multi_aff_get_union_pw_aff( __isl_keep isl_union_pw_multi_aff *upma, int pos); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_pw_multi_aff *pma); isl_ctx *isl_union_pw_multi_aff_get_ctx( __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_space *isl_union_pw_multi_aff_get_space( __isl_keep isl_union_pw_multi_aff *upma); unsigned isl_union_pw_multi_aff_dim(__isl_keep isl_union_pw_multi_aff *upma, enum isl_dim_type type); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_set_dim_name( __isl_take isl_union_pw_multi_aff *upma, enum isl_dim_type type, unsigned pos, const char *s); int isl_union_pw_multi_aff_find_dim_by_name( __isl_keep isl_union_pw_multi_aff *upma, enum isl_dim_type type, const char *name); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_drop_dims( __isl_take isl_union_pw_multi_aff *upma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_reset_user( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_coalesce( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_gist_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_set *context); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_gist( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *context); __isl_overload __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_align_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_space *model); int isl_union_pw_multi_aff_n_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma); isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma, isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user), void *user); __isl_give isl_pw_multi_aff *isl_union_pw_multi_aff_extract_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma, __isl_take isl_space *space); isl_bool isl_union_pw_multi_aff_plain_is_equal( __isl_keep isl_union_pw_multi_aff *upma1, __isl_keep isl_union_pw_multi_aff *upma2); __isl_give isl_union_set *isl_union_pw_multi_aff_domain( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_neg( __isl_take isl_union_pw_multi_aff *upma); __isl_export __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_export __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_union_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_val *val); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_down_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_val *val); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_multi_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_multi_val *mv); __isl_export __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_flat_range_product( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_intersect_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_set *set); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_intersect_domain( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_subtract_domain( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *uset); __isl_overload __isl_give isl_union_map *isl_union_map_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_printer *isl_printer_print_union_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_set( __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_map( __isl_take isl_union_map *umap); __isl_constructor __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str); void isl_union_pw_multi_aff_dump(__isl_keep isl_union_pw_multi_aff *upma); __isl_give char *isl_union_pw_multi_aff_to_str( __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity( __isl_take isl_space *space); __isl_constructor __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma); __isl_constructor __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_set *isl_multi_pw_aff_domain(__isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_intersect_params( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_intersect_domain( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *domain); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); isl_bool isl_multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2); __isl_overload __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma); __isl_overload __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_pw_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma); __isl_overload __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims( __isl_take isl_multi_pw_aff *pma, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_set *isl_set_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa); __isl_give isl_map *isl_map_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); __isl_constructor __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_multi_pw_aff_eq_map(__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_map *isl_multi_pw_aff_lex_lt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_map *isl_multi_pw_aff_lex_gt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_constructor __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_printer *isl_printer_print_multi_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_pw_aff *mpa); void isl_multi_pw_aff_dump(__isl_keep isl_multi_pw_aff *mpa); __isl_give isl_union_pw_aff *isl_union_pw_aff_copy( __isl_keep isl_union_pw_aff *upa); __isl_null isl_union_pw_aff *isl_union_pw_aff_free( __isl_take isl_union_pw_aff *upa); isl_ctx *isl_union_pw_aff_get_ctx(__isl_keep isl_union_pw_aff *upa); __isl_give isl_space *isl_union_pw_aff_get_space( __isl_keep isl_union_pw_aff *upa); unsigned isl_union_pw_aff_dim(__isl_keep isl_union_pw_aff *upa, enum isl_dim_type type); __isl_give isl_union_pw_aff *isl_union_pw_aff_set_dim_name( __isl_take isl_union_pw_aff *upa, enum isl_dim_type type, unsigned pos, const char *s); int isl_union_pw_aff_find_dim_by_name(__isl_keep isl_union_pw_aff *upa, enum isl_dim_type type, const char *name); __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims( __isl_take isl_union_pw_aff *upa, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_aff *isl_union_pw_aff_empty( __isl_take isl_space *space); __isl_constructor __isl_give isl_union_pw_aff *isl_union_pw_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_union_pw_aff *isl_union_pw_aff_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_val *v); __isl_give isl_union_pw_aff *isl_union_pw_aff_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_aff *aff); __isl_give isl_union_pw_aff *isl_union_pw_aff_add_pw_aff( __isl_take isl_union_pw_aff *upa, __isl_take isl_pw_aff *pa); __isl_constructor __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); int isl_union_pw_aff_n_pw_aff(__isl_keep isl_union_pw_aff *upa); isl_stat isl_union_pw_aff_foreach_pw_aff(__isl_keep isl_union_pw_aff *upa, isl_stat (*fn)(__isl_take isl_pw_aff *ma, void *user), void *user); __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff( __isl_keep isl_union_pw_aff *upa, __isl_take isl_space *space); isl_bool isl_union_pw_aff_plain_is_equal(__isl_keep isl_union_pw_aff *upa1, __isl_keep isl_union_pw_aff *upa2); __isl_give isl_union_set *isl_union_pw_aff_domain( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_aff *isl_union_pw_aff_neg( __isl_take isl_union_pw_aff *upa); __isl_export __isl_give isl_union_pw_aff *isl_union_pw_aff_add( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_export __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_give isl_union_pw_aff *isl_union_pw_aff_sub( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_aff *isl_union_pw_aff_gist( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *context); __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params( __isl_take isl_union_pw_aff *upa, __isl_take isl_set *context); __isl_overload __isl_give isl_union_pw_aff *isl_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_aff *isl_union_pw_aff_floor( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *v); __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *v); __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *f); __isl_give isl_union_pw_aff *isl_union_pw_aff_align_params( __isl_take isl_union_pw_aff *upa, __isl_take isl_space *model); __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_params( __isl_take isl_union_pw_aff *upa, __isl_take isl_set *set); __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *uset); __isl_give isl_union_pw_aff *isl_union_pw_aff_subtract_domain( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *uset); __isl_give isl_union_pw_aff *isl_union_pw_aff_set_dim_name( __isl_take isl_union_pw_aff *upa, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_union_set *isl_union_pw_aff_zero_union_set( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_map *isl_union_map_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); __isl_constructor __isl_give isl_union_pw_aff *isl_union_pw_aff_read_from_str(isl_ctx *ctx, const char *str); __isl_give char *isl_union_pw_aff_to_str(__isl_keep isl_union_pw_aff *upa); __isl_give isl_printer *isl_printer_print_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_aff *upa); ISL_DECLARE_MULTI(union_pw_aff) ISL_DECLARE_MULTI_NEG(union_pw_aff) __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma); __isl_constructor __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); __isl_constructor __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_floor( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_domain( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_union_set *uset); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_params( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *params); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_range( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *set); __isl_give isl_union_set *isl_multi_union_pw_aff_domain( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_coalesce( __isl_take isl_multi_union_pw_aff *aff); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_gist( __isl_take isl_multi_union_pw_aff *aff, __isl_take isl_union_set *context); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_gist_params( __isl_take isl_multi_union_pw_aff *aff, __isl_take isl_set *context); __isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_multi_aff *pma); __isl_overload __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa); __isl_export __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_union_add( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_union_map( __isl_take isl_union_map *umap); __isl_overload __isl_give isl_union_map *isl_union_map_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_set *isl_multi_union_pw_aff_zero_union_set( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_multi_pw_aff *isl_multi_union_pw_aff_extract_multi_pw_aff( __isl_keep isl_multi_union_pw_aff *mupa, __isl_take isl_space *space); __isl_constructor __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give char *isl_multi_union_pw_aff_to_str( __isl_keep isl_multi_union_pw_aff *mupa); __isl_give isl_printer *isl_printer_print_multi_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_union_pw_aff *mupa); void isl_multi_union_pw_aff_dump(__isl_keep isl_multi_union_pw_aff *mupa); ISL_DECLARE_LIST_FN(union_pw_aff) ISL_DECLARE_LIST_FN(union_pw_multi_aff) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/map_type.h0000664000175000017500000000135312645737060013526 00000000000000#ifndef ISL_MAP_TYPE_H #define ISL_MAP_TYPE_H #include #include #if defined(__cplusplus) extern "C" { #endif struct __isl_subclass(isl_map) isl_basic_map; typedef struct isl_basic_map isl_basic_map; ISL_DECLARE_LIST_TYPE(basic_map) struct __isl_subclass(isl_union_map) isl_map; typedef struct isl_map isl_map; ISL_DECLARE_LIST_TYPE(map) #ifndef isl_basic_set struct __isl_subclass(isl_set) isl_basic_set; typedef struct isl_basic_set isl_basic_set; ISL_DECLARE_LIST_TYPE(basic_set) #endif #ifndef isl_set struct __isl_subclass(isl_union_set) isl_set; typedef struct isl_set isl_set; ISL_DECLARE_LIST_TYPE(set) #endif ISL_DECLARE_LIST_FN(basic_set) ISL_DECLARE_LIST_FN(set) #if defined(__cplusplus) } #endif #endif isl-0.16.1/include/isl/set.h0000664000175000017500000005335112645737234012513 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_SET_H #define ISL_SET_H #include #include #include #include #include #include #include #include #if defined(__cplusplus) extern "C" { #endif unsigned isl_basic_set_n_dim(__isl_keep isl_basic_set *bset); unsigned isl_basic_set_n_param(__isl_keep isl_basic_set *bset); unsigned isl_basic_set_total_dim(const struct isl_basic_set *bset); unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset, enum isl_dim_type type); unsigned isl_set_n_dim(__isl_keep isl_set *set); unsigned isl_set_n_param(__isl_keep isl_set *set); unsigned isl_set_dim(__isl_keep isl_set *set, enum isl_dim_type type); isl_ctx *isl_basic_set_get_ctx(__isl_keep isl_basic_set *bset); isl_ctx *isl_set_get_ctx(__isl_keep isl_set *set); __isl_give isl_space *isl_basic_set_get_space(__isl_keep isl_basic_set *bset); __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set); __isl_give isl_set *isl_set_reset_space(__isl_take isl_set *set, __isl_take isl_space *dim); __isl_give isl_aff *isl_basic_set_get_div(__isl_keep isl_basic_set *bset, int pos); __isl_give isl_local_space *isl_basic_set_get_local_space( __isl_keep isl_basic_set *bset); const char *isl_basic_set_get_tuple_name(__isl_keep isl_basic_set *bset); isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set); const char *isl_set_get_tuple_name(__isl_keep isl_set *set); __isl_give isl_basic_set *isl_basic_set_set_tuple_name( __isl_take isl_basic_set *set, const char *s); __isl_give isl_set *isl_set_set_tuple_name(__isl_take isl_set *set, const char *s); const char *isl_basic_set_get_dim_name(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); __isl_give isl_basic_set *isl_basic_set_set_dim_name( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, const char *s); isl_bool isl_set_has_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); const char *isl_set_get_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_set *isl_set_set_dim_name(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_id *isl_basic_set_get_dim_id(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); __isl_give isl_basic_set *isl_basic_set_set_tuple_id( __isl_take isl_basic_set *bset, __isl_take isl_id *id); __isl_give isl_set *isl_set_set_dim_id(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_set_has_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_set_get_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_set *isl_set_set_tuple_id(__isl_take isl_set *set, __isl_take isl_id *id); __isl_give isl_set *isl_set_reset_tuple_id(__isl_take isl_set *set); isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set); __isl_give isl_id *isl_set_get_tuple_id(__isl_keep isl_set *set); __isl_give isl_set *isl_set_reset_user(__isl_take isl_set *set); int isl_set_find_dim_by_id(__isl_keep isl_set *set, enum isl_dim_type type, __isl_keep isl_id *id); int isl_set_find_dim_by_name(__isl_keep isl_set *set, enum isl_dim_type type, const char *name); int isl_basic_set_is_rational(__isl_keep isl_basic_set *bset); __isl_null isl_basic_set *isl_basic_set_free(__isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_copy(__isl_keep isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_empty(__isl_take isl_space *dim); __isl_give isl_basic_set *isl_basic_set_universe(__isl_take isl_space *dim); __isl_give isl_basic_set *isl_basic_set_nat_universe(__isl_take isl_space *dim); __isl_give isl_basic_set *isl_basic_set_positive_orthant( __isl_take isl_space *space); void isl_basic_set_print_internal(__isl_keep isl_basic_set *bset, FILE *out, int indent); __isl_export __isl_give isl_basic_set *isl_basic_set_intersect( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_export __isl_give isl_basic_set *isl_basic_set_intersect_params( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_export __isl_give isl_basic_set *isl_basic_set_apply( __isl_take isl_basic_set *bset, __isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_set_preimage_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_multi_aff *ma); __isl_export __isl_give isl_basic_set *isl_basic_set_affine_hull( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_remove_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_export __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset); __isl_export __isl_give isl_basic_set *isl_basic_set_detect_equalities( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_remove_redundancies( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_redundancies(__isl_take isl_set *set); __isl_give isl_basic_set *isl_basic_set_list_intersect( __isl_take struct isl_basic_set_list *list); __isl_give isl_basic_set *isl_basic_set_list_product( __isl_take struct isl_basic_set_list *list); __isl_give isl_basic_set *isl_basic_set_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_basic_set *isl_basic_set_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx, FILE *input); __isl_constructor __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx, const char *str); void isl_basic_set_dump(__isl_keep isl_basic_set *bset); void isl_set_dump(__isl_keep isl_set *set); __isl_give isl_printer *isl_printer_print_basic_set( __isl_take isl_printer *printer, __isl_keep isl_basic_set *bset); __isl_give isl_printer *isl_printer_print_set(__isl_take isl_printer *printer, __isl_keep isl_set *map); __isl_give isl_basic_set *isl_basic_set_fix_si(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_set *isl_basic_set_fix_val(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_lower_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_lower_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value); __isl_give isl_set *isl_set_upper_bound_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_upper_bound_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value); __isl_give isl_set *isl_set_equate(__isl_take isl_set *set, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_export isl_bool isl_basic_set_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); __isl_give isl_set *isl_basic_set_partial_lexmin( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_basic_set_partial_lexmax( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmin( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmax( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_export __isl_give isl_set *isl_basic_set_lexmin(__isl_take isl_basic_set *bset); __isl_export __isl_give isl_set *isl_basic_set_lexmax(__isl_take isl_basic_set *bset); __isl_export __isl_give isl_set *isl_set_lexmin(__isl_take isl_set *set); __isl_export __isl_give isl_set *isl_set_lexmax(__isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_basic_set_partial_lexmin_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_basic_set_partial_lexmax_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff( __isl_take isl_set *set); __isl_export __isl_give isl_set *isl_basic_set_union( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); int isl_basic_set_compare_at(struct isl_basic_set *bset1, struct isl_basic_set *bset2, int pos); int isl_set_follows_at(__isl_keep isl_set *set1, __isl_keep isl_set *set2, int pos); __isl_give isl_basic_set *isl_basic_set_params(__isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_from_params( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_params(__isl_take isl_set *set); __isl_give isl_set *isl_set_from_params(__isl_take isl_set *set); int isl_basic_set_dims_get_sign(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n, int *signs); isl_bool isl_basic_set_is_universe(__isl_keep isl_basic_set *bset); isl_bool isl_basic_set_plain_is_empty(__isl_keep isl_basic_set *bset); __isl_export isl_bool isl_basic_set_is_empty(__isl_keep isl_basic_set *bset); int isl_basic_set_is_bounded(__isl_keep isl_basic_set *bset); __isl_export isl_bool isl_basic_set_is_subset(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_basic_set_plain_is_equal(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); __isl_give isl_set *isl_set_empty(__isl_take isl_space *dim); __isl_give isl_set *isl_set_universe(__isl_take isl_space *dim); __isl_give isl_set *isl_set_nat_universe(__isl_take isl_space *dim); __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set); __isl_null isl_set *isl_set_free(__isl_take isl_set *set); __isl_constructor __isl_give isl_set *isl_set_from_basic_set(__isl_take isl_basic_set *bset); __isl_export __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set); __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset); __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set); __isl_export __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set); __isl_export __isl_give isl_basic_set *isl_set_affine_hull(__isl_take isl_set *set); __isl_give isl_basic_set *isl_set_convex_hull(__isl_take isl_set *set); __isl_export __isl_give isl_basic_set *isl_set_polyhedral_hull(__isl_take isl_set *set); __isl_give isl_basic_set *isl_set_simple_hull(__isl_take isl_set *set); __isl_give isl_basic_set *isl_set_unshifted_simple_hull( __isl_take isl_set *set); __isl_give isl_basic_set *isl_set_unshifted_simple_hull_from_set_list( __isl_take isl_set *set, __isl_take isl_set_list *list); struct isl_basic_set *isl_set_bounded_simple_hull(struct isl_set *set); __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set); struct isl_set *isl_set_union_disjoint( struct isl_set *set1, struct isl_set *set2); __isl_export __isl_give isl_set *isl_set_union( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_set *isl_set_product(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_basic_set *isl_basic_set_flat_product( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_set *isl_set_flat_product(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_export __isl_give isl_set *isl_set_intersect( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_export __isl_give isl_set *isl_set_intersect_params(__isl_take isl_set *set, __isl_take isl_set *params); __isl_export __isl_give isl_set *isl_set_subtract( __isl_take isl_set *set1, __isl_take isl_set *set2); __isl_export __isl_give isl_set *isl_set_complement(__isl_take isl_set *set); __isl_export __isl_give isl_set *isl_set_apply( __isl_take isl_set *set, __isl_take isl_map *map); __isl_give isl_set *isl_set_preimage_multi_aff(__isl_take isl_set *set, __isl_take isl_multi_aff *ma); __isl_give isl_set *isl_set_preimage_pw_multi_aff(__isl_take isl_set *set, __isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_set_preimage_multi_pw_aff(__isl_take isl_set *set, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_set *isl_set_fix_val(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); struct isl_set *isl_set_fix_dim_si(struct isl_set *set, unsigned dim, int value); __isl_give isl_basic_set *isl_basic_set_insert_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_set *isl_set_insert_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_set *isl_basic_set_add_dims(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n); ISL_DEPRECATED __isl_give isl_basic_set *isl_basic_set_add(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n); __isl_give isl_set *isl_set_add_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned n); __isl_give isl_basic_set *isl_basic_set_move_dims(__isl_take isl_basic_set *bset, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_set *isl_set_move_dims(__isl_take isl_set *set, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_basic_set *isl_basic_set_project_out( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_remove_divs( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_eliminate( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_eliminate(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); struct isl_set *isl_set_eliminate_dims(struct isl_set *set, unsigned first, unsigned n); __isl_give isl_set *isl_set_remove_dims(__isl_take isl_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_remove_divs_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_remove_divs_involving_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_remove_unknown_divs( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_unknown_divs(__isl_take isl_set *set); __isl_give isl_set *isl_set_remove_divs(__isl_take isl_set *set); __isl_give isl_set *isl_set_split_dims(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_drop_constraints_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_basic_set_involves_dims(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_set_involves_dims(__isl_keep isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); void isl_set_print_internal(__isl_keep isl_set *set, FILE *out, int indent); isl_bool isl_set_plain_is_empty(__isl_keep isl_set *set); isl_bool isl_set_plain_is_universe(__isl_keep isl_set *set); isl_bool isl_set_is_params(__isl_keep isl_set *set); __isl_export isl_bool isl_set_is_empty(__isl_keep isl_set *set); int isl_set_is_bounded(__isl_keep isl_set *set); __isl_export isl_bool isl_set_is_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2); __isl_export isl_bool isl_set_is_strict_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2); __isl_export isl_bool isl_set_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2); __isl_export isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_is_singleton(__isl_keep isl_set *set); int isl_set_is_box(__isl_keep isl_set *set); int isl_set_has_equal_space(__isl_keep isl_set *set1, __isl_keep isl_set *set2); __isl_give isl_set *isl_set_sum(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_basic_set *isl_basic_set_neg(__isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_neg(__isl_take isl_set *set); __isl_give isl_set *isl_set_make_disjoint(__isl_take isl_set *set); struct isl_set *isl_basic_set_compute_divs(struct isl_basic_set *bset); __isl_give isl_set *isl_set_compute_divs(__isl_take isl_set *set); __isl_give isl_set *isl_set_align_divs(__isl_take isl_set *set); struct isl_basic_set *isl_set_copy_basic_set(struct isl_set *set); struct isl_set *isl_set_drop_basic_set(struct isl_set *set, struct isl_basic_set *bset); __isl_give isl_val *isl_set_plain_get_val_if_fixed(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); int isl_set_dim_is_bounded(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_any_lower_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_any_upper_bound(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_export __isl_give isl_basic_set *isl_basic_set_gist(__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context); __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *context); __isl_export __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, __isl_take isl_set *context); __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set, __isl_take isl_set *context); isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set, int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue); __isl_export __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set); int isl_set_plain_cmp(__isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_plain_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2); uint32_t isl_set_get_hash(struct isl_set *set); int isl_set_dim_is_unique(struct isl_set *set, unsigned dim); int isl_set_n_basic_set(__isl_keep isl_set *set); __isl_export isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_basic_set *bset, void *user), void *user); __isl_give isl_basic_set_list *isl_set_get_basic_set_list( __isl_keep isl_set *set); isl_stat isl_set_foreach_point(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user); __isl_give isl_val *isl_set_count_val(__isl_keep isl_set *set); __isl_constructor __isl_give isl_basic_set *isl_basic_set_from_point(__isl_take isl_point *pnt); __isl_constructor __isl_give isl_set *isl_set_from_point(__isl_take isl_point *pnt); __isl_give isl_basic_set *isl_basic_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2); __isl_give isl_set *isl_set_box_from_points(__isl_take isl_point *pnt1, __isl_take isl_point *pnt2); __isl_give isl_basic_set *isl_basic_set_lift(__isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_lift(__isl_take isl_set *set); __isl_give isl_map *isl_set_lex_le_set(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_map *isl_set_lex_lt_set(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_map *isl_set_lex_ge_set(__isl_take isl_set *set1, __isl_take isl_set *set2); __isl_give isl_map *isl_set_lex_gt_set(__isl_take isl_set *set1, __isl_take isl_set *set2); int isl_set_size(__isl_keep isl_set *set); __isl_give isl_basic_set *isl_basic_set_align_params( __isl_take isl_basic_set *bset, __isl_take isl_space *model); __isl_give isl_set *isl_set_align_params(__isl_take isl_set *set, __isl_take isl_space *model); __isl_give isl_mat *isl_basic_set_equalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_set_inequalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices( __isl_take isl_space *dim, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_coefficients( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_coefficients(__isl_take isl_set *set); __isl_give isl_basic_set *isl_basic_set_solutions( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_solutions(__isl_take isl_set *set); __isl_give isl_pw_aff *isl_set_dim_max(__isl_take isl_set *set, int pos); __isl_give isl_pw_aff *isl_set_dim_min(__isl_take isl_set *set, int pos); __isl_give char *isl_set_to_str(__isl_keep isl_set *set); #if defined(__cplusplus) } #endif #endif isl-0.16.1/isl_blk.h0000664000175000017500000000150712645737060011116 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_BLK_H #define ISL_BLK_H #include #if defined(__cplusplus) extern "C" { #endif struct isl_blk { size_t size; isl_int *data; }; #define ISL_BLK_CACHE_SIZE 20 struct isl_ctx; struct isl_blk isl_blk_alloc(struct isl_ctx *ctx, size_t n); struct isl_blk isl_blk_empty(void); int isl_blk_is_error(struct isl_blk block); struct isl_blk isl_blk_extend(struct isl_ctx *ctx, struct isl_blk block, size_t new_n); void isl_blk_free(struct isl_ctx *ctx, struct isl_blk block); void isl_blk_clear_cache(struct isl_ctx *ctx); #if defined(__cplusplus) } #endif #endif isl-0.16.1/isl_val_gmp.c0000664000175000017500000000600612645737061011766 00000000000000#include #include #include /* Return a reference to an isl_val representing the integer "z". */ __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx, mpz_t z) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set(v->n, z); isl_int_set_si(v->d, 1); return v; } /* Return a reference to an isl_val representing the rational value "n"/"d". */ __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx, const mpz_t n, const mpz_t d) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set(v->n, n); isl_int_set(v->d, d); return isl_val_normalize(v); } /* Extract the numerator of a rational value "v" in "z". * * If "v" is not a rational value, then the result is undefined. */ int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z) { if (!v) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); mpz_set(z, v->n); return 0; } /* Extract the denominator of a rational value "v" in "z". * * If "v" is not a rational value, then the result is undefined. */ int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z) { if (!v) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); mpz_set(z, v->d); return 0; } /* Return a reference to an isl_val representing the unsigned * integer value stored in the "n" chunks of size "size" at "chunks". * The least significant chunk is assumed to be stored first. */ __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx, size_t n, size_t size, const void *chunks) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; mpz_import(v->n, n, -1, size, 0, 0, chunks); isl_int_set_si(v->d, 1); return v; } /* Return the number of chunks of size "size" required to * store the absolute value of the numerator of "v". */ size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v, size_t size) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); size *= 8; return (mpz_sizeinbase(v->n, 2) + size - 1) / size; } /* Store a representation of the absolute value of the numerator of "v" * in terms of chunks of size "size" at "chunks". * The least significant chunk is stored first. * The number of chunks in the result can be obtained by calling * isl_val_n_abs_num_chunks. The user is responsible for allocating * enough memory to store the results. * * In the special case of a zero value, isl_val_n_abs_num_chunks will * return one, while mpz_export will not fill in any chunks. We therefore * do it ourselves. */ int isl_val_get_abs_num_chunks(__isl_keep isl_val *v, size_t size, void *chunks) { if (!v || !chunks) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); mpz_export(chunks, NULL, -1, size, 0, 0, v->n); if (isl_val_is_zero(v)) memset(chunks, 0, size); return 0; } isl-0.16.1/isl_id_to_pw_aff.c0000664000175000017500000000037012645737060012756 00000000000000#include #include #define isl_id_is_equal(id1,id2) id1 == id2 #define KEY_BASE id #define KEY_EQUAL isl_id_is_equal #define VAL_BASE pw_aff #define VAL_EQUAL isl_pw_aff_plain_is_equal #include isl-0.16.1/isl_multi_coalesce.c0000664000175000017500000000145712645737061013336 00000000000000/* * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include /* Coalesce the elements of "multi". * * Note that such coalescing does not change the meaning of "multi" * so there is no need to cow. We do need to be careful not to * destroy any other copies of "multi" in case of failure. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),coalesce)(__isl_take MULTI(BASE) *multi) { int i; if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { EL *el = FN(EL,copy)(multi->p[i]); el = FN(EL,coalesce)(el); if (!el) return FN(MULTI(BASE),free)(multi); FN(EL,free)(multi->p[i]); multi->p[i] = el; } return multi; } isl-0.16.1/isl_options_private.h0000664000175000017500000000265612645737061013602 00000000000000#ifndef ISL_OPTIONS_PRIVATE_H #define ISL_OPTIONS_PRIVATE_H #include struct isl_options { #define ISL_CONTEXT_GBR 0 #define ISL_CONTEXT_LEXMIN 1 unsigned context; #define ISL_GBR_NEVER 0 #define ISL_GBR_ONCE 1 #define ISL_GBR_ALWAYS 2 unsigned gbr; unsigned gbr_only_first; #define ISL_CLOSURE_ISL 0 #define ISL_CLOSURE_BOX 1 unsigned closure; int bound; unsigned on_error; #define ISL_BERNSTEIN_FACTORS 1 #define ISL_BERNSTEIN_INTERVALS 2 int bernstein_recurse; int bernstein_triangulate; int pip_symmetry; #define ISL_CONVEX_HULL_WRAP 0 #define ISL_CONVEX_HULL_FM 1 int convex; int coalesce_bounded_wrapping; int schedule_max_coefficient; int schedule_max_constant_term; int schedule_parametric; int schedule_outer_coincidence; int schedule_maximize_band_depth; int schedule_split_scaled; int schedule_separate_components; unsigned schedule_algorithm; int schedule_serialize_sccs; int tile_scale_tile_loops; int tile_shift_point_loops; char *ast_iterator_type; int ast_always_print_block; int ast_build_atomic_upper_bound; int ast_build_prefer_pdiv; int ast_build_exploit_nested_bounds; int ast_build_group_coscheduled; int ast_build_separation_bounds; int ast_build_scale_strides; int ast_build_allow_else; int ast_build_allow_or; int print_stats; unsigned long max_operations; }; #endif isl-0.16.1/isl_multi_intersect.c0000664000175000017500000000145512645737061013556 00000000000000/* * Copyright 2011 Sven Verdoolaege * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include /* Intersect the domain of "multi" with "domain". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),intersect_domain)( __isl_take MULTI(BASE) *multi, __isl_take DOM *domain) { return FN(FN(MULTI(BASE),apply),DOMBASE)(multi, domain, &FN(EL,intersect_domain)); } /* Intersect the parameter domain of "multi" with "domain". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),intersect_params)( __isl_take MULTI(BASE) *multi, __isl_take isl_set *domain) { return FN(MULTI(BASE),apply_set)(multi, domain, &FN(EL,intersect_params)); } isl-0.16.1/doc/0000775000175000017500000000000012645755215010152 500000000000000isl-0.16.1/doc/chicago.bst0000664000175000017500000011474212645737060012210 00000000000000%%% ==================================================================== %%% @BibTeX-style-file{ %%% author = "Glenn Paulley", %%% version = "4", %%% date = "28 August 1992", %%% time = "10:23:39 199", %%% filename = "chicago.bst", %%% address = "Data Structuring Group %%% Department of Computer Science %%% University of Waterloo %%% Waterloo, Ontario, Canada %%% N2L 3G1", %%% telephone = "(519) 885-1211", %%% FAX = "(519) 885-1208", %%% checksum = "26323 1654 5143 37417", %%% email = "gnpaulle@bluebox.uwaterloo.ca", %%% codetable = "ISO/ASCII", %%% keywords = "", %%% supported = "yes", %%% abstract = "A BibTeX bibliography style that follows the %%% `B' reference style of the 13th Edition of %%% the Chicago Manual of Style. A detailed %%% feature list is given below.", %%% docstring = "The checksum field above contains a CRC-16 %%% checksum as the first value, followed by the %%% equivalent of the standard UNIX wc (word %%% count) utility output of lines, words, and %%% characters. This is produced by Robert %%% Solovay's checksum utility.", %%% } %%% ==================================================================== % % "Chicago" BibTeX style, chicago.bst % =================================== % % BibTeX `chicago' style file for BibTeX version 0.99c, LaTeX version 2.09 % Place it in a file called chicago.bst in the BibTeX search path. % You need to include chicago.sty as a \documentstyle option. % (Placing it in the same directory as the LaTeX document should also work.) % This "chicago" style is based on newapa.bst (American Psych. Assoc.) % found at ymir.claremont.edu. % % Citation format: (author-last-name year) % (author-last-name and author-last-name year) % (author-last-name, author-last-name, and author-last-name year) % (author-last-name et al. year) % (author-last-name) % author-last-name (year) % (author-last-name and author-last-name) % (author-last-name et al.) % (year) or (year,year) % year or year,year % % Reference list ordering: alphabetical by author or whatever passes % for author in the absence of one. % % This BibTeX style has support for abbreviated author lists and for % year-only citations. This is done by having the citations % actually look like % % \citeauthoryear{full-author-info}{abbrev-author-info}{year} % % The LaTeX style has to have the following (or similar) % % \let\@internalcite\cite % \def\fullcite{\def\citeauthoryear##1##2##3{##1, ##3}\@internalcite} % \def\fullciteA{\def\citeauthoryear##1##2##3{##1}\@internalcite} % \def\shortcite{\def\citeauthoryear##1##2##3{##2, ##3}\@internalcite} % \def\shortciteA{\def\citeauthoryear##1##2##3{##2}\@internalcite} % \def\citeyear{\def\citeauthoryear##1##2##3{##3}\@internalcite} % % These TeX macro definitions are found in chicago.sty. Additional % commands to manipulate different components of a citation can be defined % so that, for example, you can list author's names without parentheses % if using a citation as a noun or object in a sentence. % % This file was originally copied from newapa.bst at ymir.claremont.edu. % % Features of chicago.bst: % ======================= % % - full names used in citations, but abbreviated citations are available % (see above) % - if an entry has a "month", then the month and year are also printed % as part of that bibitem. % - all conjunctions use "and" instead of "\&" % - major modification from Chicago Manual of Style (13th ed.) is that % only the first author in a reference appears last name first- % additional authors appear as J. Q. Public. % - pages are listed as "pp. xx-xx" in all entry types except % article entries. % - book, inbook, and manual use "location: publisher" (or organization) % for address and publisher. All other types list publishers separately. % - "pp." are used to identify page numbers for all entry types except % articles. % - organization is used as a citation label if neither author nor editor % is present (for manuals). % - "et al." is used for long author and editor lists, or when "others" % is used. % % Modifications and bug fixes from newapa.bst: % =========================================== % % - added month, year to bib entries if month is present % - fixed bug with In proceedings, added necessary comma after title % - all conjunctions changed to "and" from "\&" % - fixed bug with author labels in my.full.label: "et al." now is % generated when "others" is an author name % - major modification from Chicago Manual of Style (13th ed.) is that % only the first author in a reference appears last name first- % additional authors appear as J. Q. Public. % - pages are listed as "pp. xx-xx" in all entry types except % article entries. Unnecessary (IMHO) "()" around page numbers % were removed, and page numbers now don't end with a period. % - created chicago.sty for use with this bibstyle (required). % - fixed bugs in FUNCTION {format.vol.num.pages} for missing volume, % number, and /or pages. Renamed to format.jour.vol. % - fixed bug in formatting booktitles: additional period an error if % book has a volume. % - fixed bug: editors usually given redundant period before next clause % (format.editors.dot) removed. % - added label support for organizations, if both author and editor % are missing (from alpha.bst). If organization is too long, then % the key field is used for abbreviated citations. % - In proceedings or books of several volumes, no comma was written % between the "Volume x" and the page numbers (this was intentional % in newapa.bst). Fixed. % - Some journals may not have volumes/numbers, only month/year (eg. % IEEE Computer). Fixed bug in article style that assumed volume/number % was always present. % % Original documentation for newapa.sty: % ===================================== % % This version was made by modifying the master file made by % Oren Patashnik (PATASHNIK@SCORE.STANFORD.EDU), and the 'named' BibTeX % style of Peter F. Patel-Schneider. % % Copyright (C) 1985, all rights reserved. % Copying of this file is authorized only if either % (1) you make absolutely no changes to your copy, including name, or % (2) if you do make changes, you name it something other than 'newapa.bst'. % There are undoubtably bugs in this style. If you make bug fixes, % improvements, etc. please let me know. My e-mail address is: % spencer@cgrg.ohio.state.edu or 71160.3141@compuserve.com % % This style was made from 'plain.bst', 'named.bst', and 'apalike.bst', % with lots of tweaking to make it look like APA style, along with tips % from Young Ryu and Brian Reiser's modifications of 'apalike.bst'. ENTRY { address author booktitle chapter edition editor fjournal howpublished institution journal key month note number organization pages publisher school series title type volume year } {} { label.year extra.label sort.year sort.label } INTEGERS { output.state before.all mid.sentence after.sentence after.block } FUNCTION {init.state.consts} { #0 'before.all := #1 'mid.sentence := #2 'after.sentence := #3 'after.block := } STRINGS { s t u } FUNCTION {output.nonnull} { 's := output.state mid.sentence = { ", " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } % Use a colon to separate output. Used only for address/publisher % combination in book/inbook types, address/institution for manuals, % and organization:publisher for proceedings (inproceedings). % FUNCTION {output.nonnull.colon} { 's := output.state mid.sentence = { ": " * write$ } { output.state after.block = { add.period$ write$ newline$ "\newblock " write$ } { output.state before.all = 'write$ { add.period$ " " * write$ } if$ } if$ mid.sentence 'output.state := } if$ s } FUNCTION {output} { duplicate$ empty$ 'pop$ 'output.nonnull if$ } FUNCTION {output.colon} { duplicate$ empty$ 'pop$ 'output.nonnull.colon if$ } FUNCTION {output.check} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull if$ } FUNCTION {output.check.colon} { 't := duplicate$ empty$ { pop$ "empty " t * " in " * cite$ * warning$ } 'output.nonnull.colon if$ } FUNCTION {output.year.check} { year empty$ { "empty year in " cite$ * warning$ } { write$ " (" year * extra.label * month empty$ { ")" * } { ", " * month * ")" * } if$ mid.sentence 'output.state := } if$ } FUNCTION {fin.entry} { add.period$ write$ newline$ } FUNCTION {new.block} { output.state before.all = 'skip$ { after.block 'output.state := } if$ } FUNCTION {new.sentence} { output.state after.block = 'skip$ { output.state before.all = 'skip$ { after.sentence 'output.state := } if$ } if$ } FUNCTION {not} { { #0 } { #1 } if$ } FUNCTION {and} { 'skip$ { pop$ #0 } if$ } FUNCTION {or} { { pop$ #1 } 'skip$ if$ } FUNCTION {new.block.checka} { empty$ 'skip$ 'new.block if$ } FUNCTION {new.block.checkb} { empty$ swap$ empty$ and 'skip$ 'new.block if$ } FUNCTION {new.sentence.checka} { empty$ 'skip$ 'new.sentence if$ } FUNCTION {new.sentence.checkb} { empty$ swap$ empty$ and 'skip$ 'new.sentence if$ } FUNCTION {field.or.null} { duplicate$ empty$ { pop$ "" } 'skip$ if$ } % % Emphasize the top string on the stack. % FUNCTION {emphasize} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "}" * } if$ } % % Emphasize the top string on the stack, but add a trailing space. % FUNCTION {emphasize.space} { duplicate$ empty$ { pop$ "" } { "{\em " swap$ * "\/}" * } if$ } INTEGERS { nameptr namesleft numnames } % % Format bibliographical entries with the first author last name first, % and subsequent authors with initials followed by last name. % All names are formatted in this routine. % FUNCTION {format.names} { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { nameptr #1 = {s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := } {s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := } if$ nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % from Chicago Manual of Style if$ } if$ } 't if$ s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := "\protect \index {" * t * "|hyperemph}" * nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {my.full.label} { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { s nameptr "{vv~}{ll}" format.name$ 't := % get the next name nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % from Chicago Manual of Style if$ } if$ } 't if$ s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ 't := "\protect \index {" * t * "|bold}" * nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {format.names.fml} % % Format names in "familiar" format, with first initial followed by % last name. Like format.names, ALL names are formatted. % { 's := #1 'nameptr := % nameptr = 1; s num.names$ 'numnames := % numnames = num.name$(s); numnames 'namesleft := { namesleft #0 > } { s nameptr "{f.~}{vv~}{ll}{, jj}" format.name$ 't := nameptr #1 > { namesleft #1 > { ", " * t * } { numnames #2 > { "," * } 'skip$ if$ t "others" = { " et~al." * } { " and " * t * } % { " \& " * t * } if$ } if$ } 't if$ nameptr #1 + 'nameptr := % nameptr += 1; namesleft #1 - 'namesleft := % namesleft =- 1; } while$ } FUNCTION {format.authors} { author empty$ { "" } { author format.names } if$ } FUNCTION {format.key} { empty$ { key field.or.null } { "" } if$ } % % Format editor names for use in the "in" types: inbook, incollection, % inproceedings: first initial, then last names. When editors are the % LABEL for an entry, then format.editor is used which lists editors % by last name first. % FUNCTION {format.editors.fml} { editor empty$ { "" } { editor format.names.fml editor num.names$ #1 > { " (Eds.)" * } { " (Ed.)" * } if$ } if$ } % % Format editor names for use in labels, last names first. % FUNCTION {format.editors} { editor empty$ { "" } { editor format.names editor num.names$ #1 > { " (Eds.)" * } { " (Ed.)" * } if$ } if$ } FUNCTION {format.title} { title empty$ { "" } { title "t" change.case$ } if$ } % Note that the APA style requres case changes % in article titles. The following does not % change cases. If you perfer it, uncomment the % following and comment out the above. %FUNCTION {format.title} %{ title empty$ % { "" } % { title } % if$ %} FUNCTION {n.dashify} { 't := "" { t empty$ not } { t #1 #1 substring$ "-" = { t #1 #2 substring$ "--" = not { "--" * t #2 global.max$ substring$ 't := } { { t #1 #1 substring$ "-" = } { "-" * t #2 global.max$ substring$ 't := } while$ } if$ } { t #1 #1 substring$ * t #2 global.max$ substring$ 't := } if$ } while$ } FUNCTION {format.btitle} { edition empty$ { title emphasize } { title empty$ { title emphasize } { volume empty$ % gnp - check for volume, then don't need period { "{\em " title * "\/} (" * edition * " ed.)" * "." * } { "{\em " title * "\/} (" * edition * " ed.)" * } if$ } if$ } if$ } FUNCTION {format.emphasize.booktitle} { edition empty$ { booktitle emphasize } { booktitle empty$ { booktitle emphasize } { volume empty$ % gnp - extra period an error if book has a volume { "{\em " booktitle * "\/} (" * edition * " ed.)" * "." *} { "{\em " booktitle * "\/} (" * edition * " ed.)" * } if$ } if$ } if$ } FUNCTION {tie.or.space.connect} { duplicate$ text.length$ #3 < { "~" } { " " } if$ swap$ * * } FUNCTION {either.or.check} { empty$ 'pop$ { "can't use both " swap$ * " fields in " * cite$ * warning$ } if$ } FUNCTION {format.bvolume} { volume empty$ { "" } { "Volume" volume tie.or.space.connect % gnp - changed to mixed case series empty$ 'skip$ { " of " * series emphasize * } if$ "volume and number" number either.or.check } if$ } FUNCTION {format.number.series} { volume empty$ { number empty$ { series field.or.null } { output.state mid.sentence = { "Number" } % gnp - changed to mixed case always { "Number" } if$ number tie.or.space.connect series empty$ { "there's a number but no series in " cite$ * warning$ } { " in " * series * } if$ } if$ } { "" } if$ } INTEGERS { multiresult } FUNCTION {multi.page.check} { 't := #0 'multiresult := { multiresult not t empty$ not and } { t #1 #1 substring$ duplicate$ "-" = swap$ duplicate$ "," = swap$ "+" = or or { #1 'multiresult := } { t #2 global.max$ substring$ 't := } if$ } while$ multiresult } FUNCTION {format.pages} { pages empty$ { "" } { pages multi.page.check { "pp.\ " pages n.dashify tie.or.space.connect } % gnp - removed () { "pp.\ " pages tie.or.space.connect } if$ } if$ } % By Young (and Spencer) % GNP - fixed bugs with missing volume, number, and/or pages % % Format journal, volume, number, pages for article types. % FUNCTION {format.jour.vol} { fjournal empty$ { journal empty$ { "no journal in " cite$ * warning$ "" } { journal emphasize.space } if$ } { fjournal emphasize.space } if$ number empty$ { volume empty$ { "no number and no volume in " cite$ * warning$ "" * } { "~{\em " * Volume * "}" * } if$ } { volume empty$ {"no volume for " cite$ * warning$ "~(" * number * ")" * } { "~" * volume emphasize.space "(" * number * ")" * * } if$ } if$ pages empty$ {"page numbers missing in " cite$ * warning$ "" * } % gnp - place a null string on the stack for output { duplicate$ empty$ { pop$ format.pages } { ", " * pages n.dashify * } % gnp - removed pp. for articles if$ } if$ } FUNCTION {format.chapter.pages} { chapter empty$ 'format.pages { type empty$ { "Chapter" } % gnp - changed to mixed case { type "t" change.case$ } if$ chapter tie.or.space.connect pages empty$ {"page numbers missing in " cite$ * warning$} % gnp - added check { ", " * format.pages * } if$ } if$ } FUNCTION {format.in.ed.booktitle} { booktitle empty$ { "" } { editor empty$ { "In " format.emphasize.booktitle * } { "In " format.editors.fml * ", " * format.emphasize.booktitle * } if$ } if$ } FUNCTION {format.thesis.type} { type empty$ 'skip$ { pop$ type "t" change.case$ } if$ } FUNCTION {format.tr.number} { type empty$ { "Technical Report" } 'type if$ number empty$ { "t" change.case$ } { number tie.or.space.connect } if$ } FUNCTION {format.article.crossref} { "See" "\citeN{" * crossref * "}" * } FUNCTION {format.crossref.editor} { editor #1 "{vv~}{ll}" format.name$ editor num.names$ duplicate$ #2 > { pop$ " et~al." * } { #2 < 'skip$ { editor #2 "{ff }{vv }{ll}{ jj}" format.name$ "others" = { " et~al." * } { " and " * editor #2 "{vv~}{ll}" format.name$ * } if$ } if$ } if$ } FUNCTION {format.book.crossref} { volume empty$ { "empty volume in " cite$ * "'s crossref of " * crossref * warning$ "In " } { "Volume" volume tie.or.space.connect % gnp - changed to mixed case " of " * } if$ editor empty$ editor field.or.null author field.or.null = or { key empty$ { series empty$ { "need editor, key, or series for " cite$ * " to crossref " * crossref * warning$ "" * } { "{\em " * series * "\/}" * } if$ } { key * } if$ } { format.crossref.editor * } if$ " \citeN{" * crossref * "}" * } FUNCTION {format.incoll.inproc.crossref} { "See" " \citeN{" * crossref * "}" * } % format.lab.names: % % determines "short" names for the abbreviated author information. % "Long" labels are created in calc.label, using the routine my.full.label % to format author and editor fields. % % There are 4 cases for labels. (n=3 in the example) % a) one author Foo % b) one to n Foo, Bar and Baz % c) use of "and others" Foo, Bar et al. % d) more than n Foo et al. % FUNCTION {format.lab.names} { 's := s num.names$ 'numnames := numnames #2 > % change number to number of others allowed before % forcing "et al". { s #1 "{vv~}{ll}" format.name$ "\protect \index {" * s #1 "{vv~}{ll}{, jj}{, f.}" format.name$ * "}" * "\protect\chicagoetal/" * } { numnames #1 - 'namesleft := #2 'nameptr := s #1 "{vv~}{ll}" format.name$ "\protect \index {" * s #1 "{vv~}{ll}{, jj}{, f.}" format.name$ * "}" * { namesleft #0 > } { nameptr numnames = { s nameptr "{ff }{vv }{ll}{ jj}" format.name$ "others" = { "\protect\chicagoetal/" * } { "\protect\chicagoand/" * s nameptr "{vv~}{ll}" format.name$ * "\protect \index {" * s nameptr "{vv~}{ll}{, jj}{, f.}" format.name$ * "}" * } if$ } { ", " * s nameptr "{vv~}{ll}" format.name$ * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } if$ } FUNCTION {author.key.label} { author empty$ { key empty$ { "no key, author in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { author format.lab.names } if$ } FUNCTION {editor.key.label} { editor empty$ { key empty$ { "no key, editor in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } FUNCTION {author.key.organization.label} % % added - gnp. Provide label formatting by organization if author is null. % { author empty$ { organization empty$ { key empty$ { "no key, author or organization in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { organization } if$ } { author format.lab.names } if$ } FUNCTION {editor.key.organization.label} % % added - gnp. Provide label formatting by organization if editor is null. % { editor empty$ { organization empty$ { key empty$ { "no key, editor or organization in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { organization } if$ } { editor format.lab.names } if$ } FUNCTION {author.editor.key.label} { author empty$ { editor empty$ { key empty$ { "no key, author, or editor in " cite$ * warning$ cite$ #1 #3 substring$ } 'key if$ } { editor format.lab.names } if$ } { author format.lab.names } if$ } FUNCTION {calc.label.orig} % % Changed - GNP. See also author.organization.sort, editor.organization.sort % Form label for BibTeX entry. The classification of which fields are used % for which type of entry (book, inbook, etc.) are taken from alpha.bst. % The change here from newapa is to also include organization as a % citation label if author or editor is missing. % { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.organization.label { type$ "manual" = 'author.key.organization.label 'author.key.label if$ } if$ } if$ author empty$ % generate the full label citation information. { editor empty$ { organization empty$ { "no author, editor, or organization in " cite$ * warning$ "??" } { organization } if$ } { editor my.full.label } if$ } { author.key.label } if$ % leave label on the stack, to be popped when required. "}{" * swap$ * % year field.or.null purify$ #-1 #4 substring$ * % % save the year for sort processing afterwards (adding a, b, c, etc.) % year field.or.null purify$ #-1 #4 substring$ 'label.year := } FUNCTION {calc.label} % % Changed - GNP. See also author.organization.sort, editor.organization.sort % Form label for BibTeX entry. The classification of which fields are used % for which type of entry (book, inbook, etc.) are taken from alpha.bst. % The change here from newapa is to also include organization as a % citation label if author or editor is missing. % { type$ "book" = type$ "inbook" = or 'author.editor.key.label { type$ "proceedings" = 'editor.key.organization.label { type$ "manual" = 'author.key.organization.label 'author.key.label if$ } if$ } if$ author empty$ % generate the full label citation information. { editor empty$ { organization empty$ { "no author, editor, or organization in " cite$ * warning$ "??" } { organization } if$ } { editor my.full.label } if$ } { author my.full.label } if$ % leave label on the stack, to be popped when required. "}{" * swap$ * "}{" * title * "}{" * % year field.or.null purify$ #-1 #4 substring$ * % % save the year for sort processing afterwards (adding a, b, c, etc.) % year field.or.null purify$ #-1 #4 substring$ 'label.year := } FUNCTION {output.bibitem} { newline$ "\bibitem[\protect\citeauthortitleyear{" write$ calc.label write$ sort.year write$ "}]{" write$ cite$ write$ "}" write$ newline$ "" before.all 'output.state := } FUNCTION {article} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.jour.vol output } { format.article.crossref output.nonnull format.pages output } if$ new.block note output fin.entry } FUNCTION {book} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ output.year.check % added new.block format.btitle "title" output.check crossref missing$ { format.bvolume output new.block format.number.series output new.sentence address output publisher "publisher" output.check.colon } { new.block format.book.crossref output.nonnull } if$ new.block note output fin.entry } FUNCTION {booklet} { output.bibitem format.authors output author format.key output % added output.year.check % added new.block format.title "title" output.check new.block howpublished output address output new.block note output fin.entry } FUNCTION {inbook} { output.bibitem author empty$ { format.editors "author and editor" output.check } { format.authors output.nonnull crossref missing$ { "author and editor" editor either.or.check } 'skip$ if$ } if$ output.year.check % added new.block format.btitle "title" output.check crossref missing$ { format.bvolume output format.chapter.pages "chapter and pages" output.check new.block format.number.series output new.sentence address output publisher "publisher" output.check.colon } { format.chapter.pages "chapter and pages" output.check new.block format.book.crossref output.nonnull } if$ new.block note output fin.entry } FUNCTION {incollection} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.bvolume output format.number.series output format.chapter.pages output % gnp - was special.output.nonnull % left out comma before page numbers new.sentence address output publisher "publisher" output.check.colon } { format.incoll.inproc.crossref output.nonnull format.chapter.pages output } if$ new.block note output fin.entry } FUNCTION {inproceedings} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block crossref missing$ { format.in.ed.booktitle "booktitle" output.check format.bvolume output format.number.series output address output format.pages output new.sentence organization output publisher output.colon } { format.incoll.inproc.crossref output.nonnull format.pages output } if$ new.block note output fin.entry } FUNCTION {conference} { inproceedings } FUNCTION {manual} { output.bibitem author empty$ { editor empty$ { organization "organization" output.check organization format.key output } % if all else fails, use key { format.editors "author and editor" output.check } if$ } { format.authors output.nonnull } if$ output.year.check % added new.block format.btitle "title" output.check organization address new.block.checkb % Reversed the order of "address" and "organization", added the ":". address output organization "organization" output.check.colon % address output % ":" output % organization output new.block note output fin.entry } FUNCTION {mastersthesis} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block "Master's thesis" format.thesis.type output.nonnull school "school" output.check address output new.block note output fin.entry } FUNCTION {misc} { output.bibitem format.authors output author format.key output % added output.year.check % added title howpublished new.block.checkb format.title output new.block howpublished output new.block note output fin.entry } FUNCTION {phdthesis} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.btitle "title" output.check new.block "Ph.\ D. thesis" format.thesis.type output.nonnull school "school" output.check address output new.block note output fin.entry } FUNCTION {proceedings} { output.bibitem editor empty$ { organization output organization format.key output } % gnp - changed from author format.key { format.editors output.nonnull } if$ % author format.key output % gnp - removed (should be either % editor or organization output.year.check % added (newapa) new.block format.btitle "title" output.check format.bvolume output format.number.series output address output new.sentence organization output publisher output.colon new.block note output fin.entry } FUNCTION {techreport} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block format.tr.number output.nonnull institution "institution" output.check address output new.block note output fin.entry } FUNCTION {unpublished} { output.bibitem format.authors "author" output.check author format.key output % added output.year.check % added new.block format.title "title" output.check new.block note "note" output.check fin.entry } FUNCTION {default.type} { misc } MACRO {jan} {"January"} MACRO {feb} {"February"} MACRO {mar} {"March"} MACRO {apr} {"April"} MACRO {may} {"May"} MACRO {jun} {"June"} MACRO {jul} {"July"} MACRO {aug} {"August"} MACRO {sep} {"September"} MACRO {oct} {"October"} MACRO {nov} {"November"} MACRO {dec} {"December"} MACRO {acmcs} {"ACM Computing Surveys"} MACRO {acta} {"Acta Informatica"} MACRO {ai} {"Artificial Intelligence"} MACRO {cacm} {"Communications of the ACM"} MACRO {ibmjrd} {"IBM Journal of Research and Development"} MACRO {ibmsj} {"IBM Systems Journal"} MACRO {ieeese} {"IEEE Transactions on Software Engineering"} MACRO {ieeetc} {"IEEE Transactions on Computers"} MACRO {ieeetcad} {"IEEE Transactions on Computer-Aided Design of Integrated Circuits"} MACRO {ipl} {"Information Processing Letters"} MACRO {jacm} {"Journal of the ACM"} MACRO {jcss} {"Journal of Computer and System Sciences"} MACRO {scp} {"Science of Computer Programming"} MACRO {sicomp} {"SIAM Journal on Computing"} MACRO {tocs} {"ACM Transactions on Computer Systems"} MACRO {tods} {"ACM Transactions on Database Systems"} MACRO {tog} {"ACM Transactions on Graphics"} MACRO {toms} {"ACM Transactions on Mathematical Software"} MACRO {toois} {"ACM Transactions on Office Information Systems"} MACRO {toplas} {"ACM Transactions on Programming Languages and Systems"} MACRO {tcs} {"Theoretical Computer Science"} READ FUNCTION {sortify} { purify$ "l" change.case$ } INTEGERS { len } FUNCTION {chop.word} { 's := 'len := s #1 len substring$ = { s len #1 + global.max$ substring$ } 's if$ } FUNCTION {sort.format.names} { 's := #1 'nameptr := "" s num.names$ 'numnames := numnames 'namesleft := { namesleft #0 > } { nameptr #2 = { year field.or.null purify$ #-1 #4 substring$ * } 'skip$ if$ nameptr #1 > { " " * } 'skip$ if$ s nameptr "{vv{ } }{ll{ }}{ f{ }}{ jj{ }}" format.name$ 't := nameptr numnames = t "others" = and { " et~al" * } { t sortify * } if$ nameptr #1 + 'nameptr := namesleft #1 - 'namesleft := } while$ } FUNCTION {sort.format.title} { 't := "A " #2 "An " #3 "The " #4 t chop.word chop.word chop.word sortify #1 global.max$ substring$ } FUNCTION {author.sort} { author empty$ { key empty$ { "to sort, need author or key in " cite$ * warning$ "" } { key sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.sort} { editor empty$ { key empty$ { "to sort, need editor or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } FUNCTION {author.editor.sort} { author empty$ { "missing author in " cite$ * warning$ editor empty$ { key empty$ { "to sort, need author, editor, or key in " cite$ * warning$ "" } { key sortify } if$ } { editor sort.format.names } if$ } { author sort.format.names } if$ } FUNCTION {author.organization.sort} % % added - GNP. Stack author or organization for sorting (from alpha.bst). % Unlike alpha.bst, we need entire names, not abbreviations % { author empty$ { organization empty$ { key empty$ { "to sort, need author, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { organization sortify } if$ } { author sort.format.names } if$ } FUNCTION {editor.organization.sort} % % added - GNP. Stack editor or organization for sorting (from alpha.bst). % Unlike alpha.bst, we need entire names, not abbreviations % { editor empty$ { organization empty$ { key empty$ { "to sort, need editor, organization, or key in " cite$ * warning$ "" } { key sortify } if$ } { organization sortify } if$ } { editor sort.format.names } if$ } FUNCTION {presort} % % Presort creates the bibentry's label via a call to calc.label, and then % sorts the entries based on entry type. Chicago.bst adds support for % including organizations as the sort key; the following is stolen from % alpha.bst. % { %calc.label sortify % recalculate bibitem label %year field.or.null purify$ #-1 #4 substring$ * % add year %duplicate$ warning$ %" " %* type$ "book" = type$ "inbook" = or 'author.editor.sort { type$ "proceedings" = 'editor.organization.sort { type$ "manual" = 'author.organization.sort 'author.sort if$ } if$ } if$ #1 entry.max$ substring$ % added for newapa 'sort.label := % added for newapa sort.label % added for newapa %* " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {presort} SORT % by label, year, author/editor, title STRINGS { last.label next.extra } INTEGERS { last.extra.num } FUNCTION {initialize.extra.label.stuff} { #0 int.to.chr$ 'last.label := "" 'next.extra := #0 'last.extra.num := } FUNCTION {forward.pass} % % Pass through all entries, comparing current entry to last one. % Need to concatenate year to the stack (done by calc.label) to determine % if two entries are the same (see presort) % { last.label calc.label.orig year field.or.null purify$ #-1 #4 substring$ * % add year #1 entry.max$ substring$ = % are they equal? { last.extra.num #1 + 'last.extra.num := last.extra.num int.to.chr$ 'extra.label := } { "a" chr.to.int$ 'last.extra.num := "" 'extra.label := calc.label.orig year field.or.null purify$ #-1 #4 substring$ * % add year #1 entry.max$ substring$ 'last.label := % assign to last.label } if$ } FUNCTION {reverse.pass} { next.extra "b" = { "a" 'extra.label := } 'skip$ if$ label.year extra.label * 'sort.year := extra.label 'next.extra := } EXECUTE {initialize.extra.label.stuff} ITERATE {forward.pass} REVERSE {reverse.pass} FUNCTION {bib.sort.order} { sort.label " " * year field.or.null sortify * " " * title field.or.null sort.format.title * #1 entry.max$ substring$ 'sort.key$ := } ITERATE {bib.sort.order} SORT % by sort.label, year, title --- giving final bib. order. FUNCTION {begin.bib} { preamble$ empty$ 'skip$ { preamble$ write$ newline$ } if$ "\begin{thebibliography}{}" write$ newline$ } EXECUTE {begin.bib} EXECUTE {init.state.consts} ITERATE {call.type$} FUNCTION {end.bib} { newline$ "\end{thebibliography}" write$ newline$ } EXECUTE {end.bib} isl-0.16.1/doc/CodingStyle0000664000175000017500000000375312645737060012247 00000000000000This document describes some aspects of the coding style of isl, which is similar to that of the linux kernel and git. The general rule is to use the same style as that of the surrounding code. More specific rules: - every line should have at most 80 columns - use tabs for indentation, where a tab counts for 8 characters - use single spaces around binary operators such as '+', '-', '=', '!=' - no space after unary operators such as '!' - use a single space after a comma and a semicolon (except at the end of a line) - no space between function name and arguments - use a single space after control keywords such as if, for and while - use a single space between the type of a cast and the value that is being cast - no whitespace at the end of a line - opening brace of a function is placed on a new line - opening brace of other blocks stays on the same line - the body of a control statement is placed on the next line(s) - an else appears on the same line as the closing brace of the then branch, if there is such a closing brace - if either the then or the else branch of an if has braces, then they both have braces - no parentheses around argument of return keyword - use only C style comments (/* ... */) - no comments inside function bodies; if some part of a function deserves additional comments, then extract it out into a separate function first - no #ifs inside function bodies - variables are declared at the start of a block, before any other statements There are some exceptions to the general rule of using the same style as the surrounding code, most notably when the surrounding code is very old. In particular, an "isl_space" used to be called "isl_dim" and some variables of this type are still called "dim" or some variant thereof. New variables of this type should be called "space" or a more specific name. Some old functions do not have memory management annotations yet. All new functions should have memory management annotations, whenever appropriate isl-0.16.1/doc/manual.tex0000664000175000017500000000365212645737060012075 00000000000000\documentclass{report} \usepackage[plainpages=false,pdfpagelabels,breaklinks,pagebackref]{hyperref} \usepackage{amsmath} \usepackage{amssymb} \usepackage{txfonts} \usepackage{chicago} \usepackage{aliascnt} \usepackage{tikz} \usepackage{calc} \usepackage[ruled]{algorithm2e} \usetikzlibrary{matrix,fit,backgrounds,decorations.pathmorphing,positioning} \usepackage{listings} \lstset{basicstyle=\tt,flexiblecolumns=false} \def\vec#1{\mathchoice{\mbox{\boldmath$\displaystyle\bf#1$}} {\mbox{\boldmath$\textstyle\bf#1$}} {\mbox{\boldmath$\scriptstyle\bf#1$}} {\mbox{\boldmath$\scriptscriptstyle\bf#1$}}} \providecommand{\fract}[1]{\left\{#1\right\}} \providecommand{\floor}[1]{\left\lfloor#1\right\rfloor} \providecommand{\ceil}[1]{\left\lceil#1\right\rceil} \def\sp#1#2{\langle #1, #2 \rangle} \def\spv#1#2{\langle\vec #1,\vec #2\rangle} \newtheorem{theorem}{Theorem} \newaliascnt{example}{theorem} \newtheorem{example}[example]{Example} \newaliascnt{def}{theorem} \newtheorem{definition}[def]{Definition} \aliascntresetthe{example} \aliascntresetthe{def} \numberwithin{theorem}{section} \numberwithin{def}{section} \numberwithin{example}{section} \newcommand{\algocflineautorefname}{Algorithm} \newcommand{\exampleautorefname}{Example} \newcommand{\lstnumberautorefname}{Line} \renewcommand{\sectionautorefname}{Section} \renewcommand{\subsectionautorefname}{Section} \def\Z{\mathbb{Z}} \def\Q{\mathbb{Q}} \def\pdom{\mathop{\rm pdom}\nolimits} \def\domain{\mathop{\rm dom}\nolimits} \def\range{\mathop{\rm ran}\nolimits} \def\identity{\mathop{\rm Id}\nolimits} \def\diff{\mathop{\Delta}\nolimits} \providecommand{\floor}[1]{\left\lfloor#1\right\rfloor} \begin{document} \title{Integer Set Library: Manual\\ \small Version: \input{version} } \author{Sven Verdoolaege} \maketitle \tableofcontents \chapter{User Manual} \input{user} \chapter{Implementation Details} \input{implementation} \bibliography{isl} \bibliographystyle{chicago} \end{document} isl-0.16.1/doc/Makefile.am0000664000175000017500000000127612645737060012132 00000000000000 CLEANFILES = \ manual.toc \ manual.bbl \ version.tex \ user.tex \ manual.pdf \ manual.aux \ manual.out \ manual.blg \ manual.log \ manual.brf if GENERATE_DOC export TEXINPUTS := $(srcdir):$(TEXINPUTS) export BIBINPUTS := $(srcdir):$(BIBINPUTS) export BSTINPUTS := $(srcdir):$(BSTINPUTS) user.tex: user.pod $(PERL) $(srcdir)/mypod2latex $< $@ manual.pdf: manual.tex user.tex $(srcdir)/implementation.tex (cd ..; echo "@GIT_HEAD_VERSION@") > version.tex $(PDFLATEX) $< bibtex manual $(PDFLATEX) $< $(PDFLATEX) $< user.html: user.pod (cd ..; echo "@GIT_HEAD_VERSION@") > version $(POD2HTML) --infile=$< --outfile=$@ --title="Integer Set Library: Manual [version `cat version`]" endif isl-0.16.1/doc/manual.pdf0000644000175000017500000171154312645755215012054 00000000000000%PDF-1.5 %ĐÔĹŘ 5 0 obj << /Type /ObjStm /N 100 /First 807 /Length 1172 /Filter /FlateDecode >> stream xÚťVË’Ô8Ľ÷WÔ.`=-EDĚ`–Y¦á´Ť[ô(ÖŻí…áë7ĺ¶ç°má۲¬ĚŞĘJË’”‘!‘‘%)‰qĘ51A–Ă€b9FńŚĺÄF¸HâBn¸ÂČVqى[ś„ĆO°9†$Óś¤b$3’Ćd¤2“*©6R‘@RYXŇ 8i” ŤčJ“™Ę)g†0‘+…e”çX&ÉdvŁŽŐ† žk‹‹%<¶™¦!s”f&s˛VD,Ś JÍ4îQ>ËŘĆ(\TAí I‹+(Q=cÖ ŚC›ôAČ‹q„e˘(Á2P -6,ĂŤ0˘j&yŠV)%~2ĺŐ™‚Bqü%é•Lôx¬R^ ©l€Y 0§0zěÚ€ jłz"bfL Ě&ݡĚč”HMJ\¦¶ Ě %ĚBp–¸¬1†¶đ :$ x–ŇH­ÎtĘČíá ´źÉ”xŽfĎ$ąŇ çcv0 ×jĂĐ*Îó1_ŘĄ lňŃ0.R'Đ2.St4ŤËńeJbÁuifĹP.čŰ0hÄUžęłNňŁ{\Ă3ŁyµËĹ ő äůčk0ç"• ćd)ÔŤ놵…ÚĽzE/ŻéĺEłmčĺ9=+n]Űűř‚=§×Ż7Ď>u>ŇĄ«W>˙amç‹>4ő 6Ż~W÷±Ů ăěO–7Ź3ćÔ˙|uqGďꢩZׇ›ŇÓŮ­«÷ľ;“đďCáëÎ[)ćěşŢ•Ą[‘ťx¨čC_bSQëizŠľmşĐ7ńn‘kĘô¬©*°„Ç”é&;Z¬ĽŘďŃ‘kßÓűpÝbt9Wré+äšzéöľňużäsĚĐW†ďk„“łŘ}?Äš¶wíO»ř3U÷ٕÊŐę°täę}ô1—‘ú€|cé-°e¨÷‹¨|ŇaŃ—ŕăr 3ĄŘşbEAvrrS¸’VbX6™*z_ďéO˙•~Cö`ô6MéwX&Ż\5ˇîW,źLňÇP+ÜżíĐŹÉ}z —“[®bÓú؇5ŇN6ůTăő˘€­UarĘiřeäd­Źż ťÝşĘóÉ6']×!ţőäbtw+ “S>c®YńđÉ—®ŹaŤĄůäŠÓf¨wawĽ ľđ_CçéŻÁuˇmĘ»ş©°üůżŹáÜݰŇY|rÖ•‹®ň)Uú Łřoô¦Ş© ǶćŮ`~ëwѱѷaÚŕ×íŇjŢĄŻ p řnŁ_”LÍ[ôąo}Ťí©đtR»ň® ËPń$ŕň>¨ć]úäzKľ^ˇĚôť´mŠUvÖłˇ+˙Ća®ťDmęt׹Ş-ý"JÚE„8´ u¨Â÷ĺ°ň’[ÎwáęE¸z/š>ô?AÍçłůăśI_óŰÎ}ďByä$Áf“żMŃ®C Go‡˛<¶ZüđFÍçěÂ{LVKvăŹO`+Ď”üᤵĹí|HÓ1áotéűŰf·źżhĆŁŇŮ6Ô˙‡ŰÝÎ endstream endobj 273 0 obj << /Length 215 /Filter /FlateDecode >> stream xÚ…±N1 †÷{ ʉDLśÄiұ *± †C ŐI§;)-H}{šć`a`ňżüź?[Ă4> stream xÚĺZKwś6ÝűW°„TBO–µŹÓşÇnÜtŇMÚ…Â(cťň:š:żľx&žłŠ Y‰ŁA:Üű˝î' v~ş~ĽÜ\üđ†Ó Ĺ ă ›OD(a”„±„ l¶Á‡đŞ®:Yumô×ć—aA–d4Ąö}Ä+†7aC@řľ•:ŠSÂ;Qő˘0Ď4,Dn Ě÷¶€8É0b“ŚżO2ědÖßTť®·}Ţ©şŠbhجk0¬LV >Ä©ĺΦi’Áç4 D™÷ĂK‘˙ý9‚ z먿©ňşlD§>ŇÍ\=j'Ű(Î8y-¸â`t–zűߪ\V­ů~ŽÁ*M?O;ś_űšBĄíDQ*ůn:*h •C˘l`|Ňuéžş+;Őą-›şU]­Ł3ôzÝ`‹ďŞ.Ë™z†ŐÎh—Pm&€/— ř©L0áÂO•@Fćkwciů]z ÝŞŹZXópBWĺ×Ů żž2%žüúN–—úş+v˛4eŰĐ‚ČňŔ>óo<ů÷MĄ:% őĹ{5çŮâí í,ł ĎÁ;ŮőÚGô&â |lla§Ż„Št– ě©ř#‚†˘č-áU×»sÉ!ž“$[ç%˘ňşđťtĺŔĚs —žÎ‚§üµÖµ/?ř…Şv6DřŇÍ˙? ě•6¦Ę­©ęOR©Ť˝1&«Ś6ë|ڇFäCôŤ”Ü Âg Éôç䉚ŃuĐ€đ, ¦äĆĚjf-MR´ůÁ2ń«ŚR~žt扊~qd&t0MëÓČü čilŮ‹¤‹c1ś‡:÷µ˛gU1βő+<_ rĽĽé«±é#d•eĎg=Ç8húî+ÇŰwĂ$Ąl© Đ32ńa˘ëFęNÉőĘ6/“Ť”Řx_‰±s~kh™’;EKĎĎĎřKu=Ď–Űž"Vp7w¸7ˇÔÇÁČ–“ůr9đ·ŞíůBľ‡câÓôěź1y=řcŰÖą2Î`…ŕ?öÜŃź ­ĹŁŐF.€ůF)őJŃťŞ­XŰĆ‘¸jÇW©——w˘Ójh“Ň•srƬ—–—u_m #Đ { kÇ{%s×E){}g§~ëE«šşx¬ęR‰Â/ô×ÜŠŘ~K€`Â9<ĚinݱuŮN,M—Ďy|€xźyŻcďmfZ”ŇzĄcÁG®v×%˙şÉëŞ/}q3ąëŰrs*gÝţűsośŕAnőh꫺lÔţµÖÓ%Đë‘ďÇ ”éwHp‚Sčm>ţźb˙ŐëÍĹ0ÁŔp endstream endobj 352 0 obj << /Length 1332 /Filter /FlateDecode >> stream xÚĺZÉrŰF˝ó+p$Íľm±«+sRů€€# %, ĆRľ> `qA9bŮ$}"8Π_żî~Ó#ěÍ<ě]Ť°űüe2:ąäÚ3ČH*˝É˝GAőŁ Q&ĽÉÔ»$ńB1ßFvşH¬PÇź‰qamé’ë1ňsŕăËäc‡‚w ŁDőqě„ #V` †s;·ŮÔf‘â4 “ç2Öd˛Ô&łuĎÇŮĚ”Ŕäě7ŕ ř Üápz;i}~e3[„Uśg~`>\Ű78PŠ á›H°×TźĎ“8jě®éÎĚÁ2á[‘˘x#A¬%; P3íäŇĐ•ĚĘŇšŔďšYq™4K]LFŤęQ쏔‘ž0 IaĽ(Ý}ÁŢţřŃĂí}m¦¦l¬ <%Ţíč÷6ŹŻíFáŐ”ÍRÜ˝Ůă°S[qÔâő!«l=<łE;p]ä3’6gk!ĺ~›.†A`×1k‹|şÚčdXÄş¦ŃäÁĚů"LÚ'F@†§vŕ“­rČ7B‘µwŮ1şĘÓĽxní:[ÔéThv,n—0,FżµÁîC¨bźŠńßőwG…?˛Ç,Żżf›ĺćSřTkpWÖ4SßÇ05hp†]v^ä‘-Ë&q1s41ý]Ń•ě&—äeµ ÂauFű­7 PÎúłÜ•˛§jy! Á&6\řę`A xí@¸xšŰ"®(D°áâH‚€ĐAŚCŕs–Ä™Kh·Ďi­už;!n]ĺW”í›…ě ŤoÚäńZĘťĺab˨ s*äQŠÝWáŇĽÂŐŢ †Yo×»ł$/|aÂ'Jo’Çâg‘ÇdH.ľÜ©žĺé|QąđŞu»ZťC}%´rĽĎď]Ó†Żçë™ęş67݉Śbşž"ÖĘâMT;é±§-OÂxÁʬŹZ@4A Ţg ĽĄÖ>{°Ńc‡ÝĹSUh’=ľ™ě5ś’Aşđî >ÂäŤěÚf6HľA†5?k$T×ÇŽł*oˇ+!łYâęW”g0;]~…ł¶ŇKÂţ—…›ťIŁ5tŰÎNe·„*®ůßy¸Zž%§yĆ[gČľ3[ľ-Z#&^»ÔÎ;ýý đÍJŚAd˛Td—6Ł˘íúą“t›=ş$Aö›ćrŕ€!:‰}šő4¨ąD‚w=ŕĎ©ť…}Í{‰ČË_ÄŹ>ÁËBo´M¦{Ž~˝L0UŰ v9úĆŢۇ\W˙ONM| 솥ĚĆRë —1)`I¨¬ë+Żţâb2ú÷Ą4 endstream endobj 206 0 obj << /Type /ObjStm /N 100 /First 866 /Length 2386 /Filter /FlateDecode >> stream xÚ˝Zmo·ţ~ż‚“ĺ‘3|ŚŽe§šĆ°\ ­ŕçÓF>ř´'Ü­ZążľĎp);vdSđHŕî9|83Î Éxe™¬8*˛FE‡†•µ­S–äsT6Č÷¤lÂw˛ĺ™q@ëE^á9ˇ?ˇ?Ĺ^ú°â$ďNqĆďʡqRÎcvg•“qŽ”7čďĽňśä‚ň‚ÇeúĆďžU„ń>ŞňI%÷`U’ĺR)0Zݞ1 AeŚÍň=•#0G«¬ “Yk0côxpXb$1ô6qé ĄŔzđˇ P†Z¦(0  )SZ0”*Á MÍe3@U3{a?t§`†˘gŃ>†fĺĺ!©śˇĚYôZÉŞ`¬Ä‰NaÎĹ“'jy®–?ě^ďÔňL}s¸}{ÖÓf7jҬݷę»ďßüm¸ZM›ęďăűq÷źń VăĄúiu·ąŢüw%˝ż=FÉĎ”^ýn=›ńęč PíÓďçQĎvă4ÜMęőęívXÝ–ćaĎďn†ýćz§ĂŃ!yňó¸ÝŚ:˙p}=LűęlćNř8ÚÝŁ\m‡Ăúáu}ě\ą÷zż›"‰gŰÝáv?赝Gţ8NűÝĺíşAV^Ó=´ë›Ű Č mőô€Ľ‹´ŐîőęýQ:\éĽÖď…Ěó»Őz!ĹŁ#+sΆ50ěDęę•ÚŚÓN°ŽńjűA­wăĂĄ*}ĆůŹZ¸ÚOů(„§wşÜ]Ż6U­Áă«áP–x”^¸çîz?ʬ¶jćÚŞ‰ŃUSźŽęçkl±?o7ﵹľŮÎĦ±~·ş™†ýź´«űjřeŘ#¶Ço:_ČéaŔ»ĺ‹ÍôFz?y˛Xľţp3¨ĺËŐŐ°X–]ÖÉ)=ËWĂaw»µrľ”O? —›Ő÷»;uađ!ŔRĆLo y'ô‹Ą_%˙ëi˙ńĎád" Ó¨˘ń6zĽÝnß|˝/—ľ!Dmq0üşłŘín~łZŠç1/Wx1*š_źßM?śqši.–/°>%\yQĚP>Ţň% Ęů0© 9{ˇ–ŻĹV|Äő ‹.Ç,’Să÷°hůtw uQŽjÁ"'ui“©­­-Ő–këjëkjk[éĄJ/WząŇË•^®ôrĄ—+˝\éĺJ/Wzy¦'‡ňÜÚÚRmą¶®¶ľ¶ˇ¶±¶3=9‹ç÷J×Îtż`}áÓby~űv*ďÝŚďËďwűËa_Xlß,˙˛üqůěBŕ7"”5¤Y” zë­ÓK#(ÎMO8‚r@·§ę+ŞšĘ>(\ÔŃqu_Ôęy{ku0ُ· ¶+Žh4|I—’âśqĐ~¨Ë­}Ç'e;©Lq1iđÄŕ|‡nŔ·¶c<ˇŔA'+CÔÎ{ń8utöî/O:Á!„S¦Ł'Ŕ¦p\8| Mq¤Ĺ_‡©Y⡹l[ŔśBD”t¶{%-vŇqĆ>ňGDäúsĹť·Ávj8ŮŽb›„Ü)$d˘6,ń%Ü$Îz`ó-`¨;CŚ—ŕ›q‘æţŞ€>Ó#qÂŽŔ"¶đ3$đ$€kÓ_e8ÂvF ă“¶ŕ%Łm ß „c% đżpĘs$çZŔ„ţ`°µĹ!ç`hp$ůpąLěަdSN ¬ŞIH©?¸%{»ë<‘XĽ,ą?“5Ó"ą hMúbMw0đGuI™@D¶ät€­‰1¶żń…ł­ÝśD„ńźظ Lă ÍŐ^tĆÁčÉnÂůÔ„¦żőĄ`µ—_DdÓÜš6Ţô7żä˛ö„îÍ tmĽéo ŢTŕ’ą˙żř3>·ń¦ż &Š’#Žp<ĺĽDTŔmĽéoÉÂÝ•śqŞúC8v5ˇéo†%*Ď“/" &‹h’bţvç"".‚kcŚ„¶Mž^;l#ŔHY®[˛Ŕ–ZĹDýí° P]ń;YN*8Ärˇ MCl=ëěR l] RŽ‚ŃiŇęikęĂ:#‰%-+‹ř2{ű‡Ł©Ľ(SęE•­3:ç¦Đ‰\˙€ŇÚ¤ŤÔ]°•Ľs XćhĚ˙Ůp¦.¤ÜöGd,“TĄBÍßvH_zúMúŇ›˙3})ű9}wźÖ«é<ŞiBŞżSMRMRMRMRMRM RĄG•Wz\éqĄÇ•Wz\éqĄÇ•Wz\éąJĎUz®Ňs•ž«ô\Ąç*=WéąJĎĺ®iËy·‰†Ś/ˇš$f„l-é‚LCpTBWʧˇŮfÎÄЦżŤ ŚřYĘĎpěDÖÁ!ľ¦&Îô7jIŻ[#ŔŚŘĐÄ™5x”šä&両ÎÁ"Ä>fÓú»•>#.» ĄŘ ´ %ůN ą>‘NâKÂ=pR Ľ] ”ţzëѤreŇ·Ьř-`úë­÷Ig‰C26 ©ŘLąK˙Í;¸l… 2ă,Řŕärc|źÉĎQG1/ˇ\-AlíéŃzŃ ŢRµ °nćČE¤R¶úš_ű±|’„äćĘ• ¶©rE')Ü—®ÉV~´tőéjF˙´;|ű(·¸x.Ňërˇ×ůbz-_}qc˙Ol endstream endobj 359 0 obj << /Length 2061 /Filter /FlateDecode >> stream xÚµXK“۸ľĎŻŕ‘ŞŚ0xÜŰ®»śŠk“ňä´»ÂH¬P¤†;óďÓ €ŇPC{ěµr 4ű…Żżnf»Śfďnhúýĺţćî­Ő§Dk®˛ű‡Ś Aڶ™˛ś(¦łűmö[ţfďŽďVk®hÎVÜ˙=~&‰±†ág4[Ë‚X&ă˙î'é®]}ú„I"¤ćée@ź0ÂVkF)Íß7C·b6o·c9Tm?.xVBsťľĺśpťü«údAÚgB¬ Z1M2«µ(lîđÇäĂľón»îÝŹ oâv]m:×=ŵ‡¶‹«×TDZvCŐěâVď‡IałŤKťG¶IëíC\®šÁŻĘw>);¶°ÔŁĂŮ:ů¸fŚ*EłiÇfëQ)eů]ˇÜŽY`ĎT*§§L/dÁ.ŠI¦ńQk ^ťC?Čj-µĘď÷ikëű˛«ŽS `:;Ă$’bGŻšäćóŘaýŕžâzŐ¬$Í?­8ÍŰú¦ÁÇŔ5'…)p5>ě5Rä:wđąß‹h7B&˙[őo†ĘŐőS\~Ľ˙N)÷ILŞÜu•ŰÔcTä?×uTW¶‡ă8Lُë|˛ě;8ő¨A7éÜAf-M^¸rŔWvq°v‡=ř_•Q`ě7/aĚ„$ĘžNđ݇.Áؒž` \ĐĂfg¤äńĄ"® ;×äD)ÎýĄB5ZťK§ţ’_|’9× Äß.€BµB<«XĐ©Haě$NŐ=ŚM WWĂS„7†X«ćÇ3ě]8‹]ĽŻUíş¸8´qń,¶äg!˘ßâ§9űŠô…b –’ ÉŮ©=řť[:Ą‚H}‚ἠŃĹ\Ó_TAĘu!ç'TůţśT"ß`QŽĂŮăROW?%ĽB˘% i–hWďÚń>’|¬xŔÁßCŰń©t˝ORXu5u(ZxßV égžéwâČ€$>Ő”ÂĚÝŤÜfÄ3ÂKŔI‡ďMŢÇÉă(É–űö>¬D_uuұq}¨yÜš6(¨’Ú~¨ę:ů+ĺś˙UŹ|޵Î?˘đměI-˛(2‘¶‘‘t‘W‘áˇ;LGÜE&KźĆs@`ďŇg?iěDzô}˙0rĹ˝±ř†§(mc3ş$ÇŤ+˙é𫕆>W?íý¶sȺʜ-ăfh­ř{)®óľtMă—čŽ3 ÔsÂČ›´í»ĄJ˛ĎŰŁ›Ür}tzĚW°Á…ť&ţúÇ±Š™Ć˛N… ŃöYµoJt¦•rďSü3Q+lôŘhʸ¶ÔĹ ‰ř÷6qT|ěÚ´IěnĽ(ň·‹6ŹĹ˝‹‚ť?¶Ý€uϹ̼ĆÎO[ŹŁď<Á˝#†ý±;Ţ&RU1ţSŐW©ĘÓ!bM÷ĺđměşv<&’b`Śš,p\ś7Ě›ętJűa8ţtw·ĂDâ§=Evm»«C‹%P’çÝ;čLë­_ ĎĘ×íń€č_ˇ]Quî~§‰4D&ҵ`Ć1 Ł= ¦§ŃôŔřg×mcDď$8]1â ĘÍÎ÷'峉¦¶§:Č…Ź Řˉ?!J(G§)ýî­ž‘?P†‘3u€sńÉ,xx:·ŢŔ†Đ?a Ă8 T^Llqy"®>nîB)ŤnA rîmý±óĄÂĐe&üŔ ®vĺ´ĽyZ1`dňbƸůŰýÍă )4c™Đĺčą6Drž•‡›ßţ Ů6~đZö92Pf±BęěăÍżâĹfŢ|%%V› ŠótçO3Ë €f?Ąć6ťś÷K†k 7'¨˝oŽŘeą±S~lţë8ŕâK»ş-›ôK0X3HŽâ˘ŕęO áCčŇ‚ęçgŽŻašŹ7Ç&¨=ľ;hmO}čiÔ\Ŕ$ě—@ŁÝ¤ąăč wŹ%HX ťÜ;ŚýRŠ8 ťrĂŘM Ž@;Uóvşa>XK ‰ű•Ĺń~6 K1.†˘€‡ŤO!UŔ©p‡Á>JQ#F.©Q{\é÷íxţ<ţîŞYϞيýĄÓ+#Kmőă2Ć Úóú×ggřúy:›—é+Qâ% ΀%€Ę\Ă-@MŔz…±Ä˙ť±Xqľ,`Gq"Ď#Á"›p," ¤N›čaśŠĄĐA¨MlňyÁ¦dD ~ ›R†g6qjjÚC军8Ü Ő5Ś Ó•săX,/­BšW± ifŚĎ­şív©ż›ç7é0ײP†XuřS±Ăk}xÚY|úJCÂ!¸BlRÚ0Oľ !© b¤ľŠMčąFČď€âŘ6Żb\q[ĄľB Ň,ĚUŞFAš…ËV/; Ü9źqc¶–ŚB]prü[.HZĺ·KW}ĐGöU6bp‰eSPŐĐÎ~„€WmQUÜđhslO^ňXW1‹vnv‘ŔşĐW± ÖVÍm~ťŔĚ\ø@Ó ă_ŕ@0WW±Šfbnő+¨~śżŢFĄ†ě‘I(Ikż ·˛'°ý¨ŮBÍÍë¸U0Mj{Ü*$ó=¸UŠš^ǸC-ľ ·ŞŁß5¬BšËV_'ŢÓ`·rI(^Ĺ4Ě‘4Qř|ŕ„ ţZ7Žq endstream endobj 368 0 obj << /Length 3236 /Filter /FlateDecode >> stream xÚ˝[M“ă¶˝ďŻĐ-—…Ĺ÷ÇŃqeSv%•Jvs˛}ŕH‹±$Ę"•ÉţűĽHލÁHZ‹öi@Bݍׯ>űyĆg}Ç»żţôîýog+íěÓÓL(Ĺśő3k“ĘĚ>­f?Ěż]»źËća! ź7ŐnY¦fŐlśqýđÓ§ď‡1ß°ňt@͂ӳ…đ ĂĆá~äÂťýDű“ź Ą^ÄŹżŮl’°uY¬ĘCj˙ČąÜôZ’Ď˙ű ĚĽ›×cYîRëPîŠmąJO‡zKrߣZͤս@,*Nî/źŢýúN —ĎÄL©Ŕ¤„Z”gÎŮrűřl…—ßĎ8SÁĎžă§Ű™dÁ´6łŹďţ™4<§´dR¸8”1ť†ÓâŘ:Mo¤ ­™zQG[çVŔ™Ôňdď/Śg% <¬–Ą/F>°PŇ0çýl!-3ň6'0ż§|ZC0áq·l«z×d´`,S&\4ŁT‚)©f&(ft¸ÇŚRÁ.Bġú}˛?T»>úZ®P¤śD®ÓĚdÄf|– řő2ÇÁ§B‹¦Zć6 gCO!PĽImĘ6ăŇÂ1ă—.v«ě.gŇ]öĺ5*L2wďţ6ďĐ’¶ř$:ÓŇÁÁÝ-fÜąI¤"XpkońíóÂL"Ő[ćąIÝűŚĐ<Ě@‚…swu°M \ëKŇUléĎ®|fţĽ©v%»q‹X@)zČürŚSć ĆhM^Á8‡1¬`ÖމqŽé`âPÚ%™O›ú9#ăBO"Šs5úsŮć@Ő3‰źN!Ó*ýHä®ÎH 5L"1lԱȦ>U_ű/,ę±˝.ă›cމËř˘ŁĚ$FR8ŁÇF:îŕ´©83Ť™TÎx1’Úíř3”€7…H-«8ଷűc[ć  f'ń 6cŚĎn˝st“P‹÷ŞC7;ř/á nʇH‰ÝĽ]—©łX.˦IŚÎÎźęCz˙Ľ®–ëÔ—ŇőŽű–őqłJÍÇ2˝~ŞŹ»®«Ú5-¨gz¨źÎ$VĹ‚–€•ʰ8á]Üçuyč¨e»®›®y:Y>Ż—ËăáÁůÉĘ]déŻC˛Ô€dÚ¤ţNH¦ĽŚ†˛J_ڵŇŇ“µ ^ŤĹf·žD€„O"^×=Z­Ę][µźs™’a"¸«0éô54Řr~Š(ë™¶îµ÷tf!îé´ţ2µů^%nß·Ĺ/‚Ďă.`ärEĘG$–8ÚÎy&sac;¼ m<иĘŕ“óové]Ń/—Ĺf“3¨L+Äž{Gŕ27řëďR.–é‘ĂŇPC^°(qNă&Š´U~ś í-ú#7<ę ‘Ń:¨ŤV>-‹NŻĽˇÖCâ·‡ŞmË˝aR„±ŔŐBßTxx­á “ÜĚ4Xzw9¶đĐhĐq('/‚VdS•ŘɱĐSÝçßqlc=É2&©ĆH›'ăčś7Éş'.#nP¶B|ő“XI ­…±Ěľjw&”ĘbŕGSHŐÄeÝ™‚Ëv´±ŢŘ\H|ŤÓŢd#`@±Ľřý­|DZ?đ‘Űľ–!J$kČ5<‹j5wŃ@2DĘiKjdk´%'j­Ń–<şŻźSmĺ<čúĄ>‰nQCÎoĂäšôŞHöšؖmúŹuSEŤ§ošôÓ>`!łš·KĚv!ç´cřŚ´řëžÖv¤¶¤šő˙öő®ě‹UGpOŘűđŮpWĘ.šłˇVő¶¨ş˘wâÝ'/ńË㦭v?÷Ź›‚Ö’­ýJ ěw_Túµż{éWyC ʶh©­i…Ż=ß"9×ć ÇVç!fu â=N¨űđ= e•żZPp?‰`Ď™Í}-8-h7…XE±^ٱŘ_÷őćó®ŢVĹć*8ţ‰ňµ&O"´hűw˙–Ż!Nř˝ë@˛lŁu|řÇżţţͧ\e6Ŕlz ąŕ`0›Ëí{^Îń° SH}l23ŁR§#˺ǂeÜĄ+‚#ŔŮż›2Łk'1´ż¨kř & t‡ňHlďjÖ‹8”ö_Ô5’häJbąŕśZ‡±Üo3šF˘$ĹÉŃZ‚ĎÇv€ŇBSBŤhŽË‘^€śh¨ůľHźŮ))?Ě÷«ŮWDĆOŮd0î>˛ —•L‰i_*š\!é•ÂŹ'*áٴđԯ2– L ;äĄ:łPáüŢĘ—{‚íç}Ľw#»Č‹FyŃz‰ĽxxăÄ3Ż®„^đa…oî_e¬zĂ<ŁUgç•O‚—K#TńLëx®Úu·˘u·ô˘ięeU´eĎŕá;ęŚŔY2ŁCź ¨To¤żi8Ő%ËJ†ô«WY™ę!ŚZ'¤O‰ôËW¤Ż2¤?CŐ‡ ĎŕS /Týuâǡ6z–Dr~žţźţßí¶ÁG˛#% B§.&´-ö Ek)čD˘IťEĽmŻNkÔčO5ŕn„"^˘@ďK)˝íˇŚVŽ«Şsh1bË ®nH€±•Í -şoJl“61 –ÓAM©j/‡ŠÎś]Ri«Žxŕ51Ţöą»ąíă!Běmzµ 3­ś:ËöőŰ®ŕěä5Éu>7ýŕ/#ŻĘÔWw=Ez\ÖČÎöůű)Ç‚üFúů&ž—&oŮi”µýe›ÓI@éćOßů9=¤sßźGlŞeEfŹ}Kr¬î„ˇSčř Ą·-@iň¦LGŇ™ż\Dŕ¶KŘm“u ç:”Ë8z:6$>ĐRFô˝Hac _"LßĹë(Mńq(ÁÍĺĂZéW~± &•n,6jżÉ°8w“ČEÂŇFr‹Í¦^ćă‘CÜM•›Žwc«&gLÍns$ŕP†!°Ź|ă-[KĐ@…q01=`dęΛřzDŠOC‰Ë¦ĆĆdÎËI¤‚5;'FR_,}~q”Ş©7R@!4ÓBÜ{‰.k=ßT/śťzTşČ7/Ů:‹žŃx¦Śz}ev!ťîĹşÓŰô®»Mď\äÖôYĚ€úď‰U{Ę»˘\ônËb3GŻş«ýčLÄ˝Řî7e÷Ş]Ý0)ŐuÄŞ·ĺ®é/»µŤź-´eAwŞ˙ë/ŚôśÝž endstream endobj 376 0 obj << /Length 3484 /Filter /FlateDecode >> stream xÚ˝\Yo#Ç~ß_ÁG*°zű>ťŔÄ‚^ ^c1"GrHó°¬źŻş‡"{Ô<Öěäi†-˛kŞşŽŻŽ=ŤřčŻxýóç?i? ,XiGźGÂxfťYăTfôy:úyĽ|Ľ»—AŽ·Ď-Ýńtąhf]ZÜ˙±éî~ůüăÇOAmç%3XŕiźŮfNßůđĂçż~Xĺ#1’ dŚŤ5(N~ţ…ʦřăŹ#ÎTđŁ—řŐĹH˛ŕî棟>ü+=|FMZÎŚ<|óř,çÓ3gíţÁšu›č–wŇŚ_—“e·™MŰu;íŮ_¦ëC/…7±Ľ®ÚďB&ś?ËĽVś9|§óZ)°ärć§łE¨áŚ×‘¸6ŠńˇÄg]IŕŠ©ŔgÝ=}gtݏcNŮŃ˝,~Ͷm sĄ8Éř˝d!XŻíy­śyFV¦]¸I«đčß§­¤?#W‰ĂäŢUˇ‰ĂäÎf47í¶$WĂl{Y°»{cřř‡ß·ë& đq×M¶3hrúřÜÜI>ţíNq›VÚ¶KwÍtÚöb'UŹâŘFCŹkĎý/zëŹçŔ2ž˝§ę ĎV!ęuű­.«ČŔÁśZŇj&|¸lP‚ŹľäśŠ ó HC–äoŠdXq+ËĂ>sř­śŽjţ¨cB gˇ€h7t#÷XKëv±$„›`î”<µsăOO_Ú>7ŰôĂÝ&zZ[¦•u»Ý­űÍŠ~†śH¸_i㙯!$m0ĄżFHHq6Bĺîó Ő(yŕŤîË>4@é/řPĄŕřň<€ČM>Ly·˛Fź-HĽËă¤˙cąm3é@Ó]ż´Ď€dŞÁ(yâ8ĄŢâ<ĎĘä›xVŢŕŢ\Ĺs`ÇÖ8ätĎŐşť7¤Ű¬˘Ú˛aĹŕßĎd"P*·š7Š?ńc“.đúót+x/"Ş÷çýaaoŕ™űp“Ę đ*Ä­lČU~Ŕ‘˙× ŕR…ˉ>Ą’Â@ŹÎ¨QEŞG¦tLt˛lg“YŰ•ę0P-ߎâáő[ŽQ_ âź/¸)„S9­ŕŢ `3×+úĐY"ó$L_¨ˇÚ’Ľâ5ÖŮ* «ˇ°N‡o9Ć{…Śś;ťçŽđOZŻĺȬ¸ľ™Ą…1Hě¨Ő­‘YR˘€­¶:SÓ2–”+•pń„’2˘'ŠzRĆŞÓwÂŹźv ő˝ć~ܵítC·!FuZ˘d®É˙QĚŹ«EYSőâ|8€|‚5¸V@ôÁ]!i-čLŞ݆ü¤-WĄáęěqÔuŢŚżO˛KΆîŠÎ&VG¸ ‘óŐ$äÁű*ŐlE°é´Ók‚d˘Şű9Írn!©ŻbjĐ”tvĘçDO€gäŚÎe鷖Ιs~6@˙žŇm©rýÉ|=ÔW˛÷ŻPFzxúnżF59âćG÷Đ™N>n/Žş!„äöÝrÁ‹`ÓĄ‚—†«§ž&bő­/`şÔĹV=ʡ&U3ë KÂ^•ŞCŰ#§‘Ú'ĽťcĆżéG,D„<ß,Ó]*¤\(¶µÎ%>9Ú…LźÜ+ěµ—ZRS_/aí ¸­BŰůXîĘh—s0Ś#ÜŐ JN[\s¬ü˙\yLYr˘~y,@źí˘Ułn…GUÔ“vetŞĽM:I7}kw˘UZÜCwđTĆ0x±Á Aó°ť› múî}$şhVĄ¨+ˇ`R(Ŕ™8Ë®©‰TÄĹÜŠTÉ”ąÉ‰–qśÖśŞŐ Ró9UX|ČeŤ^*űi¦Ĺ k˛™-fsč^,cľuÔc5Ô÷ĺ T-m¦±DfÝj·Ýßî Ą}Ąuąž=Íşfž>ýďﳇ~÷ĺzŃlżŁţđu»ŮÍ·Ąą‚—4ĹŕÝp +Ý2]ŁmµŰvMŹě¤˙íqř‡ô9Ž&ŃMK»üľj'ďßĐÚ—ń7 ôí:Ý/š×tóBýÝ&ĄëÝ˙đQW횸KpiYŰm(ÇŹ‹¦›­v©ô–Vö×7°‘dŔŇQBMŽá\wTĘgFöé˙_ž›î©Ý¤ßnfݤß&~Os$çśž Î•<śC=ŹGăo·™<·ÓÝĽ-ç5†Ó 2KaoMl¨ŁH[qa÷M“ů¬„0´GâŞ5‚Iés˛¤lĐśy †Ş8—ŐKfąJZ@@â rŤ=&Ťë}Ńn[94ĂfOË\[ÉrŻ ĚkkŔ9_#s /”©B^>H= cm§Ĺ’R©CnˇIň˙‡É$e ~ĹĺzCĂęa`Çź‹Ăx—sçǤµP&¨1™Ű­#žHSIŤ±•P{5~)sdĺpI5hRĂ,f4Ëy9‡–¨@”z]`## ¬\ŇX”1&k¤ŕ´Ť1:ĚR~÷Ć](n8ćLŽŹŐ¸‹GGcžśíí4iŚĂ…âÉ˝Çú¨w°ééŐ>^O IÁ·Păňúş†âQ§FYv^|Ó|¨±ds\ü®ş0ŚÎť¬ŔŠÔ&ÂŰŚ•˘AË„5HšŔ÷9ɢ=#ĹŔήM¤źŠÜŃ1M2g*ź4ßQ»×ŚúëäD!…*h´ŇĎť© ]Sú€4Mšg¨Ŕłz‰5žý3Ň4ě묛Î&ÍvąţşÝ‘zâÓ\äТ鑡ą ţżF†Y%Ş8—k!ĄKsą‚)©b‘Ę›JQš)Ń#­Éě{hśŮ*$i6ßČH–[b–ęíľ Q¤ńŢşś(áËB8‡Íš:śř7­s˘óĺK».őÂ=óA× «€ű˝W9هĺ®Ń}|­âŇČłĽđz Ťuč`Ş<ľ7p>ú •¤đí\;áĆ~Y)5¤ wS…(Ť)Şp…RR•DÉ*–@U ”śčnµ*)Ąv„2]˛NĹW®RJ@¸%/r¨“×8ľµím´ŻóŮMŢ@Ę8Ĺoň¶šyíâVBśs«^DŔX¦-ÄącšE¦äA U&%šËŚfQ`/ÁĂ4%•m3’MWzByü&T!©Isš§ąĄmW…ޙͨŢěÇĂ…©%źşÂÓkŞŢ‡+L@@PĹ´A‚ę®0ňl­M§â$ăEĐHK…–UhŇě°şlÔkעĘqĎs86Ś"UĹŹMęJx?÷=˘É%fĺ`ŕ wmŞ\ßü¤»Ko~©Óŕ–2úÖ?ŤK[ s…K@br~ÂÔ©(“-ăpŇ!T j(ĺ×9Ń2‡Ő”äT ?Ş…Ě‰žpß2x&¬¬AVž #r˛gý·ľŮ+r·U¤F˝_gäJ ¤†‡Uz‚ÄW褆AÎT¦†QÜ]ˇ“ÔÖ4ˇŠ!Đ„‚ń&'z †ë'uj…ý)©®ÓÉ{‰0cµĎGksË(óŮÓóvţşoîőŞ+޶‚ZňCqđ Ş4‘GÍúď´ëŘ ýÁ¶éfÝÓ¦ŘţŁ&Ę7yäíEžĽ1q\ä9[…Č™ŞFEVę„ ÷UäĂ˝‡‘Ó4+Ô~V"čŁ2^\-÷\´Ţ#5QĄ*𦸏/dĽýÖĚŻ©6;Í÷˙ĚÄJ:XLŤkZOÓĘńż)Ŕzęză&ýK€„51ŰÎ_žLZ¸ĐĚćÍĂ|ŻRĹv‡ŹíµÔ>NŰŐşťĐ ˙Äž üˬ:ĽŤ@ÄvŰC<łÇO©çźWc#/ýsĺôÇÝv·nóöŢÖ ‰Q;w˝ĽMöőŮ endstream endobj 383 0 obj << /Length 3736 /Filter /FlateDecode >> stream xÚÍ\Ë’Ű6Ýű+´lWĄĽËIĆžI*“Ş);«$ ¶Ä¶U‘Ä)Ĺqľ~ÎIY`C”baf˛"EQ8pç>(ľx·ŕ‹Ľŕ“ăWo_|ůÚĘE`ÁJ»xű¸Ú3§ĺÂǤ2‹·«ĹŹw?qá^ţüöŰăďľ|­ýÉŹp¦ľ7ż}_żĽß=vËýşŮuôÓ/_‡Sc™2aüÉşŰÄá_˝}ńë «|!R ¦¤ŠO˘ń$Ëí‹ć‹ľüvÁ™ ~ń!Ţş]H< ¶YĽyńď~R šTš)!ŇI=}Č`jĂ”+‰u¤&ż>5›Ź»f»®2óUÜ2J`+věú·t˛u’ł ĺ¸_d¶J3ĂŐěN)#EvJÍ„źßa)ĘŔz<»E`˝Â2\–4 Î çîO†ŇđPDB´ Ś{˝„9 ąWŞŞôâ^Ś™á°€V/,ŤDô†9‡4*%ýů=s%ĺ/I2r7»]Ňp&”,+ŤbBŠű±Ů¬2 Xß2Ë+±ĽV†óś„Hć…%¤Ú­22",“nŢŕ+ĄJm”R6yđsÄJ8»PŃ政(ŤĘYć‚+ésŢ\/‘ZAcDl­a¸˝B"5ÖXKSk¬…ľF$ďÉ›:R“ôľz)ůÝo/…ąG‚Ţ=Ôő®?[ľŻvďęU˙aßôǶŢÚá†j—kIDĆÎË5'"ł°o#őmŽ<†‡8”’äň |ôŁăsíş}] “kg&KŁÂ= ’ ŠL(&¬O'4‘áÉÄౌ:6ˇĄ6őKnÝBpM~6—)˛®—ËÁ~i SµmȰőÖmĹ^BúýÝ«®«w÷4Üâ^ R¶Ô"îˇd›Ź}Ľ¶·®ÚNB¸jłŢwa#âq0ĄŇÜUëMő°©ÇAÚćđî}ÎTÎô%SIB ‹iőm–Ĺz¦ÉTb(­ÍśŞ(OćÁA…iŚöőś˛h©™®®–Žy˘§¸9•ŃĘł¬ZDS™`.›őną^Ő»}ÎtKx/•D°ŃĘ@ˇÄ –vđę$Äż/ë§ý(UŐp¶ŽmýëaÝÖ0vő~żŢ˝ë?žúăńY–őxn°­Ö»}ő¸rĚU4Og¬»´)Ăźnůľ^6ufeč>vÓ@š¬żŤç8Đ}oăPwFäć°Ď Q ‡eJŔÓžŔć­ Ü>ö\A•ÍĘuĆŢ“f;xÜ łëRł\6í ˛@V-exmý´©–#Ĺ{ľŹV/Ңs"ÍOr{^s@Q¸çm†Äõq‡"ę0+Ľ_°kę´MaOőčF>&9nö·˛SĎ”#d8ĽşŔČ tp÷OďążŤ‘Á­!ܤˇ,ä÷·şÝ׿gp)¶.ąJnRÜwő>GĘ`ë*ę5ô]¦ őďOíą¬€I m\ŻŹŃŹW´đÍh×ű+Rڬ6 śźŹPČ5)gJĚXw)«Ňo›ý:ç˘ČBk§™ŕ“…®łQišÄcħ´Ť+:»¶ę9]fu=QD9Ż;ŽwDáިŰdŽ2BCYsŚgşő2'Ĺy«‹Ŕ‚ĄŃ lWç( –Öńɺݛŕz#Dë9c„¬f\^Ł,y,v© 0„HgtÎi©W˘®F4äe ›µA g_SSÜĄ «f ^—ÓéaęĄ×wLÝőĽĽ­ëîú'˙ŻÖŻ( Â?p RÜ^? Ń˝zČyžěcĎF X úKÖáv[=ĺLśqE@=ÇŞ™tt!á3¶01`7~Ü4rY2™Őąşž9•dşţ±?ö.Në9ÁŤ5Ńf\ß–EěŚ[[˘-«Ďn¸y ăš9.KŔ“ÇLM[-—u×ĺZKÁ}ť(‚«aŹm »Ţ=6ąĽ™Žm%@­‹m ęyɦ®çK+¬˛`|N˛“ÎRĐ+kÍÝ÷ Ń7…ˇ¤§lče™.m«Źý•UýTď†Â}ŃÖC [X Z&Ť†›Ş'sđ¶C†´E)EÚň\-śRŠy{kxě¬Re!Ä­­{ΩŘ÷ÄKKŞ"°^p ě¸QSń0±˝ŁŞâžń h6¨dßČTS‚ ŕţ”$é9¨Ćšx[T#Îq&=‘ÚL™Ě€¶ťxů^@{чÜ‘ ]‹Éz\˘ďúľ zîi~‰›r:ŐGZĐëD7~<*>e•BęF–ú3e¤AÔ¤!ĚmvD¬ü lb0îb“¦%ßTÖRĘXĄ°Y˘<ÖZ‹" `Ěł¶ZKĘ<ÁŐC€ę%ŔWŰj/ďެ·ë±uČĂî;›6ilŞ–jp/ÄËédh\ˇX‚Ž]sh—õŁX@;1ÔQđ«Ů¬XŔ¬/4 Á€+ZÉoÓk8V‰8ÇPłr4ăřu XYÔd’ŔfĺR E/¨ŔÔ˘'Á¬ck¨ÉPąy ‘űˇ2?ę1ŔLÚí†Űw“ž’Ç,oýż1 żcÚ Ý÷cZ}»•oŚ1- ŚDo-ĚVuc*/J Z5ă´Ë¶CĐ‹ $ř·C‚ŻY=Á\µÍSľUUXW”蚀&$ ź:ŰrÔAVH1Ňd čC[/«=uŤÎIŞ„Jţj߉ťőÁ”(ŇP" ž­ęrrÎçţŐ9˘?§ ‡uţŤË´UE`]`ÚČkć sZ ž9•b>¶Íö|á°čX8LPO÷¦ÍŐŇ”ťéUjë]µ=éUĘtÎléĽŘjbbΖ ¶Ä×Í[©A?ĄŃE@ÁĄ–W‰­Q A–€5`*Á‹v׬24Ĺ(ĎŠh¨Ń"vŁ^!¶ĆŹńEPÁúCpçĹ6E¶·µ*‚laÚ©‡,Ač…–¨ hj·×* zfjEµ´ˇl†O»řzťE"‡ăHäpš#r¸Ü9śL®d‰ś 'Dކă‡#ĐĂ0ň[šTůţJě.×’ŚýüÔ‘\?U}OQÎUŇK&!6˝Đń&W)™Á“ŇPjŘâĺ¦ęş\@IdňPţíÍŰ~ĹŢŐ»zxŇӞ로óŮÄDp}31QÎĚţiĺŚ+áO ŚÄ$ó¶^l"ŹúřŽö݇ţ]ślňúčK {c0A®6›f™Űé€íŇËżž q!×.úĎŹŻ({;ěÁńń×»óKG "–ÁÖÁmźłti9“d1*BźqÔQ<©ä\ć$ÔlyI`Aş<-–41DĽEl@ş ,†Ň>őlÇ=c;ř*ËvĽ8a;®/ĺc?ČŔy(ő_ç¨Î_+••%;ůËŻ_I¸ĂEl¤ôú¶[ŮÓ˙Ř“©‡sjťąřžËČhČ&găȱšŻźĽy›űoJÜČ+^=ÄnĺJL\ Í ö.™xW·k(Čuţß(^(M%?…^.»sď`&ţ°_úiÇí¸˛"Őj*ńŁŞśę#V?ěęĺđŢ)Uçž˝qšß? [®®Ř>%MüS!*n{ďoË{xśŰ8”_¦üÓr›ĺ 4”­n˙ćÍw9ňëD‰‰Đ;Ť|2Ź7_˙óŐßřîU®:Áö—€5Ş×űSÜ×?ĽÉa:Ăţ¨Ô2°?Aý×7ßç_ö LM_g "Ƕ÷[=ěáĹź˝îzhwQnă-'F>c”Ť +—XQ ŢôEdu[ÇżćL‚ÓPN]¶?Ę»¸ % ŹŻĆ§ĐyűC-ĚB¦ş“şFÚ Á@‰÷Ö#\vŐ&7a*˙iŮ%i endstream endobj 389 0 obj << /Length 2171 /Filter /FlateDecode >> stream xÚ•X]wň¸ľ—ćś Xţ”÷ś^ÄIÜŕŮtĎn/ VŔ­±©m6M}g42Řŕlş7 ŤFŁ™g>4˛9ŘĚÁÓS˙ß­~Ü> oŔf;ž5X˝¸m3ßĎő™e»U2řŐŕĚޏišĆ$ÝČĽ’ìţzűX€žĺáFs0˛,fymI«ŚŃbâ‚qaŻćŽ,×4J™É¸’ ÍŽy"KÖ;I—hEŚÎg({0˛AE1qÎW«:—ĺ>­Ş´ČaíÓ¶0v˛”ëO˘mË8Żer3Ç4ŢK)‰^ĽÓ˙f—C.Ś­Ô,uA q>ä®ńI˛¬šSŠu§yšo5qlŠĂ›ĆgWz˝ť”ú{ŕ8]ý«â˝ţŔ]q‰Z6ščAU›4®Ąž'Ĺ渗y×dm`ż™¦•ÉŠÖ3]“ĉe9Ë–lś mÓ! Q¦Ś3•ćD9IhďVú›ZsíńŹ´ŢÇšL/eU—é5Sr·Éމ†HtąłtźžĚ°}&ŠI·»Z{ś Śc%µČľžkhŇľHŇ÷3Á4öňäʶÎíĂqťĄŐy-n$)*˝Z„µÔÄ YTĐiúÂź·#Űö±®Cű¶'ř-ćó a(0ÄącT2ËhÖ¤ĘuܦX6ř-=© M ýšhśMśŮs<żkşÚő±+öٶěĆ PšL}?–9ŕŐ¤j##Ń˙UqŁÇő?ĺ¦îrťäżYV -‚@…6Ež¤ŐOJçľÔXá~€ĺëóđwüQ$ë *`+/jđ-+¬¨’OŤ­B,gvđů.FŻ y­Iľ2ifZ.±ńĆy_¦uQž€©j¨>©J3 ŠR™M3ĺ÷Ż\Á®‘Ń©·z!Ťąg,gŹ«·!‡/4)ZŇ˙|1„t AčĎŃ,răV°Ś— 7ΰ(ضń­žgŻ+ZiÄ.ĆÓŐ/Dš=Ň˙xúË×–˙-š>`Tئţ}ľ—Kśpc¶ bô2źD!±p#šŢO^˘é-ޡé¨N¦3´`EŚ“î„đVVâ3ZPX ±QxÔ—řhE*ŁmG`Ľ„‹űgXBµßE“ ĺV€ĄÄQŹŃjŞÔGŢGÔcú›!Ć‹ˇÚD÷Ż“±^žż.ćłeاĂxŠęhŘ4š>.Ŕęđ%„ă}Ç`°"€Łá yř3®+Ňňy<™•LÚxčş×ól±$‚8îgs0…sŁŚčé˝ ş?Ď&!î¶ÝŔ¸ ‰8‰Ćw“hd7ŃéŠr?G/7D|@Ť_Ćř÷j1Írßs¸ ň$ęUćxÔţí9¤m'H„€ói®Îş_E3=Gg’ÉÓŐB/"˘Z… ů‰5ťŐߢexÓwËŤŃR…§ Y˙H9Ą¬÷S®]T@1Ž ¨3ÎA§i¨uĹ9&qPé2IJNätČćץ(CÜÎ8}ÇĐxI3źkž·wd_ßiQCI˛ě_âGžýRů®JÔ1«{Cá2Ďă瞯·/ w솧”˙>¦%•Ó a¶ËÜ3ăÓËĽOśĽ!?véfGjă €¤sۉTÝv’…’hOÓW˘LdUÁ*9ßd4±xžd.KUÓáfž«–ĆMĂ Sud“§ů/Fë+u!áh/ă\ bܱ)I´,Í˙…(«»Ż˙íĐ5 é¬ú0·|›Ö7űLĽÓ‹ŁŘ¬*®Tv[g‚ó®Ý--T4ˇuÍŤžČŻĂém'UŻgăÍŹ]ëöXęŢĐR˝aŹQĽRŻQx4B¶Qš×I÷qłˇcˇđi:­ŽëZ&7™g)Ę~ŹŘ `¶ďźăëZŞĂ„ă|ľÝNÝŕGšeúIc fńnÍQž€8 ţŘé.Úr:ő L,Źq×j'‡oă{Ąg麌K•Ôš´’¨۬˙Ä›ščŽ˘lĄ^ŹKŔl/kŚxdh§UpN+ѤU@Ż9¤d)]#šçË”:?ô.ߨP á•j›~ó:µőë4` %ٗĵíOTŐOâ PÇr#逬YÁnëP×;9}ç${ÝČU/D•Ľ@•™zäÂJ\-¦i—kŐV"­Đ<ďĄjŇ…I[Őę ÄűPTi]”ęŮeĹÎú® ď´>sü‹Ţźúzß3ˇĆüŽ­xśfń:Óduś2‘Čřxp\´Ńw™ś"Wׇźnoáý\˙ăšĺ˛ľ=”vţŐ- Ô÷â6gî9đA]l WŔÉiŰŠ7P}i’ČĚÝg[¦Ç„éusEmňłŁM>‹ŁîŻĎ^hwŮ­XSX5±†iňS¬1Ţmô°QoÍ«÷ą ?tŕňŮ]pÜéSĚ%Ls\¬™‚y˘9şłađëČ%îł"×Ç4oŚă!‰kyˇCŮ9–äŰ îS!Úůŕšę+BŮTô:ÝË^¸ş/ĂŮ› ÄsyůXÜś5îÓNĹpŰĐ3BÝ ·tpa0? Î.¸]C AŚ˘|V”ló_ŚK†Ś×ˇ9ęą °­mbăę{kÇLżôš­'Ł3” QŢěâ|KĎź2ś_X®Žű¸ą¤°×±Ńę ¬ŮăâűS±ě»s|¨§vđíĄQěś.xď‹äŃW¤‘̱ÄE(6° Ű ď1i–ôµžJÍo 3wÎ7mooa™Ěµý?}yâ‡2r>(Şť#ĺ|áś#FĐw´žžÚ€Ŕ˙?đ |÷?Âç“+ŹąúIµ¶8ľ×-űWx*L팮é{(}ŤčŃŘeÜşĽ ż 7Z%ŰĹŢ‘‰Ć·~gC¸úń?"˝ endstream endobj 395 0 obj << /Length 1699 /Filter /FlateDecode >> stream xÚŐXMŹŰ6˝çWř(+šß" ôMĐE Ô@Q$9Čm+•%WIüď;)­ĄĺÚ —^ÖIq†ofŢ<.^Vxőţ~ć÷ÍöŐ杦+Ť´¤rµÝŻ*µ’"A”‰Ő6_}E·ŽQŰďNuŢ—Ć˝L|Úţ{Ĺ„ -î¬ďĎyÚűĹćWWVc&‘$lS×n—í±h×0‚ŁŻEYş§˝é˛Ł{ěŽĆ=4ćźľhLîŢľ¬‰LÓuĺę˝38?¦`HAěL§´;ü˘ IN§U~ÇÔýŔár°›uusąaJa”05íŃ–;D ©É¸ŮSŚMg `¬Q‰[Ä«>Äă轩L3a<óC`¤´mduµ/}cf»L»1Ä4¤ qpÔyµIű®> µ!¨bAÂŇăCřzß™°‘4:›f_7§˘:ŘwâĂé®¶!sqssmgÎí}ÖŃ®¨z?óµčŽî3űýŕÁ ¸Á%CİBúńoëÓiHM |m—–eÚ×#ŕîłxHä‚űšły>Ű/ÚPŘŕQéYŘ6ď”\ąoé‹_C*ń±žb‚] ›<„üYxčGš>›"´ô„".8X„UŁ‘P‚ü¶ëRČă§éÁ)ÂrJő÷żţŠ1ŐHb8 ä«óâÍü"ĘÍ~M 8ú˛łˇ2Ú­)Žú˘ĚmĐ…A§Ű…ˇĄÂľŇŰŔfŚ#IŐm÷çUöŕÜ.ެěs—–öµ8‡GG“ć@#nô#Ć´4-ZÇŚňčŻ5Ö}ă^@Ś wXźEÄ[Âźf‘Í]ťR‹™TQUwnäܸ"(răf ˝[ăćś'îŮ;âÖě.nđ y7‘Vą›ąÔýҢ1~®«ÝO:7†čüśf§ë gQka‹§Áv#ş‡Ó9ÎÍ *‡rŐ÷֍۸­O¦;ş@Ř×âT”ił€-ě8‰^—@&ÇšŽtQ^Ö@!‚ç %ę^B(DČ”YZ9Ó;Ô1;O ERzh¤űfßÔ'đŽQpżo2IĹ©íDŕg ‡ŘŮţÇs«¤EDDOĹwěşó› @XBZqˇş9lţ'üg ţ™×ÂLßA#ŚÉcşă ™i}¶ cSĆ{÷;¤•ťś*<`:¦şp–KĎ–9QÓů’ş!Ĺb~·e”‚>×J ÝřNę–Đ Oľ­+[kc‡\f—Ą[6çÁ—ś¬oM»P/P|Už6!!ĽpóßÚîk»¶-ÔdŢż65*OĆďÚ¬)Îť­!ŕíZsyÝÔŹMĆ6Ž>÷mçÝ»śĂĘ`dÂ1ĽąrC›[îĹ”_˝úlé¸ĺâŠ}_—em čë|0˛fÔŔn$»ŠŃ0ŕ6±4ÍŤ^Ź« ŽLç—”…=˘Ý§ŢĎ>ň‹ÓjĆ€ľĚw>XőĐ=G©ą»L@VľĹÝĂ+tôk´™ÇGSž_ŠÜăňZŮ» ])ë[źm3/QçůwŞ˙”])‘ Éąć°lůč¶5ŮůÇçĆě‹o·d ,×D¶ ©ŰźźŘÇĆő›—üĐ Ä–@]±…xxÖSZL†ŠMF.ŠcË4qQu?~˛uVä¬A´‰I˘|öÜ=ŰNôČÜW¤4ŰgNJ/ܴƧ[`Ć .MȸBóSÂŤ €hcű'4¶_¬Ś°ĐWšÔŢZ8Q°;żH*÷#—÷IŤdßsˇzáŁä·űÎËŕ`HŇIq­®§ÝĽ8ĹŠ$Ńź¶g†{p§„ëŘB™Ťp‡´Š«¸é 7ˇŤ'wĐÄňŘެÚbr@éa`g/Îöá*bö"ġ#ą^ëç~ă>;hn#e(b )&îvN «¦´e7lîdL9ŢŹ?ĆŐż~čj‰MlűGÂÍŔ€Ł°'´Ă í@“Vc»’â@nňT·~6=öÉNhňNCe^‰çz/Ľ`ř"€×řŔŠCn›Î¬”‡%6 h,ü1¨ŕć!ŲrC©Äc“ËŽaFŽ»îvľ·˙• Dr§"f‚ĂŢB ·“äű”ÔĂR·Ś·Ýí.WjĐÍJxî•3îµ×„ďlâżkĎß üN›ěXtŔ«Đ˘ˇ]äćlŕOĺµ’ż“ÁBr BD{ óÍd˙78^ ĆŠ€­˛€Q„GŻŐlÉOŰW˙5§ endstream endobj 403 0 obj << /Length 2391 /Filter /FlateDecode >> stream xÚ­ZMs㸽űWđ(§F$@đ¸›Ę$›šMUjśĘav´ ŰĚR¤BR3ńżĎşA‘2­±lť6ŔîFŁ?^J˘‡(‰ţz•ýţ|sőńSf˘".´ÔŃÍ}$2K)#­ňX¦*şą‹ľ®Ňřú÷›żŹoE_×*IVn·»Ş¶ł©đűńS!'\UËBGk™Ć… žŰňŹů«GЬŢÉőřĄé‡˛®Ż×R%«ß•´»ˇj›˛ĆXś­ÝT˝µ’jU1{0úřÉhX(N3-˝ŽZÇąŠÖik™Ń‹"ή×"ńz öÁv¤×;ĐŕsuŰ•ÝÓť Ą<»*@UŚśbÁĽ~µŰ/yż–Mů`·¶ÉĚlŕ!L¬sćńĄj6؇4rUŇĎcőđ¸Ć©agß®…ZYg8#VíÎvĄł- żU_3áö?v3ô´xßďa’'^Ň\g ÉdŐÖÄł§™~"¦+™Qżżí»cNesÇdŻ)6ä·ŕŚ˘i ĂŁŰ€Î!ÔŁŞ” švŕYŘ˝łqžéwdälí]ULÁň}=ôđ”‹Ő¶í™ŐýľŮ8›ôC9„†}×ĚÔĺXqf–zŐř­w9ŰŽ&ľWŢUA-ëľ%Zgk[ö–Ę0Oú‚r0=¨»˛ďýÎÜŇž»kaV{ç}|˝N“tőË=ÍŤ\Ř|`Ѭ´ą Î̶28őLćޤAŰ„AGżpĘ@ą§_ «gZ1é~°Ý¸ÁĆô´ÁöÝ1đ°˘l÷őŤÝö™WÝ6<\Ň~ÓîÜćśwd9é—Łf“3ÁŽ˙čőň ĘćÄŇjčm}ďm\¬nhĹhŰŚ]“^f6đ­<¨ş­™Ý}Ëk‘c*laA÷~ďíŠ`g—ó#&µ]őP5%'ĽQ9ڬ74F{ňŚúvK®2[÷#+ú­ř5ëBő»şÚTCÍéćľłöÎ'^—úŠ,›‡'Ů y~ÜŽä?ţć´)ë˝ĺEţdĹ~Â]»ńL,ż< B/'lňĺ¸Ě{+~aUwî”KÖ3•g Ú:J?ß«Í#g˘cw, Đ»ŁśőĘ·wpŰQ„%×™ φçĘn¨6űď#‰~X Ăpđ÷m]·ţ,+ďů* 6`ë8B8dďÓâ÷—›«˙^ “HD"EÓ:J +#ŁÍöęëďIt‡IČŹÓÂDßýŇm$ăÂŐŃ—«ÎXäĐ1=ź……vŠ:“đĽRđňűvĄÇm`®¸Ç%—Ş“XŠb.ôˇúfOM±Ě!>W±†ľo1›–±A‰?›…ßÁ ·­bęďXeŮI«ăĽ."Ô¨X`8¬vF¨R©ŔŚ •-˝—f"d5Ś\ąĚä¤\‚vČ·‚ó©ŕ âĂ'MLČĽbĚĽâP%0s€gÎŮ4Čőy!+â<×K–ŞQ{Ň«]ëMy}R,(”3Ë %LZ‚\)×gPJz3Q©¸éćů‰ĄĆİnŞ-ßŕhi!ă$Ńçłx~ći,Z(Ď*3ů GË`OTäKÍş}¬M…Ü5ôţqÁ±PÚĄ2Aňćѡewň§-SOĽöĂQŻ2©¤x:¸;´ý\—[;i9Śĺé q†Ď‚\ď™/xż8x˙ń°,€č{ŕđąN aÇ*ĎÄŹŃđ%d2žÉlötďu K“ĽźőúË XćElń ü^ €gĄž‡p&ä1žµőKń‡0–ß~)łĎxO1Ȥˇ?Ŕć»>< ÉŐ»|˙\§śŢerý çż„ĐŕýSˇĂń ő˛÷gĽJ˝+Îeq" 2 ÁT˝& . 4DÂTčKĹ NVŁHH3Ă‘f G ýM[šť×?7ĺ«IŕŇŇŞ*…¤."”‘ÔLh¸Î9Ť¤DŞató$u6‹—‘”c•¦Ĺ+Ô%„2’š }é N–ËgHJŹH* IOł!Čś Ao›ú‰FţgöÎ}h·»¶+» ˵/>Ş(V?ÝŻI]Ż1Ě)9źĄd}®Çŕ·$‘MŐ?Ú»®¦M^`|„5ţÖ 8Ťň,ŃŞaX{˘°Â(̲éřś)!őlj`ËÇÎúm‚z endstream endobj 409 0 obj << /Length 2648 /Filter /FlateDecode >> stream xÚ­Zmoă¸ţž_a _śĂZË˝PעŔ¶čw8P4Ĺ}¸=˛-ÇęĘ’W/Éîýú>Ă!eÉŃ:I“č!9ä źÎ #w ±řç•pßżÝ\˝˙!4‹4Hc/nv ™ N˘E%ŇŃâf»řmąë«MWÔU\Ż˘4]~¸ţýć§÷?¤j41Ši"pµ3~ůĎĎ?ó  w:Q~ĐýµŠ–YŮç×+ơ˘,©•,׎Ň5yÖĺ[&•#îs&´ŮÁĎĽ–b™}erÖ21›Ů¤L’ LĚkvą«š˛X)Ł‚P$‹•”A9Meu^ýăćęó•±XTˇV‹8ڰxşŘ®~ű],¶čüi!ťšĹzX¨ 5)ZĺâßW˙š°!Ó—ł°|¦a,+ex×E[Îl; •Ćo˛f 0ă5»ěS>§{ řĹ^÷Ys-Íň®?äUěéT,oöX%8પ»ŚpIż“ĺ`;ʶf‰(}K(" Ž—MŢőŤ›8ś°c\ďř„c…ÝĆÓîľó`)󶽩t0°Ýě!m}7#-VHâÁhŢaů4¶@WĆ,öĹfOÍdąÉÚś[ýÔ`¬Xřu¬‹ŞËţŃîëľtPs[»y»&÷“Ö_YN91ňLN»NjHu ·˛ŠćĄ°Ä– uU~ĺ–Ó`±usŞ®(ąéř@ńë˙曎‰»¦>pËËfá:Ů[žµÍ›‚xß_Ëh™;ö~ýţ¸µî„Óí×´çH°´kGÉC©~+OÉ|•ăr „ˇęz%…Ë«˘+ Ó ±Ç‡GKÂYş©Čy)ť†UqěK;«eeżtF$ČťU)mŢą!¬\4š|:ułéÝŕ‡˘Ű[l ÍjEPcž_şéZY5S-â@Ek›µűž\‹°ă×Ř}Ąp!ƲŠÂÄG÷eF™2 âTúŤ LĘ@©3d~ “M—w#\ĚŠ"M/J*MČ(^D‘,ţg’@†‘eˇç’¤&PÉ`ó›¬byś1Ĺ‚-ç´˘ŃÉŁ7cR[TweΤnŹ{rKţQ‡CŚűÎÖ­±›đđ×:+·T hLŻł†n=‹ĘĎ}ŃŘ«ĐWówź]+á΀)ë<ŻxYYÖw{ŹŔ«=x©ánđ)Ś)Ć€ľŮç~ńa0…ҢčgUOL?> VČ™Ă+ńÉ?e¶¶:KB{ŤŰţCMËŢCťÜaĎôÁ_Ń`öWD­ć˝żL_›Ž4ö¨‘Šc^6 MCeYĹ`ulˇŔÖŐN'¸ ŢIBHyŮjBXVż ˇNp˙ég rćVÚ„ °§)8śÝŐ‡<«Z »}Ö ácăČÂEŠcX…teÎD•d:Dlł]îގc#ÎĘŤuĐ±á˘…ŽĄVąß ™«ŰM=w{ůó …Ť pŹőU™·-·Ů÷Łń°ŻË98JŔQC­—NQŽ!3J^s† ` O§$y ŚŇŚ.–Âi‘/xçřĄŠ8}ęřçÜĽ„›ŹÍe7ź¤vLJiŃëÜĽ D”€•ŚŚ/ ›‘ 'n^¦ěÜé;rŹôł'>#ž1Ž.ŰŁY°ë7O Ä鉙ďlQÄéQżÉ˘0ţgÔ^Ň$B)“'<›Fjô&B…: Ň4z†&òŚđMŤ^%zş(©fN‘"HŐăx )­:ó˘6 €unŤ|¦šŕ—ú†ë]~#ň”*ż¬äbAAÖ`_ĺ” "şš@˛kâ§ś’9%ű>u"9lB ŕb↜Űä†ç|/µ/űŢĽ[śĽś!ěÁ đy±śE×ćĺŽ9ݡPâł`jČź†š‘˙žoE_Q& 8{éoi7ś˙ş_·:E$đ'˙uŰ7\ţŐedź0ŹfÇYą1đ¤ á_fĐ`mđąmŠÖ1Í›Ć3lę­›sĚş}ëąfŹĚ<Ç Aůuî–ă'*š¸Şđ¨ÚĐoöT=’bůw\ţąçĘOůRKáFúúĉ]Uź¨&d @S¶űb»Í Y#wn:żjZşĂ­ßĺ˙gdý8BĆ…t{Ⱦܞ<ňlĽüÎjĚł{ţľ"÷—;¶eMgO­GL]Ěľš0‰.3ń»Ľ{Ţ._Ř«řŮüž“%üHç"ćo¶üô%ŘśRÉGŻ«#Źz6ö©ÚőVÜwzň’ü¨‡Ż{“ŢŹaŘô ‡ć·ž—GĚ€Q-äňP·ŢrĂ ĂłÇ/żn$í{ĄC"if›·›¦Xł] cÉřŃŕ^ą {üm˝±Ź¤<î;6®âąuPÎ><$°UÔL­×]vâęfŚ…ť9ߢňĄM~{ţ“XbôHH<ůß^nLnŃ?Ő¦ěI&ÂË_€ž÷÷đÔűżÎîđQN‹±׌3q{KÄOy~<CÜ´ľ îǬ}Ůç <¶`7nĺăz¸–¤Ş“IŹÍaF;ĹöŮĘ)¶OéĆôwĹöńÖÎ/Aq,"0ĂŁ­LADţ?rüĹs endstream endobj 413 0 obj << /Length 526 /Filter /FlateDecode >> stream xÚ­WMoŁ0ĽçWXÚK»C  V=TjWÚ3·Ý•…ÓµÖ|(8m~ţÚ`”RÓ6™fŢKž‰^€~켅ëcşŰ?'>HÜ$ň#ćC7‚DáŃő¤'đëć-1»śČ­úáÍ=mŘžU8c¨©3LÜż·ŇźBĐĐMBE(„ůµă|—»˝.?ýí…^K>@7>S„$ë!u'ňNC)łFŔ;©2ËśA÷č&A°§!Ü8†Ŕ"FnťˇčĺDČňÜ8‚ŔŽÝdR@A¬{zéâÂ8}˙€Uĺ”j11ŕLd˘%ő›IČĄhu¶"¦`nO:éMŮRVMÉç‰-Ş>)HQŻ÷r)iUy‰–˝ŚE”öe‹—íťšK ľ¬f^*mŰ>(X1®ýTˇ'Ä+”‰iG®őŮxŔLiÖé¦2˝ţÉ—»/WW´4źű-Z;Q$¨˙-—źÍuOkď•`cs«ł& Š V›Ś™yŐVgL@†QżµbgN1iV”­#XC{ˇ˛ÝvőHDrŐ·P˘FĎ"×ů™µx&bÂî Ł(riĐ ±9«ŢŚ;q& ?SĚĺ ł=7FJą˝cypdX4˛A´Ě«ŤçĆH©§jďX“uÝčHJ(]ąś·y˙|G âŔ…q ?qcqmŐ!ś0žŇÝp›' endstream endobj 418 0 obj << /Length 1690 /Filter /FlateDecode >> stream xÚµXKoŰFľűWčE*ŞÍľMQ š˘=hcô’-­m"2©’T÷×w†»¤µ2őp¤ś¸ÜÇĚěě·ßĚÍn3šý~Aw|˝ĽxőĆņ́ąÎ.o2fŃŚeZÂ…Ę.ŮűÉwE9_®~:S\M~*šĺ«f~çëĄ'w?O?^ţ Ňfڧâ r5oż„ßă_żŕęÖ·8ô*Ú­”ŚX)ŇĺWW¸ä“÷« aS@”Ůý‚öş“2łÇŠyU6mťeŰślѦ°ÁşÁ´gN˛•3bŚ;č㫲Z|…ŁqŐé{C)Q:6ϰ­ëĽ\˝śĽą‰1[qN\‚Í=&ŇhśÝi\Ţ´W×ëbyĽ…ĂŠýľÖ»}=Hč7íŁ˝w//Ú…˙˛Şż0˝€(›/ľť(ă0jxr`_˝±: ú92ÝĚ ˘ˇkĆ-‘NˇŚH"¦3F)ťüíŰu=ejRNg\ŃÉĺÔČÉăĘ7AZB›č_ ↝…9ŇnR«%ĆZÚÍY7 h&›´SF'UřiV~^äËđSŁeśŐi†&ťÜTuč»Y—ó¶ň‰Sîň6´|ŃŢůúą<|®«jéó؄эŐE-śÚŞś+¤aÁůdfs6)«6t Ú 4€÷Ű»˘Ľ%áHţ(Ă´U^·Ĺ|˝Ě멤“ S8°Ŕʏ–SŽü}{ńŰĺĹż ziĆ2ŃĘH_7Bgóű‹÷i¶€AŔ>ÎfÝÔűŚg´–Ů»‹żF Đ”!;QĘD¬ˇĂFN”K¸ę-Ă »»Ë›ŕö®ö±oU5Mq˝ôÁµ\1BK}űy Ę—kßü8âviµ× ĚRb9Ď„đe§¸Áí° ( ˘7¤Z9UDs(ĺÔÁ\Ş´­×~Ě÷ě“˝;)ÜĚQttŃčĘĎ?z!6{ü˝Ĺkł‘ €śr´(ćy pŤţ—›‘hţ q‡YĚL'ÁÝD s¬źňŘóI*†Ă1ŻGŕ ‰Ő|/¤ĐOyŽ‘ÂĆÄ1hp´8 ĄÚ­7ů˛s<\2G¬ÚŠ1 ¤•7:Ĺ7ć aü?_W=¬8„Jś®ă.« B+sŔj8ɲ‘‚­ 0€u©hw1F€'đĄ&ĎS@`R9…/•#’ňN”Öz4Đ“ĂóđÖ‘`ľŹłž¬ sç]1®ă’yíó6̦“u(X°ľÄ±]Ź»©–Ë e>„Ě)łŻíŃ"ŕłëpTEÎGE0TÓn‹Ďţ©š†hy*ÎÁßULhZş •şXęŁcUşCrGŠ}‘ąĄżýV’óň[… Ř>~#O!{][ŐE(ĽégřĶ^Ś'K€ÇţTŞ" endstream endobj 423 0 obj << /Length 1901 /Filter /FlateDecode >> stream xÚÍZMoă6˝çWč%)Ö\ń›D‹-Đčˇ@±A/ŰE ŘJ¬®#Ą–śmúëű†’lËËČI¬-z %Źć ÉůxC&Mn“4ůů,íţţpyöö'ĺĎĽ&ąĽI¸rĚr‘m™:ą\$ďĎßÝçóâŹ4ó‹™ĐéyQ6ů×ç·ůş}ńp!ôy¶Úäuű<ĎĘvpťw/ÖyÖä‹öaSĺm;l–ťŔMµZU¤ĺÓö·›M9oŠŞ¬ŮŇË_¶6÷ßţäĹžáÂ0ç}2śyn[»ż*Ęůjł„†ćo‹zőö![±ĺw¤JfÂÚ´ÂWWřýę¶xčÄé ŇíĂ×ÝÓ¦~uł®î®j,NéőĽů»ÂčMP­8sJvú»E\U4± _ňo‚ŕ,&ůBK6/µdSÖĹmI»A˛;»6ÓÚ5_nĘŹősmëvˇ.ţÉŻšV˛|ÓţÝGăîő®Ń˝}¨ŠEŻ˝GmgrŕŢ3÷Vbč&—Á ńqďqí‡÷Ň’qëá3á L(ř䏗gťqĽMžîw‰¦i—ĚďÎŢH“~Ż1é]ň)HŢ%‚yGşVÉ»łßÚ ú2¬ă¦UeŚo1iĄ?Ç”–)m'U)SĘ A±™PmEnT{f…‚’÷DPgî2ŞSHnbÚ:NÄg¤dFČ~ë×­7ó¦n}&‹z ô;5ę-Ň9¦Ä$î"=gŠŰ¨»¦wËĽä˝aaˇĂ,(> iXş›y?Qµ'ďł[u‹â¶hb+(ăĘöbmđĎ$¬…ŁSLžÍ—°Hń°ÎEÝ´ŐĎŐMÄ@«0á->冺dr7‹ëÇ&ŻßNy^7Ő:%čĎš~#đz»őOzg҉^Ś]Ědj»¬Í«<ٱiEY˛5˙ď=Ú#DÝJÝć VłçVŻÝ•¸ŢE^ž¨÷y>ŐcaL`O’°g[Ąb‹js˝Ę#ł|Ő#Ü«WZ^e×uŘ”ť;˘˙iâyHäŽL’ČÇg3ü‚ćĽ9F&čŁ)ďÜh–¦ÄZ& 8'”wnP´}Đd„!śhŤő“`:´`%Đ2é%K˝™Ňm8=„ÄnǶ`ŇĘ)@×Lq0ĎMŚ~˘Č=Ɇ Ú˘†cěÓî¨ä:o6ë˛ă MĎ0`đuhĹ÷yŇ>MsÔ™¨ă…Ukt7ĂÖ;¨éqRęI@-:8ň4ę!g¸ś”ʨăÚ]ŁtŻ ^ `ÂO6[ x·+pl„4^> (T@`€ $ˇ4ł”ř'@¤{E* űńîÎ(Đe3 (uÎTóŚvwˇužfCCë,† cíÚ“ŢŮč€5Â0LhëG ÝOĄ“ŻÔčĂ˝z†CJ s7IđJ‹*nĹ32†ěÎçő Ýú.©Ý˝ś$—Ě ű —T z‚OŠĽ,Ő/qÉÝĄG{Á…ň%EřπѮĘŐăđč9»ż_m/ ú{ 4âEUŇ™Üđżžľ¤ř>v­Ćéşgśis ZEÝ*×đbyÚhőł€u^Ť^«µgoÉkrW-B ňĘóřgÇă &0üŇw&uŢ ÎŃźĽĎxŮBŚŢÓ»ý{úřZmĘlÝyâýşşĎ×MŃ˙3J¶î>[ä´ eż Ń{~ŽvBĄGş9Đ3•¸ŁeRŮÓ’­„Ľ޸rŁ>¦™ń»»ÎˇS„S´Đ ™99q9Â$ţ¸¨C endstream endobj 427 0 obj << /Length 920 /Filter /FlateDecode >> stream xÚÍXÝoÚ0篰´ŠıµiŇ&­“öPio]…°lšŹ˘îŻß%NX´ĄŮúdÇ>˙î|÷óÝA€(@ßzÁ=ă—QďôLQ¤°T Ń‘(Ä‚$ÂS˘Ń ]ôß;MŠ™ Cö?š,9˝‰Ľü4¸} !!X…µ°±ą—±1Ťł…ý„Áx\.\i˝nműŹ÷7 B>Äą‰sIÔdăß:uť;«;Áµzń\hń´ł€ŢŤŐή]Ö tW¸]ą¨Ý nçݰ"¶ůažßvą'źžqy' ©ŔR)A!‘^áąË!{Ń0čçË8ofőRfÖĎÜÜŹçńąźĚŹ…ťÁĂ ¨Ő3|čBŁkî’Ä ŔŔŤ± ż416Noý|ťşµNsŁkÜ8­ĎmákCjÖ±Ił­mŐe[éšÂ%k·–2˝ŻŁŢuŹŔj€bR€A\HL8GÓUďâ2@3Ř„k`¦$ÚT˘+D±’ f úŮűq 80©0+‘"¬x}ó2"űA PEiěĘ*źíUźô!Ąż¸§•ž´JŽy\ä¤äKÎÚ¨Źś¤Y>U+ŐźvšČ´űi5äŕÓ*% d$˘ˇŔЉ—¤UJ)<Ş "µňęŽR&+eݎ­hŘV Á: 4”ö*JÁ4 mĄúúPaóm™.őô*óaŰ,5TîÔĽ^Í75ŇÄé€Čţ˘XiŰěW…–h+JćT‡m˝7zV`…mňe.)šć᦬ěqRhßu·ĹĎ$ě»´n,ś„ďŘ»Ď2.Ŕʱ¬t°Ś1Đ—ů¬% XĆ(–4zBőöwŮÔ>g3S>›8Ię¦fh鸨Ţi­Žk‡n"ě×#ŔˤQôę=´ž3sc23Iôxrű†ŇŐçCů B)ń sH¤@&BD„Ę—‡HŠ#)*¤@’‰#ˇ?ܶŁÓ¸|`‚Á‹ÉśźM´§nµ†'Yv»‚÷óz·‘żűlŞ…"óô©§Lv©U.ŐĂSv•™ľz×ĐŻ˛ťĄ:+’üŢ&żaoşý=p=6<źť»žLWëqfŽŕ㉟$®tFµżĄŮkŰѢPVňMa)ks oNýŻžâ0 endstream endobj 431 0 obj << /Length 867 /Filter /FlateDecode >> stream xÚŐXKsÚ0ľó+4Ó Đ čaŮŇôqčLÓ™\:ťrK3ŚÁĆh*ěÔBţ}×–Iję@LBZNČŇjżoWÚ‡ (B}é‘ú÷Ó¸w~áH¤°r™‹ĆsD‰=Ę+≮@ă]őÇ‹p0b‚ôç‰1É€‰ţ­Ž#;UÄ~zg‡ÉMúąNâĚ~űi˝Í0Ň_•ű|mü©©§“xp=ľ<żPěOŠc&\ WAëĚ”B˝ĎăŢŻ…Y‚(âBV2%IHΖ˝«k‚XĽDs%Ńm%şD +©`dĐ÷Ţ7koŽ»3G4í]ůĆ2kşF`WŃ ± WĽČ–G·Ôʎ3ŠőěŢ7:ž™"7đÉ{°ń ńâc©ÔŚ(}•đdë“HŻjńň«$X} 믉?Í~A¬pî˙l^}×]@â0:>ČÜ$Iz|Y¨ÍńQň´gÁt:}ŻŽo ×7]P¶ÂgÄ\,•Ş#AîĎ,Sýâ©ĹĹbqgj|@@\0ŘGůóR‹ •*Ź:GH- _‰¦Cź–Z:ťűRÇO8vzV!8K‡·ÝáGw˛‡{9jlďĆŇ_ČRĽ"K?Nĺ¤ĐĎ;ô"Ît‡5IŐĺč…(fĹô ,w¤xG. s Ń]˙Ý‘^˝ŇŤÜ.¬.´ěkÖŻ±-„:ÎĂý(Lí„­•¦ł3;q»©¤A Ë ëSÝE]\a{-“ď(×%úIĺ«­8BńęÚ´X"“”Ö;u‰Ń슰 ×ůq‰žŮŃnBĂőY÷1Ľë¦¶˙ĺNď„2xZÚVÁ1lg×ʨŽ(§Ř!ŢsşVô8Đ,U1"]ë(÷°ű2Á.UML{ZÉ9´Ów¤a^¤Ő«śhÓçý( ý<Ěr;=K–Ë$¶+.łÖJgIj#ű“ĚŰ .Ç´bn˝@ŰZw†=)7"~´ęĆü^ k»ś—˙{Đć]ółMŽ6¦ÎŇőL~; s˙JňY ĽbŘqś üpÝn…tŻŇóîŐÜíU“łĹ¦nřy‹F.1U^bĂ%v<¶}DđÚŇq/ň¶E‡Ä’u±l?öŹ{ZP<˘fE#E°ńĽ'Ą¬Ł„ІčoË/N% endstream endobj 436 0 obj << /Length 3169 /Filter /FlateDecode >> stream xÚÍ[[oă¸~ĎŻ0ЧH8Ľ“j‹-°—ۢÝIźvb+‰¶˛ä•ädf}ĎáE–Ćö¬őĐ'Q4unüx.$MO şř抆ç_ď®>|mő"#™ćzq÷¸`BŁíB+C¸P‹»őâ‡ĺ7˙ř×ő-WtŮm‹Uů#Ą|ĺßwőŞ/›ş»ţéîďľ–vD‰.n™%@Ę‘¸{.şâđ#÷š·ˇż©«ĎˇëšÓĺË5WËĽ¬ň‡* (=›ŚŹ–†L;ǧ쪄, ł<ŽyÎ뇢¨}kŐl¶eU¬ýŰkŮ?'XešXi"4Ę;śXÓí¶Ű¦í \Ür­ ŐěÂH¦‚m?ŽMše˲î‹k¦–OEë;ňzímŽVË+˙ćÍSíŠÎżŻňÚ7ŠĐŃyď4Ęěň±m6 Ť87ÄŇě¤JZců~ňÍţ9°~lŞŰ¨2#’¨\5HăŐ7„łÓÎřĽäŐýÓfKž˙ě$ˇSîďaĚýSů>Á·4-ľü>ĽÝĂ\ÜŁĺĐŹTQě_őźÂ(hÝ8ÚD#›íŻ÷˝ř+|Ęţčí‘zž,_*‡öÄW`Ö ÇH¤úĆ?Óż®p«-1’Omçf]ŃݦŚ6­ő¸…Ćş¨›MYÇ_ä˛y #üc„kxđĺ_=¬ˇń:ÜâřÔ·ůĘčĺ] ÚVă'ˇ-DŮn®„ÓRO'+Â`ëáŽřmŞ˙HX'řą*ú{“ł˙Ĺ6ł—›70áöV0Í3°ráČóârŃ6ŕ©2řO!ęú–QJ—‹>’:¸ďď‹*EĄ‰©CT2ŮŃpMq±ëĐ×Iž-»Öś0őź·±Áěž?«>t>6 ݲő/m±m!řŐ˝C‡ŁSÄNf¤ŘF™oRXVš(©bÜŐWwWż\a¬ˇ ¶ĆxdĚ´Ú\ýđ]¬á'="2»xu7 N2‹ŢĽZ|Ľú·Ď¦` Jeđ´Ä*ćY>ä]ąJ0ÁÍćŕŞ2jĘ씚Et6„Ř”˝n †sv€Ú”٢ 9ŘŤBł‹T`J*5‚/·~iLb»+)¨…oü$˛ÉŮ»‹)Ó ĺŔżŞŐ…§ĺŠŁ6‡d’˛[Îôňőą¬ŠL@"ií‰ŕé™ZLf/š2©’ŇHáHuÂť•ťt§RŹ?Őł/Ŕ±!Ś&Âż¸‰đcŔÁä8Ś@ˇ'˙­Zŕj剔V”3¨…i+3j˝›4ĂRăr¶ b4gAa&b‰+2bĹA‰ű>LŘIO(µqÁ—CĽĐBmáă¸8é 9Őłp_ČŔ Žąž“H{÷Ŕ˘¸?Ú—¸đ‚ŰEőůZ+ɷΫ*eu\.ú¸Ý…”„‹Y, ¤ę» רY¸ í©ÝĎ1,±lÚw’DÉĎ[ţ—k0,˙ÓvV˙ \ăę?Żg-ţbłÂon ÉC®ëúęC´űµńĎj„u?üŕ{±ěňMlmóU‘ĘO™… UśąŔ,Ö.xn. AÂŮ.’˘F/‚4`„›YŘjŔSS¶G`ÎG0GóĄÝ2`fçÁürźaąç3°Ť8ł˝čŁ|BPaÎśµá=™S@˝bO8c޵.Ŕ€Ě‚]´ĽąŔšF;RŚ‘[t$Ýâäx*­VĽz ,vjŞÁyóć4(ë śf…š éęşôC›ä~8˛QĆ/táĂş@ …bá­d\|‡C?çĂ0ŢC ĺ@g—‚˛ĐďĹÎ}'*ÖńŚ©Ř´âěĘ5|Ž5ŹŃ“ÂEdcÖ{=&ň)ÂvŻOb‰‘1Î{ţě{źĂŃŞwŘř{~D>ą·őLB€z·ypgĆřňĚqŮu2wcF>mR°qČţöÁűCjVaĂôąsĄ÷tÄŰýĆెŕśdpDٲ;ş"”„zšKĹÓ}Jđ÷¸_‰x˘ańrEM3¨&d–ÖIY ®ľT§’t§Ţý«;řFúľpńř»F…;öŁŽ°h;”Î÷”ťčKzě T o 0áŽő‹P·÷¦fj@ôgî€Ú!d8ÖnK<ő÷댆˛ŰźŹ6ŕ«8CO˙z _4~tŘ•ČŰ yç틲Ţîú·CşÉ<Ůő8.q$6ůФN˛h8Ă’ű×á ë«¶˝fÖă,ö-đ«đ°čÝă+{âôJY}p§'ci8IE$Í~ĂAŠÎŢůç@ß%†đl‹|¸Śž«/€`+cvu_şä0Ł@±ŤgfřZFzmůô„nÖ…bů}řĆĘ@¨5‡éH§ĹŹąÄé芟=䉄&zF÷3>ÔpTë;»Ýę9üś:>dĘOáŃT• ™§.+Ś™#e¦›Ŕo÷ęą°łđ„†CĆ;ć‰wRÚJŰ.€üŘ Ţx+(g]±ŕNĹű`Ňaqâ ú”ŕZĄVÂ~!,ďEÎđŽ Ţ×GŕŻqâ/ńq÷ÎÇeě÷—‹ú޶}ۦëö_îńë†5ľ7ŕ› |:dýý€†ůŹŰú&ĺÜ w·Ź~wń–SXäń×üa¸ Äp VN‰„۰r‹GÇlWˇ\š†)ý˝ 挏OGZłA:4‹”ËżŐáçg?/7Íş¸If‰šP–ťĽS¦c¶-î“zą§Ů'»ń5şľi‹(dT¬Ę»>ŕŹ•I,h´ş÷$ř ÷Ś8X¶Ĺ=—¦^§˝%•h-?±1kÜá§‚0XBť Âęă° )w$ýśţSÚxjźď†ř2hĆFN őŚŠC Dď49˛Ź7xDĎémËŔÉcR|Pő»ÖĹRĽŠ€Űítr˙†ăR[—«Ü_]Ŕ÷¸ŤK®Ů„1Qž…«uxbµÚµŢo{đŘăY<Ü›Ŕ'hŠ~¸č.L XË<µ¸¶ŤsJqŤ‹kf&*0ŤË"QĘ1"ěźýó?ß}—Ę2q>ůţhÍ‘sŞ0Ua!»…_Ć™™¨żću ˇBqbźJŔj4ŕbńÎçö˛ÓĚ ę,áHQúĐ4Uşđˇfšcż§T7”ť>b¤@Ě î,`:Q˘ëóţä Ţ„ý€Éí!ŢD÷áśd>ě(ôńíđ,ŘZCl†4ĺÇECRÔé´¸3. §l®T@0őK=ag ŢEŹŔ’rĆă©xgë|0€9„‡EäžJAň6_ÓZÍÁ6­ä™6 ŐŘ»`ţKíQ}*Fţ&ĆĚş ±ßnۇ°ŹŽďOú qŚŠ:ÇLŘÝáv.ę7włş«B®âÎfá·iŇ“wb+ńŇ/zöÄĄ„9}{_JäUoˇ€ďĄ\;}evxSŰ”547y(W\nw-¤ł.óUf]ť‡ýnoÓUüđ™G¶‚pŔę9ŻźÂĎ^蜦”řSrR˘Ě©+÷×Rś|ߢLŃ SH µ9ĚH`2úám®çÇŐ6đéׂCĂ/»˛ŤW÷ÓIwěÝĹ˙ €Ěa9< Â»ţđ/ń‹ćˇ+Úˇö@ľîüîu$×Á_#Ä(Ü2‚ě3”ęţÖÁ0Đ˙9ŹůS endstream endobj 442 0 obj << /Length 2273 /Filter /FlateDecode >> stream xÚ­]oŰČńÝżB@_h#ÚpżČ%Ú+ą"‡Ŕn_űp9ą¶ŘP¤BRöůßwfgI‘2e'­^Äĺěpľgvv.îáâďgá‘çű›ł·?'b‘°$ŃâćnÁcÍ"Î‘Ž™zq“/~ ţTTYąËíůR üĄhË·Y÷[˙őü÷›_€Đ’s–hŹl«Ý†ďÖ6MÝě_áłŰ2m;‚ u衄r+ň?Ď~¨‹|J©±­ý.RoVf¤äRDĚ$ OTžü»ŞîÖdˇ ęmWÔ®p#XWÓ{VW]Qí¬Ç¬čIŠj0xOTpł¦ďö߷Ŧ(ÓfJěńś‡AÚTcbÂs MťŰ7°ä=ç:ř#łŰΙgÉK”ňFŠH‹nťv¤ń[™1XÔ!ˇf¬Â #ÝăäµEąĄ Ŕ.´Ř6Eĺ–IV(ËÁ{Šę”—aÔ+{iYÖçŕŽÇţťľß6ő}“nćlĎbł-íĆVž]Ńůo@E_’iśţR3 ZN‚¤±Űşéś$31‘GąYŁët` âŠďÝ P'9<ťT°—ŤÍşň‰ é Č{˘Ă˝_đÇf»=ˇúîoŻ4@ďšÚŻ‹n]T„Ňő˛y8ŮkP«&mžÎ#m*áŢŕ’ó`“~EwX÷ t:zÖ+”w-Ş‚`îşm‹Ui Ć'¨[;d§QCČ$.n넡¢S‚Vç" vÝ-ź¸ßóÉ쑉“(h·.ŕ`EÖ€Eź°,ë,EŁâĘďýGÎ/ŕvzs.ľó2†q[’ňţŢ6-ˇ¬ #‡l{^s2;$ÔŰË&°Í˛]ÓŘś6Ň*'pćLňBîżM ˇíŇě+Aş&Í,č¦e\Q=BŚ®®ËÖc`†;`şëę •źˉ´ľ,K›ž.Ż–ÖÎbđěăAŤGs q•×ô¤Š÷™ď6Ž)c:*đ6—Č讳žAęA˝—Âí¬á›݇VĆD٤}f–mM«mcďí!‹'yŰçç¨bżX*xBßŕÓ‹Ë•]§LS‚ ŹOĚ]·pŽ'\z¶[›_ÂP ônă©Ç,KŚŢç•[pÉb™”îł7gßÎ8@Ă_ČذX-t1mÄ"Űśýö{¸Ča¬5Ň,ćf!XbVąř|öĎ™ă_Îb‘8RŇHâIŐ±}ÎWÁ‘‘Č䌕ł 3e §ű SiŕńI*ÎD¨´­fxjÁDt +­™ĐrĘs8Ô fQFOŁ’âMůŕ‘h&*}ě(ddáfăJ˘@py°?ęfZ‚]ű8[.!Ň–uµ<&Z,™€•GwMţuÎ]Ń/rbÝ7Áýő–$ąëĄ˝ŰU­Ą’)$|Ńgf ­ŇĆΨ bH•A…Źź?=÷$OÇ…2‚Eń˙ĺI†,ŽcGJĹŢ“W—Ďy ĐĆ€V§ŕ UĘ5ĺůáúúęz†-D·ŽŐIŘ*Ĺt$§l˙ýîúr&0D‰<8áÍś› đŐ‹^&b\Ç'Ý$Ś«ču/Ip§Ob.J±ţ]^’ľSâ$l%`@üOŘţíęňćăĺŻf<Ąđd~¬3U!b"N^t– ¸*žÄpŠCťňug)(ÂśÄjJ Šßĺ+Ą% OĂTG, “)×wﯮoć2 “AěK-]~”Žr¦_‘\Ůş.2ş*ąí†íţlŔ:±ż!tľÂrŁ[/Ę#^\˙—  Y ŐÄ# íâL„BO¦Í+3ܨĎ{݆pk2ÁÇŽtĄ»“¤’¬Bg ô´‰Ţ_—Ćťĺ·ťmž&7=8¨đPuă>“šU¸Ě;˙=›ÄÓ´°tS&}tŞáW¤}ďŤĚÇ-TGÇóűKČ匕ˇ¦ÇĂpŁ*§lś´ăh/7;1{‰$î§&±7-îď ŕÁ0´Gv¸ż·'fjˇÄĎŤÇ[HËŕĂ7—ЏS–„Ăü˘”‡Poě§Ć –;ý0/ÜŐ ÷üń¨úŕ€U˝úŹu u(`¬Ą…‹*î ^Á-šřÉĆÂůk uĺÉv¶ő(w:ĎŤŃQ»˘Ă“%Jz)qéň ›ŕ:f’á:öÓOsó]hJĺpÖ[ۤÝ0˛–Qt9ČĚ)‚ 瀏şf—ř”1öŰÂż€2Ť6Š Ç¨§ &łPĚW\•ˇ‘MA.Á—^Ůń‰zW÷“ÄaďŤÝPQčDŤŽž¨E~ä0˝˝Ĺ#ěľx°űĂ®˙?â‚^nqÚ™9O‘ä Ă3ş_­Ý¶3°_®S˙×É&ť?“÷\`ŢËËăä_»tÜ­§>6SëŇŻłÔň7ßc¸˝üČębĚ#dFżčQúÔ{f$ńѦ†hV;8ى˘#ÍW¬2đx˘Žé¨Ă©îY`Ő{ĺ0R^U%ú‘1Ä`ű†Żę5ç Ęř1wˇç­Łľ’6S›OIn}ľü°eÓ@Ů4ÚŃ„ă›JOľ€KâÔŇ™\ endstream endobj 447 0 obj << /Length 2436 /Filter /FlateDecode >> stream xÚµZ[oë¸~ĎŻ0ЧHxx—ŘZ`OEŃb±öaĎ"Pd9QŹ#y-ůdÓ_ßoHĘ6ĹIjď“yť!gľÎŚĚg÷3>űÇŹżżąřôYç3Çś•vvłś ťłLČ™5“ĘĚnłźç7Őĺµ4|^«Ő]Q~ ˝®ęCăîůň—›ď?}vň€RćÍ Řxu·˘5ßÝ\üz!0Ęgb&µĆë™i0+/~ţ…Ďü~Ć™růěÉ/}śIćr‡ÖjöăĹáÜ 7©3f­IĎ]/&x\PŞłđ´âĄ¬H(/™f9ă\ś…iΙs)Ď妪^2U\2ĂÝ9*nĆú„ë¶«6Aď ‚¤bZěŐľNµí¶ ż˝G•vZ·uÓť§‡ę`%Í®…3Lhü ćL<ƪ膹oŞeµ©š’ČćrŢ·a8î])—ŚGá©°—Ö¸|ćNRš2Ś[çIÉüścóSLZ•H7 ý.Řĺµćzţݶ݆{ý”ÝY¦Ž›ťŇ€P&Îq1ĄÚ÷q4¸ż8‹(•!SĘ–÷S6§2Íd<Ű©<3Ŕ>7 Ϧx¬¦Ńźíaµ©úí¦‰Z,,÷'¶ŘŇ‚ĂŘ] ×đÜohŠőä|QôEďúͶ‡ę }k±#Ś{ˢĄ›ŞŰ®ú0XMh´Íę9LßEú0ŔEh==Ô«¸7ÁĆv:ë¶YÔÍýŕxzěIČ Ă7ĐšĚŘ“”!Śb\[OJeÇl ”Ě OT¬ęKićß.…™W,lËí,Ü@Ňľk˝”Jɶ ¦Y~y-8çó×EYuI9^4öüVí™AĺĘ8‚0<3Oa Ź©07ĐŘŞčkr‘4ŢĆ=]ýXŻŠMŘŮŢý§*ű0A·˘±rS˝W"—›ö1 wĺ¦čËOŰFŤ9ş@XQ7€m89`P>B˝>üŠ­ C ĽRl_«<˘č·[Weý…séť~N#đřfŃL€H \pĘ÷[kśš+™¶ú$‹V´BxR¤‚Áy±LŘ´eĐGó~ŘÍż+ Eiza5—šCHŻÜ*‘Ő«MQ»‰&/ SXăyl7¤içëb»' CňEłD‰Ş ,ą “'ëź.XÇÎv˝ŞâîvĆ|ČFŤ°ĂŕÄëíđŠ$žR0ÔáÎź¦¤G7Ě·ŰžČxĘ‹ú±j:@¸¤ŚĘ|ôn¬-ąĎäÂÉ5­Š×´ú€Lśđ‚ÁD˝¨š~‡-šş{öNËeÍ["ŢhبśŁN{žĽ“𤔉ŔÂ]&ÂĺŃgaša=ž×„i˙ĽžłfFďĹ­ĽW‚p×mW“űę,śĺ^uu9x&şŰsH¸z­Ź \ŕŔń°i\ô”ç Ăsŕ<%ĺÜy‹Üá˝pgáé$L7O™z$O Ü1±Ź–éŇńŕ2ń»·˛j>ÄĹ´bZľÖîxčJQ’4縫‚ćĄzŹ€)J22? S$9Fd)ÓYŤ_yXOćŽ 8¤©hx—r=ŢwěŚw“éůnřŇ;ItşđŕűöSÝ?„V'ń°ů mďrCÓ{ÜLř1q§·:Z˙0l„Ş»)[B4oňăƤ!$K.G ›Ö'9 °"ý JZs^‘°î,<á|ú„iÝL©Z3‘ŰC×őR`×$ŕaű@Lj'ŰýÂ…š üi¶łP*ců;ËČ—b©Ň¬€fĐ +ŘvŰbµz¦Á±0d†’;a I…ŚH­ÝĽŘ·éü•őüß$âP„هKŻ˝mL,"$1˝Ö1t§:Fşëşk=śÇďŽĘ6Q‡ĘEů‚Óˇ|ÖzS¤řĘŹtŹč Ť‡rD¨,ę®l·›âžęmd3|T1C_°ĎßµĚ÷ę¦\m8“ţ‹˙äý{řëÔ©no±âöľţ7P/¦”Ôýă® ĺ¶%)š†Ęţ·¸­+Ox8LŞ®ľočÚ´¶ń÷ľ ťŃÔmÝĽ2‡€0őç ţ).ďż?@w¶«Ľv.űŃs!Hü}ĺ '|6!–횬ś‡_«j=˝Ă·÷\'×lW«·řQýyĎŻ/ľVďá7rpąYî\´uđeIPČP3T#©ĺ# jřň–/ QŻ?;ÝEűčßhjÇĘ”YýŢU¤ˇ*5vçąOeŽ>Úů ü âT×§= ň‘ż©ĚšQ5jÄ6§OůYŘćIb–˛ ú’/·<0;_#é˝7)_o|ď(ľEóQĚr—űgz®ýfÄĽĹ‹›0m˙|Sk‹5;4‡*¦!cÄď]śÚa…:Żb…Si䍂Xş…t’q~â÷dAČö¤ áî(V(Ť±spęňĚŤ¸N}vŃś3|ž©ćżg)Ó÷á$ę;~Πćr@F Î0ŁGAçP}ż:üBiř.|—X`0<Â…Âĺu×"2d;ú ¸ČŚiDńô­—› Ý´žľ@;–}.HÄ<´ÎŔÖpŽ Ű™8|Ť˙R”čçć2÷)Ą”v^>TţŹh>=TŃÜŃ)ÂĎ8„—ŮN‹őńŐČCnAńe˛=Ťbˇü`ü±XbĂx»îSňqÓţĄ 4ŇL=ţŘGg» Síđ74—ۦôQńź>–ŞŹ…ĄvĚŰ»¶Çb wzr„Ä˙»Ň‡?N˙=Mü6˙ôĐŚDűŮĄ"u4Ë6â? îć>¦ůäL˙_BrDlŐŻČ0ß-8ńzŘü®ýňŤ€ůČAC0řÁ“Čtô!Ůřň Ţ –çńűżČ“-p¤˙ŽdK' endstream endobj 454 0 obj << /Length 1353 /Filter /FlateDecode >> stream xÚµXKŹă6 ľçWč%)6˝%ŁEşE{+šŰî"đ8šÄÝÄÎř±Óů÷Ą±cÇÍ<â= "Sâ÷‘)JŁm„Łßg8üţşšÝ}ŚiŁXR­"Jâ‚GR(D™V›čÓ|˝ÎŞýú«1ÇĹRP1·_Ő1IŤ˙üŃŤég,ČO‹/«?Ł%'Hs- A± Véľ(ö€^—Iľ5 Ž_ED>8’1ŽďjhÝ÷Î\óŘ${kîmv?pP•^Őä͡SÚd‡uý| zv4Đz“㣪/ž‡Kj¤8Ť–ô‰nĂe'gż­fŹ3č8"‘aL"! :ŚDéaöé Ž60  ëčÉ-=DĹ:†Ń>ú{ö×HF©P;$ HŽÓ»vÉs°oŇX!Euź5«.))†h5'…]QJö97Ĺ!ÉrË{÷‘ëłŐŚ#ˇ4ŔąeéΤ_«Ĺ’Q2Ú™zgJ˙#;ŔóĎÓ˛Ş˝4)DĎ·ÍÁäA’e—ŰAµđš‚śŮb3"ˇe?•Š‡Ĺ’2ć5(ăóʤEľńÂsN€ĎW;Kk–Ŕ›•¦ňKÄý“˛ÎŇfŞ7©ýúŔŔ:·†)ŕ'ţł2AŢ&аk.2pů‘ń“7v< H\…˛Töó–ĄB~9ĆÁô´…ŁuÄ8¬ýŠ€Ţ’]Ś+D ,’˘×ë)†t¬¦`UiH“«;H/Y9f÷rVŽ%’”÷YÇŞ—C·“šMAI1’Šö)}1]Ö.Ť‘ŚăAíş˛b,ÇnŇ´©m+#PĺmvŮ[”ŻLŰ%ŻT˛;¨†ë7´WwZŰňćúŹUćq@I• Í,%ĐW]ďaV}€‚FíEÁN>tŔý쥻dMß[ă%= Ż’m ďe¶ůşs ćěyăÁ¸ÜáY—˝…é¶ l÷ÍäUVäţÓµa;đŤÝŇ,ŻM™Ű[Š“×e“ÖM&OfxÖ ×#ÂQĚy˙ľý‡˝ČŘߤ†Ý©íqjEMeš˝ŰË•ĄĄIj–Ţ˙cŇşňánâýŮvě<€ě‚ 8˘pI·Â$XP‡ )ü±ßqˇpů:÷#„Ňߥ¦ó4±í“ů˝ń‚$M‹ĂqźU;łń’űgżÂy“ĺ[/őű âÜXžĽ´őŇ~ŘđVĆřl—˝S—Cl/3˙ŽÔ­Űr Č^~C9‚ÇbD‰x Ef=L*p6ÔRŚÜfúWŐ|_a#`X< ćŠ2ŰfmĆťmEű>ýO‹đ6</ýĺéľŮ„ÖĎpJŢÁůvżü˙»n›}3ăď:÷VMŞ,]Ćz nöÍŹÓ#ŕŢĂđ…gňkL»0jôťÚ˛ž“^„Ö†ć…869 ëۢŮbÜÍ#ŕ6×[ľ2MŕIqsšĆKŽÉ—ŇÄ=m|šŔp‚4ą0jŚ»c='}šÜÍăć4éüj®;öÚ4G*4Ex©ßRČ v ąLŕç±Ř?çĹ!Kö7řůء8Gý˙8ŢéďX xś˘<†6ľŻvżq˝ýŢ~©€±OZ¤Ă&’¸§wô˙GÎ× endstream endobj 356 0 obj << /Type /ObjStm /N 100 /First 873 /Length 1645 /Filter /FlateDecode >> stream xÚŐZMo7˝ëWđŘö@‘óE0äŁn ´@çĐÖđÁq„6h ¶¤˙ľoVN«•ś”–7v Ä!—;$çÍ ‡\±PH…C–ŚRUB©AČK jڞ„’Ľ¬ˇŠ—-´*ý2ˇŁ&TLg¬5dÎh1´H˛`(ü­?6Ĺ!«`J ›µ**h4F‹TŠ· R1[ ą ϸ w«%pÉY!TŠ·p ěXÍP1oŃ@L†J $Ž®TT0—H…kBE}d¬X㲩W×b@€ŁÚ0NŤÍŐS!—ş7üe_ 1(ÄÉ;Bš©Í¸AÚÇććZĚ }‹«Ó[đgä‡čŻšv5Ŕ0䀺ĺćý©ů4!‰‚ä\‚$EOÉąR ®láä,˘ÇŤ@m"ěhŃĘ!1hěK!°±@â#6 J%ź ĚŞŕ J€ćëRLÜLă‚gU° ZŠA‰1±`­T3* Q +KĂ***>¦µ óÂ*‚‘y…‚ąI µ`ĂÚ2Ę:ć`† …K°âËÄz­â˝ JŚ~6, ±pX˛« “fA YXŇL°”"ŐE$4WC)P´SĘđFC©Ś7`¨4‚ŰwÍx1d¸P ŐŮRĹtłŁŁŮüĺźďaţxą\­gó“÷ŻÖĂóŹo–ĚćOV—Ż—§ ŢĎćßĎ?=ÍxHgłů‹ĹĹ:ść’âƣ놔cÁY-ćÚ ö8…ůI·zą ógá««÷Ż®Đ÷Íj)jĚ_‡GŹfř7ćHî˛enŁ˘Ş M†r„ÁŔycrŻg¶.ĹđôXR‹Ůŕ+1UÇ–€MzŔČä`¨•čáËJL¶ l]ŠŃé±€÷NÍăŞ÷`±é±Žâ!–jDd6¶.ë-‚ťßÎŕĐćŰcÍ1!a˘˘7˘ąřýüÝzqůM”ş äY8eőŃ_„ůĎżü†ˇ ń+Á -,ßż}{v-ćOWoW—'ďÎ/7]žźŻ1č2ĐćńŰëďNÖçëEŘ 9›Ż–ëË1‚"ŰČű‡ »y@„äü÷ĎtxŔ´óç—«‹“ÖŚąž‡ůËŇu8«ńůůo‹Ŕ-׋ĺú Ý›wwe]­Ţ_^,®†DahúińúÍů“Ő‡0¨×°u•FĐ×óóKôŔŤÜ¶rj—rnĺAÖŕBHDú„±ŹÂ¶;…ˇ38Ąô »CWí9ĂĹ*6ş ŮsĽÍţŘ.<ć\›ăqFŠĽçúÉÔšôŰÂXöÚ2ÇZ¨OX 1I§0NN»éĘ'…#+Mşß}šŃq32śýš%M–ÜHÚ‹§~‹sŮ~oŇKöŽěç˙faÂŮ^µOX‘6•,ťÂ\‡Ňýc¶é=ѶĎh9Ńz Fo‹Ú [ö@8Ĺ)yßOňÁ~’é>ŽÎź 0« î« ď$”6rĂŐĹfő«]Çr6ŃŐ†ĘćÎ'GÖ ‚µ/¸ĺhf˙vÍ’ŁŚď|ŠúĎi;˛×iICZŇ´O÷jĘ_Śü‘gŚhŰM&ŘNhßM(ßĘF¶TEô°7LwżT*űúĐőa˙ǰÁy_íPpz`“¸űNÂ{ţÝčŔ0Ę> stream xÚÍ—Oo‚0‡ď~Š&»Ě%T K¶ě°d.ٙ۶4DŔ5ăOŤ‚Ů·_•RtŁPOž÷éŻoßF, ^F¦|>yŁÉܵ€ ]Çr€4ĂĐA8x-/o·lÓĎâď4KÓ(‹ş 74ČźĄtÍýEřnbsüὂ)‚dj!čbI tÇř C>6°…‰ĺ/w»WÁB÷{ŃN[˛"¬i{‰hő˝FQľ=*p^¬N»í1OâŰƵ[¤˙(©§Y Ę:PZGč·ÍS–Ąúşˇ '«ĺšš˘Ń¸ç\heÖîuŘjćVĎz-–¨HY熥‹8¤ú(3)ü~>îÍĚËžäń†Ń˘×ţ(†ä&…†eůQÔcYâëţŁR@$RĽih˛JŞ[ĘşmDcžźŇéŃW«ń­vąÎ#NżUŮčZRS¨ęĚ axUjbG.Íďôţţöä‰?„fçS1ŚźşUúůbÔ}ÔęçtđÓ‘â_rŐf‰Ő5 iŐŮáhâ§îčÉ|Jţó"B€aŰĚěo™G_<{Ł\~Gˇ endstream endobj 463 0 obj << /Length 1055 /Filter /FlateDecode >> stream xÚĹXKŹŰ6ľűWčĹ[Ä\rř‰=hŠöVÔ·$d[ö*Ńõ¤]äßw$R¶äH˛7+ ›¤ćő}3$G˘ŢÁŁŢź ęţ_/ßđ 1 ”·Ţ{Ě—D1ć)éŕŇ[ďĽË ‹$8ÄĎŃĂJ‚\ÖłânÝôç‡OëżŃŢŠ1b¤Ó©eŇ*)ă Ęâ< Ž/A¸ß‡¨ vyĆ™µđ‘JÚ¨ F´ŕ}Öď—(:^ü~kÓ‘VÇ­±_s«q{łá Ţ ජö˙‚Đó­źâl›T;ŕW´˙xĚă¬$Oż ąE@=oô߀ŻŃwöŽYyFôř^čNˇ­”&ľ€>śőF –Y•n˘S=–Ë|o×vqeŇVŘy»Z±Cü€żĎL.ŁĚ>)żŁ®¬\:°őR~µŤ[8EáÎy´ńÖ‰¤!Ň7ČhéGĘř*MĐR+ł?ĺi/ÄŽ÷üdË4 ¦OkXÇOa™o>G۲łeůşQŇZXÁ8łŹB;mýŕJUÄŮÁ®–Onmź'I^Űx9?ŰWٶ¬©%87bů—3¸ ‹ČŲw¤tO đ‘L´€1ýMíţ±^ü·`¸J=ć @ß“ĚG€Úۦ‹ꍷĂgXž„í˝4’©ÄčšŕÄűwńĎŔŮ$S McĘGSŤO‹ő[ŻRNÍ,n1ó€ň=·XŚégxxÖŇńΦăÎ`ýťčJS€«Cl˘†%%wÝÁ@QĆ TŞĄđ¨@9J T*‰¦ĽőĘ)Pľ?‹Sŕ”ę;=†§pa,&&ˇÇđuşđ8QÓ„ů”(€Yb÷ys]ŢAF­Y\ Z›ľK<ŞUçÄ’4ĎWlűüd§( ›ť_ÔC|jJ(›ŢᕳԂ@PT¨;řxoplPćp ‚pŕ}§yUQŞ 'ÔnwމÂmŢŰî7YĐÔŃÍ Ż”ď ##˙-™Á oa8^ęzŞlkBÎánM.úN‹hŚf DKę*¨ÚĐig–ţ+—Ęf&IĺčJšYđq¬H©Ĺ¤rîíóYś Š›úNĂ$ąy9‘Á.óĘúŠéúţi»4=Út6·đHÓYaÓvȢÝUË 5uf‡zČnOڌߍľ#DŘ*^Ńf`ŻÖzĄÝÝQŹKňmčbxîxë:âS;biRüP¸źîÎŕ&,âmPÔ/săĎB߇3 Ľz·SŁU6Ý%®yÂú~âí»ŕkč?kL< 9ŐŹĆ™†ÇWjÜ.0j ‡óŘhŚ7˘»Ä5OXo-°×ĐÖ¸]`Ő0N53ÎńOĎarŤpôt°źaPc2…­P›Čç9óxýí€cÓŁ±Ä.T9ŁŔzŘEü¦^\ endstream endobj 467 0 obj << /Length 1262 /Filter /FlateDecode >> stream xÚ˝XKoă6ľűWčĹ.l†o‰ŘEşE{(PÔ·ÍÂPlŮVWŻčĂ˙ľCR˛%[rÜŤ’“(jřÍë#9#ěěěü>ÁĎ_—“‡/Š: )IĄłÜ:ÄHâHá"Ę„łÜ8_§?…É:Ş6Ál!¨~‹čÁßnŃţ—Ů·ĺź´ )Q ‡Iiĺ@lb«M?bW+=ń=˛Îgűň3ŚćŤäqÖ… ’*>/ĽUyĚjkôŕÉ'łzŃ·ĽJŠp—›3D\Eeřšq'ˇÚÄř]l”C6f‡× ´µuŮácCĘŻ˘8¨}ŔúËg±?ďŁÔ;ĺżákăĺ°ńm€†Ů_%ašĽjüŤČ·jă«7ţňČ;\¸¤PőÁzs2®a>˝9'WÇ}Ë58ń©<Ýł4:&iúŃŔ!#±ĎçĹocg č”ÜĂsöÁ´łcŰ®_ňúőđ…{­k|!=ärZ'ş¶ěŻ´„ĄTÉią÷K;ň»şSŠ„P`‹˝Đ‹Č°é·ĺäyB`;ġÄE`$UąJ8ëxňőv6đ |@LyÎÁHĆEĘÓX‘óĎäRŚWJ¨SB `=Z9T%JŤ˘V`D=Ż«¶Ęž`(‰iÂ1ź-vűAQXÜ Ă—ŤáĂ IîŠٰŽQÔ2č*ŤýěÝăćQäzb<\—ß7N`/ĐQŇĹ!‚Đ®ÚěĐŁ“J$ÜQTBÖőNî&Kß8=Z…D ʞ·¸P°M/ö–ľŮ^ç9˘ś«”’îąÚObÝ"ěÄ„<¦Ţâ‘1Î ”ä7yCAX±Q´B±G;ZűhC±@„“1TRě!BUGeű:ľÎ#dśS·I„źŔÍFîO…«ĂuoďvH,§t _árOŇ4ďE)ç őj΀‚=ŠJ9SňVÎ.Ź6ŘđtÝĘ FÜŽnSŢ\…‚2›ä§It´LŮű3Ч/3"¦A} ™Ľ¨®2?÷ă  ň)H®‚Ů‘Yîu™#ń4ÜI>bLAŢNĄą}&€ŇLmíł<-K6á ¬—pSéÚ“J2…Ň+€"1M.™żn€b˙hO5.':ZóŔßXçúěNë˝BÚ‘…ČÓ&ZʰžB©çž.ĎŞ“hóHí QŞ=:Ôßđt[%ë˛v$`7çÉ=—×ϧuY4¦r„ČĆČ&Ě| ; h¶ŕędŤ sQ»Ď W\§Ö=™UiŘAśĄfWE°­t:<¨}S;—>•ľU+we7ís]çŠi–aKőMžh&ŁmKŞ]´tÉĹ07 ‹+éoméw㢊Bů‘öÓ $ͨńX‹mµÉz2ËCOv:ľ.3d‡Ϩ}˙ävIšëöŞŢéÓŃ>A٤ŕr^ł ÷›8i™¤^dą $-kŔ>łś[ÔÂţ:O‹ˇÜ§Ep ŽzŰÓ«CĄŐ«˙‰4lhSm/¶ _‚seäëľëôľ‚­jÚ«psÇżŇ˙>hĆ?ÔˇÎí°Ű‰kçĂ~uÍ›fҸp«ŰŐŇOi]¸°ÚűE+}}쀫?ňĂqČßëż—§4=pÁ®FôoFĄťpÍýłŚ endstream endobj 471 0 obj << /Length 510 /Filter /FlateDecode >> stream xÚÍWŃn‚0}÷+šěE­€¶@¶ěaÉ\˛g޶… tHD —ěďXˇU¨{âą§÷śŢ{ p^»>éBW€u¬``|YEË2ŔH…Ę ĂďCÓô¨oşŢ7M‚†éťçěăűô†F–ML—Ħăm’W’FźĆËP›ĎŔD–ˇŽ´5!Q–0Ŕ,gé’I‚ݦČI—Š"––Fă}¸ ¨ç„…4)G~Č'Ő‰ôř‚ †”1 ¬ iŔ1¶Ö¤–#Jt–Y6îĆłT´cąí0 1 WÖ–Äĺ2©PRç"P ł C˙‘ą˛¨ Ęű[&ÝE7ąN†Ófn¸Őgµ3î‰i>LJ+G=i…Uxç¶żsňc˛ŘÔm‹• WOŐm#—ĹéĹ=ͤ‘ăq îÓ^] tĘ*)¬Í©iŞÓ‘ŕĹ8 F ?Ľ¸-,Qp|žg߯牯γy—·:®ĐçíĄŁ[™âUöşšYµá—őň…˘›;&ĂÖň‚řŘřqťNEj7™ ^<řoj%“~Ćů(8äҢžťYEť?âj©rĽL›çŐ°».§~–1ËÂz.%TŮ`ß|ĘU<ŘK?EZ|NsŤ˙áR”ŇE‡š¦í—UfBĘ‹1řŇ,÷ę endstream endobj 475 0 obj << /Length 494 /Filter /FlateDecode >> stream xÚÍWËN@Ý÷+&qÓˇ0ĽŁqabM\łSC( ť”Wšř÷0Ľ*Shˇč˘a†tνçŢ{ć´p^y>é‹őF@c5Ę@˙WXQ,),$ Űŕm驿b$(-Qě6ňŤä;rŠ7Ůę®X¦AŚÜŔ±‹]ĆďśÄ߯>ôWŔ<«Š`xžŐ$kś‹N ŽČéŰl;‰áâOŮŤËÁčX{ljj,|ś€áɱźJkźKĚ „¶vćWŃÖŚ‘ŐâľÓÍL¦3«`ô6'Ř‘ů•:—ç†^«ÖĆÎŚ[”ô„ÖÎ+ĺMo̰– ¶f/ä‰8U˛-ź5IăđJç–—Úů[űfÄî»’ęŇ ţvŁ2x—Wg°sß †W“Š€u­oűěI.´•±.çů‚«§)š“źA 2ŤÖoB]yukfyöBFb„!\oÇKčťp… „§s Ý@ŰkŇ»čŽýߪ:e{«+zcF·¤ŘÔ˝čł=•j{Ó;¶˝‚ôS/A>Ó¬Oůn”ű‡IÜŃ ^ęŠýqU—1×qO]ć7›a#ĐJ5”덨6ţGńPb9Ś °Ş"!ˇŘ:ň¬/~ŹŰĺÓ endstream endobj 480 0 obj << /Length 480 /Filter /FlateDecode >> stream xÚÍWßO0~ß_ŃÄ—ÍăWŮĆgâ3ojĆšŃBfüď…ŃĹnu†'Ú¦wß}ß—ž €§‰Bżödľ˛4`É–©™ŔŢM]Č4€ ˛¦C`{ŕeę8( ťÔÝů3 jpZěp¦ČŮ»aytŤ÷7ł7ű9w+©ŞlAję“ ×FÂNúS7Ĺę¦\f$Ań˝rG =_G$Iérë~P¬äUęmW19~d¨ňŇФĺQ¨Ë2Š+DÖaćQÜ»<”ą»ŮČŰ{^Č%ŰílóŰ›îśÄOt—Łü‘:cĄ«ťĺ+JT¬'ŇSŞń@‘w$ŕUęŐb‰ř—ŮfU¨Î„Z˘2Şă$˝ŇÉ÷)PüŮR§<čR&ŚË»Ęb%K™^† ŹEűjŮ88vG[S¦HĽŚ \"aÓ »xśŤXĎ3ĹX[3Ý+¸¤{í|?>×˝zŐEŔ±pöEa»e8[7i0âÎö5c Đ…éˇL:ä†KQ »ß×<˱]‚1U¦­wţŐmëýPeÚo‡Üţ_űýďÓďaâb˙âWŕŕ/bŃŃ÷K¸©B5›ĚWƲ1j©”]’žCÓAEŚĹŁ=ůިůź endstream endobj 484 0 obj << /Length 477 /Filter /FlateDecode >> stream xÚŐWÉn0˝ç+,ő’T°:A­z¨ÔTę™[[!–XÁĆ)Đ(_.«I!Rzň"ĎĽ7ofl€$đ:‘ŘřlNkC†h@ÓŠĽ5]P_ŠŠŞÓďSËBQ`ĹöÎť ş˘OłN‚Y¶çĺ[÷8ťÎgźć[ęXeŃĐ™±K\š9[ń‘2GŮlžO!ź¸Nľ˘aÄö7!‰b6ÝÚ_ -útůá'h˛¸ŇÔ:hÎŘGß-ĆôP!ÍăŰ~Ç2l%Ĺ‘W9Î"› qçÇlAĂŕHBŚě@Ü>ń¸ńş{_ZU¤«ěëݶű=ů˝˝ęĺ—fľB×R?Ăpl-‹÷ďüzä™pŐ,îšĹZ[Uţ?dE%U‚š’dŹk/ćäq˝\ endstream endobj 488 0 obj << /Length 1456 /Filter /FlateDecode >> stream xÚÍXKoă6ľűWčE^Ä I‰”„Z »@EÍmł0‰Ž‰•(E’äßwřmŮŠ×IĽhO‘Ły|3Î÷>Ͱţ~3»ţŃ C§<¸Y”$(fqŔY‚hÄ‚›"ř.—Ş+—˝ř&ç FYhŢ6ZŐzŮ<-šş|ÖuĄDév?lš§‡ćjţőćOP˛ eĚ ’zSíDŞZöĎŤj¨+Gnt§îµ,Ü[Sw“ÂňZw˝cÉעőĘ»[ĚČĎ–”ĆŃř+çË˝züŽ/ËU]z>Li?ůݲ“˝uO‹J‚AŘJ™Ă_íľ9€ď꿇÷úcśî%΂§(‰i°  ¤NĆ_uę#’…ýZôî«QşĹń„‚ęSĂ3űăfö0#°ŠPĚ€' ř"äŐěËW° 6Ł(K'ËZeiTü3ű<•Ü8EśS+Š(«´kD.'ÔF Ĺ„\Dm”˘x¬ô^ö*YŚ8Hş„J8ľÎA=6g‚“K¨Ť t*ě¬,5¨Ç[ÔŹ řňŔb>ęv+aî’6X)ÔDÜbčb˛mlo1‰&La(K’G¶`‚“8ŞŹđnúpaé4,kh ěŞđ»¦V‚5Ţ>Ńzłl˝5=Ż)á4†^Ç­CĂ‘Ż™‹NîdXńŰĆpŞ˛t°Č6»'n6ʰ3ž#óáÝ ÂĄ%Í=5Ú;üča)dí‚Ă‘Ĺͧ˝FĂ袑„*ŕ[u‹1µ7¬Ř‹Ŕ± ¦[Yą§pE$ µe"óĘEiŰşăÖţ-äĐ^ÚţÂlÖťę·BLočŰĘcű[ő]/”uĚŰŞ­«<`¬*kă듲a–|/äŕŮÎĘĂóčȸˇněůIéĽÜ~ňúŠĹµmôĐú×ÉQR÷»©Í2.WJv€»{^*“Ř Šß¤lx‡ÁĚĐWÇsćëFĂ)-j;­!§fëď82 Ăou…żĘ•éůŐŰŕĽ8ŠíÎ-ÎäĹp–5äîr2¨|‹=öID^ ŰT{ÂĽSe÷žßęĺĽĺ9Y_AąTËGóźă(ó_ÎVwŁz|4o<ülß”—őń‡†Z¶łŠžěĎ-y˛Ş„ě˙WĺîŔ…“Ĺî˘NüĐB÷wÖůÍ™4í¤O[á~ďݬă“2„#&f(M˝‰4}ŤđżˇŃ endstream endobj 492 0 obj << /Length 468 /Filter /FlateDecode >> stream xÚÍWMo‚@˝ű+6éEYůҦ‡&µIĎÜÚ† uSXÖ*1ţű"»€Ű‚UY+'&°űfŢĽ™ŮE@Ď™=ťÁdf«Ŕ†¶©šŔ‰€ŞLˇnčŔ4¦PŐ ŕŕuâ,I†j Ń*v”¸ë- 雝5¦¦ëî>†!©Ł€Ú·(x“ ĺnôîĽIW Ąk@RhĚ ÂëzŰÜ[!ßM<âF…ËůÖĹ^ć(rŇ„ŃAĹ™çć¸@ůÍG˛ôSĽb‘ú ˛ĐŽ&ŘF­‰A{:‡o^!ţ Ł‹¨‚bˇd—¨j€ňY3Vs‡ŠEŢ ěÇYŔ\Üç^'^ÁĹCStĽĽYĽFnľKOѧ%§Ş* KjÎěPł•!Ů#I±JžäDŰĄ¤E*†.+řŇ鋼?išO5Ü·¦âçkcž5źÄ¶ z …xH!®ĘĘ»úŇ:B:Č$r“ęÔb4ŰYzöˇ [çc‡+§eFúÄR ˘ż1+Ć}öŹăŻC«6ś\^ĺóŻ~$Ť·8MsĚy-ëÝsĆă•­żYŇ«rĹf2Ó­˝ß9KŠeIÓ 5Ő(şjq;žśÁ7Nâ÷ endstream endobj 496 0 obj << /Length 643 /Filter /FlateDecode >> stream xÚÍVMŹ›0˝çWXę%©Ś! V=TęVę™[·˛ÄZbX>ĺßlC ! ůZő„ŕů˝7ă4°ř9ŇÔő»;šż88бÜ }±‰e. 2Lŕŕ÷ňb3™™Čł,"Ű|—P©VSąôcžĺjąöRąúĚ˝ }ŐLýËäŹű ̰ml€™®CÇTřŚç{řdKŢ“8ÚńxĂĽ„qń@ě»Ü…§ ¸>4B*7J“ł Š^˛ §Jë˘|¨ć‚ł‘$Ú:-şU,’í{ňżę~HĆOBďxvâç/Řn­™eĂF`†4č $ws×%4ÂxĚĘsöŞi¦Y2Ćq*U u(”ˇęÝ”ĘX–xľ|ŽÇo'K›ŃĽ –R/PÉŃŃŰÇ™¨ôD°{ŐtŁG‰ ±†ëwŠŚń•ÄÎ׊RésOJC¶Ő3Q Ȳ Őu:,¸ź—YĘ`őJÓ”ęëAgŞ/ÜÓ%Â'Ćý¨Tvľ– › 7ŕú['µťC˛bé>Áâ}•˝ćž”¶‘ĽH"JX0 ôrďí¤XßSg}°şąs§m¸â”>Zł¸ą¤ň•±ęŁeG‘µ—]õŰ“źśßç­˛şÎô‹Bî2ÝĽý PO<(ý 9»4Ž.ŘMÓçCJ¬_q_mŐ® Ú—ĂÁ|Źzů^Ŕ…öĹľ§86ń3ŐŮúŞĺB+z_C?†Ź˛i߀ypOżÝĆRîö-˝ŚůDü*4ć5±Öť9â‡ĐËr9=Íëˇs®Łg’s®ž5śŹHß;Ű´Ź+ëđĎ΀şm—ĺĺ@»Ľ TätľřáŽţ˛Vi endstream endobj 500 0 obj << /Length 502 /Filter /FlateDecode >> stream xÚÍWKO@ľ÷WlâĹš˛eˇ,Ťkâ™›ÂKJ ”hâżwy ‹ĽˇĆaXożogfga Xđ˛bóű“˛ÚîeČPĆĘ'@˘1B "äx(&x»uBWŐO'wÍś>…V¤´PŤâŔµTÇ|gVU“7GË ¨ď˛‡;b‘ŹĐýúCy%s3AYČń3OŰąXĄ§cćŽĹt6ąŞÓĄ@;Ąß„6ÓîOłŃµĐ1*(ÔXzeÔ|Íł‹´c8±6™iśü05Úąxß&·  ©/@zş9zł˝ÂöX˛třë+¬÷gA_Î<¦g}»îˇŠńŘ„˙)üâ^jç 3ŔÇ7ÜŘĚŁý@đ¶žŔĂ#%÷• ńůL2VÉĽA•ÜT,%´NĚMÓňZ~ě•n¦ă©ŃW%VžłMs”{Ź9aŻ eĎ\ÂĄJSł_[ë.;Z)ŁôlýąÖŃuśđŇ»jdÚtĚä×Űűşłzß’‹Š§Ąý¤Ó°ţÓJü:m‰ŽËŚ¶Ôµ—á«ĺŘĐ-zƉfąMzZűJż«…_ąřq_Ž-]óëgđąAj=7\4·~nčjť±9*ń©®D16łŤÖ ˝Ë?;5tJoî«?áŘîwRő'Ž Ë#Ŕđ<”D>›”§]ž•Ő7ă endstream endobj 505 0 obj << /Length 444 /Filter /FlateDecode >> stream xÚÍWßo‚0~÷Żh˛]ň«ٲ‡%sÉžyŰ–†IŐF Ť€f˙ýP:ˇX"5<µ4Üw÷Ýww ,€Ţ__ĽÁxęŔU]۰7†>Q-hNTĂ„Ŕ ŔÇ!’„(őWx¤@wO4 S‚6~XÝÓÍĂčË{Ďa]W]ČMq”ŃŇ( Ą?ŚĂěvźÔ÷†ŠĄ«ŽeŠć;Łď8%~ŃŇOPš±#ä0ÚER„żÂÝ,|»ęyA6•Ä‘€»Ů,pÚ[6°™MÝłH*9Š|Š[ĐşJŤ=ŰY%)ß.ý5ÇLNH(·jŇ®%ÍëŞwhďżµdfäxşSŕÝ‘hfGxĘAÇţ|®.źeÎeÚçoWŇ‘?UônUĢÚ%\ľë"´ Ľěşŕě*ůÎZ°¶OŐx M{GžmkĚ‹nb  lŰGŇ2Ń«ÇÝt—8`ÔďcŮg‰#Q0Y”rnUŇÍX-WvŻGÄ_ Ő!q«ď{Sów$$¶˙yRž-Ň?Jů2l%n)»Ą„őú‘ĄűhĽu—řRîřf3žZNĺŻĹ1UÝq€bć±ńŰŤ© ŻŢŕ,ţÎ endstream endobj 509 0 obj << /Length 425 /Filter /FlateDecode >> stream xÚĹWßo‚0~÷ŻčŁ.R)X„ěmÉ\˛g޶ĄaŁh#?-űď'X7ËŞ"}jrÇ÷Ýw×»š`Lđ40Ĺúŕ&sĎôË~Đ C!ŕŕ´l üĽ ayL쓎 láauJʸ`¤LY–ţE‚(Ú~»˝ůĎçBĐĂÂÚ€¬iN R”<¦„…Ż&6kă)‚îÔ–=l!ÁŞ „¤äÁX…¦eňg˛„ß\x¬včľ64T *Ł÷,‹›*.Ë ?ÁÄŮg˛˘”+Üěô_%# Ĺ/e6‹ótą›˙b¬j*ˇ‚(ĄË.YTjőrů˘x+É\!Řç$˙qřÍŚáÍ”ąžšj  ©~/ĄŐС’廕ßF‰”†ëé8©~Ą‘š †ĆqĹŘR'‰ˇµn̰YĘrłübŇ ˇ-4TŤ1űí2Š:o·Yšb» ÖÂkŢ™öÓťĽM@NÎuZ ´[Hś~Ç^-áŃY%ŽÚęĐ8Ů’ń‰˛:×L_2“ůÔÝ{Ƹ6D® Ëîf­=Ű–dńč~Ş:ŢÇ endstream endobj 513 0 obj << /Length 1159 /Filter /FlateDecode >> stream xÚÍXÉŽă6˝ű+ä"m6WQB‚  · ľÍ ¶MŰBk-ÝżO‘”eËV{u“JůŠďU±Tö¶öţžáîúi9{ţQ/BQ@oąń(‘ îB"Ę„·\{_|ť·Ů|!¨đ“:Ť×I7?JíFŚő ňŰüŰňoÁ 9ó„ HtË͢—˘Hĺ{śµi“Äjł‰wŞŽ›¶Luś«Ě`a 5†Çfő«Öĺ8–ýµĚÔ“ĹŔĂĺňXyݸ٫ťŞ:gg|¶şąĘ'řąů¸ ´yRäf?·˛şĄsÄÎ]Ö–’{ţĚĂŁ ^!’śz `$t`ËťvSÉąÎ" Ží ŽG) Áę&L$ô·m¦sŽDÄϵ^×Îl sĄţ‹v÷Eľ76cŢ [ĚöČŔŇLšýµś}źĹńl‘Pé *,^eł/ß°·†g l>ôŢíĚĚŁ( #°RďżŮż#›QŚ ,’¤ÄůUG|˛q,¦đÉ"χ>“|Dd‚ď5~‹#A®H%1 D0Ŷ%C·HÂ*ƧđÁ ʆ>‹¶ÓJ"őbŐXjaDéeą8“32ÁÖ9ÇÓÔâ"@ GS¸˘0ŕłÖŁj Dd/rŐA٢°nPpţ„SĚBěż'ÍnDS8ŚË‹š’ĐśHpâ†$4G‡Y(tŻ‹şT+}î–’ΦpKI„ÉŠc·['ě‰S&TŮ)|˛T‹†>ÍKf¬cČz(đ^Ł~3Zܡn A/Ć R9 † "ą)^Ěä?!“¸e…QtCĽ w ĂIś x•H9tj{±Ş@Ää$n%ŘDÜ–'I8]đ7mľj ópç»ŇM[ĺć°ËČW® Pxy„⤠”E’7ú"Ʊ}·CŮđëÚű0W©_«Fąńş©Ú¸Đš•řź’\U?ܬ˘Ô•2[©ÝÜJo“J»‡&Źí誨*]—EľNňíXod ¨Ŕ¦·°WXťTÎYjÉWŚ)`>ą1pv"Ö¦HÓb­č{żpźeVąţk=}u}óq“úK’ŻŇvÝő¸żCÉz¶F»?Ć’ŔµŮŰäMÚdWqŤĽ˝Ź­~±Q솾˝QŻZ»o»Ď>2®‘ŇÍ=”tsL> stream xÚ­WKŹŰ6ľďŻĐ‹\Ä4)Q‰Ң[´Č­ľ5…@Ë´W‰,iő“üú ’%[ÎÚkźHŽfľ™ůfřv¶vţzŔvü}ů°xäžĂ˝ĐYn($Ä y~ŕ,×În§uoÓ/r6ĽŔU«]›5i\îc±ŮéŻÇ⸒µlâ¶–ŐGŕŮ˙ËJŁľ3'ń`ßĎ?‡ß•`Čog~h'@¬qśCń-qNŔ—»×ÄŮći‘źň9żgx>Î řöU|šl'ŕ4 LÜŢîwŻK§G:®âątN îR–c÷í°‹úýÚŤ‡ü<‚ńŤ_Ň<ÉÚµ… ř‹˛ČľĺĹ.zz7•Ň™-ó|0|ʱň-\Lş-÷Ďĺ-e˝<‘)“[:ő'!´ŻĚę(¸M‘­Ż«Ž˛¸_‰†”űÍťĘtIZgíî]°a0í0ÇĹ#eks2QĎîGjśü[ŠDÖłąÇ|7ą™¬¤=–Ä•u#×h6§ą[…RTM𴙍f»o@ȉŰFÔY@v>ćîň)­ŤRYŔJm´:ˇČę˘ĂÎ2ŔĐs: ŘŁÂ!vĐí« \Q–iľť(ϦQ§ÜaăÝ´y˘‚«Mâ@T-gľ1Lqw- ÚůVׂ» Ř5U«EFCäëNőôcÝ&OfÖÓñ[÷˝Á»Ţŕ¶78¸n;ÄÔ~RµśŘ űĘ2 AÚRB÷h`X›Â.Ăá ŹSDý°cćëwĐŚt QD‚7Š@l; Ç~•Wař<ď—Ŕ>„°Żň<Ă/ř˙6‰¬S ÎzÖ`c …ŕ(ÄŕL,B!/…čŤBŚ ![ĘÇt€ŹížQUdGnRIˇŰA 7U±3łr¬Ě´·µf[M5 áĐĹZľ–uRĄ«2Í'2ô8C,âץš }¶8ߪ4µÁKt]­ ‘‹G:†CO¬p ˛€©=ŠüČ?čs8?1´ä‡"Q÷ŞŞ©ĄűÔ™Ú4 Á١­ß¶ÇÜĚÂTm¦ú@‚N(™7pdߌ@ś¨îÓFml/rżËŞ02}fŔ¸+*«%Ő1ő5…ť?‚{n¬?běé$_fpÉ*«LÖhjł›ă Í9wń–ÖcT´]ŻŻ>Áfć°ÉŞ3[5p9č(`eűLM›ÎÜYˇ@÷ý·ľőĐäűôč§ňÂÇŞ9;!ćŠÇŞć"¶4ôżM¨x ďŇožĎR–(‹Üá—öÍÉ®Dť&±z÷\”kp>×ɢŻ`zšäŃîR—'S;”#ĆěóéČâĎĺĂFµ† endstream endobj 530 0 obj << /Length 937 /Filter /FlateDecode >> stream xÚ˝W[oŰ6~÷Ż °{ŢDQh1`ÚĂP`«ßšÂ`$:*‰®$·Ëżß‘HÉ–-ŰqâőɇGäÇsçg‚ALČ‘ßß“Ű÷CŽ$“h±B4 °¤É ÄŚh‘ OÓźŇ"Î6‰™ÍLߦUv›ë5~üeöyń'Í)ĹQŕ7/—đ}ů~óŰ›Ufcť-«µŽ˝ňçF{Ż«4^ŇňÁÔ»{îH@ZhA±| ˙‹1ë-~ŹäŃďAú¦A9đÍ;\¸TuRŻVŻv0Z÷›ë´x•—ĺAęÝŰzó:ĎZ&/µěö˝P;Ą5— ‡‚ů¨‡í×ŮśdZśţî­%NôĆ6b¬ 'ÜwŠŇčÚ$n±*mî$}prSĄĹĂh%ě?“XEŃٲ؉ԫËcG»l|xviÔúËř.l‡đŚ$xŹfFéÓ‘@§Eµ61„úĆ­s›¤w„°^ŰuÚ%B}FL§s hĹúŃ®l–Ů6éý·Ő¦ëÔţˇÉjµŮhŞ Ö˵.u^]Ü®‡ ĎŞc]+źiJeę˙ŐŽő{Şr›ůń˛™v%ă¶hĚ´$ývĂnüç˘vÂÚžKčËôÓÓŹ‹d±É˛ËĆ”ą|@ť´î93ę­M7BtíN ćŹ0'š»ë¤vĽ[LľN(h ˘{b f(Î'ź>”ŔG G }o·ćáHE ečăäďžÄđŁ·P’yÇÝĂux-€?׸–‡p:ĽÖEőđZÉq¨čU®•‡2^ ť5r©âę*—áđRh告ˇ SĹşÜ÷-˛§áS¶©ş7ÉădŁňźW^gj÷A‰€· j}1Sx …'ńŮ‹Íá]ľ/|őÎľćëFgW(ôć8Ý9š]ÔńůH*ľŤ$Č.’J¸H6ŠžÂÂó@,PŤŇ‰Ů’či ¨-iÎwÄ-SĹez讎„ŘŁ…sHţFĚD_˙ޏ HŠv(Ę-:łPśdŔ»mJ"g0s±X„M )(gµłźĚć”2ý˝śQ5… öĚěńÔü#´ĂĎűÇdÚEěp&7u˘°T™|˛wuµG;şXî°ţްĘćľźŞ,Ňe˛mŰ=;ËÎÎ!»Ü‹óścFÔ°ď ÷Î <‰÷Ď»|]?ť7b€‡(ôdašs‰…ň×ň`° Ćě Ş> stream xÚÍVMsÚ0˝ó+t4™ZŃ’­é­3ĄÓÜ:Ą§$Ă8FI<56Ĺ‚ ˙ľ+É&((RrňjµÚ}ű¬ÝA o=ňĘ÷˨w9T )¬$“htŹ!XĐI‘`ĆMĐu4M9~(–ş &"»şËš"7ÚxŐE ëé̬n ýŰŃPś8Š)ĹJ>Mö{Ăg3Ëňvyádđ@?;ńë>vášfł-\ ;#®©É÷Ųs^^UQW/ŘYëÎŽ+dj­;ůż»ŇŤ*ŚSŽe*QĚ8VÔ;ö©ęą·j–JL d‰·@Ö¦÷uÔűÓŁ %"ŞV)E‚0°MP>í]ß4Í+D0W)zr¦SÄŔPT˘ź˝;:U€)O4Du11ŰQ#8a§Ę€„¨0Ş˝4ŰÜQĄ˘M8dQVMvÇNµ—8–¤XČô$9¤ ńoĚq’bNä)Âr¸•L‰0¬˝×©űdą‘yÔžÄöúZ±hy­«rĺĄEŁ'V˘‘©;sť÷í¶uâęŹJȌҰgŮ<›jŁç v\tóér(7S‰Aä¶ÎŕËÚŁ7@Ď‹3ANţH›ŇŻŞčCń-m)A0›Ś ö5^˛×Ä s]fţL¸~0Ü•ż+VúÖ‘ 7ai1}Ŕ©yVhŰóýáČcfçYŮŮ?>ß íĄ[¨nsň!şť<„îŮíÄcFéČu´ë*ŔŰĘŐsĺ;}’™/rŁŰý»•ß0ťŹűE•ŻŔ¤ą«mwń-fíĂdEŐוŃÖčAĎýÎҶ¦¬Ś$$wˇm7ć\EOŹE ~9FűX7­Ŕ´ ÓŰ´0Ýľ.kďÉ/}o=y°vQŐU\y”}Ŕf6şç.”mŐ7V„żµoVهáÉ˙Ý?ĎÎŘv}'HŻ?$ )P^˝Ł^ß'ş2…Yí{. (x> stream xÚŐYKŹŰ6ľďŻĐŃÄ\ľDR詚A/Eö–†Ö–µBmy#ËyüűΔ,zeŐ[3M{_šoČÎ|$iR&4ů톞ůţrs÷&ăIF2ĹUrżN8Ą$e&Q©&\¤Éý*y?[,ŞýfQVź‹ŰyĘÓÖň}µ\ló'×ô*h[T«˘n«öŰšŇŰŹ÷oÉ‘"™3F˛4ŰćÄîźňĄŻľ˛eŔ~˛"ćçe„Ş…J}'uîŢH3X·ąD•Ěą cNâý#üËS:«ۇ˘qĺÝÚ}«úéĐşb^Ż|ߡíWŐ¶¨÷Ő®Ţwăl`.f4Á"u€NÝçÚqCL×ŹŞ‹bĺ…¶;÷}đŠ¶ťĆű|[”ÔűĘÝ5Džs®§Öą_Ă”铿E $z=~/nY:űZ-we“?=VKżÍ Öj(ä(,|gD»ä/q‡Mńu±iŻs†˘]ÄóO«P1®úQ •˙µ*‹ď«zą-ÖUłoŻ+Ż]徬‹•«Ő}ë˘hůVT˝Ü˙%E'óĚ ÍÁ!úR:a…ÍÖ»Căš×‡zŮşD‚UĐç–Ń™˙'wŁ˝Zvř®éş,>  Ž$Ą˛O8E;˘$“X7Ćf7”×íˇ©^SlňˇNŹyëJ.'<5Ĺ~ďěÄŚ!ňK°˛~ĽŇ.caˇŘ0Ű˝«UőI÷j·Í»ĆĽńŤ›Ó ”o6ßş®˝Ő™ř”)II4í“ŘÖć¬_ďo>ÝŕÜiÂŔ)2˘”J„€,’ĺöćýGš¬ ďmB‰ČLňĹŽÜ&śd&Ň&ywóÇ/“śłGIRxĂŁk>Ç„™”10Á§1]ŕü#©!śóŠpťrÔÇ(±ÝęăvyíüE0ŔČTč/ŢšŚĎ¬sĂ·řtČ7Xç XŞlŇľ\pPV¸Ňé5˛ nέ(©Ő„yĘŠ4!GíË5µ’b@BÉô3Đ -<ÜĚʦČŰÂŰńŚń¤ ,Ő“Ć0ĆcRB*b´¸ŔxBbŠGU ćxő„A/Ťb=aĐKMZ^¶?ĂýŃ5 ż)í6ć L†Űřڱpdť˛5Ó  ,¤&ÍŻYf @i+(ĺSqeš¤iŇžÉaqĚń}ĘŔ…Ž ™Ë@1Ŕ,ĎnÓ;Ó34f[*} †¦A††šMĆv`áĆ5y]™s.µô”z7ąĺ3Pň|ů čřŚőÍ‚ŕĐ:ä82ë9Ç‘¦ë˛$ ެ@ˇ'+¶|$+đŹ'Đ1$+¶áŘ妣;R6 2>ĂÔ#‹k`@ż¸·E ”JvÂŚpYąţ$„Ş#>Řh‰6ž!>8ĆĄJ.ΆV†!,ťŢożd3žQb`ŠWĹVFXE©© '0aGAT0F Ç«Ć€ŞŁ`jÇĚvú5°á™!H{¦»@ÂTsš‹ąP˝·ĂŃk†1ČË"‡p_“Ę1%©NŻÉł âčdŹęŁř 葥– ĹŔÂrˇsŇŻř3ż˘GzŔá4|Žă1p>‡»Ť0/Áq›Č ĽFE2*˘€ 0 ´ü˝×–2ÎöiFŘÉö(Çbś 87Q !•ńSĚ˝ƹÉλKŕ;®QaI‚%łŘÔ’7Y#.$}ITş±ŹJGČ鲋IGČr*"E@ě"ŇńE®eßEÍ/$çy]ę¸Ď­ÓĂŮ­ëzB$OŚÝmÖ !Ţ˙ď‚gZ ?ăEU6łĎoX4ö^ζYž«ŽÖu/-7Ç_ ÷]BʤłĎČ ‹¦ĹkH‡ĎCŘť»Ź—jFĄfłĂľŞK˙㣼Ţm6»[؇_°ĎMAÚű©`÷ő”žĽčág°cW·Vßţęď˙×Ínëź)ˇúâËŰţO/öÁ ąţî{ T˙ˇ^G±NČř ˛‚C…äáę˝+đXĆ5óo‘š=Řn]ŰíS!6> stream xÚ˝WMŹÓ0˝ďŻÄ%A4;ßq±H\8Đ‹"7q»fÓ¤$ĐŹíÉg›lŰt—Sě±=~~3öĽXÚFł´Ď7ÖÄ÷Ăňćö.ÄZh†ö´ĺZCľkzižë›Řvµe˘}ף•i´aż©±p±«Ë^•±<‹JĘÁôz`‹ÖEľŤV¤d±ěŢ[®eüX~ŃdŽ­-2Cwŕś“Çžóveí|NĐ[ĺe1íf ă–ěŽ0 [ŁčÎÄŘ9_“yźäq’Ao]çđŨ›CZç°ĎÖíťôrpá¦ď`m…7€·ĺpOg™áXúoą:-Jeôő8XÎfŻhšbż?ĐŤI ň,Ý73ŕ[•41¶ ď¶ÜUĆ`UËF^ŔXASÂŰaVăČ1CÇRó(9ŐµtžĂWś‚ViJ·4ă%ôZ«<á_s_ňŚBŁÜ‘šrĎŁk~pÇ›`őéËaR¶éŘfçĹŃ?Ěőj^nł˛ÍÇ6=gâęÜV—&ç7Úĉd 4šd¨íx˘±˘M¬wŚ&‹ÖmmĂŐŰd¨J–mędy¨=¬ó´Îívl]e±Úô¬<Ŕž„áé<8|Ť¶Hd㏔îžý?ÎĐÍئo˘uí#=Í€7ÍŔ3Ý…Ă*4°]›« Űń-}*6ă…áüŘLUŞY <ů00qVĄéą÷FŢő˙'چČĆ^v@s–°NďsJÜĚ``ö˝‹ÍÔ˝™F潀 "«nÓ±ąäŢŚĹfZáÍŽÍuô«(nBLŮ8”ꪄ–ŞŽ6ú%UÚUI• YR•A ń˘Š9Mę=,,9)¸*’Ň*ĹBí>¶,Ł=IY€ŐyŤ¨ ‹iEČŢ™¶­“$ݧÓ_IßCOžEq˘ţO—Žĺ‰¨)_·#taÓÇ͸„¤,:‡ó Í C~ÍRJ6Ö®ČŇ·đr)lĺ\%+`Ą0YŮVś Ór!LI• |] ý{ËÂJ˝ŕRJ FV)-+8ô@V•Üaox®n cýc¸\jIĚUj)đűˇUŢ|}K2¶«í°ĄßP{ú"Ť¤jd¶ĚkĄŮ•LŰćż•aůVćm7]ÝíÎTžÔ{/"ŘĆ„ű+–Ĺi•Է𝸆·]ďĎ-ŁÝ˘Ţ{Đ#í<Žš„kž†ŇAş"ěš–ŤÔĐ ‚Ş –|ZŢüďęÄÍ endstream endobj 547 0 obj << /Length 672 /Filter /FlateDecode >> stream xÚĹWË®›0Ýç+Ľ$Ő…k›G@ŃÝTj*uť][Yś•` &ąůűb yô6Źöź93glÖ‚ŻX??/'Ż Ďđě€ĺ `43,ŰŽ=3°ieľk„DyLýͦşŤmMÎbĐä) jă§8˙m4źţ\~ş… ×2ŽáŮ=u´íŔ<ÉEFŁDÔ(}#ˇqéD űSĐ8űҬ<śvđž9jJĺ$úgšüÖđRżŐ,mOŃwnDKăŰň—@đ2Fé·ŢĽ˝›BlµŠ‚ÝA¤‘ YRlÚÝa´!bźÖxrt¬lĘó»=ĆíBvQJĎCjɧy M;Ąt°†ťXÇÓ䜦v î—Ă«ă:“ăÇYj?SÖĂ5qÚ—âlÁýrř¤8űJŢ@Ăđyâőe»`-ŕ­•z]Xn§ÉĐ×Yč6VĐ‹)˛5žMu:““wşIcy j‚«• cT09žiT™*ÚŐODé6JÖj.~±Nޤ“%ĘR’«|¬Y–+‹ĎÄŽ©ĺ™† 2Ň$T ×<öĽP*!Ëđ,«źžÝAŤqą ŰP+r¦9Xń˛ť‘dvIi xČ yhĘšçQgÖ¨(s†Ľöď¶6Őx~ęşk…ć—ż Ť¬ýWťöŐ±> IîîňďpyëÔˇ´Ş‚–Ýź¬ă@Ľ×_X?q{bŽŘű&o#—)’ňe9“°­·€§UoYÍ$ôIř8€wKVߥ…;źŹú äA'ÜíŹ]71¨÷dg˝ŚwIÁK˙;]Ý=9ôůC˙+˙đŽô[ôŕ˛TMé^ˇU˙ŻĺJµ:Çżwg"lĐD% Ďp]W‘0˝Ţ–/ËÉ_Îĺ 8 endstream endobj 552 0 obj << /Length 1503 /Filter /FlateDecode >> stream xÚíXKoŰFľűW=IA´Ů÷Łm ¤@S —˘oI ĐÔĘfCI IŮŠţ÷Î>$“%Ó1Ű\zÚĺîě<ľťťN®śüzăřóĺĹ«·†&IerąLH’Hˇe"ą\$ď'Ůt&¨ĽC^ólł®›*Í×ÍĽ¶MřLÝGţ ś˝ ”3‚á“ü0ýxůČ›‚ŚÎÓ.—y–Ű#¶Žx‘ŻU\Áq$'Ĺ]ń‘Ä«´Î3/,],Zňť°«îŮžë¸ÝčÄPCô«Ň˘Řdó|m?oÓ"oľ81Eý„zQçôż}öÍQDLYmţ´Y3ßleEŽ<éŐ[®[dF%ŇĆtř˝šr<ŁTŕIZ4¶Z§M>>·S"&¶ř2•öűŚ9x€}ě;ćý^8+ľóʦ‹ů˛Ú€ŃMĺ/¸ą÷Š%ś ÍY—Ůw˝Ď?6߇ÁŢçuS‡ą;žvvóŽd7Óő˘łýSÜ'¸˙Ç×mOţű»“w!5RśvÁz3ť1Î&Ţâ0ő€¸É¦r#źT¶€ë٬Ăj–ĆIZÔ›xŘĆ-ďśŰ¬±‹°ŕ€ <š»)Á“HżJ›*Ďlľ¶ÎŞü*__‡ďćĆz€g„#Ăyá rwŘ{ŹĂÂMÜ)?Ů  AC\hw‘mTćsç×ů­íqŠčR]Gń>Ň ;ÝĄźô— ¦I?µÄÔešĹĎ~ţ˛ĎműN‚ČxÎ~Žďň<™Ş—»]oWÝ'ß|)#‹ŚtŹČGhTç,{ş*ü!”ÎNăŰwŤ«´<şFXű˙żÉ5á+žÖ.C9,×4@‰÷yÂLJ_./>_XĹ 4,ˇ 2‹¤I¶şx˙' ŘŁ3:ąó¤«„"Ł ĚŠäÝĹ}š–H0âYIÉ‚P°ęX(Ĺi:†LŠŇŘtezŹŁ Evh¤Ő”čÉővĹŚ‹ĚXB(]äYÚŘđĺ#¬›lŞ…­vaĽ»Éł7U``ž´ˇŃ˝¨°}¨Łv4¶=óO GÔhł ă­+Ň*ź…·OĄDÄ•mWNŻ —%,Q–ěós§˛˝9aˇÜ6aúü)—[ܤľŮl‹8żŠ§Ň0”¶Zm›ÝhxěwTŔo;ďxnNÂÝR€Ę`ő'ŕX#©´gĄ€ŐiÇă„I9ŠPŞüsďÍę¦ç˘ XjöŢđ˛0Žfçá1śéQ4— öCŕ‚ŕ Č8pApPř®2­ŇUßK÷ô`3¦ ÂÚtŁn„ać ĐQgE8ÁćŇłR ŕiä4ÁňBEŚň®PW–ő8šBBó}„÷Ü“$˘Ęśő5J)âJގ<Ąë@ŚBĄˇE(ç>C˝}±ĺ&M€÷0(ö:ˇ#â,ŕČŚbcľ€%řK±E¨Đj\ţLŁĎ sĚpČ Ł(nTzZś@a0N€ŕđşĚa€řú(7$-0¤Í(ŞCMˇŐďrYŚsI.+q€T,=Î…!Žó)ABUÉź”8Fś{Ś”¬”QCRÂBw)ˇ-tłí}”đ|5y4%č‡JôDJ`Pb‘1”§Ô•ęŁXÁ}Ž!“» ¬…Ţ> ϮͲk …‹ó1HlPÇtśí Đć_±ÁD ő}%·Ľ]Ăy÷W>}gĹMÂ>mőťÜŞď;ąIč;9W‹ű­vßÉ-„ľ“'”Nqn©Ě-ü¤ĂŻÄ]^[żu˛ńäČWۢÉËÂF&®ýÔóŻĂˇ°“˘őŻ#{PŐ˛}ѱޭ+ëşź÷eeë: k;ĽÓ0yÝÄŤĺiĹńŁ:đó*Ä&›łýťŤż˛íG<ęáČäľG@ůŕ=qDoPgî j &‡öćÎ6uŇĺňÉM8†ÓOí5uz\ůď©Ňí[î;–ĺÝWŽE†ĺݨčtUjůF7,A!Ť, _ĹFďčůÎîń endstream endobj 556 0 obj << /Length 1423 /Filter /FlateDecode >> stream xÚÍXKŹŰ6ľűWč(1Ç^Došb{)Ú¸§$0h™^ •,Ĺ”v›ţú9”"ŮÚÝd× z±řŇ73߼(Óŕ6 ÁŻ ęź?ŻoŢJH"žë}ŔYJ˘8 ’8%\ÄÁzĽ7›Â”›Vý­—«Çˇť5÷µßăüUsă4f?-?® V#Y$‚cDĆŰân˛U¦Č7•j<Îdmł?Ő•˛) Ó:uŕcO4ŤĘýôŐ®®Tqĥׅ> ĐKö^‰ď`bŐ•m±AglLVqxÓWŢ ß¦âTąŻU+ţŢjÝŽÔ‚Ş÷|ÍĆ/÷±[©g¸őΞV.ůĘ=Ŕ‚câ>Ó§“¬Żš+2÷˙P®;őńLĹa ĹécŠ>ââńË^DwEçŠÚcĘ??….!CŞh J‘3.!úŘűäÍŰ(5ČU’‘4„‘8J}}ĐxtŇKáKc°ĹťÁdŹ-~Y/>-lĐ€Lf$KŇ@$‚H–yµx˙‘;ŘYpďŽV'2“0*w‹?ćš7ËÁb •2‰r±^ÂA¬´S§%ËÂŰ®ŇG¨<‘áN›üTlµiJĂLÄu´ĂŤëýŮćIKęń§®Ńő;Ąji‚Ń!"ůYtÜXÉ”oě“Ă+źşâ¤w¸şŐąęŚĆ­v–p)ILz“\ďž±XäY¨Rź>ŻŹĆ5{ ďě‚Ĺő©ĆĺűRĆIĘ?P–ĚËŹú#GŤ°zÉâđźČ2Ŕ!°*Ł‚(Ł`“Ô…Č|ҦF¬9žÜçX̦D·őy$…9n&Rc ‰%QBé‹"•%˘/ „Hę#ŐeâŚŘL’8Ë®"Vr§ÉT¬-=B9µY_C(g6+Ł©P[Ăf¤ AD*®"U$D$üĚT›ś3bˇ^0ĆŻ"6Iű*·rđEv‚e Á$§R›űK‘‚&$“é5d ˛˛łH˛ä29!%e–­qx¬[¨˛¬—Đuî±ĐĹ6;áAÁĂą-B«]•ŮV Uú ĘdD(ź&öÚŐá~)Ň0vĹ,î‹4 °HăŘ©3Ţ4…%÷)t«6…†cm(Śßť«—ôŃ/VťŻć4n}źŚ¸ Ďs…™0ř€K|Ů_dř´Ś¨ó@aő”Ô÷űLbvI:ľdŔĚĺě/~Ń)ěVw…/vÎv3ŻőL¨ Ć çňîyaăŰ7mNI”Č)ÎÍ´Ź5ŚÁ2ě­6ťíž±ÁnÓJŢŘ~Űsĺk|îüÓÔîć8H4˝Le´ Á¤ŁÔÂ;J…«dĆClőś!9öťŤâX PxN2âňR’0Čavv+9ŻŻ’@·x¬«¦k5˘«#>{ŠÜ) +'mŻ_@ąň<ÁšcŘęvĐă×ŕVç nnůS§`ţRŢ߲ŕ’ŚLż8î,ĹęT¨m©±n »őĎ3c‡ď–Ń—Ĺ×}Ţ{Ł7»âÎ|űeŚ®ňA˙´:Ź}• p0zö÷䔣aíeLťCwĎ#ěń?® áčnĚá(î¦enpż†rWßă"6y®Q˙n¤! endstream endobj 560 0 obj << /Length 1011 /Filter /FlateDecode >> stream xÚĹXË®Ű8 Ý߯đŇܸ~ÇAW-Đ:ëěÚ"Pb%VkË©e'íß%ŇĎ8L’ά$Q"ytDŇ„]ëhąÖź/.Ťď7/o>†‰µvÖ±[›ĺ…‰łň|+ŽVŽDÖ&µ>Ű›L¨ĹŇ_…6_x‘ýó”‹˝¨µ$°+~޸â˛fµ(%žJů×ő%'Ą:ăxµ…Şá¸`yţ ÷4 ÖZ…§(9/üČf•`»Ť6#cBÖĆĚ‘W‹Ż›ż¬Ą:ë0„ŃsÖN…6p i˝(¶ËWF `VátäîUËűT*%v"h ąĎ›TČ#*pVĺ˘Őž»¨Ln5pł4ŔÝ1dăŰY,7˛ßihĶ1Ä=ßĆjwhěÄ÷Ář–xF3ŔeEËĚp '®)~4|,šĘ­ö%ăqâ» ęN(Ü0ôśřýÝŮţµa—Udç»,őîE5ˇ›Řźú}Ö®}h*mˇôFâőľ+Č r3ËwGypĐwh:ˇÔDŢĘľ:Ół¸ čUëi_%Ćj’­••Mž˘;ť đ´˝é!ÚŃöW*«´ĺMéśíł,§B}käľžĽĂĄâukĺ;˝őő“6 űý%`ľ‡#ÖDű¤ĆŃ ç”{đxežă»RJé÷š(GkvŞß|\ű2zNÖŇë^‚Ö·[ˇňíQśÁI¶őĘÜP/ţ Ő–ĺâ(·©8«/nä”­±!T4VłďłĆ`ÚŢ[¬@·őÇ`€ÝX=¦7ł̤š/c¨ćˇ?ćé]^óJBTš©ă–CŃ#ž>)x¶˛ţ´\kÉ$µîžIÜŰ‘±ŠĄ¶‡I±Qćýő>y ul,oWö›aóŠëK&L2Ŕt_§¦¦Ópô8ŔPAţUĺOQ}jŘíűIđu˛­¦âĚď{ö©ĺÝ}ˇfĆŮÉž°·Ľ†ç`üo÷PĎĎÜGĐÜźşźŕA°¶u;„Őą*QBí GyMŇRš¤É8ýp·ÎJE Ô0©v‘#ó6¨ĄK €$Gđ&%ým1py”y;ź+&Ź”˘Řˇi,—]çćâÇIŹ[+·Ž_’ę*ńˇe0ă䛹×Í*Čątż±Ě·"7ŞĂVČs™źˇŘÁ˛xN±xťCŔeSôjŕk[˙:‘!={ťëIx¤Ł‰}ě *ĆÍ|Ľ#źPźţ™¶IB>‡¶q {mŃ“h»·j>J˨ä˙‡{+őŁ Ś ÷ËŔU=ę)ům%¨‘P/ăţtPÇ˙ üČqЬť$!4ˇ?Rů°yůÚ¬V endstream endobj 565 0 obj << /Length 1095 /Filter /FlateDecode >> stream xÚ˝WK“â6ľĎŻđŃl×ďGĺ–ŞěÖäĚ-›˘„-2Fb-™Iţ}$µüÄžYv/¸Ýnő[Ý®u°\ëë“kžżoź>É|+s˛ŘŹ­miů^â„QhĹQâřAdm ë/{·#ĽÚ ô‚W›ČŹlő¶Gśä;ް>í%ůÍŤĽßVo˙´6ˇç¤a`m<Ďɢ‘šą Ôô ĚŰ®Ć'vÁ»†ľPöJwąp©×Őj—µŽťëµ~Ě«:Ľ’ońŞ×*©Î«Ď_ÂtP€Mś:IčKm©e hŰ®R×f«Ťą6¸FĂ [y‘}Q?¸Ş* ÄŃČČp#md¤yĂ!Ôś‚GC ŁÝ©«Ck#űrĽë˘ö9mĄŘIłl.Ž@˘OŠ6© _˛Łü¸’˝—ÚŚĎ3ZL‚Ą‹b­5¸ćp<瀲󩤪Š|·•Ö@^)zCµ:>6f<ť‘{Ł—rŁÚŻÍ 4ÎGrÓ7_Ł+9ăîÝą5ôrsÓu8b®šŰsí˛ˇąńqx͡ý=Ď´żaíQţ2–‡7Fs âĄnsÉRiJE}FÄđY©\a~F9VźyËs{ŻG"5č*{ˇ“…á8néW­l¦ˇŤZWř„©ľĄiwRr!Izn„ł’M¨ĐŰĂ+/µŤ:häŮäÜ r©6gT ˘ĄŽë éë…!Ŕź´’Ţ0Ř;ćîüé{¤ jq—ÄŘ%÷őÓ1F«wO‘_…†č§ĂŐK·xH–Zňîe>č—Ő/®ůÍŤŇwˇ!?ßsTňŕőÚ÷óęăG&čF4${2!ťŘ둎V3ęĘ4sâ$”ýŞĎ—tĆ’8®tÎđ#kެÔX45.°H OŢä9ćĽl*řڍ9łń†‚ęĽăşÖWK˛Xž75—('=ű™%˙ŤĆIp… ŕVHöĘçăőř˛¤19ţ3ţ2ĚW\m|=h?-f) ŕ¦Aí¤é˛©h—Îłě·ŔŤ»Śn˘á‡âQ&p¤ĆT×…ËBG‚Ŕ¶*˛)ç*§Z¤“)ćťv0whPŤ¨Ŕx`ĘPŘ8ÓRű©§Ą˘T®ÔG–ŠsFśK‡ˇR~ęx“:±™¤€§ďµ^š$­ÉAŘá˙0 {d‹Dif?—ŔGÂjź5ţ޲śA¬Ł˘­¨QĄ®P]BßüwP\FŤ +''KVULˇ–WBą9nŤCź´É7×ők.śŃưĽX.y 7~ć¤i 'Ă`$ôÇöé;{Ő5 endstream endobj 570 0 obj << /Length 1040 /Filter /FlateDecode >> stream xÚµWKoŰ8ľçWŘ‹\Ä %Q/l±Ŕ.ĐŮł{j-S6YňŠT˛ý÷;ÔPĆJcŁé!!9š~śů8CgďçÓ yaükss÷1 śĚËâ v6Ąă'‘űľG‰„‘łŮ9_Ü<˛Ę÷⑯ÖQąz%ąÂĹ;łĘŹěç;!ż5˘V_IDV˙lţv¨ďĄ4tÖľďe‘ĺOţ’?µ˙{oľ~ŮŢĆsd§Xý$žÉĚFő2Jíôç"2€ ±@·l›ŁörĆ­gÄâ>ŹÔo˘.Şng˘ţÂ~g÷ô° ’h±%Żóţl9ň…`8?˝FŞ3¨z«WpA8.ÁĄy7ŕBŢ,⺌\AěĄYfC»Wv!qd•lpvj¤ŰĘ$I5ód]*!Ťä™8BFRšÄÎít0/Hôę«˝t»ÇLçŢ*<{řł.¸í—ĺŠŰNÜ–«®ŻĹäłűsdµ8uSn'E˝7iĽ•]](ŃÔ&ÂOlE:„P„ ’˙ ĂĹNýAÁ÷¨çgŢů`)4›U ¬0[*ŢFĂ”•ąŹúÖ—Ň@ŞH6g`["—Qi‡Pśn‡đ7$ׄÉpěŐ+oÝâ‰Lu>ąşšTŁC­íëť­ç˘b‹Xʦĺ¬8Ľ5˘ŰŢfáĐűĽ+kŤ}Şhv»ś@×Ĺí9˛ť?6bg´ í­v{űrH´Ŕó `fTäˇéŞ:Ʀs‚(q”]Qp)Ë®Â5«ŤÍÚ·Yoź@eoˇ.›!lî?{6EѵŇŇŔ˝×M-٦ d‘ ýLő˝!ÓďVÉ! !‰°ŇHo¦GŘ šČw\4`mľăć(í÷éíăÁ?ng=Eó Ë'ˇÉ˘g&* umíküIm;$tÖľ’“Ä^Ť/R“zA<6Ř–źZ.yß µo.đ€zŢGÂ˙íX%Ôw”6ÖWý0żÇ‘k°~–+˛ ś”MU5+`ë“~9ô)K)ünKěŰ?Ňž’ꄱ®$Đ\в¦S8y:p“ Đ`(›_ ˝žŻW3ŽźAá‡Ĺ}‰źęFéŰŮNú“/>Şm§óîř1Ľ`gÁűÇXPj)}ŘÜüćÎ= endstream endobj 576 0 obj << /Length 1345 /Filter /FlateDecode >> stream xÚÍXKoă6ľűWč%YÄ ź…=číˇ@Qß6 C–©„¨,yőČăßwřl:rěl\ '’#Î7/rf(ÝG8úm†ŹŚż,f·źSĄ(Ťi-Š$Ĺ„D±He"Z¬Ł/Wş-—«ş.Żç‚ »ĘëŞíšLWÝR·Kő­ĎJÝ˝ÜaŻż.ţ8A’łhNJ…Y. ă?Jm§`íÓŽXäGvű™Ë=ç±D §Ńś6‘űw০ł˛­Ýl[·­^•Ę­:O­WČđ{ÝPęÖÔ…wşxÔ˘©7Ď*kulëą7¶Ş3ÚżrůżiŚdšzkgÍşĘË~­śO~GÝîtA?[cďÝxß»÷úQMÉYg]pďŘł;–÷Ş;ä}wdG4/uÓ1¤Ńü8ĚÇMĎźoB|ĘGoLĎ;•>Ž‹Ő‚-ŚŃ«˘ŻňNBfI®¸1şńßş‡¬sł¬,ÝD]qő J«ŞÓ@}qlpÍ`}‡1Uk·ńń4ËťÁoé!»¦>‚rlYµŹş-u®;ÂQĘyčČFmĐ»ę2Ł0V‚Ť)îX7Şë›Ę/Mžůë´RĂ…¨ô¶/łnŘŰ·şş÷×p@Űs‹˝ľ•smÜT"™¤o«Ţó„÷Á I‡ qDRä ¤RÚxÁŤÉkĺĐR˛‡Ćŕ|@ôpwÄ"%dÇQ§\«1I ŮŁŰ 9H#Ż\Ą«v«ň·U—embý4~}‡ÎÉ3sÂ$< §ňzY?©vôŐúÝ·çŤÔ~3uUŐovÜk˝Yv/[ź ĚěĆMűŞŐ÷öü™d÷I唉ývű¶‰â˙kâ©˙1ó:0yLŚIĚ®˙¤dźźßO詊BŰËuiU?źo?4çt)6ŘR¤Ű:˘I%fěBľ ,rX ĺ ,’Í:f˛ň`»¬s´řLıt:pśf"ómČDP+IŻţ¬;50™Ęf¸<»HŐ8’éŐ Ą®Ś†’ ČĆ Ë_»};:®ÄĘśOŃ(5‹Ë+]¸Ńʶ„]ž5K[ŮÍÄ´lf´ÝŠÝŘpBlúrŘía37ä®hs«­+&AőbŃx¬p°l¶ţu1ű635G$b’"ŰiŁD&Qľ™}ůŠŁ5|óKeôd·n" •΀•Ńßłż&Úw&bDX(!ýąZŃ@(ÇĹ_B(lj”…Bózłí;5!Ř\_Ě."s”%ĽÖŹíÄŤ¤19ĆBţ:VĐ$ ÄÉë ňÚ"0Â"‰¨äH2ú#`óŘBĹŚ9ˇć(ľ§TĽĐÄ9 =2ŠS$ż„`J(”…‚Ź… Ł”ŽŤdÎb߼Ą“=˛!‡É¦,H†nŹ}&ónuSű24㬶Ź9XŔť·I2MQśÄaůőbż5†U6ŃY x['ďi,+í ¤ˇÖĺYÎĹŕ‰iQŕ^!?.ĘŃtת˛ps×˝Âdĺö»WXÝ+LŤg\mpŐ© ďŐ9˝?Oˇç§Z´ţěĚ~NŞ8(ĐSJVÇ;8¸—íJ>Ř`\Kč ŃxüĹÁ¨Żľ†ĽEě®ÂíČÜŇ˙Đ0SWá“­Ž@pŐ&ę&ëýěhEÝlnL®XRĂ–áh·ńľÍŕîSńŰdÝ^üvü?+­ÚĄ3ä;q„˙ŢÝWćÄýÍMôý¸ě\ţ-ű1‡ęę¨K÷bbBÂPO đÂß.(D˙Ć0› endstream endobj 580 0 obj << /Length 1434 /Filter /FlateDecode >> stream xÚŐXIŹŰ6ľűWčhc†»(ôV S §ő- YâŘÄŘ’˘ĹIúëűHĘ‹ly›Q ôÄEOoůřřâ`ŕŕ÷nÇ_gŁŹĎ "I*ŮK@I¸ŕ!˘Lł4ř<žĎMµžżj]L¦‚б]-âĘ$óJ×~ëæO“Żł?€ń”‰ögť5›Ăo©ŮĚëź…ö; yň“«Dôqľěľü äÇ{Ę Rśu%xł—f«,6ńÎŕ›¸ëoMĽ6µŃ•%)ÍŕŤëËśű^;@aÚ5\ŢčŁXŃ{°bŹóĺ÷đžÉţ‹SŹź‚ü˙śÂÇg®ŽÂÁT*rL)Č#ĘË›­´'íD˘P ĐÍŃ€K3úm6ú6"°‹$ĚŃđ" Ú'›ŃçŻ8Há#…X¤‚ďŽtP©fëŕŻŃź=qŠ( XÁÁî«Î…RĚ ŮB)–JÚę`áü]N*Â\«ĐťĐe'%2B ŇíBCŠx^GhRŐ=>A’Ů9ĹS`pňŠ_˝ÓG(5„ć”PDÂđ¸(UK9PF\ÁÓZÄeĽé»ÔAov=ŇBj ˘»"(”ęŔ"5”S3LÎťÚŢŢ˙ˇrď_q–öĄ ‰Bq1I;Dy!€Ĺ€±Ü‚rJ,„T@ÎÜz{óBBdXÂ$ejě*;هIĘń!Lú€-$bĽęvˇR ťvŚýĐ ťvŁ7t"‰oÄh$8`ň×–I‡p^QtͱC¨X4ČćTudľ=nJvݧÁďSCčÍH„ oc )"‘ÉR¸{>WćM´Ču¸¨ŠATW şä·áâb…`CČäŘFÚ‘ ĄRŹgaČkďó,ά;ĐAÔć Bî€J¦H„Z6TÝ;7}wŠ<Č.´ĺ.¦eĹŐÎDÚ0NÁ9˘ě}ő—´a„9V]-ú ‡šgˇ*BôTäĹ CĆQ(x©CRr ‹]ĎŮ6'S‚1šP<ÎŤmeÎ%Ř[!Ůţ÷É“AˇĄ°‰G’±^붲۶ípźýĄ„M|ĐĚöĹżý)‰3OŕŇŚMĄS?«ó–$ĎŞşl’şĺd6ĹZďąVžČ> ,ň–ł®lßŰjQ¶ĽŽSéIżŕT`Ä«ŔiU°;V»SęZß]ÜöAÄ6sĐ»A[µ5iŻýÇ vĺş/ ŚýŇĂť¦Á}ů[—ą˙XXTý¦5§•bŤ0K“9Ł.©OE‹ ŚI©ˇMý˘©l—fťźĽžŢŃö)ĺřI ď™¦Ur˙PăÖsk„ŐŮ˙QÇŻGTEś´Ën~ńYrŠ‚řpö,áÍʡ‹6Vů çaÂ{ŘŁçHO!1YUč@yňk×–şł§dgˇAëS¸´­uŽČ–şžl˛$?kźE‘=ţPkgíCŇžQ‘WoxĽë÷Šę-&vťçމňÍ&öBŐ'˙prŰ=,g^qŔém·'NÓyc†ĹFĽ7k˛Ę,3{%ěĘźÝ@nŃ,7Wţ{ć^}< Ob_ôIňÂěB‹KH0ľ”úr´|Ľ¨ÔěÁe‡j޶Ţ|/ endstream endobj 584 0 obj << /Length 1284 /Filter /FlateDecode >> stream xÚÍXK“›FľëWp”¶¤ńĽa*'§*N9·Tts\*„†]Ę^űß§ç!$ÂZݶ’Ă<ş?şżîéŹ~źá+Ď_׳w R’Ę`ť$HH"ĘD°Ţźć›MVç›Çě«^¬sóv(ł˘qŻÝű&)ß˙Ć/>Ż˙8AgÁФDOÔ­ă˘EçÉ/VŔjLÂ×2Ű ÎnŇJkŁÖIoâ/úÇŇß}ŕŃŮ‡Ż¨D‘RđÄHQęt˝_¬¨Ŕó:+sÝ”…ŐŤ$±źŮj?Qé¸Ń;÷’VĺŢŤb÷đH̰5" Š — üŃCE®»c×Y˛±Č:—tsĹâçÜfľqçŚA뺎|K8m‘•ĹT7÷–MF(ä´O´¸Řő¨˛-ż˝ŚbÍó‚ŕyé^ĘᬳƟР"ćßšJďăüŚőÂDř°3ׯ52YÚÓřĹé5ćČ—ů˙÷5“dó^{ź:׹ŢkÇBćeęfc''’gr¤B @fl˶Ř/ő1…(VÇ}Ć6´ <'ÜĺNĐć 3–Ř0ˇ‹vŻ+ĎmwÄ´ĂćÉďIËřm=űgF`$ \"Éŕ"É~öé3v°ÄCLEÁłÝ¸(R‘ůŔ<řköçHMą‚ ZYIaHzƨ”)ŢC'+R˛ŻÓÇáĄ^†%"wŃË0¸[‰ľ^ÇŁKjĐk˝ 9Đ€ĆwA2Ńh: ŘnKýT¶ůÎÉ­tÓVcRWTa;<" Ň6Ďżź»Ň ϡ€ě—fľ]IĘýÚkżôÍĚ“M …xšĚ”Â(ˇ2„÷*SFá†,i c1•Ç!ăc&ď˘TP¸?E_éU:ÓHŮź4÷P¬(˘”÷OerŢQČ‘±qĂđ¸o,Ż Ŕßyů"‡HđA,¬Ń©˝Ý6qVôúe÷‡ćâ7‹« ş]¦2´­¨_­| |Ö˘¸ß;Ëco¬ďŮ™ťşâ:6đ“żD† ÷†?ń_dî6\=jŻş S‡ń*Xc F‡îĚĹýűź!+A‘a…ó°w"ó_ endstream endobj 590 0 obj << /Length 2174 /Filter /FlateDecode >> stream xÚ­Y[oÜş~ĎŻŘGí©WáEÔ ôI›>-j ɡÝŐÚj´˘Ş‹·čď g¨•dŮ'ŰöÁ9r†Ăą|äŠÍýFlţđNđ÷çŰwď?Fé& łXĹ›ŰÓFFiHµ‰M*m6·ÇÍ—ŕÓiűËíźŢĚÔ„3 #ŕÄŃ=±ĚKÂ,ń,G[tŰťRYPŰip°uź—5Qóz+MđLťŻÂ˛î $Ý-t%Mi,»čhôO†5Ú˘Şľ¬ď©ëŘićSYUDÜ3ďWĄôăV‰Ŕ–GhG7¸…Í.RˇýwR†™a ä0Ă imS´ý3őú‡Ľ§Ö!Ż©á–ơ˘ë‹#µ‡ŐĄGłűď¢‘ ÓHov Ë”—]u··47ʸžŰŇ]ŮÝ=˘Ú`§»;$+ŠfÁDÝźšşGűý–(Ť7´1…"wŁĚ44^¦ ŁPęíN !‚ŹC}čK[w+ç+ŔHió´ź‹®<ş3N :·ňúHŤ¶¨r\éfĹ™¤Â8ÓŢW` kî:Ž,yŐY54Ťm˝88PŮ–v`B˙ÜxĄě‰ľ'ż§p 0Á‡üđ0çę r©tŽ2÷ż¨Ń +~Up,Úe?˘ĎŇŮ«ŕÔÚ3±‘‡‰¬†‚é° ŕYvEAŹgÖ‰u¨#ă·ţ}Ĺ6QĄŇ3ŕF3 ¶seT`k–îö „ţi+!Ř´ĺąě'›áél56Kśľ “ŃÖ‘­î|×HÓ ošŞ<87 2xüłh-SZúžmË“ŘD@„ŃőípčmëÎN%Áß¶©ń«ŞízâW<´ĺľ¸h€z‹ąÂ«[ăˇö^ěÇřMĐřenç9^¸„OA°“qbyUبÜYä©84ŘÁmü™§Ă>â?žľÝYÄÍc÷•€üť]r<Ŧ^9qč¬iäŃahîĹ%î(řÇwĺ.gµäL$ȱ—ůUČxE±jSćyjçŠĹ÷*@çöět~Đp"[=×ö\îȇ•ŔD—,R}…®ĄEügĆo(k ęTr˝®ÉBW’ă Ś ôăÚů ˛–ŕ'-±XśF&ni4§O“·ůąč=_×ä–d™q95öS±tÓR`*gČ62^D6*§#¨töÜŘuÓš˘©“RM.PsŞÔ:Vý:wÇ‚3ťt¤řĽťď«ÂĎĘŹÇ’*†ëvĂľoóKZÄňŞ3m\’k–lk¬ÓĎ>Ľ_™â7€®Žţ-ŹŃáĺç¦*nÁ˙şŻ¨D…&IŻv–QŢč,?€$ŕß±ŔĽĎxężW6)*ͲąçĽYKG *Vš˝Uá0YŤ±ÖŰ5!C%F _±‡iYęd^ ‰ AGÉ<•ä)@\@âg9|9CÎ=ŇĐfîÂŢAÓ äďÉ|%Q×űSşđ'ôpHÉ· fA´ËŇ1|ćUőĚ”Ş˛ROőOipFđ=–x^úłí ĆÖ1-) áƸ<¦Î4IĎ_Á—n Đ…» „ŢŇwDŘŤ(¶qYla‘2†A¸4÷_¤g·Ě6ÂňŠ÷…ęq·–ܵCËda¬'’Č D48îśE&N~'….±Jň&ąćq@$SiŹË9Ťü«^-ńµiČťe¨Ĺ˘Z^ź›Ön9?ś™0’ëlÂŔWĺ'tVĆÄň‚Ýi·PĆj<¤´{lĎ ř=Ş~ćd"LŤą>zŐ Ě1ćx‘ä)äČ(:ťz:Ť‚"ëś/ŤŽÉ)Ó+z¨5ŁK“»˛‰V˙Ë[Ů+VúÚýŁš/öŹÄˇsŁŇ ô!ř’˝'€PÔęŔ>-łîK|shąçUţ>t˝żô‰01 T•ß<¸Ö:Ř—uŢ>SŰ_m ß&ÁÓCY1Ű"t;˘-}AO6 äß’ÇÎĺýCOÍĂC^ßóB9Ó:{fŠ»ä»ŰÁÎ8‹˘ąşźĐ ń€ńłŇ•š‚t`r: /L0(ŕq˛čw˘yw˘ T2>Î(˙8#GX 4{Zڎľ4N7Ă7śţ“ű®¨Ndg2YěCňi‚‹c„—lßO~J?EŰńmżŠ°ÝJîp3ż1'–Aö·˝“±é-(žkĽRB\âÂIͲѱđ˛k˛ŕSMŁ{ëZŕËSGpYz[Â,Ő0ĘzaSĄ«Ň_Ç‘h‡ľ¦Ľüh<®¦ ŠZUěŽĺą¨;nÖÁ·Ą÷»ł{xŃF3Ƈś4pYÚâHJ¦Á-ŢÚ-ńÚ"Çś‹íńe†frŕÂWTfµa>ÜŇ˙šUů `ú[YůzNišď ŽŔ<Ţ,nÍŇÝř§<†äu^t^ýőçe2§ÚŻ<ç¨ésŽÔx4á¬Ŕ.–Ý©;‹Ň ©5YĚšÝ0Óc~=_kE˙ÍíĺĂÄ0„#2~O˛-žµ2ěťĘ¬ez3ľş©›ď'‹qiŞć­»Ă(ήŻ>ć2Dš{ýuʸ7Ilí‹KńMĢř’żEWř~Î?‡Ôúëŕ^"ˇőҧpÂs’`8tGđA]̰ý©Ľ¬÷~6łĆń‹9“şYôÄłÇď7@Ą»Yüż_mC~€×a¦ĚĚAnéQŽď„Śt¸¦Ü4˘ěę#ĆŐ^€˙Tń٤G‚©ü5éě— ó˙Ďő-ĺŤ\ @Ĺ:±Ar®ž¸$Ź™ËÝOę>?yĚޡ/ą/÷iŻ8”Xýłĺr™˝ž±Ż¬´gúmgí÷ĘůŻţ@x”‡k ‹P(I›ŇÓ‡Űw˙Y>Ç endstream endobj 460 0 obj << /Type /ObjStm /N 100 /First 881 /Length 1481 /Filter /FlateDecode >> stream xÚŐZMo7 ˝ĎŻĐ±íA#Qâ‡#@>ę¶@ qm gQ v{ ¤˙ľŹc'u¬´]Ovć`K;KQŹŹEi¶˛†*·ĐŤ„\Z¨BŘŰ W´9”fh%pÉh- Z˘Ž?Ke¨JÁ&9¨«„ç5ä$ŢâŚ©Ş–)A…6LEčXąf(SCG Í ĂćY”‡j˛f2 ١ax+€fĐÜ0´¶(g(l%%(l †FĹq6 ä k«00µˇ¶H•‰´!đ“'Č´äA§ÁôTBI5ˇcˇd@ĺśB!fPŔ'űüŕ' ÎPS<©5Hň0¨9H†ů\±P]+‚˘¸ŽŠ¨€}Đ N4pmA6b " 3AČřĚAZő' ˇi2¨Aŕiv¸W‚1Ś0„‹€ljÍ60TŻpKPqa)č(¦B Ş6ď@q[ř-ąłŔ%w–r0rű=p‹: !00TŔHĆ|&ć_µ`ćÄ‚kŕÜ<Úuâ* P€ ţjS\@ľMq™6Ĺ…ů’(4 ă˿ޭÂřüôŹŐ0>ݬ·«őöÎ5¬ÄĂřbu±ąÚ\>4-q‰(whŮŤŐŽ‚şD ,őŘl Ú")¨Fs)°˛H úíŇd6şřÜب㣥ą|´ĽÄhŇSPgSŔK N}˘l»%JTíKL”śşíŇOqó(đá)h=:›["ą;Wř©|&™–HuŰ_$Ü…‚ńńz˝ŞăéñřýĹU«×­]·Wąâ¤iü0]ľÚNź~łţsźlÎ_ŻÎ§©óÉřăřÓřôŘéH'ö Vâ„3ÎĎ%ĺŕ7âý† ä[cČ=ž8; ă›—›/}s‘o6ëď"•oťł˝)jQé#Ž § LýO—Ż®ˇÄk̲?4Dý8H:X@ Ĺâ7v)ĹT˙‡ŢŽĘ9úu ©Ć<]íYô ?2›ę}Ó’ąF)„ŁaÝg:jľ~b¦¶˝‰Ć—<íV}F¶L˛“kPłßOáŕŹ×Ĺˡ@L>ˇ>.ůËŇHI}±ąi„®Óé>ÓE®ęË1äFqşoÖÍ/|×î=›bµ}CőµÝLŤíŃŘúhĚX †rî^˘qďŘť|ý{§,r{+/ĺaküäĚ棯îŠÎćĂľ>ö,µŻűjžKN]ü}2WíůŕŮ|Čë`îë`Nw˘ŕĆV÷Zç“XŘ_c"OS -¶ß24éN{Eą˝Wpţj‚v/鎥w_ťÁĚ»o¤źĘ^m¤^ř+•`rąQúJŽw¬ä¤;ó˝\}ĘÇ?Lͦ ż’2—YäĺöQ w‹‚éPtżé°E¬JŰ”%úKňZPß'Ű)¶ŰůPÚâ+>íS Öą.Ó+křęâľ\W‹D˙5FũnjQĄÄéw&©D‘|w×}áĚ4zp[$6)×čŻĂI,˘Fś·ł*EµňjĂţ­*ëěý@ďpDŐĎQ+µXd™k˙n–w|7ű"íO¨{ŕŁőe;V+·ó•]_ŮŤ­ćog.  endstream endobj 598 0 obj << /Length 973 /Filter /FlateDecode >> stream xÚÍVßoÜ6 ~żżÂŔ^ě˘VdYňŮč0`Ö{+zoMa8>ůbÔ'_ü#]ö׏íśťřÖ».ú$š˘H‘ü>ĘÜŮ9ÜůsĹO¬żmVWďá$,‰Däl GpÎT;‘Z3*głu>ą?•&Żú­ö|%”űsŮVWYQ°Ű_ĽĎ›żŔ‘,QqšÂ~ş+ďsükúx3|Ą˙č¦Nk“në}Všk®¸ő%ËpÉa—}™8¬ę<«ŇöĺňMŐ‚“ŕťőâźvó­{ÝŰ—˝ÖŰY‘˘Ó‡!ôp¤J¦yŐd†ĂÚôűă±mąO»‡ĂpĄ·$ö¦-wFoéëPżLĂLf^ GWďe<ˇ†‡,Š#ÇŠ%<$§ú¬-=Pq7Ł3I09r¨5Ě_ó ZpÓ’ŃĆhň¦˝@ąݶemZRć™!áf°ĘëC‰µńÍ Ťu}[š†|Fý'Ľ™”ëyjŻŔz¸îĂ=ú˘őaÉ H§03ă•é«ęż®ş*Ë×8#żz~Čc#6YÝ$zŁ6qoęű†µˇ5٤ 6ź mďQŹ˝Ç•Ň5YŢé-ŮM˝|Ťłá.a¨‹p„deˇńÇfu· @ËťŔ‘B° ^CY •tňýęÓgîlašÎÂ$vľZÓ˝#X#n+çăęĂÂ["ˇÁ:˛®pećf¸sişĄň‰(bŠón}!C·»Ő$uUŐtăë°'ݢ79V—aÖî†Lĺ4˘=Z¶´6ú®/Ëô\Óz›y‚»÷XŰá|F¦6>ľZô•׺đ—pÍąČKm!놺9íAç%ZŤ}ě3;‡¨#\żÁÔcŇßMŘŁ‹t§»ÔőbňN‹o=˙ç-yô7}FÎá˘EE„¨ćŁ,'·âLŠŕŇÉm=Ď&7E¨ Úën‡Óşŕ±ďRµ5©nÓ§<‡­¸‹í8T1‹˘y1ź’ńřH’k4a}ŇÎC ßżCĎä8šVW^¤\Ŕ]‹í’„žÜőYUvô5kć°ŰQ‡Ć™…ę%I¸J.Ć™Ďq:śb¸Ň B çŹ n&‚ĂC|VĎŇLâjž—@c9eŰ”‹É2Š/ΫçAh›ěÝ 68†Ť5Üyp®D|Sł°GA<>”ŹŘ”áí”×sLRŠ=qę˘_Ą%V,!ü Q9Ö9ŧú4Î/ţ9˙zńZGĽôĹ&UśĆ•…ă‡kZ¬W™ĚNŔÉżęÍ9 endstream endobj 602 0 obj << /Length 583 /Filter /FlateDecode >> stream xÚĺWMŹÚ0˝ó+,őŐbě$6‰ZőP©[©çÜĘ*Jc'k-8Úý÷u°óĹ‚‚ި=yŚgžßŚ=/ đu„Üř9ÍD0˘q0 !ť@Éz>1ßÇń3źL=ŚĆYÉ'Oń·Ůc„;1>†ĆpďĽ@Z§phŕ˘Ú'\je1Sɬˇë]„Ô|‚ɸŕűŹŚwB‰Rş¨2ŻŁÍ˘qz„"zţ%Ĥٰß˙×zĂUµ§K>uĆŹ†§ZóLsVˇ‚)ŽćpŽ=c`Wş­˛0î¤ÎĎyą\–UF?›µ|+3]e+¬ć|ęŃ$ću(†L$Śo7z'd¶Ü2ł1Č…ZÎŇ<‡ĎźöäPźU’ő¤;ç^ÍvéŇNŢW3›\'™á¤S©«ĺ"hŹVď˙ň…óu i@¤±L4ţ`+u:~%žçb…®gőĐ+µQ\nW­?«Dż®ŻĘzp‹R[c]Ş3Ů5®u"Ý$T!«$r={ÂĂŹqY®„Luąů+—¤Ťď±»ăLčŕ‹qşd 2 }HCęúŃk5ÓhČ«ío«Äi‡W% „<ÎěüÎt‚^RoŐŐ %ÜťľđußÝäJ¨ËĄě<Çc~mŹÜ’xG+®.ďmôîOÓĄň>8]rEş'ż˘çĎ˙M›¶%ęvć°ĄŚÝ{łő(ž> stream xÚÍX[ŹÚF~ß_a©/…Ůą_ÔŞ•šJy¨”†·$B `ĹجmŘn}Ď\đbb([ś(O3fÎő›sľ'«'Üá8ţ6˝»Ăub‘T&ÓeB„FR‰D …(Ét‘|ýY6v»)9ě.—ă őĄËş‰~ľ@~$ř“#Qš#AéAÔGLdŹ> ţ·îůŔż™TŚ×YnűĘĄFśČË÷Aq¤Ýäqen¦B3/ŠęK×Áp¸8tťF!¬IGgďmআP ŽĘóµ’CźÓ¨•n”î¨Ý§yLđ Âş€?[1±¸Śb(Â,ƢücăE1z±ˇ‚ĺ$ ”Âť¦®·+ío¨ #á(ÉJťčDĄ &u%ÖČA”Ăő’Zt•÷C“ä¸bN¨Ô±„ÉN /_Âüjo 3Ř^Z‚ȴŽc×enQ(ßT¤Ąč˘yşî«wŕám˙O‹>4ĂÝpüŠČą ÎĘň˘ ´|UľîÜ˙$0řäô9@ \óv¨’kvč€ôÄ äI«}Ë]1o2đŘ%MzsäpŁeĐyhź+[…Ę8V©; yUЦh7żű1´µ4ßąçS٦tc¦[Ř–uť}ÎźÂW+Ď=Öq:Ăjh‰fHÉŤ'BŃ3(äq¬.&ńĐŤ0iÂéF Šqe;@ďˇëÂtu?:ŹŔ> stream xÚµXYŹŁF~÷Ż@Ę‹˝÷Đ' D‘i7RŢ’őŰfeahúMĘj–ťüp_Ý ţôđTÍçC¦ Áşk)·ń7y˘¬Ĺq$u×ĺQźM)Ë#Ť:L0Ő˝âŠOTź[wO3†}¦!5u°Kŕśö̉ŔRâűnbÄ0÷(Ä*Âř»Ŕ2Ä ĚiR>s†—[Ě)#Ó«0§ŚšŘ”yVéŚâŹ"2(YX €žUj`äÚX @c;Á2éępF7CUÚőS1d¦[7ťć5ÔVýć ×Öl:ťôląűöč¸NŕaE ŕj™;ľ'G¬´łqUɸvîŢÄÎÄÖ>‹#t§Ęe"µ‡>䍛:«Ůíd}rC7ÖaE#UŹ©ŮK¬ €Ť†€-đ(čšŇ÷Ů;ňlÂŇ7L«‡KžĚ€ v ž ś’q:ĺů]€3ůU xŔ¦Ěwe§ć©JPĎlBG6˘–ÎŚbĚr™s<ÎŔ…Cîĺ­Ňůř Đ×’qÁ:Šěó׏¤tľřîá–ˢ(-žűµÁ˙ĐKn#{BsIFŇźr•]ęęĽ_Á·'ۢ»_ç‚ü\u;˝Şý…nr\śîçŰáBQ=˝çZ;fŞ»ŻŞ}/¤éëŕH3-_"Í9d4Ś8“„o¦8 ló/C {Ý[Ĺ6áËŢ*´ÝĹhášľÎóĹó#×yĂétbxęŁBäj&ś_p291ő?đ ü: endstream endobj 617 0 obj << /Length 1735 /Filter /FlateDecode >> stream xÚĹYŰŽŰ6}߯ĐąŢE˘EHŠ(Šbý– Ů–wŐÚ’#ÉŮlżľ3$eK˛ÖŮM”öĹĽś33iÝF4ú劆ňçĹŐË7FG–XÍu´ŘDL’hi•.T´XGoăßŰ&ßołŮś+żţ´ŻfĚÄY]çeQĎŢ/~{ůFšŽÍ™! ĹÍ~ÓďNB •ÍŠAâűŞ ŰYŃÔľťú˘Î>˛bĺ&Ú¸Üř޲Şôµ˛ e„/Óz¦~˝FĹévë?Żł9ŞďfÄŞ`ď;Jy‘­gsAUŚÚaŮÜeX‘qťî2ßµ.wi>×űt•‘Ů\&2^Ü=6ŔK@:"UÇ7Řú§äőiĘĆA'NĂÂÂŔ´ń= JŹ&Z÷ŕ s÷MăĺŚÓřĐôfٸJ‹Ű  5Ş«´BĂ0ḣÎ@pŠJTükŃΨGMp@ÜŇvő 6PĎwŢĄ¨ŢGü„ĂŚuqę¬ DE[(=I]•ČŮ—Ĺ:/n}W'"Ť=ŹH‘në˛E­Ç”v!ÚB'ôh°HXüÇňŻlĺc™†°mőIĐŽxÍćajëŇ—Ed †ž´e]—«)Ş˘07Čę«v(p}şhoÁ>Ď@č}ź×!WĄ>;YÖÉNR 銶{ťé‘f űŮvL¤ť… žQ#®PŢŞu…:FŞ>–p)úKŕÖŚő"“ŮsXěĂx©}uťó6—ÁfŢM뚣Z{ňz;b2K2˛“VŮI¨Jr®^/®>\1襋„˛DÂ$ĄˇÚF«ÝŐŰ÷4ZĂGX1"¬‰îÝĐ]ĉ5čämt}ő§?Śzh´–†(I :Ĺ鬇ŠIP-'śŮ>ęÇtÔeŠhËZwĽq$ŠŠ‹ţ’Ü„Nâ/)Óç)ţ’Ę)Ů$°šÉK7›ÇĆ/9 ň„ B vƨç˘.Ě`L|Ť L BĄQ0’É‹žc‰%‰Ő“ŔNŘs=Řýý¦Ä@şÓjbďc^X­Ď„·5ěbxs$”vÍąĐŕ-ţ¤E‚“…(Á&Őš¨ęń  Â2ńI’Ă*qe?‚&D°I0ńT??2‘Ƹ3Ŕ)ÓŰąČţąîáüśáâűĽąó_=#€®. Z üđaă8? JWwľ«<4{ä¬ŘűŽ*ęGh<|ˇÉü‡uľËФ#ŻŘżĚ‚ĎRö XUY`Xp‚jĎUËä ˛)·ŰŇÓŽöŰćP¬¤¬Î3ÇëV[7s{{Ε…KÓwy±ÚÖˇ@ňʰµ^ÂDî~Łn77đýć6˙†cË9üŹ-×ő}Żď]‰^rŇZüs‘MúwGd hNś«Łcµ0š?Ń(Żg…!94 ú.ĄżÄ¨“ OSk?Ş™ďžÚăĎUÎ%¬ľŠcNź0µňd2×Ŕ€$ďÇĘuî®üŽëâĄĂWóŔy‹Ň—°Ë"_a”c3ĐoßŔK–Çg·=±'ő…Ď'Xë$šîLw);?ôđl1’}–Ő°IŔmĂ(ńµ¬ÎŔQ†˘´ş|!«SfT u Č\uě’ 'šO™Ó}Ě'I Ž ®0rěYAť®—PÝĂĹąÍčM9˛Â x1Ń—y ,°"Ŕo ŘřUĽh;gN”¶—i;‡ ›VXč>ęcĽĆ¨ťŐ2Ba|vśŘp€ÝO€)¨"LŞ>f«(¤ )ä$ \­HôA]Ę9Źf.düôÜ­ëctşr"çĎŹ,Aŕ-ÖƧÝ+$7rńs_óŕ[-5ÁVË€„ňPžŘ4Z¶#ZN†ól„tŘŽ{Ł\´cŰ-UoÓŁ$kh§˝Äš{ :˝ĄTŮ6mŽŹ/3vŮ ĹZqŘ-łŞ/%/> stream xÚĹXMŹŰ6˝űWčEV\RÔ…Z )Ú[Qß’Ŕ ez­V–TQŢm˙}‡j-ÉrvÝ8ɉĂáp9$ߌD˝Źzż,¨k^-îßeˇ—‘, oµóX“„1/‰SňŘ[m˝÷ţz]črýP<Şe‡±oz‡cŮkąŰˇęÍH·nÚúO•wëúŘ­˛ů@cşü¸úÍ‹÷ĆHŹĽwňŻwÝČÜußXůÎN§ă™Ş:Ns¶ĹaÝý۸iFšťt¬tńP©-šíŠVww(ŹG*X4űŢx¸‰A‚D4 Á+´"EŻ?-0㾍@S*Ó‹|µd±˙OÓ*­‹şB‹\V8¸QNŃ*ŮPÓٵő‡%*tQ=ôî6R»9sŽŹĆ »˝łŰŐe`c°dQ4ŽDY/aźO8Ť‚ő±Ę;đ§ şYY74ôÝi›z‡*„ Ăĺv°}:łJ°(4ŽuĎľĺÁ™KÝ»–Ý9ŘĚIbÎƨÍÓ $g$b·Áä‰h2Ć4,uCH˛ř& 1'‰ŕcPű”ĎQ_ájß\°ěu‡Qóţor•"x0ůP# ÇL›@†đęÓtöP'ä —7ŤŁţ5?íUë(˘ç€Ó¬'9¨¨šŁ!ťúeaXńчҨ**l%6Ťl´:Őb·gGcPmQ@zŕž‘íČdŞ2L&K§WÝ‹Ř`ÓI.źĆ¬Ď´$ő]Qĺĺqë2äŔu÷E˛˙qŽ]ŻOúćĆáęlrł1ízÁh~ňҲš§Ů•ˇ‡ňŐëyn䥾8ű8ÇŢć"??w0Ô\˝Źüă`;ݬs8ĄDozÓDĎ)Ă:Ç nśŃsˇ`:Xç;‰Š˛ĐJ&éŰy6»_r_8ďnşnT^| 4€‹őŽ{Z#3şőgPryfé&;t|çgađ‰LrM¶H>7[|‘Č|:Ů\ŚĚµ„~•꧎Ż}%¨·ŘűŤ“Ů׾gŘs1yUF44Ĺ–– É!CE=ŁV…ŞĚš`$é ßČĐk °źáÚ©§ˇjőźÎĆłt‚cI6nĘé#:îÂiI€ř‰żýbâi˘…ŚÂőßĘ|ďęŢÉZăóÔ<¬iźk`…=ŁĽ—z¦âEŽäT ·=D®Ęň[WĽ˙óť?“ÝŐ÷zJťyÎŢ“Ë)8ađąUĐZ×q4šßg˙8í_ endstream endobj 626 0 obj << /Length 767 /Filter /FlateDecode >> stream xÚĹWßo›0~ď_´—d*.6Ř`mš´Ië¤I{ZŢÚ ą I­`Ňőżźp-´Ęö„}>ľ;w>ĘŠĂľîÇŃ5(¦D±Ô-xbÖSgO„±ęÚJłÚGm1iř2·.µ%ÚIµ2]­ĹéwF©­Öbb޵˛¤1ŢŐ…ahíHÇ|ߢ˝ď†öréŹM{ĄÓP\.绎vĐ šö„…ú†ÁÔ”—pÇq™hŻ ň ŕ%'&gůżłómď„•Ż:6“V–IeŽ×0—ĂĎöč¬ý·of[Ĺ΋×őc*ŘŹgú˛r¨ÓËE 3ŤË_ŇČÎ’V˙7ś‚“óˇ%’%‹…źO#®ó!IŠ7s3«Ót¬]2ÔŻlÎzí: }kčşí–Şvđ†hwŮŻúÖ×Ĺ{ȲáxOĘË‘–őĹĚŞOÇb+rťô±˙ž/ŢqßQčë1¶¶|]\ü°Ń“ endstream endobj 630 0 obj << /Length 712 /Filter /FlateDecode >> stream xÚĹVËŽ›0ÝĎWXęŞÁ¨UĄVęTí:»i…b4ĽŠ!Óţ}m !&wەͱ9Üçáš` LđĺÁl×O‹‡Ů“Ź€}Ś0XDYsč¸Ŕî"Ű‹xÖ‚ fIđBiˇ.r5ń”ÖIĹk@˘H˘oÓ‚|7]ëťţcń Ž=džeAßU˛:IŽ á *)ĺÔfĂśÖ7„ú6GnHĹ)GfOŽ·WŠöŕÜAŔ@śÝň$űbĂimkKÂÚŐ-WűU””1Î/°ąF*yF䲎uţµ­¸H3 9‹«ö>ÖňHąßŘ[$T’~k!i7KĹŠŞ$aEW2-–}ÇQŁSł8[ërM­®M”'I. |ÝťEu ëT»~íÖAÓviŘÔ›8 “zŐ&á=ĎÂlK¸ů0–뱪ç·Ú‘cÁšVb=ŁĆŠągM·ŹíaVÉ OÉ®\î«ü„—Ľ¸.đrLtD™ /ůzĄ—űÎźŹ9:č^đ·bƱe ¨Ms•y*wDŢéÝ pO Mś%tŕź;aäWĄ0 jEGÚÉä=Ł^ö”"° MۆmConK&+Ż|^<üřŇËş endstream endobj 634 0 obj << /Length 2816 /Filter /FlateDecode >> stream xÚ­ZmŹŰ¸ţľżÂ@żxŻg†ď/} p-îW E‹î·\°˝Ú¬.¶äHr6iŃ˙ŢeK¶ě8Y}0DŹČ’óĚĂ!)>{7ăłźoxzţĺîćŐOAÎ VÚŮÝăL8ì3k“ĘĚîfoć÷÷EłľW|ĚoFš9ţŰěÖmqż}ľĎIúÝíŰ»żÚ…,ÔôPuWU™ÜçźÚ:[µ-żrĂŁ -×j¨‡şđ>Ď·Ç]čëMŮě¶Ů÷c˝!-möľ7f›­Ňßďbú!ţ­_ý¤}ojÖ3§ĺl!AŁđ¤ńU ŤEŕóö)k»R^'aŃĐ3ŁÇCAzčéő’qN ĺBŤ7,8ßŐőĺ*YXćísž—Ioß•VBŐµˇbť›ďn>Ü 5>3%,ÓVÍLĚ1[mnŢĽĺłx sÇTđłçXu3e>@i=ű÷ÍżF€ŁD`ÚȨ źŃhôĐYm™ärł:0Ó90!1b°ô$VťgA†ˇŐíóIŤĽ›Äf@ÚˇMÄü)X„cÎčÎóYů0‚đĽtá":´VL†I:ŻŃăŢ^ĺ&íăĘNbÖYĆĄů˛ź´wŚűIAθ». xÁËIÁ@üyq :Ęì ‘ő©±Zţ–ŻÚ†Ý.·ó»' ĺ%Đ—uÓŇd3|fřPó&˙°#"BaőHĎčŐf(Ű9T†}.šT=żfţi[çMőżż]hp˙Q¸ LĹá»ńŔŕśí/F†4śY …(R/"bi`f€* Ş.âĹnHu§0 3§”š=— X˘ĽśÂ¬°X»ˇŐŃDHj&0cšŔ¤tL@ţ=°y&2ö‘đäqŤY=nVYNÄécU'ŚF±Ć0đÝk‰ y€Ĺô ¤a§`(4`‘‘ÁòŁ@ŔŠ’geChă€Â˛jI”ŚÖźÇ m,đËr{ąŔPA^ŕĚ‹&†čŃw Ę:{ZĘ21…YPa¬šĹ/Rĺ6!x­0C›çv1ĽvšĆŕ5jhöln 'OžŹFÄ,s‚Đ śyKÂN›?$ŚU ­ÖÁj"ŻK'±_L'(1Đö…Ů„Ň:jrň2gb6ÁšÂ*$‘űVĎŕZJĽ%'°*ĄbÇFGSĄVa ‹Ę1oýĐä5„Y‹Ď˙:ŔT“7BÚŮTv'˙ÉëjńPlňWĺl=†(%Öîň–“#즀”ćvś×AJCϸšRśĆĺuŇ–3禀”ĆtÓ~RÚ¤ÄŇ ĹŻ‚ÔVČ!嬲ş.r\•‡eŹžE +đ&kcZ‡‚lYíÚT,}źé϶‚ÜoXř÷Pm˛Ů*Ń8Ç}!ţé-ęX¸’X(/;Ů]‚8Ń%ź'’\L“8D/îş"OľÜjÇ“}«çv]rˇ—›ÄMWLű&ĎnşQľÜjG”}«_A”¬UĄ„§t‚€4O3(óu$٦sa< çĂŁĐ’€e.gyŕeá§đ˛/ 'Żšr «aS8ZĂjÇ·WZcšg§°‰Ižö_ĆłŽ‡:n “wŮ`ŻAÖB)é‡ÜwőtŢź®r<š+‘±"ú°»p×ŕ!˝őß°ÉŹ#Ń6 Ńi—1ťŃ†Š¶ę|d«Îä›â!ż€zĚ´z'iăi‚5‘QuŚó2ĎřH©:ĐůŮE)u łÁGNĂ Írę6Ť‘T6ĎťL+Iu łxź¬:0{űyxúó”ᑨ ńxWńýŢE„H`_Ł}:łépQ'čaËxŚŠFÉÖAh8}™lĄgNámg/ăZH8jµŃĺí´ńLŰ0EČA´ń}“Ł[i‡—‘v{Î0ĂMßŢąµ„K&1–_jRCö!1’&ϬÝQÉÓ*ö›—´S°Ú7dáwužµH°Jŕ™nľ•Pó*ĺ㩲4Jz©§ęvPľLbĆlŐ"v9OŘ…ŹŐz]ŃMEůŽÚ<îĘU›np‡ßYítí\˘ŐŃ´u›×Wk›x7Ť7 X< “†^> stream xÚÍXKoă6ľűWč%ŢĆ ß"űĐÝ{+ę›70™N„Ę’bÉëx‹ţ÷Eʶ,9®oĐÓ ‡äĚpř}CŮ8xpđű‘żŽ75 4Ň’Ę`<H($$"D”‰`< &W“ěn8T\ŤnťüۉÉó}˛ń†śxľŢ8ĺög'±Q6kŤňÓĎN|ďĦ=™9ńĎđnüéć#W{YʍDJk ˘]ÖăG3ŤŻŠÄÄf[×IéMfH Z±4e™ä™łU›Â”Nť™ĎÓĚĚÜđ~ăb¶+%’RAëhI™ö$FB$oÖDKÓç#,Â?ßƧ+HŔ¤@ .… ¤‰âĹ`r‡Ě} 0bZëzĺ" H+ Zü9řŁç~dMˇRÖUH¤‹Y¬{B†1Hë1EŚËvĚh>ď« O“¦×=ŐâH`öb±8QHQ}‰Ě9ŕIuşZśQ¤Â‹T‹ %E;ćb•VIOXI­â"abóË\Ňq> !H ńÂmkřKĘ`ű[N@CŘ <…’ż,"9"X\"¤ Ö¬ň©ČÓM–/’¨Ż#H8.ŰŽŤ°ŻµÔ`z äüPč,o?• Ńž. 9b¶ ˝=d"F_¬ÚA3PrA/š1…8o‡žçé¬ç¦(FšŇć]aŚ€ś-\˙2QŃyf¬éđ™±¶uR=:-ËťŚMš–^ŤüŞ{ď!^š¨˛ď¬Ę${pjőč@ňiî˘6sóUWݬsî<úťűß=ťÔč»$‹ÓŐĚř÷xť=ŢÖ5ŔíÓO§0?}HľřĺvT¬§¶uÔă;ĂÔ,Šjó \;âĐ\9ëóVEíy+‹(öõȏî>ŽűčdT÷Đn^[óĹł;üH§7ä´Ui Î;ĐᬠXćˇZä„ĹCę7¬˛Äzřb÷™ĄsĂkly­†,Ľo¦¶Đ‚A-wĐŰZ#WlřRŃ@žvSęšęî°}3ŘÍ—ůÂ*gßíΛŰÝ‹:yęúÎŇAbťđvxvÚ‡1Ń6÷νěsâ*výůĽŮoě=%­ě-vEŘ3ś]†nä§â?‘ł©‚e'Uv‚©ĂN6ě„Ůȉ-;­^8±?*jÂÁjOLrÄĺŢŻÝ 1a‹#&ŘŢ‹ßú9ŕńů ×TM»5ŐµS_MŢ7>9ÁŃ*žbőޱNđšľ­{(üžĺy5ŰéŢßT†ť/*0ĹŔqŽýŰš%&‹›µ ·ÜĐ|YV~SMc§GNÜGĄ7t]d˙± =ků8Jňč¬OĎÜÚü‚łřý=ß`ťĺ‹(ÉţĎůWłĚ§y6uůť /€dÔţlKË.ŹŁ"JÁ5R kçBµvŔ/–OFf endstream endobj 643 0 obj << /Length 811 /Filter /FlateDecode >> stream xÚÍWŃnŰ }ďWXÚKRŐ.8؉µiŇ&µ“öşĽ-“Em’°apŤť.űú!‰í8iҦӞ€ çr.ś{±łp€óĺ Řöóôęö>ňťČ‹B?t¦sŽ/„Đ ±çŹgš:ßqL%‹tE†nŕ=Ęźb<ź›ńőÎŻp §"Ă”Ď@†?¦_˝ 9.„^´Ľ–řWĂ+ f±ĚqbŤ×LŢÔ@Lx•í`)Íârť[ŚîÝnĹ%]p’šQ.¤bß×ÝĂśN‹”c~áH‘ Ź’Ë*VŇ}Š[sü‡âl~Mfu˙e'÷,9š^Ňrýß,0_8ĂůŰ1<ď~űŇaŹu^ź$)cQ•—áţÂ,ěµsrN Yöf+ß×¶^mÚÝůůŔC‘uüŽň„U©Ý˙˘t› ¶ć"ŁyËŹ}dśůăŘÖEcâŇyu{Ź&ŤJě†oŚüvÓĄÂúáx0ډˇrňDůÂÁ‡ VC¨‹ˇ„'›µOJ*¸4Ăľ:s *.í:lš,­hWżó‚H©ŕvOM§\ŢňQë"/B¨} Úo9%ŠQMąŢ@™ö6P6ˇm&ÂX,~A5؆gL¦öz˝ékŘčOĚMęégÜşÇj}M›7ĺ!©ÓŻĚ {"ž¨żŤhł†y*ą•ŹŃ›ętCm˛oŢIRň#Nţá·Ä‘˛ÚüľxVhÁ©B{2.:_SÝ+©SĐÇyŐÖ®¨…¸›^ýç> ą endstream endobj 647 0 obj << /Length 686 /Filter /FlateDecode >> stream xÚĹVËŽÚ0Ýó‘şDŚíÄy¨U•:•şę‚]ge‚Ö„8“čü}m&ďŞnźçž{®íÔ6Ô~L`ńý¶š,LGskaK[…2`#¬YÄŘ Új­ýžţb4 3L¦G–Ń™Ž śŇ"Ó?IJłŚń8S«Ćs±*ŕ ŁkŐö㢦ô<¶ĎXĽQÍ|[ě yqě<îă —aŔěiőóťýů»|pq%lÇu5#@«2řÄâ ÚŻE"ż°,Zúa¶_% Ń.)Ňő<1ďmءX.{ÉŃT^x"Ă·GHŕ ÇDŔ1Ť.°J“°ä(Ú}>ačý ń>Š.3’ňv3˛Ş`ą˙BG3ji´ŰG9kóz¬W8ŮůĂ4»Č°_?ňˇ~1lŮ’˛<Ą¸÷&9ŚQń™ó– ‰Z{t—ä§Ó}«áÁúőcRŢ|ěť^É Ëýv§Ô¶e ‘†ľ¸]F™‡±äZfVż1-ÖÎEKA h^ľl%ź>6ÎÎ÷OÄTňX¨~ÇLńʸ&@¦Ý¨X—¦?«l‡±ţ3u-qÁ,rYÝ&§ÝýDîřŻ€  ,čŚţłĐY©ú“<˛VÝŽűß/C›V©ĺj¸†ăjŘ_Gˇ[°¶ăűjň5ĺ˘ endstream endobj 652 0 obj << /Length 2526 /Filter /FlateDecode >> stream xÚíZ]oë6}ĎŻ0°/ĘEÂËoŠčb.°]tX4o˝E ŘJ˘­-;–|ł÷ß÷ I;–,9IŁűЇ@IÍ!9Ă™3ăđŮĂŚĎţyÁÓóď7źđrć™·ŇÎnîgÂf…YăTfvłýśUÍň¶i‹öňÚHŢ6Ď·O›őň[˝^UĹňö~˝-‹ůăí˛şoËĹí¦*çĺnřĺ/7˙šiÁr­f×B0o’ÄŰ[’ňkYnĆdĆţO›ç§ÍUĂ»şk"°O÷5‚šQ|[üZľoĘ4÷ZQ¤‘Lq=´˛î§§ËYÔ×uµH3vMąĄĺ\Ĺ÷‘ď‚„kŻ™Đ.ɱo>đĺâpęSwx8óű˙§#?^5˙“7żçä_·wű§Ćđůťyžk!ăÚήń4ÂG±ß7—×Ňňl×ěŠĺµeÖ>–±ó~WĎŰj]Gi?ć9SPŹRîë@ˇ—ď§4Źëí’änËv·’j 3pŠé> Ô±\dbeA^ł›Ďˆvb|VÔ‹ÉG™>ĽŻ®w/űţR𬨖»mÉ.Ż•ňŮM8 -Ş$ŽČ™0b/ĺ jĘ0ďÜ~Ną˝”<»ŽwF)Ér#»Ö]Ös@ Ďł»˛}.Ë‘Ł“ę XÍąřÇÍĹÓ­†ĎÄLrĚń3m,38‹ůęâç_řl1XS>ź=‡™«™Äay´–łź.ţ3Ĺ$Ď™tQ”Ę“)mž …gJąI0%nšĚăČq žs¦M> x®Ö® žĽÔ)°’ś!ŔO¬¤bV÷vüá€YÉ|¸>ĂAŘ ąsv˘rÍ`ß“,?ÍéźŰˇ@(ü¦ťSs37ď0m<Ór}i+™捆˘˝gVN˛kĂ%e8ĆĎS\Ł43^O‚«D¨·čµć ÜôŮůS‹¸Đ{j±Ň2Ë8g±ÂaŽĹ"´f^đűÎ3L˘4DŤZ,Ü1¶2 ¤WĚyß…<ďŮ ŽOM.Ťfľ·ÝQ{•^21É1ă‚2!z{3W%ăé€>«gßUď¸?uüŕOź«ĺ2ęÎĺ¶iéĹeóőjłkË8˛««§]joËM ęRĆĄéşmŮ”5Č&řU‰Ž=6 RšgĺĄ0Ů˙ަĹLÂň[Úx§Uŕ´BĎ×KĐżb[wË2I#÷ suX׾Ż)cóc€}öů ˘ôYU·ë8e¶Ű"š|ňŃ- ë\›¶ŞâŚŔ=©Q4Íz^mŔ“aĎMŐ˝ýEóůz»€(ěÁš tÍi şFţEy“­Ę"µ×ŃŐ„N’šhüNŃ#9ďĂś VKB×2!~ęŃŽć6»#Ľ]'¤S -‚wxUÖM˛a ¬ď{ptihU|‹Ť»2>ůłtČŤ}Î_4¶EĆ+Ö5 [#JčÉą9ů‘Ăú/u°pž­çűk ţKGrj ˘^2ťac{µ‡ŐšĄ÷ŮOŐŞZ[ň$›ö; äĚó©€Ç`ßDőr0Őyr@‰˛`ŰăéhŮ é‡Wľ y6`*‹âÄ$ŕČđ@G:Ř!ŕ´H´ťź‡llŢGŁ•J0çň)€5˘ł®§ÝńxIÚŮüś9fťPŔ!VgpŇXľÂeń\~bj$ĘAÔ8«łp?ůS`’ÍyŐĹ*ŠĽ˘Nđë¦j({©ĹŃÚRXińşG.Ň’ ĎV»e[m–éíd蛩q×™ö8쏺vMÜźI ‘°ćĺ:žĎ~l_° ‡{řf˙ě»¶TG>.‡ţĄŞçËÝ"Ői˙ ·ôą¸żgŹâ›±¬űP}-;Eg|ʱ©#uß>”mšń{ŞŮ9ű2öŞH%ŕŞNuh(m´ţk‘ÍhŮÝďMĚNUÓŚčIͲ˙‘jÁ5É‘ëM®–ţéť(§yŹrşĹüłĘŮá~>Ôĺâ ˇ«ńUź=XĽKł˙^‡ś”§˛Jj*SÓĹš şŠř¤ËąbJř÷2ńy‚/U[ŤwçKÂ1˛(ąbB}°‚Ę™É5DÉ@hĐÖ¬vđĆjX…PؤĹV0@M ďB’ äŽyńzĄXżdKjŇÂ0.ô‹×ČQ9WŻź—äVL‚‰„Ž›7Y†FN5‰’Ň1—çoQ¨2ÎDvýÄúîżĺĽmj#ÓoQ>?*IůtąŃYÄצ|ÚĄ{‰ÎÉŃۧaţ©ąĹm=ÎÇíŔRA6ŐÁSÔeDč{‘…š÷ŮócµL“ÚýšLfŃß@d”ý¨^ý¬·~ĄÍŃF•¶±ޡ]ydČţ˝{"a˝( 5ołëą)¶m5ß!A§ZmÖú,ßđń~E±8BóO÷0´Zúíh-o\oŞYŔ'đŢż?ś†z§¨~§¤‚Ň@ąB0«Î×ŕ%˘ŹEşCiä},yA˛™ËA9uöbR)÷xXŁ™–˘ ;ř«¦5L#±ź±[#±ď`Žřlج;řěPM#}uK‚¤É" ĆtxýRwzGu-H\ŻŠŞ¦˙p/wL&Ć| ű©ěh€«ë\ŰSŰËE§ŘKďTG–9;ÁëĽ h#Ą!#ĄzqŻ ÎaÉs‘w‰Ź…[Ş˙’(!Îľ™łŰş.ä(—!kž¬HsßEµQúá;i gš¤ŘŕíˇŔ¦XĄ®hTϸĚ~l“ž›dBĐ=Ďż†íÜăÓy´MżĂ¤,ˇmŰ8¸'ˇqfÇÔö™ţ©c}•ćěKÜôňü¸źÝ““|¬®k*q÷˙ýkĽ)â wS!I”äůëEČ)0S˛9b)ô;4Ą»SŔzdń•ŹaGÔfpsiF {?á÷Ţ!¶#s=DÁNb;RĆĂ §šHą%V…ř‘ęXč=‘šS„ŕ\®l×LęÍ®Ą˙ąy<ÔE^ hŰ}IĄëB^*^Us\r)ćm·0Ąáôę±–çéô¬čL‚ć~¤\Óę endstream endobj 656 0 obj << /Length 1482 /Filter /FlateDecode >> stream xÚĹYIoă6ľűWčĹ.Ć ÷- ¤ŔLŃŢŠ¦§ÉŔm9QkKKž4ýő}\K˛ĽLÂA/6E‘ďăŰ>’O8yHpňËźř˙ůntóÁĐÄ #©LîV QIB)˘L$wËäăř»ĽX¬÷Ël2TŚĚ«őMşZˇÇź&źî~ASBađlďgů—0Ü>mźf›ýşÎg0Í÷~?4µ?t¶Ú•›đýĐsŹv39Ašł!ä:ý»…Üž7ŰÄśśéiA]uTÚC˝ mĄľZ…ăm7n>hŮrŕT3$ˇgJ%‚±^ěźE^“)xüţźínBô8«*諼®[¬Fdř©·“)1zĽ÷l3›1)^‚ď[”ëu¶¨+˙4O«lhlx˝Ěî1¦E¶ôŹĄóĹţd»0 ÷Ë2¤µ,Ę öëşÇ„ ,^ Łt3&ŰeED–›4/*F0l|÷ÖWmÓEćr†°ä]”+oµÔ˙ívě[Áöĺ•˙ŻÓÚ·šůµ´Ťę1ÝYĹm{›îŇMV[­Ý+»äC82Ľ·”°f|pp@=ołĘ7;†Ćăůs0k'áEŚšĆdpV% Í›1 Á ްP=9Ł÷wŁĎ#˝8! ăÜCA 6µN›ŃÇO8YÂKH$ÄŚNžÜĐMB‘ŃvQëäŹŃď<ĹF:I :LocTĄQ$PM4¦‹ş}€4)0F L#â=M- x ¨ŰĆď|Ä‘Ŕ쬋8ŁRcĺś D‰ľĘG\ZwF1—ÜŃńE'q%&" ¦2e;Ž´Źa‡ V`lNăÄĆ”ڤGűٱ D`—ës${‹ DëÚđQDť VVFFŐ Ŕhء !†ą]:¦‘H3ÚĹüĽ-×ĎEąÉÓ!Ţqú©i±â]‰¨2g“šjŤ4Ťâ/jŕÔb“ć 18F)bŔ2JWř‹IBŁ`ILÎú«Oű )%X‹˘˝`Y•ëĺ@”PŚ }ÉmwÄÁă_Ăq`Îbî,2°#taC€¤Ł,ŠAą¶{ ą*v,µąŁÂŰa…ă3s9v.˛VL8}c¬şŻffŽ2ěč®tš9ś?¤Ň1ŮŠâJ_EĚ1`1w`Ďs Ě@ĚĚóÄ Ç|¸gś fç´łĽ €[t pL$D]ĺ.K¦ZF‰F9ŇB^v—%SCxLÔ€ŮYwőy®ŽLÄç2Śöâó*^~7™2MíM®OS&$Psáóć Ş"Ju=­=}oĘ*´Ę"0úü…ۇ.‚«rç©˙{Č'´ąh‡!ţVěŰáúů5›Ž ‚śß?0C k ě6´7ŮŽ:–f@pőů  ô–I=mŘÁ ‡0”Źi‰\Ó.㉠…˝Ç8úŠ D®!d;°Wo[p…^TýÂEń„†‡ĆÜu0ŻŇv^WűĹŁoŐŤl§ hŰHý_/ ­Ľ& ť4Đ6ë¨Ď'Ź÷µáŠ1¶ŠBţÁGxż$ c«l¨âJ=EÖTsęŇ˙ĎĂđe^ýUćE}ş˘sŰ”’6ŰúůŞ“ł_d±ËŇşYÁľĘ‹‡^˝ ¨i]Z3=˝Ľ[í‹Em5p+;Ş ÷s‚Ëŕ&X8Ń‘ęÁNÍn1µß=sV.–ĘÓĹR_Đó"]űĄŢ—e\[ł>žpnőâ5«?rÓAť ž9lŚŻqP{_˝Ň­)łł]Ń =šJ_˙čŕŇ™É&“SG™d_/ʢ†ÜwIaźS?Ôfc#čň»«m PĘôTf%6©h߆T´ý6]ř QŔ›ÓóĘ xsz^ôzű[ÇÉŻňěWŽÖ÷ŤôJ[§Ák>ŇĐüěołxyyńßňSS+;y¨"Z'0q‚PŇÎ 8±üo Ş endstream endobj 661 0 obj << /Length 828 /Filter /FlateDecode >> stream xÚÍW[o›0~ĎŻ°´2 0¶6MÚ¤uŇަ孭"H‚Ę-’íßď;4P˘&mŁí!˛9>wöç8h‰ô}âżÎ&Wׂ"Ł Í>f„ ćş>šEčĆz—äaÚDńÔö©o}JŞôŞ,Ň?y‘%2Ĺ«ĎÓ»Ůđg‚…olćsP›/“­±R_MžůĽÜÍ׏ćzőý‹c&óŦȲ[ÇwZÁÜsÇr©ĺĂA.ŁY”»u žČGĺęęÚăť±ÇG‘MÁ3áÚól.]GX‹"M‹)řŘ%ůŇš<¬!űJ†›XÖ­6·¤ÝËĘÇSâ[żËM\U`ˇeű1–áĘHz¬÷Q«¸®´Ç$,µŤk;b Ďë·,§6őK摞„PAiëFM Ł&­+¬<=Ď;űÖ6h:r±x f2Č#™ń©é 4^:9HÎFˡ±‰ß”˛ ˛{ŽŘ 弨e\ź[ÇC—'tł)3ůÁč嵞”Eu¬B˙m+Tµmá`ĂWTd2ÉÇ cĎmP‹ę6¤vóá8ĘúćŰî Řľ¦äW`TĎNh‚±&t)ól{Ö]ř%ך}>ń08Dß×Ţ^$ßf“ő„€ÔA(G€Ž@nŔ°Ç9 łÉÍť"X„´±+8ÚµŞ˘Xpłýšüc/N1gĽuEAł ÚÝ„ý°ÔŔtÁ[„Ą„bć°~Řr7“ş1ďMbR†™ďöc*ä=Ý-±AÍÔ+©.ů€Ŕn¨‘ZńşQ{®DuˇG©WKą‘Y\o’Pˇaż¬wšFˇ>¦tĺÖ!l$Ži—HkgCîSőhň Ö2QÔşUб!5ę«9˘Źj xĂgŇLî •i6l×T-O÷¸nŔá­ČpřŔg^§ę÷Ď®ÓÇ\5Iťq‰Lm"|ó2Rł!:đôÖ¶jFIF‘ÚX5UV:RęĂÄ“ż‡Ak¸Šµĺj­{Ęť„8™\SWpŘpEoűč9=Ă㏥ 󪩿Ľđ(}2ťŢڎ=w=y©Ç&=s›\âŹŘ°űDWĽă‰u!7“s{@wŔĆ– endstream endobj 665 0 obj << /Length 637 /Filter /FlateDecode >> stream xÚ˝VMŹ›0˝çWXę%¬‚ŁV=TęVę™žÚ yIĐ`ůHş˙ľví Ŕ&!ÝKĚÄĎoćaż` đmf¨ço¶|tpˇ‹^LdžŘ4¶V6đđs±_%QšřŮÁÉŇř5IwŤ}ťÔ/Ă6´ßŢw`™X+ ›&tm…ăű©¤ĎLÓmdâĘęC•^˛Ĺ?4ăm ^Ŕ)™ĘňŃ"ŤVuL c!ŽěB‰üCĐŃtds¦™öüO–ł˘ŕąB&×TUźJ¤YÄÓDaÎŽąŞ’Ť Ë­Z¦qśjśßˇ®…U˛.Ĺ6P0­:>;*! ‰ë*ć®dţ!JÖq¨‰|â#YŇ0„ŰĎĂÜDű>%ř25ľnÚçÝľ^ ń3cŮ(p•ŃZ %U_ÇPŚţö—đz†3ÜUq5ŕZ"ŕžcU/8ăîĆU¶›4ęŃFěŃF¦I1ÚČŮit6~&NWÄ-Găü†ysÍűrš´7äu'ö3¬0ľýĆźrěZäŇ8¸©)ľî~J5iđöÂ;©5­»»é6ŘÝ%^ëiħÜ˙s•,§ĄđGńwŢ˝ř`ą,KëäÁ-TtnĎ|e”Č"•ŹJą9Ż´ľIĚÍYíXăw­Y¤¸5ëR1Ó‚®eµ'}ąk·n(rŤk #)ű=Ë?ďăÍbaQŇ!2aš3şŢŢ—Ňbč-?;=„‰ /Â?‰'Ôťí#¶OŁú˝.X.0ň{OEŤŠ¬ &řÉNŮţú®¶?˘bĂĂOZţ'–w¶ ^cclMŐ·qŞ[W2 …8:r!!ęTc«µâ«7ű záý˘ endstream endobj 669 0 obj << /Length 1343 /Filter /FlateDecode >> stream xÚ˝WKoă6ľçW( Č‹)Q"ŰÝ=hж߲ ¶i›]YR$yłAŃ˙ŢáC/›Ţ´AŇ©!ůÍ7ĂáĚ(šífŃě—«čÂřÓâęć–“G<%él±ťáŚ˘ăYJ3Db:[lfwÁwŞXçÇŤś‡”Đŕ­jň›ŞĚ‹ň DŽöďçźż^1âÔťQEk·Ăîĺ±Pe±¬–÷Ăąĺ©ŕcD#”`Ä’x ·\jśĎRVßFµ«oŽŐĂ}€řGú 5DÓŠ§hnËZŠőţµÉ^Ośú(jťo¶…6KO­–V|–/ţź”ĄtJöK©6‘FÖýÚ~{Vś;q” 4b˙őĆ·eľYzĄ/âN4řtűR÷¤ýAđzÔ_#Ć:z/7· %‘ÇŃ(›…Ł,qôsĺ<Ś) äÓŕk[‹ukí^ę V˘‘ă=U-›feĘŤÂnŢ©ąfĄ7J·ŇTbí¶uymgń<ł48vjśfŘ^ćy©ńT±sqž ž$SďlŹĹşśé=g)ő$źvAa‘]L§b»˝Gí˝îÔ—é˝Âw“ńRZżşĎç‡ç âX‰ëËܦ1çüoΙůĄW~ÓľĂ1oŐ‚·ÄŚŮöĆö÷Âç{á”ȱ:Ľ„3ÎâfđΡňdĺ˝ŕŃóşđ¤OÇÉcäŐ˙Ż >˵7·,ťŮăÄd#ŁD!a(aα%'s¨dQüZTGČC„F(6vňáŘjáyrÓÜZś[ť{ĘÎ04RŁ°Řˇ€¤–ąhMŇ1@“Ô´’^çxŹ2ĐD‡=ͱŞĘşm,¶˛“8°I«pҢ§ÍńXGTl‡tăŃ•€tëĄµŢ Bí;Ň&á8xŘ«őŢiręuPąp.hK+ÔYőÜäs¸‹ř¤qřp;á#Ä4ĄžF±`5'Q`ň4ySÚŮČA<»ŔO¨IöĂßŐĘŁ>ć¦tŞŢŞŃUH+hĘ´’5T-(a’đQHŔB $şéęOąn]aaÂNSaűXÉćÚ†ĚŐZäůŁý,‹n& ŹMś˘d¸Ľ‹ˇ„93 ÍEÂčĽ'7ČÇOîĂÝQ¨†$E ONtÁ»¨KǧŐçëěŢńŁZř/.Vĺ 3đ&;ł‘0k#ÉFÁ B¬DJ·­ÜúGń¬‡˝®)´7ZßcLF č{áXű˝Qž‡š@Řń¸ůáŘŁkBHÖ˛pšÇ˘_­’méĚÜČf]«•îjśąŇF!!‚0źľĆJÔâ [Y×8vŃLşöČ-|=±L6„#R¨Öök †1á:jÍ·íéTÓceĂ[‹ďŹľőaé”}ŃšD­Ä*wࢴůšă˘5ŕ;űÜŚsuo¨ló¨%šŚ…űďC~ŠŮČů©Çů ţŚy·§lÚ­ęT@“q*čvC•KťĹ°sś^˛…cDqdMă‹HNŕ ö<•—$ć=É•l¤ôeŽ‚vHr‘ďƱ®›x%:*<ĽRIJ¬wŤ Ţ0ÁC=3µD§»}—¦ě´Ů`¦)÷ßŰ;˛đV&椸o=)Šăńť…J/ĄËžéÚÄ ]I;ş7%]· šó32‚"ťëĆżEwĹ'Ë"|oÇżěp§śü;HýlšáßOŘé»n÷ ަ"×4şÎ{ć9Źľ»ĺbXÖŻ Š(9I îHŘ_€=2Ju#f§OśrW‘ awÄKü)ťśřyqőŞľ( endstream endobj 675 0 obj << /Length 1801 /Filter /FlateDecode >> stream xÚµËnă6đľ_a »ą¤HQR[h¤H±Ŕö[[Š%o´•%W’óč×wÔŠ˛›í‰äpf8ďI®>­äę—wŇ­?_˝{aâU"ŘŐŐ~ĄL,"¬l‰@‡««lőűú§ÍVąnó6:Y×›­Z7Ľoň2튺b”]ę6·é&뻍 ×yO˝ BiŇ’©ł˘ý|Şv]{g«é6i—g|}óČ´Ý­cň×FI`<ďq[7ŮćĎ«_ß_$ÁD‰ ‘B ¨Hâ× ăřŠJa¬ęQÄfFÉú<ÝÝ"îj«U(BmV[ĄD:;ôŇn¶A`ÖEËk^€x ďS\ôzWW„HvAx˝ç.Ú®I‹ŞsÄő”ЬŹMý9źĐý!Cठ DR9é󇢆O•ÔJčX÷hŔLůâ¤T¸¤}i‘čŘמB9Ő̦Á WčžŮŇĆÝL‹Gt,®]OůBÇ‚ŢŇ ĄU¶äŮPŘdâYÂPJMPŕÉHD!¸7°ÂŠQ«ËÇĹ ÄvjÇD(iz–{ äş9¤ÝÂë[‡»U±°1\˘ĺdč´•’ćŘäm^±=ŕ†R 7T€‘ňńTO 7eşâKÇ'ŹĘ iiYTŽ=¸ˇ'´ w¬Ú˘úT:„ęt¸ˇř Ü“÷ĄďöÁEěűXň×EÂGL…ű˘ÍĎś˙yq˘q„ hř–Žű‚Ď­q÷ĆW 6_AŹP¸Đ«ŹĎi)\H‡FXi}Ý(ß1Ú§© 'â«ď'PÜFéG¦xŕ=™$Ňóô€ŞÂéTŁ»ĎŮ„)zwÁ©ăřg©•‰™U!¶b'Ö÷AآI4ú €$˘×»÷Žó‡6»ş<**Â2^ßóW3+ÚĄčÉ˙>Q­·ŕęÚ­TĚíPÚ*â‰0Ż‚ €d|†LNČHćU8ŇĄ·ťqép,Oíó«QéÄőuN›"˝)st°‘Ú9.÷uY˛QŘB7·Ľu~ćĂđHşëHLÜO,:yr@Ťă‰mYlFŚ9™¬/ńc×9G¸‰zŢ®ĎÂ|a3ĆĄéc/Š*+vPµ[>B`¸VgěH=‘Š. ‡ť:&䆢{äŰg:šÖˇPce— YÂ@˘Ľ^ĆťÚHˇ“YŽÔ®NńÇ×áüĚë!t“|©ÄŕăÓ·çťMX‘C9šö $č±®2W—0˝ĘGöKÉzΛ+YĆŠF0O1l%Úč~" ÜPf¸fáŠ}öC(ěh¦ ]ßaĹÉťÔlö‹“xTSŮKÄ`‰ÁT»"çL5\Q˘á' Ő*<§Çcž6ŚTT3=Ę´í\Í‹ ÉÇĘ×{LđĆÂ|_c…Ňş/ Í`ĆDZÎÄě%ĆYÔ;Ž… ߦ70%˝5V*_HŁ ŽeXšÓ˛|dF8c°ä™Ó6±ľ‘Ż­Wd\'uĆŁé)ďîóĽęă¨nsż+ˇĹcE(VŮ׌. c‘ôç§óĐ6ËłĄ‰ ·8Ě÷ßLZ1ĉÔޤŞ•ł˙T?ácˇĄ^Ç{j‹jΞ%!ţ”m°Vŕr.Â2töŽz©ç„\ľźJ ´:ß$„µUzT¶®@7¸Ă°dâůgËBĐăü;©¦J/˝$Ňf‚j—ó„@ÚC—énÉá4Ź5¸›ŽzĘĐŔHɰ±ó!”›>ńčÓ~‚›ňqÖ ·JĂřŞ÷šÖ0í”mÍ»qŕÂÓľ>5#Ë ůě&­ď ËÇ}]ÓăôŚ{N~XOÝńÔń>+yŐ¨Â¨Ź€ůś1ÚÁOX‹ŠŮČ`ĆFE˝E²ćŔ“zBČglz…ȱ±_fĂył]š/übµŰ+fńĘ njcś;§ hxzčĆ«5Ű0NÖ(Kí° ”ńO‚č —ÓR!łđý _ăě؆MÍgšW¬îÇEQʶĆŐAŘ “ uĎôŻ˘›3ÄÁĘâ]Đ—–ŐĎrXe%÷;Qéój"*Ž3ný'oęäK ¦§y-˝šůń98Îô‡{ ŻMžş>±oęC?UQâöÔ>ý”›OÁrż¸Ť ˙źúuV 1(ěş˙őMQíĘSO„Ŕů‡˘-ßßÁÇÝíŹK¦Ľľ†űëOĹťCÇÓ:ßşÓ5ŞvŤZ]Cˇ$‹]÷ŕĐ`wFĚ{qüy¤Âw·Ř—‰„ů¨ďÝü6ĄłĎKv8•]1“o€=•ňY™Ägż*뇌ÂĹŻđÁMÚ»kJśAÓ6Ńtůó&U/.?ś÷Ľ)•^Ęř˙yc&ëěéKąlĂWőK­÷F‰^‘eöĄY6)!ţ´®ŚőřW&`nÖzçWďţ,Ť9đ endstream endobj 683 0 obj << /Length 418 /Filter /FlateDecode >> stream xÚÍW[o‚0~÷W4Ů‹.ŁŇj+dË–č˛eŹĽmKĂ´ ă˛Ëż_D®*3n}j9=çëwľsÚ,€ î{jËxgô†3ęS`8M¤J&Ź0ćŕąÁ=ËMćö@!ôoxäWf—·WăQ)AťdÎŚ‰u¶ŕ™űúëÍŚ¸ĹDLjş,ŮXh›sć„ţŠ9ܵ_T˘npÇjăQ|hĹ_Ś]ĄÓŮĂÓt‹íI,@ĐőEi‚9…c‡ż˘hů^gÓĄfë)Z#WÚεĚR ÷ńĘtkŘ˝ŤčaĹj ˝ŁŠU¨cÜÚż‰Ç}ŹEvܡ‹óBŽąM’ Ëń|]|jMşÝ,yL-_yNű[kBĎ]ÔZÓq:TCxr_˛Ý›‰ó ËÜö\÷h|V¦ůX6‰Z4KŮ5u‹fÉ4NďŠă¦Yu•L÷śZµ_ć"ë Myu¨N=@ň9đÝoĎ_qÓíü$‹üŢwáÇ–şň·Ň gc­đ¤Ť Ň4ˇŹ51nvˇ“RÄÔčý¤ Ö^ endstream endobj 687 0 obj << /Length 1681 /Filter /FlateDecode >> stream xÚÍYKoŰ8ľçWčč,b–o‘»§HŠ)ŇÝúĐE[ŠM'Beɵä&ţ÷;)Ĺ’içĄĹîIIÍăăđă ‰Ł›Gľ›˝9ă*ŇHK*ŁÉ<"\ˇĐHŠQ&˘É,ú::;&bT¬ŽÇśÉQiŞŇ˝%ůĚ˝¬L–Ti‘—'đ­č¨ş5®#Í—ëʽ΋Ő"ńďi#`]3S™ief=‘‹dă^®˝(“‚To‚•˙}ňáÍ™¦[¦Ź Gšsx¤…7ýS‘m.Ňk7Ľă)Ó`0Ôăó¨Ŕµ§öV#8X4˙ĄeM"Šve#7NÉŽÉ`k¬I4¦ ęmľ\W¶]±~PH*7ěťÁĆ™šävŠ6Őmšß¸–)4Ő/×~Čr•ć€óIűĂ®k„cDhß·ŁÓÉŃĎ#­8"Ő¸öMbŚhĚŁéâčëwÍ óC„Ó*ş«‡."Š´Ňđ–EźŹţt±ÖQG5C$&µ({çť™«}ĆărcfĄź§˘ëéteđ´Ľ őćą4B")ĚD ńĐ^]ďW7é/Ób‘¸j «~ŰjąŞŠ«yš™oX`Ű<­îý x;±FDś ĹY72ĎÎ/Ný8˙7ůŁ<Ť~¶Eeµ ô { r[CľÎ˛§hŻLíđ^÷ś¸*ů±×`˙őLǧ·IČžS5.?bŇc–O5©c äČi7V&·ť¶ÚłüŇĽ\z˘łźë˛]©U#`^dYq vܵ}óu>­™őIÁ $˘´îš·f}Ľš °đµEÍtWŽ _kĘKŤŘ$‹ bgăŔxŽ˘~x„đoĂăÚÜ&ÇŹ~ĄÍţRĚ{p8‚Ĺ,ý†1mB(őýżlČ$«´X{>Ľ;&@đ›ňĄ!ó<®)_0ŹiáÄ÷4óŐ>MZÓÓ|fňÁmnĄŤ•Ż3šĚ<˝Čć)°KµĂ­­ŠáĐţ/~qX‚Xţo!¶–—ëůż­Ša-ďńAŇ‘üĽ­=%Ç©6I.Úd˝›'­ ©ŤáÉ ĂWŻĘ“1AXĘZ”˛Ţ.Xi2ĽĽ5Ż®Łv»}ú:*X×ŘęÉ˙wţůb×'†óŕĂ H»;>ť]ţőńí$ ęÁŮ z9čc¤«×;Ű/â’ş-âNqv±XĂţ*±\Q¤bja%™)ń®Do¦.?žľŔ Ň "ČcŽ2.9’ì.c(îä1ÓI.‡Đ+0E’őćęÓĺĹßçďBKJP¡6ć°ôx¬»L„ʍ¦Ŕ§wľÂ "Â%ÂG”@ĘAô*ŕN"şzOż”R ń„ůJ)Ž…–ŽŇs¦Q,Ú@.BŚ SĹ%9ë4ćk€FăĹJn¦%cß-}]¸DöŔHc)éčÜŤT{îSőđËţűnďX˙ľ†ÉŘó–ť{6mÓÂ0ŇöľĺYMS—Ňkš?xR7 ŕ}ZV0&M˛lăú®ř;B¦¶Ô‰{+˝9ČcڶxÉuV#Łdą4¶Ü¶ďצş3&wc«Ű˘4®˝6†ůŰ6ŰŕgŹŔ|ö¸€e˛J¸Ŕ7·7˘s”©ŰSé]2(čá$̶{%lXĆŻËŮěń%P#ěúŞąŰËg”sD°D1Źî+ŢO-ŕ°ŘÚíUiJ¦?ýUţ÷ú"ŐőŔ‚쎰7[GŔz”,еße›ó] Z`Ś.fNĄTť1€Ę?°tĽ endstream endobj 692 0 obj << /Length 759 /Filter /FlateDecode >> stream xÚ˝W[oÚ0~çWXÚK2×—Řq´iŇ:µÓZ¦jj¤©ę* @Ô$Tý÷;‰ $ zĂí“/9ç|ç;ź/1A#DĐ÷1íIŘ:>ó p ™DáQα/’ÂÇŚ ĐŤó‡r?Núc·Í|ćL˘ÝéĹşÍb— gä 'Ę— gYŽcpŁŘms_:áŘ^»”çëĎN9¤Î"Hă=Qă$Çs÷6 X-G9¦€A•ÝŹ«NiÔ: [[f ˘+°Q˘âáŹţ¤usKĐ>ž#‚y Đ}e:A *€^Š®ZżtIp\IL|Ţ,ÉuIá?TŹřXÜŞG Š6QŻÂëÎéXîcΩXěYő¤sůíBëĐX+La%éJ†é.©Úś ěQŽÚ”â@GŁ‚`"|$=đđCHPâ{˛ ëäÁ¨ďa!…P´^tŹ^ŚxĎ*Ç`¦ŽzÖąü˝K.^)a䊲l3Aśűqś™^¬Űhn:ły’ĺI6ŇŁĹtçăő01^ő Ăát>‰r\⣶Ń-ńCWgjúyĄéC n ëHŹ‹E\•‘l`ŰŐXj3Ŕ٦’¬ź $ŕdúś,Ňă (žăń—*MŇL°Ű›î(Y—rd<ôÄÇÚŚn»iŃKËŹT=Š•Çw…ÍŁ»˝agGşŁ™~y~ÚɵW0OĐ]F©EŞÍOmyÇłŤ%D7VK Ěqn‘y/Z$ý.Ä<”ż5ň’uďfMָƿ§SĐĹŮÔâPzoDLě'¶ˇTgôzą'ŃĚşÜ󝫲Ć]É­SŘ)·|=˝÷'¶ˇTgôzą‹,™f]»{|óđ3î™UY#ĎÂÎ^ĐaíîuL»Ĺ‘OgłpŠ—¬˙%7â!;©HóÄνřÜť´B\í'—e4Z\+í  ş±Ň8¶ďB]ŕ‡Úgó˝Ě&đô‚‡VđH¬eĐp˙˝ß,Ţ endstream endobj 696 0 obj << /Length 1105 /Filter /FlateDecode >> stream xÚĹXmŹâ6ţÎŻÔ/lux=öřM­*µU·juUŐß®'DŹp‡HvŠîßwňÄÄÉrÂpźě Î<ž™gfž,O>$<ůuŔëő§ńŕţÁ‰Ä1§…NĆóD€a¨0ŃĘ0!U2ž%o‡“Éây9ŮL?Ąw#%Ô°ř+Z¬7éSőŕŰüŐÝ»ńďdsŔśňŢű”¦ůń˝ŐvąYL¦óyý抶˙pß•F̢ ™ů°řŻľń¤Z'ůnRćĄÝnłqĽŞŕöŻíz|ŇůtŢ-=;MYľš^!cĘŤóÖÝ2ź^!wŰő"[ßÚ»&hýň6żFî@·çgúŕéęňD†nŃEÝŻ’â6ôžĆÍLţ~=ĆCŘ ŕ›Ĺúýr;«Żő=ٿϳĺçu¶ZL—ěăÝ—ú2ş<­Ţ,P ĚúÝÇü:=úkxçĂćP·‹1ŠýjŽę3Ę˝íîÖó÷%Ę›¸-ŔżŃdž-gáčk'żÄ>0ŕrmuž˙ˇĽôDáFĚhĆbŰ ĆýÚ†ęiË źw †ŮSuÜÉ édşÔ>%á~@Oy X 3–ŽŇęTň~5xűŽ'3ú‘ĽaŇŮdW]%‚9ëh·LŢ ţ Hr°Č7Ą)îęěŁÔäĆrŔ*` tX… Pů°ÍroçŹ>V”Ä}B^R¦çŘ›1)ébFÄđ@JE{83cŇH˘Í༄!'cÜĹ@E®uövŔ¤ÂqĘDÁÚIFÂRtŚń[Đt= U¸eZA…=“×čqď’7Ŕ´3Ą%@x©ŔąĄÄ™¸‚â`)vmÜŞ¤ ŽJ@“ uj)‚Â"c@*Ĺ´>ä YNj$ł€°%qŢňěr,µ*8sBŰŘŤn>ŇpDa‡Ův“o7Ő~ž=­¦ő>›Wëá`:Dz.Ëąé‘~ť¦łç»8>ÜdŐúoZ­ĎéĆ˙!]áĐt‚!÷·ýíÍë@ ‘ÎP‰Hä˝l( bFW¦ŔÖőţđçßü8ŔCă<®ĺĚHăăÖľždhŮĂŚ N˘zC&ičZ1î.…!ź2©3. ަś×¦°?‡†6;˛‡U\ë‘\´Ą{ő5d䤓¬ŚárĂDˇš>tvdDŇIVDFĂĐ@8kČß8LA*ÁOrV ę6¬*JŞ(NzOŠ:4 Íc^(ŃE“%íáaľ ¤Ąđăô‡3tuˇ}]¬ti‰JéŮ #ŔV˛Aµa»TĆ-Uô@;*(ŔŇĘ `YTcÓÓR±˘@ŠhÉ8°_§ dJAh‰šľˇ|čóeŠfëĺç@=R={'ÝMÄ }wO’®WtZëb$ g¶h˙ Ô…@[%ŽÝÁű?uĂ8 ~CßSş–j†{§Č‡˙Zžú endstream endobj 700 0 obj << /Length 1910 /Filter /FlateDecode >> stream xÚÍYYoŰF~÷Ż Đą7{hQŔ-’"AҢŤ˘H–ÖŠTDĘŽ˙}gŇZ‰˛ĺ=^Č=盝ťťcgWÎ~>Âń˙ăŮŃó—\gIevv™Ć’:“B!ĘDv6ËŢOšőrYŻZ;CÇ' ëÉ«ęř„r6™ćŤ Ąú2ü—«˘j‹ę*ÔŠęřăŮëç/ M0ÂXľ§ýęÝ7ččĹŮŃç#­8#Ő0FĎ.¦‹Ł÷q6Î×FĚčěĆ]dm TfďŽ~ Jŕ¨fĐ’őĽüő÷·§g»°Ś„٨Śh„‰Ia ŇHä- »Ĺł µv…şně*”ům(Ü<É«ÖŐř¤­CkcŰ­©Uľ°Mż5›ťm× YĘËF <™ [5E]5ˇţcşjZ4´ÎS:ES,„ űŐĺeăŘ5”¤>&br]Ě<ŹĐR‹Ô+T˘¶…Ęe˝ę&őšµ?Ź Ĺ“Ó·oBuVO×ŔŰŔąD”ާ¬|¸ô¤0ş_WÁ 9 °ar‘k …XBI>*% )ÁRÔ=Ú±ŤË!V„–6áu‰†/Ş ÄÓR‘ÉiĺâˇŰvîĂ -aźśyR8X!÷w!Ę]ď*´ć—±Hb0âcĚ'RĄv6š7vĎ–µGdŃÔ1A !F€ˇňÉĹťÖs\Ŕď§uĂ»≸X)éMŮŇFĚ|ް9”÷ÂŮa&gs;ú\®«i áęŔqc Áî5ÉDK$ťŐ ů$e‡¨ZăIňĐ)Ł`¦46cS0S Ć'Ŕ{N™ €¦FAA€ť˘:Ď> ę”#*M·‹󻏋ú“Qĺd·őzÁËçĺ:V‹Ëđż‰ő| Óőj Tކę]DîGEŐ‡3®ń–ę÷JJNtZ ź}1óč®|×—vw04Ϝ븉Ă=s®c#?pÍá·±27Ćç ‘»âşR ŇĹDädčptc]˘îď BcQĹÎĐ·qިQ“_l21ĹŐ„y›»M¤ă".s*Ú"ďg»¨Ę5‡Eşy”śWmOA“ ëp¤@N¨0§`ť(Ř%cŢxX…!Ń‚ô‰Ś‚ .BmZpY».g‡ l L eŁRĐýVÎĹ' d“:Ľ}ÖNß­@$ mb’ÂŃ}’c’ iŕĆQbś<Ăb‚°”#ŕRĚÁ©oáîqTř+Ű@©†”Ą z⼡Ł4&hąć)ä#¬\Śg12jëúţŹąuÁś6ŢôřŔ ĘulËĂĎĺ^Ą Á´îw•cďŁ3vY—eíÂÔ›>ş¦.Éęč°u3÷aźŢč1†sżËQd~÷ÉŔ“!BvéíŞżTßâRŕ»Űů gŤ×ńŔäŔ`Dh˙¬ô,ßŕs‹Q˝¶ńFżoÓŇB,;;čţţD‰&˝q|Ü­če ŇüwoDK˙´Ńn›K+»Ü‡Ńp˙‰Mż ‚÷•]‚—Ü!Šŕú§y,\ŘđŻ/ÚĽ¨üuÔfĹĘNCrFÜJ …ŁĆ¸BŞj{5¤wÎQ nćE÷Ř’—. Ża·Í†Öto8ÝΖýëÍ"oÇ|™i–9äL‡˝ËLçů¦ř©çm}‚>`˙?Y»ĽŰ?9óĺ^vvwu˙ŔZ®óňëV7Ö1Äîµ{HóăŻďž˛X—m±őŔĂPĘCO ]\,3µ˙m»-3yŘîŰö«÷޽󆝷íî¶LD’Dk#÷^‘d¸»żĆ`îw endstream endobj 704 0 obj << /Length 727 /Filter /FlateDecode >> stream xÚĹVKoś0ľçW őUńby¨U•’J=ő°=5bYłk0Ó(˙ľcĚcł!Ź…H=ů5óů›oě±ă`8Ć÷+ç™öŰöjs#B‘O|c›8 ČÇŘđi€KŤíŢřm~ŕeš·{fŮ”Pó oňM[rQĆ “čřŐúłýp6Ć(˘˝KU|ŕ{§ôÔş÷Q-Śî±q#ë[‡:ڇQčąsXwŚUá@ÚB@đg…ň$NĂp ŕâđŮ°Š¤Z8. \{ č˝C ZšĹ‘ŚîëR3EŐľOXI–-LM›Kűâ =(ôĆx&úŠÄŐýR§ĐUň/zŻŐ’=E9+IjÄ7Kčż–×!‹S%77ˇoh~DUH;t‘S6 Î+FÂÔ˛±ă8ćĎÚ¡)*VKΚc*˛ęü†Č"íü«LęË&tÎuĽ(›˙QˇöPx¨'qëŕŕĚĹ O\ çş°Đ_•ä%kšńFQyX/nŹ =Ž\3y.,Đäž—5ĺ™Y[¦$kôP˛FjŰű#“GV÷ÓÂ+÷ż¦&+őZWµŐščŤk–' RϦ˘” đ“Rą>č%^J¦†Řf¦T dŮ.t „ó–·Ę:žšrpJjž€ą6Ú Ý–BjHA&ęBĎŽ$Ô EŐĘŽpóIď,âmďŮđ˘ĘŰ#Kďć¨ňL'\j–ÎąNjŞÓIu”NŞťtR#Ţč6Ék–ěűtWętő6Rčv×ď ë–OM4[ŚĎ>ce†Łá¸=q¸8;!ňéí’†§Ý[Ţ© -î¶ą¸hŚ@ý5Üťľéóµâ%6˙—Ç[őxˇ>M –8Ýú‚ś×°§ďŰb‘_üŔ]–lőWY)ő4¤üôĎr9›•Go%Ź·ę±üOzö°Đ‘¶KQ0> stream xÚĹU]O0}߯hâËfB×–µŁŃř`˘F_Ĺ'glU«Ř-ÂHü÷–u |ĚřDŢ{Ď=çÜ'€ŔŐĎsw4˝äpČaŔ}!H±ťCbSŕ®ŔýXFˇ¬×áĢ„fooţĆ“‘'Ţ6ńÇQäyé×W!6ĆžüĺXŻô&|2ypot] cČicî­’kµW!‹ťačĚl3A]é]ŠŔ¶Š`×ýô’U[·¸ ćŔ"Ú çŮϿ͜J^ٶţ‘mľSr˘Ë%LÇâ=ňCÁeôݶŇm9MĽ~$—^$â”Ýa˘KÎÔě˛ÔzYŠcŐĄi‚RHô3ö”RĄŔđIK()›Đ—j+%}čH‰ގ~^~wkjŢĂ­·R=…ÂJRËúáV¬”˘ľv=’jnW"ďŕT÷3ŐLÂçłv3_¸:Ę ĹkŐt¦Ôë´8-XťâtšăÖč »ç˝$٬çř ôĽá·xXWÓuRˇ‡˝÷¤kTnw¸׏µşQ†éw€›ĄÇ¨^«±ŚóËĄĎťÂ[9IćU’C]]ô_ĺKw´e‚őôGwDhčŐĘéŢɬçňÍŞ äűd¶ŞS‡h‚8tśB”ąmD\¸ŁO`šQ endstream endobj 713 0 obj << /Length 1143 /Filter /FlateDecode >> stream xÚĹWIoă6ľĎŻ0Đ‹Ä ­hŃC—)ÚĂ´@}k A±h›YrEÉ™ů÷óČGkł’I2 zâăň~o#éb· ‹ßŢŃÉřÓúÝÍű/’„<\¬· ćÇ$ňů" "ÂE°X狼[ʢĺżë?:ľ›÷~<`Jذ‡˙Ş´jTUŽzĆd¨Íg$öĹbĹI˛§©ŇEşS'ą\<đĚě”8ą2BAĐŠ1’Î:sâ.Ój“˛cz,2U¦;Ů®TmÓ­ú$ó[PË{Ö8€*?JyěUvťâ; ŻGÚCd–e{čŮruH›ĎGg»ˇ®‘lK­vĄĚqv¬4XÄľ·WŰô f¦áŠŻtYĺu=‡ń˙vËWtiďĚ7óĺ$/V± aŽâű÷ír%(őš˝D‚oŞ^®x’xµ,2›@¸z·dwRU«‹Ď¸T(©Ý¦;”á°_Y`Ą“~ż—µDąťĆťZ‚Ý'#W:pW ·Â¬ť:ź:X5f¸Ą”˛Ü9.śŚĽ¬h @fšJ¤jŮ´uy^ÍšÉyÚőţ†ú^iyÉô!ű@&ĄgTŻVX{V Fţ’rőwS«\>»X±ľöč&kFąd#§–Zĺ­L7E¦µ Ü7ČJU6] şŘ|<Ł®UŢŐ¬°Żpşű<-Ô:?ďĺćŁń#÷ÔÖŚ Đ,t1 q^mqtŘ4JÍžEÄ}¸ÚiV;ů_k,¶r*·‡Ă$fYŻ÷9\tu0gâŔŔ-Ťť¬qaÇ>lÜ6ëş2‰ř¸*.âĹ€pŞ€Ť•ËQ ±„“ ňĎzŐŰ6]$ÄşHÎĘ|˘i|éˇÁîŕśvđ '”GcÎţź±ÂĹłłÂ@SWć˘sщ.‹N8ô˘9‘5 ÔyŤ“ŞÄjam =­Ę]ád ëŤŕĚŐ{żĽ)S:sŹđ8:‡F$4đ'Đ<ěźČ`ě:˙1ö, ý#˘y#â°¸‹Ťg¸EPˇ"ęMf’™V6*« t ŇÖ+¶›ł0"IŹ‘°ą&:Wz”fÂaÖÔŕĽK  7Y‰ÄťăÚVí™ďÜZÄ#®ć‰}şş›łl"üQW3JxÄź”‚LŚ\<#+$ ŤľÍzâĹYůX ‰˘Đ5ŃđMôy”e.ËŤě*h@7×K¨Ƶ"ö6®# /ÓöÍ$9ÇcěĺRojul\DĆŘ`Ěp°­pĹ}6x&Ůc5ŽŰ¶Üô«ąµKŁŽîh);ž™z¨j÷ąč@w’îź:Hl«ÎßCô»%g‹{=ą°¦.¬©×j™“g˝<T*ĐĚďTą)ÚÜ5ë [ßl@USC˛6d˙ă?ĄŞ*úßł¤Ş> stream xÚŐVMŹÓ0˝ďŻÄ%A­7u>â€H¸Đ (mťĆZÇÎÖÉVý÷Ll7mÚT›jË'OĆăńĽçyُÖÚr­/wî…őăüîţsâ[ JB?´ćąĺ».Â^l…8B~€­ůĘúażˇ|Éšq¦ŘÇö{*Ů}™U¨řŕüš…DSĎC 6Á°›.„`:X}e’.S8‘Rţ$Ř‘銖ň§‹]•`ćˇxôł¤i{ňj Źv˝]€9*đ¦<»ŇzW™ę[k˘Í†KşćdĄżrş‘őŕ‡J˝wę˘éP­ç±A:€é°ôn˙0 łŽ8 ô1J\˙b4ś ž´Ax‰”îÄ Ű Ëck^˝ žc-¸ČZ–çŁe±ăš `M.rů×UQm‡1]őú:‰Á[m;Äî+)fôhXMo€·ËÓ͉tä©:Ç?qřäŢC—UöżHĽlÇEI36Z鏇3/ě–ŁL†ąÇWžŤ÷źgńŃ˙Ä4P‡}ÖľÓ’˛lĂvNmČçÇ3».ŕv? í\0&ČąĄ|Ýş";oř˛†ˇ/őç2ăÚX˝6˛­ŁµjaB ˛|Đů¶ÜíĎô˛¦íOއí źQ%áfÁ.PeVîĚ\8î»6Ľ•ʲęvÔ ‚w§? U| ł6Uµw-DĂWh°ďNţĎF6ˇ$őčîXŐE&ÓŚďR& ÔT•tu˙A.Ów`Ýn0WB^=Na)şo ßÖÝ|uŰńmĘ"«÷‘Ęöd;R7n˘6Ť9Iúťßśëă­JL5)2˝(Ň´©¤ µCéĆHDď°#8Űi™IQť‹ÜH¶0*Vż÷&ŠÔ˛‹RäôDŕů>ŠünŃ…×9gĐĂ(LĽ} r¦AâÚs'žĚHSiTF·ŕ-˛Váš«Łńv|´ŁIě' cç¸T»zAŚf~ź=VĐľÁއÇ9Vě˘pv ҉™.Ş+ŔĐü‚q:X[×QǨdM˛“AdE>:Ů©K"Ü‹ů4żű ă S endstream endobj 594 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1425 /Filter /FlateDecode >> stream xÚŐYßk7~ßżBŹmv5iFČŹ:-´`â<´5~pśŁ„†»p>Cúß÷›=›x-6ňőĚńI»#Íčűć×î¦,λ”ŐQ$— ą Ůá"‡€ip,ŠŰŮE˛9Ćjbʼn~Ĺ)y'ž\ŽÜ‰gW8cî]ÉżÉQÂű‡Q2b˘L ‘q%;J‹ €» ®’Ž« â;!qTĽŕVtÁ“É.D\Ţ–Ű aĂŕ]0k' š…  «dFAqN‘N6ĚfX€L‰XÎäŘŰ!`{;3Đđ6HaŕĂŔK1Đ,ŕ„™DČ‚vÂjŘA&BF‹ ˘ălÂXÉ…ˇ4Š‹^ 4Ŕ JcrqÔs#CˇŕH1špňhě$AĆ•¤.ę(ŚĺŠÍČĆQ—@¸ŔĐćͰT0PČjÁß0Č D`Aâ;‘ěRÄ?QřDÂĺ‚ßQ•±. Ű;a ŃÜvéč°TŐÇĆj.`Th1±±˛q‡#žŢĐË‚yD— ™$6ŔU;›dŰ ľ%Ův4bGËöŻ`‹’A ,TođŔŕ46P§aŽŘpWŤ0ĚöŇd'†bMKťš WUĹQlQľKÁ8– HM ç­ËgJ¶H1—ŁpĐ6% €ĄđÝlˇdqURwtÔ ď˙ý˛pĂËĺrµé†Óë›qţۧĺ?Ýđjµţ¸XźyÄ%ťż żŻĎŢ ď—wĆžzŔ "đ-Vą÷Đ“4ôž!öŇąáÔ oWďWnxă~¸şţp…µźVËžúŘÇÝ‹ţv`LŃ^n`é3ňH ±· Qű¬ô°5[S~ę)Ý5äŤ;KŕË»wnřăĎżqčÁŽ‘Ó#ú—ן?ź?.ËŁ,Ľµ'01K8…Ô+"˙®°^Ż>ŻÖ§_..Ž·kN.6›ĹzéÂvúó×ÍŰÓÍĹfáhĽĐ Ç«ĺf<ĺ1ś ™e+wlů!ąťXRĄŰ;b™őöše»lNÖ«ËÓ …â7ÇnxżřşqçS¶N.ţ^t°tąY,7WŔlËŤ“«Őőúrq5&çńŇź.^­ľş‘EKłZh9ąXc-äĆCŢ… 4‡'"5g Ű“ńîăa1؆‡•·=ŕń¤šńŹŘŚGÚ?wť9šSz©;aŐŠQŤTů.¤¶©ô Z-š-ç»IµT¸G›€¶$ôVŃřôŚŠĂ„üďiNâ|/áZ#67áŢ“ÝćPÎÜ[Cô¬9´™l­Č¦ÔJ6Ĺť’ͨ«h˘¨j`A]ĹÝ!Š~C6IE¶|Ůň@u•ŇĂ ]’=ˇtVÜ óˇsšćŞ„üsĚfęšb3Ď]žŢ3°ŻńČÍx”Ct ŽZ!`žźl¦˛7•OŞ´÷žs’“š‘,5’ÚŚd>DgŠ\A©‚ţ™$ÖÍFś×lH,rđů6ŐĎhÉ·â‘čŕý#Őő8Ĺf<Ňüä;•˝y5˘ľ/(˙xłÚľV$ĄnîRiERüÁ{–¤ áf<â!#©ë±h3y~pMe·Árîł”™ÂTúÝ‹łMÂrŇ‘‹Ţß޲·űáIŚhí”:Ó)łżĎĆůŚLeolÉ™'Sě×yÂŚÇxÖ=ĺ)GŹqŮJX®űąL­„ĺpY$×-\NÍ|ÇËüĐËöýnŹfľxŰ/•ş÷+ľČBĎŮ 7CP·{%6C0śÔ×o\Jn† ú‘úęő‹úyŻ_ôćĎ7<ěÓöÜôrOö¦Ěyű€;SÇŽF÷ó¸0ůxş 7,5ěÚ űţßŐěŞ ˝µâA{)ôŹA°‹L­őW"ťů•č!> stream xÚĹVKŹ›0ľçW őŐBĚ3ĐV=TęVęµH{čVȬĺ% ‰úď;ĆÂňj¶=1¶gĆßĚ÷y$m$$}[ ™ď±|ô ÉÓ<Çp$?– „4[w%Ç^i†iK~$ý”ßŃ> stream xÚÍXMŹŰ6˝űWčĹ."®ř-˘E şEsjQß’@e­-¬,©¶śEűë;ü#ÚŠáu• ' irŢpŢ›!ámPŚ~ťĹţűóröđ¨)ŇXK*Ńň QN1“Iˇ0e-×čýE»s3Ú«®Lł§'7őý.ű ňĂâăňŠ8Á g("káťM«¦©Î]´/ĆKşĎęM8éË>k۲ހ»Řzsöĺś»>¨öިŽuŮÔSÇ6tÚGx„řđČ“Q°L$ЍŔDPç}ą-%ÉĽ¬ŰcgL5ď·;`RÄR4÷ç4kfż,gÍĚĆ jk‚DÂ1— ĺ»ŮűŹ1ZĂŹďPŚ™NĐ‹]şCëDUˇ?gŚé†&(m]QpeAm–#°‚cMő$° SM’¶<Ś`Ęk%'ÁT@¶!fŻŚ9Ç1éy8l›cµv´­™žÂžV—3;×<ą©Ě E÷,Ęç/۲ňË»mÖťV_Š " KÉ_ć‡(ŕDr$Ĺ"NţK~Nł®¸ş*…cÓ)`i¬°4b®›]VÖ#¸Lc©Č$¸Đ1Ą aG(VFŞ@ YS!ć52“˝łz=˘"1Uúj»`Ś’'Icň&}0I±âzH) Ik;ű¬¦'“pĹ´Ŕ\Ý K,ŕĆť“Ç ĘďÔ‡oQöʤšc‘°¬Lď±ďY`ô= LŰłŕ›ąĎľ¨˛.=lĎŰ?;eФŔd¦I™šôb˘Îö!»->âßę®Ř×Yĺ0ß7ëcŢ»?{ ĺŻoĘ0Mř—^«ěPćé.kÓ<«ÓĘöŐ×˙ÉżőW`ľţa0úĚ8! Îźc§~»-ňçEÄŰĄf÷n`96Fëł jY6“ľ˝ZŰ´k¸š˛fżÎ{ˇóMą€č>-~_/7‚:ceËH ˛’7;xőë7ŽęŘ›§¨Í`Őt[gőZMš­*]„vn8€ßPµ‡Ż+Ű·Çýţo_‘÷(ő»˛Î«ăşp”˙x°•·?ŤĺîRQvµŐTnByµ¬}Ý[ÁYű$ą‹ă T7xĚŽś„{süaaŢw†IKóÂĹiŇD‚âĽů©UŢwŕÓŹ&{J ÜWŃ!čŮö˘8/ü*‘^§řšH]â6ĺ§b\fźe{¬o%ĽËž‹)DKľ‚hŻžB~#Ů‚řĆÂtâ˙‹nÉäÍŐý}pĎ7¨őŚ‘Ŕ AQÄýaTx)Á»ó_%®  endstream endobj 730 0 obj << /Length 959 /Filter /FlateDecode >> stream xÚĹWKŹŰ6ľďŻĐ‹\Ä\Q/KhŃC‚l‚1ri –©5™T$Ę®űë;#RÖ#ެ˝X ' ©™o^‡’ç<:žóűť÷Äóíúîţ!őť”¤±;ëÂń=ŹD4qâhEü rÖ[ç/÷'!ó˛ÝňĹ2ň#÷WŃ”÷{V‘Ýo‹ż×Đ’R’FVŢfĄJŁŚ+ĐÍr&łšÉGžĺm]ź>{‘ׇ”$a0EČ2´úĘy5Á0‹źAkú šß?„É(ře8‰ťĄ‘Ô Ú»Ďż.–MÜăŽëŻÍ$#lŐž ‰ňĘUĹěeÍK¦…’ fUĹ·f!ä\ó{GČŞŐVl.–M7Ľ+?ň\fgo¸č!h|nŕýC<îŢÄ« Oßöčjf3)š1ńŚňÇŠç‚•Ćĺ§ĄÔeeË› Ŕ4ˇNßJ? )ĄO2‡ĹŐĚ]ŕB–7 s‰ ayŇ™Ď#WÇ+ŔŤ’ĹŻŽcsćM’źŻëdO<\tś@áQ,ř° ‘ËĄŮâ¸ř§ŞyÓt¤Ă=ŕËą’ŤfR“›z2:ŻÓÉä {?×yPĺź]Ü4'¦-cgďßjÔ˛צRĺIŞ=śŠ«Kôm°É UnGőş)™9ŽM Ĺ—ŚŔWc"˙Öö3B+óT†bč’[Ą´F؇˙“˛U Cń/ŻŐÍť¸LéW©=3H05¤„’†ýP† _p—Ŕťö:’?ß6µÁ—ˇÚ¦<™-,1Řř(JC˛ÂTbő7É[!Ym ˙¬p•©Š×ZĚ®‡Ůť@é*ÄŠó‚+é=’MčÓąŐPÜЎص)bę‘(rř(ä#n%nŃĘ/ĚĆhä}ŇqRWJclÔć ϵµ¨9–‘KmŤŻÄmŘŢzm¸~RL»Űyy‰ŚćŰeNH0ÄEŕkŔ‹» ĆEK"BW}:ę^ €ź@o’^ë€éłZŔŐĐXʞks€_1ş­mşnąŮ…ÝŮŮŤ!}Ře5·0Ú`Ž!0=Mf© +P—]Ů1m6EĄ âN đşČ|wĎNćýbŕŘV6ÜčđépB°Â<­KyĐG>zŤY÷M­şX.tî(J;ăä(€ş˙łŃâI6ĹVĚÎöOž ń”žé™Š˝Ţpb^=7¬yĂěćűÍ3ň d'ĺDúćR×ZűĂÇĂrEü|2ó4žš5~x(L8 +üřÜU2±xżľűü™“Ž endstream endobj 736 0 obj << /Length 424 /Filter /FlateDecode >> stream xÚ­VŃn‚0}÷+šěE—QŰBQ˛eK¶%{ćm[HUÜČY”řű«-h§ÜĘS áśžsďą }!‚^¤ZźÂÁř%`(ŔĎ|.óv}Š|>ÁĚĺ(\ ÷a%›4ú‰ă|äpƇű§™Ř$óhoËW·3ąĄwŁĎđM2;”â€Ńěpz`p<ЧžŰć9ŕÖëTłHP”§"Éä Qü[TR‰Ŕ$DKéoÁţîźŢ”ÜU™•+-Oő˝^µ^Ćq@Ü’ń&Éći±KŠI8^‰?šŞsj®ě­DŘwEQÔń[h¸Úhx¸Ž NŇgh]=¶°đíĺ]™}“zb-Ü>\E–¬ł}f;GL!ěÍ+ŠĘKšşżR@¦M!.”ÂżdF·µĹÁ„îŁbąě\ůíµĂ )*r×Ý} fqÉé6é,˙L‘M n&ßőŃ’Ą’ď@>N±V.zëJ“«Vµ ?ĽmĚúéO“«ŽK. Y;Ć_ééŘŤşnĆ/Ţ´ń{K Á”qä¸.žNŞËg´ Ďáŕ@@2˛ endstream endobj 740 0 obj << /Length 499 /Filter /FlateDecode >> stream xÚ­•IŻÚ0…÷ü KÝ@Őĵę˘zÔuvĺ) ´nť…őß?3ŕ´qČ*f8źďń=ľAŕ'@ŕu†Şç7¶|ńđ Ç~ ČŠ@Ę0`îę˙~Ě€"řEůÂq‰;ż|JJqâA~Â8Vß~LňZĽůß%ŰÁz®µžl‘‹?_Î ĂÍŠ¶Iĺ.ËDÍ)SžĄ'ČEČSąYËPHş˘L$SMMVUSiăɬďőÄţëIŇ”Î4Q×—Ś1hÂŘ÷NQ¦ěŕ=ń–­Ň>ś=Ú§ľG·gmś¸ĐCTíđ§{Q"Ĺř"7Xć™ř›f üőŐTŐ?Bq¬ĹŽ‹ čg©;z>ć#’ŃCzŕb7ýĆ™8LvşŕşŢř1ă]š!1ËÖ»ŽG!Ă^;7[„×ŃjÓÉĄň‡ëźźxń;ăé)ŤŠÂÍΠ×AĄĐĂ˝9-˘S7 ˝Sk|HĹĄ5‡ŞëîhJu~;ąŢ “Ú>z:dŁťÔUÜ[`eăjďT=´¸QƦ†IŞĂR1AĘ$ĺ–ą´MY[=âíwďÁř.ŇŰÔ5ťď-íđN‘ŢN©ig3´âˇ~iĘmŞZM“zŠÜ*nťŢľAŤ‚¸Ŕˇ’»Q¸ j)žýŮ;ŘČdµ endstream endobj 744 0 obj << /Length 697 /Filter /FlateDecode >> stream xÚ˝WMs›0˝çWčť@$@ ¦·v’ÎôŇC}k2 Ʋ­ĆŹɤżľ+ĆJČv’Ú•öéí[Ił`´Bý8ĂÝ÷Űěěâ* Pę§qŁŮű”0ÓÄBŠf ôÇj“Í«jăz4 ­Ő”˘*łmľË„ĘBý­DY_cŠÝ›ŮOźE!ňńSÚad™Ž»ĺ|7‚b\_’óňU#ěsĽ¸ŠôŇĐŹIŠĽ€úAřkL’GA;‚QÂD»řw3WĽ¶–a–˝Ač‡,~NËy®D‘¤ÖRµŕ“•ÜctZh·+9=(‰Ľ1Oóx’ÁŘVĂ&Ă·&iĹ>Ë/~Ť_-EQ+ôü^Ô_ąn§‘=F]&%0=˝v'âÓˇ/ßÜî<éćŻŘ|Ň8=˝,v'•ĺÓy¶,§dŘ}u+lz ŢEüĄţ¶^ŕ¤Űüb'Ű —Ç;ëű×Ë;—P‡Ë`”¤NQmwąŞ*Ť˝lʢ˝%yÝČR °Vđ•\¬\ęäµpˇ&ĐLŢiGľi:S,Í×Ak hk­×«žU鍝% +b†Iä¨mľŮčjjŁ^çe?âÝ|+üąëEjňÚ·«”°YkďkmjÖŇžµ6lÖízeľŻłŽBg%y^·¬#Ŕ*;ď?.+3j7ŹúÍÁQ߻ޕ1` 8|9ü`¨Aňaćpź}ĽĘ·Ü¬ť? S#4­Ł‡µÂY°O*"póÓÁ-K}Ć fÄZt9;ű:iĆ© endstream endobj 748 0 obj << /Length 1555 /Filter /FlateDecode >> stream xÚŐWKŹŰ6ľűWčE.b®ř‰=4h ôRÝž˛ˇ•éµYR%9Iűë;|Heí®łŮKO ‡3Ăá<>&ŃC”Dż®’Gľ?ß®nŢ))¤Ńí>"I‚8–‘ŕ)"”G·»č}ü]Qĺĺi§×NxücŃ•7y]u}›UŹ?­?Üţú6#ĹýXqâ ˝=Ko›>ŰüŘÜ%<±F’Ńp÷vk¶}ÔşYRâxßçřÍ’ĺëö°Ź0űoŢ19‰ŔFR$¤6„#N¨Óy{(ş5phĽ?Uy_Ô•űs\ź:˝?•^˘nŃŐm_TÎFeL˘ç.V]i„VżÜ®ţ^aŕ&Ž(ś‰¤*âJ „‰(?®ŢH˘,‘U2úlEŹAJ* ĘčĎŐ —J1CDHPĹ!Ô©3: Ée8A4ˇZo(–íNV·;íąÓŤ®v>8.,$îAĐÜ̆$)’J\¤†n«Ě„‹‰¸ŐM«;]ő™+ăq˝wk˝5DQ5§Ţş‘ nwpqwŔşKňeŤy¬w^Ćü|˛/ş+üŤŕiŢłQɆß%.…©4dt«M:#yV–ťÓŢ×g×]8ETŕ0“,Â86ĄuÝéh˛ĹrÜÁÄ ţ.b…‰‹U¸ĹÄĘчĚUÝ;"?dŐŢ™ěc8*ľ_“$>őA) çć1űÇ\hâw9zQŕ,F4M‘‚}A@AŁWßÁ);oużPGB!ÂfU4ł€9°ÇË [gó68ÓşÁ$E‰`ľ4Ańt„ö·-ł®ßVuµýW·ő˙°RĘ'iL)*¨ű^;tĹťăŞ0ÓçěDç–úCć—ĘbM† sk…WlsÜęÉŽÚ ×ą©Ël˛\ŁĄ(Ľ Ś5 T3“oPu9Ú$2ľ#„ę¬- ÝÉśô®8ęĘgĄů7­>ÔwČŚŞ©˘Ě-tGhÚËçµ^jB #ÔŚX¸ Y 2yˇ]‡+R 1šÎŤőP¦>tRÄÝ!kíµłĚzÝőŽŹć~AČÉ›‹* Ď{Îç°ZíťX Ýâ°Ťˇ-¶1„Ĺ6†± •dÄ6vŮ ™… }¶áQŽ_Đ×Ç6ř+± r†Óg;Z¶ß_ÓŃšĎ[|ľ©99ß›šl©­=Xf»ż®äIE­ł°p?٬  NŽ‘Ůő ÍŠP†0cV#ţ=Ö|^°É8" y›LÚ#6MP/Ť † ŞŻaS@® 5;§I•« ިřuĚŞ˘–†f!7—*Č@¦±H€…Lą÷ă,PŔÂ×ŘËü‘ŕeOć3JĽĘ4ZÉÓçó‡Ř„_%g‰„-ćĎe[‚śĚW!ÝŁÝĂÔ%`*(úqÚa?í†+€%‹Ľ·ĐîěŔL† ŰS; -<Őgn¬s{µéĽ_Ěš/ÁşŰM ťĐ?†Aq~˙{ (ÉŹ•ţPw#™ů9°řň0 •_(E#vŰďK1Í\BˇaçÜ`Ö5tzĎ_UÖzPý{Ł[;[»`PÜĽnŤ)<}Í,—ă|Kg[‚űŠŽ@ďm}lJ}ôŻ’çĆŃ0E\±éx(>é%\;Ŕč|´sĹŰąĎ>ęG@ň8J˘ÍăűCgŽY3qţľĹ™ł2 Fg 5"dÂ,˛)`´Jě€đµ¦ endstream endobj 752 0 obj << /Length 513 /Filter /FlateDecode >> stream xÚÍVMŹ›0˝çWXę…TÁ± & V=TęVí©nÝ 9ŕMÝřÔ_˛ć#@ Ý]í‰ńŕy~oě@ŕó őľýŐöÎ!ŔžCŕ?l»pgŕĐ$~ľ÷ďÖ?üŻ:n{g»­ eY–úqžüE®mdśÖ<ËůÚ$1K; ×^ÝĆе-` z¸†{#dx,#…C 5Ţ‹ü¸ÍSrřóC…¨PLڎG/T@Íât ¨Fçůőđ­?UüîEg ÇµŻŃ ö{íl+ünP0µ =dŤ*R陡gĎrUJMÚ7­Ë×ŐGÝ+SKk”Ü"ץu“ĐD˘¤6“ĺI.ĄHd0/Ő:¦ĄIű+룖{•izt°×•9«2żeÉ/jíg®Egn-FIĚ„|ÂRü÷ó:Ň<đWÄ'e‹óWŃ«ŽIČ.Č3 ©Ő×ňNž‰¶u |̤ý6żeGb’ŢňMČy1űÂP1W†ňiÝ‚¤,fËë#˘Ĺe7a‘âOzެMm–2ÉŁzô ˛Ľü#ǶxŞőtô(¬ ¤• ĺćĄä-ßäe dh—4µëÔk>7ł>Q.čE_V˙_(Ý×Őfęć¦.$.Qú<čşn ěZťOţę/ü;VŇ endstream endobj 756 0 obj << /Length 734 /Filter /FlateDecode >> stream xÚŐWÁŽ›0˝ó–zÉVÁ± vŚZőP©[©·ŞÜvW%$KH Ńţ}LBBŞí)¶Áo߂ Ż)~?ŰÚäŢbČ–`ŮsÄL† A‘ŕSĚ ŽězůQŢéśńQ/ťY:ÉëÚW+Ůh¬†i‹Čź©Ů<ŘÄIë“č‘púáîÉţ†t“biH§[Ľ sśŚfüń÷¤ˇ»V“÷ĹĚYoV?}/qVixDmJÜ_­›`4Î ŰřŢ@xĎnxNě'• ŐZęlşAKŽĆĐ~ P€>Ăđ6ŃWŰĆŤţMĄu¤­.*Ż wă†ńY±ç#}zĘ bî8qŽŞŽŇvż{aŚc‹0ř.Ľe:+ŕ>Ţ$Ť‚U”©Ă/źjYí(­rO%˘r­yĂ/Js9…á¸í°O_ţ–M·´‚ŁŮ(+űęD”Ş&÷¦¬ż. ,¤(ŽÚP ö  1NFó4ňSk]Ăľ©YĘwm^J_lí·Fa• Š“X€`“@±(ňBíበ<„ôÂ’DŰüŐ1lÉ l‰~hßŰz”A±0hE-¶;’BZ–KlH:­ ŘÖYłĽrN§XpkNI k Ňâ^tŠ%—CŚ@}5á"¶T •Jş;|ĎŤTą¬˘ĺ«íôŞĺ´äőě'ţ&Ć­ĆÓ¤SCbNëµyÔ†ŔŇš6ÄOŮPýŁ\Ŕ†öČiů!ŇpÇ7đ Ňf<ő–zuč=ToW4᢭_[î”Öé×ě&~ťý!ȬbżÎ €ő»‚UŮu•4ËęQ·‚˛pë*çIł€wgÖUŢ˙Á«Ýůü—†·+÷ fĄ3+pŕŢtyUÇĄŰC臬·N.“ ÔUóŐ č0´ëĐ˝ş l&łËeE§¨ŠśmżÔÚgŻ.«RŚő’'SĆ‘.$Ą"’fmÜËż`ň¦K endstream endobj 761 0 obj << /Length 759 /Filter /FlateDecode >> stream xÚµVËŽ›0Ýó–ş!•âń;X­ş¨Ô©Ô]ŐěÚň2CËĂ 0¨_óČCČ$„®bűÜsĎ}ř"đřjˇö÷óÚş»(8á`˝Ä!r 8[ABXűŕ§íyayąü,–Ś0»úRĄQzr»mvß«XţB X<¬żĄˇëP°Ä f=…/ ,ČŰűŐW©Á5¬ç§± Ť‰jČqD“ZŁ…ŽŐjE¦IŹ`łwÁ.F ]Śä ľ†çfšý@Ó"Ýg[ßFć˝cüćztȇBÝž«-7%÷2ÎNsăg ¨S:ĺ‘ÎÝ˝ăv*réRČ]–„AH¸~ÖHT{[$›\»×\4J™qČ0Ö„­ÎX_ÖÖÎŞvŔ€P ť•B6±őó_˙©#©pAYŤÂzÖ÷SŤ:Đá8B@—´~×úź0Ë1$Îb–;hU łuŔOH‡ĎbVP(ÓŞ*‡&)r b“­ô‰•iłĘ ˇQ˘5YńYŚý pfmŠńDŞRI WŰ»"ÜY“¨a~X$ŞČ›ežVżÔ~– ‚ě—fv›Ö2o “ Ý•0«) d¦Cvš͢®Ějá‡qd:ţ°ő^Ľž‡bíÖÖ»0ŮD…ß–ęG]8w*Ťţ&iĘ>2ÚÖ™ćĽ;ŢzŁáuNzjźţ6yŰńĽŞqťé/gzßĐüNMhyşM]îyx>_N’Pĺ¸CüR‡Ľmů×yUÝř_®ué¨r;ÇŐEźřŚ^-˙Ô™j ó9Âü‚ÉeDÚbš¶sżuŕŞ]rÚÚчş“ŃŃN–)ą úMě\:Uç;îÖ߇¬ŹĄşÚÇ.`˝ž’ă'IíeňŚsâS8˝%ôř“ˇy\ńVčÓ]‚Ü+÷R©ŔżIę×DŐ« 2?Ę,Üô¨˝îÝB¬üŘ€ĚËoťŔZ°“°“–´š5ÚŇq™qEĎW˙ ŹPČ endstream endobj 765 0 obj << /Length 1011 /Filter /FlateDecode >> stream xÚÍWYŹŰ6~÷Ż Đ»XsE‰Ô’"[ oEü–-K^ˇ:\‰ŠŃţú”ĺn˝»iúbŹůćäĚČAGä _VŽůż[Ý?D.Špä»>ÚeČĄ.ö|‚|`×chw@źÖqś·E,řďéfË\¶–«=oó$.ůIoý¸ňłĂț͗ݯhK ©‡¶„ŕY0Çüëf0«řP—<Żb ç,‰y,™Îs¤5Ľ:¦· <Ř˙Ké®® ´ôň*)şz H÷]•×Ę.üřÓżUxŕ™¨=ěÍ\Ą0ŻűÝ6kÜ=/|ćtŽË®yĚłĚŕYúŕšň (ßמkţ¶’ĺ˙ ŢRŤ÷ÚTÄ熟NéáÉTńźŇŔzÝtż á¤|lCűˇoż…Ý# yŔšuU"¬•KşćűzCŘú«ü178M—sCďJ•U˝ą5őÖM*YŽ]Á}ŻnôEĄŞÔMo7iÁĄ<}(ąĐxÁ¨ ‘ů’Ťß6[9FæUPrŁÎ´I iť$ňęÔ MŽ‚ŐŤÚ\­&t0 TcXdnaíR»"{@‡ _]U>ěV¬ě:@$)Ž(E”1ě†%ĺęÓŕ ðźŐŐą€U Ź«ßę?%Žçâ±î„Ž2´© d¶óš´ÔÓS^çu~řMë÷Ďý¬6hŔgČX:žśxĂËT¤ŤŐúÔ`ŁČ;íͿҦŢćđB{«=ńĸ[űß'D=—É-­…t.ŻôÎŢ0 C¦jwĹDŠ_‰áTń…<žöŐ®˝ŚGVE-!ĎĂŮ0 ă›Zß?`*żÜđqiü8vąVýA.V6··w Ş˘/?šgYĹŕ}….á04 úŚbő>”F endstream endobj 769 0 obj << /Length 707 /Filter /FlateDecode >> stream xÚÍVMŹ›0˝ďŻ@ę%©Ç6Ř jŐC«nŐžsëVČ $‹ &’Őö×w`L0lšM*őd{y~ói¨łq¨óő†N¬źV7Ë»€; $—ÎjípJ‰`ľ#Ĺ-á®pV±ócö&ŐQ¶‹“ůBp1űVٲJjňřqţső€Ś‘@ĺ0„ďá&Ýőćô Ş4 ÁEo˛p]y¸UĄĘ«{*h ę1â{î1äZý:ü[aď[”Ĺ4ĚŕÚĄ¤z4›Í!ęË;i‡|¸D˛ŔYpA¨ öž˛Ű‘‘ç[F°s]řĐ*.tU—»¨Nőf0t¦p)“LŐiˇńÔ¸„»B'fSâZ?Íśđ¤«Cfń)3×”‰ŞC†ĐŔľ„Oiý»úŃčmŇ9Äa?gb–h´ÁĐ&¬Ě€U¸ĆE®RĄtÜp€ňdňÄóDçřU‘áä–wß[÷¬Tz“ŘrömŤ˛BgĎ6Y`fîo+‡Sź0)†Énđ\ŹŁ…ë1FYZˇ¨Ú&QzO)Oâw ‘˘ŃÖřÍŘńŢŽ0;ç[ŮztOÔ†>6Ƈ Ű÷ŞA3J$ü;)‹Eść‰®Ŕ@e``çŞÚTŠ ČÎs^ě*“˙­Š ZvőőU8]C´•ëO‹p4.ä‰nlôí~lÎŘ‘Ąó;ŇBl÷ݙӬÚtţG¤rµEb¦×ţ -ůjZĹzü ˇC°wÓoŃ´iwůh@wkďŻ=šŹxVDĘ źń*ZVV¨,éE%˙=«®ŕ*äđ AŰrm”˙+˝«ß,lN” |ő#?Řé!ąÓ0ˇĂ#á=ŃfĂäXZzWj?Äë#pf ŽÍŻŐ†{•ťS›»¬NĂ}ó(ö5ŃÉ.™ëcŕ|ßÔz}¶o`óÂ7]î[ś«c˙·2áîsp0 ľoęßţÜ~YÝüߌ` endstream endobj 773 0 obj << /Length 521 /Filter /FlateDecode >> stream xÚŐW]o›0}ĎŻ°´—v Ž Ř­ęCĄuŇ^ÇŰ:Y$|Ě*8¨„tű÷s1lUiéžr}ă{|ε}dČ_V¨ű˝ŹV›‡Đ! ©KA”!Hp(ą®G@”€ďWŚńş`9?¦×qÉŐë¨zaq–©ńÇ!Á˛ç}Éžc‘§Ź ëŃWŕcřp0†!Ń ń“ ˛z‰%ţÔ"8vťUŮ>ĺ6N/ah€/«ů<Á÷B‡kaP@€ą`ąĂňe3KŽÄP“#ѧÝd_Ć\śÍ·N¬Śfđ땞˛ÔÚM†vO ŢćOíüÜ ˘Ëčoă掯˘zâ8®=ąJ‹ţđÍI‘ŚŠdäyňŹvň·‚ď¸ČµůCťvď˙*q]ą&Vĺ¸ŘMŇ鸕B6’7üygęš©í۸滑l-Ç2ţ‹Őüěłp ş•áÚÄ(M9”%Ľd‡ßUô­UŘšç"MÔ¨Ú×]ž‹n…c\4©íĐŃ%ę%ň{”oÝ]ť‰dßq8θ’z_ôó𦬭-»ô¦›eÍŮhŕ÷°Ă#zÓú”oőŽ2®ÎöY3ą=2·Ě;Đ­ /ç‹Ô[Ź˝¨üâz_ôó`|îôó{ÁóŽłeÍŮhŕ˙Á;<«wČX綇–.Ř%)„A(¤ ĐJ>G«?e/»> endstream endobj 777 0 obj << /Length 641 /Filter /FlateDecode >> stream xÚÝVMŹ›0˝çWXę…T)¨U•şU{έ[!'Ä*‡Źdóďk0 ›lŇ®6=1đóĚóô XľŤ`ýü2M<<Ăsf!@Řt?ČÂ`€źšďł,ň—lCÇ:FX+WbëÇE”3ź„ˇĘľď§ý=ů{„ŽÍ~Ű4\Űşiî@çä÷0´É¤Â€Ýí”qł1`±źďD UF[˛q©™±‰%[Ç—¬QÉOu*†ÚŠd*P2x„=Uű•čBV©M™)uiŐdop;E§Ĺ6'[ř1-ťr~”lięĎ“‚''wŕrűŕsľâÜ6cznä†Y(„8ËţXłÓę_®n˝˙°Ë»kůšżëżěůĺ˙Ô+iéNÂĄ‚VŔű˙Ťc? çZ~ËâÇŻ+ţK”ŕĽ=ńú(빏rěÚ‘8•ŹR™Ę89;%_×f©ŮaKW…z&ȢFŘ;Ąö7}[#Smo$w)o$óäO¤,Qu#{Ë4ß]aŞ$s´\/izłË˛^2it]ĽĽ*xáSď9Ů}}HÉ“Nc=Ť`×@.ş%OsŐ!®×Ůđu6úVŘ S endstream endobj 781 0 obj << /Length 571 /Filter /FlateDecode >> stream xÚíVÁr›0˝ű+t„NŔ’@2Lnť©;íôČ­é0Š-S ÉÎäď»D˛ „¤u'ť¦INZ–·OčíŁ aôq†íú>™Í—1E±sĘQ˛A4¤~Ŕ âláÓ€ˇdŤľ:˛Úm]ŹQćŞL×Ĺ6Ő·Ť4™.˘önĄMĐÔŠ^aF.ÝoÉgä…ÄŹÂy„ř1łśiÚqeĹ^žŻ…*VéV4&őnK叝ĐhńëäZ|„ô‹;<,ţŐ)ÉÄ)É1ťĄXݎRCŤ¦¤8áŹL©ř\„/ègM/ |qäŃĐ_DÔěđ©Ň˛Urőt8:—&PŇfę¶[©ÓĘR袮Lö¦Đů¨"w™ŹÔ6Ą¨lę&—­Ŕ¨“.<çŢ% NgîÁądĄ€[™kESb@oJ@0ěčÚ¬R¬rŐ°Aë2ćř]éń=¬Ł·ôеľżgş‰źAřż0HĚmcÖ÷¤­N~ĎPsđC6ö¤~€˛\¸[AÔŤ7ĺ8\ˇĄ1ÄľŁĺNŞżív-Ű´<˙Ă:a–˙ţ‹úř2ReŻo±ó •=©ˇřK“§Ô/dH?ŐßťuŤžv {·î©ô 8_ŘÁ Ao€óăďrQn<Ő•˝>Lď>f<˝ůhzDÁ.js{*ś0Ħűˇë:UTŮpzĎ—Ľ?µ=®7±Ď1\W,F5‘L 6ŕ/őj§hD á1Ź@ÄŘŹ˘Čŕb<}Hf?¦2ç˝ endstream endobj 786 0 obj << /Length 1337 /Filter /FlateDecode >> stream xÚ˝XKoŰFľëWčE. őľhQ -⢽Ń- F˘d˘©T”ô×wöA‰kŻd˦{â>çűvvfv†8[e8űc„Ď|›Žnď Í 2’ĘlşĚ(ĆHťIˇe"›.˛ăĘjľŢ/Š›‰ büs٬oóĺÝ˙róiúš‚Ś‹g3ź­ĘŻaąí}Λr>kŠÖýhÇ@ÂěßbWź&?bťDNć,%¶Í˙é‰A ´`7ůÉmźśß˙VQĘn L :±v;¦4@,Š0“Îε@\™A@5µÔ1¨Oă Šçz\q—3ă¦oÂ$GJŇŘ=Žȸ±h?ÎëlŁďu¶ĽÎ6Áë‚gŮžu"Ƶ÷,;Đy–m'Ý 2m„Źöížúgxhă)˛áS<% \„")ŘĂDŔúޱw59ď]\čđ¬ÁŇ ŢE(EŠ›Ëď„]EhĆ4“‘Ż » 'ŠĘ¸wü1,-qAeÖ~cT—7$Pˇ¨" lTîDé6K"_Ő ňxĂ#Ěd,aĆV‘|PĂŔ,µÉ]"‚ÁŁ„é ¶dźnLČłn•sI±%Εóölć =eáŐgŘJ±[wYÇ.«`&ĹŤř¬‚ĹńÍNtYëÇ7;aC™uńÍřřÖřQp~U·Ľ·¦ŹaëabĄA€ůËđܡ±^ű†˝sä´ßý˝¸˝“}ĺM Él@/ B?b˘쉴č·%ţąšeű=ÚpÚřŔ@|ŃËôSĚ&ßöŠBPő¬ éŠDžŻHNUŻg^VKĹ„ŽőŃ´ž¬őNäöŻa•–/ĽNőÖĺzµO=!ăj%_<Í3Ş˝ßëŞiwűyŚ·ňߎ˘ďíŠuŢz˙^÷őŢŤUďµ söŽšĺ⇀ŘŰzĂ]÷°;¸wßÚ]~|čÝ…5«[ú«­=řx[P4÷CéË1ţ˛‡ňĹĎć!C =@ Ź>1 'zÖđ~“ŞđŇ\¬ř¶ÝMă9X{ź·~Öĺ10RţÚµµ"ľŰíÉ}7”VŔ˛Zř Öíۦ\€Ź\›ßR›“Şšw·ţ9\č|Wäm±đť}ăl˙Ć—őz]{Ĺus]Z…® Fp%^óĎöÂ˙¬čŻÇ1zU‹rž·őnÖĽ:`¤ăŘ9“pű`!ҵjH´Ţâ˙ąÄÝo endstream endobj 790 0 obj << /Length 1378 /Filter /FlateDecode >> stream xÚ˝XKoă6ľűWčĹ)Ö ß"ѢŔmŠîmQßvcÓ‰PYRd9i˙}‡9¦#{GčÉÔh8ďofdśÝe8űc‚ăďŻóÉő W™FZR™Í× É\dRä2‘ÍWŮ—éÇ«ÍŐ´)ěŇ^Q1}*¶66»˛+š2>=ě̶GsőmţéúF“CŮD ˛qú¸ čŐ=O%Ű+"¦˙4­Ýn‹ş ´Ą‰‡Ű„©kͲł«@Z·ő&TE‹hâ­F’Ň^[±-Óä÷ůäaB€Š3’qňńŕŹĺfňĺÎVđęS†Ó*{ňŚ›Ś"­śáeö×äsm˘ŚK‚rĄŇĐnm7Ă ²!H‹Č[·C.PDĄ8ëQ ęLrx®ßăŃQ˘Ľ(Ş‚ÎŤi\€\KMz»>\Í8cÓ¦­]Ž‹•KÓrÚÝۧ$E„ÉłNQĹc| §(ćQ–85śĺÂňg»‚&ül‹ę®´ť+OO­Ľ‹ů 5CJóó•GrD8ĂEN1D”ľ&oÎEuěbđmćřłUa-Ňâ|tŤÁ”;»B8Ť§B \¦®Y¸S˝ż&ľ€Hq ˇ"lpíčłžqła®ĎFŽ1Ś0wC‚ň÷DŽډĹhtvW9k_Ş…v’ 2ŠZ€@ÎS­'–#ˇö…ÔŐgBE 9ůnÍ ÁÇpÁŐśpĺűŠČq-JŹ’0. E©Ł„5O:ˇłq<•Đ‹\M˛ĺFă€V ŕÉŐ(j5GXć©Zł^ż˘{3¦¨Ł!ÝŞÇ+tëƶ]a·áą˛®k»S_e÷u)EŻ5ËűpZŐÓS·ŤYÚŘ>žG˙ľ€‡ę7g~rž-`®Ń Jďkšâ6‚®6«yŽ4đڎUJáx¨őjÎaY“ch#)y˘u4ŢçnVŽ ’r”»&} r¸zgLJ„'©TłZÄĹ”ĺżPZDO[ű°+ZW®”B%Ý›.ĐÝö¤˘jv‘VD®Ş®fvÓtQ„źÚţ},O`©ËPĄńF]őúL „áM0Őť÷ŕxbm„€ (>ÚÂŹ € msFa[Ć,Üţˇ¨–ĺnJŚŮźˇňŻ!Tčţ—D• Ě‹Ľ_ÜŹ‘Ý=5O _ş aOýńĽpw‹ĎW,°—Ű[rčGŢ™ż„»e)Č ·ÉOˇÁśľˇq0ßlś›šAf¸Ś{‘„gkă>d­ăÍCiľĽ ôKľż5ď.‹űë<‘Żőä’ěěoöžŚ”¤`ŕŢŢď'éĺ…˙ǵëyţ|H˘SáK9?ş”ôG81ÖOĹßlŮ™í› C°ś ĺ-|Ô/Ší™-V^Ý›ł…Ţ稂ϴµÔŞÔž×7ăz8Ť•Tß>Ă—Fál‰A•ˇd’®yXÖdÓő®Zşi¸ Ź­ívmÎ&ü8ë|Řť†@ňî¸lclk0ČÂłźî°*ţȡv,EţČa»?{ößʶµŐŇFănm÷dm´®Ř81arD„NăfK»±U熯Ŕq> ·?¶0雺ZyŁ©ß8Ý9˝ŐSĂ" â"pń4>Ť’çTˇä˘62RRËŢiÓ ˝qđ¤&iüž{P©ťű‡«‡x˘|jnĂ?W~ €™m×î–]äÔ=Ę>Ŕ3w@tWîvĄi_ÝFoj„"[[šÎą—awu'p šŕ$›ˇvőÔš¦±É•#Ôë äeý‡ăłbĎQG†:>áÝ"…LF /ZŞ}â˝9š&Lđůđű¤Ç endstream endobj 794 0 obj << /Length 595 /Filter /FlateDecode >> stream xÚ­VËŽ›0Ýç+,u“©Ě[­şhŐ©Ômł›©C c•‡‡GŁü}/đ4Ă$dĹőµĎąçřÚ :"ý\)ď·Ýjűhä`Ç$&ÚHŐml陆…‰f Ý=­źŐzřłűŐŕ¶ŹşÝA¤i0Q-ţžĐĐĎ<Kd7Ş]LţfYp~ŘhŞşÎ_ü2 ëÔ穟ůqNs–Äb2 ÄĂĚĎ?AD,X6ËČ:IĹ|PÄ^™ÍDz)‘žK%U.ODÎK˘=‹ýFžŠŁvĘ)KJUżüîiĆ<‚†Ëd*ľ-ušĹeŤ2˘5ЇľŚHÎ{ŰÜn·Óí‘®b[×±ŁhBř{aq€R1Ö_Xnˇ~ů*séş0ďŮżzy9Ş$•ŹőČőD#ýgĹP"§Ą`‘úY*ľ,>Ł4˘ü Ą°şŁFłJ[D‹”14É˝ngLGu“ëiŻ/ÝÓöM i‹·»°yç©´×u¤ÁŚ»3vhÎ9li‹·»×wH&Ň z3§˝ń“ €Ž1‘¸˝o=B~zm-µć68˘"ĚŮXZ“^$pHÎ#zJÁ2ÚŔnúv•ňOŞ4çďHe7˝ô’öČ ~Ë^6DĂÖČî¨pĂâĹ’!ŮŮĄ”–Iqîđ~ň$<ÇIÄhxĹ :^[ $áa¦˝Ģ?Qžź‚%‡µĂ:Óaäv, ¸ńÉ• |GŁ&q÷uוRt»6őĎnŘŘm4 ۆ-Š9Zńc·úôé• endstream endobj 798 0 obj << /Length 852 /Filter /FlateDecode >> stream xÚĹWMŹÓ0˝ďŻÄ%EÔk'Í—@V°H\ 7ENâ¶©g—ý÷Lbçłí˘†HśěNĆĎoŢŚÇ.6ö6>Ý`=Ţmonď7ľ Ŕµ\c»3ă#×s ×ńe;Ć61ľ›_[­mâ›ŮNŤňĐ<óČä!KJeÝe…šÄŮ1â‚‹˝ú™S^”CĎŚhÉce*™l?ęĺK©ä™(•oLEk/«TŞ9«ŰĎÄš8šhś±Ú|{aL6ň-|źL\ĺ4 ܇pÖ'ćLÔ¬¬Ŕ†X©T3Z059VńAÍRZ¬€ÍžťłhgYÉNňśQíĘ;GíCIJ ĽŰą«ő¨][®7™‹Ľ’DŮóî¸ÄLŘnE°IA­7µĄÝ>]Pä{ö,‰T ăbSdR[Ň4[YŽůÄőEfjÜĘ®Üňm°©ąF+ ›•’^Ş•MÔ¦H«AF„X“ €ě›MlFĎj¬™lę±ţ©Ä€É.kiv߲Ľ®ř•ł¦ßń(X˝› MdřŚŮ_q§U˘só’s ˇĂűso®ëűh!<˛°ĺ˙ÇNzÚ˘– wľIťd˘§9|Bśż;ŔW¤`zčGë÷xßh–üĹV3_čWWߥëqąęűç ňô2Z‚ÜůëčRs˙{–ŹhŰCľă+Ô`3Zńq{óĐ]8 endstream endobj 803 0 obj << /Length 937 /Filter /FlateDecode >> stream xÚ˝ËnŰ8đîŻ °y1|H˛„=t±]to‹úÖ#Ń1Q™rőpŰżßáC¶ĺČiÝ8˝Ă!ç=śô€úgFάo—łŰwCΖ ĺ 1BpLS”Ä ĚxŚ–%úüˇtQőĄś‡1‹×Ş­n{­jťoÄŻßĚ?-˙v!Ą8‹=IžĂ­üAí<‘ŮíięĎ)şŃ˝Ľ‘›z'a){] ](ŮŢ‘XÂâ4âSR;ńů ©=€Ŕ„ľ2\öž¸}—»!Ě8Nh†BcÎó;B'4QzDçp`/˙UëyD‚ÝśĆ4źosŕE‚u_U#&fŁ8 Ö1Ž#ť÷é˝hU‘·˛óÖěň˘Ö;ů-7â.öŘ@{WˇpDźüH§Ç ÎDó9:¸‡ď$a QK“±×ŢŻć!OŁ [K(˝í;ZK P7nmd%:Č·[‹ÖB›~wNŐvRwJT•Géěďa˛tÝôŤ÷•loćŕżÔhˇúL<€F¶}Őąd©Wn…«­ô¨­l¬†­Ű+ż}Ó€>Fł…ç"Ť*Z–řé<·IŇ /8ý…<˙ 6ŰJ>#·Ď—ÎĹĺô!ś+.ćqôş]«U'ËĽµężŕ3‰/ş/®Sň‚^ĚWM˝±ÇĽçés>öʍ¬8Oę%źTřa=8㨶O¤ße˝í´ćťsś©×IżéŠxiú=®Ň?Ô)ů}:]ěE—~ćř—Ňo¤˙O§ß îŞéwŤkś{^ĚN)ÝĄŇŃŚ ÜÁqnoÉ ŕýg@°Íß6Ć™u0ÎŁ•>!¶Ž±–kąÁ˘ő§ ŞŤţř"áđă°ź yě3ř{9ű2Ł€%˘§f Daěb†ŠÍěă'‚J831ĎRôŐ^Ý †ł4¨Bf˙MüŻDÁ’Ͱb1÷® > 4Ń"ľŠĐ„ŕ(ácˇűzôXtLŔ^]Ct )@ىh÷˛'äFSÂŻ"7J0ĚHî0đťFpĆč7Ł2U!I0_Ŕšá4MÝť,]#ţRČţŞ endstream endobj 807 0 obj << /Length 1232 /Filter /FlateDecode >> stream xÚĹXKoă6ľűWčĹ.b†¤HJB‹-Đ»—¶o» ±i›¨LiőHv˙}‡"ĄXŽ'¶ŠžLŽFó çńqdlü1Áţ÷·ĹäöŽĹA‚AE°Ř„ÇHD<›“O«ťr‹¬Đ[mdęv«Ě”U!µ©J'…׫Kµľ™Í)¦Ó']í˛şň fFř´µZHS¦˛Ň™A  ’Ć–e ¸™}Y|Ľ˝Kč·4fF ÎŇř©ËÔ*M~_LľNHq@Ć8IÜśÁ‰Vűɧ/8XĂĂŹFaOŤę> (‰XĄÁýäośQőSŞj4Š'bĐ ŽY´6ĺNo*µ~ Íi‚Ďŕ•Đ<¤#čRďóT ŕ †cŁŕŠ‘0ěăîęt »<†zĺtÔ„ ÁHuSdű—¨‚„hśě " jÉJJ@2Ř8u,BŽŘq§ş¬\‹őaÎ""đś”pŻ,Íz á,4J^íFA¦ RËŔĐ˝â$ćicŠĆs/ó—”`ÄéňÎqŇ|Ą© ÄŁŰć}ŕSŤH_R#Ŕ&Ŕ%aÜîĂbčĂh ІЇ˘:܆!hÁGe1"śť/¦2ÁĆ)ŕPŘNîđ‰.„č&”´ťĺ/Ôî2>}ýVňźÁSe¬Í`NánQÜďĺ&¶sĘýín*U{ŐXł;¸zűŹKk·–ĹŚÄÓmmőQ‚ÁVżzž" p»$ťXŹ[:*3Ţý®öńŃ ő˘]#âBb}f—K ÄĺV?‚-NąĄÇĺ,őjiéľýŘ“-ĺfŁŤZZPÄ&¸Ś …ý:ËęW,?ŔŇĆú'W§ÍśwđZמ­]ćSm ‚Ž|ędWyvlą~ĹAq.h–=Žł ˛˛úlů–gµďŕµ®=[»Ě'űľOťěĽgâ\Vź-ׇO;1Ü=±đť9Ł<_ąŹ‘CFlL·śŘŇĄl©±PĽ9âO9ŔI>Sđ[X‰ ’RłŇŢU¶Ďk;‘4»\ŢĹ\®z•mIˇWđí_Yú}§Ö…LßG™m6/ˇLŰ÷y‡ű˙°Ň©žz“_âżî«SlymÔŢĂ7˙8N^Bľ;Őt>cÓMmš ¦t[ßin#ÝO©Í6ő˘¦*ĽŘ >}¦Yá-=¸ťÉ*·ĐfĆđôqFfŇG°ĺŤ·ŘŤ˛ëo0**3ďf®(TZ¦ö/ĆÓŻµ4•ţŚ1m!L¬ms›–©*ťRµ“•{“]“d'WNü´Ëš3L›ĽöĘîL k΂öLh6±pĚiŤ:ć´Š›!/äŃ|kFbÂĂą3ş€˙/=šĚó"ű¦÷îď&CŹţ6«´^űşţ űb…vż ô-ĚŮ{OtßěčşČňĺÁÇĹR›GW“ËµŢ—Ł Ą7Cî+Sďź_¬eő=÷†ěęf¸J˝56×VmŁ‹Ś7ëţ3Â<„&vĐŕ'âwŞžĆPe ¸ĺ˘Dô^oÓs¬W endstream endobj 812 0 obj << /Length 833 /Filter /FlateDecode >> stream xÚĺWËŽ›0ÝĎW uUqŔÔŞR+uŞvŃUvť ‘ŕ$V‰aŔ$Mżľ×Ř !“™TUUu…÷qÎńőŤăY+Ëł>Ţxćű~v3ąŤ±ŁbjÍ–0"Ô·h8E„Ö,łľÚIÂë<‘éwć¸!m5›§5_$5“zé冯śołĎŘő}‡Ć™‰fÓąe|“Č}i©Ń¨S#jľ,ÓfK^ŐĽwÄťúŻŰnŕŁ( Ă8ůŠo{Č;Ěc™ŤE’UE™, QË*ĺBÖ Ű"ßr±RjČëµî¬ôĽ^]Öż,ÔĂáľťr8D>ńuŕ\,ň&3ůߤÉ&-Ńúí=/ł.đą öÝu’_,ŃÁ†˙F‰>Ş}’v˘˙Ż~—•űőÖeýËBMn¨×ÓÝ Qsż±Ž:[ł2Běe#’jŠm%‹ŢH…ă‡ö^OzBi;ĄT™ĘŞ-¸pĎŢ:ŘłµŚzY®™v¨K¶ŕwž‡bµ0 Ńń/…Oz"•‡‘YŞXÝäf1c%Y­'…8±,Á ™*’ĆhydÄEŮH4ÚŹ~!źŘ,Ë"ß‹bĂÓü=łÜ%÷ťŁ)¦ÓŤDI7{vťŽf)w÷Ą)+8b=PŐuĹíkč<žĺÜŹŔËo˛|Es‘ěSnĐ»˛¬Š|“Ş*%alłt±VŁČľo u–…ăúv—ZmĚ÷Ú4Őź^‘8.%Ôţ´Ôهo2 OA·6Ż:‚QLFĽ>d¨ąäđŰŞ» Ć%mëľ=SF(ĆGrö#q`ďxnFsE5n;C;/TPąJôáĎ4Ŕă|üXap™OϨĺ SÉVNh§G´·XjxÇ€Xóő)śdtÜałSřADĆáÇ"ą„ž ŇôŃ{‘ý“U…:ŚMW„µA^˝dŕ{S;çĆŞ.6LŃÝ­Ye–¸ˇäcŚpě)Í™Ü1&†mrKűD\uô1˘4Ň~wž?=ňđŇ.†Ö-2źóśËýł:'Ařďüë§{0Ö’:Ý”9»ň13üżrőËlíŐ9ő|ĎC>A‚E‘‘  ţavó c+Úí endstream endobj 817 0 obj << /Length 1416 /Filter /FlateDecode >> stream xÚÍËnÜ6đžŻĐ‹¶đŇ$%QZôЇ‹AŇ{j C»¦l6zA”üč×wČ!µŇZv»zYކó⼗W ~}CÝůăů›Ółś9ÉÁyđ“H°@$)áQś_†JWCńIn¶ OBóĄĺ€ßô‘&ě»Í_çżŰ‘,Ž‚-c$OüWęfĆż+´Ú_ÔEç¤,pş¨»J‚XjĄ>.tiԱЀ˙‘mݰę hnÎéYśÍżÍ""2lyDrĆPÚŰrłĺI×Őtă`@3¬ˇF"ŢÚ íńěeU ŞmłFΦm¶˛î†űŤHÂËŤ†Ćó cďŕ´j®*9x9zÜ4•Ötég/E{Éf1~l«´<Á»"îDł,*‘=%ëé™gęŔČxNîô~¤,=âY8Y(čU«ĐAs¦ó˘4|¸m€PÄ7ŞŮW㥋ő÷ěSUuäú‡…SÄă™vSTň)sgîž‘jź¤ěŽ3÷P›&P'kZc.Ęұµ»ż_P6ËÇŘg¨ćEĎX4—“ÇťůŐíaž°˙‹ý˙dź@a?µ5”™)9šąÚśŻę±ĆŰh‹fČňE5 …%á•ěQ  h6"hBXśú2‚š+vf„Çž¤qâ­ě»®—Z»š;*±DJ…g/¬f)Iˇx#ňĆüx“ÍclŘy–ţ^äM×ÂM ^»bB”’M&@®.q4¦ť‰Řµ3č”(}*8ŕőX OhĚcÂďé>ŻĐôÓ8ĎQ[jĐknÍ<ëű?Ţ˝[‘ą”ÂĄ”µ/´{MŔîFö=$TLĂçę8&QĚW‡@fޤjS[ćăf ^TŁ»łşŕtşżŢ_jNmcg† &“Lzn@Ä Ś$ ˝—ő‘RŢ(ś .çWđŞś4!Đőí®’őZť˘ 4›];6—ňŇĎ+Ľ/Ţ»IWâ9Ť>/oő|ľÁŘýşŁíw㕢/j9ôjŹŞŰ׌;öx×ěngŤË7ÎKU›ć˙Ĺ«ŇQăD|ăp]«_ĐŐ·Ż¸ű_Úg6Í—Ú·X5ź˛ď9Űç4V"–c^GśĆŠÁš3ç4V …é®fĄÚ Ťuä\B;vµ50Ľ^6vDXÚB#şX+ĐrlönĹĄĚM4ß}č° do R»5cńR6mÓN*­‹L·a,Üm@»§PPýť„źf¨îQŘm­i^kVş}™şžD§çř ŰmĘgĆSž˛Â©©öíU_t×kĺ|â7f‰ˇËt‚$Yâ[ĂÝJôc’gÓbćQút‚@’Wô§źGŢM Éc—qv¤EđŹŁl«Ş5IskŞEą@›d€?ű)9áN*ëx ^¦6ĹÄľ·ł+ĂŰ}+×–ÁIÇź_r˘ÜÓě•lśĆiČi7S ĺuTż6{ŇČ+“”){=ô…[Sŕľ´™¦Ő“ąĂ‰ą'žnř¤ďˇfV“-µ ]Ţă>㔯$öŇZ* `Ă5BëŽM3’ö«gűŐI/ű¶FČŐśxŕ *đŻă–ç"| mﬦ˙ş@¬Ú1·¨·vbsj°°1ç¶BX&é´Lú Ó‘g<ědqŞńö[0YYµĆfĆ«µZŕ°AĐĆŞśşĺx/»ÁóĂ1·tk_ĆË]°5âŃ |ŚÉš'$üáE°j=Öf Š"0¬EäNşK<ö¸ŻE oŻUĺ.±.#÷ ±u ç<őĚw]Ü#ĺ$·1ľąÇŹ®­îŻĺeß6ă$Á=xŢxÓ2Y°…]>Ý×> ĎDżśżůżd endstream endobj 822 0 obj << /Length 1233 /Filter /FlateDecode >> stream xÚÍWKŹă6 ľĎŻČŃ)6ZK˛l ˝µč[ @ąu’(‰żŕÇět~}©‡;ăd&™-Đ“eJ"?’â'*śígáě÷‡ĐY>|~ŚřL “x¶ÜÍ0ă(NŘ,f "”Í–ŰŮßÁ¦­*•7óÁI ł2UüĘFą‘Ĺ®ÝÜZÖjëDn* šr‚Ç9f¬ŽŇŻ%™tS2ß:™]S´•VŐś„ÁâϢy9joDĄ:[Ěż-˙č Ś‘`žÎ-”O°Lŕ`mv¶,'`ÝBă4Čä?N´9Č|Żś°¨Üw­Ü\&·ÝLiTĘÔÉ-îÚ¦­š/˘_r7YĘŞŃ›6•Ő< ŹÂ­śD;Šź öč`ĐÖ6\$ŘjłůóŁŔĂěŕ ‚AĄUő5ÄÔ­ĺ!‘$ÝŐeŰV¦úĄOdş/*ݲÚŮ´áy}ÔĄůěa|gë¸#.řŘ·şQ%2óý ëľŕ@Ś0âťjÄÁ»yµŇuşÚë'0É Ě(˝YŐŞq˘źF˛Ő¦P»ťŢhđ°ţ˛Đ"ëTq9ŐŤ<^Q˝†!(Á?;˙.«yᇱťÔÝŞÍ!Og zŮ; Ĺ—ˇť«ţa;%¶.ŇÖVÇ˙-«÷{WJă{Sz?®«ů”o<,ß… (ĆÂ×oOFÉŮž+ÁŇŽ•ţ*ć`ě;Đü-d"ŠË!Ęd9ü­vúYmWe†VO2˝98'Ť0ú4ĹćS»žĚµaw©çňîę=ŮžĽE†ëŢçç›E}˛Ř~ÜÝłě/8śű$r§í×"+ŰTQ.ÜUc{mÎĆ“iTnD<(űăbW;7O &pŇź0ăĚkˇXô÷'ÜŐˇÁ÷rWő™F /[pnJˇ@,Žş5¦Ů0e]·™é„¬c…sbíýË‹|ń˘ŞÚ„ÄÁ—ťżPˇ¦"JĆńvA‰˘@™p<—Ennó×PCÔă[P1!#¨ 8·š÷sčÍšAŕ!44ćĆľIAÄNHć9‡^ ąĹ|spÚ†™+Y+î­AçM•ĂTŐŞ_5‘荢„ż‘b`CO1A‰qťlÜáÜŢŢĎÜÂP¶fM˝ľ“~¦8DçM_€rs˙ĺ2Fwb—ăË9§¸é €/rĆ)Ş=e ý«ű@.3ŐTzăţ+UVŞĽP( v¶·5{ŇÔď*j=<ńťÔźÇÚ±hPŹŁţř'0›¦u .śS„o!)  FÁň :ďę6m\~IBeÉ8 t|„ŕ‰u {‚’¤çËZđ’’î“+čí ˇaRY3ł)ŕqX3muľw˘nŻ©â×@p OKq H„ #¦eC¦€ßÉز%,ş1ş \˛Ń5jÇŃ %Ѹ|ÜK Éľá+s÷-Ě)ňD%˲*žufĂdČ ĎŰuîIo ĆÔ= AvĚť—^§ äĐ–» dĚ+Ó‘r>’pDŁ>×®Ę&BA)â\gĂîegDÂln' ‚˘°Ź)ž|“zŠůµÖ’r› s{łŢŢ[.甕Ě_•7 ß¤Eíßĺ˙]×ŮxăOjĺí}´ńĽĘš÷7–cš˙°ďŕüK)e ýsß/ 1ÚńŰňá_î&ő endstream endobj 826 0 obj << /Length 1409 /Filter /FlateDecode >> stream xÚ­WMŹŰ6˝űWčEb.)~HB‹Zt‹äP ­˛!Ë\[XYrő‘Íţű 9”,yeg×Ů“†őf8óř8˘ŢÖŁŢź3ęžż-g7·"ňb«@yË{ŹÉ¨PzJ†$ŕŇ[nĽOţďĺţĐ6zľ8ó›]gTIQgM6¤˙eΤoç?ÍËş­Ü˘ň~ţyůńć6†N¸ " ! żO¸č$˘bÖ­!ó§Â_vÎ+]·yö>yBcí"H çÜD…ˇUÉáP•_ł}ŇdeAŚ?oÁ$%LE`0K·Ů÷đ±¤nź`ô®ŔÎj|>ĄŮöcáÖ–ř\»O´ńů5I›÷=V1•)¸u[|§Í™ŕśD!ď–u!Ôşéť?‡ć‰yźa6*ˇľÇěÂűž7·j©TDÂâÉŔĄéޞđä«nLŁ/6h´ôjÓcÜŰ”ąw.ĎF}$węÓNPD„ Pă=[IâTZE0O#IćyA’"V}Ě:”1:ő1¶9úć9P»¶űŞgŃ9ő ˘c6ĎĘϢ[8ÚˇŤ…K”!ÎŐ’Dőż#CC•—JůËyDýńÓî¤Xt"ˇ 1Ü&&Ąů”ކD©~ż¨BĆRŮ$K†.ńĽKĽ-ăúx:í®we›oş[„“ Rc ±µ‘,o Ę©®-ŰąŚýőÓD˘"`¶ŠŹoăźý±śý?3١óE­¦J‚źČK÷łOź©·—=JxyŹvéŢńŹ Xîý;űoůqé·É@…5AYŹ}ćú+ÔkŞVŚđhp?-dýCá’šTM–¶yRÍőMá"ĺg÷ř yÎ Î Š#K]Xtő“–?#zoôC© â!ŚĚőé: ;`˘.Ű*5Úeö<šÉ¬x07 3ŠĎ!®Ř9ŘŽ¬vŕ 2҆GÇqĄeÄ<”ĹĆeČQĂNĹ`âľŇΪӝ޴ą6ę꯲Ѧ c‡úˇŹz×eŇĽµš9ˇLÁÔEŽňꀡ"üľp€ŕĐś‰Úq‰Ł‚Qýę[8 îjó‘Óó$…ŰŽöýĘîA§MínĂ(&4<ą\ť,}»7ćŞ` ă;J"ső ^řÚpÜ.ď@\+SÇű¦“Ęá´ĹşlÇś7ĽEŞłuţ„3›V÷LĐ­o‚ĎŢ[Žß}—k­§˛Eă1ł—?XŰ®]MÜ]Ue…ćÔ1ŮęË](6”ŘŞ+zĐ˙*w`Żk6ĘŠ4o7®%üŘS’T“ÝŻS‰›ęMíúAwjÇ«Gkş•çŰŃ!”µűćÓ[śÇxI8mq> uM@Ďr}ŚĐ´s48›ßĽL‡|šeu~[Ż›Ě^—ńç°yýâ=ňóŇÍ+´Nę,=ůÇÁ9ŔąXş ;ëčĚ+č4Žęâ9F2 äúC`ŻNń1†QÚWWťŤÓŞ­÷äŐçuÓĺhä ˙dß ˝m·Ŕęu<ĆoĆŚéq®ĺMŕ@ŰIúśţ~H‚Äw›ĹßJGź@łń /  endstream endobj 830 0 obj << /Length 1019 /Filter /FlateDecode >> stream xÚÍWKoă6ľűWčE.j†oIhŃC‹¦hoÝú¶»[±…ĘRއý÷’zX˛ě؉=IÎ|óř8â "č÷ąđüe˝xx  q¨BëgÄÁ’HI3.Ńz‹>{ß%Ů&­·ńr%™ô~JĘôˇÎ’<‹úď^~]˙ p+Jq(“(­h—#łr6e\9Ń÷˝ p˘×Bż|!’X4Aq řdĄ˙9ó˛>XúŁAyxÁIj«€c(´b‡„;ĐőĐ^’˝Ô•y•^•;ëAa¤Ä !MkľŤÎâ·őâß)A1N°ďs¤ŹŁhsX|ţJĐ6ˇ>‡zµŞÄp°ý˝řkŠÎ±Ż¨…Ś9§ĺ‹ŢÄn•ˇŚÎâVq,‡NëĚ3QN.± m=Ę}^§[Wɧ¦˘•+­lⶲüŮ=ułW?Ŕ›`Ţë>IőjŻ«NűśÄÍÁá$„úĚ’ˇÄJ©ŹT†ú>8ăJ(˙:!D`ź°9Ü2ĂiH‡n/ÂćĐ3#F@dá˘aÄFŚĚ0bDÚ-‹8Őô†† ‰÷kž-ńŽK*˝¸(ăôŰRI8ăĘďáňş˛ÍÓŕMpćsĚexeЬ>ĄłPP’˛Ű(ű¸ŰޞS·—»H`"üţł˛\±¶˛L-QFf2"í–-QŔó»ţqƦŚę$T*,ByőK&¨Ŕ’Ń9Ę!¨e¸‰!Ł9ś ¸˝D8ôz©m@%8)‡˝Vś2LÇ'ÖŃ"IG ĽZZŕ©›ť¸Â6łöŠ}xTN€Wn.6x‰ýB¨?˛DčLšö*Î’l×]»pť ·ů)>ä¦U]żBD\y:3‹ofwfVĹE¦S·UVE˝©ę˘Ń´©€Ň6?č$s2s#ëlë…Îv±ą^‡ú®, Ř%KÖ:oěímo”ň˘Áč>0SĂ1 ŃP× ęÓ€EYoöÍvź‘ź$K›(ą­ľS¦c‚ŔłÎ›ÓËôˇQĚźG[-㤜 ]§eîŽ@1 a;<=ĹŁ.qóÎéh21uĄůF§‘ŤĺŽąëÄŞ“¦,GšŃł;h‘; Ó“™ş<™ť;MËn2C«ËŢś±·öľˇňjčgLöąĽAžů4ÜNÚ“.“ÍhXîdm‚w§6F}‚×w°2 ëÍ€®“é4’÷ůľ?WŽţ÷a »©ެuţtúor{­o‹ń}'}¦‡ÁÝÖ•CŃăÍĎ;©üh@7qřżco&ŢŢjfv±™Ź:7łş’GťVIt4ł@źM+ű`ŁŚ±ÇóôFS›”؇ß$q8dJčŔ¦ß˙˙Ł~ endstream endobj 834 0 obj << /Length 1074 /Filter /FlateDecode >> stream xÚµWKŹŰ6ľűWčE[¬ą$őFŠ t˝ń-´,ŮDőŠ(ĹíżďPCÉ’,oÖ çb‘Ăá7Î|¤©u°¨őqEŻ|۬žž#nE$ňąomR‹SJ<ZľîxÖfo}¶’EśµűäaíqĎţEŞěI¤)9ţúđeó'­#‘g”·[Xßä7Ł®gy›5r {PôóD¶M3Ń4I±Ý—ąĹ őh‡ë2şÎx#ţy<Á>tëë ďń°Ĺ!ůúßs°:Ťp–˛?W˝‹ë«yőţü¶…,‹[‚o¸K( äí(˘‹9‡Č=QçjG䢺Ą#D5Ş4•4Ct°˛›=6ŘoĐ`4Äňô솣Ö^‡ńCßÂmsÇŤě´-âr3±+gÓ?ťBhÇeˇšşŤeTđS'ŕ÷°Ż9ŠŐ! ŐËŚ YTmĂÎán±DuöB©ÓĄ!ŮO2ibGjŐŮăµËżť =`29ǧgĚok::Łđĺć|^( f{&‰Ă-•˙’i#‹ĂŕäŇ=Ż€~hĽń>b-ë"Ö2±śŞJÄ JN˛9˘0ŃqţŰÔö2O ´Â帬ëDUe±×ž Érf!¤‚\®—О‘"Ëţ]×±ż¶˘h$äžCÚAÂ!ŃPL˘–b—% •dKhˇ@pÎŤöĘ*Q72n3Q?¸Ô~ÔB÷Ľś†&DLjx 3 §§ZTŐ¬Śó]÷8^dźŽI­«Ë7% exŤ P*”á"ĘZd!2›äëQěgŞÍ ěśpeŚ•gĺ…:=[Ń59:Š!ë že$“¬“E:š]×nâWąIwĹŚ›^ąjvBÉxÄ)Ů62ż™|ç»1O˝ý™úôno–éňínŕ%2uf˝âŇ+ >‡lo%ňŹŁ~Ň}ä3djgeÜU"H˛a†©ő:{ ŁząQXŞZ˙˘jAqÎľˇĺަąOSď€`ˇ»âĐŔF·‰žiőFŹëF7B …LbÇ0¤= ÖÉŘ„ŃQ($JŤ;°§2­,r3J0ßż‰#J\ő7\ΩŔYaŻ“ÄŤqLŔÉ%Ä#ź8apńęéZţ÷Íę늵ŶąwˇŽkĹůęójíaňHś(´Nťjnq…ÚÉĚú´ú{áiĎ‚Ś9EIč¸ăÜ_ĺÔ%”ÖĚrň91« ýŇ(wë.6ąăhjS÷ĺÂąq /ÖÜ#2q,ĚcgŢĂë§çęVáÝ;~|¤e–•şNĂZ˙¬z›ŻÝ€8˙.ťw˝íšůfZź>> stream xÚŐWßoÓ0~ď_a‰—Q7¶c'›6MDyÚ¦*ËŹÖ"MJ~l‚żžsśdM–†€§\ÎwßÝ÷Ůľ´&Ú ťÎĚúůf5[žXr±+¨@«î`as$¸Ť)ăh Kă,š/¨mĹ6ś_ŻÎ—'.=Hˇ¦‚^ç:¤‹Ę0qě&ÄËćÄ16ĺ.L śF¸śŕ6E汊˝[ÍľÎxMD&ÄŞzµ W7»Ľ6Q‹çČÄĚuĐ]şC»Ž VŚ>Í>jÚ]ÂĆÄd]Ú»2.ä@Y—a‡ł')ë ěX¤[Ö‹˘‡E™’đIj2"@5·[3–Q1°o”aŽvôn%i1| •:öýç‹‹!@»´ zŃ«DYĚőyh*yy.7ItŽZP ˛q -Á.o(¤ľC 7Ť|ďůˇ6‹­Wh+–a®­ĆŁđ*ăĆËe˝–F˝5ĄŚL6uć~0®ö§ąDËq¨ĂLĆ 7xŇş·+“Ř˝śŽ,:ĄVĺ,)Â,i¸|ČŇ ô‹Nö=Jg,;•a×\˘±žÉď˸pĘŤWpŤ–•8xűş’Ҭ5:|˝†őFŢÖ ę­S˝>oß×ßĺţĘäfŇÔ=Ü ŤTx_F*ČËAfhŃ’áŘ…‹9Ćfçíű\ř8µŃţrř´ľIśú7`¶´îYü¬±nKS›ąG9ěbş¸e"Ódý8‰Űś>­oś•gŐG,Éő.҉ĺšŐ §ry·s 5hK O=‘…±WşvŢÉb«ýIję(o“ë×(ÍtLî<ŮŔ%A č%›ĆšECŞ{ěo•GG5ó«wé218}š"ĘÖíŤ.?Č­p˙ě¨z[fŮ75˙ět⏝NľęëŃm|>ýúEî§LŽtôOĚi¬žhfoí¨äâ/ ôiZ ŹôßécęYü÷?.ÓxýĽô„S[›*úŃćĆF4ç؆ ßř•¬±áżM'ţ[üż%Ân endstream endobj 843 0 obj << /Length 919 /Filter /FlateDecode >> stream xÚ˝VKŹ›0ľďŻ@ę…TŤc6 V•¶UwĄžsëV‘Hb•@ÄcŰý÷?p€%›¤‰z˛ĎŚç›Çg°łq°óx‡Íúe~7{"'F1ó3_;„F…Ôa4DžOťyâüpĹÄŁîó„P7Í'SĎĂ.×K™fĽ…ţő¶wś§Uť&cŞë˘Ô›¤Řq‘Ě­·éäçüűě!ö:1y$@q@Ä*šUS–/Z­ş!?°Zë&_Éë*}Í®ŃkZbîr¦^ŕ#ß‹ś)!(¦rÉóŤTı[¬a%Ú@ ,*ŇC%U›Z‹• ´ iaj!ĎŤqSŹÂńę ł6Ţ‹BBŔŘ1ůˇ«ĚýČř‚&ŘŠuŹ‹RlDÎ3-nó*¸Ö^źŞ@ToEĄ%67RŃÄ&S3w>ZÜAěPµ#ĺőcD°?V^ŠÝ}ZBGíô‡†€uŃËĘ Đ5aÁ%vÚuŘ{(  E( Ó7żů*kđFa(>‰*›U{ľJŃöóX1 ĐXlÄł1_J_ľ·ß •×…‚˙„)V΂˘ŔóXó_G<Ş=x G:ÓÖ©BEŹ˘Úńý@»ľNăaÇńĽÁîXš ľ¸ ‘µéಲ«Ş5ôÜtAÚ~ůE¬ß0JŞťí c.ßďł}˘Ç6*H‘o´F] Ž;t!Ź·ĽÖr5Ұڑ–˛ĽIÚj¶!ŚdUŃC ÷MÝź»ŮëÎ۶ľLaŚBćk7O„›^Š´‰!†űLlr Vň/ů.­aúm|E4Öş_·†ĘH›Ře’–f«—Î:î: ăÍॄµJkőşyÝDÓÂ\ŇĐh7«më 1’T“ĚŇ‚˝˛’ެîx­QIÎ…ć>&ă}ÍŔ$Ŕ(nÓ·+’4{\"Ôkµ$ŁűÚPŘë^ô -ĺÂ[döąUQŤČë˛HšłŤ P˛a¸¤7•>ţÔ%TĆŻá}–˝*µúÎSŐ´˛ý ˝.Mć —śĹţg˛Ë(˙łKůźËÎ](ŐőůpśçNz’‹®ă[hú vÉ+±Z€M''VvF^ŢxH†®—j˙!3j0,Iqň­ďˇ:Ď[!Yw·rŞÄěFżşýÇÔĘ®KÉĐő¶˙µÄŻ}®jŮŢżĎ-K< tJQXQJ´g‚žÉ·ůÝ_·fč endstream endobj 847 0 obj << /Length 760 /Filter /FlateDecode >> stream xÚ˝VIo›@ľűWŚÔ ®ĘdvµŞÔJMĄ^ŞŞî)‰ĐČĆ*['ʿ&8Č4§™yóÖď{ł´A}ź‘ńëbvu­ŇX+¦ĐbŤ!XR)é`Ć%Z¬ĐŤő.—ávĺĎmɤő)ČĂ«GâűĎó»ĹpdSеÜ){ě{›ŕq§^®˘mXŘÔ˘÷-™gÂ`{©ÉL”ßI*Ż‚bWđ>×…ůű‚ëčńĂpVmÓ<5Ko–¬ü‚ÓŹĄő PČŢçĂ&jł^Ź€´€ŔęP¨ázŽî`6 Ǣ_Ço»śl ~Ź®«őôĹ©áâҧNeµŕ˛˛ZNÓ§·& Â÷qÖ_\_7@™7ĺmIÜş/|Wő˛ş{‚nSó¦ÜRčp¶ú1Ü«W`ĐM`ű_Zŕě˝4˘N ¦¸˝z¦éŠs|©Ň$|Ž“(őŽ?­·FCzZ§îŇ)AşşVÍżŽ­9VT·Ţô[BťŽŤp60ă6*ĺ?±Éžç6“Äú’Ĺ}äÁ˛^˙LýĚ@{ŢKSç×uŕŚ`‡¸śĺ~1‚,Đn+/ö7ŁóŃ ĚÎÁž”#“Žů'š´ů0épĘ/ş5RvnWµQýŠ o‹ŮĂŚBŽQDÔD9Ĺ‚8hÍnîZÁ&”ąvŃSĄ!†µ«a˘ßł_=˙ię8,Ż\±}ĐÓÓ Z`&Ř$AuůyoÇ Ëťv¦.śîűy íZdŰe‘C;Ň2őPµ@9ýÂqoęuqďד$M“<(üť]˛îěűˇůńŢmďĆCślÎe×,IŐ©6Ë›miŽç6޵¨Ľ*n­’ČTľ«CÂXě73?‡»÷°Y•ŢI¸:ä…FŕŚcć7Tc!Ů%śp¦0ĚJO úˇŠY6ęiLÁ°z’BbÉÝvĐÁFŕDÁč ™›ČŻE&Ż%»-ÖeˇyŰ![I¬4…#§±ëî:‘ŮŇ‚ę˙!t Ý endstream endobj 851 0 obj << /Length 518 /Filter /FlateDecode >> stream xÚÍWËŽ›0Ýç+,Í†Ś„; V]TęŚ4kvíˇ«`ŹL?LóĘ$†V]a®}Ď=çŘą8žWFűüî­6O¶\č“/;l1 x M o~j´*׺éZP¬‘ŁĹu˛ ®uŰ24ď-s»¬(Â2ĎŘž˛X„Š€ĹÍ,ŇÂ$<&ťqڤꔝĺyVŇ*ldQoľA××ŻŢ '®#]Ü’“JâKI>”Jň7ĘÄS âľ|vĺôÜ<ą¦dŤŤ c[@7-č"Qű˛]Rď9"6±ö•–Éć$đíŰQßçó~Líňă[Z'őyŽ=vb> ă_6°Ső‘ČUđű bzŕč˨@ ß¦)˘;4ńŐ’ţ6­O븠đŃYÂ…ńmÎvąśc3ś˝ ¦­ü˝ÇI”,ę`ĺďj>q1«ä°*ą>n®ä@ř&‡glg7ÍUÖŚflHP+98‚[Ď#Řß±_ôxÂ<ýşő•“@>; #¶Lé&(鬛ŞíǰAîBšüťIîoEJdéECc˘$ËŠ˙ěۡĆéöŻ‡Â–©QZdĎné~jôëKôŤ+ČÜÎńŹîeS‡'ˇeĺ§”)žź&żE=Ľ fÁź3éfŢůÓân!±lî– ÇuA:)?ĽŐôĹ· endstream endobj 855 0 obj << /Length 968 /Filter /FlateDecode >> stream xÚĹWKŹŰ6ľűWčĹ.Ö\‘Ô‹hŃCѤioA|K±hŻP‰ŇJâ:űď;)۲ĺÝŤÖI.âóü8Ă!ĺˇ-ňĐß3ĎŤ®f·o9Eó†hµAÔ§……A„) Đ*EçI’5yŇŠ˙äbĐ`nfŐ.›M’gMk5ä'/ ż->ŻţÝ»čG´ô Ž}†–ÔÇQL­ĺ_2µÎuęěţ†o«2Te‘‰ßýaLú’ĚA4Űěá(šű–‹ćd5Qr ÁyťÁ>’s«CŚçVď«= 炭ŹoČâ¨íjw9ÎđrśZeĄ·8–‡K*“p<á[?çU5Q•»«ÔÄÍŘöhŐd[%S+%żVĄ’Şť–—–Ď4Ëg ¤ýYż}÷”%g8$|xň?y$:Qňă#% F'üćaE®E e˛-ŔQŔ¬ÄęPŃŔ›oĘ$5˝´ÎĐßf/üqđFŰć$|ĎőÍź–ÁQÓóxŃÜěëÓůýŘ_Y!ˇyö}Ą*«t~±›ýŃŃ(†`í¨-ňüŃNTé¸"}Čń%—vÚ–vLłZ®Ű^z}'L$ó^ęÎ&™Ş´3VÖnÔ-¬™-±ó¦k§Qnś_Ç‘íXqCĚöL3ÔŇÁ´‹ů˘0Đ,ż(Ä4dřH·Ři% G •žđ ‡˛V¦čŚĹ¦­őşŐµcšXŇ<đ;{]¸kÁDQ/|o~z!q?ľEĚô‹t׌ť®…ę×í¨ąŃąĄMfĚ(ŇÔJ©V˘”€Ąq.EÓčÂÜ^ěÉ˝rRÜPĚ] ľYÍîg¸"D>ČűpŠ=ą.f?{(&`ÇŚÇh׉bs rôaö~äo€D8c` ŽiďÔĺýÄ)÷1ü;\Ĺ)7żCź"‡‡ÇąWJ»†SJC ůĐk—™Ć¦ap¶Ăq´?ܦ4ĎSEB {™ŃLQŘ4Ď‹®?‡řy8ŚżŐąSF¦qp § 0ŇČQŞĎ°×Ąőőný{„NËUíŢ{¶‹šĆ ]ňȱRŚ#řűőö­>±C™ň^fťÉľ —¦ÖOž}Ú–őň‡ˇkŐű+¸›'Đt’4+šoľrŹÍuôč[B*]tŔQŇ>VNÍP7–ţ:¨ Ď‹qt™jdÝ^Ľ#2vťă8Ž­#â ďp(Ů˙·ŻÄ endstream endobj 719 0 obj << /Type /ObjStm /N 100 /First 886 /Length 1274 /Filter /FlateDecode >> stream xÚÝ™MoÜ6†ďúsl{HÎ3Śů¨Ó-Ä9´5|pťE4Ř Ö ý÷}GI€8Ś ml,ź4˘FäĚĂWCJŇ)¦H1ů‘)ˇEa§\qĚÄ5á¨$¦8 eŽ8V*EHÝv?NdMF&đăL1„C)Ć/‚®ąb¨C0& ĘFQz¦q‡Â/ô©’`hťF Ip{…sĹMU FeÄ=vÜ”‘Dň(2˛HŐCĚ”±kVäŃM#€T ·—DIŐć|’%ôS7 qđ¸ Ă0tXŚ8Šj ćŮYaŔQ5çU!¤ç>˘SE?jð)ÂĐ™/F·@@ŕF"‰ ˘¸,gj™„}R0"1 Ţ…2PO @$ĄT÷1G¬ "†[­RÍ}ĺŕŞRŽ ˇµRNN¬µ ŕ#Ⓣ‰ö©0Ě]ÎHŮ0›YŁŔ” °`”+R¶©„Čb¤3Z"ShFÍĹBE\č˘ddjŃ !diČ­¸ň *,VĐ‚“Rß\“ㄨP W!ćĘ<9ą*…Íb÷™gŁ3ű| v4wsQ¦Ń€™ E<îŕ>ęÁą€˝w‹ÉÜŠt U´Âb3pż2;g@k›yćˇÔŮ˝ĎY`Şj07 Ő¨u8:hzĽy˝ŮžĽ9żXă|NÓłóÝnµ]Szúó»ÝÓ“ÝůnEqn¦ăÍzGGG4WW™Ľ÷;F aúÉĂôl»ą8Yíč=>9¦éĹęÝŽÎ\¸Ӌ˙ެ|¨VBXďVëÝ%ÎcÓóŐĺćíöbu9×€ąé÷ŐËWçŹ6ďčÔJt˝¤3 sľĹ˝źyäŹÝ?ˇSŻ&s`üůń4úă˘!Źđ\ż}ýúc(·‰Šŕr›˙íŐúßaz´Ůľ\mç®ăŮôËôëôřÔsgĚ˛ŞŁaçT˘ŚţĎ'% ôXR9dř=śťĐôtóbC’.qç«ÍzLcúŃ™|:YĺđJľvćnľ&XlŢŃýwĘ·ĚÜ'pb\úÂb«äŘ­ä(·©d uL®ŕ Łź.cˇmTţšSů\ȱܫ͍µ?—,u ů0?—ľ}˝ÂÁ•|3RĄ%%ݤň]އ7‡Óţ˛=˙A} N]|=äf[ěż·÷âÁź˙Ł4ćűUs¸¶p´ŽÝ™'©—‡´Űb‰˝<$-źG»™ÜÍŁ,ţ5!Ç–Gíĺ‘Ă÷ÔG7‚ćëżeîF°Ç×˙˙/«÷ endstream endobj 860 0 obj << /Length 426 /Filter /FlateDecode >> stream xÚŐW[o‚0~÷W4Ů‹.Riˇ˛eKć’=ó¶- RtÍE“ýűq›â ş=ŃKÎ×óťďśö ‚9PÁsO-ľŹVo4110ˇI1Ö `CŤ"@ÉbŤ‹×>cBz,¶?ÝB0é§3ÚN1˝ÍĆĂÁ»ő’ *A“–®ż\ll¸X°ř+,ĚŇŃ0.})ćľËóYČëţ›JĐ]vŚ˘#hčÚöaą›s±Şps=g< ÂÔ™ Ş`5ŢĹhĎD$ăzÄi]â‹`ĺ^‹8—1«$źnfş×•‘S šnVVEx]?ßMȱM„róá;Ţ’^Ü'ŽŤĽŔ±‹8ÁʇCgŇ©dUR«´ĘlΛI¶íÉóĄk“j> stream xÚŐW]o‚0}÷W4Ů‹.R Ú Ů˛‡%sÉžyŰ–-¸f€„f˙~Uś đc{˛˝mŹ=çžŰž;¨ŕ÷Ńě &† hŤÓB«: x µ!&ŻÝîĎÜŮ=k¸{Ď…;đ¬~<ôŢÍ ¤¨*4đf3ĄrťÎy˛ŮľšM-ÁgTžIC·ąµŁŚ{â a´F©P ŹÁFÖg ěTűÇîdű±—“˙EŁŻ`´őÓaě >÷m–Î|yőn §ß(O4O±š)&—A]ťUyú¸/ě0ú‹ â(Ř/!uňÜF…3ĄzM˙"đ‰}E0ŃBV‹F Ő "ś®[ş«Ö+Ň\ŕvŢŞŻ,>‡˛¤\Ůľ–I­ ˇˇv±Ärkt1/v#Nĺ™ÝäüÄÚ={Č^RŰ®…‚:<Ńé\©Ť;y•ďăĄ4Y¸ţg˘WŠĺ85*EîŢNÎZUG†&G§óE UŽÉßĆNđ8dČžuU JŇ,÷H­Řç0ĺŰ­”Ád¤ď|(a Dz^Í€ş®§—P‘‘;ňdvľßćL endstream endobj 869 0 obj << /Length 426 /Filter /FlateDecode >> stream xÚÍW]o }ďŻŕ±]ŞE+Vł·%ë’=ű¶-Ä mČŠŃ6ű÷«µY‹B?üH|!÷\Îą÷@€` x›ŔÓ÷%,Öľ |Ówm1°!4‘ĺ­L{‰@@ŔÇc*¶xCwŃĚ@6š–¬Řćó=㸚}ŞOcš(Ë1ˇL|Bg_Á;p,Ós–Ŕ°,ÓG~ţ\Çg<ś1 %;˛áü—ź ĘŃĽ‰ ›$"Ő_L3‘+W’Ă^­çc"Cż[Y Y„’{HH;âg¨ĂHćëvŕۆUUU;1¬Ă˛ËÚ†fىOíŰš Č÷#©ăuŻv¬ćpFíÇŽ$Ků¨üŘďůsÝ©íÉ7­Z×`> stream xÚíVMoś0˝ďŻ°Ô TYŻm>ÔŞ‡HMŐ^ŞŞ{K"äł‹ †`Hš_c›6ŰM{Şz˛=žĎ<żń@ŕÓ™ńrłX]…„0ô‰6) .ŽŹď­!q<°IŔµE™Čنţ`öŇ#žŐ­Š6o˛¦©˝-č…}»ů"Ý.1†ˇgLo‹Á(ÉŠ¨y¬Ś›D4juˇ—-ŮŽłdجJq¶SQÇÇťv›ÇśN5ů ňđ;Ą·t1 \gŞ­!Ůe÷#Hއ *Ę{ÖE)¤O¤\N<úÇAžx¬ţ#¬I÷ ç±řÚ')=Ĺü)­ýôĂĐŹĂ-W[żÉxś·‰ ⽌kU•ů#/‹Śćp˙aîÄą‹kyVňÚ»ÁÜ@<çâI”ÔeőşRz!‚¶z¸«Îľ}'OłZ4ł·öš%-ód ćśłŤg`E§ËĺT,Öôěâů‹¨®®Ü`ÔŮ–ýŔźĐ{ł—ÇYeĹjÚČ|„Ys=Şő”ŮŘł~V5bĐ‹)ď ňG=+(ĎŞ6§Ťq]Ńš¬aµ€:*Nڍ° C´–c]č¸0t!^ŰKڞ.3Nkăüëçó ;Ä™ă(7;Vó`c`·p-ZŰ8°vmÁx#ô~™š-˝ÜšăÔVśÖŕecä*[%bđęRŹyfËk¸ďĐbZ'ăFcoB˘ăźü=äC"QAĘŞ‡ęăfq·ŔRŠ®çC…€. ‚5‹Ĺő-‰Ü””N€ĄZĂ ”ł|_|›ůę¸^‰Ôď\ůA-n~Î ‹=臸LóséČ:#OiÚĺ(37×·u-î©AsQꙆ­›5F˛§6AŘÔNON—šuĺ)‹gËjĂş´cűqžM¸A|čS‚—TdńĄí`uĺŹÁÂ’ĄkwB°$):5™€&gŽÓcö™w‘±X‘i®ý<˝śľ9Đń‚ŁÍ(/cůčŠĆěŚn4˛ý"FŇ(ëĂ=»Ď<÷ť |ń»oęś5ůóž-Xs<ŰŽ‘´s ĐDŠqçłžşßĘ©Fč“<®eů-I(kľ"1žČWâ™Đˇ endstream endobj 877 0 obj << /Length 429 /Filter /FlateDecode >> stream xÚÍW]O0}߯hâËf¤k ĺ#Lś‰ĎĽ©!ŕlÜŘBÁßo÷!¬“±R0ń‰r“szOĎ˝·€Ŕ đ4B‡çC8šÎ¸Äá; ¶‹K=Hl ÂĽŚŁ‹eT°ĎtbQBÇŰ·9<ŽDZěC×są$ŻâŰÉ[ř ,Cß±…1 ¨Âłŕ_-> stream xÚĹW]o‚0}÷W4Ů‹.ŁŇb+dË–Ě%{ćm[šFŃ5$Űß_' R>Üĺ†sď=÷ă¤`Lđ22+žOîhşp0p C1î`Ó„Ů€’9Äî ĽŤoD°Ü&+obLĆ"ÚN“@ěćó~>N>ÜWéÎ@:äaL~Ĺ6âűú{Ë0©é6gc"˝}ä-cň=÷Łw“Ď3홥róŻ÷‰<ŢUç–G^|„É“ ŤîHŁ:x;n«ťĎE ćFâ–‚O “a)îy°ń®Ű˝ë2ěĄ{H“\Ť3vĄť>ŃĹtPĺóőZcwĂ&guI '»†]ÎqČóUˇĂ-¬źlc‘Ź®ŞEńÓî„ý"ďFB•Ĺץ.c§I”:š™»+–"Hčó+ëqijĎÍÝ[©’h´RGµhŞĹzWÍsĐc)ŠI$:]ďIÇÓÝ©ßđĂA/íą" ¨é$ß-/]µňMţOľéEůnI¸7ůnÝH ínßÔţµ;» L3űěŹ8—×;жíÔ+BVňěŽ~ť3Đĺ endstream endobj 885 0 obj << /Length 431 /Filter /FlateDecode >> stream xÚĹ–]O0†ď÷+šxłéZF»Ť&ÎÄkîÔfŔl„¸řďí2°•ÁôŠŹô=}ĎÓÓÓ"°< Pţ|°ăą©šT§Ŕň€Ž$x(™B}B€ĺ€—ˇmóŘ·—üÓiD'ĂíW*x(ěhc3ĎËţ^ŹŢ¬gVĂš$—µąHÜuě.;bkÄŻ ťĐŔpfLŞęlâ„}ź8ŤŘÍ.†Ö¤Á}ú o“C!PĚ„*drh"Ť‚> stream xÚÍWKoă6ľűWčE.Ö ßѢ‡M˝ëž6 C–éD¨,ą–ĽA˙}‡٦¬MÖ‰ ôä93ß<9cś<&8ů}†ĂďŻËŮÝ=ĎŤ´¤2Yn"2$•H¤P2‘,7Éçtůdć &iÚš˘©7–fi~“,}<îLÝůŰ® żŔţeůqöŰrö÷ŚNHB•B™đŠ9(.vłĎ_p˛ËŹ FLgÉłcÝ%éLU%źfx5˝°‘feśÇ6îóCľk-îŔ#Ć‘qěٶǺčʦn˝©µ1›ÖűÓ[żľćţŘé5ݡ,üńxť/,P˛ `‘‚´–´eLIJ+X‡ć )Iz?'"mţ¸óUiT8;™öľµô¨Ncŕď•™ň¬d•–m@Ş«śŐ867ŻŞfNEúllb3––[˙ëm˘·1»JşĺnĂŤ˙‰¬…oomá |Ď¦Ş " ëPVpV•m׋·mo$Äe3ĘýŔř˛­®KŤ(Hą„ú  ©ßSjŞV ćT1ĺ1×9dx¤Ŕ1G Ó)P)VHjˇÚ@^cRŞ&¤hAş´\cň ńlPAW*-ëÎŕťéFZ™k„Ißɡu‰ć®u‰éS>§8ýjÍř›Ľó7•ÉŰÎ5u¸3•ńelrű¬9‰Şň'pÝw9'(#4®<+ę౳ÄSŢ ‘łu6[ă)´Đ&Úç…– @/űëţ1i˘3$¸ěă0ÚL1$0¤k$ O’’Ű"UśôŢ«®Ľ†ĺ!¨Ź)`9–đ¸«öX‡ `™Ő&'ei;˙.a÷Ď#\!ĚŘ$#LiŚ™o·# R"FČ$ R#CF­ ĎšXKÇȇĽ~4# ‹ š‰¸ő¦µƶ…iäZĘe˝?v–ÔçöńMĎŮ´·}ʶk-ó¦Ůĺe` ŹÂIuŢyj—ď=óYWŻioŠE4XeçĆÔaě=D.°ýňuw//ă˛ęiaĂC§¨L/‚?OÍkŢ0őđśq@˛ĂxŮĘş¨ŽpIŔĂő3Ľ)wvsyúelcX­ŕ~őX~ ěöËÍyűńŁýr#Ňž­\ÇÚťÉ)ę‘/Ăäµuů_ÚNňAçHňá۶Ľ.MíJö“Ď#+ľŰ§WĽyÁžłž›ÜÄÎö_e÷ě…· łofjř†ŚşŠdÎޕѳÎ5·f4–~KFcź^ńć{Îznr#›"ŁÎúŐmťz’ąÄéěŤńę<^şĽMú-Ů}Ů3»Íľ×˝•˙§â´[r˛ŢÖš'™+Gß^ŇCťÇ›*{Lz¤ŔŻFmBÇ1şić}˛É¶óuS†M™Dj`iá=/(f#;†Ý÷TĎc¦.Ě÷ QBQ~ţ7SÔ\{\w‡Ľčţ/Cg<„|˙Ě2HD`‘ü­ľ endstream endobj 894 0 obj << /Length 416 /Filter /FlateDecode >> stream xÚµV[O0}߯hâËf¤k í Lś‰ĎĽ©!u7‰Ü˛QŤ˙Ţn#¬l”âmůÎůzľ °<ŤPËóÁMçôaŔ_‚¤ŘŚÎ ±)đ—ŕe|&‹H,W‹:ľ wŃ4ćü¸źĽůĎ’ČÂz´0ů>Ř„_…ů~'­Ź›ëběÄ{ľĺ‹üQt`q0t[E•óO%•\á›öśéß V»ß®‚eó0Q+aŻÔYČn•(évX[žlVf 1”qR ş…˛[ëQ$ašěY5Ş˛ÄTRžőŻĐ&­ËFˇ2=4é r!@жe—TŻňĚ4@´B«“Uč> ÝMÜŮćÖĽĄ¦ÄNťnś˝ž]˙oúúŹľ^k4öH@%4ÇăÄ×x3Ţc ĘUŹlKż±ň°â]ĺşi:„ަß,XöĹ.®˝MvŐÔřă­đ+4˛­šň&껦ţ0ФSÜA×A˙aĄŃO’Ć!ŹŠ™PRLçŽ[ůáőfٰlşł‚cV<úŁ_cÔE‚ endstream endobj 898 0 obj << /Length 506 /Filter /FlateDecode >> stream xÚÍU]o›0}ĎŻ°´—v6Ř`mš´Ië¤=ó¶VČ!$őFŔ °¨˙~n §|:Ń´'Śá\ßsîą×6Ř|_Řőók°XŢ1 dSl¶mH(ń vÖŕçMŠ< ·âO|kLn^Ţä!|’Yňśf;Á“j˙ýíCđC¶‚ŚÔŕ·?‡yą*ö<*Âu¶ă"˝·‰}Dşú®ŁĂ«ł ţ{ělyOşčŠÇE S+u>úxDZý ±7Y˛î’€öJđ‚¸˛í,äaóĎ´(S‘ĄóüĐąXŤ<Ę·ć cYĘëéŇë”1q®â—±ŚĘ9¶TéuÂ,ďh{ĽXĚ1`aşĚ«˘ßŰČ;ą~ ¤VŽŁ>ţ"e""^¨Ă5LŐćŮIڎçřUw"Ť’r]sů¤Č,sÉŁ>~î'Ż×öřMüő=ü•Ą*‰7Ĺôľm÷bűءţéٶ­{‡;.g¨°âąZĐöB®*ő<[Žó+µś,IV$N`µ4č\ťŃ:q˛N&Ѥo–ýycj{†Uéjö™“˘ˇUđ˘cnkÂh{/ÓÁŘĺt‘ë°Aá¦Üót˙Ďü ¨3»¸hZź łö2)S łŇ\—EßJôRăźA߯ŻAtvë~ D¤‹3 endstream endobj 902 0 obj << /Length 1261 /Filter /FlateDecode >> stream xÚÍYKŹŰ6ľűWčĹ.âYľ†´čˇ@S ·"ľ%ˇĆ˛W¨,iý‘ţú%yey%?v‰¦—5%qć#çńÍˢUĢßGlŕ÷×Ůčὑ§…ŽfËH0Čm¤Ń€ÍŃÇńiţ%Ű/’ÉŽN·ŮĂ>O‹|ľŽKxüeňyö©›r‘ůśfÍWé×FČ?=ËÔŻ~켛Çe™}›/Šuśćź˛J«â`•ěS˝‹˙ľ zOCţnxaץ­˙TiŻâţ nâ|•ôďOźý˝ŠvĂB‚ă1/—w{ż<ĚI¬YGź¨źşŢg»´#ĐŹFw›îĄ˛}˝/ă›MŘŠŐkx]hĽm÷őĂÝąĆÉ226Áŕ:î6DýáűŮâ˙(ż""™®XD˙Ńqn”ňÄ*ď•=)2S+A[Ýá—Ů#©ŽŤ7É–4ů1ËZşS˘3¤U-S‘ŘołŃÓÓ[ńHHL»H* :ú˛}ü̢}˘Í€t6:TבgŤ˛čĂčĎľr(%04•"ĹšĄV;íE–™ Z€qş Zy¨Ô:@…@ť”Ş Z^"J&ť|;˘dĐŠ.˘Źź—B€ `X),ş3DźC=(@ł!$)^‘ć÷mó,/¸˛Ťě:!Ô.0‘'‹&'&Ç_ýźdSOŘŐ©ĂÇŰÇxCÓ*AÝMÝş»šřŹ>·čW5Ň^]–¬“|·­_ן±ýśćĺ~Č6ÉJł)‰l}dÖs¶őď&yÚ§›jš¨ßţŐ­6IĽ«_éŹó>–ů'ŮPďĎŁ˝¤éDoInŔjYiRî (šË¨ĘPň.ęyTc@Ş.hk+˝éóűr C e:z=ŢL¸Żö>l'SNˇŇ_0¨Hq1T¤APZŘŚ4ň›BE1„ŠYŕ4ă–@QR“.Ş4ŕ„ą)JYRĄC@"1„ÁŢH9ĂÔ„‘űĘp(Î0ű‹†r« "ťĂť»-ŚPPV„Ř*RŰd„»%§ŇęŚT·ÁôüĎťÇYVL¨ <řŕ_řŔť¬J€öě>}.qöŽžQ…6Ţďę9EN&®F鲖®j‘Q˘›Yˡ·Hją´s_qM %9ŤÓî%ľ)V¸ć˝FŞđx{2”üŠšĹŔR‚Yď·SŘamË&(|Zw ’Q>S+Ů)çäZ{—‘w·E=:wcS°?¤ë4‹7µűŘxYlz\Ă-5d—iY3 —*uFöM´¬%Rá5ˇ˝čé¨^Żutzŕş:DË9Fë Š’×űNA{Y™Ž6–ú”RÓÁGtűIe• Qëzs’­¨r#&¬ĺöşa™ĂqĄŁĄĆ[‚S8Eá¨ëT}Ţ<ç:a´\˝w‰gʧ’şcc̵«Ĺ˛ČľĺĹ:%Jąý†±<ĚźZÁů˛ČW®T¶É®˝C9—˝ű*…´5x4şçęd`ŐĺaŮ«%ÍŹ8»tő¸{ĹÝÓý–j/°o¶ÔĄ ´ç«hu÷¨˙_–zľ»Ó^µ\_z^ůŻŽ6ÖöÇ`;ÉąNš"V%ź*3XŰ$4ç¶#B\ň/ZŃžË endstream endobj 906 0 obj << /Length 832 /Filter /FlateDecode >> stream xÚĹWÉnŰ0˝ç+ô"•,’˘´čˇ@S §|k ±)›¨¶XRŚü}‡‹6[6˛÷$rÖ÷f8&íY[Ëł~\yćűmuµĽŽ±»q€k•ZŘÇ. ĐĐĹ„Z«ŤőŰNQgIĂţň…C1µĺ®-DY$Ő!ą«Ęěˇ(sÁ˛$-łŤ6ůŘV‡ôÓâĎę'$rrcj‚‰˘1&ŤŘ˘ĎĘÎń‘ůdj­SoĹýRĎfíýrV%¬Ş˛‡óq“§‚śG4W Ü‘‡ĺ”|đŽ•\^űѨĄNDÜ ,S—„ˇö]íˇť¶ĹşµÜ†6@ĹV«ţ(ZR·.󪬍_ÓŘŠ@¸_ jóBŹŔ>f71OÍ»|ÍĄô ú Ń»–Őb(ÎÂÁQdďů¦UČÝ…ăc ŚXŁ5˘ţ‹Xn.Ąˇd#•·e[l´D¶ąLµXᓚĺÜ*łbµ.ëdRG\„`UˇIsµď¬&|ĘýL<0@>îµóń0qă!§hjžĄ˛ď'±KYU]Ú˝”ř6Ë2­âĎyŃÔz' ­6¬Ą áűš«zšXé‘Éž[~F§. j«f™P׺“ĂŻĎíM™3 ŕ@Ĺ’2Ł<> JwŇ)ěűŻÝX­ĹLo»c­…: ™=Ďśąs¦J$-"[Ă‹:XŃsdÂŤ”ŔN!ő©™+ŤçJšvsk¦?57ąúc:Ręc:qÚcâaÝcąz,w ,|5H%÷XJŹÁH2¦ś‘‰wĎ˙Ô?g‚©7ž`pé/Ąĺu0ž –DPě†&ÚŤ‡Â#—É”h3$żö\älË'ăd»ß{3?$Ú˙(ÖY»1?Ř_ŕ{ erw_çxÎ]W·@}ť¨Ň^Ľžz»¤2“ĽÍ‘°4}ňŤtśô–Źľ‘ú´Ć9gϸĄ‡Üf÷´† '|č˙ăw÷›PşĐ˘qJă^˝M› Ó{wJ§ěšU ´Nćwŕ©7ŃّՏ¬§ nďó¨wĺ+ťđă¤í»ô‹´‹´_4/bţjóđ‚¦÷ů·¬ÁcţHW˘—âÜĄI©Ć^nČĄé,Ĺ—ď««…[¶ endstream endobj 910 0 obj << /Length 371 /Filter /FlateDecode >> stream xÚÝVßO0~ß_ŃÄ—ÍH×ÚŃh|0q&>ó¦¦éƆŤ‘mčżoCůĺdń(Ü×ďľ»ëx‡*ąß9ń”Ŕ!g„g Bb0:ĤŔqÁÓđBóUä.F%txٶ«±/Cřz;zqőFĆÓÄXý]xę=1˙ZÍäVÍ…ĆÄŻ.‹p9;nĘ—ŢB¸k_Ş@řŃj§„\.źE{¸…ˇm™EÜ;ůVÁ=ÓŹWĺŽçÁ)möĄćÇ×{¸‘󀕫ϸ“Ő Őe{w#‹%k#}=_UŤ’UV¤E ?zW{H™ŔĂ–yl¤8Îm˝`ö_çΨv˘ď‚Ž)żáá1Eݢ˙¶=Ę]µß_ł,‹1!ǸttEZâo,ĹÔ0µ;a‹˙ÉőŢé+ŐłJőmËçĚĹ7J}«áPÖCËl„¦ó˘«"č4i÷O-űŕ7šO 3-ÝŠ8´m;Ţ”Ü;Om©g endstream endobj 915 0 obj << /Length 661 /Filter /FlateDecode >> stream xÚĹVKŹ›0ľďݰÔK¨Ç6`@­z¨ÔTí©n»˘á´Ľ`·?ż& ¦˛$›^Âxđ|3߼A"čëéžźť»őĆfČĆ6g9!b„`Z&fš=¬â2që,Î37ő ·ŘqęEëç©gÝ›âĹM뤊]/ ‰A”źÎw¤SléR)ŶѹnWyO˘ĚÁ…ę} â}‹@ć÷ýPŠÔPč‡Iť&ŠźĎ3ÇDFö^żsÂ˙kBÖÝę^µ4Ě-ŽTf`›hÝŮ%k¦¶ ël[nŮőŐ6O‹şęŢU»N8$BśňPÜ=ľŽbÂxV¨± 2ˇ*J\Ę÷BŃrnŃ]"R›ö[ÔÖ€ż™hc\ŹaؤöáB[ŃĚ曦śÂ:ópÎ,[DÚH™e€Ugćę[&nć`ÓYż(”żĽ‡łmťĐ‚ç7$§,@čâR<‹¤Ž˘Ŕ>â¬Ę‘4 ©»”Ű}\TĎ mţšg’€a2“”L_™Gá,¸€ŞáĆţ¸YÖŢ_+*ŐË` €’u$ 5V’{4íŕţGť$żĽí“dp2”¶ŘaĚt ĄÂţ]śm“Úďćä# Ę&ď>MŹ•ĽNsԝܢ iŃÎ;ÁDg·dƬ·34–/p)*™Ë™-7ÜO‹Ö5ě9™’P\•]xłkt^ý㞥ĆĎÚ ŮoY6ˇ˝qĺ$ë´XBo$I7»7_5;ô‚ţdË*8šúTę_˝Ň`ŽtáĚ'˙W…ĄV™˘ßżz úă]zóőtYő/ú>o€ů0nĎú_m0ůIcb®éHŐި”QÉâ‹s÷©&íť endstream endobj 919 0 obj << /Length 562 /Filter /FlateDecode >> stream xÚÝUËŽ›0Ýç+,uŐŕŘ&& V]TjŞV]˛k*D!hx5†¦ýűš±8I@uÔ~Üs¸çÜk đy†ä÷Ł;›ŻčXÄî„ Ĺ6°č“w ľk1KĽ´JĘŘ+ŽžżŰyE•$?x¬çbŻ®Eú÷+X`h/L`` *)<Ż&)ýÇP7(ˇ”bőmZřOč:Ľűo /Rźgß=QĂyDńŻçóčËaŘ…îjż ÖXđÍ6ôăÉŞ,ÎłŰ|膶>4«Ó{˘'‡jDO\fĐ ·†u%ç|WŤi/cOź>|›Čä#4˘.ă}şz¨zňIďßMóŐÂîÜ †mB˶€ALč`AîîCĆy ÇîŞ,(9-«§ ­8„Ažůi»ÜËÁ!r`Ą uLµß<–1›? bˇ1ΔmŐż@Ý0ÖľHLÎ}ęŹ:FZ~زH‘$冔ŹO¤b3ń-’*ŠBge~ĆĐ áU¬SiŁůĘęľDšu©ů—ČRŻ^žaď‰ŕoyP1%şE)oŢ©©:{gARme/ĽçÍ0çŐ‡űĂ­ŁŤĎâŔca);¦^«›< ۭѧżm@>şý´+02á˝Z1ĎTF•!ďžđç$ ĘŐRG ąÄN)MŻš,|ÍjĆÖ&y!5ÖżQSţOµ‰î[›ˇ{ťR¸äWłašĐ^š‚˘@>ąłż{ńże endstream endobj 923 0 obj << /Length 1307 /Filter /FlateDecode >> stream xÚÝYMoă6˝űWčĹ)j†ßhŃCnŢŠú¶»0X›±…ʲc+őößw(R˛iÓN6QŃíR 9ŹĂ™yz”q±,pńËÇö§éčţťˇ…AFRYL Ę)b’R(D™(¦‹âýx6+÷Ő¬±ş»‰ běź¶‡™}xĎßnЧ° ßß}śţZL8AšłbB2"±˛,˙:±˛wM4q´9[6~¬áÖŘu[Ďí|×ŔŻY{ô¦?­®=şG2˝Ô˝őSŐ”­‡•űŻň˛7 ŻíË˝Ľ\{5fňuN-ż,§ ]ĚĚŞÜ73÷ř†ôlMDĂľűą)zľ~°˘k]«Ýżçšüo]«ÜWµę_Ę˙·kËŻ7jË/3j÷ď¸>ŃÍÔ2ĺËé 2fĆOőĽ)7uX ! vԮ䖏žŽGFqA Ę0â´ 몯Gď?âb˙O3ş8´3×EFčUĹďŁßrŞ…1ıiMIŘ‹é_ —Ü –‡ŽFĄ K—Á” ).Á”)ĆSĚ?ěľśg` ŠćŔ‰¸b)¬OíË„!á>ě;×<íę}Hš°Ű 㸵ЎÍ7ucËş¬—áąYmö1Ĺ\ĺ&ˇäHKť–ČÚŐ Ř§LŽËÚ· »0°_Ůť[„ÁýÖÎăđć!“®„p¤ŕ°pź;$ăe*ŮOŞ9K!ČęŁ!ú¬ˇĂĘí\Ć•«/ÚÓIˇ'—;g·ëNÄÖŃ÷8âźlŽ•RŤ07)s4›ě!Îäsžadhď>ş›H…#a@çaHr›0EB@B&ŘÉ[2Z $<ů_P*€nL AQ$`F‚ĺ(†ŇJʰ†šQ)hŽŁÔ­ˇbL 3O1Ż’;–Á‘- SlhE@'ˇxî(ş®ęÂż¬HSŮEŠ`ţXű–ŠđEřÁĹfmĂq…#…íë1\13^1Ţîâ6K(cSôYSWyB!ˇčggŇ1E M€Mθ °&=0ŤěŃe‰BR¤ń ś#éSŞ †Şđ–oi Ť˝­-ś ă^`ú¶|™B•—+ŕŤůÜŢ:3°BÜ ¨#ě%Í)jž.”DÔKš@•SS)(Üë3 řJwPŁ‘âô’” É h7BSĚ+•j.ŤOQĘ!®ęQI ¤|N‰‹bŐ—ď‚¶éô ÖAżŕNż@§×/ĐďČ©ŹZÖ\eĚ*ű\[’÷L‰„Ľu8y"ĆźĘůfąłŰUą•Bfzî›­Şżý2[kč·‚:ʂڞ2Ä5m!@éă†s„s¤! aŽ0dOűĽu;ŰÄc‡Ç:‹Ę€©n‹ІrxťAöň¶¬óZŤAĂ[٢USđtLć‰0…ĚŇ ĘĐ ‚ o~!Î@Űgć‚IŤBZźÝ|ívŰ&Á±W»ťŰo7őÂő2`Ghó"I`.‘dIŕjdŔÔ3rÄ( ÄĘËĘ6˘*ý›4śç&´ÎÎWľGĆ[[îÂČžđż#1ÁSYźE˘9ÜůÉQtq}r-Ç`ďQöě_~Źý¦¬çŐÓ"~µřBy~˘ŐŹ×?r¤_]Öv{ůŐĹ=úń7ţ¬`_ű›Bî«ôYÔP =\{AţÇŁ ”%K µţ絊d endstream endobj 927 0 obj << /Length 643 /Filter /FlateDecode >> stream xÚŐVMŹ›0˝çW őUă`P«Z5•zę!·Ý y‰ůPůZ°“íżŻÁNRÔnŰ“g,żż™áŰ ŰřĽ°őúa»Xm|dřŔ'ŰČ@¶ 0ô ‚]€llwĆťi“qşgÖ#l¶^N+ĺĽn˝ęĐ( 2ŢîßŰضľmżkĽµc,!>Äâô{/–Bëp…o:´=dfř¶//çľGü'x> stream xÚŐWKŹŰ6ľűWčE[¬ą|›D‚$E{+ę[ZY»bK®$Çčżďđˇ—WkŘ^h.69śçÎC=#‚~›‘đ˙q9{řl2Ř(¦Đň 1B°¤)ąŔŚK´\Ł/Ńj•UŰŐsö#˝›K&#»«öq¶ż¶űUçĎéj_ëCR%’Ü}[ţĹZp4§9ĐYÇß_ŃéÖôŢÉ“DX§ď¬řĂgˇ{Î5ÇJ+4gę5.7 K ‰žyRgE^yÁ4Ra. \Ɖ€QË3ű´śý=Ł@%"Ć)ćŚ#E VT d7űňŤ 5‚ŤŽŽu‡6Ú*ۢżfŽ‚ Ě)uŞ ž{/_šUE'1«&rh5„sK®Ŕk ąM`IřYĚ8ŁXH1Ĺĺ9X~f\RLÍ$ˇâR`ŞŮĐěşŘĹY>bW+L›Ä®6^+ ˇPM(â|=-Ş0[śâBĚŘ$áŠcFŮEáÚÉMbÖ‡<É,W¸^š•ÔŕĹF%cPuĚĄÁšs›‡`rPř äÝQA­â”Gű8++ż,JűϢ2Ýƶ|yŞ2pŘx{)g3őüq`ĚňçmĐÚ¨¨z:îaÍttܤeŕJł6â¬Âm)e’†¸·ŇQ=Îni/mĎ‹zÓńTwቸLý᱌÷ű404nÚâ)µ^ŚôŹÇ´>¦©‰33»đĆ+żéŇöÓp,¸nňăa$p /Úzč˘ĘśA±˝`Ď,Ť˛|¨=Í;‚ˇ‹Iýţtrżć±¸MVyé"ßţă\śSuEꡧ P— ĺ°2`ţŽĘč‡ýI-ú†‡ČÖoŮJ˙yOËÇN«QŃ®–ÓĹ'śŽDĆaY‰ŽŞMqŘÚkó4ŻUĽK±UĄ|ď¶´¦wŹŐ5i°Ôě|‚†+…BR¬!Čo)Ě|% OV•âć|‚DgZNbVÁ̶ŕCłg‚jk}Ľ­ Źqś$éŢÁŘai¶ÔřgĆŘĐ'ĎĚEUÁNk»hRŇćľ‚ń,÷Äă&K6ž1‰«ÔłÚSĘ´>”î•1ö´.Ë•žî͵l]Ńł»6ą-Ç+Ϭ>Ú2Zř’Đ.›´A"'Łňi #-“ŘŔ€ăÔţ’ĺÉö°cč{xe€Ţ|«“Ł3µĹŻ›¨ÓúöIşŐ«+¦čľX7AżÍ/ôďOý?óMńWY˛™ -mĺ ÉÍś*„ĺĺČŚIwuxĽÍĹ >źÔĎíáĎ˝ˇW—>Ę3!ë^ĺĎ@lGŢöĺţźúˇ®ńă˙áÁíóC+[ŤôŤ3ŃlezX´´›9Őz¸Ş•ŚIO‡Ďu}Ą•yĎë)Ükü©É,`¶‚ď2α^„kR&"0ŕý =a« endstream endobj 935 0 obj << /Length 530 /Filter /FlateDecode >> stream xÚŐVÉnŰ0˝ű+ô"-R"-!Aš=ë֣Ţ Zěß/-ҶVŁ’Ý¤ąäpŢ㼙ˇLlžWşż9«ő“Ť mŠ)pB€M Š% üT\7*c·boŞL”ĂŞNŁ,u– Ó]ͧč^ýíüŕĚBĐ&3Ńř—NĐCĂ ™Z¦1ĆłŤvx:6·`é6pó"ókŻâězC>Íýa éR…˙ٶSwÇłXL ­‚řK”zqíKÚGλޱľ~ťŽ˘›™¤Ž«ČĺVfN¶+kßçNvźť!vIg_VwQ}]ËkÎÂpvÍ9fn»IÍĎÜ ›››6vyͧÔ]WóŹ×•ď[Dcô]oRĎΩI>[{żä>Â4ĐúIT^¨2çč·ËT•Ű®WVyäÔ|Đát.ţFúZ˙©Jň*ŤxLßhÚżŃmŔMîőHI=żń'hΙY?™Vë}¬Y¤íţ­9Żś× –Â^2ewř‘¦°N˝ŠźQ–¶âeI^WrŻ:âĽ"+K1•Y‹,ě8ÚĘ6Rń‘?{eP•÷|jĄbv:‹Ł‹±\ś‚ŞFMSO‘âg ‹,Ĺ K}amjUŠyE8Ü«JžEąË I´/XžľpáOCą˙Tű€GÝ~.dŘĐÜlZT†0íx}wVŰNĽű endstream endobj 940 0 obj << /Length 510 /Filter /FlateDecode >> stream xÚÍVMoŁ0˝çWXÚ ¬Šc & V=TÚ®´gn› 9R«˘b˛'„|B"µ'śÁďÍ{ž‚ ß#Ň<_ÂŃřŐőQ€Źz(L‘Í|ěMňŘS‡ˇ0FŤ¸Xr‘—¦EŰŕyĽYPă“狤 ©ŠÉ÷DDľŞd‰MËuš>1ŠfçLWCĄ@SJť)!—°rŐ«ŐgWsů`ZˇFU&ţ´Č˛Â¤Ěř'ň…ůţ?–mă€5šÓ*źKQÔŞ=ĄLxŚ7[wö·Ďńk@÷ÎŔµ±ď:p8 Ž˘ű!ňyVĹťAŇ'Qfă2‘řýůXî(‚÷ŃB¬›í›_3^Šyú©Ĺ˘4ă2j> stream xÚÍWKŹÚ@ ľó+FęŞ2;ď‡ZőP©[©·ŞÜ¶«( „EÍ«”ţüšL€B–°‘ş§$3¶?Çţěń´D}‘ęůi6ş»· YlSh"&ćŠ"%5f\˘Ů=Ś=oµ‰ĽÜ˙µL%“ăÝW\DůĘóĂĐ-˝Ť}únň8ű v§”b+{é˛DŇ÷ĄţTPloł˛\ý©Yɶg†Ú8őÂČĎ˝µź,^¶NçE8)U/C7 :; €ę«Kś°÷|ę˘Cˇ:ÎzłŕT˙– É*Mžĺ:†â\a€\tŁČúTG§™Ű9r0{-Sę ĂńĄĹŤ¸ČzÔN§™cx=n˙<Ć‹Il soVIóĘţ¸Űd~°ŔO/;Ô o)_ůpřöB?ČÓµ7Oc•ôŽUÝfů~CÚ;ý*SůŠÜrqş&ję˙»÷Ú‚çęňµ2®á]GčnJěÝ˝0µńej8VF5k|öşÔ’qX$A}că4ŹTK őľď‚eů<ýQX%"Ć)ćŚ#& ¶Ě˘ =<4‡Mh[¶Ąhڶfg,BßGßÚĆ,.0§´4ĄąĂt?yŽŞ(&Š‚Ş&˛ZćŁÔ¬­Ôr¬Ťi :2śĂrH›VfXÎNę¬+ŤÚpŽ™–űäűÉĽ… TL7A¸X âĽŐX{ =&ńAB&~ëkř!$0IëAPá¦A”şŠÂXL„Ö2L¸h˙ŮӮ »îĐ耋 •ăżů|uí%ß÷™|;ˇdśş=ˇfĽ,âE’oŞ>´Nă•őbsŤ{OĂJÓ=?Š*é´…—Śéď&¦¶x'΄ÂV‹QÓ0¬¨,Mi-»ąI,\&ĺ°‚½TŠ&ě%rr‹)áŔÂuŔJ¶€Űú‚ŘRÝéɦwŕH´v$qÂOŮÁ +Ó_ną‡K˙nŇ_ßŘ»Qî~âVV†kě\ĚťŚŁÝn3ßĂďi·Ű.6«dyÜoą„iĄ8„·Ą$“µ#·ÝgY¬MŕüâűŮéüÝu˝ńłÚĚ_/ś„Žöŕí–ëÖ%nŻrGőqçúY»·[µÄ7 CÂąn)ÔX7Î(e¦ˇ%üV|ţ€ endstream endobj 948 0 obj << /Length 377 /Filter /FlateDecode >> stream xÚŐ–]o‚0†ďýMvŁK(mˇ•fË.–Ě%»ćn[šF„‘ńaś°żż*ʇS„Ś]•6ś7ĎyĎá<€ŔóíÖG{¤Ď8rF°]@‚[€Ń)$¶^ÇBř_đüt1Ń(ˇăÍ.”Ëls»Ű 'Ą WÎ×ńJ¬dä-ŢE“wűZ¦4Ś!§Őµü<ŞŞžT4ľŰ†k§ă먶{¨ qhTg¬bMˇňŇîׂ’ăLďĆŹćAâěÔžD~mDáÇĂ–Őç•Ç”˛ËĎ®ôüP;igýEí Đá1ó«ÔŐmXţ6Ą˙gÖw1M†ßń­gO*S'L‚µ/TLy¦îĎ®Ľ~¤Ă´Í´?©äĹŠÂĚťÜQ˝ŁÓZôÎMŻë¨Ó-%]·qK©_-ĄÎşČ®eëş"çë˛aľ¸ĄŘ°Ń˙Üôĺ÷ĹđŮ«GÉóÖg¦UúÝćSČ Su3‡–ee‚đJČ“=úLˇo9 endstream endobj 952 0 obj << /Length 1063 /Filter /FlateDecode >> stream xÚĹXKŹŰ6ľűWčĹV\ľhC¦@nE}K±eŻKv%yÉŻďP”cË–Ýe6'Q9ßĚđÎŚZ"‚ţ‘îůÇtt˙Ţ2d±ULˇé1Á0W)©1ăMçčă8Móz•6îk6I$“c˙VlWMžnžR·X„Ů7ĹĆ}"’ţ>ů<ý€A±%”b+{‚–ůăeA­ŇßzĽ4­\ąĚŇ…›5ë*ťŻ ——€Nڽ籑ę#Ú—_möĚ×ĺ˙9ŽĂ 1,P ŘţDÔEâ±ěµí’·Űő3Źëţ˝0÷Kb8VFˇ„ql) ҧ –I>®7«|ÖŤŰrÖ€ě:ĽşŞťgcŢ—Y™Un•w~Q[/ÂłŮÉűDwMoŞő|;kބ߅÷§‡¬Ęö›üXgłu9÷Kč2ˇfĽÜYŮ„™Â} /YxćeťUM¶ŰĐ-sĺ„Ęq·tł®óťîí†|Ţmîô'^VŐÍ9ÔĘÁĘjHŰć ®9(”—Ë0ܬÜĚkäÇ^#˙lˇ¸㬜ăI˘´ §áżíO =Ç^ž Fac-ŕîXćŤţśŽţQ%"Č#Ř(Ž'Á™ĎŠŃÇĎÍá#(Śą5č©]Z †­ńÂVčźŃßi‰+Ťd­(btm 8k)V„EµKŰG}t¦ J°Ń6¦ Ľfú !Pp…„`5Qp…Á†ë>n{3 „1SÂqt§7@„S…9'·Ń©T Ř&Ŕr9§/1‚j `ĽE9»ČFÖž'/‡eDceiÖ_§ ţŢ3Q0á ¬˛}Ěs> stream xÚĹWKŹÓ0ľďŻÄ%EM6O7 $Á•JXy·±Č‹ŘŮ.˙;ă¤IšnŰE…KkŹgľůće·–¶Ő,íÓŤĄľ?¬onďBG Í9H[o4ÇsLŮňW¦ăúÚ:ŃľëQDYqü“, ßńuąË›ŚÓ¨)hYDŐ.› ś˝Î› ŰËĹŹőá°m3ôLS0ş-HŠUÉfµ.vćÜ[ľýFBőqÝޡaPFčšČ5ĂńĚ0pÁĎ˝eŻ&F^00+×­ňWšW˝·,'Ć\°č‰űć*Xη” ĂAˇŽ+ˇ,ătP óR aˇ}Y &Y ąŰ•§ó”€|KY§Y‘Ľ*ŢÔ;…ş0l=ńóą|§XB…ˇň 0śŃ‚“š‘XˇÉŽň´”z¨ÇĄĐZŘľţÄApH‹ŞQg@4TDĂ}řćÂđ|¤ż/$Ňoĺ>7FŚ0ÉŤ©„ńmťüjpFą4đá¤ŕY,&H Ő'J¸AĆŮĂÔ„‰\Âf—ŇŚ€β΢%bĚ%rJÚŚ¬ b…t\Ő$iж]~‘ôY âʰěśN+ł"ćĄ éQ~¤M¬Ą.Ŕ0ĆLé•›ů!U©˛d­¬p‘Ŕ˘«[Â^eČęşU¬†Ý*¶TA馬s’ô[ĺ¤Â11ŹĎ“ë ý<ąbće*Z!|mš"Văăzj|¤ÉՀЌ)°N˝íˡť?µ~gŇEpśB/tŽ›&&YƆ}Ůź9zRć¸kÖ‰ˇÓŹ‹XV”Äd!Čě(·«hcăÚH_÷NGĂ(ÁŘmś±ňßuIyW®ŽX{ém~OJ=& „±2¦ř˘KŹŐfĂÝ·ű{wôy¶xîř®~E‹8kő"ĽO­(™ľ›»ŕŮŇÇÁň€ŤŁ¶Čí»1’E˛ćâ±Z´Î˙©7i ů –g?hSă¶lOĽÉ4ă8Ťqdă†ŃĚůÝk÷lĎŤ÷zdŁ ×8gó@ç0ş$őÇă8čĚ}`'š1ÇŐ´ýSÍ(lšQČţ¦÷bą<>ĎżĽľ§#‹ŕć»B€˙dÚơ Ë5űłµ×îŮžďŮŐ@—’}vÚÎbtIꯗô—vҕ㸼5.¶äż‡ńňËţ–ÍĽÇĎ”´·$¤—Ť®ŔŁĎV&r=A.4 O¶kŹL>®oţď;5 endstream endobj 960 0 obj << /Length 422 /Filter /FlateDecode >> stream xÚÍ—]O0†ď÷+šxłéhˇDă…‰3ńš;5¤ŮWF8ľÝ:ůC>§W”λ󜷇2¸@O#őx}°FÓą‰ MŠ)°VëjJfkXKđ2¶m/\Űűp& ÁdĽż‹}oăۡÉĐu,–7“7ëY+A“4H^lüČůŠ^U‚nŠŽ ˇkeJ®÷Yˇ”‹‰gĂČŘ–ńPh«éóĘ=¦ib•`%}˙ą¦śX&BRđĘóëxy”»zSY g|ż?_CYkDÎIkDěĐš–=I%c±lhzšÜŐô*˛JÓé@€ĺ¦÷еÜpćůá[~†ˇŰ2ßu.ëY%Üoózv\ŮjŐ`PĹÓ™ž»Nď­TM¬ň} uönű±,çŘÔ¬ł.bĹňxy…’“X'ŠĘüć>Đh´ĘTaW°+É@'ŁršÁîŇăR…Ô;Ëđö”íşl¸«UEý€łvµ;»ęâ Â5ŕ‡ü퓍 ÷đ*Ěéó@â%gęt®™? „Ŕ™8YlBĂ0¤4Ňp.ĺŃ}JŐÁč endstream endobj 965 0 obj << /Length 411 /Filter /FlateDecode >> stream xÚÍW]O0}߯hâËf¤ĐB;Ćgâ3oj˛ŤIäŁpúďeGŮ@XřŘž(çôžs—L+ €§‘’]Ě‘<300 A1¦ °†ˇJ d ±J€ą/cĆśĐe‘ő±śH“ńö.\FéÍu˛zUşťĽ™Ď@ŇÔ5HAđ+çKŔ{±9ŚoeŰŃáv‚·ÔĘŽąš¸XX ±Ç­›‡Ro«+öťŔ?Ö%n˙Ł‹VVBź +…çęć-żűTȸőiyáÉ l)´S‰iňB EdÍ*tcÁáů1÷.Ń RëDźĐ!Rź–Q’Í*#Ž­"Qy~˛4ÍŚ µFśÇş@ě?Ť×ܬBĄĚWŽ?wăEĆ{—Ë> stream xÚÍWŰŽŰ6}÷Wč‹\D\Ţ$Šh šŠ˘¨ß’@,Ů+¬n«ËşůűEY˝Ňz˝Ů´y2IqÎĚžáĐíAWdř}żYÝ|P )¬|ćŁÍ1Á0÷)ň=‰÷Đ&Fźś0L›,lŁ»dízĚsô¬IZ3ůy[mňOű™xô—ő—ÍďČ‚#—R¬< cź>L0ŞCx_•ŮעĚÓ( we=±,łŃÎIołěÚŮuuŘ˝™s˙M$ř˙ aŐQŢüč\ô›ß§ET]»Ě#λ:moó¤M·fţg•ÔQ 6Ü Öę GĘÇ„ţSZlł.rü’Ľ$ńíŰeÝا}˘d…M—_}µťP`D_p‘Á]ĐęLŞyT]‘*잤 łĺTźů„#úléYfÓTXŕۧ ˝ ~۬îWŕ ˘JR1 ®Úć«O_Šá#D€ą Сߚ#†U `”ˇżWͼŨÔĽ‡’ÇdőaX‘>Ć,őQŔoĄµµ$ś$KzďfuW—6iÂpćd<":ĂHG‰ń‰ŠxHbAäͬŘH<^»Bgc˛âN\ćíDO ó€Ęl^ R8uŇtYkĆĆâ,*ÔŐ‹fYöŚ)Ě´V‰ŔD|“g f€$j}Vćc§"ŔŻäň X>e/dp"Ăđ6’™BÇŞ›d«űĹH©˝ĹśP3ýz,9-y*ל#Ąđťc/OP/Ő É@ô5kU±Ń˝äNűÄ '˘†YTËC„üX€c›|˛g®ŐÁŤnś'7z¦E©{¨~pĚTO¬RÇW5ÚIĎźé>QvM÷JHĂë•=®…Q_߉Îó‡çwŢǶlî-déÓó°ThQ8Mą°L ŠţI´v´ endstream endobj 973 0 obj << /Length 420 /Filter /FlateDecode >> stream xÚŐ—QOÂ0…ßůM|#ĄíÖ±Fă‰řĽ7%Ku‚‹ë\ľĂÁX·m1QžĆ.śÓ~÷¬Ë9@இ¶×›¨7š0d @4!Hq:†ÄŁ JŔC?ŽÓEĎÓŐË`H íoî„Ě–iĽâYU:WjńB>="ŠÓčř†ľ†CFÇ%;ŕ(VřâËąhIą>ľÜčkÚÝ w["d¸r=KóçL&[Ď«ŇtÄg3řz­l!07¤üuŁĺ]̓ĺ {—ňÓĎůŮ}OÚ5ĐĹ©2Ô5'’¶Ł°Ň©Ť\R)Ö-¨ŞŕD¤xk+ž®Ö=ĄSł|DVŠŻ(¸mZm˝c^şG±YvÍ®í[n•źFď’ˇĚÓ÷Ľ›ałěD¨ń•6ęő.ÖNş$»_GŰ^CZĹzĐĆý„jz©Ű‘^`îGđÝ Ô¬+¤ýA6ظôĂôţi~‚ď_# ˙°Něďiş‹ËŘö?'#I`3s3Żüćóĺ’ËiL+ ˛z>Mü°ń—„Ťaŕůĺ°Î`†ŐrŘŁŠä6ę}¶qÁX endstream endobj 977 0 obj << /Length 592 /Filter /FlateDecode >> stream xÚÝV]o›0}çWXÚK2 Ç6ŘŘę´‡I뤽MË[[!BĘĆW,Úżź´b§ĂiĄ¨/Áńő=÷źëk#°|µĐáűyi-® FXF€¸: F=H –!¸™ů~\&~ü^ĎmJč¬ů—ÖIűĹޢ¨›}źţ0ż[~“Ř6ĆPĐÉţäQ|ŐbŘ.†ÜuTH›řOIbt`OHăiż¬JdÔëq‡*p‹tCµż–!Ó3¬ł8φ{5ž6b¨Ŕ­§h¨ö7ŃđIĄä±ń<¶ăő$YO¨Űá(öR•‘ÚÁh?´qÓzúAÖŔô÷;qlâ@Ů46ëËŇÚZXFC칲ąŔe bJŔ*µnîĄQ&ÁÁľ]šr”€ÖwE7Ăž'“w$mżmĐ&Ăă Â…˛÷˝HPŃ´ÎaL©OsqíňţJ1'ęaMµ VU9· Ełę~Ý Ęő*ĎÂněćĎ6uşÎŞn&ÚĺéČá!˛++زDŁ–?JÖĆ.äÂ=¨rĺ]ś­’:<üQŞ´(ňäo–§qŔűOúŇVööÉ«wś{ł~†“ëöu[üąŞĽ o5˝ˇAĎťĽ9ޱ‹ýšZWćę‡qů+ŹłĘäş˝`Ň~”'ˇžyc}©űQŠ}dĘ|sÖ…¬^e6:Ě'âÔÓÄÉdžo`Ú‹—˝•fřtľ¨łlRÍ&Ę^v5OďhÍĎ™âżvKë=lo+Jˇ'ź™6sŢ…Á¸Čŕ?08€a endstream endobj 981 0 obj << /Length 1094 /Filter /FlateDecode >> stream xÚŐXÉŽă6˝ű+äbc6I‰‰9ČÉ-oÓĺ¶mmIöĚß§¸H–lŮíí\Zę"«ęŐ«ÇEĆŢ›‡˝ß'Ř=]L^>KęI$9ĺŢbíQŚ#Âă,DÔgŢbĺ}™.—I•.ß’]<›3ʦúż&OŠ|Yî—ďe‘~Ď‹,Qér]¤+;ĺÇŮ×ĹźcN’ĚĹąčgţĽb†Ťg@üˇ»…Q«n€Ń”ű5ů4ćŢh0’źtÄŽĆöéÍ[ŘÔG’›č‡$ŹŇfĺŇü y^ÔzŤ6żśG5¤đ€p08´ju;kĺŢŻçčÔ÷ŔČ€+jĘš´NN+ëĚŹŐw˝ĚÔQŤüV˙{ęě5¬ło~ Î‘čM©îĐűŔ˙ˇ:Źyűp¸şßüŠ:Žł7§mgw†ą‡g„ĺs¬ś:< ŽłŮł›Dr1ĚYVř˝űY–ä˙ĎýěRMęŰókâ÷Őôň9˝.|ÄwG– ąŘ@,JüéşÉŁ °~‹ŁHúŔ´Ú5'âo‹Éű„€{ÄŁ4Dű•…‹˛É—ŻŘ[Á|)Ľ˝™™yKčX©÷÷䯱[‰Ź‘t:6eąÉhbž‘0Lyý„šŃÓŚś ¨ó)y€(á”F=#I%7ţڤŇ7*ě'±Žč„„HŇö;*˛˛©ăĘĘDŮG™ÄQ<Éí“Ę č˝QU2WN?¤Źpxđ>’UŔ%´Yî‚Ć3¦ßĘm\Íí"Ąˇ@‹ášŞ4uss€Soô[¨jĂŞČT’[S˝Qµµ&•}ÖZýzȲolĹşť]Tqg:]DBU’·í˛©ËP·k7M嫱X!Ě‘Pô\¨ ĘŔ«šhăŘNp0dÇ–M©?Ő%RLcĆĹiúIżJË…¶]j$E„“›IűŤ´ÍŇ0tôX—ädMfGuě¨é3ŤpÇC„)ý°@° äśé‡™üă~ä‹.3’M˙и1˛Óďú `´i ?ě*„ČŹeäđnZ±C »BEH¦ €mżbLóxŐb¶feo‰^ě;ÝÄŘŤ´Ň!¦Î¨[i”HGäččSUUD‰ŞMJG4á;MĐVt€ËH8FZőN®V?In§FE^oUU»ĹA]§\Q¦?~ÉĹC-  !3s%űŔćPî›P!?ŞÁ.€4ç)j*ě§=×&xJFr(Ä ăř  „ŤŠ] Ű+QU0ÝołMá i»¦ÎĘŐĘ^ŞŤÚ¶nnR'í´öTp‹ŇĚę\ŐvFÄô­É⼮Đč×˙qáýźÎţ°Sé żŘ«8řô.šťM#čçťß ‡¨ŮîęËóÁiwLJŔĺr˛âżXÎÝÝ©"•ĆĎ,¨'ĽÁ:b ® „'‘îNGüpŕký_(ŞjÓ endstream endobj 985 0 obj << /Length 455 /Filter /FlateDecode >> stream xÚÍW]o‚0}÷W4Ů‹.łŇ•fË–Ě%{ćm[qd|(ř÷‡T±-ECQ·'Úďé9ç¶·ŐK`€·±˙ľ¸ÉŚb@!%7ŘÂĐ${ ±i7Cϋֱ·ńٱŤíánVř1›Üź†ŤG_î;[:– ĆAj Ů˨ಓ<ŢD†óÖs?^xA¶MwÓިĐŰÁEj2xRpÄMü^} ˙é8#ĄËů¨F×*E?îˇBžČ'‚\±(ŞŤĆ‡űHF_ÝlżŐťF¦Đîl÷6¨ďÍ͡ڋK0—ŤÍ5‹[qčzI±Ĺ.ިzZĹę‰^‹ ŢfŐ1Ź:k’®şj§ëh™.6 5ęt’ĄŽő*šsýö|‹˙»;XÖSżí'3ËáţŃ)$¦U>ô)t‡­†LGHyuż4şĺj endstream endobj 990 0 obj << /Length 436 /Filter /FlateDecode >> stream xÚ˝V]o‚0}÷W4Ů‹.łňYi¶ěaÉ\˛g޶…GV F+Ůż s-´ĘyBÎ=÷ś{ÚŞ5ĐŔËH+źOîh¶ŔŔ#7†e@éŮsh6pđ6öĽhKĽť˙µšLmĂŢhćůaXĽßR˙nňáľć5§ş±}·÷I ß5[ż?⦖Ë”ˇ×ŃžCÇŚě"‘»şěm—>YyAš%˛śD;r¨)Ä%q+}{•>¤Ö—Óü˘>~ą«> Ť{Őwf~,‰Ň¤>?~ą«> l~'ňŞĹ2z9 7ýŐXË1{h·Q%łPQ42]ÚČ’â®y8ťźżĎ?_ b˝¨v%K‚˛ÖC^lFSňť¤qäřů¨î@´ró‡â¶ ·ZŐ&,őÚ*Z®uđ”ňQýĽŃ<óáçpÇ|Ýy•rń㺥¬4«Nüj‡EHˇK—ô٦úy~š…C_€Íç/tHÁ™Xßa@˙3˘I$”¸ž-á{aĂĺŁy,ęi¨Ţ”§ëi¶°î?>žCdZů]…ˇă8EEÝÄäŮý#+¤K endstream endobj 994 0 obj << /Length 419 /Filter /FlateDecode >> stream xÚŐV[o‚0}÷W4Ů‹.łŇB+Í–=,™KöĚ۶4DÄ‘q©Q ű÷Cq\¤u*č¶§BÓsľďśž40xęiŰńÁęŤ& ĹX.Ŕ†:E€’1Ä:–^úś{KźŻěŹŮ`H0éŻß"ň?Ă(đl?źĽ^›Á›őś‚Śě'(yŐşÝŕ†‚¦ˇËĐs/‘—ćnä;[*YqŮrľśÚţŚ;Q®ÉĐ6PuyĄňjůőcÝz.D*±_%żľ¸­xii‘^lďwÔ¨¶ź*őw‘u"u/dDzQx\d¶Věi#nĆ‚^ŇŤCî%îľTŠŰ&Ą¸ĂżÇŇ,¬C†PNwĺ…S?v¶dwŰ(cď÷ęÚugŘ_y•js<śňíh“vąěI‹OČÍ~uy~ĐG˙“>Ő9ŘŐĽÉýßŰŘÓCo»îѡĎ0ŤXdsť„ľäěÖś‰â~*Q}@›€Nt‹ß1CmCăth@­j rĺE˛Gìü—Ç e1gĐ4ÍśZ ňhőľ¨ ŠV endstream endobj 857 0 obj << /Type /ObjStm /N 100 /First 887 /Length 1129 /Filter /FlateDecode >> stream xÚŐ™Áj$7†ďýőI%•곇dăśËzI–=§ ăYěYpŢ>żĆśhaěč03Ő=ĄRé«’Ôęň˘Ä $f·()G^»$/ĽÎ’Cű5)z¦Rr毋ń?ŻA*ŰşUń ‹×$HĘűYbÎŻÄŹ%)©HŚj5R(‰‚ILp ÔS´VÔÉJKi›[I4L ôĐiŮcŘ‘ľşR(tŇ!)ІŁtÍťĂH‘~ŇzRă°)#QG•d‘c›×ٞQ ÚiĆŘěd A…"KŞ(-RČčDsJKsNK¬Ľă´®ćM0ŃJ*ę‰vKAĚŕEGĺ*9˛¤$9)ýIچŞ.H‘BĄĺd’3šŕ’ ý"Ů”vče®F”Í[ ‘ ąůÍŚ&Ă ę•xTf\ه )ĘQ‚%-°ă’y™:Ą4ˇH±B™q5FąJńŘ6oc“©€D‰bˇÖL4‹-?HÍ´™¶Ţ©gYéŤZfÁnĚš«a•řÁxXe?ŕH¬ĺ[ĹŚ g&e v•5 ZZ2đĽS) ˛ăŞÍUffÍL0ka˛a¨Ö\eÖĘĚ=¨¶€yX[¬Ŕ<ôŔx‚yčŽyČÓ ÓÂsü¸&Úaxn®˘Í$Bő8ĄhçĺÁ–óóEv?îoöw—_Ż®Wi“đŁě>\ëÝ­¤ÇËź?_®«ÄăŤew±ż=Čůąě.k%®ŁŢ'ÚÓEfŇsLŹtAí±ő»wËîĂÝţúr=ČgöőţBvźÖ‡|Yř=Ú}úűëÚśřs]čÜía˝=Üsn‡Ö|Ů}\ď÷ßî®×űăňpĽőËúÇ_W?ěäsÓ±HČH_ŘÍŐ۲éq OćßËç¶Đűő·ß9éÓYm1 ĺŚá»ývsóäĘKÂyĆcAéŽ"x ÔdĐ#¨Ă|FU;5Ž"¨i‚şzÔĺîsąÜnRNĹĎ}x¸» ®s­_™†±×{Ćn3fžÇFxAżűĆ%Řk‡`Ę%ýFě>ŚŕU6â?‹|÷‘ĺžR;8HŁp Sć‡÷lA}uß{ŠäţËŁťßĆx´łŕ|)`=‚<Ś Ľ%‚—x–@ =ŹmK(bęxĚx–Aě6Ňv`DóۦijŤăeň=ś: ǧź/©;ň´wO˙Q˘Żq`cŤýŰş)kčkŘXă8…`Ęí˛Żd`c%ă‚°ÉXč endstream endobj 999 0 obj << /Length 626 /Filter /FlateDecode >> stream xÚÍVKŹ›0ľó+,ő’TűŤźjŐCĄnĄŢŞć¶]!HÝĽÔßá‘©’ ›î cfľď›ńĚ`‚ /©źź¦ÎäÎ0d°‘L˘é1ΰ')’Bać 4 ŃýČ÷ăUâŻ_ŃŘLŚŠ·t“¬c$ŐÖŰtűú~ü0ýŠ\N±ćr)ĹFX ‹xŰ ćóÄÚóWł ‰"Ŕ'%üiô>‰ zĽ+ýÉą®WF—ď:,~Yą¶MŻŽ»‡7żuě(9»hb?6čĚ-Ţ4oĹ.oű&‹—Ů%8v(=ŇM~ăR88·şW§ă¤†ÍęŚs‹˘ >\ňU„A‚˙÷TäÜĺ-¦Â ÉxŃŃ =,µD.󰡇ŠoÎç©óۡŔ@ETq¸ypÄ$CŽf©s˙@PAöŚF»Ň4E`  ¬ôÝůÖsqˇJ`Ż„R´^ŠěŇ2±"lZF–ŁE[¤´KZ$CÂÉ$¬ŤÍY–F«đŔfZ!!kęĽ CpˇˇŐs.mÚ˘î€trǵUXhXMFVc—2Z?FŐ"J˘4ĘÖőör^ˇX„Za%č% úŕ’ µV›üüÓ"™-źž˘UľĚB·ęƤôz<[Ś]&Ž5o˝š$ÇNqŻiۧ‰`.˛qy&¤ußoˇşž‡‰·ďÓşQßÄŮ,Ů„u«€ľť@=ăÇŹ§'=čěë|1¶ H.žR ¬čŮcÉrcĎřOuŐ‡ń¶_˝|}ę­yŢl<ë,¬|wQ ]ß&šŁj´ X¬`’şĚ`­u…M9µ\`Čü<ľ endstream endobj 1003 0 obj << /Length 1530 /Filter /FlateDecode >> stream xÚÍX[oŰ6~÷ݰąY’âMذ‡k±ˇŘ04ĂÚÂPl:&K˛$ÇIýII‘:±3Ý“čCňÜřńśŹĆÁm€÷Ü~şžĽ}Ó F± "¸^cĉ —F<¸^źÂů<­łůmz§§3Nyh~•űy˛Ząßoóez÷s<ýrýkŔR, f„ Źt5ÉßÇt• ą˛»ńŮ)X&ßŰÍłă¶O‹Ł@ćŰ ‡"ľ](Ő˙ŕTŢľcj€µ™ŠP"QŽb9…­u>ťE‡›]Ö¤eöć· ŔqŘě§ .ÜlâĆd 0VHQ.ZMź1« pwkrí´é)áá}YéşN‹Ľľ)eaҸŮL'u;,şĹŞujÝ FŢĺZ/ëvA+şŃÇ!‰X",ĆÉ\€é&Éą#Qř1ݤYReSÁCăRÄÂ}›.Ó)ä÷.]şü€$±3Ň›"0Š#ůrnŘ85ę 5ÎÂÍCg±€ř«)Ăťm:TXkfŮĆ*bD¤{¨—Ň>mfhŇfľ&m曤ČĹ8¬]$(’}Ełhňóőd;1¨Ŕ "p!ŠTŔŤ+*Xl&źľŕ` smhoWn ó'Yđqň‡§RF„ˇJ«I*âl–{ŹI€w0ż€IŞl€#“ćŞ=µÉ"ş„M&‘ŕtlÓTŹQ{ĚäF%EDŚmn=x•Ѩ;ďE±)wŤîđłnłÝMŞóĆý*V’0†šŁĆ4ĆPÄňƢó  Ößµ©°dź6k7ŞŠ]îî ů°…•¶$•Ĺ2l˙ޫ ŘÁČó€•: gŤSţď˛!G‹c¨“âÄ*€¶9ó ŘT҆8˛é…,ĂĐ h| Ł $€ÄŚŚú1ËŕJ¨‹—°D`8˛Zy«,ň j,¶žŹč‚2ǰ¶‚rYŢ@TéM’ćK*çˇĹXOîşďˇ›mű·M—: ߥů"Ű-ŰţńmYdy±I“ ­dÚi»ěĆŻË4D:ÔŐz—‹`šŮl™ntnşˇÉr„q¸,L:BʰęŤĂ:_‰¸ŹŐPIBZ* şWE–ą¶jĘ^['bâ }ŻvůÂśŽéş*î*«ůˇ¬óĘĄÚţnÖIÓ-Ëp˝îäÚ‰3ÇOG(€ůMš§›ÝĆ­)ŞVÜ„«GMž˛©3 ©k,Kˇ7e†qÉ^˘ťpđRJľćŕÁ·• Íş¨µŢ™cH˛ťný·ÁÚ%í‚2©’ŤntUw6ϰ«†›SŻ|^*¸y‚ťdAĂ_V~´+ŐkÓ›˛yđ=>áVÇJÍ› Žž5ĹĐ1…ě]říĎŽes enŇ“űĆ=}}sĚÓA]ŠI˘S™Ŕłé6×KóKxˇ…·3čŢ®bďÖ7čĎÉ­ž«™öâŇrfÉź?§™y¤ŻßLwS$<_ÓĹÚyĄSľXě8?©Ř±řU˙ÖIíyáľÝuŔ1 €ËťŘ={]HöŮ\˙ĘÔGŮUÚ–Ô._ąo?÷~[Îŕ řA5]5ŽŰÂŔĺĐ{f´p—5nś¶ň"ź9LŮź®Žóî ôä)‚‘ŠŮË`„Š"G`4*ővgu©đo„“ç]đ¨ěŚ2а°QHQGÉ,€ŕĹ>Ăôě-ęÉŽmÖF6‡Ck ÓÉô=´łÉNݍUn yň߇›!‡WçÇăŽőä÷””$÷˙AJř·M‰85%Çń1ďď”"/chd·˙qFG[ŕ©ú : endstream endobj 1007 0 obj << /Length 1126 /Filter /FlateDecode >> stream xÚÍXKoă6ľçWčĹ"F|I$ZôP »ŘbŃSzj‹€++±P=\IŢMţ}‡ZŽĆŻ­Ű=iHçEň›ĎŽgŹłxöţ*ößźî®nßi6ÓD',™Ý=ĚM‰b–Č”0.gwËŮďóűű˘+ď{óWľ$“s;ęň× Ý ¸_oŮT7‹?ď~ĎĄDË‘őÇâsp×u^­űç?bIżw›#A‰ü~tż6m_ňľĚź*ó&cgńmßDĆ·ď„zq@Q˘H*Ř,b`*4řľXŔÎĎ *çy˝XĎ ~l–źLWdÖNYOÎîčŕÓ„Ŕ8F{ĘČ5U„©AÇZnÚ€%*É«} Űb1¸Ł/lŃ›÷«Ă|hʲ±i})ęG?µ©łľhęÎ'RTëňĺ6ď7í8uWQ+dMáݡB¦'gÝ›˘FéÖ}Ęçen«ůTdÍckÖ«"Ăő t«M…:>Nš§í$›7¸č-±y^ćU^÷Nu d Fhz°ú"–ÇTźË“‹OOÓů‡ëÄ™„7‘Śë”™Îf$cLľ›EpÔÝ ‰[µuďˢĂoÖTëMź/q´Î[żm˛śXď8mż“·Ďőĺý˙®¨łrłôĎéxO·Yýxúëł#÷`dX¨(ę0T$oCĹ`ŔµçđŐ6Žę »HT‡Şt, ţkĽUär¸w0 g;·:SŁ›KĹvĆMÚŰ9 K1‡ÚŠżjX°Ň楱°@;ťnHV™u8e,ŽN±ΰ©×ŔécŻ—˝Á14~ú„–¨­P Ĺ+I˘'T5ő  ¦§mŃN mŃÝ &ŃBOŔa6Pᢤ|WW7ŮŻLŹäޡFn˛Îů&†Ó€˙ú©¤ ;[JTŞ·:}łuťŁár*}ˇ *ŰŚý\+’:NŐueN_te¸–Ĺ·u䣮ě¦]ň ™6÷B×5Ya°UY•fŞÚ™jl §Ă^I }দDë#n*'šë“Ż*ń˝ť—x‚ŠB'މ„ă¤!7Ѝd`.…'9u˘L}üő·Ź†}3P©`Mˇ¤»ËtýV\X«ipĽĹcí7EđI¤ŚÎŁ;dXňh bw:©Ł ¨Ř®‚áTK‘M©óÎ9‡Mřµu‚=l'ô~ĹÔö™<ă`•…Ł J¸šÄ±:2µg\ÄHJmɦ ł˘¶(~YP ŤíŇRI.=0ŘĎ49G~í kw1%<ť€€Gŕ]i›w›˛GˇµŇ$LľcpŤŹîĚ˙ŢŇűnÖ'B¤§tŁrDJR}#ĂťŔ‘ÝŐ›°QűÚźŐˇ-+qĎŻćý”öŐ/îä˘˙1S’3¨ßeK"˙Ă’{?öóťAW…oýźqü˙SĆ/ŕd„@Ŕëčźđ%=PÁG[~ľ»ú}3|á endstream endobj 1011 0 obj << /Length 881 /Filter /FlateDecode >> stream xÚĺVËnŰ0Ľç+ô"6#Ň’,˘Eš =űÖ#Ó6Q˝ŞGâü}—\Z˛'~öÔ‹I.éáě,9”ç,Ďy¸ńlűezswďG'‰ÚUŹűˇG8c[PtěĆÜ­Wi.ň$ÉuZĎ*[ÚP“ŵʳ s«TZ$/8UĘş)3Ś‹^žÎń ·Ą„A›aa€Ů„»RÄ+ŰKd*ł*Óm„śt`ž§ÜÍűRT‡”ŃźŁ˘OŹ’‘nËäęܶć‰Ô‡c­â|YŠbĄbĚ,U™J›ub4$óű:· 'ĘÚ¬4ČÝ´"I°ce«ô(rEUĺ±µśă¬aŁŰ•¨{ë T*¤î· ٱ¨äö‘ŰdPn •2¦řCMťšÔ4mo‡oQ[žçŞ Ű8O‹éŔ¨%vŞBÄ’h”öÂmÚťbřŽô$Âckvú ˛8ićŔ8€SúIUɉ¬>ďŁ5›Áül©žěr=Ň%5[=2·TÇf‰\C]ôÁ0H›˝_ĂŐâ÷\ `Aő‘Ń'â#V÷măY‰ő?eËę•: kČs0—1Wc‡N;Wť]ĐćĽjćv†`ďrŰńĹQݤĎě…Ą:5O‹G_=-^˙iísS`4ŞÜ„«&©1¬2ŚŐj™â”v/8,”Ś%nWٵ)Ŕ¨‘°¶O·ŹAĘĆťĄÓpO~aíÓˇÂë铱7éWmżâdÖ鳉ű8`žŰč<8|(”š§n™”–"ÄĺźĆ~UŔŹHĚŁ¨ăÚĚőrĚq^|‘gsT“÷Őä5ŰY±Ď ŤOX[–5vrëÓë?ÝŞé›V ›ś`ŐĹóĚ”l& {üzµjw†đłB”µ‰˝‹=Ś3mÔ(6 ÝáŰěß˙3|Ć ŹÍĽű×­L‹úĺ §:$^pH<±>BĽđżĎ"_ĺ\u ˇw†Ó wTĺN¦÷Ę:ľnýih'ßúîĺ˝ĆmżřSîä‹§ů_ßµúy\|ń¶Śż˙&z$äN˘(B\ęű˝ż|ťŢüß°T› endstream endobj 1016 0 obj << /Length 1752 /Filter /FlateDecode >> stream xÚ˝YKoă6ľçWčĹ.b†ďZôP Ű˘(PÍmwahm9VŻ$Żłýő’’-ٲÇÜ\,’&g†ßOëlţ~M¦3AĹÄöę¤ńťLňuóíä§éÇű?Ł'HsÍAFś!±ŢÎóMÖ¤óxµji9x¸ÔNý×ébžÇëů:®š4ÎćYň”ÇO vN ĐÄź{쨶Ü?AóvL„Ó‹÷0,Ë|¸Vľ5xvŘBdˇI‹ë Ů­đâ]«ąqńîŢqÝłĺ™ÔHqÍ(AÔxb÷Ź@…i:Y•YVNÂ6-ÚˇM±hҲ¨}·JšMUřvÓ-Ë’)“§tQ>Tńú1]řaŔ;Í7ąď”U;?ő{”’„#Ăůp«őc\%ËéŚ5{ŠÓ¶ĺ¤\ů1'†H‹ő¦©ý`\,ý`űŻšÔ°Ą¬ťąL>`L‹Žj·Ç–nŃŃ-ëvľőŻ–đ×V¤Ů>&L˘Íě›oĹţÓIcŰ{ö¶—Öţ»“YÚ»čÔ}BTg#=­ţ‹lłl äg°;°*ôřËig~‘ąö‡ç›oťëba°Îcňâh3ľž†óĚ[ŤźľĎVĺë·z÷NËČ Ať›k†$ ͨFsO ŽłĹON’ĘznW­uţ˝NŞŘ»űFG4đşÄčäYMéŔ˘ż(‹ĺkPßł.1­Ň[+ASm’kÖŻâ¬N.Ë”ďc°_7P`H uUÓŰo÷7_nŚâ@ő˘aމ¨S-ň›÷q´„?a+mÝÔ<˘Čh­,ú÷ćź±B¤X9R”¶VµŢŽđd )đd €zŔÓb{ĚTxłÁTp¤2µ4˘:Ę©­ ŔVe•×^s±˙Ř•©Ő`śůŇů™Í‰n–MV¶áł«[K`Ôúä:ë$‡ŤČˇ­«¤®}12SÜř–K%ĆL’/ÇŘţYŽ‘ŃČ(µŰÁöşqz€ČÂÁÝŻAWRÄ5s¤h9¬{ŤŁ«ÍÝ• ö‘dIžMí{>ÓoLcD5ďźÖ_ŹCÚ’,Ębö_R•ľç5dů:(ť*¨Hé(4Š/18}_˘0Rŕ1 \Ś\eĽD1%Ú‘b@Ę#gŁĎŘî!vĎ đ…DĐĂz§đUîřr2ÄHZlŃhć˛@heÚÔ%z©Ë´©ëŻ´nęNxŠü¬SPtŮ:Ě6z…źí–ÖµľÚź¤ň#€Ý Y§aŠt`řÍ·uRßNgńÉÎÖĘÇŘP_r643eŃMQë*źbš É”#¬=ÓŻŢV`"É˝`·#˛KÄ÷ń`TrN1†‡B5š%OÇ, üËkŻeŘ""Ä„ˇŕ­o_ ůŚAQůőč?)`/@Ő¨ş.T@ý€ąt¤¨b§:‘ŕŕŚ!xJ¦Ă†<_ ‡z„ź/0”HJ†śb UŤJîŽc”$`”Y“ĺĎ+‰r…¤Ax‚Ť1AÂ)‰ťW’–Poń ’k4e/R# P0F Řy^IŚaFG LLÚPÖgéN‰#\ĄŐ§ÂV‚esőV¦Á č“…ścŠ49Ŕ Š–ş©âŇű±ü‚:Ç»J~®2a‡rÁŕÓvW®ÇlěEܶU ˛µ·µŻËs» zAžĂ°‚¨ yH1˘ŻŰÂó:'ăCHn¨;á$?ˇs 1Čž§°Ąt-łĚß)I Ť •)ŞĂIţLć‚Ă3%$„ä C8”űTޢ ŮŁxžŤL ü8ÚŹSDr8&ňřgń2 ‚+śúáć­¬‹Cé'YĽ83Pwŕ×ÍŘÉf¬ <Á­µ9@+yZWc7 Ś DŘÁ(î®n8cç#Š=e0cC1á޺ę>ćkG jź3Ŕ¨bĄ4AxB‘â€iQ.GŻpŔ…éÎĐĐtĆąžüáßžŚślÝWLšřó”ŕI;šůŰęŇFî9ÂÄśwf`¬µ ±]f/á”n÷%a¨ÝBÜ} ˙őw¦qľÎ‡‡ęněź‹nÖ§‹E•´×«Ş&rm°I–·ţÖjQ®Ó]'/—©˝N˛·IîiŻh«*éĆ6µ{IµM÷bčţľ˛öźë€Ź}ߏ}0{nm˘÷ňŇ ÍWU™ŰŢĹď/ű'ý${Ĺ«Ü9™bŔpŃ Ôjh+PĹ!…ÂB·ń‡p1X6ý?Ę&DT endstream endobj 1020 0 obj << /Length 1043 /Filter /FlateDecode >> stream xÚĹXKoŰ8ľűWŘ‹Ä ß"±‹=h ˝,Ö·¶0‰v„Ę”kÉMűďw(1®YËŽ“ŰC ‘EÎ7śo^ A+DĐŰ ĎWóÉíĂÁF1…ćKÄh†…HÉ 3.ŃĽD¦U[/ŠîŰŐL29˝éf+× ‚űH$ýóęÓüš ŠµŕhF)62(X,ĽŠUőŐ†ŤđÖÚnQWmĐp}řÓ˘h6ßA%é5žVřŮÚÍI…^LlVĺZ»í.0¬Ë?Űł†î\[­ś-‡·MÓŢôŠIĐ©Îę ęlťř”yY¦9âáQäo9Jąm6éĎh‰É[VŰ´¦N/Ŕ_Â0ÜçqĺJűíÄ ć¤­®Č“ś‘>'§~ŢĚRsפŞ#íiô×ĹÚ‡>őň‰jôĺ7Ď-łaă]źŻMBýzŇŁŢśvŮČę1G<ą]]_ćŕĺÖÚ>0Kiś †f ´P˝ďţăäő|ňeB‚(˘JbB(âBci8*Ö“ź*á#p…ąŃčˇ_şF m@ŞŃż“FÚ0U6¦×ÄŤ0˝ăŹ1µŔ,3I05´|ĄcĐŢ-G¨Ś€Ot–•9Y¦bÔĽ®›ÂĂŢľúp±ĆŠz#úUĹÖćťmŻfLdÓÜ O»Ţtßq ÔKUw/«\ŐUyí_Ô´Č7yQ=n[6Ű:öގX€}ŰŤX—aeöĆŮÚ®­ëZ<˘kƉĚ8ÔÇcJL$xš+¬¸ţ%~%ÇD¨^•ŕú\P)9 )@3†91čxPQĂűtMj֜ŨĂô6ÂÄꑸܕcôądOî(U ŇźCH`?¤!ć$»€*¦˝ńI¨b˙R_D'S"R rĘ01?Q#čOTcC~đkfśń}¦ů76íšá×|x„)‡ üű‚ŃVn5|Ş`K_ŕ©ńwť¸M”I¦y;<ťµĄ-ÇRZ¨ťć||p𠬆tŔJł_˘Šs5Ů«šź‹a pEPÉúbžč™Ŕ”˛$¨YˇFcÔĺ¶YŹ hI@9ˇŕ53ęßă ¤vÔ’|Ô ŹĐ†@ mčÇ'ڵäĆ8ÄdF1ľĺ{Đt}#á.l‡ę¶±Eç/ţu7Äą»ű°dŮ@[˝‚ ça˙mąsEW5nhSű˙ <>ŹĘÖ0•D“ĐVő® ÓÔ_ů·ŕ(|˙÷Ů 5šŮÜăućŮ·zrŃ4>6'®.ľD=iÎč%ꉱ¶WŐĺcŢ€ńĂćĹý3üqz~ŹaúkÁŇĹ·‚Ówń§¦{ň˘ą^^ę€E[ič DX{×4őˇc|v<´/ż3©˙ĺÎĚ\ř]§Nö(_şEÄúA ‰Ę%ôI…x&`fˇ„Pˇ˘-PÔ˙u‘h& endstream endobj 1024 0 obj << /Length 1858 /Filter /FlateDecode >> stream xÚŐYKoă6ľçWčĹ^Ä\ľ)ˇEč¶XôR4·Ý…ˇČ˛­Ć–\IŢlúë;CRr¤Ąť¤Q ôdŠŹ™á<żˇi´‰hôóőż?Ţ\˝}'ă(!‰ć:şYGLĆÄ0ie*şYEf7Ű|ľBÍÖÇ2k‹Şśşy˙ö]ÂTŠm€Ş=Q4;ÜsőÓÍŐźW fiÄ"Î)ě‰-m ´łýŐ‡O4ZÁâű–’8ş·[÷'IśŔhý~ő›sŔŤsA„ŇC1›Ľ 0 ŃRMÂTr˘…2ÝM«–„)1 Wm“#‹¬«:Ołí׌• >cA ’ŤtśeÎřCŻI…‘7~–îvMŔE8#*éw­Ë!AL˘ş-ŕhÖíěUa$gŐÚÍ´ťG6m]•›ÝűĘŞrTŁç†$I´`Ś$ĘË^ćY›Żć žhŘą?Te^¶ ~Kç-aśŘÔéaëćî‹vë&ÓĆÍ|ž3Şn‹,÷çý9=Ëwůľ#«‘l@Z*XwËÎFŞŹMŻŠ´ô‚§ŽßިÝmÜmcMއ×ÍW”ÉđŮş®ö8˝ŕ9ţ~ Čf(IXoŁŰ€\ WŮ‹ŐVŽĂ“t…!ĆôtÓ3teź?< öX!@ˇ[˙H™pIł.ícd·«î›ŹTŃôzľP\Íná…xSbh°ÎŰc]†űířĺD©ÝÄ›G3îw Ô–Öč{–¦d$Ą·éÝY‡ë@úńą»sŠ>n—:G;·â„ uuI {ŕ”L˝@Ľ˝HŞ Á2KJol´c (˘“>\d—DQqYr­ĺ$’KI4ŕ±ä·iSd¶‚NŁ0h,)ĚĂÔ‹ CßtÁżK“CĎ<ăŠY|Q§J‰X!c(yśżćr Có)Ĺ…gş ÝŤ©/ű‚fě˛Ü1`2…Ü µ-Î@î4â±ÖR6SNÄŁžů—C~ÁřŔ0%,ň6˙¨łŮ '»RÜ€›™IÔČ $|Í˙ó  A9źBn=†·i/öá>Ŕ’KBu2 KhF¨ŠG·^‡Ó@¬ŰŢ›ü—ĽÎ±40>»ÇBFĺ CWšŃ;‚5¶ťj6T|đB¦†©¤Ý¦­«î}&#w?ś €±Ô11ÚĽ687–”ęđÄyŻ:AWwA¬éOBË)nŔ…¶a8¸A8˝@ő6A0Tnr>+żxĹĄÝoÖm#—î»ÜĂu†ő¨Ĺ ˝P ů¬ÎSň×ţ«:Şw]. Öu>DúÎş[OÁöGČóľ_랦2aWP¬–mµă-Q—/h†ő Ă…%t„Uv±KŔCYűĹ“€‘oeˇOp}Q.›âŻĽÇűŃb@Gż^J0ŃĂ3Z™aK&ľâřuNÖąň¸Ű˝\Vôś·]Ď’u܉cÔJ>ô!ě  ˛îéy Jˇ’@  1—Żz¶ĂdLa?’˘Ň[$” „ź4ŇzÎâŮćďWó…Đ"śN!kI!/§S(tB%S\‡C·*¤^Ç„ĎDlדđL ěWCžNă×V€\ĐVLŔS€ŹJp§Ď`Ů@4aÄ$ľ"b›!Ď®jŚ‚Őńj ¦P«89¨M„!M 4Ƨ—ĺŇ9&–ü=6X&Ľ«Ú_űP°~đxđ˛¬"\ůwč^…aƆ‰Ůw®şÍň ľ‚±-us­ěstî7ů'NXŞ÷ć8śĽő‹›Ú¶Ňď=¶Ő>mĎ>(> ëw u3_ą’ͤ}Rť beÓ«é˙P’1§ßVŐŮň±Ü¦Í¤íŮuąÜÁ»üáYUpX±ź®›Ľýov±†>űföŲMŰłćńo…/˘'ĽČPä÷f]˘ô8|ę–×/Â#©>§;Źä>W=QHgő٧źéŔîˇ÷nŚň}µ˛ž˙0̇QŮ'!}$µí{e–f° JĚß.C endstream endobj 1028 0 obj << /Length 1010 /Filter /FlateDecode >> stream xÚĹWKŹŰ6ľűWčEl.Ië‰R )ÚC F/i 02m +SŞHŮq~}†"ĺµd٫ݸíI|Ě‹3ůŤ°łq°óë_ůţĽś<ĽŹ©Ł8 ł\;$ôQ@ř!˘ ßY®śŹî™HózŧsźúîO™Ě˛U˘Š„I•đ/e…¶o§ź–żÍ9!(ö­^’€h˛ÉöVSĎşŠfýÍĺF"ąúű¸1ëy‹!ŰŠ=>k{Eőlv=Ŕľ«řČŹŁ•z>÷,‡ŕÉŹŤúĽ~đý©YUEů˙çćtŔ‡÷^t† yˇĐŁ`,D8ŽŚ±wRiĆT6íý”ř.XĄ>vYU±Ł4ă” 3řl7Ë*ŠŻĚ¤–™ŘˇÚZu‘ç…6y8í­k‘ެH‡vřÚi€˘8î†zO°›ś—Ň®oŻ(Ă5 ®—ŁkľĽQĆGÎËqX8+k8Ćmę-PKs˘Ŕ'ČC”Lçcěţ5…ŹËSUTr:®,M&¤®~ZqŐźŮYQf-°uĹ_ 9 §BÜĆÇž§/Hźf 0S]}˝Ş/vFł«x¨…Ě6‚Ű )łŻüÚ‹ó˘P Íúfă!ŘgŞbŐ±ŐŁ,Ż9Ŕ N„Ý%ÓTx(öĽnćžľ[&6W ˛„Řţók/O§b‰…ŕksI{ČŮpx¶L¦ĂłĎáŤXfv˝=LYČ»\#y¤Ě^LÖĎĹŘ_Úß=čq™}iÔW‹Ţ3t*úýfŞ0"ěk'ţ’}Ż$_/nrş+[ŚşĐdöL×rC—ŢľC˝$Řh­_–“&đ„âŔGĂ7\ 0$Nş›|ü„ťläĐ”ŤčΡ(ŽbĺÎź“Cż@A€X´%,5>uĚ—>#č~Âř.>#ř݂ިă^şK§„ŢĂ)Ĺň=żëÔ~€qP m®;dšß)°aĹU]iŞ"‘&S˝d ”¸™÷ő:~9q˘‘ÍÖVUh™ŁÚŽ‚ťŁŮ;T…Ř. żüMÝ†ŕ •ŕü ě‚:e’Ďz> stream xÚ˝WÉŽă6˝ű+ä"7l¶¨Í&Ča€L 2‰o“ˇ–i›h™Rk±ÇůúT‘%ɲŐksY,ÖĆW‹kk9Ö/‡ľ—“ŰOQhqÎâ p­ĺĆâžÇad…Á‚ą^`-×Ö›3źąîtÎDZOęR¦˘š~]ţvűÉŹ¬ĹˇâeÇšóÁm}«cś»c§‰2‹;A„R$µXĎh—R¬Í:Q´Ř”˘Ą5•T[ł¬w$a“gY>uűŘťm•Ö2WCó:GŰďí§Ř=ł×ç,ň=kî‚˙|a¬ţAŞ4kÖ "É?Ę*»Ý'5Űý„µ‡¬Đ0ŻVpľÚʱă¸Íć†v«ĚL˙q iýŤŽa5ÓB[3Ě3ÉŤŞäVˇ÷Č«Ve~ś™őĺIšg ›Тćc˛^f%ĽŔ Ť4Ü÷Bcܰęµ9czT“eOéÁGíőÔÉ˝xNĎĘćnȢ8¦g#°ý‘× Çăŕ@µQŮYdb/T]áεóŤˇ&f«„†Qv2T‚¦9Ű#Śż™}r2Ä]2uű0ĺMň“ňNÖeRĂ&Y#‰s?öí%˘_ű,öýaäzăĆSe—¨íUvHU"­ż_†P¨ĄŞ/†Ř¬ţr®D¨«÷ăô‡$»ăVÔ+ >ž˘ĘGSňY[(A;gúśíHO$ë«JJufw%_”NŹ×šg ľ$ŢĄÜTŻŽü“ľ˝$ňłÇq2”ÝăäÜ×0b ߽ȅ*Óiôórň0á ۱¸ĹĂ€9·Ľ8`aZé~ňĺ«c­áÔ3/ެŁfÝ[.‹ŁV™ő÷äłéÇüăá‚A©CI~H =żÖA‹^Äď˘3‚ÖM| ĺZ©ëx,ďˇÔuBřÁP)ác¤xđ(Nł%v—Çv)ę¦ÄâÉ#,íH‚ŇEz;…j\K,…mŃFž®J^ąˇ« yNőÎTM89˘úěXćj 5ÝQčWeNëťyDg?€XšTbvQ™Ď5Ăú‘vr“ČpxëĺÍa$ât,’HŁÖĐb¦FŘ…+N44k©m Ż»DŘw ł3 )¤†bŻ1]\ω%ßMMÇu+łş”Űť.Ó†$ŐÔo;gY¶cü&ćcZ.†,tmÉ›=Ţ:ő3‡]—ĆuŐ¤;łŇC+aE™Ż›”¨ZďůiÖJ•dfgZ-XÚť_[D=Ú©KŤyą%ůŤ7+’Iö6Y-‹LŚM•ÚŞs°Č5ŔOÖ'ł3®"ąCʍ§˙9‘ IU5űvTĐŹv6_´ 7ztĂUiđ0/u˙ćQúeŤ@ăc%Őúţˇ _ˇI=ĘagP‹;şA(÷ ĺČҡ‰­äK”é~ o#J%˛ž%/ÍÚ Č¸ŞŠ$ý%S^sĚ ×ŁĚ€ĄűĘ,Ţ’gçď@Ús 0‚ń—Ć˙e>Ä÷w@Ý˝vâµ ţ1w3± EťţcöčŹůcüĺ1¤š2ß?ĄHĹQb Áíç&©d‘g'•ďe’łŽüSÜóáČänČ#Çô/oŤ3˙XŇt·ű?w“3ŕřeθ~˙˙`8Ö˘ĺ^*ş S¸š˘Ą!ĺô%A†ěŰwâPtŮś< cA> stream xÚÍXKoă6ľçWčE^Ä\>DJÂ=Ř-Z,ş-šö˛]˛MŰjdÉ‘ä$ţ÷ť!)ɲé4é¦@/69"ż!żyJ4X4řáŠ^ř˙ţćę퇔)IWÁÍ*`±$б@Ép!›eđ9śÍň¦­ó{=™J.CśíËĽ*g»‡ŮÝ®*eµÍłb¶ŞŠĄ]ňfňĺć'Đ1eڤŇá\Ü7ŻöĺňO*©Ů1’DbĽŐˇÍn˙áNű~÷p·»öťA—űí1¸=ěôµ{P¶¦Í×›ÎĹŢ!ÔŰQrDŐT%$Žx0ĺĎ łŃvéŐ„Č4‚Ł5¨ĘÇ#Byż(«', ×ű­ĆÓĆÂmvŔçÚ tŢntíQ—¦„ HpO\sőţćę,TÁáE a­’,XlŻ>ˇÁeD¤Iđ`–nNŇ$…Qüvő«ÇeMI,¸Š$·J ±çZ#´˝†V¸ăHé6/=Ľůq*:6*aŕ gO–ĐW#,Ď%,˘ňµ‹hrNXöč# R@ÚłA&Ó(ŤÂW>Ţb˘˘´÷kŚźc§p‡#w4a9"&T©qt–UëSŁŕ˛řů÷Ź}Z(IB( ECŇČIúĄo.ť<,Uňčܲя2 ŰĘ,Á<  h#L„Úh ^ëv_—zig&-Úťö۲š@fz(­xîö™+ŕť“8̉&n¸˛ŢG\˘č$f‹ f’8ĽG̬Řk;­Vöß »¬Î¶şŐuÓ?¨Ý#s0ČTYkç…Î7¬J·FşKc°ˇ<_VŰlv85žN7ľnvr‘X~Ŕ?!™ˇ‚,v°8®ĽÎ‹IÜŮ+†Ď­áéČ ýÔ¨{¨łÝ./×@8ŹśżŤĎáŚC»; Őv·oµ“V&ÁđÉÜH˛˘pfţ w×WÎl–MĢ–NNÇJú‹43Ş©c%µnö…[ąÉ·ĚÎwűZ76&źLYŘÖůâç©#üyĐű ?1ăeÂ%EWlÄłŠ:žáUŽgv›Žx†Ů ĎŠ{ë¬\»!úţ×hî0€ź¬…®Xű¸łŽ®uc6J:đc*©C…Á€*iŹjgs çÖÍɆ'ѬQ‰e3Q=w¤sč>şţ T0+Ą4üeÂhhCŰÚ ţ†Zýhďˇaҵ=ßąµĐ¦ QGÝDcÚ% *Ŕ7í­Ć˙G»F›EKÝ,ę|n˛<Ďť¸Ý’F/†ŐťiA§5˛˛Ő岀m¤síË"ű¦ŁwŐ%ÝÁÎmĐ %Ďžüµ9ĘŇ<«ďó˛şőÉÚ•na‘Ďë¬>L” ŤĹÎşň=`«L5n4żÉËE±_şvř[čYŢŢÁůB7dóťďÂľ.ľŰâú]Íł&_Ě ĘÍ\řô‹žŃ ßj˝Đ{(?‡á‹»ih’pµ/Žč‘hńdďơ7Ŕ5eĐbUĹ!ä#ĆŠ’„óÎôpOŹZI SüUÔJAdcµHěąRý]ô*:c¬%cťÎ'|/СŠô5Ă;Q§Š{Oő„IÚÇáN×Đölë8¶Ëq-Ú=ľ˘Đ^"›ş$Ž/^ĐçŤ{ —glAŔ‹ąqśŰXźŰlˇÄ$ŃžĹ&Űαě t‰ ~W5ů ¤ßŃ´•鬎7w%…ö ç4´3_`‹\ÄOx't7"qL úŁ1e[+ßg-"*îŤVÍ˙‚ÜŽŻL@Ô›žDp[4eWA°ČÜ_žČđnŻëÜ$rěż{1¶­©1ĺÚNOš€DÍśÁ=­&‹NŚŚ’޶˙Ç Ř™ 3čÁś7Ś€D¸ĐEáD¶±ľĎy‘šŃQŹťEuw2ť"şÚő9ľŘ­®É(OšŚÎ‡ĺ3ëVW%LBʇ/@M›µçh–Ć–ßôŁżÖ¨Ëµć¤’uÓëKߡ†S Ş7« }_šî]?ÔCëÇë‹•đľĘ»Ź`ĐcÔë>,yžĽó2LMŐIÉyčC/.Ó˙)ux"ŚĂפm`éŘ9ÎYB˝÷ňQńěÓţß\č´›bڙȱ}ri‘‹°ÚąÖ»±s—`dS, LŠ…WPM’Ĺťć1żPsJŇă×eß—4¨×i /)qJ’Żü’%°B(ü<öŚ˘CU4.:öV6"Ü`U…ýÖŇő 2… ÇNü \ż<vń\úBy ťwůď{î Á|4O;Ü8­ÔZ?ĺĐO):bbüu‘s"# QŔ?îµÔ޲ßó7Pum endstream endobj 1041 0 obj << /Length 2126 /Filter /FlateDecode >> stream xÚŐXKoä6ľűWč¨Ć’"%9í™E9d#—L`°Ől·µÔ#©ÇăżU|¨%YăŘF€śř®*V}¬iňĐä?74´˙ľ»y˙A¨Dťó<ąŰ'L(R0žä˛ <“ÉÝ.ů=ýmĂKm7TĄí7·\Ň´4Ťďl­o«¦?Ůr°;?4Mčěl?tí†Ńô)®ťűŞyđÝáŽďŰşn7\¦ŹăÚţÜ”CŐ6=Ůüq÷ßQćŘľ˙ ůDpžĄurËá˘đrWͰą•@´ęëűĎ żýr˙`‡űj÷‘JzŹÓZ{Znňăďü¶˛ďQŕzËŃ2hĹź¨>ŰËů­é«ňľ·ďw Ć»öhŞ™;‚‚%˛5ŞoęöëTć˛ĎőPÝ›ý~]6űĺÔý ’}n«Ý3Łě;k/&Ěźöµ,VÍŢ×1?ŢÝ|şa`6š°„ĺ’PĘ)%~Ro~˙&;XË’L«äŃm=&śhĄˇW'żŢüĎż‘ÔX^ŕ)Ą€©<\ËKůś­†sĹ5¸r ;ä‚-î9OÎ4(C]…)çŕň9SD r]¸.HA9s›:;ś»ĽEVčÔ@ŁhęxŞ­źüt†Çrk<%ͦ ¦’¦"©Ź”ĺ+üH¦ăž&µ&SĎö=¸Ď\PŮU[çXp:D/E hMG \QÎŔ‘řv°Ý±÷Ýv¦śÎÉtćhaG˙'Dúx¨jn7‡#’‹(ů*Z3H*@«ČgßbÁŚ " G2ö2X3‘PĂ M$gĆu«8ZVPúśjwîF0žŞ+/Ş#k¸Ă<ęKw(F;,ńk „Îuţݦi·a*µą®*ž)’+Oç_p /$`4z°§R4 ΰmčÎ%ř ÷đ`ąłvl3D“Ăç&GeŚ,OMŹjóZ›ŢÜ9ç<Ąng» Q»–Žâé"KÝŰĂŽc]đ‹{‚9[Ű#oˇśY?żÂ)–xđVÝuîöÉ/ ‘ČDm8íŐťÚ`fg5’é;[ž»~"@+—)š˘~BěIŽ1jsmşŤ é; '®y±»µĂŁG, †Gt­Du`?ŞĂŹŞĐî0+gé.ş"°ç*DÚ´»Đ ĎzŽ´eÝöŕˇĂr·…ý]ŰË“ťÝ»(0=°m‡ďM†‘‹óăNýČç8“<Ä+ZDdYúŁ)řRT¸ö|,+bôPŃ”2Ľh}P6v:ˇ} †× çźN¶ =äਿü‚s Á`Îj橬öb+^naťő@RB!â“Ë\|S 3ç0‘¤0žéřVŞHhŐu8kED±ŕěT¸Zh-ŻÁë­Äśëד+› ç1}—´íÖ"“ 9c/ćÁ\A–/ŘU® !wÉ^k1Ŕ*ÉŻb0$‡şíˤ"¬ĐWá E ąÚ/m\]ôÜf˘ ´›A@…Ă!ŐÔđ8?Ş)N!đ­9GUh{;†Îx˘Í/N¶L|šŹmnOč™ÜT$v 0¸ĂśNuĺüŠ€ď.n_é‚Dżă7Ł÷Ŕ)Ô{ż=»1~™2/2ä÷c‹Üí/?˘ç2ZĐ⍆ťó]Đ‚táծ笣ţ ßs¶Łó™˛Ý"0çv™áů6'DˇdaP`Ň|Lđ2^řł®çpÁgЂѮ:úw‚č’‚…0ůÂF?taÚ1´ ćJŘš5čťO ĎŇSeKëë´Yäü…_]‚żý“$Ďź$c •ţ´÷‹/>€őłżXő)kľŮUk8*‡*WNÄËVÄ“Dc °¨,x@šRzů3š1őŮÝB{WíŢÁ`ô,ĐŹžóDp\ţ?Ć­,ú˛ ŹÎ',U{îýŇÄŔHnD‚GŇń i‘Ző晎Þ×ösź’ąYçÔ°s92^ď]Hó¶YlŻŠxU$|q˘Žeö»tp=á6e «ľöŕĘ)Óµ‹ČsÝČ «6†Ř”~…‰ŐÜÄŽâx]—Ň1…Ą%đpÎ冫ŁOçĘ×\±·QćvpY'Wˇ†KSé"áóĺ>P&ź7%úĎ3ř^gC–<ůQŮŽ_0č˙^Ž·\MQ ™Ŕkâ“ Y¨JŻ'$:ׯŤWaâÄŚőËqâlcś±µ_NfĚyŢ,š*bÉ‹Gs Ŕ´#|]©Âc…Ź'‚ ·]@ć¶!âz> stream xÚ­YO“«6żĎ§ŕ«ž ć­Úl˝­­TĄŢÜ’d[SÁČĽ“ɧO˙3d2ď'šn©[HÝżîiôĄŃRyţëńỊ]T'u™—Ńă)Ęô.)+•şJrĄŁÇcôsěN›m^Őńx¶@ěŇŘn2˙q5ÝŃYttÓtLŰÖ^l7ţ־Ͳ¤Ö˛ľçM–Ćíé7kN#’i[ĎăŐ ÓucocăşuO{óÝY–;łÍ‹¤N+° Ľ\,7CK“ţýřđűCóŇ(=L“TWQ™ëDë":\~ţ5ŤŽ „Ą'ŞŢEĎ4ôĺI˝«jŁ/?ńqĚ­fZ%iQ’.ĺżw8śíńÖÚÓµNŠÝJ¦ë]RTŻLwî¸`6Ç=©ő*fó‡sł§¦m˙ę|fŽ»-‹DĄ5ŹNę‚g}Gśćń/išÓtxSüDťxDçFf5—«,3M‡žôÂ×mßtOźŕ5Ëăý&OăŰČ{Ţ$Ú› ö0Šfö3 VLP0DÁťřŃh08SkďłE|¸ő=Ç p‡Ű~ě­Hz{ó2Ńń€çf<3Çđă©Ůä:ţ?~ťíxĚ­˙g),4ŮlU®âG¶÷ʬ?\sÉkćµi¸ŮŞö› |×µ/Ě›ÖX8¨>€|>H<— Cv"v«ŇŠÎ$i ¦qư´Ëă˵ADxaőu *«P™™~TÖ0ëAef¶µćô-'KSg1%”i™ q^ ęÓü^ÉIGçYâ3ˇ—MDŢĹô5U~ġ˛ ‚b·ŽC® t}ÔˇÖ0í*4ýµ‚ŮɡBłÓ˙ö Ą˛‚§ŸĄ2őJǬ˝ĺ'#R›ř4ăh°6"Ú{ Îý­éd(:(>›îäú‹ čg:xĆňá$ôęě\ňńua®¨Ň$SŐ*^Y”ŔSöĘUL‹WÎLżď•kő^9˙bź¤ľęę*Ěqđ&Y¨3Ü@¸Ž8%ç?`\\/c(sB©ň ó4Ô÷ä«4çÄO_ÚŮ:ĂĘ‚d.fF ťQU˛P€řń¨ĄÜĹTÍ”:0ˇ)°Ťe5a00.iq5ýŘp ®Ó¤‹SµĚ Z‰ká`(Ö°XÜ.Ĺ‘Tqu”Xu~Ż@0:ünĄăĎ'aP·ăxä´+‰ą^­éYÂ#`t3ŚMw“áŽŐT©Š˘ż ú»#¨©ŚVRSµFJ.Ě5‡ _ń+zĘ—qj*Ş€„„G»-:h»gC”»ĂŐu¤naeÁÉúěş6©]™€÷­‚G¨+×ůGńhÓ‚G3ÓďăŃf=Ϳ؎‡˘ěŽE…–ĘßWh†ŤÚ–ćŇ´äđŔ$o§ńÓ&Ď•ąŘĆĄÜěUÔJř˘Ú‘ŐĘmřß@p1tďZ “j#| Él'!É!Ż4žATfő,*Ax1/Lś ˘7m˘nŞá…‚p˝µD©ôn“€É?G/óđĽ´đ7ťNĐÓĚŻU°ůµ'Ć|śĐΗ˛Pn@ÍjZŠĆh‹‡¬ řŔL&ÉéŃ—Í'×¶űŇgŢ ™)čŐ|ÁlĽť{Ă6Ü®W׏ľkŰżĽŞČż˙ňČÄ“í,4ëN6ę]„Č!ŠbľŘ÷"Í“ŞÔë čŇĺ‡o{V1í"4ý±‚Ů !Błx'g˙ż¶`źW<źwd$„Cßěɇ Şů0öş™Š«…̧  0ëòVÓąÄÄ J`4Đ@ś”Ăţ&–T™íFI É=hÄt»Ůf1b żYA^‹ÄÝké• 3 ·‹•YŽyg×t^ĆźGf5b†ă9“ ˇ…őró5Ł@qżÇ©'ô«š ş‘éÝńvćx¤tN7Ľđ~ßKi„ůś@2\Ťźä Ť^žáÂé«ŇJ–mr*…€¤Ę Ż´@zŮ˝éĎČ=ť4RRFl‹]îD †‡ć™"Ť?ÉßŐő˘Đx˘sKµŞŘŚ(ö"{—´ňµĆłbUÓfé\×_.që:ŘbQô§íÝvrH:ŕŇt:€*ţŇH;đzW±„±łřQ˛6¦¨4Ĺ\:đ;ď!”ĺ~§oRÁ7©*HW8Z:M±‘H Źď KXXčŰ,„1Ý@Ş›.ř% í§»”ĂrÔqíÂ18+׹>Éj°^Ö…ýUL ěĎLżűkő°?3 Ď>űŐť*†g©ĄXóJ€UzĎaŁ‹y°ăźqgq€c6ŔŮDL¸†|őG–[»]Št_ýU™Î ˘Âň_łLţŤĺě¤đîĎ1\UZ3L­‚ľŻšő} áúŘ>ç—â‡j¤ĚĂ-˝éžĚĺF3”˝ÚVd]Ě• ZL‚ŕż Ěz3ßĂAÖ„I÷¬‰¸µ_“ŘäÓâe=Cu}uČ#¨×ębĄ¨×¨×¨ďâÝ(C}ą˙‡ ŰŠi_qŚ@:Ą·ĺ=}ж÷?+tĎů{_…'đ3|íńV„Ż"|Í Ü×{,ß·” ÜĘ0b˛ľsH}B&.w©‡›¶•|â.’=đďç}Ý,ť čđ”ÂŰžćďn4–Gü”J[‘‹ű$ĺµÍňůěăĐ„Č}ÎďQ¦j€$ŔŕĽNv;)˝3ťĎF2ý=4˝ü endstream endobj 1050 0 obj << /Length 2164 /Filter /FlateDecode >> stream xÚ­Y]oă¶}ĎŻĐç˘áŠ_ú@‹ ěşEď[±yk‹@–™XweÉ•äÍćţúrHEr”ÄŮřÉŁ!93$‡gé8ş‹âč׋Ř˙ţçúâĂ'•E9Ë‘D×·×KR%:eBęčzý±*ŰfS UŰô—W"•«Cł1ťĹę~[•[ŇöíÎrÓ!­©ÍÎ4CO-Eg|硪kŻ+‡ęRčŐ×K®WľyW<°mmÓ˝yěŕ7ípů×ő1Ť+ÎY®}¨kk@Çy·ŻÍ`ęú޾쪵ŮĐçÚ«‡­ďßgâÇĎ×$4-F‘xgÓC^ axömŐ lŚH3ť ŠčŁ[3CôßÓôXHRY$ůůňUQ÷-©ŠýŢť—{úĄp!tm;ÔŢú.ôÓ—[ł9Ô†¬ ť1?ZK¸5ŢkĺGVŢhŐ\ÍV2ˇ¸éĆΗçđŰŇŻ]]ű[5˝é†ĐŠ™űö»˛µëčÁ9I‡ľjźr1M¶T0+xv«ľ¶ť.~ąľřű‚CG<’ ‰dQÂS–+•»‹?ţŠŁ 2“yÝ»®»H°<Ë!ŐŃç‹ß)·g™Đ©3•*ż=ă‚=őś –äéY<çš%Y2÷ěv˙‰W…."ÖçđŞDĚx®ć^ďşâvXp«¸Sgq« K9w»6·mg(f€s%rŽ]ÉćǸí–Ň%fJ¦/f Ď4S1Ź’X#Ęô=ÓŕY†ţÎR KŻ$‹1Ëä9ü )YĆŹ/çŠĐšIă{˝÷ĄHç^źÉEŽÓô,n±Čq’ĚÝ©éRE$Śköź˝ňlő›E5.Ťϸ\•Eď@OĽ„n¬Hčé:ß(ŽŮB!®ä<)=\gbŐoŰC˝!ąl»Îô{”Hú¶Xč~·ľóźq,]™€ĽďÚ͡ô.iĎP„ ®‹`/T!nŮ8W;ÂÁíBśÔ x^ąĚ¤p‘Ń™ŁćăŞ53vO5\ÇcŮ …ÁU‘f|řÄ9źťyĹň8EÄ9üĄă ÄŽŘ:,CšĽ-ÓćNą–,V‰ł•$ŻhČVŮ™\çSé‘ëgŽ4–$ĎőYÜ a»¨ąŰ»CŃmŽvgȉBQÎ=‰‘4ęšGć‡CĚGJŐS Hb?t8eÄőň±ś,–lµ/şbNÖů”âŹ=ň{ÉV›jGy×/e¸;=ŠŹ‡FĹîĐô¤őĚ ĘĆ8Öfu-ýşdE‹iP“ĘĐę(ˇ ©?5ĚÇ3¨b:η2Ą†Đ[öŞ[ Ů­"XČŞßĄą›† 'Î*ü [ť=ĺr¤™‹˝¸Xĺ.özňĐsd¸VGŕ"Ĺ’&ś[$]›6TĺˇĹd-®jµŞěÚkˇ„Ę3{čš–~GF­ąFřóFb¤ÎŚĂ3čüÂX%©LŁíĐ4Hoč˙¦kŻ–â“¦°Đ$S2‰)ĘXŻ>WŤ3uA?!ź!zx‡Ô™[Ě ]m2ń! !Ě ˘ź“çć$mJ[Ľ| ” Ě'eŔ9±ś0Ůß1|(zĽř ű &…[W¸¸\žoŃ”[,ŢčĘgT/KEN^ůVš˝=R­÷VĐnfO‰¸€ň%ž%„DĐĆ$e2ÍŢEPÖAť)žćŻ­$cY~Ç)gYzäřTÎĄ3}ŻyÂ$ęĘĚ«ÍómXŕ<29ďcŞŮ´k m˘CB©BšŞ®ĐFKč€ËáÄ -8Ó(.ós(Ç\ IlAe Úł+ďýČšÖ«Šş3Ĺ&Ś-2[Tͱđ7X{5ÜĚ'>Ą0Wî>2 ńŁ-=©ö‹č•.5p˝,ö= ˲kič·h–®:eqĚ_ľ…˘”ƱŔÝĆćý»@Zň“sgJ$ ů~” ? Áµë˙™r°€-t('XĘ>vô˙:”[żĎ2aI,çčC&lI‹Q۶·Vx67lI IžU8ôé‡XöŰô°÷úÚ÷ Űhe»ŤŢAYxÝ:ŘBŠĐĆđ2ŕôŠŽńü¶­kzńňöĐ”á5ʱP·#«˝>ř$&Ýn?<!Ş™{_pË>ĺ©öÉ)äČRu öňĺňĆSôQ‘”Äý}7\D§RéLÔľ^Ţ`źÇs‚ëy|äyĘŇPN±Xęs8— *ž8ßíÁ ăÎ"uǨ«BĽ°ŢÇđ*YŠ)űl<ÓË&ŤHf§=g)-ż-ŮDŚc=A©e’ΗŤ)Ëôü ”©üÓď„ÔúcşGŰG/úńµ·gKumˇ‚.߲‘(¶Ę8-xߣV?Ďť%™ś°ř¸jJ5/nŐ‰¸LŁl÷ŐřţŢxá¶3AçKÉŚdĽT> stream xÚÍWKŹă6 ľçWčĹ)&ëáZhnŢŠć¶»GIÔMě¬-ďěüű’z$±ăL3Ř ¶'IEŠäGŠŠ‚ML˘+ăoóÉ㻜9É–óu@Ó$”IśĆă`ľ އ?¨ŞÜu+9ťĹ,Víî±-·rŐí$Ůţ2ý8˙¤Í(%yěN,Ŕ´Ř¨/î ®şJŐŐ˘•Ú’~DšłŘH˝XŐűBU˘82"%™ŕcr?Iy8Éő2śXż9ô'ôřNdgÎ’Ś¤‚3rifĺţZMať…rJăđ«n »Ôőa‚AěÜ;$çᲨV–ˇŞŃ+8Ăk7jłŐvŮU+ŮT˛Đ['iëř¬‘VžĆkÚť˛p—X:VUé¦^uĄ\̨ ą}‡O=ťŃ\X 89ůW]«ŞÍ€c]ďv5ZőtÜ[wU©!>Tç,śŹ ÓŤt3ŐÚ±hŰn4‹ŞÖŽĎÝi[LYä|7°¶žAgÁ˘ÜÖ ĘÂú¦%xčµČzśśÇó> kěXÄŞjeه˘ŃŞ8Ńo@´.>É˙DôCďÉőóűn§•Ë·ĂÓ˘XŻť$włŰR#u©`ä㩠²®´KËç3Bô3‚2BřŚŕgÁ{!|Fp—â<# Ý ˙27śk¬ŔŇÉź¸rÓ#Ç # éŻĹ`új &7cp o&_őŰŔěĄóÇR~ş˝ąâ‚—“ń äMW4ă$ő€Jú%6”ŘÄ—X8qT’ť*ń%6q%X{€J˛k€Šż/ Ţ˛¨ŤĘx˙;ÂÉë.¢·…¶ł˛Ţ/U%[GšŇ(¬űGÜžTÁç44:ŹéFťpęöęfeŮqjG¬đcłTĐP4Ď×qeĄ(|Îxš‡ŠHâ¦O áÍcŽňŚ7z0Is"˛Ľë#­ßç“Ď Ô( c9‰!~<ŠHš˛ ÜOŢŚ‚lBXĎłŕɰîFň,‡Ů.ř{ň×HsČ8#1gFTśr«ôčôKÍ)ŘšŢGsšâĽŻŮT†K­9ú„ŢC+ŹéŔ\ůą“U)G )bÂ᎑ę qc@L_ŚĎ2’9“żŐŽR8¦·ĆMpAX~ ßě–°‰Ě˝‹Ę„’4ˆQÓcµ„łŚD¬źŚx˝W7|/](xn|‡úʲßţŹëľő˝j>˝ąU˝"€[Ô`vý.Ż1Pż‘mń7ŘvËÓ6÷в]Ť{§ęőx˝GMU‡NŹľo•ôčŐuÚ+ŐţSCűCƬ3—Ŕçh€oCrř¶+“2<łr‘е¨g¨ÇF¶şQĄvT/ÚwmxÍCZa‡“#ĎžDł}őI=ő€ń±ÄߪĄ4u­í̸vlCŁFÚniÚÜ2ľFÖ­ăöŔcţZî¨Bĺŕ5ĺôŐŮÚ±p_<»{Č}Ťb®˙Í7¸ßXśbn~ăýV§÷ăv†öÇÍáw ]sá˘|¬AMá¸P¤$cÔŞ¦±čqAąţ°<ć endstream endobj 1058 0 obj << /Length 1271 /Filter /FlateDecode >> stream xÚÍXKoÜ6ľďŻĐËşi’zŁEhŠöVdoI°%j—°^Ą8ţ÷rČ]iWëĆŤř¤áp8$gľyPÔŰyÔűkE/|˙جnާÜKIńČŰ”‹C1ćEaL¸z›Âű¸ţI6y5âę:äáúW©Ş•ďE1V‚ě»úĽů´]3FŇĐ®ŘnAh»“_ě=rKóó”µ•Í z%ňa[´u&›O4¤FoŔHřKʇěî˛r7|wůpóőc#Űf«Ä`ŽÁ~Ń*nŢÉÄJ×QBâ€Ú”„‘Źj7{Đçűéşl«Ş˝-÷˛Ů+ ërlňv@<łÄ­ŔéQ‰9C‹%ë®’ĺĺ:Őx,iKäeř9Z@OŢËa例 ®Y@Ň Âiă!]7­öݦ2…ßľm¤P™á Ő—p Ďjľ{»r'ő­ż\±p-¬Ú.ëłZ€sq;}¤30ž ńŕů‰‰_;©·ćějŠŃëAńÂĽ…°ř:<…śňSrĘ&(ÔŕK1(śÜ*@bŹT×bP˘€[”U2¦ŽŐü¦@b»J ,D3ČO”r­ć" {QŠ^4ąŤ‘ۇXihZLjĚ rDĽ]”Óoµ­_*Ń=#ńY¦2¬#F`”Ur×hŰljµ90®W86N1ÂÎa@J«Č.NÎO3—‘l bĂíQ·wYţ–}nLůhNyĹňfŚăkúxIŁ3Ľ¤ń/ ąy…ăÁ­´yŞś®wHŚŔL†ĂSßę}'›ÄV~˘\33˙ŤR§ÔDFí…4˛éĆaž6ě„rąÇNnćŇ”«~:IŞ(v8¶M`BÓ_»¬Qxt—ĘŢHgËlśÍ€ŰŤUu›ĺw¶Gęî·őX r›•ĺjÓ¦G°šĆ®Îž„éß”śwżˇQ qV0žúsłúoĹ€K= r 2‰ÇĂ€p–zy˝úř™zL ź&Ţ˝­=NŇ$Şň>¬ţ]ęµNhU”ăžć‚ç»rš„Ć/±+Çi4۵κ»±„Iŕ¬Ń‹N—-;F"K±믉DMý«G¦ĎŐÄ­e´·:TtéQŮ·5RŮ’38 ăţŁŢ" —á/a— ňIś°™]×Y•ďSBŮ ćG…‰qÚ˘ś&ÍđřřÁ™ŁI;©†¦ľ#Äď„čńgT›$Ň ŞŽrc´$†aeˇ§'ˇa´]Fâ*Č(hLÜb-}¬$ČműBôŤŮ|y4­0mQŕ‚®/÷$ťQ7‹÷®Ň´¨D A٬Hko¤­kKóĐ±Ý ”7şţűb”ťÇś,„ Ć"xľÇţăać›.Â%µ*[ß(ˇaiç †Hd/˛sAťĚ7Kumc i<áCr˘ŚĎáŘvöŤÍRSŔőíwú!jóŮ9|Naŕ`Ér6—¬ó˝¬ŠŢ-qÓŮA+Jáłyşˇ­ú•ĚĺP=XžkKää Š¨×Ť <ˇ´ë9÷-B9<Żz!eű…ŁcăÓĆÖ™Ć㝦SkŁmo•Mb FŇ*-Űę,¸»@qiçˇÝŞŐŇŮĎžg‡“®mšţsp±aŇ ·Ô¶}°H·Ý)(ćŤ(Ü˙ĚęĹbrŇÓ=1źtfp˘”čń”$I‚'ba8‚ ř/C>B endstream endobj 1062 0 obj << /Length 1345 /Filter /FlateDecode >> stream xÚµWYŹŰ6~ß_! /ö"ćň&…Z )ZôĄ>$ˇ•i[Ť,ą:˛Ůßá!ŻeËëcÝ'ކٙ!çă8ZF8úíYťŢ=|iŁXRMQIB")˘LDÓyôiôCV¤y;7㉠bôSVçuş2ó67hőóřËôĐ6!Ĺ"ü1›Đl™} ˙ŘŻîĎąßeÍ*“Ěg‹Ş\ĎYn>cťVN欯Úţ—6ß ŢyňĂďľďT›¶%äG§e2¤ćz릺ĘÁ´,ę&«¤ ű^›÷ôá×;±HŤ§Ń„‚v˘˝ö_Ć*đ¨2›ĘÔ¦h’&+ Ď+~mVĆ/ç±_iäcSeEcćţŁ­łbiť8ÉB¨D:ŽűNÝ ŢźjçöÇŻŰXĽzű^q“|=Şxóî¸C_ŤŮĹĂŽýAdÉáŁí»‡¨¦< Ąëś‚ üé‚ű~z÷ďĂăDD „1‰¸ćkĄë»O_p4‡M¸Äb=9ŃuDQ¬c ňčăÝ_CyC*¨ŕš!­÷[O S‚g71L CpŘžá¦0I9âJßÄ$UKµwئxÂD#˘)čr2‡ő«Ź4 oô3ƬC€źü÷˘¬ÖI|€c‰b¦úP™:}Tďꯦ2ňĎÇíV2¦xômLÄČTµK–˝ŞĘvąę>‚p[’Ś;ć^(’^ü ŘR Ă#®("ě-÷Ď4F’1Đçg§°Ć)CX±Řĺú°¤=»E97q›$ŢŢGůřŹI!đ.xŚÄő^ôšUĄÄ”KŔ'ĆnMÂNR5YÚć6›xÉ:óÉß~eaułÄ p€ ‚@ţ˝2…±Đ ‘ďŚ „U@&QŻF•cŤ4…· 1"ŠżézáB4‘ŔS'sQČą·°l›.ú–ŹDv ¶\©ýš?žp,ý3±„Ťť]×ĺ<[<{:±‹đŠĂĆĚ Żă%fŽ 1Ţsń"QVŮ2+’üP^„·îwrłh‚cĹd¨ę5ekU€ ŤGIáđę-Çz™¦®Ë¨XeĽŘĆT6-uż»#Ű}ż›–›1ÁŁgĎ´˝‰Z…ź 5—>uŮÍĘ4mU€ľC(âk ś ڰ,BŞg8~S94¸tŞ >Eű'} ñtő Ď1ślk \l(.tU¦ěŞM8]H»ľď%L-¤“K\ rxÖëu¦ť\U–ÍY]h(HCýhůŘ$YŃoHűŞežű޸Ý[´EjÁ‰.î]ŐĹ˝«<=:Ěüë>ěö–¦™ŮKşyżwîĐ@2l§Ř?WËLüâKÂSţěwSwül@z$Ű‚ĐSÖ¬zJlČň°9/׉ëf¬rw)–ňA‡íÇŽ 9Žbhzwr!곀Đ]ţ™CŚ‹ęŁî.†ţ=ő¦żş‹Çś¶€óĎj†Ěű­škçŕ+Ý7ßSÔŕËđ 䩬“˙ű]MÓŤ:cşˇDAÇ/o0ÝPůC«s§›ÓMĎpWöŚ2x;,ľ‰Q§ĄşoŐFvŔ*tLś«›X•nMö­n0é Ú‹¸+>Ť@Ťc‚Ůldź¨,ĺ•Ű*üjlď»UîXěN(´ęDĹĐbę>čm÷±—­Ş?öŠťUY©vPxł®ÖąÎËe1půşúW˙p0・ ş$'ľş äYé­hóüR/m(.NÁ'˝Ü LĚv¤…Ç2a ifK"dďxy˙;l°¨ endstream endobj 1067 0 obj << /Length 1161 /Filter /FlateDecode >> stream xÚÍXKoă6ľűWčĹ)Ö ßѢ‡Ý˝őmwa(6m ±%G’“îżďđ!ŻiÉIÚÝ\̇8}óq4c‚6 ß'$ŽżÎ'·E† 6Š)4_#*2¬)CJj̸Dóú4ťoíÍŚłlş®v»ę†ÉéSQnâÖ±\¶EU6ni¦ËĽ űwQäŘŘUµU<˛µËű°U¬ă٧J¦UX4p`uÜEů˛Z٨űPe{® FđěËü4Ł!`¤ŘČčv“ďA “$›Â9VEť°ź|;ŘŮĆNë ¦nĽýhŘV‚âLp4cKj‚ÍŠrą;®@ť~.šÝm§sá^oń“ÔU8·¸«Ş]s«DjQ4 űpĚwź‰$^ľł}®d±p‚÷Ö®¨ Ű?ş)ý¸ˇţ˝ľĐźś– ÍPH°—y‡ő…|tęę`ë¶pqvkĎ!7ą‹2Ő]›Ąă‘×PWű0ËÓ …•Gů5ác gĆŚ>[÷×B×~=ŘkĎ6¶őχĂú‚rŠ š 1äE?ŻPłďő!ŻmůśórtçŞMń8gÔ2ěk·3ľŁĎ1ź%ąSśeK(%¦ĽČ pOßß擇 …]‚(bŚŔ‰78“-÷“O_ZÁCć&COţč1l2łúkňgHń)ďÇ” ŻJŞ+; ű–•ÄR‹Q,>RńԲǶoŐL26ŠUĂ1Ń4µ ĽčĺÄ`®Ć°É)Ă\ÔfwĂ.XĂÄyôkŰëđ5á Ţ~«ZÇťŽWż0lú´-vv€_3FÖLö.v*w©‘`˛Ł| TîByUʨ—xFŤÄ"DzɰĐ–ŻđŚ‚XÁ*cî„H­ňŚ+fŁ 3ESŁ!9ŘŐ3AG±«]}š˝ĆoŽŐ=~ű ĚÓšIęi}V“ŃîÂ÷öN[äĽŰÎ/·±TđE×ć’ĺpN °űp,j_CŔĘՏئö†ĘéßEÓb¸A’Ĺ2E=›­!wbĘŘóé:3੠ęŇ7ťiLUć5ińb¶†:+2†aΖF§†‡/—đ¶TŹaÚJdjt8WkšĹ6µÂ<ă׾ŕł\dźĎŔš< Ëęŕú™Ż–.‚ä‚•žI ’Ô°Ýă@îôd¨EByĽ«ĘMă‹]4Ô6 Ý+şÝÖ·ľÍ-CÍ-Bßć6BßćfŢ÷•»,Źî'ži;ýgŢ‹¬óđL4ê׉&'>ďG> stream xÚÍXKŹŰ6ľűWčĹÖ ˘HQ š˘˝Ý[˛DŰD´˘#Q»ÍżďđeK^9»ŰuŠžHq†óÍ3 G»Gż-°ą]Ľ}źÓ(GyB“čv‘”Ł„(á)˘ŚG·uôa)ű¦č«˝¨‡F­ŞEqčÄ˝TC_ôrÓČv÷sĽútűG”Ĺ,Z‚rî·… ËĎbµć”?ç–ß)"ﬤőś(łuŁTsAP±/ű˘ëčőYĂ«őr˘vňţ ­ě÷&—ĽűB ^čŮ·ďălńu’ˇ4¦ Ö¨ü~EřRuŽ}z@8J)T7,‹_o_VqD"’a`!O€5͢ęnńáŽj ‚íĺYô`Yď"Šň,‡Yýµřsî4f Ą8·˘xš;Đ`ŕcdJDř5€)ÍagŔÖˇŹA9F Ď®‚ĘJâtŠZ¶•čuĹ$tţHř`ܬ֔ĄŢCÔ)¦§ŤöKmݸ­čJ-Uëľ±dďFż›8cI÷˘Ů޸ĂOÁĄÓcč6q<†„/ 㾉,¤µźĘN´:HŞÝ¤W^X‹¬$FyOń‡MŚ8‰f,łËĚŞ7y$Ü—ö«_Ń}őK{Ok‡»ŤčĚśXĹ­oŽ{\ö;ŔCŕs v”xŇ:Ţ`ČÎ{3ĘWCçÍÎŹ^ĎéňAę˝lÝŞó/LŞ˝ljŕv_Öż9ő„ç@Ł>n˘#ťN›Fä~ŘčNŐęR¶PwÜw9W°Ľ’ńHÉ8śŚ”Ś=^lNcŹGľÂh"cą7Ţszqę°~ő¶âN®Ŕý÷¦Z@ RO Ú}Ôb=1Ć»ż×ť˛ň­Í$÷Á$yrŠŚY5F#ç±ß¦ vĎ‘ˇN¬˝ˇ÷ĄßP2Ň*…[čË»0«ěÚŇÔ7“ĎŘrÉÎQ«FőŕĽY3öűz. «Ň§ÝĆ'©óq`zcř\ťg¦É7+=Ă 1FŁ8ʆşőŠŇÇp‚\qΠ¦eOUzĂĄ•\™CEăgČ󥞥Ć'WMDy>Ý =™SÄă 9\+,9ó±;8Źpcš"N’kŕĆ #Žů÷Ůך-űÇŽ5Śg— JY:íb~mŐ ˇ úÎđŰIw„ö?Íĺ’MÔůţBTjYÔâ ÷ó˝Yrőîň …lĹ+B™˙ŻZŢ'” ńý^ÚÝĚEîą‚r—LL^ÖŐ#,W´×±ŻCżÇ›äâ‹ĎXäjE1ňŢul#Ż ¦™Ňç˝n|\nŕÉ875‹óĄé:ĚRé†ăŐc‰®A2ëćVµlV@@%ÚşlMĆ|×˝?J~ÄV'HG1îsʶ†řÍF1ää…ký^B†…[]z˘-Skßőľł†§űZuµčĆ÷żťŰř­jezś‡#m;´•ÉßţYĺřx žWŚ/Őap]Ε™­ęDYíĎΨV‡˘Víż®ËţDŮĎ›K*ťţ?ś7[GĚôĺĺk.q=ăĐ [˘|îĎPŢÍF#ZĂ»9É’ë܆—Ł`ťBqJ„×ÇáYĹţ‹óňCô>źFâÖ=˛$qÓlĘęłůŠŹ9ćhîEΖ}#w{Ý|u<µô˝:÷ę šg’†Žé#&lFŽňôČ#ü›¶ťşsÂuĐk臲™ŞŘ;éµs»âĹ´ĘOT Ęş*f"fç}C-«RŰşËáĹ3Tp›řąVµëVÇŐnĹ—Ą=¶ SĽěD?4ÚUBłÉ•dľÜš'X)›ˇ#i—%ń‘$ófÎČrł˘PµĂń8©<ζ$1bYlšO”eľŻ%<›pASýÁ”Ďó endstream endobj 1075 0 obj << /Length 1465 /Filter /FlateDecode >> stream xÚÝX_ŹŰ6 ď§°—¤¸¸ţźö0`şç{[‹@±•‹PźĺIňşO?Q¤l9qn×®ŘĂ^b‰¤(J䏤ŻVńę·71}ąóî}ľ_UQU¦ĺęţ´J˛,Ú•űUYě˘4+V÷ÍęŹőó™›3W›mş«Öv„ú,ÚFńgňtÁ~›´X?m’bíe:ŮSźĺĐ68>íIhaxm¶Yµ[ 5=SFÔCËÔ&Ź×w–¸/×ârłšµí‘Őź7źî·'Ű&ITd˝âfPť¶jăxÍŕ“¬{i÷ DćX;p»M–d ľCy·L‡2S~%ÚN뎛4^Y`ë\…·Ő‘gÖýĹ•Ľ[:Z’1ą-™łť48ŻÔ%yTĺů\ç˝Ó”ŰSt5×F* Ó=™»«.9ÍDGň8Őő™7CKJŚâ$V3’;,AâIÉG$żż’ÎfKj$xŕ™ÖI†tŤ;Äv颫ۡÝĂĹőظá]…;QȤ3ŮŃ Ż—ždۢ!#ď4tµ˛s·9ÂÇß˝ŻŇCyíóĚšąŹvűšůÚiw(¬âź„nßůű;€5Ńůç%ż[ą6Ěŕ27 WNRqVźŢ…#űC#ź»Źq;…Ł1ÖĂ4}漿ˇÉoa8ÇrÉ,Řëí ¶L`řőÚ—l|’˘!ÁAsĘďpľŔůÔ\d2«-ŽŠ}A~( Ď˛äŇÉY–ŽNÖ(ÁĽ€&¶TÄŔyĂ{sŢ~ŚăTi›VĚVކ+1ŠA*ŔŁ4kQ âѱ˝1pz!Ćýu ŞÂĎ~ŕŮĎŽŔ>÷=çL «Ľć]Ă:ŁC‰|TŘóZŔAjś<*tm°Pë$%Śćí ]´Ķ|řě4b †ţ@6ěóí˝ýtŃ3/ŮBőáßdĎˉĺ›QĺäŐvźEĄőç÷ČżŻ˝ ›IrćTpó„ĹďŕăWÝé˙ŔÉ/§ö]Úă|1ëĆĹş–ťÝŔ5Ja#âäqˇĎh@® 2 ĚŽ_oüa —ÍÁ6ße륅žÔßl_×˝­8â(Za ­e%fgűĹô–í|˛’Ä/ďôŕrŞB rćěҧĄ5’ÓűA;h9kHŚ”¸>Í~Eążł”$Ąěˇ ŹKw'BÚ4;Ů>c±CĄĄ-)í&‰×ĎđĂľŔŞ2ŁŰ$>~z):ăNeů~-Ř4{äČÂF]ŇbˉGMĎfk[HíI Jşîx®BC8‘úF“ME¨ësQLVK…[袸n‹1*p¦řŁ„xÄ ÔHdřńÝhéÎÇZéU< sĆ‘0´$(ĺtŘ {ęIŁăövÔQóŹÍCB7gIă& ™“·*ŞÄ•Żľ–k#ëDâ)ÄŠ˝#í(p¤ŔŽ&ž‡ľaXÁ+|Klgä°r}Á‚ÇĆÇÎÍva~ďm=<‚ĂOĐaă%š‰ů [PŔÍ|…ćÜĆëżiQţ›Rv]¶ęÁ|·‚p3Ą—ö„yş”Ń“ôŞY·oě ^ p/aČ^Ë‘DTbúÄFź»§żó9Đ0€4˝Ôz\X‚8ś?Ű_x–Ţůˇ;.NZY8Š16{éNČZR*•xÁůËW^XČ–‚† ü ˘đ<Çşc)–îţśÉÝëFŃ ËFz'‘čnÂŐ™ÂÜň\ťq»Ń&s`VZ}ě<˝ţG!Ą?3’ĺÓ…0ĎťËďpČđC(Îč®ňŠłÉ]”włÉą9ů!÷R•“Şl¦*Ý2mE&1/Ón‹Ż+*1Ös÷­ĎRůL¨‡#ćÓ0ݬ’2ʞ˝ŤÜ´Šöű=ŞJŠj&őëý›żá`ŽW endstream endobj 1079 0 obj << /Length 1025 /Filter /FlateDecode >> stream xÚĹWKŹÜ6 ľďŻ0Đ‹¬˝~ŹŤ9h‚č©sk CcËc!ɵä,ćßWĺĎ+ŰÝL¶'QIQäg’ť­:źîÂ+ë‡őÝĂÇ2vĘ ĚăÜY·N´Ę‚<Šś<[q’9ëĆůËý‰ńşźęůYśąż0Ů?ČşŁÍÔÓŠ‹†Ý{ďďőďÚ¤EA™YµŞŇ’Ő–}µŠ°;ŇCö»3~ŐĐž*ú9ĚBc7Ť‚"M.WäË3ĆÔ†˘źÁŇĂÇ´X<ÖĎ‹`•ĆŽkĂQ†˙Ry~ś­\P•H2Ž+Ąpç‹©Fj)Áű=RµŕŠĚZ˝¨I?jŸ#Š x~’ÄîoVHŠťµRIĺ=ĐĄŰ OżâŃ7qđŁ4(Óô8ľzQćŇŃKC÷Ěćŕi.F¨ŮQş¤—Y#mµŽ!•ŔC1©™µ!ĽA¦ „v7Ó—¬;&­AJ¸DŐeítöşAHŻ´fŰĂń¤ —q±r™ęLŘ4ml¬)ى©oćB!±1‡ą[wžą„oiŃ+sWŚ(AJ@Ć´„´[tmáZw .­ÖhočYŁÍ%ß!rq\Zoăb!đ0„ŔśC„‰!ĹăVô=ć—ń-ʵŻ1l PKl¬íIŇĆ^'ٍyŤć]†Ě˛L""Ţ ů÷¶ ÷ ý˙´!¤NbXOéŮÖâÂfO‰—¸7¸'éÖ!]`ĘvĐÝ«mčRúRż"ăĹ› ×ĘÇ1 Ll+Ly3Ü_÷űÄĐ*úEús9Ŕü˝ÇfUSj?@ٞ#^ZI{ŘQ6"‰Ř„éň¬b+¬Đ?÷O˝Háđ 7ŚăŠó Pfľ±LŞľ1Ú(mžlád¤e+‚GĚ`ٵ©b5î‡Qč¶­ŘkšĐ@ŕ"“ç(1ˇÚęr3'ů9ś˝°#9ţőćvěçnę«&®S\ ŹiŰ}.OŃ_ŚbäpüĂßôŤŘăkvd¸ÍSöŢ*Q—ş Aă˝<ŐWµGt·ůOÝę&‘~nÔ2NˇK&ڵTj3kÜĚĂ{+Âú—ăđ¸Ö•â¨ÖFqdiä迬 X%h8ĘĂ#ť_×w˙=ËcĄ endstream endobj 1085 0 obj << /Length 2387 /Filter /FlateDecode >> stream xÚÍZ[oă¸~ĎŻĐŁłpy'…>Mť}(ZlŢv†b+cl˕䝝ţú~ĽŘ–dÚÉŚąŰ>¦(ę|äąźĂĐ⥠ĹßîhüýëăÝŹJ^”¤Ô\ŹĎ3ŠhĆ ­ áBŹËâ—ŮŞ[ϻŧzą_×ómł¬çOŐv9ßÔ›§şťwu?_4«íbµ¬·ýGŞčýŻŹ/$#VŠâ1RŞHh>w¤úęs}˙ ¸:'¦pĂwqɶ]Ó˝ó„éćqÁhě/~íCjő©iÖö÷‚Síęvłď«§uý†S}®ëÝë§ş´5=$ő˛úí%‘>H÷­ůNń !®qżŢî7'ňU×Ď×Mł›÷_wő7ś*ęž“ŇD6A%ÔďĎ—ÝŔÂľő”yŤěšĐütÜŐ5Á§řłß®š­;ßŢĽUaô[fŐ5몯˙÷ŠŁţ ĹůŢÓţ)ĐuÉ|ŔÓ~µ^Λ]•ęţp‡­ţP‡ý=çy«Ŕ6“"05ÍÓF?~ü í qxĐ–É‹şĚşŹź@[9{Ţoîóđá(ăP’ěyâÖÜýôx÷ď;†YZ°‚łkL!(%Ćđb±ąűĺWZ,ńG!˘´ĹżtSpRÚŁuńóÝżů çś©=)eD=đ*¬%16˛6 1AöÂ9Gµ%áĄĘ‚ZrŚQťšťŁ &Ą"Ş`šĚŚPa§ P!µ, ¨Đ„š‰dwŐ˘Nh+· ĆJ×ÖýľÝvAUűΆoý°yžĽŰUí=§ł‡ŕ¸``ňÄ(űU… “•ô¤^ţÉŃrżž–8iĹđń0wĹ^âÄjsŐ`ł¸Ä1-±0Ć[¸JěYxRšŮ× FH SͬL•Ź‘Ó#Śă Ď‚ŠČŞ1č{) &¦„Ę eÇ Is‘0,-ó€Â©jˇÇ ĐkŻ·çŔJ#îč,ŔŞ$V¨·j”‚.s“YA—ąž ű8—€śP–E‘•P„҉ mŞ]*ŠJĘ|Ý=r%G˙$l9«đŃÖ»¶îPěVŢOřWεkqqú‡“Ń ąŮ°6şˇ027Zm'ź›v3ţľJů¨ó”üśÁLQBÔ]-éM f AÄ)§‹ÖÔ\•+3%B“Îk9’9†MË•)˘ńmôŮSoę\„g/ 78Őńąm0ŐŻę..lă ź¦ů`ň5!Nqf-®† É%QÜćŕ‹ä†(fĆ|ąlŕRăÓ<Š Ę©",µöm…ĄK™9CŇĺŘJHBµ™‚ovű>ĺÖ Ýd9µ2nM_ć÷™“‘”HŚśŚw"<ć8n0đnş­ýĹAf ŚËý˘î Íp–ł÷ŁŻVŰ—đĽ\męm\”Ż,´ 4ľ­—‘|~ź"ÜGÎ…3‹‡Tá»|śK,Öb¶zŽżngšĎ:řD*”;;q/™08ZÚâ8qR˙í—U˙É»=O/~S4--ڶęă[Tşp…,ÂóʲNn{WoČV1]_á© ŹÁźŞ«U“­ú‰áV1á­ßÖë0řOÝ6aäŹŕÉůízĽ¶^b…šą‚Ţ<µOÇąßyá0 >Ô­3Ć8ůšÝ†)Ç!_‚Maá}X xÁcfSµźďń[Çůˇ‹óXĎq}žż¸ĹUü8Ş\ütß=$@Nő¸ĺ‡l]ĚţąŢ÷ÍĂz€ĂËv·÷J9‡,©™ýŁéăm"ĂüŠMő5ĚŞ\%đ›çWü¸ oź›ö@¦ ďŞđřˇ®ö}»Ş“üďúŻŽ\Ű‘5qŤŢ»ž…{SßĂšę6ĽsśsoÂŽ1±¬ź=óöë~DÍA‘¸é}W;íZÍާ˘9G¤{®‡¤°RË‚•‚0dk7eĂ‚H%@ +MjŐ%łáŇ÷r€rÄrÁĆ ®E•@•p·* ¨t—,ĺôĐלV¬‚¨Rťd*O! bŽžzrď‡|Ůz.MAńňŞ0™Ĺ«ń‹ĹoK‘ KŁ<%ĘŮY˛Ňĺ(2&GÁ`śţ 1Ó˘DAć9@‘ópÍĆ 0@o|çŇ(ăŘ1|—“üu“ăVĄĘ›·%Q¨*_—’ëX‘C3E]ĹŐ[¤$ ˛BćP ×mÂßä }łY-RBbDŘ…$¬ďd9ö^şőo‘¤P.“C/$ę­Í[d$Á,fMP¤Ńlę2ö۶YŻS2rĄő±{ň™ A8IE$;żľ\“2”$®Qˇ&u¤ś‡ľâů°[ĚŠúŮó4-0ľÜEBÔRĂ)đ1jWď*$Ť©PŻ0NŰBîőÁĄ2ŤË&™ŽI0›şÚ†R!íô)rßűłůŃűźĂŕĄŢĆl5®F<í«ŘĆ"ĐPtŤ¶>oRČ›VQ‹ŘČÁEŹń÷#e"q2…0nkPÜřÜÝ‘|Şű/µOÔTyBţŽ ľě×U&ÂqÜČÇ †ÇáʆôŔżń©ő^ĽęKŃ }j‹°>±!}ß–}Ô5˘a”žJą?:ĹßSâ¶Öí]ęnw k…Ők¤W}*Ó¤ÄTD(uŰEĆĚSb‡úáJs[üˬABŽ/ô¶ć­ ó@ç-d5BM7·%tD8×;Şdá†o„.¨SÉ5bŞĐYp%üŞË0†¸é®şv˙ô$ł€jK4ĺcĐt¶’Ř2‹2I$v"Ö´×Wč˘Ě˘LŠÁ¦¨Š—aŔ>®ÓŁŢM‰FFţJy˘ŁŽ ›“7.5„ř«WÁŘ»ŃP9ěÁ¨ę…k`áx!3 ăĹ1mő\SbňŢŽ¨1† /Y> stream xÚĺXMŹŰ6˝űWčĹ[Tłü‰Z [ ·b}KC±hŻYrő‘Ýźß!){­X6]ĄhÓI‹śÇ÷fČš’ˇä×ÚźW‹Ű;i«ą&«-aB@Ş Ń*.YĺäÍ2/n¸Z~(ň>+o®č˛Ý<¸Ľ/]ĺĹŢUmQWí0ÚĹţO÷«ŘŮąĘ5Y‡łŕ&Ś.ďť»y»úíöNół p!A*†Ű ĐOqĘhʬ9M` @‚źubuloďěąĺ„Ů”±$á ¸qý7Eµ)ű™(äřCŃ–·GrëŞÎ<ü荣Á„1°jd˝Ć™ë]ńaXčG­ëâŕŰŃ W„ç–×›şęÜS·ŢąîŘ˙*KFŠ)Ě÷ÎÎ0Ď-čľ‹†Ř÷“Şähű52čë2ôúřšęšy˝ĎŠ*h»˙ĽröRěłĂgIážY8NAŤÓh~AžůżŚČáq˝ďË®XgŰí+ůXo˛Mw•“ţ÷Ĺűßu˛ľ.IçÎť<ŚţżŔ¶(;×5b÷k¸žE¸$Ľëł&|Cďk [äWŮîłć} [|¦‰6J>¦ązŔĄB¤Ëm]–µ/hC‘"„^nű*\Gmś±ÉŞŘyçâ÷ľuyüĄ«c[żë0GĹŻ8;ěaTmp*ÁP{,SFpÉ/«Ĺź _ĽPÂа’á\‚ŔĹ›ýâÍ[Jrü†jăO†<†™{±äń¶Jrżř=–m#4‘rH­ ¦Žt¸«'P­%í°’rPÂŚaĂńż„•Ü7é,°‚Oőöđ8)¬bçŔ”cLź/ĂŹ)ĐöT ~‡A˘Ět$‚ŕR_$‹K*LQ  ĺc¤H_C…)A˝)ަ>ĺ5–Z ,= ¬Á5r ;ĺ5”7Ü s`Z Fđ1ć•sÁąŔç›–s ŻN¨WbĹ}ľ%ęf"H04¤N?y‘đtó¶žú8—/ A1ŇY%¨Ş?vÖT’téI˛Ć×şŞ OK˙˛ÔËzŰCÖt…˛úÁ1‰´qظ$–ŔĚ2ŔWď8 •Yço|˙nő7~h†×nȉ/yp~á2+–â§Ęüskrź‹QşmńôüáŇäřŃ1EđŇä‘ŕ™ÇŃĆ1ĹI†^Ä\mĚđ§ćŁ5x*ţ(Τw endstream endobj 1095 0 obj << /Length 2337 /Filter /FlateDecode >> stream xÚÍZKo举űWČĄ˝Xsř~ A˛ÁćÄ·Ý…!wÓc!ÝjGRŻgţ}ŞHJeµ§gͩ͝)˛XźX$«ľŞ­>V´úÇMż»˝úđă•#Ns]Ý>Tś"•¬´2„ UÝ6wwMżżűŹ÷O×7Š« >őŰGż;íý]{ÜůŘý6¦Šýůú—ŰV7’+EuĂq*Ső±ůŐż¨:µÍ±˝;ÔIűwa6Í罂Ľű臻§Î?4ź^&Mđ4¨9˙Ěrô×,§óűze˙·«yssúÓýĐy˙MvçĂŇÎNńŤ¶ÄH^ÝpFŹzlŻoŁ›§şšíi_w×’nľżľá”o†GGNíMŢG­ŮÝ`TŬ~\5 ]ýýöężW ziĹ*n(ČčJqKsŐöpőÓ/´ÚÁ Ťg«ç z¨8qÖAk_ýűę_kWѢ¨ ŞXZÄh×Ŕ‚)â¤*,%NäŔÁđŻA%o!Š€JA$lŮNŃ ¦rÄVSsbrČxWPť$¦¦3D[{á®J00ă®°3–NűˇYAŐŽX]dąŇpb•ÎPXAuŽhZäę(ʉr*ßŮç׊ ˘Ëś_¸ôD/Îoýđ°âśŕ˘jÇF/ňýŠŁą`˘´z3^Ż€)J¨2^hůž0%•:¨b ę G“9E¤- Ë•fĽîq8i¸łďGĺ%dŽşęr¸p„ŁŁ(*9ášĺ çś7’pÉŠŕäs—î-ܢM`VÖ‹­=ă„tDRWUń ź›yĹ aGé"ZCS9ć+8ă2ÇX8€[ă3žÇŢ.yžşÝ­‘ GÝ˝Éq¤Ô@LŠĽĽÄ-wňŇs)‹Ě¤2t·Ľë>E5y?Ş‚‹%»Ŕç(ˇH—Łát­ľčrđWm‹ÜAüU{éŢjc¶˛+3j.r:Z* (E–Ň™…ŻĂĚi%A<‚P0N–út~8u¦p!65ţČMLŻ!áůőš©ŤŹÇn绦ýžŇ”Ä`cw<ÔMř˝?řvčG‘z­Î×ŰÇlžÜ|ś%ť1á Jýŕ»CÓúÝZ x˙9ćO "aŁn·ľŽ]O`:<ß.3¬5߉ż™`AjÇ”„űËCęń®ČôUquAP„|ĚApBŕzäČgR,6áEP!ݦ–ĺ¨gr,C„)‚©A^Ůó|’Q[Ř"¸ŔN7—î­udLŮŚZ Ź•ś5W ¨*łűTďv N¨÷űńfµŰýiçÓőš ă]ÇööŘöCŹă%&éÎ÷@HľâJ ś‰·ůGz\IK!–ŰwŮN Í\PĹťűâ®LĘKŕ˘^†»~1KĺÔ–@Ĺ,•9“Ł®“pŚŇŞ" śA®%&ŽĄş`eÁ0e€5: .Ý[M%ĐYYSt`|Žt@čËaĎŃ ą·kt \e‹|:Îł‡€ÝIč;>ŕŻoąŤ%Îz&‡'¬™RŽA<<ưm_¦Ž'!‚ŹC”4ä ™dNV(Ţđ4ŕŢ6?> ‡Đ#Ó€W Řź5€ÇęŁ@ݢľĎqČcűÓSÝöM¤8&čě±f+*kj§·ÓÂQ¦écďñś¬4f¬±€FÁA7Pť>6Ńşˇ A°1˝Öm#¸ť|pM| V®¤‰>6Lď…­§şďăLč=F /eçĐw><|¬×Ě ç·ňZxľX´÷ˇţ»ŹíţsěJvŽÝq O–Ĺń`Ů8Ú<Ä.Xqďc×ó5Ł›ăiż…‡Ř_§Áć!Ăbkbq?S&VŽĽ"ÎL2~›ôE#B TńŻ îĐsč|ůa[¤ť^Rş#‚í5U`{<´8Ňŕ™FÄĄÁ¬c›ćĚÔÄĆÄ[Ç™cw|^Z†ĐrI}<’(q;!=¬m^<±šżPuhϨşć#U‡Öłď’4°<9ŘÄ›ĹŇŘâͰ+‘wlůqž8ü}¬Ż9}I*PŁ÷iž«=\uŞ<á{_~Gńř”RđĂsTjŇÖbců˘i¶l(JäâMű4ŽűxŻ‚\ĽďĐďUč=®púőTaeH ÔSQ• |a=µrާfČo×S  ŽőÔ őÍzj ĐTOÍŤ|ŽÎ ›•…€-d o®ŕ’8ĘJCVC@ >WPU #‹€BB¨ąÍQ׹ PU69ö¸˘1b`cŠC˝k;'—p“<>ě*•ůuMŢ"čŠFŃIAôĐčÁ‰ni Oń  •ÁH™ű˛Ű‘Íä\ăuPőfĆe}XYwř+1Ťă"»zűBŃ2Úĺ&ÚU§ađúM—3°đÇ´M‡ű&2űrůűökQXĂĹpâŇ7N†Ç?t…[i¶4;s±âÄ'âĚľ˘j06îKŰ<ź­8ä¶Nă÷>©żÇ#6žN}¬t1;*€PÜďŹČ?źql%H͸^ şřđe™˙Ąďđs–úźRÂ?7ř D‹ŮgäńŻk ň÷ů†Âʶýă?yzľ jÜá żu=ł#µľ"ý;} 2înä<ÇqŔL ›íépX ´‘†ßÓ0vÝGn­GÁ>—\OŤ™!·vÓOBsd60٬;ż›p"Íö®I·qÍcFŢ„…›ůÍę;pĆŢ.ýLóVŞŻ°ܰ·«Ż@Ĺ!_Ú~‚±wP'A…ŞŘß·@6ŤeµČ臑 ä3ŐW 6ŃŞŞ–ˇˇ®W_-% nB P+<=W~• żoâ%p%°uéÖJMáśł"¸Z'rŕłź›PČ*]T'Ö6‡=SéÁĎ—µŢ˙€®Ü'3‹đ4Ćż9ÍÉă_ěJď[Ľ¦ÎřćčńÇžťżí—ąłWöµŮĚĽň‚Ó_pjtÔĐ9KĚCwHĚpüm.» jĘnađŘĹß$m^Îćşł±Ź@;ÓÚőçŮďS˝ÇלSî(Ű'é—RŐüÄT đ|¬»k×gZdRp•ţł+΢ endstream endobj 1099 0 obj << /Length 1323 /Filter /FlateDecode >> stream xÚÍWKŹŰ6ľűWčE.˛ ź…=hŠöVÔ·l`h-Ú"K[‰^g˙}‡J–lm˛‹nŇśDÎ çĹo†#í"ýľ O|]-ŢľËx”‘,áI´ÚF,U$a,JTJ¸PŃŞŢÇ?”ő¦:fyُŠ.»ęm·Ů›âX™u݆ěY~Xý *o#™ ÇÖk\ďʇpĐíŽuŮÔëÎX$ý8wÎÉMôŻwĆ®‹ć—ő-UÔź‘Śh)ć ~4ćţlp˘(uKPÄ~ňšnžVőß“Ďů'LŰ™ŻÄŰwRŹnń&Ń$•gDňŻöpT—őýŃâҶ&›-ę™ !„i1ö±9™Ĺo«Ĺ? GĄ‹¸Đ Ă#•$„§I´9,Ţ QLH™ŽN^ôq’é VUô÷âŻěqHK™WEÓŕuúŚe-_r?89wĆ;Ľ[JyeÁ‡÷ŤkK^äq*€Ô8Ŕ¸3ö4¨AGŐuŇśCkyÝ{¶7łŻvE®¨?DĽ “$“rÚâ}…:Ś·MU5Kčŧ˛Ţ9’ŕҡÄĆ_gębF±ó±ÂĘç8emۦ8n‚ÜCéä˛űĺ/3íĂ޸5‚‹cWCL®˝{äĘŕ5epEŢĺ°ÁôŔ ĎÎţ¸GĽłÍ,ľo@Ä-9z4ćásâV§=B+pŻź®4ˇZ|öm‘®Rd$3I”T˙ĄďI×ląöŞ„Lľô´H%‚ľő–UB”ş°Ü?.—Ď¶ŕś¤ťÁç»C`bQŃË´‡> ],Í$Ď÷?FúŐhx•Ŕ0©ŚŠW çśçŤ†eݙ֮ďóÖ–ů™9?b%clţŃ|yÄzótSČfÄűÓ:ßn–‘K/Ö|Aj9´Üa¸•ăç|ٰąCl82Ö6¬NĄÝăĘĄ‘ EĽkMnáeę5[ß?wľÝÁĄWÍÖůŽëpZĆ»ŇYĹĆ^?Ý‚ÂĹŔ ůPqĐ“Rx!q"uôă]DÁ­¶i¬ë>ŽáşŹŁŮ^rjŐ“0N'ĺRćOuÝń€*NŽę*Á¦/’—ŻÝćqî¦áíŢ7áÂréľY˝$_±^Üäf>Ůgü‰Ľr™śźÎ.Ľ¸,ŕ*Fe»sY¸î8ÓčĽ1ÎW‰«Păy˛Y@čl›»Nű,Dđ„č,ű~±-ݤőíqůW=řńRT™ŤP!ƨp¬i*í<_ŠŽŽ=$é˛ńŚOĂP -Q˙Ź-˛đśoÚrWúiΑűwľUć4äâqô†÷}gx÷ń3‹éđ_€ŢÖP¶řCőÔÁľdÚ ~&Óđ}aő¶á˙ćĺťO“Âî·Ĺ˙Ů÷zߣ4N€®)I`̄ٝhŇČ993ëżvđS endstream endobj 1103 0 obj << /Length 1475 /Filter /FlateDecode >> stream xÚÝXKŹŰ6ľďŻĐ‹·Š%- ´@ ·˘ľ%ˇ•¸6­äHT6ů÷r†˛e; mÓljĂá ůq^‰'»„'/o8Ť?mnžżČĘD3ť‹<ŮÜ'iV˛"I® &¤J6MňjµŮŰńv-_ÝO]ílßáĚvŁ-U8tćV¨Ő#NvS54ÄďÔŁu{¤ÜžX;ë•Ţߦjeş ŐşďF7T¶s#»}łůe†Çç/´8ąČY©u˛N5ËDWřĆvu;y NúŢŽíó±Ţ›fjÍÖCcűüÖ°Ý:M™Vtóí$·;űžýlˇ‡ěoŻé^ČnŃ^ۇjxűš+”˛”•™ĽvŞ«Ţ~áTO>ű4ěĺ¶!-:>ýÎkžąťű3A¶+˙¤űýIOôţą˘mLçěkÎ…n•Zý/`4ď&ÓŐćëÁÔ÷ŕ|·míčh‡{Ű:3ŚsL$ëžüoµ„ű—᳉QÄÄ0ŁŹXˇçĚđŮ cjŕR…Ă13`#Ąű!rI…ŇEÎéLźľ>JUžÔG?k蛩6aÜB|ă]÷áPuă,ŠŔQ Ç;㍡Iđ˝ß˘žđ§;WŞş†´ˇ‡ N3¦łlyóC…ş˘°cEÔŚ¦ńQSH»®ęjżŢßăXá0޶@RlúݦCKĚEÁ\FY–±LipJ€ě˘óçÍÍ»›řDâÄĐ rî>˘ĆĽóa0~ýõŤ9ăUrrrŞýH¬ů:@Çëxe„ ü€Ëőˇî,vˇuŞc^rDóű4şŮKöČ̽֕¬Ĺ-Ąž-#Ë…e$ĘT ®(˛<ęÍţ ěůr°rz9žÓĺ¤÷•›†ĺßű’[µ-z‹Îő'|ŻäPÓ«˘(]ąĆçú(4š*Ř$hĚž 2!ĘWő…–í“;îý H‘­,3ŚHoÝ…FxôŠkWđÓkŐ~¤`‹ĄŚBí¬„ť„qĆůęĄ÷‘ívQwŔÁ306–ĘCş(ś =—‡×<•WRUAq(ŁŚˇ˘[Â9î4ďL7NˇŠ(˛śAČť»)df‰‰wúłGŰúH)%ÔaZ‡ÔŰ…Ix`K¬‰0Śp×–äĂí:],yYĆZÄŹżmؙΠ• ď?LC`Ă™!+NBĽ! ćűdz¨KǨ说xňą‡ˇŢľoŰ>8=wŃî×w¤1Ť†ľĐ`úY9żáćoJx căóßîăă-¶ăˇµ0„Ľú Űé¨7=ôOmKCPçP!Çgř¦ź÷Ś°ćť“/:ŃśZŠËW;Š)!cĘĄ`„dJgó :ŁŘ‡tÉ}ÔC Č˝rp˛„φ,‚ŠVŔ쨻É3ĆótÉ`&˘őż„ŔiD‚×Ţ˙’).Ž•Gq|̅­§¶n3ľňŐü›ä-–6qRUbcŽ3ş$Pö¬€mAbŢáá¤.í¨isµ^+ ţ>‹±Řî{µ ÁhÁxČ“aF¸@8x 8[]éäxɤ_Š ~jy˙.q/롭j,3!á8yŁ#ŞÝB3qžRáZPR>ăwh6E™}ÁďŠĺzFČčX1.ÓĺyˇRJÂĄĚ‹Ó×:ǶĂs+śŢac zü}8‡Ď`Ýc¬«Ö»«pçC€vpu0ô{ć4zţ׺ţĎÔőłßi‰O+ ö󳲤ż?i®RШ˙eÇŹ7 endstream endobj 1107 0 obj << /Length 1486 /Filter /FlateDecode >> stream xÚÍXKŹŰ6ľűWčE.vą|‹B‹)Đí­čŢ’ŔĐZ´%T–\‘^7ůő>d[k9›4Ţ&' Éá|3ä<8ÂÉ:ÁÉŻ3|áűóýěîuN“ĺ’Ęä~•L IH"E†(É}™ĽIż«Űeł+őüVP‘ţX›ćÎ,+]î˝h»RŁę§ů»űßAä-!(qŰbś‹uý7şŃh_ţ~jďďâˇhK*ý ě÷p‚gS ¶řëPGŢ\Öz,`łkl˝x,š¸yó:üöŰ‘ňeM_”Ýľý–íą«ßtĺ´áňë~÷š«“Ŕą• eś‚HŁQä}˛¨Ŕ©ŮKmÝ­Ü—¤vX´ű9é0(ú9Qéz·Ń­ŤZ­ËČŮ…­›Â.+4że°ďŐĘę>˘€‹Ôíúć‰ümŃŰÚ™x‘„»#ĺś?=˙ŔŮëmZGč‡÷á[Z­{]Xmlśn­ž‘®]č©Ň8Ő­ŮőÉU1¬ŽhP,‚oŠş5O„÷EĽâSzűĂ&ą8ÚëG±näΞä<-ÂĐ9V ‚8jY´q1Nކ#.ĂFw nĽŚ’'ĄŃŚc ŽěfżÜĎţžĹ IŔ#žaDX–,7ł7ďpRÂ"x$bąJöžu“P”«¨&ůsöÇD®fJ!*yÂ%Ě1@˝ÇžĂr"&ü°ś(„1ĂîÚşk'`9G™ WĺĂn÷B!uDIP¦Ô±X­¦˘źQ8:vČ}m+p`.ś»ąOŮ9§tŚ.BĽq>0™ÝV÷FÇEź,<»>—q¶xŚtwP°´3ž°Żş¦éć×ö·Ł„3jŘń·ÚµK ÷ëcďěqć17źäÁočá‚ů… ¨|®Žř Yl÷ çDAʠϧהW1űÔĺË×ÉQ>uůĹ!ÍÖÍż‡ű?MąÇű˙oWM%Ryţż^ő…ku†~­[=ľLýA›ĂežťŢÉSéäŔĽ&Ö%Al·u7`Ľańéçɦë¶;ĆĄý'"usŃv(ź 4}ćÝv`=ŐcýYz¦"ňC]4,¶¨ńy–Ęk[úIŠ\ŚŰ©ŔpĎ“ó'ÔŇŚä}1ĹPFŠ4ő%Ť(‰2ś(ŕdyŔ<}Ž)Íáů5)Ł^ÄهÝ9Ş`şĎ«  ‰$—cTź8ĎQ3…WAUÁǨΫ&<…rÂńú‡ä {ĘýI—±˛ľŁb>g”W×µKćŹî©¬O„ħ~F€Ž~>cąÇ€‚€0µ/$޶qrp×kŕÜ×mµ/a°¬ę¦ d¬IŽŁ;Š’–ľ]đËYh `ZŚ^ÝÚ0Ś•úŔ ¤Źľ©t±$(ż&Ctˇ$”B»×ş  Sh&ë·Ó×AZ$˛á d0°×­?{:`0»Űë(°ďşdaŹh•äÉ-A” Ç”7ľ…1Đ–ò „?7řVĹśâ(ÂÍ(׏Ŕŕ}ÜÜ.«®?î.µńĘł I2x1c1¸áŕ3O—ś# ŰĚ a_Ô¸äŠxQDĹ›ç(cü°.ďg”ŤaCF›,±Šű5`ˇÄBÇ:†˝ähĐ­JuřÁèŕńď´ˇÚŢ î2®ĹĆAň3ĚEsdŃÇĺĂż© _xú…?BÂ%ČP’h†X¦Ć®óA÷Ýĺź<źÓýmSOu?ŰZměá×H¤ąB×Ŕí‚pÉJĹ˙DʸÿUź3W endstream endobj 1111 0 obj << /Length 1610 /Filter /FlateDecode >> stream xÚÍXQŹŰ6 ~ż_a`/ąbQ-Ů’ll°ë°˝m»·¶ÇIŚ:vjٽݿ)JŽť8»K×>Eˇ(’˘>~˘» ~˝ Żüľz¸{ů:AĘR%Tđ° ¸–Lq(©™dđ° Ţ,ľ+ëĽę7ĹýR ąř±4ŐK“ď‹M_«şŮl˙Óý»‡ßÁä’s–J·lµÍŐ®üčâżÉ:ż¸ŻÖY˝Y™cUvoCZŰ1gIÍ9č˛÷Ď8Ŕá÷NĄîhpl Řć? ń—Żăd”ĄJŽE°ŕ‹'äëaÖ„LmaúŞ+ëüUá˘é»˘ĄŚš„äeySwYYú×Y# đ6 Ek:r>=€”3ĹKëÂś‰'Lhĺu6塨MŮx/Í–śt>dźńvĆíRE2ž&ŘîăŇ=¨r.ĽűÇ}‰¦#á<â ¬kĚJ$¸Ë Oąč¶Ĺ¤6ˇ¨Ú Ă“ )ó¨č·aH·é !B–.¬ÉşÇ{[Ć<„ţ€$ˇaUŢ>Ţsą(HRÖô›ŐMŤâ§CÓ;esĚňCźe>ŤRôR˘0Y(NGöČ@ÖyÍݬ5Í9„ÁdiH’ÓĽ‰şń6ěGrú„rç˛Î÷MK«É¸ű,Hąr¬Hăc,‹õőОÎ+:XÁČ–Ůxj̬¸Ô¦„42gş4WÖšěPĐ2`ĚaHňĚĚůźA‘ şpôĐyÂxšˇJ)Y¨‚ľF‘‹Oée(ź¦-weťUN ;ý¤ŞYFŠ©ˇl’˙ĄlćÖ^–RÓnŠvµ.¶€ťŢŮWăžčk8đ•)ÜÝţb[Vp+Ĺ,Ż×őmmÉď·µ˙OěoLA«'rwQŰ>Śf†;{ÓŕťM¢*ŕĆîŚW±¤eďő,ßĎÔ)“ ®€đ2—§˛ôeí7fč62—ÉşŇlźfű‰%3M!ĄgĆiłP ĄíÚ9é}ŇĐR‘RxW[‰%X ęYŰfőÎöđ*‚¸ćOŽ6¶(‹~7ÓUŘ2VÔk⪆€í"žl ‘Ä@ď@ë[˘Ď{â¶D.¨FI‘ją Ćyf÷ł "FKŐ@ť%¬_î>ÜáY†„Ćhx…°üp÷ć]l``̢4 ­ę!,MRUÁ_wĚĽC„Ö, SkJB Y§C{á9â)‹ĺ-GB°8:sě1zć4†”Čä&^c—«žzµ”2ăVGLĄú&n5G"§n@fŞł(‰<]9ŕ€K~W€E :ŕăŚç±Ć™–â_ˇĆp+ŕC¤ŠéD˙—$p3 ůDS2IžšńeśÜÂłŕ!âĚó<Ö$_Çę&^34<í'^Ż`M@šăDŢÄ-¤9ÖŃÔ-Af†ýă'8¨Ąz`âth Ahy3ĹÖ®'c,Ý“E´-«e[G•č-‚pýDż™kqá˛H¤žBÔú˘Î- ó…ű–»ÁNÓ”ëꉞŐmáßIŠ{Öć‹\›cÖuG‚YŔ#¦”ÍŢ3=ĄĂ˝i;\t5ĽpáOŢKşxřŮgřgŐ" ŚM:˘¬ë2Äý´ ľlZ/7ńëäąřC–žâ‡ŁŠ đWM·'óCěřônťOÇU•x÷ů°KżŢ Ç"ď.˘-[7¦” ˙† CÂÁNřϢë[ۡĂ{~č5ĐŇ2íŻb©1RĚů‰mžOÓęôś#©…©Ä†v§\Ë€šWű!#‰ˇ˙ąŢ± '‹qNE˛říQëB.Ť;ö4eJňóĎ< ¤1đS«';9˛ůşČłŢÖLgUE3¶Ç#Ôk=t…83jr´µ4Z»DY»t@XßXS‰ý8Q“VëOE«áĎY+<}Eů3ó§ýYź ľĄ·pƶű˛o©Ďü´a#şöśú‚9řJĎ©çS0ÂÔ¤“ZłËŚ%ţŽăJO–Ŕűşů<} endstream endobj 1115 0 obj << /Length 2686 /Filter /FlateDecode >> stream xÚ­]oă¸ń=żB@_śbÍ嗾ТŔí{omóvw™‰…Č’O’7ÝţúÎpHI´ĺ:‡Í‹E ©™á|Ď'/ OţqÇýóŻwźÔER˛2“Yňđś]°\Č$Ks&Uš<ě’ź7űz¸ß*-6ϧ¶뮥·şl?ş-ą÷öţׇź>˙XĘ%>.YÎ5Ps^zó<ұ¬,YšŠpjě­ ĆŽVžčL›U׎¦nëöeŤ°ČX6n»ť]Ł«™’áĚpŞö=#QŔ×ÉVR%[!X™zůŘ{‘nţ?¶:Ťvwż•eşy˛Ď]oqťm~á)Ż[‚WfđĐîy•qÉd^¦ęˇÁCw¸űí%Ä‘ČL2Ą˛$Ó)Óp¶:Üýü+Ov°ůS™*‹äÍ=$’•"k’ßý“‘“Y "H*YxAT{»;5ö’°â9Ëł!¬gyZ:#ŞP"úC* –©čd“gTAĆ=ᨂŚ9Uo—&©SĹd“`8‚̦ëÉh€YŰh¶Şl˛ŞtÝŞ¶h2™HcĂ]5.‘rĆÓ<É”b©Ôßsq‘*ĆućPˇ‘ݰ.Q‚¨‹Źˇ\ µ3Ęëć%|V¦AUJ<ˇcŞWěKę’ĺJ}Ů‚¬”1Y˛“•—1‘Ćöui.ăRÜŠťś•rBÄ NćRZa.7}׍¸ôą­Zfž±\Ë› ˘`EšM‘zßťšˇňČMK>\ç9Ët[ýhŰr*poĄ¶răňäňĚ/ś+—K`óŘw»S5ŇFŔfšĆŁ?9żFŘ“iwŽ3ŽĽ)őş(UĆRń.µ‰ĄÚ¸đj“iPPđjŘÁ|#i†ŽVO~ËĐkSřÎa•«ŢŘĆl;ô^ˇcŘöź;ŤAݡ!%G÷îz‘—jąéMűb—r\ě­hĹ]mçĄu…í[yÍĽŐăţ ÍRó3ű¤Ű Đި–ŠĘĽWÁ­PřDYîe‘ň9üą7ŞfpuĄČYˇĘwxG6űé PşëââÉÓ0mµ‡¬łc$ką&UgŢá-"Fó‰ŃbťŃ ©ô¦é)ďĹ\ŮľC·«ÁM¤«›RGđş­šÓÎuŢ ›gÚĹ-o¨°Şşľ·Ă±kwľ&„›AD΋łzÍŐ”e¨)aAVŹ+`µ~MITÜR‡â.ëůSf „†ŐľĆĐĺIÄ|t}ýR·#BÉ7GÓŐýn°X/ˇšůťY‡´‘ôĺ-$#-.Ă:´&ÓżäCCş*ômĺ—sŢ9v59bíč‰Q©—@‚¬¸&YqöB¤BĐĚßş”r¸S©ŢŃ‚b:ezŹŇŚŁAGX˛ŠN A–3(ŮׂŮJůdĄě{ßw§—= ÁűŰɶ•ýŻ"óńČí!kűÚŚţkô”—ßG™!|ţ„Â*€Ľô¶ž. ¸Ě9őš\¶ţXŕ€-kzô2_|«q¬÷±ĆשäöÓŢll¶\˛9Đ˝łä OˇÉŠX_V-CĄ%ßŃň‰Ó@ßaúĐÜßz h~kgw¸AŹ Ez M$ß„îŮ÷°|˛kÍÉ®EKĎóôĄůÄh˛Ĺ’1?«áÉR˝©źé饭6ĂŃT®^HÉ}›ŕ4öRńťśňwĺęSł?N©Dm:äď«ëuűĆiןĂß vIRÍ$ŁPsVÚLé–Ď|ẨţbŰEř•şRjW¦C;r_ňüFr¸‚¶7p´_c¸iɬ!”ąŇnňăóď,c4Dţrp!Ý'|÷ĽHi<čtiQ”ϡţ#«š•ZÇ ýËŽ§1™ă H)Ě:7K¬…ŻĚÁČG'€93XŠŇ3nP!€řÖłT•ř;Ň–é€(Ě|Öm cŐĽĐq(šsf¨§®Kč:ÔŰ#Ô  3N"Ú×ë´Pd€ď­‡˘ ˘łç^N/=¦[x^Ě]XQ–p'`Oř™Ŕ¦’'»ů3t矏®¬Ţ˙eÍáäăKýŐoÄTO€?. ô|ŚđâÁ!Ö‚Z­aÍëUěÇO׹zµö8Qő_{Äź|»ĘÂ|Ájo–7‹°>ŽÝă0öď¸Ňďf-+\§©l}‚âç=Đ-0(ĎľgŚŐX "ŇJÜšźHHpxěűéJĄşŚé^™ž(đ3U~Mw•ELbÁĘäL‘}ÉT 5–ď¸66”‡sůÚ×>Eľ#bÔ!`4]őJK(—fdD®BÖ)]˝% ŤW††ÚyogШ1yżśóÍßěsÚ”~€č÷m ‚ôě‚č“ ¤ŘX/o&§¦ĚĎÔńjÜčh«Ú4ő]x@˙lüćAT𕛣íńZ”aĂô˝ńgvf48 éB>ÄmĎ5Ł^úÁĺvܨ‡Oľ°sŚEžűR#*?0A»][/+[ †‘NÓ˘ş}]»wÉô\ţš jĄPö¶ń™Ápm ;đQuMcĂż Ňw&sí0ÔOŤ]áG@âJË™ˇîÔß+(Đíz˘g}¬±Eň9źŘaŇÍÎţ5¸(ĺÁ¤řYŻBůLH¸×áxrm†3-ÚŁĘ 7 ©úÚĺ>€“ňě&!TCbyUHĘ«Â׾pÚp ş¶<’oŢö5a +Łš÷p—äg7ÂÉ×UáŠĎTŃĄŠ{Á©;_~Üaô Žž3 ľ áj'\ˇqÓĘ®kŮpţ3ČĎdYś[3î-ĄWŇĚ1úÄK@Äx±Ú”8’NÍH>Ż»e¨€Ď—j-q0v\cv’źĐ3C(ˇH(·µ«‹Ýš„›ńĆíĂk:˙őŃÔ}=črsÎ!‰ěf‰UŠŇ—Î2(Ţ.“’ş F"x¸/ řŁ­…”•é=¶(z‰I°‘7 \2âtŞT׹Ĺ1 ®µŻµ› á+ö™FK´m—EtH.:Řôp 8P˘pŃZ˙/ĎßăúF/ÎBęĐx=»“$®aŤ7 ‘ą{é_ŃiśTáťźOvţVÇă2™éĺ\r5 +QĆńŽš—ľ÷C#MçqůVăĚśčâS;ÂkdíđţÜw‡ékZ8ďľd˙¸Ytý‡Ó°> ‘Şvy6 ˇđRy4•zľÍô/“o>OđĂbRÜJn+Ýß’7eĘĹyAĽ>çş›†,zÚrYŘş"$·Î qCHPç\Ć´ýźC_ZÂ4ýXW§Şx°<§ę Ç—$KÍôb(׬g5Ą(ĹZ sqĄp|‰ĘH•ßdž‰ăTJ‡Áŕ?ŘCףő“qA'K{tl„BÍíÖž9_7áT~›B‚üňüię7„:»–K :´çŞ Ăۉą’ŃżJ[„ }E ˙€ÔĹmµj•­ą©Î‚›‰ŻhQ¦9Y"ď…ËČ9u: Ăń´űçôěďißaĎZvÖĐi7xަPľsďŽ"+˘SĐ:ü± endstream endobj 996 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1392 /Filter /FlateDecode >> stream xÚŐšßo7 ÇßýWđqŰĂťDŠ”úcél@Ńôa[‡45†b…]8Đý÷űRN»ľçpę‡w˘HéCJÇ;ĄVĄ@µ2Ą„?…˘%Š!b­¸‘I‚ř (p)*±’šúŤHŁ FYóBˇ˘ÍŠR©B ţÓ$¦cöF\Fcż3\Ý–7Hu7F1 Fă=Sqc?*a˛2dćZ żŮÜy„nń^ÁGYąIJÝĐ•ą{fâčţgbn]ą‹úh q Đť“ú %Dq_"ÄVĐÁmdwŕZ9ű ¸Š!|Vułâč̢QBő)H"‰É§pŹł›ML"Ľ1EĹ´%50RI4¸YGĚšd$Ů|zIHJ#/ ć=R¦4ÂĆbC™Š‡ÎűŞ úěUď6-E`•[+úZjRĄ”“űPTÝPĄÚĽĽ"zđaR‹4¤17© ?d‡J u†Ţ 'T›„CµŤÝ´ń VŠ,ŤsöjńŘ•@Jł—‘rmľČ cmҰq ĹČ4¸&hşj­dćŮ ˘č­–Uőp—©%*”W–+˛™ĹÇŚAfÎN r -+r˝ĄVHV8˛†˛yŞ9ĺ\<Ó±8 `QxFç `°<‚6+XŃ——§yanSnö*$Ź´çoIĄI†Ąĺ>6ĹŘ“6 ¤¬“‹‹I˙Š®+†č-őüůr‰;ډrĐ=|út3yöĚu©9˙4_\}ľ˝›Ňc—7·Ëĺt1#^]ţüeůújy»śRl7&ýĺ|¶¤‹ ę/±a"ßô.PFěüĆű7‹ůÝŐtI×°řę’úwÓ/Kúę·÷ďç©»ú{:ÁfËélyONÝ'ýŰéýüaq7˝o{O»őűôĂÇŰó/tpĂ(Wľ›ŰúR-+˝Gó A9CČ)ů–AŰ]÷жě1†”Ą)‹Ô®`'`†–.>^ ×%J3ĐÔýiÚYćTŚę( č,[b8†ÍĚXg˛–&ű3±m&1ŔDwXh›ĘŹ ­jÇŘ´Ćiłj‡ ç4Ëň+‘Ăďrďz–K‘Ó6ćý1°ěv›Ę«DRŃNđ”=őÂ=RV•śvÎĽ ÎĽŤ3•ŇEŽçł.…· JŘź Än*Żšeěle¤6§Ř^}ŽČ{Ťę˙çňţĽž;2öą#e›÷.Ďx’h ]ĹŰÄŮdl¨f¤îO0…n*?®yÍť?ËĆiK©ť~Ú ·żÄ;#Ą …n‡"ɡH'/,ŹÂAŠ›TvăĐ?źÍć°v˝ú‚ăăůĆmSôWď—íú·Źł&ý‹ůâĂtŃŚÇ›ţ—ţ×ţĺµĎ9Üřxî0“d©3Í$\:‹ţڞNł¶W»P+ôž70WÔżžż›bńĂýĂű{tţ8źu±C…đŁĂŮU}Úw€ő¸ő—†&;pgÖŇLy˙dV9Ë UJ*µ0äłÄ`u‘Ť­‹V©¸Áâybř€bz;˙Oy ±ş?“ž25ŽÄd Čr“ô”y˛?†:€!€á> stream xÚÍXYŹŰ6~ß_! /ޢćň>Т@ 4=ŢŠě[Z‰^«+K®Ž,ößwxȱlŮŰd•¤O"GĂůČą8CśÜ'8ůí Çď/·W7ݵL 2’ĘävťĆ’:‘B!ĘDr›'oż÷›ei݉X|¸&xaËë%xńGŐŮfťföúýíź7Żą>„“%Ń$y ŻÂ‚MD˝ ±TxAN´ćI]ľąÝŮ*·Ő@O«´|j‹6.Śß]SűÝąÍĺî)ĘŮÄ…ëş,k‡üXT÷‘ÔWYWÔrűß+eřŢĽ6ôŕ@ś ÍY˛¤˘Â±ľ+ެěs@ ř§˘-oÖeý6?;‰^Ŕ-dŕ^­€au_|ünÖW€żr‹íűѨ˙ŹŚi–ٶ]Őş^eőv×wÖ/~‡ö+‡].¸]úp‚{ . #?Nu)5RśF%DŰŢ °"ě'¬:Ö1xŻî_oŻţą"@Ĺ I(–Ŕc! ‚'Ůöęí{śäđ´ŃÉŁgÝ&m`T&o®ţ “LXž#¬ő±ĺťs» ¶cNˇř‘íŻ †˝»AcŰľě|%†ŽRtř˝7¬›zì§‹¶żkm×ë#éÁçNQČŕM /d›©DYĹKcp97~ô×J;\}•űtźŽ ?:î«j™€QsŃ™2H'DQĆ^bS˘)RŔáDaöLň‚D'Ř,°”P$\0žM^śCQłŕBp#Ǹ’—ÍŕR[dŤM;›űD¤Ű:/ŢaL÷„¬Ţľ"Ń©ä‹ucZ߆b¨!ç …pŤ ş‰x‹ź+"Ú/]EçŞÓŰ|Ş ™.&ÖM˝]ąČűĚJb›î"fę‡dy^Ěgáb=)eµíŰn˘ć’č‡óÝe}Ś·ôŤÔ’>} ­|‚—ŚvôE”"źSĘP`|+• řCÜ|Üηq’aÎJ˙—ŕ9ÚÓ×W \ O˙AÖî>ąąştŽŞ/Ë9ĎáîĽésČ/Ű$Ş&ŃU÷řa˘żŤËQhŰO+0cB÷b)9đ„‰„|YQ"bP:QL>S(¬ źÖ@G éö\ Ć(4Ž’ÎË…”Śq‡ěU¸önP'B1¨s‚SLEÁYő,  ş}¦Ć ÎOA EÍj"äČ›br; JkľďĐó:DGUwqŕ Wź9¨q/zĂťçwĎi±žt“Ř-ă…+DÂč ôp =l¦CŹ¸Ç›çbĎ@#}Äúe1Ŕ^ˉâX_ =F14pfX˝…Nj{6ô„đo_sŕ Ť –cÜ3ˇçź+ä,¨ţą‚ŹQ§cŻÂlPŽ)’@zŹ<}"ˇÜi⸣^=ľ2Jcp¤ńmäLŹŢFü+ş^J%ăý¦t”îcŃ„™kS!ů–3ŚB,ĂŔ+|łÔÝônTW‘Ç]Ôu”pWwwÓF–u\Ľ±mdŢ÷źĐň‚–Á=<’DÖN• >5p"ˇMnŰîę*÷m-nd÷ĎÁüË˙.RÝîýß.ţ¶Ű]÷hą Oů}é´Ł!µĽ)¶E™6ĺÓµ ·OˇpuČÖď ăĂ~:!î†×ĐŚ3ČHŚ…iF\ŕH˙˛ná endstream endobj 1126 0 obj << /Length 2293 /Filter /FlateDecode >> stream xÚÍZ[oă¸~ĎŻ0ЧŘpxż`‹-Đ-şoEó¶ł0[™qÇ·ZňNÓ_żß!e[Td'ŮÝyEźŹ—sůxh>ů4ᓿßđîů×ű›?h? ,Xi'÷ʎsÖO¬qL*3ą_L~š.7ËvY­–˙«·wĘŠéĂÓíĎ÷?~ř!ČŢOń .ô¦ß4+’ąůŰýÍnzůDL$‡Ś‹Ę5”Ď×7?ýĚ' |űq™ ~ň5J®'’ĐZMţuóĎ4Î L θ ů8›ĺv3‚Ş,ó<UąŕrŘj>Ż›f× ć\™é:Ťm±ĂmyÜŽ ˤ7EPC`@ÎQ÷ŰősT%9F•@U&čeŽÚ,7_’Íeć*53Ržm.™g˝ŢµO·ÖLŮíťŐzz˙ą¦r:?ě÷ő¦MRÍüs˝8¬jR;ą“Ş”ťÜ Á‚1=…NOu[ď×ËM´ĽĂţńTÓ6*FÇŞjÚÔšW«UjµŰô¬—ŰŹ8ڰŢ`®zŚ’ …ĹІi޵®Â0!ET%ýUŹQZ0jÍ<ůiô’ż(?Uˇ¬ ĚŻ;î.š ¦t‘ąj®™‚ őA›şÁ„łXiŠ`ÂY¬Đ9fϰţ)cÝŃâ¶cVy§F…@>đ„ㆂ0ÖIĂHýžyŁ×6ŞRňz<Ž‚°-ë%bŤÎa/ĆsAAX—Ŕ•Â1gTŽ{!ž+ ²Ş–LZ‘ŁŽZ¨4žaëK`Z¸= Ä® °°âmźŻ«ÝW 0ÚpĘ"H±=& ¸ôt±]WËMjoéiRŕ§ŽÓLâŰ|‹ür—ŠđžyhÍܨŮm7 J*Ƥü`:]ÔH@ÝWBRĆžżvVŰűzUµđŤ†ś4ÓlR˙®Ú·ËůaUío5ź~‡N/Żę7}ýiŕ<q•ĐsĄW5­öuęďâL˝u†uâ‚Á G–2î‹ęy»ĽĹT~ąfZŻž’î剷Á7ĘĽÔńÉ4áÇS×q¨Mł’Ç9“Ôy¨»Útj¶›#IĆýň´Č羯›ĂŞ]n>AÔđnę¦{‹óGcŽ%Y.ę}"މĐ3ŤŤE˝«7‹z3ďŢ«Mµzj–Ř<FP ZwŔ6˙ĺöNü†Â×=őŃ éµS˘Ć~Ý“ŔxÚ*q•ô==«Ł‚‡c=ĘžvőH*``ďAŃRFă s\ż/—ÁI•Şk9@É4WE`ŤĽĚa/ĺíSNÁ ·9ě1 <…"3Ă`2§-Ť×Ööá¸ńôvhČri|pědO#ß•đèűËÍ|uX@±Sţ [˙áqµýĘ>˙9 ť˝Îf}ZţŇÉÓŰnť7uüq,´ô¤Ňs7{–Ö~Fkń‘zc˙÷ µ­ľ\DÝ}7†›~÷Ą®wçß=Cî4¤ C|źÂÄĺś§?˙\G0Ş{ÖngM»Ĺä~ă ­gNËnGĺ5g ăfm9î}TĘ:Ľ ]î@¤tĐŢ›ˇ^äoĽ‘ű¸R!ę—ă^ŕoF3)lT:s“ٶc0i‹¬01$‚r† ăŁQž /ŽŮ"zb3H…Y˛Jéů‘sµĄü˙5˝'1ÖQ)ͱËčwL€ŰC»;śÚHa ç%ݦŕ)„Ek,śx׉LâD†¤Uqy˝0eh{dTśź¨}ő˘ ă-ŠŔ‚ä 2Řq7P<0«C PމXĺ2Đův #;Pč€ŕę‹ŕ‚sř.%űş$ʼn8ÍŹÜëˇ3ŮšHî«ő™ĄEfJŤÇ}ŤľT’˘Ľŕy!eőÜ«·«UržÓ·ÇĂfŢťŢĘ䛀ąĚRş˘#×0’˘Ů§şť­M;;óăßă&$ jľ1[żv¨ŐÓ˙m¤öő#˝D¬Ł<¬VßějżiŻŘűm ­öLo{Řű¦ý{ ts ZůE=‘Rd|Ĺ~ççëł2Ţ,zťµ”ż žĺŻó«buLr¤oČľ«Đ†#˘tPI¨ĽJ<‚bŇą"°tÝdm{ĚŠĂ» uoJ Ćë&Ű őÓX%S)ǸUE@5•»eJ^>‚JUO'Š ZÍĚ`}{Ą‘˛šfÂŹ5,Xm¬YÁh»RYb`ÚřÜ/ëU˝®#mWĆu5Bźć{RhRw*`ž´Ćv_ď¸c‘ŃÇk<ŞY*Ů]Ę™ľ_‘ÄŮŻčۨ_ń7\MĐ]”ľÄŐ©â2Ľęj˘lw5‘ÁŽ;–¤‹'®K Ň ˝DO†:ęXtÎ1^•].ÇDNÁÔ2Ţ&–ŔÔ&ž 2Đ—üJ„ç~E¤ýč‘Űź< _aM.{ö]&GźJG]DqélžŘČѤóçJ·ë;}‰uo<Ó‘źă}yěJ5o4:>ß$NŇăś^Çşűr{č”ő«®·JŹćđĐÔ8ß©ĐůpúÉčĺÁIO,fźfŕăŽíč6_ĽpP‡ŚĂ¶QŃVĽÓę\Ľ %UBřNęđ0a‹Ŕg59ěżvžy©‹ z&ˇrÔqżm8ŢU\0Ä`ŞDúFţ?‚3˝(* 3!ä ˛´vQ¤*•rřŔ®‡ő¦ÓŘ•wń[„}đGR%ů ›ˇsP%`éOPĽ°{VÓżH6K jĎ´ČAÇY5H©%'+€iłŢf:$<Ň>9YÔ c6ĎPG9‡ćXâaďŐpí¶ôçÚźD ]?ő,ŮĆbŐ9€ Ý# 6ýzS ń‘ŘC|„§¨Aň‘z ł‹ńŹŻITv˙Ţ;Ő'¤°ŞqĚűn)„ă™öáWŁelX endstream endobj 1130 0 obj << /Length 1625 /Filter /FlateDecode >> stream xÚµX]Źę6}çWDę T‹Ż?[­*µRoŐŞ/Uy»÷ b–ô†„’°Űý÷ť‰’@`Ůnúü5g<žs<†Ź ~™P˙ýi1ůđQęŔň0Xl&‰B„*"\¨`‘ź¦qžĚćB°iĽ^۲´u‹O“¸Š]żÍěÎćUIfsĄät±MK7p°Y\ĄEîZiľÎމ-Ýňjk]÷ţ`g\MźŇâ8°ŚOcßëÁĘ㪴™}Yü›3FŚňŽ.j“Ôt Ô­ęxČk·©ž®^p量†w÷M†ÁÚPZf8iňóbň÷{iŔ®‘­P*"#¬w“O_hŔ xËuđ\OÝśmŕWü9ůĂ…ąÇ•$RDµ)®ć1G‡/Q5#LGŁ jIXöP7Yń| *¨"ˇQc€BČI¨eôŃV\ńQ0yżYsw,‡@Ą!ă©PśČĐô0ób1Dńq Ă(ÖϢ˛8ÖÖexŹŮ2Né6Á5ކ1ŽUŽ!ŦD–Íyj@Ł>ŮĘ4˙ ó"Ůe´6Ĺéó6]o]˘ţ&voóÄćëZ cĎ8ť>ÍšZ׳˛6wë7Ĺ1O@RBÍ=łĎ°D—ٸtŮg1Čl¦(ˇ ÉQá»Î„)A¨ kS@đ[Ěf‘!‘ GAŐśDH˛ę0ł9•DP9(dáĐÓd6çňšŤ‚É!ĺŁä.~€”śheFviÔ汹 ‰ˇŁ'W†h”ßä-bs­şÄć†9bĂ霍ťHlěóĚsµĽÂ 5‡±ŰsűÜžM!%’ń>­ű™Rž§ĆÚ Kt·vźč8ĹǢC^ŃăĘŤ§ĺţPÓÔw¬‹ĽŠÓܬ¶Eé-ů]ś ×[ť,%…Í‹j¨j@»‡t…ţŃfč´*Ü7ÎŃă×ŔđŐ[?«©{\+ÍφۺVŁUŘÔ*pBknV!¨.áW&"ˇzßýˇá Um $ë–VÁÎ䨒ÁmEEuX«¤IÄů( ´–±č VI5Jh᪭gtń†+©)QTŹŞ‘&ę¶D(Yś„O7WRĎ…ŽŐÚsÄ›ůDQ% X/!ĺ­ Ž8ćD…b™ň±ëĚđÄĹÔwăî7VŮuĺúś1ŕĐËŢÂŞĹM~H¸l´€“†äŽŕ˘{O<á˛ŃĽ¶¤ŔŇM~ŔµŹ˘?*Ü# *µlCłś ż9Ół:° 4Ćşo±:…ZGËÇzôě9xAT¸÷T`›ůňň˙†‡<Ůľ‡ř€®‘íCĘş\„ĺcúäçckHóĘ\Ç·ť÷]Ö^˘ŃĎTŃÚjăČĄé*ţzŐôţáşK_­Ý·ëZHżÔŁłď#®ă·[[oăîžZ“ËŞX–Őax3áw*Ô$’ÜźNt«¸ ˇR4˘„A5ńž2ŢĆđĚ!FÜ~¶2#ÁżQ@AÍ"xŢôPŻ·Ě•±¸ű¨ŐPŮ'TÁjL¸ďŕŤŢÇ„Ü >ÓjţFëÄ/˝ť +z&ĂĘŐ'ř…JMřŹËłk»iġč°+/ŚSÂćXvsź­ż3F§ĎóĚbmô„ ›9Sż"˙6ńŕeDÄżÚ dÎ -T_h‘+_$fŤÓh1ĐŞëň;ÝŠÚ4i¤ ŠŞ~ 6EćPó\×1_cLJňf ŚîŃŔ ‹¸ń®„âŐ–ŘŤgz^ą¨µr¸v™Ů'›-WÇ"ëqü©H“F ŇCY=¸F§»´p×&'•xŐ—!ö`út­Ó»Ś!¨ë7«ó.Ţ7^B˝>(ÎÝťŔśĺ±´‡‡ Ďşˇq›ĽoÎ'ę)¸»řźĄ{?˝QŐďŚG’´ćß”KăĐsăâşŇţá,©°â|5ĐőĘ:Ôw'?fŮ[‚ł9X{ÇĺwGXn¤ő|§C‡ŮąOĎ]»=Ľ˙n”˙·Ăh¨¬âŞďîó<^oѧˇBˇł%(öˇ«~÷ÍׂłÉmąť^`řznŐŻy5Á`m—Čť‘&çś™ů+vîÎĐţ‰·›8~ËĽ¸ź˛ŻÄű2.ݏŮnŞ=cĎ’ˇc8ĽĚŞóÚJ%<$<ýáłőÖ@ ó/ŞZŹ endstream endobj 1135 0 obj << /Length 3908 /Filter /FlateDecode >> stream xÚ­[Is븾ż_ˇŁ<3XI rJ*KM*•ŞTŢm&Z˘l&©!©q<ż>_7ŔŐ”üRÖĹ" K/_wĂb󼛿|ń÷_żüöĎĆm|âS•nľ6Ҹ$“j“Ú,QÚnľî7?nżľŹÚÚíáRíş˛®ţőőŻżýłW“­M˛ĚaTţ˘lŹÔçËźľ~ůů‹UläF)>žÇ6{wúňăżÄfŹĆżnD˘˝ŰĽr×ÓF%Ţy<7˙üňŹ0Í7Ąt’Ąn>Í|·+Úv…/Í͸»đµŘťÎů–Őˇ^áęD˘lz®N'Ę9×]}:_şâ=cŤm6ÖޱĆ6›%ăñ~ 0“e“Ę^ÎEs¨›Sä¦ ”âşK~ Ä}q.Ş}Qíx ›G%M"u¶y”2ń¶?Ó*?ľµe›ŕ‘ITÚok ŮĐŁ„˛ Ży»\ÚbH](;tęšË®‹ä~°˛ÂNĆÁę¦o,ŰĐ:=ÓC»ŹcşmSä{žżOĽŽ:"'[d°ÝŞßˇź„Ô+Űč°‹…Z±­/¦0#™oćĚ‚‚¦Ş_‰Nő–¦O¤]}<»Žö‚ÉU çkJ,%DFŘŰZě÷I•Llę?'×ý …ż©ÄSÓ™ą[RlĹŚmŻĂKˇ‰WĂ‘}Ź­óbűúRî^Ânîň¸ťOE$@â^+_S_žc×_NEŐ‘ň9ÉV‚Ź•­ Q&Ö*|SÄžý(mYý'ňÝc©M’š…Îóy@˛2 c~Í+›DcKă„yčoň âĘcwő¤Řk8¸ń»~đĹIe‚…Éú,Iíç¬Eźźiʤ)l|łî‹¬Î)8‚°úuŰn§+o‘¬gÖo=:Dqź|4ts©Ř©p:)qKăéĉŃöÉŚű)ßѨ2ťxjcWCíąŘa2eőşF˛?Ře·żŐm7ú›ą 05ę”˙÷ý:Ťz„ŢaťFbňĘĎ×]ÇŞ¶›AsČɵļ_ ` ¬’sÁ[Źd¬H„Í6Ćă7UźŠd¬N&iśOdá¦ŔHŁßÝ/‰€Łń˝É ě°ÚÜ«’ îK/V»ßŻ%âXÝ…©†¬@DgLŻË n7±TďJ;ŞĎé˛î· v׏Ho_îs“řI‰ŕĽđ‡^"’–€,Cbżůší%3Z´k€ŞůAöG"1w&ö•Wv…ˇK¤žhřŰěô°jÎŽPNf¶Ż;™ŠČ;°aÂérěĘÇ_OĺÇ ŁGjŚŘťz q#· XĎu—Í}ä€rĘ›;÷«Ŕ ™ýčŘËŕmqÚs@ °`‚ć dŰÍ0AÇ™+•őŔ„}}Ę{"cìG¦™ź-Î ¨imň0Ůj‘)łr'0żâXÄ:­r śňç‚ÎLJ8gĹ*ťBëřpÔš…aJCúÚ G|đ)Ă”Rú¶Ő’›r·chŘÎ1ÖóXT nÔ6~€xń@ŁbĆUŞĄ~C ÍÔ)©1ˇ!zyV>ëc)Čf^=ÇG>Ú^™'_łÂYXZ!±w/ăZÜĘŤ¤"1#ü˝nł4Pň~{-ÁŘ/ůř¬č~ŠhjóS|Ú—•6¦Źˇq^±§ /tÚ#3¦6ĆC Ě5÷Ëä4ą˝"v8t'ôm´&Đ>P‹čüSŽA¤‰3ž‡îä®B„ᔿ _ŔËŚďß›B­IîŔ5M­Ň9×CS늅îCp6©.؉xĄĐ¦:qCUwĘ9&NB}¤Ź"­ó±Ü•]k…t‚µŘ×Eâđ©ŘĺĐÔPXŕHź~Űđ; K´Ó0$ż?˝­aTřt™~8™(<o‡ ćs%ŃđPćéšA ‹iîÁWĂ #¬žó]+mD’Á_ß«ńńrÎőzáĎ ŔďÁŘÁř9ßkużYö8‰q¦ĹÎŻÔ¨”'ŘŃšĐsH…­ë'EA~ďëˇ{řťŐ´č•ýŹżRÓR”´ţ¦€j!ĆĆÁféěS†ˇ.°ˇçˇd–}ĽsÓj‚Ń웸vBüđÔWHIŹě@MĐČŕC¦žhéCř9–9e_Ë"ZU‡ß ą; ÷ŐZΆ؍Žđ)6ęKIaüŔh%;Řł5–?Lů;ä-B§¦XĎ*Ź1˘gˇý=‡,ˇčs·f–ÇV&ĄJqX3LŰŮĆžĂ~ kŕć`f$$T2«‚@§O4çT21- ú!r&z˝j_ÓięŠ}E)I¬ü¤}őI FC!HšËďŇşBEz®”ŢÎą>‡$í‚)¬qć.LěL¦çL«Un€Öĺ]xšŚRĚ3–ß-s].F?$-? ˇ(ŻË/\XX¸ŹH?§Ó¶a×7”;„ŕéĺuڤîú+A1ĚÄ+ł€tŠÔ|< 3&1/ćÁ)nÍ™üÉ%ި´ń)dŇ1‰Ë›8 쌮)ś|}wŃ„Ű{źŇ$IÇš. Wj´ěŮJ3ÔÓl(îŮpő#BÍ­ßi§YץŃ2>±.ű8Ĺ ő°gŻ báPľ“#ŹQ¤™Ä»Ô´«¸Ů3N¦Ť«¨ÇŐ„Ug2É– 9Z}€°ćĐÔ'zBT3Xve~,e †ĆĽiČ7Ńăč~¸7Bő“e%¦sT1C#śÎVĘ\ţµ˙4^ZqÓžŁ2Xŕč:™‹M>˘†KKć}ĹâËűĚÜ ”Ł'“€súüe€EČřŰö‘Ť…'»O2hĘ-Ö8ýÝËš‚w‘z†SčÖCĆ& 6:Ô}¤Ĺ\ p‹ˇ»; '$„ϡh(~ä:8 5‹™×Óâđ”ĎĘ‘A§ôŤ>¬UIŕbô uˇöŽAÇ%#ś,9c/Ř—ëę1HéJůÇ‚ =g¦†ĹŻ{-(iBËéoYBq‹ďP^×Q‡toL@!ËĂ…sŃ—uf{·i±ĚÍŠ}x/ń őŻĐovaĺű©a§i|“öi•Í­Ň™šg@eçs(|¨ÉE<é˝6|Ć&J ·0f=hr€eyčůT×Ç"Źăsâse–“Ľ°B·!/¬” Q/1hĂűZfÖ[ľúř™ĆQ¦Cb°nV‹’‰M?¨.qcźq?©\­gtU6ËÁ©eá_Ĺ *Ô2@vŻđ«±ľżfąß—´Ńůq힏N„f7ą,±^˛fŘŢ‹fŰ!MŻn[ü®Ęx˝FşńÖK÷R˛'—n& ńňËaě˝Vř¶Ifo›nŞraůаŃ箎‰pŃz*“ö–íFd—¸ĚÝ…«–lÁőŞńF“qDúîÂ!r Łß‡+óŔŰÇPŰÝNüK*wŽÁÉu%ńc˘•ţ>ę ßG)źË***čx„Ë+ď9"<±™ţżŽ—_Üä†Ëbýr)Ď­4Ő4·şőń,_ź#{Šą1hĆŰĘŚSĘ~˘:7źo3)Ľ[dđ~čÂź€«˛}‰·ŇţŠ‘·ëŮo’ěv.DYşIJEBČŤůÜŤ=QÇJ{‰Ě˝č –ÂźĆIé0–áFĆEß›đŤúřü5ŐPń¸şČĄĺ‘lďŔŐHĂeă9׫ůć‰sáĘ 6’;ó60M D‚Ë€Żmë]®4“śźŠSÝD´ţ6ÁcBđ áă*rŕ=8´˘N+Ć›í«ÉşĽ>ˇ˙¦ćšřóCľ“łwŔhŃ/MĽ=©z?2Ź"m ý€Ô8±?_ŕc(ÓMďUÁ°)˛č7Ţŕ =˛íÁŔľFĎüqőŢb¨ĎXX™żL®ąŚ1áľ­™a'“NŕŁîsâi†ś1bÄ çş#LŔ®•ľčŃÖĘ71ľcP5ťl´t“ks@bÜ|¬»2$óŔUáƧń\źˇásp Ňt^‹Á&E^ÍYĹ>pŤ±żP˛ÜMvw,Ć çd¬$ŘŹşř R×úTtĺ©˙ŮÁÁˇ!¦]ŚçQ2Ř z˙#ůţßäh­˙§J”0…S®řť,’ŰÇ*ĺ™NŽnÓ ÷MĎńßK@ËŁ‰)®Äöž\˛~Ą@!ʉ.ç¦îęîí č{Śźs䛟ÎÇŘ%”zč˙f~ýő-răxž V˙źaşŐ¬Éńh•X/vČLÍzÁĽý~µ endstream endobj 1140 0 obj << /Length 2167 /Filter /FlateDecode >> stream xÚµYÝoă6Ď_aŕ^ěĹšËO‰ÂzŔőp‡â€CÓ§¶XČ2«±%U’7Íýő7ádÉa˛ÉĹ}‰©rľ8ţ8á‹»_üㆇ߿ÝŢ|ú^ŰEƲD&‹ŰÝB(ĹŇÄ.“2©Ěâv»řyąÍűüÎU˝’fů°Z+!–y•»˛űź2Y>ě]ëó~+ç¶4ęëÉš˙z6_–»°t“wĂÄş˘_T¸ŢşĆU[WőD+ęŞëŰĽ¬zĐůëíżŔµ,3ÁČ~Ź‚ąZveuOٞwmŢ—^*|ąčĄC?ľ¬„Yş–X›°Ö!ńĎ)N˝7 ¨eżŻO=}ÔU[·$íX·eGżŁ)Eݶ®kęj[VwDjęuÔzđłĚ«µĚ’eWźÚÂá8=űĐoăĽ(d]ËVk­łĺ?w 0·~Cpľ÷9öޞHEä@liZ“·ůŃÚ 1ݶ1‹;wpÄDŞléĂ喙Ż(Iał’|y ł …$™»%Â觲ӽBÖ®­Ź4ňÁÄASź4[śM‚ÄĐĺdy»˛|Y\Ěü|sŔņűěÄßƵ»ş=ŇGw*ö4:ćUŮś$Ţgާď39=2:a‚KPŕ—Ý&ÍĎ•eÂŽsš¶Ć8|)·® Fě5»úp Ň>#éT¨ťˇÜńěżÖ¬…”Lk±XKđVXRř—˛*§-č0 ú°ńÓîP?°ý·Q™¬éňţ±q[·ŁŐź?ĂňĎwĺ— ż Ëű¶,h˙řánřdĺEáşnśt<ż'Z0«Ő|cHü˝sÍYü1hב-±Ĺťë‡ĹP>ŇřK]nç"OťkŁ2'Sq:đW?o=3?™Z0ŹNAYíę 肊6N#ôµčôůý‹âu%˛´bW=ŤËĚŮ‹t^'–ĄZÎłäsXósÂF‹IXb˛‹łró÷Ű›ßoPůB,$ČL’…N%jQo~ţ•/¶ŔwĘěâÁO<.$Ë,Š:,~ĽůÝe3]Rj–č $‘*{ď}D)&łkh5K $S­~kžę´tĄ×Đi52™éÄ´˘Rqδ0WP wÓ\ĎTŽ9ő4a´aVŞaß;¸N[JőfÜN‡i;şTKáÓ\‚ä3LC6]ćřSż…áŚu™Hő{F1®!Ö°ĎYj^N+a ă¸1WĐk-ă¸uS˝Ď$ĎQúZĄĚŔĆÍ´ő±ŔQ¬3–*uĹF˛TĘąbĽł"É%ŕ2$â)ZlîĘ.`*ÄÁśÚäĹ}ŔCąňĽ~źĽňPDŰśrÔˇ%“F\ Š U>"bX]$mŐ < ,·ç9$0ß 2@j5n)܇Á!ďzM@.Ł»"ś¬[š.=0k‡y»vyw:ä­Fő(Ţ»µ2»8uxiµS\Ý9Ľ; lÚ ÜéëĎî#’@VMC ćjÇŃ ń·Çg(e‚˙pÁ€˙fKAŢŰ˝‹cVxE`vŘěÂO¤´® ź}&A°ÍfsŰŕ{‡Ź<ěKm€ŰHZÁ+'„{/ŕwܰ™żaSš8ż’łnÜ>€…~űŃďËv°úÜ)|?täđ čë{4Ě…·ŔĹĹO­ĂĚAÁô=B§+Ś„s©˘=’—ćhAć‡dă`b|6yç_8·ŻŁh;…ăó‘ÁăK4Çš“˝ďšăţŚ˘z±Ú+%A«čU†IĽ^§zăŐ^ÁqL±D_A+ŰTČąÖ8HŻŢÔú3…/Á‚ÄaóýaOĂA€äËşŻRҦŚ'úŔšÔ„7o/X˙ČO)ë‘ÓşţÔVDËŇäu„:đ] yÜŤŠoŠŻëĆWiśwÉú}fî‚bbˇžŔ‘sEu#Ľ ‡łil(őHšÖG`ŚĄ˛’zÓeÁH¤aź¦ ěš¸ţľďÁq" ŢŤţśN8ľĆž×ľY’îC •ŃWK$nę~O#rCŤÁyľĆĚąÔÓ±éĽÔ@·ŘdŽťUiäĚäEŚť^’ú\·_GG·jßLÁŰ.$,Án±@]fÁ!BMFý™ŔĄcR1l†ç×±ÔňŮÖ(j“TÄ©«Ă#Ťrbť÷jµËŠu¬ŕgŻUvá5§Să•ţ~*[ßi2iđ„Ú?őŔ×¶°Í‘(×Eqj±_(“±ß‘Nˇ&mxŕ8ÄČ ŕ`§#:ú÷O?ü…śeRLJĘü.*Š^öňŤ˘dĘ,8˘¤…·©}_eçPĂ´Ą;/yăŁyć ˘i>şRo~ŁĆ›±ˇĄaÜ„s]´.‡śřJ Ë2Mçű°kťg.s”U7ÔBü®ŕžN`ňëckp&ܲWPn”f2IćĘ «Gb §ÁČ3‰tHµÄ~ű¤ŔˇWh˘(iÔkÎ5'Đ]AąšA]™+î\+¦…ś6ŮÔŔËž˘=0/5¶ŕO~ VýßpŠQĄ™ńMƬ ['R5›n˙·…*ě endstream endobj 1144 0 obj << /Length 2245 /Filter /FlateDecode >> stream xÚĺXߏ¤¸~źż)ˇŁkŰ`ŚEÚ“˛ŃťtQ˘)·§žnr4ôbŘą˝ż>őĂĐŔ0Ů\nßň0Ó¦\TŮU_}.§ ţzżňűőýÝ›wą ň(×R÷OČŇH č4‹¤Jű*ř!¬]óĐ[7ôu9Ô]űP·×qx§1N8;<ŚmýŃö΢ěđăý·ŚŁ\Ęŕ(D”§ +îZ”öˇ/Ú“ťŢżׇŘ )şněA äđ$¦żŻČ®Q‘6zÇîŢ"ŽŻjÓ*ŞîRÔíŻ\ţý­ży—EÜŽI)Ŕ—‰dš°ŻçłímáX}f•FBćiM¨s÷—ű»w¤q „1éčXEJč ĽÜýđcT0ůmG*7Á3©^ĺŤ5Á÷w˙ŘIŞB2%DĆN Ýq®lă‹řÖ )_ű¶—ëđi'ŠŇD:‘·°Ž2ŤCëśm‡şhšO^đa¬2 ?⿢I–íd‹ňÍŠ€ílťŞĎBś–ü…o°Ě†%EMË(Óip”ô4gg"J#u8Š8ŽĂďËł­Ć¦nOóë·Çmmřµűł=U¦Ă§±ĄpM x Qe]Ů׏¶âÇşĺßáŚhŔ‘łŚYžö§˘îoˇµĎ<(ZoäRř©Gď׍Ź˙3Ţ4ˇ†–¸cyĆ$F˙  ™Dy<)~ýwu[6cţRŔčź oČFç?ď9|xŔ4ť Çü%ҿ’?¬^Ó‹|{µ‡˛kÂőÁÁř¶óä ›yą/śĹO;ΗVýB\ů*je‰\óm’9ß;ŚęH%źaD)"8’0­”řM¤$0‘“)ˇ$űś˝Ă†:ĘĚq¬s¨"łvĽŚď ß ę-˙®•Š#cň­kÉŽ[ČcśÇ™bc^öB t zFBY´ŚťGʎŃ7ŔČîQ^Âş~ýÎ`6 ü17§$ÎĹŕĺĹP»÷q,­›¦ĽÎÉź3" m»gd‘»čpL¤D°;űŠęqŻđoµÎĽ!Sé×ŇÁöÓĘ™Úyę©ëYř|®Ë3Ë –,üĐť»±©xćŃË|”*˙Zë§+{Üăš«m+Ű–%aŔČđl),"ŻŔŔ^Ţ=ńďĽh Ť‚#â›–'®E?ÔĺŘý!‰ĂŻ@A|Ü`ľ˛+Oů¦Ťd .ˇ ďJ&´|„“¤Şw{‹ă¤ş ţĘ•ŠSŠÁK72ŹšĽ\aÝiŘý\_ö]%q”ełöÂB$KÂŻń8Šy:8,Ćf€ (Ř9%ś–ŃśşľÎÖô ‡ =Ix#bTBHč7˝€·¶˘Š3>4Q ëÇí_(4ľ¤iˇ ťËÓiooF®Âm#§#‘ÎŤnۨđm€h·š‚3[§•óÎ#4`¶˙ý!MCÇ«¸@pęcU_lë¨SđűŐq”$٦’n-ČQęUń‘¨„~řu¶.ŔVOđHÇĘO¶EäRY Ú­Śŕ şÄ+Ľĺ& |/Ęč#ɶŇMˇWŤ|A4¤1/X ™śŚf čřçÚ …/ …†1ä@ö¬0Ńę]ŻM„ˇ'rÁ´Żj—•°Oä¶şčýBľ~®ËîÔW ›[K~í\˝L,5NH˘zH-;Ó“+¦Gć°ŕĚ/¶ďxħԼ`\ęŠěŻČ •z˝PąĘ+No ×~Á6ŰT­ &jú®ëíĘÓ¬J”Ńb>GWú肨{čTA™;ÖÄŠ0…Íă#ěÎaßÇČň8µŕ‰!÷…ęöVĘg•Ňá©ďĆ+âRe|\€Ś5Çtuć!ăUmŞ_XTÚF _ŘԤқ˘Áą8ČŘżµ·â®Ąk…2a ÇwKp:€Ő%ŘYÁ{9 @óëšĘ'¬‚ě«ĺ‘‡‘>38p˘€TĎŃĂ )Š ˝Ë*,ëqÉ =[f ‰©_=‹iĽ•“żX}‚îîđžÖßÇBďpżˇűľ×i˝9fŽ+§ă.FkOHúFHĐ ‡„ó ţwîśŕV‘“¬…ĎA: Ąśb-UřŘŤ€X–Ąâ`]zę"LTÚ7O¬×v<ďFlŞP˛ÝÂM&•—Ŕ˝´Ó:vµ:“5s˝ ™ k˙Ä­ Ŕ]×<ĆBĺI˙űň@ĺ‰őA¸`V:snÄô^#–Iľjď¬üb ®Î‰{±ÄŠŞb/ ]ÂLm»8ĐĄk8ÎŘÔ`ÝvS¦<ë:h*ć®Q‡oYkřtĹÇ[ ¸ďVBqą†!w‰Hż)^!CˇžyU Ň•ĺŘłŚuĄŻV”8xĹŹĆGg˙ĘËÁ X†Á…!8îs¶Ź‹Éßs(X~šŁ ţͧUs+•)qąAv-9&ź®0xĆŮťR–I%±ů5Ą\Öüˇ ŚÓľÍŚ“/ÖĂW˛TFzŰž|sůČť›X61Ý]/ő{˝öĐ{átă6)tąđ»Ě×eŤSYó,{^Ë[o'Ű{ŮŮF8É 1Ćşç'S'W\üh?ÚŘ5gZü/ŃN¸5Ç_Š[˘é$ÂŘQ}äá?¤ 0şyi/zi|i`nv6_€p›*žŕ¬}4…U¦ž–`°ş^7G¤Řű7řEťˇř )Ž+*ö§}ˇnYS¬UŤ>ľ|%Ü«.ţűŚůË/·Şüó46ÍęÎ@ŇůÜËŢÔ[~»÷e ńfőźľLáÁ(dyPUŮoůZ" \ä„&S26źý4%“(Mżg)łšÇµçÍ·© bÓ> stream xÚÍYKoŰFľëWčE˘őľ—‹Z )Ú[ß’Ŕ Ĺ•ņ"U’˛ŁßŮ]’"iŠrk&ÎIűŕη3śoîüľŔg~˝Y\żÓ4ĐHK*›M@”@’@ …(ÁM|Xţdëô›«• bůSR¦×ĺzkâCjĐöç«O7‚´!H‹úÄí-łřífńĎ®â€+x†TIJ¬w‹źpĂ&X1ŹîŃ]@‘5ŚŇŕý⯑2Ś%N””Ě6úŽ (É,ČB€ŐűŔ]ű>µ¨ĐSŐX&żű۬+oÍua˘ĘÄ~rw±Ş}‚NZ•cŚ8Ľ¨tă!ŽŐs­ĘąGś™‡(drҬ}p%śž\`‹Úy6‚ śŔD΂I9Â÷1}‰8FJ¦1”ű˛pâÜź) —Y^ůA˛ŰçĄńă(»"by´Őµ%şZ1ŚÓQs¨| Ę—I˝°ŤĘV„;mvűęč—\ gůĆ˙Ćfo2—›­d޵ŹvksČÖ«±8gĂń·… '˝ťHx&žŃ‚Ľä…‘R܉˛$»CC”Ě‚L‰Dł>ň¤·SĹcó€+…Ş oő)¨fĐk˛Y@5¸9¦O4¶MŔż3 ZGŇ4ż‚¬őh˝’˛eĺü üőPš˘^ĘýJą7ëdsô‹QÜÔ$>iSLT´ďŠ˝ÜČBa‰żÜŁŘ…}TD;S™˘l6,qěÎ.:úÁťń[QYv6 ŰE{'»¸ÍÓz%>Iv_ďnë3ţ‡uÉ!WĎ”¬µ†AŰÚŰóŞf¬[¶ť#.¦ÔtvVq~A5Âü….Ć!ĺăPxŹü"ł±á”ÍĚF!řWy’Y`9‹Ú,ÄH«ˇÚcĚbZ!*é 6ýSŃÇl ÖfqŽ„n ŠÂěÓ·ç·ĂűˇÚ»—Z>X 6‚ÝJ'ňŰľ 5óŢy¸ŰöŮĚŤMjv¦-Ź4ďC¨ĺ)ęŹUPP66űŽé礻™ç§•ŰüÜóä'!Â`מrŽ·´ľűi´¶Ź\r5×ję¦ÝÚ}ŕ'—Ěó“a:ĹO =ÓôÔŞˇ°cŽ­1Gš]¦'“HpdĆ4\ő‘§é L‘jµ-S¤Ş=FOÉ„3€B@Ň\ 5nżgŚ{4”€őŠ˝–ŞÚpÍJ˘{˘Ü΀”TtHi·ÚŔŮ)R‚G2N¸:wwë˛D¶âŞ+”’Pó„t\˘şŞ©ę;ˇşŮě°ŇN«üހޅź=&Őväâ ®tsŻ?ĆŠ ÄHKŇ·u_»ńżP=—ɝ˭TăSß;•[1E!$é ú8¦D_Ö(ů ­$ đĄMŐĺ,ŔB!"ŔÓđĆçŔ»ˇÂ(=Ć\Á żI1&SőxłýÜ6F[Ű=«Pö=üD[›Ş&śąiź´ŚtHë¶kVŮÜ4EZş:j2“ŞS‚rjO<}BZŽ$ă,'ÎÚ±ĺ¬[;qÖNMâëŮä…ĺ,rźMqVv9›×]—jA˘"=ö—׫gň9!6# ]ęSF÷V;­ňśHaCÓ…@Ͷ{†pČ~I–§"!s˘H“E&Ú[ É<ČR ŤČÓYŢ~ övpFđu¨öhÎm& ł€rpPLžhÜí?‡Z$Ććç|†Ň>řT aŠÉs-€ě~ĺák ör –@?3AöYţŇnLź ;gý<)ýŃ}ö˛Ű<3¬ëŔ ëĽ(Lą··qŃŐ-ŐW+ý<©˨JĘŹSŰ lżŹ!ÜPLâWźí> stream xÚÝXKŹŰ6ľďŻĐ‹\Ä Ĺ‡DˇE´hŠöVÔ·$0h™k+‘%W’w“ţúÎđ!KZe›¦›íކĂyq曑ithôÓ őĎď77Ď_ ĺ$OYmnŁ„s’Ą*JeF—Ńf˝Š˙0mCVk®XĽ9ę~µf™Ëî,ŤűŁq”®8šýĄ2­{5uwiMç^zŽÇ÷e,kϢ‹Ł[ít˝÷roĂ /voΦޛşďe×kxëVo6ż€ë$!ąô¦6«DĆwřcÍ©—‹˘©÷e_6¨[H|íúV—ußą}ÝzĆşé=ĄŞ/`VO6Qn nžQz}d;UÚóÜ­„ĺ~˝dtŮ€č˛|j¬M¸@ ¦čÍîAŠ,~d5R´Z'q岹á=ěőôŤ×7đ/:Ä/—îžŕéâ›Ă…ÝŻ7Žę‚‰‹ý[]ş‡dá4ŤKbHXNČxßś´Í Öřͦö›­©ôHyÝ›¶€Ělhu}đ@‚–“'ÔĚ ĐµźB3cj¦yśŻaQćD\ńłŮ˝µ#I’SW¸ŔkÄ'€ˇ›ŕÜ륳Ó".mvââ¶ ťmŘ»˝ÔE€>ÉI"ŇYúcÚű†úđśy'˘ŹĄIž(wú«ĐÖ´~ WűLmľ? Pď&+h×Eo<Ţ6'wTű÷±‘ ĺÁTâ€sÜč|ćI†źŰć}yč׿şcé ĺé\™td7Żän>°íäyÜ÷la/D˘ Z–?›Š¶Ü Ť7ú~Áنő!ŘöűÔĎź -śJÂ3ůh‡1†Î"ĆBąřGťT*č‹ ’S˘@”Uj3~A­’Rç)´*E™Oµb[z “S “ź@)§04đlŞÔ'ö‚b!H*žÄ[.2’ňtćíhNšŐ*hćŔ6d@¨Ż®h.­>ŕ?Kź0EŕGáäIÉ˙Ť9â‘ţ{­| ;“ŃbëC:0}€÷úÝ#SŠŠgr–Ž_ń:@îg `ćÓŔUŤÁÎLŤČg±^G¨ÉđkäÜř¸łßXĚ}¤<`ę[cQ„˛ř%BJÓ:ş˙?Í®o›öŕ•áżq#AëtőţđŤ:ě_ěƧe:N(jÓ4iů~)qˇ’Ŕ@‹i¦ZpË µ×<#Jú@%Y:á‚2ü„ůU endstream endobj 1158 0 obj << /Length 1070 /Filter /FlateDecode >> stream xÚÍWKŹă6 ľçWčĹ)jŤ^–m´(ĐÝ˝Ĺć¶ł<¶’đ#µťí¶żľ”(gâÄÝĚt3;{2ERü(šü,3˛%Śüş`ţůójq÷&Ń$Ą©š¬6„KIcťĹTȬ ň.ř}?”mÓ/߯~;nźwoRq˛_qš(IBžPâvS6yu(Ě2ŚDüPöŐ]źďLq¨ ÝýhB sšF\Öý ¸Ă®ZĚ`Ý›a=n^×ŮÇuޚͦĚKÓ ÷,b.Ú1‡łůđ#~ Ňw>xăQ>dŕß»álf&ˇíÍş†ţśš4ŕŮ ëÁtő|ú‹WĺjJ/[—ŢteV•˙€”çýë·Ęe>ź88»|kOk…˛¶YS¬ łv_Ĺ|^R·i‡öŤ] ÔT¦ÉÍëŹÉSzá1ŮWĄ]f•)ľ‚!ąšŤ~ŃjdŐ¶íĘaWż~)ţg*·"Ď}Öeî¬÷mź¶ţőçĺÉI]­ÍÉ]FźŢeBťĐ  Ăýmćžńřl“JN6$%śó¬ŰđËjń炉NxŞ(—‚Ą©1ÉëĹ»÷Ś`ľ§2MČ_ε&‚¦I REŢ.ţŔ+Ű‘§1ĺ‚»P B9dŕŮKPÁMbu PÁcšh9…»Ź…+!ź\)i"’±$P?ŤN“x Ü6ÓŃÇÝž°7NĽÁG4Uh]íĘ~ Ř(›fÓvąń–ag›%Â%Ç)Óňzvj’ś‡H>,ˇ©2ř¤?T>o(Ř.­ p»]Ş (kÓôău&S*ŮE÷/C©4&/U㇠ş˝@ñ±ś5ë Ş›v@M•uKž[‹Š˛óýŢäĺ=cbډg¨†.CÍŻłµř:ĎÜÔs–© /·Ť‹šˇúŰ*%#ďLÖtAdP˛Ă]»A•·©ń`ełEĂxp÷ž­««ęĚŁdUßÎ嶇ŞX®Yr۶0š›CʱŁÁAwh:3Ö–ŹoČB¦ÁO¨?Ögş;äř¬MÖô(b÷Y§kş™z¶,Z×µĂ×g`ż®-ąÁĺC{h ďăú=bľŻ#vŢzÖĄĂçiçÁr~ŕ'ŹĆĘsÇŠó)ꑤ)L}ČA)˘áN®ŤżwÚPB]ç΀ŽÜ9˙f#NµÖ7AŽŐ0dűK†\”É&ł\«N¸VM¸VąVŤ\«ăWłĚ«µűH?»ń0hŮścžP¤Më‘"­ŐR$ňmQ–)UŕŕI6áM»FŢDÉF’> stream xÚĹZKs㸾űWčHUEâM'É̬S›leĆ[9ěě&a‹‰Ô’Ôzť_źşA‰2mOĘśĘE@7ŘĎ€ŇŐý*]}şJéů盫wU¶ĘYn„YÝÜ­¸Î±ze´eBęŐMµú%©ę˝kúşmz¶Ţ(®’÷ëŤČtňűZč¤Řľ¶wřÜp|î]Ńôľ©’a[ H¶uOðÄvŐ:˘6í€SęfčÚęXóŰöŘTqfłţőćođÎY®i•ĂÖŐiRÂB‡˘â›óŁß}ĚůŮwĹx–‹0őkĘ š(#ŚcĘÚ5(†Ťú{÷Ńłń›L0i8, hBŹĽíŤ‰hI…ôĺÖUÇ]XńŐ‡›«ß®8tĄ+ľâ9¬XŠ•ši­Vĺţę—_ÓUť  &ólő†îW‚ĺáÓv«/W˙śłqn<°’Q{˝ëębW˙gF´)ËąZB´’婼]–}0čĆj&DúÓ,WŘy N%SK~ă[Ńo|;Ňz7ü Z‚{/ ľb·ŁNp¤ć~÷oŕŤ+WĹ×ýˇmĽi‰cĺ9lTîŕšĘ5Ą›sşű®8lI^çâbH•A„IЏČ6.;RĽ®“Ç "‡°BmOnĆO§ňcâ:E7ÔĺqWt‘%DÚůB .´1Qú0“ʆX•Ę€nŠÁíéóţP­AOŰŤ­8\`ŻH¬Šęń Š˝CŇmŃTHkÚŠhőÝ8Ľwg7sş¤eL&·n&ĂöĐú§ řŠ ­Ń˛ţí̲~ühYě-č9˛9´5ö‰äaë:węžY~śĎ'řqľYĚ7Ý-öRzŔP˙žŮA+Î2“-‘<+cr2MńG˝&9X–rľ„dˇŇ©Ô ô§µź˘‘h`d´‰Třa‹ů§Š ›?IHč(XČÄY!“I¤aB9ORŞGPç=ějň?˙ˇýą›Š×Üôž*H¦g8Ô7sńś'!®ď‹îqmt F“kđ_WT>Xű‘·Eůďˇ|ĄčćqÝ8$¬;tÓ2ćŤéĐö}}»s$-¤ł™뜯ö^ ÂĐçCŁ9®7<ŮßşßČ€gX ĆŘ„FtÓ@·'&u&ťĚ§>L[×ČT$˙Z+ë*ĘÂĎ›ËúµG>żűÜM9ßĆäŤ_[ĂęjGiű®ŤÉČÍ}HëiňŹvpg9«Ď2ˇ, ĺ<”3 ~řj:P)řušŻTž˛rĐ˙"™*Ő,ń*Ë!Úä«`AiÉ´YF´6€7.EX¸d5˲LNí„‘é­ +H±‚Î#VvtdibôD‡Ďčđ’ 7 Š^>’ěčĺw~1zɶ•Á+Ż›šć6íś—5!€µ3sţ Ó™}Ý„ŇĚęRĆ0®ßdˇ`HZČZľZręŇ’}‰’ç+„„tmÔB%‡ĎůTčX .«IÎxn˘9N0Ő Éď(Ečd[»ÂÜ…C° (s§-Šś‘ ˲Ł„J@ŕ0Ô/‘ř\qąOKŃ»oG,ć» %}‰ĺK Ď*µ‚Ô Ť?uH0(Ď+řvv!¶„j]Ö§í†NÍi• ˇŔ^ŃW<5Ň0M)Ą(Mů>_š}ßĺY´ř!(Í%µ÷4 3Ž˘ÂhA?ű¶ć2ÍŻGřŇÓĺ['xÜCÝMSáČÉζĺ'Őśáć˘~u[ýýqłĚ Sz/ô¬„&wŔŇ1ă… Š•ZB¬ŕP÷¬Ľ[;Wˇjź•âžšźaXˇb*€Öaˇi„aE,”žp§źé=04Z|žy ňÜË8}[— ˛ÝŮL<®ńdđĘ9— Ą’‹±sž´3YSľ–0s–f"ŽąëÚ=˛Ĺý,0§ÇÍ.ýŢ©ˇvż4¬§%MljI$ů]ëqÁ} C űłŠ`-(é~}S;ΠGNzŚA„pţ@ťŰb ]•zJŁa'ĽGăţo›ÍĐ!~ ‡ÄŠŢ{XŹŰ™¦t„îs q´Pŕ[“ŕŕ36;ěŠŇUÓśQPšp µbp—éclŚi#jÚ·Ń ç{oÜ4üß÷ÝÚŠEŇpŇ‚â´ŘÝ·]=l1"62cJ™i(q;(űÁqÓ(¦nad„ăZ|ŢŇđc¦Lyň~měÖ»đ,22'†$Ůź]=¨ţpýĺÇZăŐJ@Ë„z ZăÖ”ćY™hé/ůáĂ_ţńĂLž˝\B2¤<&!n'’ß˙řé§Ď×7?ü}F´ĺ,ŐËýĄęB4iúŇÇűś’AçK‚NrÖbŇŢšXĽ“6űV‹I›˛Ś/#ŮJ–ĄŮ7[LÚSvŃJ(¦Ě…čŹŢ˙|óůúĂç») sĚF/ç:)łyţ]łť€ŤU2Hwž•Ť‡ Tf/ ¤6KČőRésąg7x ˇ±OŹüŇ,Â%hŤp Ú‘p)sÍŘÂĆݱ)ĂŚ™€S°"1jżîwsÚŚ ŘéCĹ—ż-â`[iu`eÍk—F2ËÍ"‚˝ĆÓ©ŕ{7Ž!ʞTż„Ě ŚÉ‰Ě}qKŤŚFŔ3 `ÁÎĂ…}Źá[iM~yŐračÂZkç‘°N±ĐoÇÓ®(pg¸Ä̬°~ <ă‚J™‚kBŇÔ?ŚnpžIúuÍŘ ě!eöbľĆ@r›Ë\ż žp 2°29™âŘk^ž@‘r ±eˇľ©ŘgB_‡M҇?ľU9Z_RHy•Ö¤RrŇŕag<:‚gö¤˙2ńxÖ endstream endobj 1169 0 obj << /Length 2238 /Filter /FlateDecode >> stream xÚŐZKŹăƾϯ ‹¬zűý€Ť ŕ  ĎÍ6Őš!V"e’ňěú×§Ş»É5”Fëá%±ŮlVU×WϦhöŃěźw4]˙q÷ń“´™#NsťÝo3&1ÚfZÂ…Ęî7ŮĎ‹|ąB-ÚâÉoŽ;ďöů!ęj÷5-8ř˘Ü¦›îÉ/˝˙×ÇONŽč+ÂîrÝ,…Yl|—ŽDáŠ!ű•eÉ>?•ĹÓ ‡0(ę¦ńíˇ®6eő§6ő>ď_ń;ż÷U×"ŹlĹ4%R 0âTÚaűTw›ĺŠ[¶xđxĺ‹ß˶ěü†,W’ĘĹęřtS6ľčâŠĆďň®¬«ţ˝îŮű*> ˛áě!oş2ßĹ› K®ůîčŰř”1~·ÜçŹA‰ „‘¸ĂŽVśëE®ń˝0‘Oyµ‰Ła™Ĺ®®q vŮä]Ý$rĺ9ąG_áź(üý§űK|aÔśpž|P´˘QŃpÍŰö¸GEăz&‰“rüŇy€śÚČeŻ'˛áísŮ=ŘaśÇËĂ’ÓűÜ ­ZÜ«AU‘­Š·mą?«Ć1Ző/”rźxv=…˘®VɨNĄÖi«]&@b**‹%ŁĹFľ÷ ú´ŕŞhąŤăĽZÂďWbĂÄ l/Ţy˘őHŤG|@ŐsŘJür_Ô‡Ňoz:i°m|?wlŃk&°Š˘@Űz·«ŃXź…©cU é·µ! ôWđz~âĘ’+Áĺ8Pg6R˙KY»ăX( ü}Ůî>ćm·~P=ýmJ őV­ËßÓKx7Ľ§ţ:š[ç xš äz1Niâú˘ű’ކ*ý»ęÔúo—aŰÔű5JçżtWE‰¤»üó éÖw‰(Śf Lăë´Hú”ägď—I†ńM˘UÇÝîv­y˙ÍÚş.ÚY~YiKŚäc«Ľ˛Ö©ý2C,$Ĺ”Š“×ä%Të~MŢ,D§#†iđáBÄâ‚»Á*żĆ›<>bAś  ă<†ł8ő‡oę8W§Eűşńgo3B\Ň‹«¸d»d]‹îCFQbŤkńů 3–p,‘?á.Oł1ŕÂ`çŞáĆbHÓí.„îď~»c0K3–q#ĺ™’pòb÷óŻ4ŰŔ3pq"śÍžĂĘ}´,»ě§»˙ĆňdÄŤM(u5<éşí&x:N¸3ł0uŠp«ÇLŁ™˝b+@Tč9Ř (€(Wc¶U˝ń\Ą& ňĎ\Ą#J1W a\ #TÍ‚«0ŔM˛1סZzíl) $ŁD'CŞ0Öŕ@ÂńE?Ńř”¨ˇľ‚úSŹťŕ·#u 1ą×ńrk¬"đ} “pôRĽüŤ;¨ŞIÇ0°ió†c@Đ@ÜŔjHő#µâĆqćŞgf:SAa=cc¦gś×ó–p0礏TłDU^ .JéěU ç`7bŽÝHŠ$ř *”ěő,,!÷(X1­Ŕ3¦ŇBCäfa«(ÍžíkĄ©<) ý©3—ŮÔˇ†$SŐčkĐĹťt¶Ż`ă““ô†Ď ękcp eřâßË^ĂĎ©†˛Ú]ÇUJ *Đď B ĆNRL_K.Ň·r¦ĆAđc¦]b3ZâˇO*o|T÷fv24Űă¬hʇĐ/±Đë.zl”ÄŇAë_¦Â/lŠ÷ Ŕ‚‰Dr±˝ G‰rć-zlD *™OeŠ%­0Č ‘šc=V&Ŕ´ěZżŰĆÉЉԅ‰`kÇ"vC·ž…6çęmÔ—€¦ű?m‚Be0UIăŘ„ô už’˙ĂeéÎzáÔ#62/Rü™nćdźSĽµ÷ő>?ÜĐWĚą˙c6˛çeÓ řř ŞË“€kŃ0łâPŐńËŹ±«lo°Kô×…bAŽ:éjâ‘KŢ–Ešúŕ›® §Op_oÓiLőB7 ˘ÂqTôĎú“›úˇ0î7ý9Îą§Ěí\ÂWÇýk#Yw_¶ł~ô]xô§¬ŕÄúpřÍ˝ĺŠ9Ŕ.†#T:^ĂůŽKJÇAä#,aĂŇę坉jS@ФüzŞ„jMR‘1 í,äąw~*aIi§ŻĄJćŔ Ů,LˇZŃźGL/5D’0ëfá* aĆŚąnë©k¦`éJ^Ă$‰˘×{eÎŻçŃ—ŐDKwHXů:aç`*©"Ž›[@’Đ!I©gá*Ŕ´…s-·SÁBÍއ›žG]Z}n]ÓY o©Y‚Ť9%oÁHśŇĚ3µ úłń=Çç©JW¦®şŇJB8łRżJ˙Ż7Á%T’ئ|Ďаë@ÉHv.¦ˇ/E‹|?Oý—cžÓh1¨`1•ÍŔÔib3ÝçÍ$V äÉ˝‰ěD‰o…`ß/:” űoÁk Ć=FĐWľ#îŔŹíq@Ű™3ŚŽíôÇT`Ę"ékZ5Ůt&Í=7ŰžaBI P C‰¦s‡0"´Ł7@%ś ‡…30u–0ŞĆL/¸rčľh|›ľőJŽ#á’^Ťç™ň<ân°ćnbhđ—W!fÖ`Ů&ÁƬz_(Q/P2öZ†ă°«Ü<9“Ď^đGˇˇë7łpó„×é*ăô$Č‚‹řń®ř9Ż=ž‚^8j¦ří‰]÷YcRbŽm ¨D47o#*B™ĹŠđś×ň[Ĺ3U<'ť©ä2ś“ޏ^,Y|ĂF¦s8ě¨a|×ăMĂ?[őţPń =Nö ł NĚ PőFR…6T2]ŕW©÷}xcˇżd‚DŻx±ĹňŽÍÁ2Ą¶c–5ăP<¸x čá=cz©î“ľPuM˝9~ jx7L„˙ĄđtrlöŤ Éxy8# ‡b Ź% ZKťlŹ7ZZřűď%O endstream endobj 1176 0 obj << /Length 1071 /Filter /FlateDecode >> stream xÚÍXMoŰ8˝űWŘ‹˝X3ü‰]hvŢő­-Y˘m"˛ä•”vóďwHĘIä2®Ń(m.&%獆3ó†ĆÉ6ÁÉß3<ŚoVł«wš&iIe˛Ú$„1”J•H‘"ĘD˛*“ŹsŰU‹Ď«÷ł·«Ůż3;qB"0Â"ő’$‹ýěăgś”°ř>Ái•|ő˘ű„"­4ĚŞäĂ쟨`s9Í»>*5b 1hJŁ| Z7Ą‰ j†g“ j‰ŁcԛδőęWd)óĆA¨5‡Öt¦î»Ĺ’>Ďk7ŠąYŔĎn­łMÖş>ďÍdnž| ć/Ú{ĹsZ'Ď[÷@KÔşuSŢţçą]릩ľŐá-±]Vš­©]*IÍ9©ęK©PĘé8ϡ@{É1Wp$Ą8Ö˙8 §ddÂG4%Ob&E‘„otŞpJĎ‘°Vľ‚NJ18±1(GÄoD!˘Č˝7BŤ…ĚëliZOđ\zŠ;žăP­7ÇŞ=ŚĂŢëzTľ=}ÁHŇýâć¨#ĽĚ‹Ţłź«üua.*ëKΑŔě'Öu»y Eé±´¬¦®mÖ!@虩:ó ©ĺ;nzÜştÓ7ázoîĂ=gnVY( Aw,^G˛ëŞ)®C<îlU¶źú>Ç–1żďó6k_bňÜY7čžŇľ/ĹIG „±ă%™=‰tdŠ ç% ?Ç9ĘqŤžSÁŐ ®¸#ĐřĹŹbđ‰J§@Ąp8i*Ǩî8#¨p§ZL‚Ę$˘€6B…ř‰€ ŠDĘ& IĆ mN‡+¸ŕ÷7Üţ¦­śac¸ş °{ÝŰOS¸$ű7îb6qnD±Š$qz¶âD 5I,sčPŇ‹‚™3H Ą&e §ô’`ćB#ˇĺ$¨‚E‰K‚™CâĚ'A…ÄĹš]ĚĐo!¦č KÄRwđikĎRčˇńI%ľ kßdҳáé ĂżzÔµ±ő6L˝ ´˘ĺE}gŚźµít˙b…žž‡äOü­0’p”KÎbC·Fm¸řÍrđ endstream endobj 1181 0 obj << /Length 2264 /Filter /FlateDecode >> stream xÚÍZ]oă6}ĎŻ°/I1ćđű»X : »EóÖ'VaŰk+3ӿ犴c*´â4\`źD‹Ĺ{îĺąWćÍ}Ă›\đtýáúâă'í›Ŕ‚•¶ąľk„öĚ ŮXăT¦ą^4ż^ţ8ż}¸šÉ /×wńÚ?´±±mű§íŞ]\ý~ýÓÇOAMĺ “RgŁŰ-iĚĹŹ×˙ą »ĽŤ4c"šÚíăĹŻżófÎźÎTđÍ×ačc#Yđ­eóËĹĎqáš4Š-[÷|×0m`:„*N2í}Ú~Űlănd+9 xÓ´»¸{·óUltéJ›[źŰ}ĎnÓŢöŘááçÓ®[ÝŹlp·^.×WŇ\~Ą>@73ałZ˘!X0iewO«Űľ[ŻvlŘ>"Ăčĺ´`^«f&1đq†żt«ŰĺÓ¸pM?bŹŮĂßTžĂµ«§Ç8ăn0ć¦˙cÓnß·ýĐő7|mŹ<ĺÍ =óď¶ÝĽś!ŢůŽšCüµ`™ąiWŽßéš¶Q9{F-b9]É:týţ—ëŘhŻ„ą@»Űaă˝n—Z=?ýŇ„3LŘ0é Js&\cścNé÷SiĹ@a*©N{Q46©¨…7(—î˝a„ęŚj« zË‚69ęzS°ľŕLŰ˝>ldx6e '–Z×X¶–WJťa!­35@µdFs,¤­f\UµŽq1âb·(ą§RŘ#rź_oKî„^OK€Ž¶˛†9çßóSp†©Ś ¶^0…ŔRÔk¦¸ËA˶’Ü0ʧ* Jî™&GíV}Éť łápĽł«™µęňűUÁXRł ¦Cź¤Ą«*Ö’äĄ:ĂZ …CëÔőžq.α–âäĎ5@•€;ó/ˡO3!±mŰŇ Ö®z:ą¬ŹB‚¸ű´ě©íâ{ĂëzÓnç¤XRA2omî«Eó ZťxĹWA& żó°Ý»śŐ3K§(¦˛RO:+xÉmPď:=ĺ¬8p…®*aÍeŽZڬXĆíŻE41®Ý÷şß8—íöĘňiăOř´€Uˇ|'ĺŚńL×1Ş˛›vŽQXuŚŞÎŮŽP•€ÖTU‚qŁrĐ(ëFHçôk LmHě8`Ä-T˛ ü„~>v¨f…/ŹJrh ś§ťY×AHĆźř÷}l¬X5Q IňdNnbZYa´Ą“RťAlípúÔŮyí;‹Ö†#·¬i8Ą–á V‰ U\ ‹He_g5ŚÉ¬®âIF9fŐČ «¤VLŰ:{«-K‹¦ĐöľTíĐďÖŹ„ŮÁť¤©Â‹Ž•ĎQ©‰$ą ď¶WÂ_Ţ?=’ä+:ŹBâ%ätŢŤŘXPÁZPßľ76ĆS)i§4:ř絫Ş8/esĐy· La›k *Éäq†Zt Ą}d`P#´ä@T‡µľ $Ąĺ‰Ď&-˛Yx&ž«AeÓ‡Ś^.–ür–ňĂ#wô.±ä&=0YUą•„ĹŤfČ~ߥ>„€¨ fsŇvÇ I^—?Ą©*°ůóöDÍQ†ÄÝű1Ŕ 6Ç,ú’{«jĐHq3äôäY*ëvľ\îJĄU΄9Śş[•<±ęhČzu×`ѡµčv=çľôE:¸iýE"”tÉ»wG“•gp@S5‡xA˙*´38ÖkĐN“ĆĐć,ĚpČ0ë\űĘ>‡ĘfÓηű*K©LGŠ6ô>zL~šfW3%xü,:mžőz^űéöUťŐ¨ÔďÍ>LçUťŹź(`˝Ş‡7ŠłY:'Č’ĘsoµEŽ*Śb\Űa.üT*KˇŽ‚@ TD;EaŕµÄ:á‘ţ@!Vővŕ[ţŞ«ĹČ*9˙$ôs ża!•"˙ąľďŤ×ôqtĂä!X¤©ÇÁŞł>óőJPu0’:×µX÷…Ţx+ţ‰ŤĎíľI5“TĐś÷)µFl„B\Ą´T;će’I‹lvĺżÉşÁ endstream endobj 1185 0 obj << /Length 1450 /Filter /FlateDecode >> stream xÚíšËr¤6†÷ý,é$Čş ٤*Ž'•©Jĺ2˝Ď7j›J7Ř@Ź3óô9B’#µŰŞ”KĄ˛Ôâč|Ŕůő#áÁŃm„ŁďWřäřífuń†¨Čhmva ĺ™2ž#Ęx´©˘÷qÝď×6oWW›ŐĂŠŔP‘pŚ0ĎÇČ"·‡Őű8ŞŕäŰ#Včq =D˘€Ö>z·úĺ,•3„Ó̧–ýp†šADjNŁ©OmďĎ@CLĐ0P‘!–z¨›‘j sń&΄ć(+˛(! Főë¦>ë„r·;}×~™ÎNm'u«ěÖDÄ·Çl†ť ýëLhŠ śł@pą3t@  ŁČ•lŽBP­\ę¤B@­\(čŕŘĎW‚uyW6·¦Â}}Ű,(,.fT–«K 3ÁU*ÂɌ†€šşzĐ©ş†`š˛ú7ZU‹‹únrj˙•™ĂQŔ€ ő†\sę‚j îR' j+îBűăÍbC˙®VC.ŢnvŐbbڏÄé/GEžŰŮÉf+I'…Ç“.‘ÜÍYäÂY6G:!¨V:.uR:! V:.ôpÜ/6‹ź»¶:n‡Č0Ň) Ru•‹Ó9oţ TSuŹ:Uő PSuZŐĆŐ省yUŻ)Ź?Ö}ÝÂë?aPřÍ]iNÖýWFwĆ:Ů÷Ogőń·¦U9k„sc—ަżną&<ľ•Ýšó8´”ŇFI)Đ9KŤP+$:)¤L«#—ąłBň¨ç°` Ą^ yáC&ĄË)˘8ő ëWG€ÖŻ\e=µQp×›JVOU‚U.Wv•‘qŁs¬y\zĽú--âcÚÔçu¶H»łÖÉ)(cÔ ąRVĚQoŞ•ŻKť”o¨ŐŻ ˝źÔoę“€]ęß'ŕÇ;i7ăöl%›j‘7m“Ľ óŔvĚrPcf=Ç@c˘łž B5Šö¨SŠ5Šö “ŠAµŠö¨Ý|ES«čCYąv˙yQłqfąŞr1žÎu޵Kťu¨µ ý<)ęÔ'Q»Ôn±M_=Ë˝/¸Ď˛3­sűm.ŕÁ‘W6ÜđćČ„ŤqŐţjfL ЍK{EěA9ĎS„!E±c‚™ł˘Bµbw©“bµbwˇŰ¶©oÎ.aP=@‰Gýe)\şěĘaü&ż*9®DÇĄ,,EG%@÷p×I©›';ö„q˙°ÓáZs¤’týđ|„î‘ÚDáźr,9~[†[HA7|'†Čâˇ;JečE¦ň7¦s$‰üĎ-#tŽz…>if—Šku—‰Ďâ^ŽŹml»w’R˙ÝcÝk"‘sćz •át¤ŽG5Z7ę®ŇÍShNaKlÂěĹ1Ě`c[MŽŐ=‡ň“n´ÍŢ´nL2÷!'Ţ›w±zňęIä0Ówú¨o7'Ns|Z@čy^@=ĽŐŁUÉĚĐĆvăvhŻlÎŐóĽ—[÷uş7›ź„2íT<Ť—´ˇ=’ş“#šRëĺś—Ç߬‚Őű\˙üÚüÜž±Ď ¬ &¶_Ľ|Íů8"9›ď|”Ŕf! łSąŇtÎgě Tă|uĘů‚@ŤóyĐ^îA;˙{ßżÎű(ŐŢG‰ń>Őaü š'P5!76ěÉű`¬öľ—Çęí}~cRś>Úęśë©ĄĐ=ě ŤrLĘŢS0jn:léž'öń«/ôÁŘŐ—úp –EtS;ybĆzE(!ŚxYÎąc°€eK]Öźąor„qDE şĘ…Ĺś˙|„jLÎŁN™\¨19*–yWÓP}E4 ˙}9ŚŢÝ<)PšĂĆ”Hă¨DP/ nő[ü&d endstream endobj 1189 0 obj << /Length 1268 /Filter /FlateDecode >> stream xÚÍXËŽŰ6Ýű+tc1Í÷) ¤E'@ĐEŰx—†ĆćŘFly"Éyü}.)j,z4®ś0hW˘ř¸G>çňđŇ8[g8{9ÂgĎßćŁŮ !$3ČH*łů]FCJęL …(Ů|•˝o«ÝäÝüŐčŹůčĂŔRś‘ŚڰP~&‡™ËýčÍ;ś­`đU†3:űä§î3ŠŚ6ĐÚeŻG÷˘ †0—1j^Ő=¨Ň 3’ *Šĺ1ęáľT3Ä4MŞ%bŠÄ ;ëA[]f7\w–L©BŇČlJ2ĽYń§­ŞÉ” <®7yŃ´eó´Žů®i–v—×ŰCÎâÇß4Ą¬úč Ń)ABš4˘C,¦†hž´ŐĽzQň­äĚ]ťBńo‘WWhćIäu±ćôM‚ôŤP/ ś4®ŻŢÓ/K›×¶ü·µŕi¦Óč±$3CtOÚęŢE˝¨{ ĐV÷.čşN¤űŰÜ„!ŁX‘!–‚XDNÚŠÜE˝(r ĐVä.č2ßí®•ůČŠůřîX,ť¬îMř@š†ŹçŰôÇý­O}¸kúňrBôx}Üۢ®şC2Ć;ÍěĆĐîgŠp…/d“PĎhťqŁfôJš"8¦0âJA(ŰęRB0ŕSI‘T¤ŹAíçű˛á#R„B0ˇOt‹ŔůţPÚ–NŘ€°4ľĐm-kÖ^%AN*AŰKĎs• k[4χuýáÍé˙Ě5éiĆ[Śi Ô= Ůô”öľ´Ľn‹ő)¶űbj ŹomŹ=¨]Ą><8ĐEŚJâ+žţ»Ż$A ľˇ^ň•$ ÁWâźş\ş2o°ł`- 1Ł ’ĄĚż„¦ŹÖ"8i¬Ĺő¶IëÚ.i›EQŇv‡ú­…bعⲳQŁL#*Ô÷mr‰0f>”Kł§S‚cЍ!)@9ęó)cTP¦k,žÁ"0±°HĄůąť4Ç=o·?ďKđx!ŔEVvBÄřsÓÝ´ť T°ż«¦s{(doúlđF#O:FĂ wF3íó•Č}pźđ"łi ÓŰ 3qJ’ŘŤ‹E)`7IPÝD¨—ě& h°›to}Ş]m7®`!íjß~°Î\%ăĎWč>ÜŰ2gĽnňĐ_š¸Ů„µ]‚eŽóf¨ŞËă˛>úłŮÍ,Vaý&ôůľ÷ěk6N'9>Öݨλ0C˛÷DV\sIdp÷|C‚Ł˙´-–»#ěŢ© bü ¤ô  m~íűęĹĆëíÇ0Ý˝mWMűg÷K·k[ĂČ[,°ŹĂ Ňśő{oíý)X»>„tMAž÷řÚTj¤8ŤÍ?X*ÎŘŰ®ś83i ~(Qě*0úĺlÍ‹×óp«Ť¬lÍT"mLbš?ş»u?Ď0ô?!ut­Óđ<»Ń˛ű,ĂůüŠÖ‚˙ň{Ómăzk«xű@ěj^śi$żE.Ççíá°{Ě.żđ‹¤Đ‡<‹ŔĺU‹é0uC)ńűĆ.ßM[/ Žř¸Ü‚3Jwo.=g"jµ0ˇPŻpń=•ĄŽA ˇŕNĹĺ…#‘BqDŕz”d#ĐŚ@źŞ·0¤ĄŁjKűčO˛úşňĺ&$.l‹rĺTl3pF Ú)ü ®Ăgo4 ~úW%ôř˙ endstream endobj 1194 0 obj << /Length 674 /Filter /FlateDecode >> stream xÚÝW]oÓ0}ﯰÄK‹k;¶ă„CB ­ocОÚ鬥I—ŹŽý{ü‘ަ[!+ =ůĆľ>÷Ü{Źí@ŕăuăűŮhz"8aĚ ł ŕ0„€ł’™găĎiˇWmž6şXLÂĐ8-¤7V•.~N7—ĘďNg“ó٧é [ŕX@îP­Źs.J©joÎÓÂĐĽ\i%w‚f•Ú̵őýŕY™çĺ„°ńÍÝZÖóF—E -­»ü7ăô$&[<)†‚† Ć8ňl_čbž·Ň„`ůŤ®óiZ7đň­t™gĆ˝s’ődˇ×ť»ý2މÍÔĎĽÜžJL–·ßCkݲmŔ+ĄV{­i0đkěG)Ú<FËÖy­&˝RĂhíč!ŕF”t…Ţ•…š`6ţľŞT]ŰÎýO!Š8îó&ök(“ďN'ěÔáŮ´ćŮGë`ěŁ5D _”kÝ$9őj yx_-vŐ©ĹV-n˘RicĄa?”6Ѝüv©+5oň[żRV~Ľ1şpęqeŃřhŤß[f~Ás)ô¤` cJűe1ep2ű0]ʰ`† b 4„TD`ľťť# ͢Ń cnśë‹ŘX98}ő·x/(f!D”;("şş™ş?”Ç04÷ü1‚F†„ö^´:—tÖś ĚAs^]@śýĹS—Uĺ2Y§ůŁ%nötxë}'Ž˙%-ÍHË št gT¨ĹQŻ€ă°JĄ´WARfOIŽLî¬đ«ý"˙ífrä‚×íĹäÄ˙iNË6v}’zýěú´2I%×Ď®U.­ęxim=¬˝·X ČÍ;ż~tťÄ‚ö¶ ?ý&űŘ endstream endobj 1199 0 obj << /Length 1171 /Filter /FlateDecode >> stream xÚÝYMŹŰ6˝űWčĹ.b.‡ßD‚ 4E{+ę[Š-{…Č’#iłÝߡ$;–"+jĚĂvO˘ąŇ<çÍĽ!—‘=aä÷kźż®fwo'Ž:Í5YíCĄ’D+CąPdµ%ďćëuR¦ë*ú/–Š«ą˙•Ő:ţçX43?ű!ĎĽ^|XýI–¨•‚,¨S3űäËu3—Së(ۢEVĽnď»Ë‚WµöC×>ui]ÝÇٰ_úëW^Ľ´HĺĹ:NËřĄ*ţü<°L¤Ď$H!]Ş^\”ö//Jűg%ýú´ŮÄey«[QQDO˙Ů­uš”ŐiQŮ6Á•Ř&JÓ[}Ű=d›*Éł›Ü‹ŠýĂ!ÎŞŻŢ˝•ö˘ [jKŤädÉŃ:ŘĆúęÍ Îć§54vú7Ą(3€ëŞż@|˙Îě·ŐěóĚĎ2„s†ďÂ%ŁÎi˛9ĚŢ}`d‹D‡¨p–<ÖŻ§Î:ĄäďŮ_CÝ"”i¨MgPtxT8ŠídLÉ©®‹Yč[P-¨U6ŞÖHÓót»-0]ľLR¦L`Á eRwóÝgťs ý&ʲ|lIŹio›UŢNqČ*Şń0Ć!É9µL‡pPr…ŽÉ ’yfWJź'|D˝}ĺ’s§íh¶ž,…PTBŻ~TOÇx`CÁaÝ膂v‚Ęý»p‹o`p›ć·HY>˛ˇ`-~C€: Âoč%h~ČIĆ©“3 A˛°( AąQç(féÓB«9],ącó?°0>“˛yâ(k§|¦řg1×ăó´ŻĹ~pŞő$ÇůŻ4°k O,!Ax QáźÂ‰‡} 2¨fT3Ń®ÎŇr śAĹ’S©€űbĎa m>ăj îV'źĹevTq%µÂŚ+.Ęő%°–ŰŰtĺŔú”Ô#;޸ľnůŚ Ę /ó— W$WZŞmPTk×ó4ŰÉĽÁ…5(-^m/Aý…Í.Tˇ3Ť˘˛aĘcś¦Í(*Ř‚†ĂQ¶dX‰ ĆN`‹0‚Jm‚€MĄŇSŘ"F«rTÉ0rZvQóˇ˛(ŹŰ)bńŘ `i3â$°HqßĹ>›űäűqxÂ22;6ÓFôŘ‘őöŔ°ęťłňU“SŘĎc”űŐ›Ś;5‹~Ѭ÷?”öŇ*TčÎŃý§$ۤŰöZŕ ĆúÎß ||HŇ-˝˙ĺú]¤ˍÚLsɰ+ňĂşŚ« —mźâřŘ5]Űim×ăÉ—Ř~×`şµé;v|\G»Ý„+ś©ľ]D±Ă ‹],Oy˘˘± Vu>Aöţ YĺŐ endstream endobj 1203 0 obj << /Length 1551 /Filter /FlateDecode >> stream xÚÍXMŹŰ6˝űWčE.Ö żÄ4ȡ@S´·6î) Ů’˝B$K•ä&űď;$%YňŇ^oÖ rE‘ď ‡Ă7Cá`ŕŕ÷îžż.gŻŢjh¤ÁrP"Źx "‰(‹‚eĽW«¬ÉWmü)ť/"…ć­úĽŠ·[÷ţsŔůeţqůg°ŕ)΂!HG„]öß!nÚUúĄŞ; ;O§őĂÖ‡,OVńf“6Íj[—…ˇ/y›#€ŰŮç™?Ąi5e¶µmßů 8łňş_qÖâ9Ŕ™ŕvá;;`LÝß'6qž_»˙âÇŘ˙ołüw÷_˝ĺj¤' ˇä`ˇŹv{˛ĽĹűDă:7fż-g˙ÎĚńÄ `Ś P9’`SĚŢÄAÁui|¶C‹€"­Ě!Éwłż<Ĺ'«±´P4˘ťŢ5­‡TEčč&¤ d\ń)©MË]wPzÔ%c>©©Oŕ”1ÄÁÔIü)ŰoňCŇĄŐ×ŕŘW°Nt˙ć|ľX;Ś»VWeµŠëÝĄÁ4ąźŔšć]÷ŐśSÓ¨ĘćęZáÎYt}ťđwZĺN—Ć'&®çD…»Cá¤Ă*źlCî•CN<·Ł°9dŘѸ„5fV<ůš#ŞŽ™¶lüŮ€¨!}x¬ŁöšŐóÖ;L„„&Ď‹6˘$”5˛ócô=˘í°nÚ¬=´é*KšŰDÜ•á•%«¶|d\BÍŰó R˘Źę«\`Ç»(…öň Ág„‰~‰*Qj˘—‡"F_BĘ’‚Ţ„”i$#2%íÎ « Ę› 8Q‘ž’ĘŁýŕe"nAÍŔÉ„źPCű‹çčxěk'LŤ š¶Ź°:ť“(üb ›ĆĄbÓď×'J辬O F#tZmŰ"‚ńC•zF“‹‘JŚOQĐ? ‡8‘(€P ”"Pç#•hŤ· ĄBÁͧ¤g"Ř”9”7`…{‰2‡rĚšů.0 ď2bŁ ŕö˦0h/\®zc$śŽ–ůtp ÁzÜ^'w@aÇ»'@ň0ۦԝ1¶ f¶ć"rą&07¸h«iđýÓśI6­|™äa·±űd‹OÓeŠOÓ·ml.‘®× ¶×»@É‘—ă—R™1,#X˝H8µrb®yř’вH!nÔâś ž;!Ý—Ię«P8Üěéä?…q]ąnáRŃ;ÔürýýĄę8"äD9š¸đ)Äł>ţ>đ+†„ăCÝ!&Ú/Q )@ą Şýč˛`PDµľ §Ž nSSŇsźÔ„‡f¸aµ×Üľ®«Ó¸Mý5eÚ?”횦ešé˛—‚xż/[{ĂüŞ2mmšĎ(ÓúúĚ˙ÜżĄĘdY»ç.ëńŻĐ“e ¦ŤönúßCY˘H5äĺ°‰“)Ć˙P•Ś» endstream endobj 1208 0 obj << /Length 2007 /Filter /FlateDecode >> stream xÚĺZŮŽă6}ŻŻ00/®AĚćľ É =A‚AŇä! j[UvÚ¶/éîżźCRr™*Ze´™`<‰’¨{¸ś{y.):zŃŃżnh{ýęîćŐkiGŽ8ÍőčîaĤ%†ń‘V†pˇFwłŃŹăŻŞÝbz;኎7ŰĹzżX?Ć»iµŽ…·uűşŢ>4ŰU=‹·‡Ý±ę~ŢVyh–Ëć–«ńű㻇Ăzş_4ëąýůî?ÇÖu×WŻ?i"×Ä:7špFs±…[¬§ËĂ  –˙±Ř-_U»=™á ÂČ„1âTŰťű{Ľż\üÖV÷wˇ_ő6>řűÉ“x˝‡µűúĂfűU4Ř”ŚX)r†÷Ő»ł†7źťoĐ»şŢ<}×¶¶Řěóđý$A××ukÝĚę?´[°ý°ĹÎvëĚlMçŐişqşß7÷»ý%ósů8÷|c˘á’GćńhňŰfŰňşšýćY]­§ű˙:ľâ±ŮÜď?nę–X«jşm'Ł^Vé4´âC_`Ő ‹8JÇÔÓí>‰^=ľ—î•úô^•ďŽ.2ŇďŽFnĽ|Ž5ţýć›çmÔ]¦íĽŃý¶żţď÷ß~y—Á•‚hn‹ŕJM4ëMÔ?3¦ ş»Ář,3Zę\÷ŘŐ—đ†¸§:«ęă u#o›Ă>> ’×/ßÜĹ7űyµŹK (–zÚŞzwËč¸Ţy-b Y‚NŃăć!>‹d,ďÓy|[í2ah¦¦Çf>,›f;ËôF0"ěŕ(Bő±ÂŞăX:$60¶­S­gąÁ)哝ęCÎŽ"Ú±®É6Ć3čý0T@¦Ą´˝ŠUZhîM íÜ_XJ¨TE@­ TČ´Ůd0ť$ź–Ŕt†P1O1V|†*1׺¦ôKj$щžú:ÂU Ľ:§°ÁŻrË•€ɲÚ'dŽFO÷…RřB4ŠÓf»­w›f= +Z¨ÖľŞâe·©§‹ź(ĺÓśĂXsęUy˛ CUaÉÓěĘJ w2’05@v¬u 1Ł(Ö:ex š%»ˇD—4Xu =ČŽëýĺ•Ç_Gbx†$â§®DË%s„ˇţË3$…"Ňš" Â ‘€vj¤‡ŠÉt®Ąö5zd<¬#Fá†tśŢŁc»č梲 2]ĂwÓĘ«a.u Ď)#ĽÚâ¤a2Ů“†KÔ˝*Ţ1EćIS¦$,…°ń¤ą”38ŽQ)čy +ĚŃÇƱ«o™Ř €îbzáľź×a;(ŽmPGR=©"_Ăë§ć°śĹŰ·mm(©ö‰'ˇĐ†ń Ć…56ťČۡ&blG¤oë_‹­·ä·‘Ţý&ĺëE»q4ŃÂŽżŢíjä2ŐrůńV«¬˛bXvő“řĘGxi1aDÁLĘŻ‹µFÜSŠx 9ŔlPÄm š€ćÇp~ŰOA…4RL¦¨çÂt×EFX‚î\‰ölřEŐMţDÉéř‰ŕĺ*Ąf>h`~©‚˙‚ĚF𫂆‚E^éM)94vPfިá!wK@óTaN„­‘¨N+xŠŠ(TWHŻ2[ ĐÜ’—ćnT° Ć”"˘ &”›đëĘ)fNnqDˇ‹p‰#ŐăŇ9˝Ĺ‰…۶.ń~±źgŁ&Űr@î´ę͂ëäÓ$|FQ†”Â')}Rfe1tâfL -k\~žúŮn<ö( ńf­IQĎEjHi-ŠŇKi_L`Ďe܆ܾŰÝhS?P4‰ňA0AííÔz-Đ&{Ű[fÇŹ‡ô@.‡ĐHĽ¸ŢŇ„ â¶†Ž_§Íá&XRnHp8‘R®&śČsší\!ÂjSU!Â"ň$¨Gnő'Yö¤Ęó[~M ;T–h· :ÔxyŠ÷sYd°€k}ÉIjUTŻIŤLQ}פZőšs}/Rç?·µÉŤŢ”h]d̤ČĎÄô_I^Tˇ†`—ĐCźô5†HŃs„ĹCn ŔélLd!Ň^4ÂX/qěN”Íź`aţ„–/lâ'ÎxqzťľĹZ-!ůĽ)¤Ąů?;@9UHlM z>˙—O{ţŮ#,ćuʰ¸RI¦HŰ8dtÚösGXÜŃpBP9Ťń~sŠűňV ŮŰ[NLJŽsÝ?-ń6°kVu,Ĺ˝•ý¶Š·Óf˝ß6Ëx¬´źo›tËřqd)î’±ăĎR˛űY Ďú?KůGOQ‘ŃŔ—ýHŐýëPôGŞs?)$ ęAr/UZâ“Ö ™5É7ô˙Gţ endstream endobj 1212 0 obj << /Length 2045 /Filter /FlateDecode >> stream xÚŐZMsă6˝űWč(OŮľ?*§ÉÖÎV¶v7•߲)-ŃcŐТW˘ÇńżĎk’E âh"ä‹H‚ €î~ŻO>Mřä<]¸ąřîC“Ŕ‚•vrs?Î0+ÄÄǤ2“›ůä—ébÝÜVëîöiµXv·íS·h—ëŰŞiÚŮ˙¸áôzÖývym¤™ľĂ Ĺ÷—żŢü ×B°`RC··T÷ÓâK+gNíäľĎwdÖ>˝R?ú/´`^«ěçş~ú:lzzÂőń—ĎMóŤ±cą_Őő éŞĎő·dkôÍugdž9÷§šh]oJž×ő*?Fű‡ÇxuŞŻőmÔ«ô5uăÝ Wâ›gŘâÓHOJŤčĐŤ—í<µüŽnŻâý—v1OĄ›Ń]e:Íz¦öWÝ˙Ďs’űvU:Î÷‘Ř©Â.b˙.bĆ]ä»Úď(ȵ›h™X%ŤďćđĘŞé ŞqWÍ>Ó“śÂâ±řî5¶4Đ"Ż™°CÜřLOcżąř˙…@)ź‰ÔuÂDÔK3™=^üň+źĚńsĂTđ“—ľęăD˛ŕîšÉÇ‹ź3Ę'Ťd¸ľ©ľ@1wPÔĐÚu‚iČě´7z6x&Ľ)«¸`Âé!ěĆË€•ňLy]ŽĄś“‚"±VµśŮÓćXyÇĘ 4 ľCP ›LÄHÍŚRo~ţ)ő<ĆÉËC˝ĽŽ‘)=Lgô>ęKŠćKa¦Ä3Ä´Š—÷t×ŢÇk÷úTçbÍ0 ‡Ť5eRdËĽ;Ëëɡdßucf4łÜ—@„7™ŕýÜb:0Šp%0=…›ćqpnËtËşžŻ“µÚx˝KVŚZ2g—×NŠÄŞŢď˛**EVĄŻr¬z-śÂÍ"Î…0śq˘D­YgĹ0ŠqâL4ĺ„1:čnfŠ€: ?ÓCĐ#‘/B`śé|XÉ%ăD]»°GŮUŞ€Đ“E€µdŇŠ!p–]ĄńĚ™cŕ˝ÂIs,˝g҇"°A`ÖÜZ&¸Bßë]zoé•î‰^‡JĄUĽD Ą;˘PşˇPˇĐ%3žŻhp&F;´AśwBDiZÓ{[ÔAÎś‚ć‰ÔpÎDĐ%P cyuб!—é}vKŚ =éUÓ3*=ż1*búź¶KĺÝCŐĺŚ,9¨ZŽ ĄăHŕć 3áĽüP1/|ß”ÍI‘on‹`Pu0ĚĽ‰•€> ]T!J-WĐdáýd3‚OK`*HĽĚ-sí+4üé@2űˢi’sč]çđŚ+»•ń6×0X;l"Úř[óMË©8±7ň>‹ Íď-ɲŹ ŢŘQ í 0ŰR0ÎőYkŢö@`x>*씹†"´2tayLsgA•BaÖüö¸® Wú"ŔČűśt8Żë M4PÔŁżOdE\Żu XE\ŻÔöao—Iťęá^nt~1{8˛řůŠnKdVľČĽjIK-sBŔh,–Ť-2«ĘiĚެćI][‹DXA…sĘG3¶Ü… ”.ĄI¦Rţߤ -¬pöÖBŕŢ`RŠx…Ě€ŰéÝĄäÓçŽŢh8TóëkŃuYŻ;J'é-Íkj‚RFşKIŢĄu=%Q‹CĹ1™ú<Á“<,E÷ĎSA )©-¨Á 0Źd–v|tPG;>jz„C‡­"R¦?vŃjŃzm^ŐřľŽĹëę>Ý!™Śâl$ĽČݨ×öŚÍ-Â?|Ež-\Ř"sČÄΔg¬¤AS0}—gÓ's%@‚”Ě @Źl·@ž…”%PIž…CÔ,ŰH‰5BHdŽĘű!äH ÉÉđ÷«ö1©Ň˘{Xě‹×[HOýŽÝä>“÷(ŕ˘Č4kŽ1sq‚GiäĂčW LČ‚qáČ<ď«&m.ú"°Há°0ÂMřHxL!ŕ€ń ;Î&|†»^ĺ €„˘ ú¤I6 ą—.CFsf”̆mެĺYÇŁ*Ě€r¸!ŢďŚJĺĐPÓ´´µó˛X~˘"ź _Ďë®^=.–˝^ăąŰ|× vĽkăgwéůyÝë|ßö*Ţ,ĐHŐµ«u¬‰4łI•űéKȱőľĎX7­‡rńţăÍĄÓqTgőűţ‘9¸§ŁľuWuo»çŞt¸éć- nôóŕéŔp†ćŔěˇÚi~©šcçĹÉůďvűřéü>žv ivÄń~Úű›í1-=¤ωXĽŽĄwíü5ŢmR<ÜV›—M;űśî÷ń ŻëŘÎîëYµ¤ÍřYę%ÍkĆ=6§sŹ‹.îSç§hŁ’ÜOi>­éá·ęń©ˇ]eĹ´Ę©VčČVň7ÁůŽd_+zŤŠ`í2ĹÉ ˘Ýj´ťËşT-˝Z?ŻVíórŢié¨zi´/µ w«jV§ô âx8EK‹mOüřŻ\F[ôiň欣č('ÄG™t–óá§˙ţűýM.»ĐŚűPWJĐ+r˙îß2vĂ’Rí$±4kďcŠÚű],‰ÖˇÂŞą0ýTŻi–ďRN›6DSaZć€BŤ…ÍVJ÷É•VFOéś2@ ÷lJ‘ţíôfOĄ·ŞyÁ`Ň_&úag˙śvuśQ–©őBŰŻšă°;rřϬý`¤ĽN ,R¬/"2rëÁ7p˝ßˇ¤Ś endstream endobj 1216 0 obj << /Length 1004 /Filter /FlateDecode >> stream xÚÍWëo¤6˙ľRĄŰ.ŽGŻ)•šSűĄŞnĄ~ČE€wÄĘ#IUőď„(›ë^›OĆóřÍxb0?µŢxÔ:ÔCŠ‘šř?câĎ”Ü`¤c°Ń ’Nö§íęŹ.¶E|ŚK,FB„+9¬®®±•Â$±0°î;ÉEQ„@ĺÖ§Őoú-1ńE|†Ŕ·@íňfM±­‚_pşz Ç!<^0™zÖců©[J]˙n)őQůÔm÷ XđĘ "Ap ŻÜEÄ÷giVĂF×fČÇj“#ź*ů(¤¨âždÔ#v^Ą˘°Ű1ő¸ŇěćV](ĹM łÚ|»~ŰJÚŞ˛™[Í嬨Ö.¶7ŠĹěXĄŮZ˙1Dŕ0W 3׵ŚpűŢu —IďɢŃD&•ů;U^E~—É˝fwŘ”ň‚sÁ- ±ýó®—ÉjMékję™h €žyľ2*Í/tˇÇD€7“  Ý×!ţSžCÖcìĹZu)ČćšŮdQҰşśŃÝ‘AlŚzöĄ˛Đ{҉‹e.6K™ľď⡛T(ŞO…˘{^ÓVR¤f_‚Ç?ß;‚Qč»}{^Ä´Ô¤`9Čř˝ĚF[»ř´ŐÄ^Wćŕz§cč‹ ţÁpĚßăsDŕz9pÇy8WňZwYç\Żéĺâ*›m Śďő‚Í/ĚÓاźcó&zů{!řaTŚ•U‘¶‰xŐÖXżK’ňŘ ’~î$®‡ßOŮ#Řšx÷n‚ţüC/?Sü®WTŞ+'8v×#Ó+pˇ°$xbóŞCqdĘÍLcWŔTU—čľk“ęę-*é˙’ńC&•Ú¨^t–^“eľśĺçĆ~ŕĂŚ€AbétINT`>ý/Q) endstream endobj 1221 0 obj << /Length 2342 /Filter /FlateDecode >> stream xÚ˝ZKŹă¸ľ÷ŻĐQFş9|‹Ě& Ě™`Ř‚i ‡Ů9¨mą[»¶ä‘ěí ‚ü÷T±(ŰT«=žŚ“J%ş>>ŠU‹ćŮcĆłżßđŃó‡ű›7ď¬Ě<óVÚě~ť íXˇefMÁ¤2Ůý*ű˙ĘE±řx˙ÓńwoŢiwö#”‚ˇqŮďCŰżÝß|ş ĺ™ČDÁ™Ň"Ő`vą˝ůđ‘g+řřSźĽËžCÓm&™w¤MöţćÔĂLŠZŇÁ‡…äůˇŢ¬&˝fRČY=@r‘Bďşj]u/qĄĚ~\)53ÖŤpWőBšüDÎî¬aΫěNć55řq˝¸S^çű§şGIĺín_· iÝţĐ5ŐŠt-Úzó΋ó1sĹ„Ăâ‚'(j•ôP 7´ą]Üié·j†T$Ľ}O¨ŹUSuĺ©7ĎőfC_v]»:,Oí‡n>•{©ŕž ăAĚ›8ŰňóâNj“·Í&H6_¶Íľ¬›8¤s/`aNîZ÷›‰ĹÓ–i_dVzhëżrń4©=ÓÎSJ_Ř"Ö°(Ě,6±Ő f»›€, @Ýçء–ň'L,P“z.$Ë…ć@&„É«‚ˇ’*ďŰ-ća Ä`MLä/űç+äĺř(a[čžĺ†Áîű¶Ü&`{ę`J«Kůw‹Uł`:s%ĚÉ=ŕ%ăbDŘŔŢűń•t*,ÄG7(äRjEúirh#_l€č"-ąĚŻÜđ Ýé_@űžv6Ľ¬nˇ‰Š­®„˝LjŻ­Ć«ŕ3ÄV4Ą }Elť”bk‚y)¶Î9ÄÖórlť5ĆÖu:őž…’ÉÔ ‰×q9ÚŔa|x–ŽĂaÓx}…[Ŕú0çÔ, F\!ľě ¸˘źRqŕcÂ_ăJÂţWnT%–EŠÚ}Ń-N)7­IŘ4ŚxĽ)(ĺě• žQŔoż˝’–ŚöWW2ć@Ž•Ś:†ëM[Oą·4LÁ,Î.Á”Đ)xSőűj5Ĺŕ´hí,¸ť1ŁůnÍŞ'j䑤$5”÷őv·©×HˇĽŔÔµŞ2ďe8śG‡O>#ÝšžqhA^CL ¦mw3*™˙ŘnWvűzyŘ”’1 … eWm[\âfˇŁüy;uKZŞ•€dň˛«H†úÚ‡ĎC»Šë…ŕyąÜŹŢ6ńçˇÓ Ř¶Áă@†Bę§Ý7v5h[›*î¦qďđ&Ż÷±$„lŰ|[•Čč#uФŘţ°8@bőhĄÇ'áâ;á±ěŁ ćW¸ü±JŐGĂ› kωq–t=r’w8Î07†ÇÝSÂDW·¤y0”âaŔđc ĺAw< ŕ÷©†”űĘZ ő6ÎëmřľzM>Bż|ŞV‡M•ÇS148@»BÁaPą$ĚżÜţüqqg`îîľ§çżéńöC}űŰčÓ™ęĎôŕôřË_éY§ŻżĐŁlBŚ€9˝\Čt=F~K_¦Ç&ćü (§0é€b)˛żfJ´`N©s˝&D¤ÂüűŘ>p_¤3ÚŠtK„Ő~Y7{zYĆá &ľKŐljé˙ő"…LgîD1Ť(F;Ňż‚8ä[„ZňŰá·Řř»©µh $ťÚžm­ęĘťŐÜŽ~±n7q«‡0“lÁBÜ813ýNđ˙XËëÜgÖĹĽr-_%g…dŽÉTÍÇÍđô\ř9n™Đ’ń×ß2ÍąYýص‡Ýô%źgŔxÉÄG^¶CZXŻ™AŤŻ™¤…ôůŚ,˘Ą—U»Ĺ»— W›j[5{ÜPVGJb1íöő#íN“/ }ą¤!#…·] žŚ;ŘĆ:Ůńgv?ÓÝđ0É“(Cn˛<{>Ý„gŮ –ŕĄíVţIşs,PÝ¡ŐÁ“˛K­Żę‰ÄŽÇzŻô×$öŞ«pCŁÉAJďi„Ž V©ć'4śîä¸ZŤw>ď«0Żz¸±‹ A0đxŤFŤń;.|hďňţĐU‰@ý@:÷˘ 8zČGďX°Uđ¦"oÚ= Ç™™Ü + ÍˇI‹ş'1ĐoxF×*ÂX ť3z»§©BKńyč«őaCVÉz‘/â§ćŽĚ7Zśŕ… ŰňE ř¤ž€Đ‚űu$ŇđâG}Ôש·Ť—śž†MFŚ’g›•Á‡c&&şněŹŇĂ-É­Vy˙Ô6+úöŃ6Ętą ­j?hqőQ  $n€_đBmë~şWpŞ)7T6¤‘˘t^ŚĄĆÓX©ůXÁ§na .µ‘ţÄÓńűO'Eí• ™ŁŔ±byâáu=X*§:ý5> stream xÚĹY[ŹŰ6~ź_aôIĆĆ ŻŮ˝É6)¦Č6mgŠ]`:˛Eʵ+K^Éîd°čßĂ›,ĘJš`ôIÔ!ĹŹ<ü΍‹‡^|{…GĎ×·W/ߦtˇJiş¸Ý.—(ăt‘Š Q&·Ĺâ.ů“lyű]˙ÝË·\>‚cĐaçÝŃŽ}s{őß+RĽ ’aÄ8±Órvłżş»Ç‹:ż[@—’‹G;tż HI­jqsőŁ[aF2†-ZŕzIqr*«bYqD ťY$&1t§y›˦ľÄ¦Ě(SĚM9AăŁm7§şč îb%ÂB-VD Ĺ]÷í®ě–+*XŇěˇÍ“î 7ĺ/Sí;wĺfçúü„V|lśěÔi'(NmY?řIú]ŁĺŠňŻ·®ă8‰dť¶Ü€}®AJř}H_ľU1"© ¬şľy7q¶R Âŕl©B‚©/ÔoŚ&%"”Ř©×ß«›Ű‰3Ĺq¬ćŔ¤8łă‡Żľ~÷Í“8Óś•e ´,B˝yóĂ«ź^Ý^ż˙~Za„Ů<Đ HJcč×ďţţ››KXFÂ8›–Ń )•F°×˙řáÝő߯oń"Săŕ0ŇŔ»ăNs–äUeĽˇŔ‡¦ëĘuőäşĘýˇ*7ĺzłFJ’Ä4ď­‹‹ÄZOÍüN°9µ­®ŹîĄ(÷şîĘ0č±tŘ"YűŃ`”…¬ĆĹV‰ĄłJä­†ôV Ҳ›2FcŁ+ĘÔ´URłŻß±J%‘`•X Půó,„ aÂLĹ٧¬’dH˛Y )F’¨ňcFÉ3$ŔEÍ*0č,‹P?e” 3Ä…ššáqCÔ(! qšÍ Ť“4‚}óŻO%•#«’6µ3B ˛ĆF*ă"Ą)L˘<ÇÓđ}nH.p’·Ú5ô’äłc;Ąé4iĹŻK*’Ľ¬ňuĺ‡zs„ÖÚKĽ9Bë$qdŽqöĄ\+—>­<éě—€t)oźźq™™WźťqÍě3®şŰäp“. #|Xă2LG°Ç¶,´gUJm ›Č¶Ruö±©e[Đů¸ÓŔŢÖő:ďRăÔ¬äA×8Ó´N&ř4†‡Ź–g©rŮ™™ß*ĂŠ 7—Gg5ťmµť#hłőDµ[ó ®šćĐý‘„…ŔŻč,„…™2ú„ť9vÝŢiJe:4ĄĄ™ˇuŐiĎXîŮJââ $ęٸ8Čt…GWh8şŠ® SĆt5_6îąij Űisôă·öő$Y!:vÁíwŢWWťwĽë6Ż7;ýGň•gP9@˘ú|ľň ňT,?›Żs {ľFĐźÁ× _#h RĚÖ¬ źÉ*Ő¬Đy&+ô:˛‚Ô‘$C˛‚ÜN â¬ĐaÉ C˛šńŰ^SŐ'Ei–vAÖ˘ěţ}Ş7¶ąĚ8`'ĺ°%¨@Oo`8ůÖ­Ů(NŢ ¦ąú§šÜ.3ž´K"­C52Ň»Yµ„CôĽ­H˛É­IAËÔfş‚|á@’mŰě]+wŹîĽx;¶Zżpµ’/o?·Îpé—›űŘ6•CÜyÖą™=–O÷Ç~ÁFžlZ ®Łp/~])•'e]”fÖ_Ëâ”WN6X-ĽŮZką‚Mř‚Ěe…f(°%Ě^ÖŁą×yí»ę¦ĐţS«>?j*ř‚n·×iíN(ňWLXRyçóa*Ű"a”HĂF>ă…Ď‹aí1Kž@Bz,7§*o— psHŠŮC”b¨ÉŁ^7ö<¤Ż@A°ÍWV5Ň«:·Í© źűâ‘D—XĄ˘_8ř`6±9X~–…1ÚĹ0ĺă’@JţÔ…U›}ąyá÷ś $2¤Ďż-1MN50 (@ŚiÝÓžĄizk§?UGäĚÝůÓg2"ײ6ał´ó<üDVQ¦±ö[O›Ć©3•ÁeIm 0ÚkĄěŞKżËŚÉ$P#CÜÇ3 /(OS #TÎţY@ nÜÓ Čs$ŐŮÎ*8CNÄ,¨ö‹yŚjM÷ŞpEŮ,¨‚!1:BÝëýZ·¸R€bč,¸R" ľ!>]=‘żÂ›Ěr®)†d@¨s2gJ!Ö™»†9@©ąS‘ÉZę%*—ÖÎ ^Vń™¬ń_ú1jČDY{ç,B#ďüŞ‚b­wb#•ąĐŐÓ2ĆA3!ś—bŚ'&ŮiA±ö帳±Ä4­Ó1ŤµtşŇcÉúÉIËzSť {?a^s÷hj˝ę˝˝‰‘Fß›Ô{*„ąÔ†¨ÎŘ<3ERť´{§š&‡¦+ŹLmd4ŁűîsŔ1o€c^ JYŹľp×B÷ ż†:ßűA°źđŇŰŽ6ă˘ČÄé1‚ě+€3q$p? Äš©`ÍPĆúpî2ÜË”ôŔމ51D!c˘Ű>ÇŠÂţ%`¦P–~:ä0ĆŁMĐg]ő éĆ™ĂLćËďD}ÍĚ!v1>ž8Ş UÇ  IÁbĐéx®1ČZf…ČĹR2Rń”ۇЏR®ćŔLˇd2Ćśtű\šŰŤlLoФ#ĺN—É Č4ťGÂL‚ǨÁÚ&Ě4LŘČńC†‡¸R±÷yooŻĄÎiŮĆÖ˙ŹQ¤ßťZ M)nZąź!bĘÄÉÍ>/ćşCľńő¬˙cÔx8č<Ü1—uř—â>€ —®®˛ťţoŚż`Ä1­íX=ČŤPż®óŃ[Óĺî!ĂĎś|¨lńgŹ´CD'¶.ÜůcDäĚŮ 5ňőr%`‰_ýĎ=ó»ň޵|vŹżüŐ=K˙ę˙Ů5Ö_ř™{ţöŐÔImvŕż¶=`đtô;:( ,üîb嫿ą'.–wîűń˘ßî'—áMm¬k+wî‡;Y ô Ą[¤íţĎVÚ˙qëŻÍ.ŃyËĐEtĘ ů8Ď2ăźmUěnT‰FAXů?Żćŕ endstream endobj 1230 0 obj << /Length 1422 /Filter /FlateDecode >> stream xÚťWKoŰ8ľ÷W=ÉčZ!)‰–ÚÝ]`»č^öP{HrP,:& ‹‚$7 Šü÷ÎpHY’•¶Ů‹9Í‹óřHłŕ>`Á߯Ř3ëźŰWWsäQ.… ¶ű@0Ą< dş‰DśŰ2¸÷¦]­S‘†7,eşîiłc´ţA {7e˙îř|ţáŤ˙Ö8‘ßV·Ű΢Dň`Íy”§ÎµŢź={ď'Í©âÝXc=Rxg5Ö *Kľü)ňů*Hcd]°(ţ(’¤žđÓŐÇ$Ą{ťđ(KbPHŁś ü·^Áž…ýAa€j‰<uů‘¶*ąnwPĺ©r»ľU ]^T}VňI1…Pšcˇë·tö×ßh-®ő-QîĂ,GÚmguż{ˇ­OŻm&Ů4Ó»®Ę·—ÝâRěŕżľ|ýžV`\„wţö†;ÖÓíb¦éµ©»Y~:Őmѫ믷ă3ĚKžŠ(fÉ4ßC ÷¦ŞĚ tt}O¬ź·D<čŞ"ęÎIß«ZˇÇňĹuv­öíŮTÚžµô,ż üHČ_„/šköłÉ\0ů4Ń”#?ů\‘/hţp¤]}?´,kĄí,[µIuâÜše.îŢőnÁzśD<Ď˝Xm–Lqqľń2ľ+Ś%I$Ą—Ó…Ř5j§oĘMα9‘2áÚ„¨'phˇ¶Çâ‘$›Ö¬]Ţ ä<ž%®<í\ »„Îí@ë<=¬8| M«şSŐwNŘ)ućčdˇ U{TĄĆÓzăÇÚĘF«Ĺ@X:&ď»SďĄîťôÁ‰éó‰¨íöőL`”řśR¤ˇú˛Ęd¸ĹÂ>{!€Lś†˝ŞK¬tśŘX‘U¬ żŕŹŃĄ“˛ĹÂUÚ©'T@䟊–ě¤ ]މbîL Ńş´W~«Śişh)ŔĎĘŤDQućül¸Ź”E,?ǡ8Ę6±Łă˙dŇ8ˢLŠé¨ťęnĽ˙5hBĆnĐ„L† —xP&7®ÚŇ<ŘjÍĂ–XvŘ(3É8Śnwćť96•ęUő¸„¬i´ÉQwH±˘€ˇ|Ř%…äŃ&Ó—W¤bňľçYĹŢ„ö˙Ôßž>ő` ™éôťčx$Aí ÄĂSG(,hŔ`ă§Vy±˘_„“Lď:Âť‘:QpÂ:`7¦Ç•Šč¦Ţ®2‹ćřÉÜő„Z ^8i4]T3‹’~Rí*ŞusŞJâMCĄ¸x ŹMe©±G¬}Řw}«›őQ×ôĆŤ+®ÖŠ ·ę’ý©W–ôĄť¨éş¶Ž-,6* íl|7€üł"ŰĹĺYÄ~ľ¸Mµ|żĂ›Bśö$bxzÝ0/”ŕf“yŐŞşw†G <µ ő>ňŐ‚ImÄňĂpb(‘Śł_54Ŕ>éFۧĐî’O|Sß%ípÚ݉jÇ$[…÷/NćřjŕM-E¬ÝőcÝó\L„ţÚľú So endstream endobj 1235 0 obj << /Length 1756 /Filter /FlateDecode >> stream xÚíXKŹŰ6ľďŻrňvm.ź’´R )Ň[Ń˝mö KňZ-ą’Üí¦ČďCɢ¬uśÂZ 'ŽřçÇ™ˇhđĐŕ§+ęĆî®nßÉ8ĐD‡< îV‚Da„*"\¨ŕ. îg»¤nr˝PBÎîÖůőBp9kźwEšl̇ší›‰4iÜzµÂ™<Üý|űNóˇI ŤcĐÂJ(šj“´n٧Đ$–a·ŻÚµEU"ă˘qŠTÝ7ň°“«ýƩ֛ĽArUW[\6 <Č ,qBÁVÎf{ lT ÍśGöˇb°*qT™çYă&+ܶĚńŰi”á×6yF"Ëwy™áVcŚ™«öm^#٤ë<ŰoʬŘćeFŁ2Ü*cÔ¦ľľťg¸4ĘĺuľŞjĂBF˝†Ňi(ť†0&K+g°áp™vÓëŞq{;Ą§",ř*2:{_â¸ëšÓŮbJß¶H÷X—t6‡ÝZX ,x¬fÍ.Ii@dĆié(}„¤Ôc¶B<–]4žęd·ł„]Űdçf‹ví¶9YµMŠŇÓĚ!ˇBűv TaLëŮ®®˛}j$Sj%›ÉÄ×Î߆\&/°«¬2f»ŃĚYÂMÔIůă6ëK3ç|iů9čgŘ”îkt;a(#‚`HĆX ц¤­¶Eęžća¬÷ôíD,8‰šŇÇĚă$8 EüNĽ[ß—ueÜĆ%›ĄëŞ@ôŇÜśD›\IXw÷ŮÎăĺŕômQv;–Ď8ź”8®íPł›âŇËď×LÍ :6řˇ"L‡~ě-B”Ff0îË2ŮZI!@Mőa3¤›Â8›±›™ĂĂźňşZô÷Űč˛pĐHr~ÖuaZö1:hbbmT’ŤŚCídŹB%ť×Í\n\óh/ü±f1%1ë‚Ë׋÷ŰćŚ\71 .Ź“”DDŞOS:1ĐIŤŕ5ˇ’ šů®2)›,mĄÔ1JşD˛i*¤–ÎEMޢs9 ‰GÎÍŠ:OŰÍłąˇŞmQ>NŮŻŔ‘ěa«ňŐŹwWż]™Y°€SŘő]…ŚDZéöęţ,Â5'BÇÁ“Ýş… ¦csU7ÁŻWż`«ŕŠĆŕŁČ˛RôAWŽ%+F¸Ž."YIÂăĐ—lŇÖ„ÔěĄę"RŁXH_ęŇ] _Ş ŔšÉKH…ţ@Ů÷Ąnóí2Ż'ä Žá‘+bÂ#6Š.‚t$˘ˇÂ‹Č„¦SAĄödŐH®–$Rú"‚uD"ű‚“fÂXÉ$$™‹ X˛P>Bń¦ŞvR!J^ĹR‚41B1ôňSy’S˘yźOlO@űžŇ\LÂ8Ukk`ňf×Ú¶†p­…"eʪɬö{C ŽĂŢŔ|/źŹ8ś*s&j­.PçB"á»ţtÁ“‘řRÁÓ‡&ůĺŠđgÂďĄMÉSÜ˝’B‰ŹACŘf:”/uďPřy/@.ĹQű|ÓD5HCOľvëÜ©Ve Q]¸ÚĘ€-=ęĘM ¦]»‚M¶›Şp\şo`×<2üNJŔ|Ër–Ňď•ßÚB„=Ś"$ŰÝ&·ďž°ç‰ëî9‡¸§Jä&‘{ŘÚťř°µ“öak¨îa;ŢQ86Iż‚f8'îŐ24˘{¬Őtu×Ölě@Ýkď®s[UŹEi…Ă×૨đY‡ąqđŞLÓüÔXßőż$şń(Y’@„Ž+vM‘ŐâőőBźWâřöľ|@Ú-QľýGXGÂľxě 78|ô·3ęÎ~5őŽM×Ĺ&{Ťá§D†lt)ť:-ď'Ô\|Źăý ˛ý*ZÜ2 #s>ĎqüŔ„´’\Šđ$ťĹřăÓóy#§övź^M\đEŤ•ä~p¨Ú·»}ŰŁč ¬đÄZűělş·¦÷šGŻůH]h]¨éúŃÂM·`|ůbě_ɦe2_梗5Ö]@îéŔś¨o:+ßX~ŕG¦F(ëNvjB94śŹ8xşk‘Ĺx™h±ůĆ×ńŘÎS$ÔÜĎł/*NĘN*Î2”MÚ+?i™8mŮ(„oŤÜ”Ď»ĂČéĚkô«ČQ‰seÄL™"1GúÉ­®óß˙gŚö‰»gZ”ć‚ţÍ‹ů˙Ź&qčB‡„Ăö¬ĹÓ5w÷÷cžÉ|9OçŮĂÉX3šĚ]Žâ}ŇŹpäFßŔˇ}ç\!ü÷z¨D_ ô¨ ĂWćčójS|˛4ą I˙ źW .VźÎ÷‚ď ¦´…gěBČ´đNŔăú/UrŤ endstream endobj 1239 0 obj << /Length 684 /Filter /FlateDecode >> stream xÚíWÁŽÚ0˝ó'(‰ńŘq°—¶ŇVęVÚ3RY„ŮCµâß°C±ITiŐJ=ŤĎĽĚŚßĚ8ŘúfaëK+ůiŇ> b $<âY“…E(Eŕ2Ëc#D(ł&ˇĺ÷ć¤ď0Âzď?H XĘwRĚŐă@ 1VŻ•Ő ´zÁ úÓÉłĺCž€BL}d‘mĄ^ˇ†ă4W TĘš/ĂřH<ŚčxĄeťÓPí4˝ËéÇłsb—Ćmé’CQNnŠ´ťş|‚©ŘPĽŚ0r˝2ŻŃ'Ňw|–w#%&YÖqz@ľÂ•A§ů”c™áż‘`5Bu 'ç+#kŤ…. îR]}ÜÂ7ŃkŮ9Q›µel\ˇŢ=ĺ€ýŮú˙ëô÷®ŇźD±[A˙á“ËĎĆžSDČ…($F‚€TüÚç¸őÂpo|—‹|Ąr„aśÇY$‰Ú{M·Y’śôä"NÓh»Îvą|L˛l#WŮÂÔÜeIGˇ|ÚŰüŕéiX—ŇśŘçžéy­8} éľIůčÇöj*×jË(ăb_.‚4To´SZ™UŻě÷]­Ł”YĆIřP[x»ů2 _“¨ôŇŻpÓů(Ąż(Ҷ=wG¦(…˝:ô îńKUS÷&ŕŐ`Ł]6aĆF“nůb?íÖ_˛Íg;ă<]|ßÄ ě™=·ĂiăYlŔ3ăĽóX Ä 0 "ŚËŘ•S†O˛2|Zú$cˇÇŃČ%z晪–Y^PúW âíŢţŹ«g‘DŢ8öÔá˙‘éÇo~í\ý4µ6~ ®dJođćgżÇwŮé¨Ň mĹ˝DńîGa­řⵂ2j…·‚"ÎnUśÝk­ĘčtŠűÔˇE Ä9WÝU¸šÉçIç˘ío[ endstream endobj 1245 0 obj << /Length 2008 /Filter /FlateDecode >> stream xÚíXKŹăƾϯ ‹&^őô›$l°¬A`ě9ŘĆ€#µFD$R&©ď!˙=U]Ý[ĂŃN°:9±ŐýUUד<{ĘxöĂ ßďďoîŢ—2+YiĄÍî7™(-3JeÖäL*“ÝŻł_›¶»]iżrĂëf ÉJĐ÷[ú,Wś_ѧü:%űć:ÁĎż „ĐÄío÷?f‚3mE¶‚•ć2O2áI¨?‡]€Âű¤eÂśÝOF6÷u7ż¸!•ń]éśLś‰ČQ–ŻS_Ęą†Ůňm‚Ş‹‚Љ ňLPő&AĹĽ #ół’©·If‰“ďw%ßĹĂt“'ׂZĄŚ˙Űoń7i‡'ÚM‘§˘źLŹ_ÁôRwŕ˙7˙/3ű?kţćłćo$S\Ď˙ÝűÂN˘őč' ©‘Ń­>Üß.Ąá‹\ăşj¨Ű†ć˙8ว ‚XmÝú¸s´ň÷ęľ{Ż‹ ú\Ál^Ŕßŕ>UËUďpdí†V<´ßśˇ;®IŽ}Ý<ŃÝiÂŃ–i ţęşß!ÍÍ_ďo~ż°Ę3‘IČIşĚ3­5+Lž­ö7żüĆł5lB<`Ş,˛gOşĎ$+‹F»ěĂÍO3éM–%Ó BĽĘš‚@«~x ŞŕÉň\_Tňr«RĐÇc˝[ĎŔjĂŚPWŐ3\¦°M»v3¨9g\Š« ćŠq‘‚nşv?Zj0Úň* eZ+RÔ>Z÷ d­ŕ¨)®¬5Pč¦)™Ç˘r– ]EÓCíVŽH|ż‡G"i´żF+żT«Ž@^ĄóE=ĐŃČn>F ßCŃ™&&7‡HyŽ:“ąź»ępđ/š«S<÷ł:|Ié¸M·âĐŰĂto"‹*xČ%ź9sJę0ˇ2 °T÷Ăxf†i·sPWX¦+JüJAŞj-ŕĎüîŰÎŃV¨VÎ+ŐŠ %ŘoŞ˝ëĂŮ -=oëŐ–†k7¸n_7áŠńT,ËĹ4ť’I=ÚőŻ\¨c3`’E¤q«!p»9hÁň° ‘gb¨]ęÜ’Ž·‹ŹXŻV»Ł†şÖéFXć€kźőŞÚí>ŃNµëŰ@ăȦ‘&, `ŇÔŔňŘÔ¤Ô¤ş™×ű%zďĐt»Úőhú˛¤ź#RĹź#Rł•cŔÁµĐ ĄçŻl&,űĎ9p a#DËR…ŃCiŬ=«|H/12pm_žyđËéöTÉyŞäş(ŔšäD‡Ô°oŃW†Ôë'ő ĄŇ[ĘôaBŁ˙MG˝' ąđh"„YÄ0‹ă‰Ó!)˛/Ô‰t|\ŹáĘßém FŃ Ť@u¸ď$ď\ŁÜ„ćŘUXMG“SsúľŢBä }śŹ"ëHz©˝ŁŘ6wwď…鿼i[Ň»CŐŤ•ošäEa‚€THń_ćřU@/i!óŕ]=ÚjŰ3fÓß› ZđBűß§Ą±‘ňŠVúôNJ-¶UX|t.,­Ýˇ»]VřëÝ"ćĎŢTüőˇđI ©ÂљӕzŻžX3žŁ;Ýěo¬ĐUköĘ?T”b*„,sz3ÚE\ŞhzĘg°6Ég°őč†g/'n Ď·`1-ířĚ«ŁIafĹťhP0Ť†ÍrNĂŃ˙X0#{ĂęˇâýçÁÍDA8›¸»§jéŇQr0jÇ!І y‰‰©~4L`™…öš m÷‹Ň$T`Ĺ˙śĘ| endstream endobj 1250 0 obj << /Length 1473 /Filter /FlateDecode >> stream xÚ­ËŽŰ6đžŻđ-r×VHęa©ŰŘMŃ^c gQČ2˝ćV– IÎĆ(úďť)KZu±mz1‡3ĂáĽ83˛=ĚÄě—7®?­ßĽű&łÔOcĎÖű™Ś?^Eł8Zů*fëÝlăUçötnçË ”^sĘrŤ đj}ŞuŁË¶aR{°„Fź˛:kMU2!/˛¦ńçË(‘ާ)´EWeÓÖçĽ5ĺĚPTŐ‰yU×z9ż_˙ú.ĄôÓČęÔśŞrÇečµ®‘UÍIçćłJďŇä˝;–Ľ3G]6 ŕg‰~äĽ ¸ű¸ćşÔ`LU3ţÉ…˝«ľt—O(hĎ8•$Î%v‡6 îQ0»ę™’a]č#űwí!kĘj+üiJ´ŤŽTŕ݇Tö"©˘ÔO’Ô"u> 0× Ţ‘ź®ÇŁk¸”ERČ4 -[Ş8ň“8řëžýP•ĹĹú¸:ZďUűA<˘žE¸#;ďjˇyˇ»Żń(ť¨Ş™Z÷8±‘(+4J‰ľ×pWÎáĚ…7t'€2µFäVóÚÖBçŽ5ŽXTĺe ńT–üLž  Ť=ÚKŘíëę8P;fµÉw*’žF=żž “›]Ť¸ž)‘ĽF Üxkw°˝śLžĽ97›gâÜCĆ©Puâg‹°Ă‘i°vjOřx&§Ĺ±×Âűn$Ë‚­!Mâ9P×(±şGćÖ$0ÔJx;ÝäµŮ’©pÝ>W‘÷4‡Ťeág'łx‰9ałoAâ„®Ö±Ă:…{S˛©bţxŢIȧďě«Ěč­®lt˛ă©Đ¨NšP]3;˛č|۵đm°··‹u µOúę0,ÖĄŔŠ‹; gŕ€4esm˛ňá\d5ČŐ†FxëyNüc Ůt›bl`:÷ŮŠ·u Ĺ­P‹TŻĘ„ŇOB( Ü(ÖčOčÇ»ŤY<Ţ3ü=/‚—~äč sĂË /ŹCv)ěůż&ĘÝrJ’¨”ę,ΩrA˛X ‚TÝ`•‚×í…™ĄŔ&®8«‘bJnś@ěä8wúŻl:ĆňzdŞş–ö˙E`ůž× öĹŤy'Ĺ=5ÇÍ#‚‹*ÔX‰ÔW2ęý á2ä‹(Úńi“‚ţ€®ĆÄĽVvŘôŞI?y÷Ua ? @Q@¨4ĽşľűݦW„Ć ; öVÜäÖBk±¸˘ŻžnCBî…„ c9ŞÄÓwĘé;ĺđÎew×Xů˘ŻRA Tö¦ďś‘·ś1±/#5”çN:-ʆć¶ĺX„é.˙pŐ€/ESn§:°»÷ąŃŘâôuž^4[ľ`v0iöËV§ I5öĆs;G˝ŇÎ;Ô"W g_'wüZ“ŔŹ“xř$>öż pČŕ‹ÓuA„¸ ĐuAܸŚí9ł§qBõڶЊ´=Fő¸’¸–ă–—nĽ\Ĺ^“]ěčÜĘ#÷ÉąYnl¦¶źň”ş€këi7ń„PĚyâ¤%ă ŰßS7ʵű¸˘q(hÉâ9Q_°~eĹ™‡îK đ¨nZ¦şšĽ$݉ŢhYv”uýPjJ9ŽŔÓÁäćÁÉM36s@_5䡖Ů}_`ęÓ2wőľ:×ía*Cj¬7SXó +ýüÁy Q”°‚ë iěŕ`p _ó× &A(”÷dąJM ÔO_‘ű‹E,ß°uLhk‡čokË›l±]ä‹Ý¨3_§Čß)‘7qż|?]cF…śÜľVú«iđ› ą¶o§¸ŮBŠíŰaŹV~„CiŔy“Ţ ďMú¬s•Y&‰źĘQoxµYr¬@úA˘ĆŻsĘ‚ŃÄŘi;ˇě ăĆTł‰OßĆbţ—ÁN üW@í™ R?\­fŢ~˛˛d¸~^żůTÓsU endstream endobj 1123 0 obj << /Type /ObjStm /N 100 /First 983 /Length 1530 /Filter /FlateDecode >> stream xÚÝšMo7†ďú<¶=ě’3ś! ňQ§Z shkřŕ8B4YŇßw(#¬Uˇý çbsąCÎđáËYrW!„⼠‚+Ůţ“ ‘Q¸ĘĹjıŐJ.RµŤ.ŞXˇ8©­88-jr)†ne—r˛ščJmŸďCµF˝WsÂöÇ›ĆĘć&8×0ŽdŽ,"‰µ„?y"şÓlÝE´JpRŤŮú´/%X]räÍwvÔśIpDµ­ŁHµŽPJÖ‹ …’Ç ¤8J5dő(ŐE岢EŃz7:ö pË@gU%1°`qŚć¶,Ů\$´HÁěZ$5šXÇ -ŠÖ»€ď+tÄ %@ŠÄµD.2ŐĄdfŘIFVĚWFf”ę00úk/˝”ę Ľb‘zŢJ±A‚¦TÖˇŞŃc¦…Ş6 9ař€ $ ňމhm‘ś¨Ń »ÄµťdN> dŔÉ'§P*N+)J6‹„”ĆAťrőŔ5â%q*˘ŞĹGŞŞĹG!:MlýA‚¨˛»Đ˛Ž»Ĺ%ob$ ó U±Kěí.äžęlůlĄÚ”źdÓÚ&ŁFVĘŢ"¨š%Ô}9”—«Â ZĎ1|@×™lqPô.s¶ţFŽ6—†8K9VBÖd> ńŚĆVBE,>;—R{aWĽ-Š‹-čěělÖľű÷óܵo®˙žĎÚ—ËĹzľXßÚšőXďogíŰůíňnu3żÝ¬őZ÷űüĂÇëË/îŇŚ4`1şšˇ“Z›aŞ†ĎžUŻÜeŘ䏷®ýăĎż°n©I äĄ‘ĹݧOW˙cĚŐXµ4&˝mk‡?-WźŻoćŽ7mŢ\Ż×óŐÂŃćňç/ë×ëëőÜ…Z1kĎ1HwvćÚsŢV\µ;GRŔŇ˝żŔĽłÄzOí›Őňćbľv—čţŐąkßÍż¬Ý×Ô}‚‡„řŽ!8’É! ¸@âŃ0Ž w¨ŠF¨Šú¨Š:TEFć< Á-˝ '(ű™‡äŘŕ®ń† yĂĐő©5 ŰMźĂŘ*ő`»k|˙ü'‚ń7ÜAm?ňwŘNľ·ŇŽt¬ixęŃÍ «çř)sPöŤ‰R“v`ÔÎýŤ§Ôť6 视óvú‘6öćk17^Ę‘¤˝<¨ąŹs‡ŽSzܬ9ŤSÇá1{xLyo™'yĚťÁ` 9t`(Ă1d˙¸gh{齟p»”;ΙGЧ ´Ëápľźâ“;˛zN#őISą+MmHă©xNý”,ôBĂy–>ÂÂßÁ›ÁҡČ2B‘%?ĹäN~+koűŹÂ@^b°ŻŹ{úe§‰F2ÉLt“ô_:Q } ÁÇ“1BA;ÄLäřĽűŔř{;U…¶e8[:É>ó(&Ó,ČŽŹYD=Ĺ·u4¶ď§Sžé‹ă”űmAŔ‰T2çܤ˝–#ęł>¨c}D–&F:ŃŚŘć=ĐÂöFq°:ľâѱ_ńiµ”ÇÍÎOeÓ$—ŽOvtě'».\źü‡`âŇÁ$Ť`ň4·Ŕ±C±§4¶ÓjÜÄ\ 2a~eź‘Oű§Ć~›ĹěAś¸ń>śî•#'m"ćăklŚ\rĂöS+á9¸O U6±Ç×ďĆ÷9>ICŘř+‘>îľ ź<ÇKGŽŹýsüňłę endstream endobj 1255 0 obj << /Length 998 /Filter /FlateDecode >> stream xÚĺWKoÜ6ľűWč¨m-šQŹ: u^ł@Ł`$z—¨V$9Ařż—äP»KYűprńP3Ă™o†éY¬üu…ŹČ?–W7w9 r”'4 –Ĺq’ OeSĺ\ş3UŠŮ2žL¸›»8;8ą(c(É’ ˘ -mô‹‡jŘ,"Ęq8lT«¦5¸ŻGµ„ĹZÖRW$Kř|÷~ ‹q—pňˇ©Şfˇq|é g´špj<ÜC`ßlCFqBü†<4ůs¬ęÁ‚kĚئ[_˝ëĎD˙«ÓŚŔň óE‰É|bâ'Žv'@ČÖN=Äeúe,ČLDř„\ăÎ7Ƕzó[?ßsĚá(ÉGĐÉIĐě$hr4; šĚf—vIްŻ83އŹűÜŽőó Wţ!ɲUµ‰ťî?Ářú"rí;Ś}ţ\J7ţ:tËŢÁ:W'9Wç$Ń÷3Ôűoéşř4—ň˘·4?ň–|ň1}ŤWôg˝üe7#yŐ›q†˙×ăQ>»?Żp38E Çľű“7ŁÜÜBǦ$A)÷‡7ŮÉÉFoܢ1ĘqjĆY ű–vľŠ1 A3ľ™Ď^ŐëJFĄÚĘş×—¨śľ…ĎN¶ťěe=hW0Ú±ĚzY>VÎqÄtˇ‡ąĆş7sŹë—Ť*ôôǰfĄl?łęŻŘč“°ß4ŹU >ź$HѶ•’%ҡÓ$|żŰÖˇS˛‡Í:«UőÚp{ATMӂʦâč%ÍÔř9š#ž3ŤŃvËîŢ1Ó¨MEDÂ);ŤÍĽM3‡ľŁ§Ł»é{Ůl…>ĐîÉÉ9iX4öä:éô†ŘĐCjĂŮ$Ő‹ĚŞ×/#|źÁţ°1‘MŽ`S•!dš‡[ńď‚ŕĐĐ!Ő­yě$č›Ă¬4'u‚Żŕ°V–ĺF#k°CM°v­5žűM]}uˇÚVŠěăávÚĂ\/kćĐď~Ôő­,ÔGŚéřł®’{x•Ďż€°Ĺ©&ÍQ–eŠä©çőçňę?ˇÔŇŽ endstream endobj 1259 0 obj << /Length 819 /Filter /FlateDecode >> stream xÚŐ–KOÜ0€ďüŠAŚť·ű@j«RŃksfăe-%v”xEQĹŻťq–M°p¨ÔËú53žÇ7Ţ`ďÖĂŢŹ#ěĆŻĺŃéyRxŃ,ĘĽrí‘´@YžzYšŁ(N˝˛ň.ýoJö˘â]F)öő†Ăd­ęZQęß y [ýjĂ«mÍëňçî–q<=§ŃŢU AE{FQĂM‚05ŮĄ¸†Yxănă †Oźan Á­Á(É‚hębąY0}LŢdĆ{Ĺ,{ćĹ8™Ćt±~=oŞŐBI‹Ţĺ˛ĺ+q…qÄ«7§3š¤óIČ=oYÇ4żü}ýB0K2AČ×Ăůň«„Éť¨kÝ8é[.ą˝şz?"Ď•–]ácóC üŘgpĽVkń԰XąrşZŐÉöČťíŹňö:î9¶ŕ×jÁ±I8w%Úł Ňá‚ɇgíĐą"YĐ<¤ŇëÇćĽŕĘĚÜ[°a˛:ů÷xÇ/ăÍ´jÄę„ű Fń3Śü&Hg`őăÍOč Š÷°KÖĎ&îÍ­g‡5G„ŤŢϸ©[ű’‹éAmR¤f± ukÁzś Bé(&Ő’)’!BňQf|‚Ś% ʲQnhăâ^»Ř†Łd¤µ­FĐ4˘ĄÉ.v’m§BW#ă2Ťg‰«¶+G˛KtďăXďŽő]@Ě,:ŢokíÚZ9Ą^5NÖ`Ě»†WÂF뚪kФENĎ !űŐŠŚw87Ţ™˝Čy·•ťéĆ™Ţ$s;-Să”ĘŤÍ`ĆČg°ěMC×<¬DĂÍ׍’¬†ăľe6 V¤ă­‰ŤK=ôľ=2=hŹ:ĂöÎ…µ‡nłRzĂôŇKÝoÔ¶®ŚLžÚ·XIöQ’îX©¦­ąćőý-*h1ŠBŽx…‚0+2ż ЎLqžůęF3!áR[A-†ŔͨšP _ Î]¬ö ·$Xyç÷Ĺ(N“ił˛¶­ďˇĆĚ˝¤¬Ş„vé¸ĐťhĂFČÝ{ŞŐěÍ}Ě-Ş5Űz4îHŞ )GbkĄÚ)`1ťśä†Ť‚ Śşţ'´H}/Źţ 2»ş endstream endobj 1265 0 obj << /Length 2451 /Filter /FlateDecode >> stream xÚ˝YKŹă6ľ÷ݰ;sř)ěbd±Ln‹ô-4Ô2Ý­Ť-9ztĎüűT±(Yr«=3hď^L©\Ş"‹őřŠäÉC“źoxş˝y˙ÁĄIƲT¦Éí.J1›ş$5–Ie’ŰmňŰęCYůÍC“ð]o¤á«ŐU׬…[Ő{"ÔkÁWOřă˘üřë-=üě+ßä]YWëßoy˙A»‰>žl„c 0(úÉ·ĺÖ·ëŤ2bŐ}QվËU÷č鏢®ÚgÓENĆČ!WÇĽÉľóMű6]ĺQw&'ş%¬ŐIsĘËvŹL7˙ľ˝ůóF•'"QxśIRĺ5&)7żýΓ-üůK™Ę\ňX‰d™Ëŕiźüzó2íLťr)sVQĆDÓćm÷R©ćЉT]C©ć)FΕŢ÷ĺ~»°2c©=ęű˙ú˘‹&'&Ĺ%ăŕ!X6ĘCł[·ę[ôełUWĄ@?AAâÓZšUŢ”ußŇż9nqŘDř·Ţ‘6Áňpr đ~lę·-[oŇ,]}ŚÔ"oý\ ŔIóůlÉ}ú" tćŤNöŇA¬cÚŮ‹ţ!%ŘUæ ÍŚoŘ*©3JQ©ľäR[p\qĄ†3'ć:G÷8Ój-3éU”:Fss­U˝ő ń‡ţ–şkhUÜ00jÝ5őaA«L™±WY«‚ 2©™km‹Gżí÷Këµ°^n®˘Ůj–ez®ů_–fcŕCÎÔÂĆ@tju¨ŰŽ"ďE ę(H“˛LŘyx=cȿIJ°ŁqĚřR¶4vŹMÝ?<ŇË')U}ÄláQż#jYýZŐçă~R‚ňű‰OřăY,4›Í¦óăv[˘Ô|a&ůZňžĘ}~ór‚Ář°«÷űyźCi ¤ľ é¤ óËë0ž»?Ô,óqf3KÓü[Yű"`c@ň? ׼‡Đż ˇČ˙ą”Çîî€ëîˇ|ŠáŰř ‘~}—ŽyěÄw×úî®ě0żÖMű‰>ŃĽO-éëň?.č‹Ö}÷ú|çß—Ű»}‰ŢľžÎCü}ÁO7)D-离 •`Ř……Ln43ŮĺD. N! ‡,,˛7Ą7)!{dAäó yОäv ť¸cĆÎtľ–ÇÁ)·WŃjADffZÁˇt:¨XN_EgËŞ™ÎŃq| ăŢçCě¶ä3Ő™AěŇDRMcÄźô’9+ łQä– y–t†ů,x"yž¦]Q8"U˘–Ž7Őá4BQ*f·„ýgzśG:˛Śď¤Ě"ľCJ9FĂS\­>îâ—Á¬ČPűŽǢd•„ Qf‰{B©3ż hż"ÎQVŐ6dô\€ësÚĐ…šŁßű=‚Ě4č!j÷4OöҬÚǺdžĎ÷ŃňřÝ>}ÎĂŚlN~ł-AI äIą>ý?Y5ľóÂ/fÇ{,AÁTĐżThx€Ý۲ iEÝ4ľ=ÖŐÖW…'Ú8qx‡oň¶í~$vĎ>^Ć©¶‘łŠ\Ąpa >î–Ę­ČéqKL‡´4Vuü{qo35ě-pä}’O«4Šč´źŔC‘ö˘†rpl}1Ž4ř´°0đćMIG ěČ‚$ ’ľFbG°˙gO SRŽüňD¦3gĄvtşĽ”ťz™RŽ:5@45†Y`­€’Zz9 C†Đ˘ˇą€Sma«Ť•!^ńď(ČŽ†źjÔ´ćŰ…­8sä唆YĘ“4lť{SJ=ŕŞP”qß·Č&ęăbÄ ®3ÁÇjń‰‹tA°cRŤŽô'Îe§wëŤXUôˇ$A5P8ÄčîěäßçĹŔ©ńh7GPˇů ó5` !ŻŹ´gČÁţ9â 9Áßt,­ÇT& ôĽi&@Ą%Ň)¦Ŕ{JD ‹˘2ĂřąX•ˇęjc†ŽŐM×ća¨[aŤ€U÷M´XGš>¦ex9ĐĹh9ÇŠxćŚ ˘Ú"X^w?c¦=%ţIłĽm[eNf§‰˝fv‘‰‰«ŕŰ źG‡Ă—€×ń'‡#í-=S˙ŠOčxďY9śŞˇ]ańxŞ?|]SřN…X^±Ď < ËâÁÉ: W+ńJͲ–i5f 7\›±I'ôŰÇXËčÔŽP­Č=ř+ń€;Lśçł[*ŁŇŤR—{‡p ůR´’oj§š,2 őµŹ6OÜU”jÇś˛sĄŻź®˘9XĽč¬$Ąď˙íÚáU_čp}¸oÁ§ ÚŰçźôěŇß1č[·#ťm‡¶Lť`Íç…jXîäZ–â&&¨8íÂDĘ |ř0™Ŕ&cź ă©> stream xÚÝZËnŰFÝű+¸”h:ďşj¶hwEĽk –č,ą• ßsgH[¤HŐ‰&-š‡Ăá=śąŻsŻÄ‹w/~ąâíőÇ›«ď~˛,Xi‹›űB8ì…5ŽIeŠ›eńǬޯoË}s{w¨×ËŰ}ŐÜ–ÍmU.V·ËíCYoŢrĂŻ˙Ľů­Đ‚y­Šą,öĺŰ[z˝)ßW×s#M_XšzÇŻŁ>öö»úĂŕíÍvŮÎĽ"ôW÷ôâ‹>äH Ď|ĆűŞzü¬MŘôö‡mÝ-:ě«}éët?ňäű(aîłŢľě0ŽżběëOőwWÝowUŇ!F˙˛źöüyŞűvŽżĽoŞÝuú˙¦űŘ‹ôgţîóPîŢE Ňę}S6iá@Ycçút"ôaŻOżęUÉ‘K}-ŤŘo!%}±żűYű#˘iśoŠą„Xá“Ř›ľ[;[”ëő]ąxźî  ¸Ůݧ$ŞÇ9†2ŕ ;ŐŇš«źn®ţşĺ…(¤Ö,¨BZ\¸+WüÉ‹%žagL_|Ś+ É‚'YëâÍŐď#Gj‡Ď Q”¨‰sÁÄ É}P뮚u  Úe §fú°¤‹P%“RçUÂ2)Ôŕ€Ç0%(¦“Y0gő )Ś€Á\ť*0ëű ‰ʏ‹RQ­Ť¬×ëäwGţR-““ ·¤Én đ1Łăű=nÁć҆ŮonҀ⻞+ë[gÄ\çŚűt›ĽQoźĘÍYw$sÁúBś’—š ‰ QÎČ3ţ¨p†d˘0LTú>ć„;* iÎgµcׇwG/ ¨785=Řkä/§¸Z¸.ÇŐ’§0pŚ;î“©Ń©,Ö¤‘'śXůÓ©G ϢOkćĺf9â s%SŇśŹÓMĂ7P®ć,{É&„QŚkEąp.E ‹ĎŁźÔIěT÷A'|B„Ŕ¸S9`%—ŚS$9†ő I Ł@‘”E ¶ůăńđŚCXT¤N‘ävÜ#™ YŚI:š60¦IŹŕĆr”ň)G)÷śŁ0—r&ăާ|›‹đ¬ËEܶąßr.wÉ–áU&0ď5AVÖE`eź“#ÍQÂŁąeőج杴řčqWÍ·»%Ô¨ů lV;ű¸Ş×­”fUĄuűj±Ý´â:0Ű‚ą#0Ű‚ąŘť~Üî›Űö,ž˝©7‹j$ŞŔiöçů.˘'G–ČÜ_hěX`íH´Ţź%Ľ*0éUPŤćDtŠđâ<8Ĺě °đ>@&Ţ3BĚ pj~°Ő‰«$8 Q€Ëq•´‰#ăN^Ô<ÎŮ,¨Hsάi"ś8ÔűGeś‚‹ç ÂywJq>z'M¦0‚™X'ö«4Dťdař¦×łrŃ óÝ©<{ß싦BÝ;ź™ŐMzŇ­ßnŇZ={,÷űčéxZnƨ°W îž •jĘ›Ü0ˇ.¦Ąš('˛– ˝á2 ¨1ĚŃ}ňÔJarÂUíEľ.ŔQ“@uÝýĶDýşISŹĺ®©‡uŮQ"š¬ďÓ‹)âb@mľôhEÖMSĺzżMŁýcµ¨‰ů$<=)±’ý)'Č´pq‹Ă÷H™ň"§LfT”DÜá\u©<3NĺEťj¬čNRi)žťr^«OĘÚśűľB©7CĘq‘¤’î\—18Ž0tż(ă€'^Ž ÄÝ]]]SďöZYT¦ďwۇ¨ÔW¦Q—űâăm’׬čg†ńÔ˝ĹÝT8ăźQSč»,ŞwU1IBĽ *΀ŮĹ=ĚńhF…úű@¨ŇVôÝxIŚ &EL˘s‚‡Ááľ<–ĹŠ§ĄŁŽ#ÝĆŽ# F;ŽŢ"vŘóYŃÁyu3RN3©^bF*p$•f¤`F Ěh˘Š}3«3 jŞ5ĚŔŽF“˘Fágt;ҨűŚltŞŮM, Î1Ć;‘ ¨s%|PCŤ+îú ôËă(Í´Č*ôăĺxË‘Ş&}ţÇ0~ë8LXú~Y€ă`¤:ŠćEđŇŕUPʱ“}Щ擓2¬9ŃGo(ĂŮSLŹŕýŕ|'ZŤ(’śňY`aoŽřđ1ěD«QNę,ĆDż\ŇĆz¨.!5CuÝď5*™zŤ¨Fž»p˛ý=ڦ^#ME©q.6ięą]@e»5ýš.qW©ŔÁ±wU™şJŠYÍ*‡˛…ă]k“Ö¶pŰ/VŐň[ŠĽĹŚ+b§3‰ÂĚćńФgýwš]E4]{ŮVÎ;ÓYLG#B*FéÚ Ť –®n(M »ˇ’‡®JŹ›U;躡4îŔügQ˙3W÷×BD)Í”Gé˘óíß$ç˝E°Äż>Yą° endstream endobj 1273 0 obj << /Length 3555 /Filter /FlateDecode >> stream xÚĹ[[Źă¶~ß_a /ž˘Łđ.- ¤@S´‚Ů>%ÁB¶53j<–+ÉŮĚżďw)ŰŇČÚĐ'S$u>Š<÷C‹ŐóJ¬ţöA¤ßż|üđŐ7ĆŻBśr«ŹO+©u–;żr6Ď”¶«Ź»ŐëşŮ•͵ëěáQ µţľ:lˇGĄňu÷’ŰbżßŰźéɭ۲‹Ý›·‡ź>ţă«o‚şQ6ó"Ç|Őîi҇ż~üđß˝b%W*Çgx! Ůľ~řá'±Úađ+‘éŕWźyęëJeÁ´ö«ď?ü+~ÓNĺ>óVż©h» Đ`3iÔ" ÁgRË!čćTíwďaµ2™÷K j•cוă=¦1™´Ë€š»–Ź>µ|Ş›r7™Tů"¸^eRÚ!nYl_ŢŁˇ3§í¨F¸Ě©7˝ÍĎ‘ŃҤt&˝ĽđůETĘ]”MůHď­Up™Đnő(el"Ë[ř¨ĽNr†#qëëď?ĆơŢń ‰č)¶Ý ońi[Ú®9m»r÷ôą®ş8ŇĎ?mË+Ť3Rµ+]őŁ ÂĎ=őÓÔbhůb¸nZé o×_ď÷›Űł‚hăcűRź˘,Ś•h÷›öÝżżývzgť;ďěŹÂŠş‰„%ždlׇřűô Ĺş¨ö§¦_ÖGţ =WĘ®yv]&—ă2m¬®2,ć‚î´ĘÜÇ\:Ó:0)­ćT•‘lčU*sŇ AĎŞjĽńĐĄáĽńŰ"íđ¦Śl¬ežĺř€;śą´sŐô fhʢ+cߡ¤ř<±÷ĐŰ*7ófëѤf•Ě,ß=[K|>SŇůś‘€şs",iEf1˙łüőŘL3|°ç˝¨7˙)·]7đÔV‡ç‰íł° ů<çjă˛\-ń)‘,O»2»}ÚŮ,¤oľÓyĚČ·L,,{őş*,{1™:´‘Ś*¨2c–58Ąőô©©_'@aŘs»Č™pznäôřyŇB),čd–űˇ<OOâđ¨!řB őLÝL)p‘]›ŕ !SŘH@ĄĘ»T©t®¦eRFÎéoéś&ł¨‡›AĽq zCćxŻ—€URAż¨!,Yů Tm@Z.‚ŞóLű!č´ (âĘ_z?Bť’•”q‹`" zÄJݧ}WMh7 îí°°Î™ËGĚ4-3/®@gxw-ĄŇç0pđj•5“\ş˛íŘŰ´"9±hü­<”MŃUő”FîĄÇ„xĽ8 O«ÖěV»éDrYť$_¤I]uěé}ęcwĆőËÂŕçŞ{©#p¨ń<Ć_»8ÂŽ1ż^cRgŤÜPĚLCp8Űôú!~?űKiŐ5†iŐ°ě»˙hÄ5îâC´÷ÜŚKzÝŻĺ”ňÓ"ć .i"!á.(čďű‚^h"řDI;7h(ř°&ń>!čÍ@Á§ĚŐ>…Âr$öŐ"XðŞu,ŕÔiő§sĎVa T/ł«!j»})w§}9ĺö $q‹ č "żÇ)ů‡Ż‚5&N:¶˝2ˇ¨~¶‰Y÷RřBŚ9 –&Ĺ)ÔĂşAš‹n >–5tb z¤c9Ç㕜ËXNȡżëłÎWęě°ÍôëçÓ+ÂđH;ĹĚŚşI«*¦ôed#gCVH‚@mŤCÝuDa™‘r.b5žcŰ -Ej~ykO9$µŁł?' řąëÇšâđś˛4 ÁşĆćŁ'Ľ C|á=«c“ő%+w­üG 4:ËźVbDľWb2`IĺiQF­{tŇĆÔÚ<(±&>ăŹTëżâKǢéŞíiŇF¬)Ł)ŇWŇhÚ!’cuIżEÜç91;řţĎMq<˛RĐ+ŰGg”źŠw÷™OôěęעJŁĽÓ<Ȇ=3¤Î:/l±3Uöâ"bŰÓd#Q®3­®7bɩڧËÍčŤĘ~L\N+Î,»SsŕŐáiZŻYÁÂ7›:®ĺĘ…óľOŇ "yĎ”lË÷ˇĚ—€„‡˘á\CŢRiŘ aÝ pÉż}žThŽś˝$ÂQ űt 9'ş&3ćlÍ6e ˇ\¬ü™(Ä5ǦŘö… ŹU„±oUmK’LÓsˇç÷‹ŔšŔ›zwÚv“ž|FĹRĽZ$ŐMéňzż‹=¤nÖńÜ]ż¦®ă7E8Vĺ¶ŚMR±şŹżŻiANL.˘A¦ ÉÍľ3UA;Ű+˘tŕ·Ř·uj‘iü…Ä©¨öņĹÝrkÚ†Km2{É‘ÜČĚ(Dšáľş’ň9ŽM2©|¶…ÝŘĐęYay3Ür™´jŔ:_ŤčGô%U-ÔžD¨–č˙®:l÷'*ÂZÉź°Ż_á3?1löňç)»ýéf}z®~I/ŃëŽO$ĘÜő{ę;ÓůSń©çŞw2U]`F~\$ýsY/¤ĎdinSťôŹQ‰ß¦3\bbç/,/Nűż-rLg¸Đ¦l»¦Úvżay]ńsů…ĺýáöáßć@’ßCëüQc ż4‡p׍ŚBÁySGeC¸4´'`îŞ0@ŞSB?wB\, Ż1‘‚ŢŞjhĹ…Ŕ%`5…ëŁoťtÓ”EĐćě" –Âu3ťsÔ,Ü:ů.×-$÷ľŤEü!^ç°©ŘÇËđjŻÍ¦<Ńý j$ÓŽvŽoiMŘ%ľ6˘Ö徤¸.=1j|~©¶/±I ÔJA zŇÝŐ__Që¶«řŽš‡˛Ü%jś•Á/ÇHx˙9Ö(Ś[ďbŰÇk’ŰSÓPś9aOŻI+5;˛‘é»`R÷ńŤöVÚ—ŹŐ”,jŇ”×éQ›o7PFéĄnÓpŐĄŞFźŮ ůb_×ÇvjĹ%lJ3ýşĎ>RŁ˙H<¸ő±®bÓ&ĘWy©ń|)­đ3ÎŻÚ•‘@:«Á‹—ݶ—ŻžXaŃ_NŠ~_ˇŮžŕ°“$üú»t„»Ş)·] «oŹőaWĆ;„|ÄÝç˛<ŚîU‡ă©Kr čră|îýýĄIOŞĎőwžGfĘ=tW{zĺuę ú»@—ě šő¦Ăpěů}†ýťZ„?eżpĂ>—“vĄrÁŐŇ»JtńÄ0)R3ţBMô" p¤ĽWCĐ[±˛§[vjXO·ě†¨“ZŘĹßFXěš‚Δ9R>{ ä”Đ"37ţĆ„vĽEůśKť3exŢ×9%çşťJŮm˘.Í"°Ödšdďvž‰‚đ«›tl/)›@ć;žn±ŰUä.űÄ8ÎrbpTBkŠ×’óó)ç!ѨvmlÄŠ‚č“ó"˛ 5vĽŠ6şEüĘa<łOă‹«|5=Mć«eőÜ—.é†L‘ČÁÁÂÝ—żŇ¶“‡łB/ŞefĐ3˝Ádt!Oµ¬“Tš NâVI†E0=•ëýô¶!¶Š.]-‚Ś= zŚ|Ó•ÉQ€tqp)śŠŐemRŠ1"¨›6ŽłŰ~‡đía§wo±·Źz1(‚ék~Ôo4ŃěŢŐĄŢCÝĹΦܿMyď1—H„Ĺ–zb$q5Rź:öĹ©óZr/“}?9śË]iĽźÎă1C>g\äśĆ&ĺ|äÚO§=¸`“Żd€N0w)XÉR0řfînä’Ť]”k6fzCÎ Näz X,`D°Óy ż×ĘE@éžďčSçëSTKZ>Ů­xÎňÝ=°·řpĺľđsL–ďOĺ嚢5Cf“˛şP®AX´†K+‘™ÍB¬ż¦·ŹÇ}µM¬ý~m`MEů ¤3ľŢwĆç— &6đ;Ć7ňĆw™BfľţßĹ©•SiLą~- üCĚ”Pyţôśţmž"˝XÄź}µiŠćŤĘyđçŚĘů@<‘+ 4‡®6Ćő§Rú7E[mSí\ň˝˛a*ŕzs¸Zź ×AÓzbW¤F]ś }ć} «ŘWÝ[«ź&K|H„úÂîŤîĄ>ť§ ?\ň Ľˇo±oÓŻđXnă?žvýääIÇ'2ĚĐTé˛çuÁEÂj„Ě8cc±.óCç7ć´XsşĚb“ľĎÎ/Öó(0Z‹J“˙ů€™őţíŰjó[Ń,5Ýt!ßĚěŔ~đhž˘„L‚‚řyÔç endstream endobj 1277 0 obj << /Length 1603 /Filter /FlateDecode >> stream xÚ­XK“Ó8ľçWřčTÍ=,Ů:˛U µÜ¶Č 8GI ~?†_ż-·ěX3L1ąD˛ÔęnőăëVhtŚhôvCýř×nóęM¦"Ć–’G»CÄ„ ©Ę"%SÂ…ŚvűčCĚ"lűi÷îŐĆŘ’\H’)ĚFş˘+ŐćďÝćۆÁ*Ť€:Ó„!ĂćŐćĂ'íaď]D‰ĐYô}¤¬"Ad–¬ŚŢoţEĺ®Ä1ÍA»4ÔîÜ”'»o›ú±p.ቾŤt.5É€I ˝3Őą´hÍ#M´âĘQß3®eďYFŔ˘OXHRB%ÜJd$•O*ɉÎt¨d ”IAh˘FVR>Ç@TťÜD6§ŃâJöŇö§µkü´í(Š˘E`Ým÷#+Ä08Ě!YvA/ţBô’iBDĘn^ŽKąOÎâĽrIëçc$QšÝ;«D_«$/h•(¶–Ľić&ű~6%,LÍ‚ęń˝Ł râlü>4źčÎmslM…śmS=%#DŃd>ZśËâóšp’ś%ě‹®oŽÓxč #vp ¶WŃZK|ě:Ű/Cť»<~ĆC–ۨçdń™gŕB¶·m˛*‹ÚÎ<\.őqbQ>ŕěžů##8@f9ô©M9íŻhµ’tŽRÖéčF×°-r˙=c ‰śŔĎÁJŢL~`K_ë ęăE)S+nČ ~O$ya/ĘpěQ\Ěky>[Ó⼨˝»¨"‚˛5¨ç*.ÍĐ0C€«‰Ĺ$őŽÇÝĎöĐ´ţĚ|Ř›ŹŚ¦3uŔ ŘŚ0KąŻ °3c=Ě /î˘Î©?ŠÜĹöůf^:IˇňP Šj¨<»C T¸Čm.ršĽîÖ’0•â Ż! …ľá♡mÁ7c€ś}•\A‰đ×;gB„~T®č=Mł…kŻ“`eÖłŇĐ]`űĘôwX|şĐ‹%5âËĐůĂ~¨ÎžüpuŢU“ý_ŕĽŢ>·¶Ö–DĄ€Óémj‹c‰őüÎř&ҧÎ8>†fńó6˝q’@“ĆşA}s¬f>§7ľě©7d‡ ˛+0ť30o*î1Ąđ1 “Kî3_Y`±k*żí*…@7oühÖpX4˙= =ŃÔ^Dóů ôq…Ë_źŮľ*:ď^UĹĂPç®rş“ ä<›Î´¸âŻ•\u“°€Ýä´éƱáÖиΰ… ăĺ¬]v ńNV.<.‡w+Ľ®ÇÝÜ0pIdú¸ŐWx´¨ ŹNÍPî=–ůş†¨uuĚ—°‘+:ĎŰä…&Ŕă2ŕ&ćQ}ÉĎľ9Ű•ě„QZÝF4OŕIź‰@t—›z%.ŔsŔŹÉ»Ţ.]Ôśéwëť(t$OÚ^­„4…®UżsˇŰY%ě·ćő¨p Á)„XĆÁż0.Ü6a‹¶~jÁśey©Ô‹Ç&˝ŔĂZBL\M„{¦\>ÎůŇ|H4ÄŃŤŢ‹ŠF6=ČňfoŹv50WŢŚWqÉtęâŇ ]¸9”Ö5R4›VÝ›ŰÎŢ-dřFŹą·NplÎń:ühmiYĽéśAźÄŘ“¦ h@q!(Á‹ž˛BÁóşÇ Šăď,çţ°JÓë¨/9ôË[gńë÷;äîÁpä¦Çrěâ{,Óź)0Ů7•Áúŧ˘< o~!ťĽËxhćĹľÝcq Ž~©¨ĚŃşWKçŢ~Ű|ҢۯűfőϢ> stream xÚÝZKsŰ6ľçWĐ7iRˇXĽáLMÝvÚéˇăřÔ¦ŢculŮc)“¦żľ ‚%JbíIµÄ.vßî~$-Ţ´řé­?_]=űöGŁ F‰RLW7pN´2…4ŚHPĹŐ˘řcňýíüqS>MgLŇ ›ţyő‹żMm4¸Űh1–ţ†źďďĘűrµ™o–+ßEą™/ďÖíÝ ŠŐwKŤkq7#0ťĄtňşÜ¬ýÝóŐÂą,ďŞE«…ÚťT+ZbSő‚ڦjű/Ę7”˛Ő˛3U8%îë*éoSF'woËĹÓüÎ_GÝř$j¬Ô€pŽăřWĄć;ż7a÷ Ç@7v˛.7ţ–hUD´kľžÎ¤Đ“ĺÚß1÷ővJ˙ëýŞÚ—űúpă?ßÎ×ËëVIĺ+t 0BĄ(fÄJŐ(đ@d4g­/˝€’‘PQ(b„ŽWq­ćĆ "¬)f†X^j™Ů­ Ôę Ó˘)E„Vh7®(ú—bč7]BßřH–óë)ČÉ­˙ĺ\ä>?Ü.ĂË×ó:5Ţ–ţóiĘő¤|ôkĚĺ˛ÎŔ÷ëĺę]ť•Ţ f…B÷pŮřď •1V!X#łŞu^c^ožśUóĺŞ M”ŚG_ăĄ(#%a»@čÜ i„$ş˛¶î÷¬.j4@Ö[¨Ó$ô„"ZrD†Nę,cf%×ía­5ť2A¬PYgQő÷B O˘Żłm‘ŃĄ‰b¦*Ú}Ńî×ŮŤ©îęłLxăM­­śvp•1™©ÉŃBśT×椶äÜ» ĘôÜłäÜ·űľÉá`¦ř;łÂĽ°Ű±î ŞŘ›y&L†E6@xOxáÓfb36‚8mŤţ'k4X8Ůč踔ůäDµˇŐç™Ě’X(URr˘ýx]q ˘0»í´+<Ϩ0ÄŘÖ!ݞÄ“dŰV&ŮÝ*´m.2*ś‘< J˘Bq“¨V0D¶É|ÝŐî@0™YÂ׹Z†öA‹âďj+ytějń"ăwP!­+ĎÄ‚ń’–W—´l"ieč=5B>r˘ .ŕ÷­šNHĘČ ,ł@|j˝ĽČÖwĐXU®*ŮäU´1ě :ěL˛łUfgÜÚ†ě"·39†Ś´ł6®e®­˘î̵ßäÔˇŹöť±ľM›c6ť@˘äqŽ‘]Ó﨎Ź\~H`áŘń=ÍďËvşx¸ÇF-î+çĂÇ‹‡ŁŹ_q@4PM·y 9ObĎÎá O®˛ń˛®) ¤˛'ŇŠ} •ұ%ą¨5s:P®Awnrłh7ß’¨ť\ÝćŞ*N–Zcç3ßUsNŃ[Cu˝Ť‚»đÁÍ„-´mÓľ‰;Nj‚šjRs?7·uOßy‘UBŕ´ q>˘ĆÜX˛TI+ih߼–ĹULd*7n{[Ţq·ľ‘%ť[®¨čÔ!I'%e€‚˝łŮ×1ËíŽ9ň|Ô1ÓÓ1‹®ţĎ@élź€ßh‹”ç;Ń‹q@ď:wô.ôâ»)ކKŮ T ť%ő.žĂŕ‘9ž1<Őzrc0žNنáŇËWg± JńgÇv¸‹5Űáţ¨Ž^zŰj&śżmĚpx&„ňz˘oč#Ľ$Pa¦±d„ÂNú'TňičŹË^čŢGH‚3m SqA¸íÍÇÇ2s^˙x‡b'T '= b 4zĹ&‘Ůe‘şFnÔ …řBĎ3ę8e’ćvKDşXŁ(PŠ·Ť˘+]1ĺâäă%BbĘ]®)w˝Ş{m'Ä”űĂSž3ŇǶQu˲Už[‹«B­ŘZFUí°„†„©’aFżěŃř\ÍAöÍŐSyçjġ\ š‘Ňnᮡ—ä „Îr“BäâaĘŘeă°1ąłÍ‰đ1§ UŰ˝$š‚?Şl:t%FIů lĘ;‰9–?°é˙Í~Ey´}T!{$B})ÉrK%¬ —ÚKw 3›ťbvö$c¶éĚţš‰@}*c0°Ź 4»™@ŽAtDFŘŘo1ŃÉb[稌*S‚RM%•ŁPjDj‘mĽRśË?ďă.ѱČ,Š‘¨(őůE5łřv¶‡YT§3‹cń©jµ¨Q‹°E1C¨Eq,µ8tlg€#jŤž_ä¦épS~Qvđ”'5“ĂwŐ?.ě#wöL‹ÖŘýO„evO‹,†šxTݶ†IN[Ě-†íJŇޡa©ŁO“ŮĚĹ“¸©öЫȎĆFUjAtJT^úŹD%«ĂyJ™ŚQ[†í„{yJőđ”ľ[^mĂxĘËlĎ<ŞůÉţá<%ĆSÂPš’VoY @BŮ!á°çŢżˇÝP?VˇyŘsó„Ţ { +žy–Ě(>÷„χ{ęDÜÓî ĆÖ“ęźĚĐoElz°Mc1W-Á´xŃ1PöcD€ u A]±Ww;źÓ°ęu©(‰óđK›Řr×4ĂßzßűúĚŹő7ůŠnçKÓ-'P˙Q҉eËFę…sď…ž%ŢAŮL° űđ"[ Aî%úXÎçIQKtu…-‰Íö # żÄĺ”| c«¦]›Á AZ\㦠q ńνuÍLăGĘŁ›~¸zö/ę&†§ endstream endobj 1298 0 obj << /Length 3141 /Filter /FlateDecode >> stream xÚí[K“۸ľűWhoRí &Ţ€7›Ş8Ç›ě!5ă\gS”Ä™aJC*¤4¶÷×§ń PĐk<łYWrR@ý@ŁűC“Mn'ŮäŹ/˛Ńóő»/ß(1ŃH "&ďn&R$…š.ˇ|ňn5ůűôűâ}–‘ŞÜ–u5›žM ÂH¸×÷Ď®ňę¶p?ë÷ĚÝăŞXçć3 ÂłĽűSĎúĺÍBľ‚ Ć0tYŽ?[ř^‹é•ůčĺAZÂU%q iN;‚ż9ŕ&–đ!”)9ˇH`骉¸V“y@ő•Łb*2"Đż'ÍŔŚ!­pČlČvQGDžÄ)vD+O„"‚᫯ŁP„…îV=Á ­@&w.%,Ő˘p†ÎÝŁ™Q9ős†fsĆäôÝ]‘Đ[ D3Öńj¬ěó›S‚Wl2Ç&ĹűSç#WîQ¶îą˝ó>´©×źîŠU3Ă|šŻ][ ±/…c1™ŤU/KBĚŔiz§đnĄ˛Čkď­űÚDk#’őmÂe¬ç!żÉĄšŢ¤†’¨§űŘë5ö™9F ”=kÄNr2Ů'-ś©Ó‹!yä8 PčY @ Ś‰cÎĚ’ÉŔ -Őżś tĘdçY°=Ç ň¬€SNąg…WÎ &T& 9ŢEvĐ4†íđm‚(ČńŁČq©Ŕ1RźC””§´'O¸đeĚČ‹`ʧ@…ę*ä'Pˇ1qżôJ‚wIô3ĺ©ć€>É\'ç€sńĄ!s &ޤQąPů÷Ą×K‡ĆÉ`†ů’&”'ä.šVÓ˘Zú<m+\źQ0Ë‚mF\0Ł* őa»ĆOTĚΊm'Ł Ł'ˇ~äĹÇ+fgA}rĽb&NUĚÔ±Šl¨Ŕ×ö*f`éÜ=F3š‰®bföBM}*¬~­ĽCaWĺ°1j$Ëj Ç×ů“’¶>f_†•¨ĂfRT°Ň2ś\ó™či®¬ Ú1­ŹÂóĘ=,ć„§­!óŽ0­Ł‚ăŹRŇs\Ű…ĹĚFŚű|†3đÇ R¬‹ű˘Úzj‡•CA—u3#Ůtî¦ Ś(QńÎűl7uµ*«[®ëűĽôáˇcńMÂČR#nvr€ş%—ç)ö_ĂÓéPťŘŚjâr yR4’Z3l¶S=ŐĄ p,5ëĄ>ťX?ťâQĹL&‹’Ôx"8ěÁđˇ ř.ˇŠ9čqM°ă@ş"ąWÜó*<ĘȦČe@hK`"łŢ bpWJDd6ÇŔsz]ŢoÖ>ľÝ­× evá×Ń&ÄHíO6mëűb[ŢŰČÍ»¶¸Ů­Ýű¶vĎ»Ü,ösŚP¸Źr×ŃÂʶÜá}‘·ĺŇ7»09ąŮëk|÷îrOş¬«-Ä/…˙¶śîŰDi” s€ăĸăÄX?ĽÍ júĆ|ęúř´±=ö ~Á§¶|Ż.¬™Q†ţˇ¬w­kXŢŐĄÍ 0ôëÝzĺşľŮÉÖ÷›Ý¶Fd6‹t|;(2VTź±ŢľđçŁ1 źŢÁ|šł#hô€ö˛ÚZ˛ŰÂ6°^Íş=VEŞŔ{¨ŠňŞ(>|ĽÇ!ĺmmćäC1ĚLc¤ďÂ8‰=/ÔłlSî‰é~ą.wMYaý ř  ĂúĄŔÓŞŢş¦v·ŮÔÍÖµć•kچ#°ëŞ7EÓyütą (ŠĐµÜ 7®§ôśVĺĘXU°ľ%´ü\xxâU”˝1¤yŮXM°đ»)Ş6đi×e=žŢ™ImÁŹoN¸´{á-Túíʆfo©ÂjAčtaVńnë:Ëîé‰óuëĹ$ťŐ§őCzÚ[=”ŢÜJ€ńvH˝˛F±E8r A¬\–É7Ŧ)Zđż’Ť5ţµÝĺkJđ©Ńr§%N)x:§ˇ†ü÷®llQš­ đçüĐę4Ě—ÝX‘kQçZ–źđÎD˝qmť[ůfÓÔ\u()ˇ‚ź4Ą<âS † ĚŞ›_ĺk“đlw‰L¦(âŚí§»QŇ$´OwËlkV3aŢË`ě÷ŕ!m—L)KXu­14FRŃŘ®X/Ü4Rá|Óüj˛ćgŢşn;c¦ÁٲZ®w-Ś?˙P¶…܆¨˝)Ú­Łô‰ČĽZÜ0ąďřµË¦\8~bşřäša!ΓIhŰ@ć˛`™˛.Ą7ćMᛚĽj!/ŮXÖš´ Öđ#‡<˘(«ÍÎ ‚ŰěĆaňJĎôľČ«=ţýÇ~^˘{#>hŔÓ%ĐaÍÚĄJLú(ňŤ{µË‡„~¸Ą@:sZş;ßWíîvőŻ»ý8T™x•ĂŻzo$.¦˘QWµŻ|čYç¶<ŕÖŞ=ČÇ˝0AÍ Ć¤ńWÖţčXIÄHżČ‘»>ᡲ‡ÜRUŚëb{úĆ…iŹŰÓ·L`SÂč°Á Xßő 1•I” wFRµ]Íĺ:µA΀±‡Ö‚ďAk[69®Š ű…ą5¤Ŕ˘d\r¨\¸Ź}®öwJ Tďĺ)€? ÷ Îä!˝Ý†EEPÖo]'7m şĂKeb(Ľdx)Ŕźr}(·wľ˘ěŐĚ¦ŚťÉõE űr:Ú,EűĚhŻtÖ}Žę`!tP,X‘Ó«` O6C‰¨) –8łđhŰO‚mâ>T¤Ôˇú.¦{´ňĚTńS ŹAŔ@Ľ«ÚŞ.¨ »í¶mżíÚ `)śhóëń7Ă·š˛ËľMMl¨ą†)LźY‚xtáD%.(íN">»nňóR~˘jď`xŇçEĽ _%ś@ÚŁ wá埉đ;7×HÝy7×ňó0?€ő%¤p– SÉc™ż:đ»†LDŕhJ÷"đÇd ëÄ-ҨR5Ô^'„á0ęraÚk_&(x}źƨC/ćç¤0b«_ꍋ-Ó“MXJ–Ń™"1á,Ľ> stream xڝ˒ă¸í>_Ń·¨+mF"ő *µ‡ŮšědS“ÔT¶+9ds-¶­YňJňöxż>RŹf÷$9™Iń–ă»ă]|÷ń]Ěżß?ľűĂ:żKRˇŇ\Ţ=>Ý%J‰"×wyV©˛»Çúî_‘ę~—Äq}ľO⨪ł™†ćpż“YýŘMćhš|îőGŘrnşăýż˙BW$˘Ě2{E|·“©Yé‘‹„Ń*:__SÓwt<ŐwĄ(s™óéD  Đz˛%=IG Đ`K.ĂLŹügń¦şÂ·')µpÂ(Fú˝Ž¦¦ŃÔÓďŘ·ż"rCÓsŐáěć/Ú·ć̇ź›éÔX,ŃVDőt‚ă*SѡgZżNQ˙D ~ÇĄoo'SUKÎ}mZqżËAJ6ypQFφ–«Ďť«¦ko4F fśÜDYxm.¦«Mw0!"«®jo#JBĺj+2%e™ČpVu5 ,ö<ŢΗëden×éçÚ5ż\ Ťs˛L7Uö­-ě©gě$–¨î¦¦j—Ťż\+Xý9Ž%ň&Kýz/Q!š b9ĄŔď# Űjš¬˘–EÔ_ĚŔ÷âŇ© ľ7†AôřłD!čĐ_;b Áިi­é:€h…ő4Fúâtä2݇ŤV¤Ąţ}m̈́󄄌 7µĄ†đ úŹ8ÔŃ?î“$‰ĚP÷}[± Đ&BúşÇ=Ţ o۸««éUÍE;?ôŹPeń×/YuëPaq¶}d>b »” ĂNr)Ň8I\c°ţ$yé÷Kâ.ÉÁŔ6˘4{Y¤kĎ€€•g@Ŕłőo#MP݆qâłç =·U ‹,Ŕ„T©ČTęüÜ\>5ű*J«™ŹťŇ2zß檵śTö6–Q©cˇódý$Ŕŕ©GšTĚŠ*Ëč˛ä\m|˘Ý°âv̜à Ĺm\ómQ…ř.Jˇ’Â1´ŻĐđţK€ó4‰gőŰ)-ĆŽřTR‰4-Ö|®•Zeu8GFw¨ĐĚ­ł‚'¬ş~"ŔľÉ‚čäŰďîł,âU{ěpágt±:‹öHŕ•‘ĐÉ""Rµ![9šÎşë%x‘kgÚHSkŰNNB.TćŃ?ď5I_óNŕS±Łťwó‹á¤éĆK3F°ż”Â^&ĄŞ›ăa4ms89çŚ!#QRDxţ©fhέ3Á=Č ™2‘°DnŁóu8éún·ÔL<»ŇLÜ´ÔĚ%™l×.Ć’íCćR¦éš‘ŃŚ@Č!)Ś)mŰŁ-=ł¶×5ô8ÍmřÄť{P°zuŁ]9@äˇ%Ć&ŁúZ1h´¶aă-ͦˇýĽo:2isvVŠ?öç~Ŕ'ËÁ±^§‘FQcÓăahö†fcćg¦Y«–‡úËÔś›ß¬~ŽÖBJ „¸ŮďwZ Y#˝Quą@`¨i‚™ŇĎą‚·üJăşš:NdpW›ŤŔôKGňďXqĆŠ #^u"3đ?v=€ťŇČ©âVuPv!şQ?(*ĂłŮ@ĄKĘŤp0YËéyB—»ý}ǛȕjÍŽX­ŤťúĺŃŇĹĽˇ‰Ŕy›,ŔJ˙F^´1§f@˛Hn%Ŕ„ĎÖ‰$®x™¦eÂŕP۲=Ć,XDkô T4iĆQ: ­]@ż?‘•ŃóüBĽVh‘%z.$Ź.©řpu ĹOÖęľŇäŻdqŻ– ŹčQůĄ1®ˇzu4@»Â_ź¨X.¬KĄ_PC‡m.%řµ¶9ž&̰qKÝpLL–ąJ©„*’9Ö%*@h&ĘB»= «ÝD(É»ßĐtU,Ń*^FÝ 8L˛˙"c’nĎĂŇ5"á$VäráĚ(Ů(”ČáWí=śL1?¶˛tľ@cućŃ‹´¶ŮěÖ¦S5y5­íoi&ŢÔt‡ÁćD Š>}ć;\6đÉŠ‘¤oXÉ.]Ë%í]TiÎUH|˛©öůÜÚă—Î㣕©ÔŐrΙ|‘Pš\˘č›‘ –!€¬8­KĎîÜa+9B÷Rv\eąZłoíĄyş…s±B%Ëdě™Zód ©h(c.`ŕŠë+ˇč<5‡:¨MëäëĐ1hÎ(KŚaĂ"ť­ ř4ôg>ćś,ąćá Ihqô7ÓŽü¸;&zĹ#’|ĚŮ ŠsÎ ·!Š ¤?»)ea¬0ב;m Äyn€{燇9r±MŚ ^ĐŐp:‚ůn ’!íôi%şłÎ4°O›f"Ńţ©Ţ~SĄ|‚Ýőæ:;\v2訷Šújq¦rßp5hô®¦î­{Č0cáB ę Q$ĺÚĄ|\č…ŤŻ’SUżšĺĘtáVó-ZŔ3z)0¶M–dWÚůC˝©ÁBnCB–^ľď}<›·ä"Ö^R_ "U^Lż`Т€ą«ĄhC.WtYĚYI ~ßK)iŠ(gŤzX١\č˝–ł3ůÁĘTQ„’H[Ę:OÍ!Pr™éٶUV5Éşßń’$ËEgIn_9ő’ô…–÷pĂŞŽ¶ô|ófŕË?ń-đ‚ĄH /ŰďBj‹bë˙§–yö––rŁ$áxýşĽ.„.Đ…JŘĚf|黚rĂ”žĘyB,Ś3ő•):˙{t|Ч‹p“I8ÂB~‘5ŤE 6ZÂz7.ăŁJdŘ (!`ç+v·˝Č’ŤČW7’Čhŕľ$ 8pu`„‘jĄ®äBk°ÉŹ'Lą‚5¬¬bér^r–ćK5ą1ónŚj6öV¶JEÁH`żl†3l‚ź»vň‹cČć”(ËoŘÜúöz¦z3Í]˝©|˝ ]X eR€”6ąŠoÉR{p5kTäŔwČ˝še®Y|€ęćhźĹmK™ uő ‹Ź&KÉl¶7Ś›ĆŁő&ŘÓ`‹w¤0.ˇp¨ë •Ëý`ätč’9ďP~&TI¤`°±ú_BޡáδFéßh°7“ë\1™ď9"R‰«IłÜ¸d9»­WŰ›P*‚-ČrÓNXeüąţf†‘ůŔJEÎĹÖŘýڧƶÁp\›®?CÎ7ąZţbxŕž>ϰůšJ—Ľ#‚ĘćřvLJŃ^yjÓQ{•Uať _ą čµKŰ›SÔ@Ŕ35#f*lű#Đk¨|ˇ„ Ő86G˛€ţf†žáÂĄZx‹Qm+xçá<~™»¤9çĆEeÓEg!¸•ÄrăZ héÔŽĹM^˘ůZ˘y±Ě,ěrE`ŢŐÔ… éĘ *,6O!©ł…ËĹyľî +Ě—L´˘źżôEod¸Éła-žIá†O„śS©l)C“wĆ…>ČČěÔů;Ë22ŰTľwKËl6‹ąÁ…–{%odBţ){1ninŘ.î˛îE€ď°ăâT ¶g‰}_[Ń©Űb™sd¶-/4§TÚZÜč®p°79#ťxx˝‘:Sąo3äüŢYtŃl `Ű‚9Ö„ĚesŔ&ô \üôč>”ĄV9đ÷8ţD‚xN¶—`˙5ÁNkXµéž­P˛á/šľí1şČJ_`“Yv>Ś“ě즡żO´o„řó«Śđ»eKĂŠö-l ˇłŤŮ\‚/í÷čaMmzĆ]¨-ÍPčNÍáÚVľłËöü®"Đ&^[ŃŃŹw^8YYn ăÓĄĐ™ŹFC0‰NćÇwJŞźĚ5Ž÷äPQű¨Óo‘eąIŐW™§y– y,ťt×@˛Y(M› ŘŮiQJÉş %1T~rX縨˛Ű%"-ł·Qé»Ĺ¦CU*UŐ¦‰ç+Tö{YĚ«n4OťNB˙źČ»SĽrT(`zÂq¶Úő§Çw˙Ń$m endstream endobj 1331 0 obj << /Length 3955 /Filter /FlateDecode >> stream xÚÝ]sä¶íÝżbĺÉ™I‘"§“L›L’ąN§éMď­ínW¶•¬ĄŤ$÷rýőR"µ\űâ¤IŰ™ó‰ €€Ürw·+wß\•ţűĹŰ«Oż®ĚÎ2«…Ţ˝˝Ýq)Y­ÍN«š ©vo»ż˙ĽŞhŽŹíő?ŢţńÓŻµÉŚ0›ü{Y–d«H3)ëÓ@˛lÍ*#ŔűnľżľŠ }öĂńńˇ§2á2vÍ»c›YÉ:ufÚ/šŮZ„P¬ŇvwĂYÍę» BłŇî" éqď›9ł˛4Lđ°p“YXłRÔą…­Ś¦QL/üy;Ë8ůµJv}#ą,ţÚőűK$L)_ĆË7éłĎ.`V­Ň rŇ ™äf# ÉJ zĺ" źdf0L)ĆŚT‚Ŕ‰ú\(µÚL‚ÎLUÜ_2¬1¬T»Ă,ě­ęČ”wÂâW{•g°Ydă» A+­Ů VÖŐe™„Yâmę.LUÇŰ´ĎNUÁ6e¦J6S°J&;Ę32›lčgYś¤­^¤gř$¤9^ďndĹA6‘5°Ę­ůľ˝˛č[4ď©2Q%±%®ĺ}wPGsĽć%đţk>8`UěďŕQ·™xÁÔ5‚ uĄcŰü"óŕ°.3ű(”vÖX <˙±ŰwcsşďöÍńřÁIĄ™ ŢN3Ö ˝ۇ¶ź©łëé»Lo˙äŐZ'G&ĺ˘Ř?^Ř+±j>L[Ç—bśüęP?wÇÁíÇr {eXm7B|÷ŘŚM?·-K)EđuLuÇ\hx†9űĐőđ‡ŕWt° GÝ6Źóص#5qk ŽĹýV¦xí!‡ńĐŽÉ6iżM™Q„™Ń…×)h =‡vnG@ÂęĐľn6/›ܬ¸]Áfś±y¤Š“KC2Ńćuűn^h5¨•ȉąíŔąŚP‘‹!u džŞŢ>LT;´¸‡=É2© u cw×őŽ™PKÉ5ˇ°áIöMĂ­o˘IĚŞŰ)€çZsTúę(]XÎtA’v(ü«ŢůĄq¦ý<ŚT聆lŽž»±mf”:Ł`Ţ>”Z*,b+xkt5N‡x; FÍ ŰÁiÂYŹĂđýä§ôßŰáxô˘Ŕ뫯Ţ^ˇQ.w|'K8>­Ú)ężŰ?\ý°Źú›ťs«ŻJ8ëŚÚ˝ßa3ö0ÍkéŽK çüŤP.¬Ý p­ęş;QC‹­ŐnlwW·»«7n\X× 4»Í´’¸.gĐá˙âňţ!ÇÓÎ?!+žË¬q÷›µť[Öz°‰&‚q°Ź7<ßę#Ę,.á<Ô%0CqĹ4_ĹE%‰«ÎŘF»S˛dÂřĂźi7Bú¶/C›8ži? îg{ďńŤĐŤxvă9˛0$Ç5đ&k8D~ׄU0Gý ×Tµ2õ/2Üř"ĂŤŹ…űý–k &Y®?6<[ŘsNpVsY âđST@1ă@ŠJ0;¤±´¸–:üš»)o˘ë„çŰ "ŔxřÎč ŘívÂ:1OŘůÄ- PhŐ—­‹ˇŇ]‰Đ<ŁL†ŞÍe9Ľf c®-‰k ÷gn ¶.hžh@ ‹’&™ć—÷ńĄT ŁÁP • ŇJ] 2@ Ő M”kuľŤLĹţWß§č^3¦»Ľ(ľé~©ř–.YőbńŐµ='0Í€”&%đuN|q®K.h>)ľUĄţjŠB' žŰĄé«/ 0B 5_łŕęăŐôĄ\×?G€ťö$Ý*ˇű]N€c¨-Ýuý"ů•`ëĚËĺW3UečŰČ/ŔuJßąŻäçĘÓˇ™‘_ôNÄ™OęĎ˙őř_Fö›ńŢEżY|ôË©îŞFi‘DÄWŤKóš5]ĺÎç{Ë@iQ`ßQĘ›#‹5$żľáE–S÷y. SXĘFa Bâ& 1eèwíľyśp†şrˇ&~)Ş#b°|ďéöľŹP<aG 45ďl$¤0˝lDńz¦>GÍ&ş1~«U ăĄ×lX@í<Ó"!ŞlýT¦Ýc(ő'\Ú=a…K!4Ä I{ß–vJÓÜž¨Úf0ÇR;†±}1íćľ-q14×0.3řB”RŔęšRX;CĆâZ«ÂŁňú–šl IźK+B©¶ü{AĆW±J%V—h))ůYFŮƲJ2 Nä:¤KĎ 1ŽítúeQ`ŕš-ĺ˛Ŕ2ŕw*Ey„ ŵ`r˝%hV’;!öŁŇruDŐĹĐ{Qă`®K‘ËNJ[ (6TĽo\~UT˘@R°É |ú,ŔʆŹ8Ěë–´ëüÉć~řŕ+§č.P•`(Ýí…úŰăäK]4i.ÓJĚĺ;v@¬­Ş4Çç’€°'{§\Xr9-^§flÚyěöÔî“ȲPrżąĐ>uw}:réÚý47¬ĹćͨôĐ| Âˇ=µhqÔŕg ”Ü$čzz'jí\«‚± θ6V%ňŕF9WÇzŻúa¦Bwü_ 0żŚě)ő™ýňćisÔŕĺĘj5UŔZŃ6ś<~˘óÝÝ­}‹*÷ľ›ś1h—‡ď©CµÄqÄ#E¶ü•ĎĘ#®¸°ŃŻ[強Á=y€c'Ă7h%>isYź*áî:Ęř3}ľŢIJO=`Ň?ÎŁŇŚľ+ś&0,ĚăwˇUSÖ¸=%ů ů)ĆP'ڱ@Ź” Pě|“Gˇ= ®ň‘ ˛Ĺ%ŚZ6Ěc¦¸!üÁĹ`śĺ˛,‹o†‡aôë}ů8O»Ô¦ýŕ·dŻE|צe¸úĂŽwč;ČĂ#])_ŮąűdÜęÓv?řqt$Ôć’Z“­éüĆB¸q¤Öý0Ś `>¦‹Ę/bŠÜhâĹŘ ęn"±’2QŐ]żőűăŁwîD EĦ fYŻÇ#k‡×u~=s-čúĐŤö#‡Ě ZĘ”Vëű.óOQĚrŚ«É‰Ă Ż˛)ůŕA?ͨHúá´­nŤżc®Ě*XşÇ7eń§6÷&kĹ8§ôĄJB‹vôOĽť2V7÷ÝswĐë“›4ŔbŕÉSÖńWńłž}˙S˝y•“<ş1.ŮęîłXč‹&ó$yúđ»Ě °“ož2%8 Ďżp+çîkVÚIwTÁ(V±—]™łó‡pY/& €Ť\/ţuťŃHlő‰¸;Ô]źSĚ%”ź{‚Ŕă'ťşëíl”HyŁ'e‰˙â˛ä¨‹ďh Aî±vÇ$4áłšé*ÖxťYŘ0±ľĂę=W}ŔŤ‡ء© áś0h xęB8—MńŐC\c 'jG©žaEü2,rD3»S1­ĺ/±;ćŁQş ęµăHj”5ă%Ăkęgt}™â6űh̬3<«ë§ ±śuYÓIű'YÓŠ·ďŕî#žbi=)eDˇ{Äââý~h[ĂÁÍ[Ő‰šč S"öox ÇDĄĎ}§ŤÝ°ră@KzŻ`Cň ÜäpŇ&ŔT%Ź~]ł9+ěú^Äúě—÷Ľ1)"mń%čnwp‰?QĆ›X4nѶís@Ü9ţëۡśY}öNěĹ´dex}Č>cŐ˛\~KBhŽĺ6«Ä,Ęăv=çťjű;ž=›Ĺe3ú+P“= Ý#Öę.ďdŞ;ŐSÎ@b¤^Qř·žťé;w°&ü\&ś$,)˘—)t™Ů’Ť?R×Éxźç˛íŽ>gj‹ŰÇ~ďcŇ®‰›E ö¬äçŰtľ1Oŕx—ĹQVuÇ۱Ůűř€U[ş§!Ű<śKŻ 1‘Ë÷Öjk$\[軜,©±‰ľ„C­×آV±ĹĂę´>‰Oď%«š™ŐOÜç¦6`ę–qwgTFwÓgÎHÍ—ĂeÍ´%á‰_ËŹY,řj>rŃAŠÇŻč4„ óQßlű*čßI;>éc}ŚWćaoő/eo_â"ť\“5¸2Ńś ]şčó ^őëo!F®Ą*ľu—!Ď'őz“ˇ–› ŘĽŰÁ·ů{4‰O,ďDęÄáj h6BLY14fíMU™3ŐIő즰O˙šq1M¨|Š`ĺ|~M 5U.´łâĚlaůIü™l—Ëm†) ĚĹoçüo|"Ă,>‘Q˙‹:Z?«Ł5ý<ęLGÓł5ţYŮú˘í1)o‚;ŹYŻNţÇ(ţÁą -?×P¶Ę<¬¤'˙ć™Űi˘ë&¨ÖĹap±‡9SâŽjI…vşU€vM`š(É"BË’üCOIaV¸;ú‘ťźŮ-– (ťWâ-Wáç"Ôâ} % K;®s9äËčGĂ)ôöÚ”Ĺ@}ŽKĺňóŇ˙ü ÄÝăĂă‘huËŇÍłŠnô^ĺPoüĹD¸tĂč™!j8”÷CćX7™Š§âkëüß›­"e˝ÍK?¸Ô˙ÖäüśÜçńgóSεšY[˙ż8{˘%Źq—dÍ^يޡķté•fUUŢçv—l›t‚:äĺ—ÁŔ eľŻÇÎ["Qęć«·W˙ h® endstream endobj 1338 0 obj << /Length 3775 /Filter /FlateDecode >> stream xÚĄZÝ“¤¶ßżbg+·2’ ¤üŕ¤r.§rů\WlWŠŘr ĚÁŕ˝ó_źnu «Ý;'OI´¤ţüu‹d÷¸KvßŢ$üüýýÍWoÓbg…ÍT¶»ŘI­Ež»ĚäBił»Żv?ě›ńöNŮ~ęšSÝ~˘·Şţ1ITWWôzŕî멦ƱďĆëP6Ý•?Onş˙ÓWo3µ^/“"3 văVú1QéíťNSh%<ߦÁ|!í§ĂŇҦűM "EaWt S+˛Ő$-´,üśK„ŠFŰ9‚ąÍ–9Ńm˘fłë1vˇ•¸ńś e ±çTr‘+ű|GÁÉ‚É7 !köOÍőYP'Âćjłâ†ZbçWp>÷Nßy +ÚÝĆV¬ŞîúsÓ•×~€/d±ď"RĘ”°6÷Ô"Ëg"IS?ˇě޸â3ĎyŚI…-ćC dÝ×Ńľ.CyĽ6Çů¤R>!ô˙|«ĚľšňĐÖ±E“Dtfó"ń Ş‹eU-2™Ó$Ż>2P±¬0»»Ő¬Ż#b·`éî.‰7\gHté>ůn™Ó¸_Xuż Óą(ôF(ÁvRˇ” č3×­ஂŐ~Ń€TH#7vş±Á•ť6Q.›ýM„@Úńđ"ZgĺÚ0Ĺ0ăŃAˇVëőśëE›FçgeľoŔ«ÖeĹVUdBęV…p§MNjŞ báIš‹Ô¦‹źYÔ˛ŐÂŮcS;oŽÄÁTm^$ßw5Ă“_Ń;,žUV˙™ŕM+ŹÇ~¨šî‚JfĐę2ťěď=ɱyěh"­FGr'7ŕvµî-Ý’)l¬ÎÔrcĎ Ů©Óő^ÓÍ^ὫÝö°Ősס¦gU#Ő¦Ł pš‘úž×ŚţĂîîҏ͵Áu~ľ•fĎ Lâţ“Č· |LßRc÷˙:Őxö$ŮŹőBd([ętg‚'0d¬ÉYŐ8ă#ś„F€ć•»¨cí¬FęrbÁoËŞŞ+đnZjwěkxRsľôăëzç;ű& t«Ü °ł¦â® %Kíjş´Í±ĽÖŁŔE’ý?ęcŤ ÇA>Ú‡©ÇÇÇ}řěţÖ\ţÜÄB?@"ź­˝lGŢâńTßSóÁhŚÓńô|‡Ţ‘żźTĄhsÂjpĕРřůd˙—ú±yKwžĺŤdżďŢw=ľ?ůł9óÄĆ»ňcsn~)Qč‘c Ł pü´Ř„“U®XhąÜ_źpO˝—¶<˘Xq é¨Źât”‡yěŃQiűâý™f<-ôçŻ&·w4Řűsݬ2pńůŚź>FÎĂţgżXÎÇéěü‚÷`Æ>ř|ăŇĐž:§ĚŹ· Ăkłú-č“ň›6čÁęĐJ:'Ôőr˘đ âĐ~ú3÷–çK[S›,¤ťęŘi•©Ě6§ *DÄlF_GhXˇĽ™Důe´~dd¬ž‰ŁhČćó>>đÂsdKOĽZxž ›ę/ć9F"´ě[&%'ŁôTřü¶?÷Ă'ž5]G±˛ýýmA:Śk'8´D˘®őęÖú&ćXß‚ôŻCSŁąoÂ<@Zëđ®Ęöß\.uW5‘Ý#”řnćečÁ;†Á›cL™śŻUčîžRúĐ<ŇŕĄĘ3čMy…±ü ŞP˘PłßEăn¶`^&v=•WZ—`ý~ď|Í ˛Ą0şÖ, Ó.†áłěř9Căş<Ý·ĺp Pă‘ç=Ź_ŘŰMçpÓ¸`­s„Č„GÜ(,%÷Ônűţ=éĽĂ…;¦ŘÔűǡĽśŔő¶m46B¸mÎN/ňdeˇÎyDó…Ň•żć–ŤÉ5sól˙TÓ c].&@»YÎ&ý’Ĺ?ĆŹŕćl7ťÎ›N⛆€ŕÂK¸ëg©‚dŘţbŞ©|t·šsDwZçBç&Śĺď"ô¤‚¬Ân óĆ©%©übnÖÄ2Ä8ëÝŻ–Ż»_°$—źcĎg3).e,“ }l"7ĎžĄžÓ:ŤGÂr‚\ŻA8r%P'tC=^ú®y¨Ź:{ Kž :0Ŕl‚NXSXfÉ_Â{ťżĽ‹&&ib‹qŢF§R<ZëZOÁNŞű#ś ŞQB{‡ŔÖ@˝ŕŮ:ę†'ŘOľôW‰ÍalěŰÉ#äD’á4Jp†‹5…7Q\{N \7¦ă$IôęřzźŔ‹CÁđ  ¦^0~HbEG0śIz‘ÉŇ0! Úż: #’3Pę5Fhc_'Xµ˛ł<‘IMřŻ"˘X×Ć«đŕT,Ű€{ŠtŮÂř†4şy :.4âÇx—ö9.Ś7Ňľ~\)ňĹŠ(ŻŃśÝAă—zčßĚ6Üńą®<Ť“ĐDÍÎ'ôCšÓ±ŐęíŔmTf¦TF© ™ůWřjxjF*/YÖ^¬ŘĐr¶JąÖBěwU׹"Ťˇ>C&KqŁNLá¬vdżFS'ťż€ç ßáÖşÍf4z ĚšŰ ,ůî!¦‡ć±é|Ěü~óL/§r¤FIŹC?u•O ú˵9OgĆ 0 ěĘÔžî ÷·`1gË“A¤~–ňRŞQ "8ÇŞĘfmÉ+1L Ď_‹©€ţ’™ÄĎńDÁ¬ó·źycŽ%”Á)MA.҇\ÇÂwS¬ř/”<ÄÔf7b^Ű嶤Şuú,ëĹ„Zşo ĽΙŹ.<–ŚAŤč޶ćDşé| ‚rz ŹXÖ˝¸ąüÄ_óóŘź/I|q‚YÁ¨m:‡5đČRţĄhö.oAşK–÷BŔ-Ö•Ś/Mp%˛MT%’–…Ź ¶|ˇvNŰ šIb7łQřř˛R|%6Ő˝9ü‹4—ogÍÁ7”Ř{9Řý¶*ÉƬf3S(·ÔŤÚu’Á¦«ö”[auĂű”9óČ©8żÔ+TŕA4–­`MđĂ%ç˘8#VWR9 ›ĺęĺş’zQgçoŠp«$%\…Ţś~Ů?˘ż©­¨ą*îa,Ń ČJKžŘtôűsM-i´G›Úe?ťmŞ| NŤjs%±˝*f ?:Ć{ő°~ya©+“Š$ŮÜŐś4čĹIë<|MŰÇéŠŔ %Đ5{n| 3µWžËü#Mî|'Čşá”~slćůć_©ľč¶Ń˝ěŘ!§%µCş űݧˇźOô˛¦‰sIÇ,•#PľŁ0źaĽVjń§+9˘Ć[dŚóȰČ⦠ďăxŘ䍉/ ¤ŐňűP. —–@¸NŇM6€[Áí"ŔÁä Ş°é:e8|b(TşšŔsąD*őç@ÜĚ,j =W‡˝WT¨hĆćĐ2ę˘%Ó%ŁŔÎHQ¦EŤ4§â]–‰To®-I=¬ ¬:ńQĘzťÄV·®ÝsÍťÍەعÄď÷Q›2Ŕü3jcµ9ÔÇ«TĎăÄČôů%×ćB.rĺ%uôĘ+M˛×â U°b÷›„< .'żŽ‰Ćĺě’wCRěżă{Šńä˝ăä;dŽŐď—2 ż‘áő„–ŚN<•ľ°¦-Çŕ9ÇKś°FŁ86N\čŃÖUÁ&¦@ .’j]ŮźđÇČ•EŤ2Żčž!\±é\IŕČ_c´ŞwŃŠŘÔúf¸ľşF1ĽY A(Îć»äRşVŻíź‡cćoŤČ2ý%毗¬v¨?LŤË/‘.íVE¸«§,¨žËÎ1˨4ZV —ôΨÉgĐG•7çŚČ?8\ęÁvp›ůňźÂPcçÂTč"L]` đ\ż[ň9a'ęŔşĐ ]~~Ů j(e¨¨»ŇúëŻp7—a ݶľ ±Ęłfî)ćžÂ|˘Ţ'n_ęcó0§‡T9ÖK–\sÉźxĘËĄwÔ1Ň1mEŔďń¨·UڇšúÖ0ÓçĺěDÚŽ<`N7˘´JŽĽî“)‹×“r˛ë|]FÄ6÷MKŽ˝‡ÓĘŮý…54ya×e3X-Pr_‹GńĆß?QA„/ĆáąŇ|ĺ«§üůÓ˛\ĂS‰!GŮ>LmlÇŢRN|ăʱsrΰç "ú–­yąhx¶C¶§UęÎ6ă‚ă‹Z€jÚjǶzŢ&z´Ĺ×eeđ|p®rpu±?÷#žđ>˙NäzW˛©ÇąÁő‡ś;!+x@ďÉO¬Ű¦ď9 ŻÖL0"˛>ťČ ţpMI20g‡ą(ą‹glmówĺ>Ž“C}i¦<–€!@tómţĘ[ăhÔ[o6ÝŚm,Ľ˘+Öżo9‡čŕ˝ÜW˝űYZt6h@€qşÔTť¬|“űŘýYŁQĚÜ·ŞŇÂŽ”ľx.+†š} Óg5Ät©!®ŤËSą°euăđĺDhČ—1éĽ>¬b›_yĎ;•ů˙2*łŔěË(ű]ЂӦkŹnú¸hĐUÓ±fJO„“łÄ‰ ®\‰Čîߢ6őL%Tîb.äĐ´ÍŐŐtäúßĹŕÇ+-ňĄÖů+r{#˝ĺoC±€ŠĄě,ęćŹ÷7n0+JvrěT’¤V€> stream xÚ­YK“۸ľűWčHUFX AňËn<®Mĺ°•ťŰ:ŠÂڰ¦H…Ź'ż>ÝčDihŹ]µ'€x4ĐďŻÁtó´I7ŢĄÜţüđî§ű¬ÜT˘2Ęl7RkQrcňB(ťo›?’ç­L“úe»Ó©N\·ýĎĂ?şŻÔb›N…* ĐôëÝŘŇškŇĄ(Ň*¬é‰śÝĘ<ůrě8şî‰ĆjjöŽżĎőPźěd‡xßNGKť~žÎó$¶»Ě”ÉűĎHŃĆ5ýüt\ą10'˛şń©ţ„r°ăĺtزÁ!M¶ŮI)ŞśE6Â…·;•©äŕ¶*O>»Ńí]릕I=Žóé<ąľŁUÔJâ <ó8˛`Çë‘ÚÁ6¶›h q<Ś@ŤgAş+,—úEŕç7wţ—ŰŻ°­ĄĐĄËî"}"ĘĎ®m™o™ °+¶áú}ěd"YyÖIÓ\·í Ťź‡ţ07Ľ¨îxń0ôuÝ#µ$ Ú°oí‰GçÁó ]Đ<ŹőÔîyĂÜíűą;Ř Á8éž 9L7;UŠ\–tk%´Č·;™¦iň۰•ebĎľé6Ë×B`†)üĘjśŽn$yŤ¶AízéeÉs0;6Űó×Ř“‘€1 u7‚ÜNőtQât¬YčőŔ;Ľ€`}SóT}>·ÎXWŁę®!SMo”Ĺ2ěEQâĂÜuŢ!ý¨;ńp«™şAĹR˙{Ł;ť[rm >öę?»éH˝ý©Ř&šy/Ęş´2"ÇĽô=rdë…7ÁŢ_޶ů¬‰OůřLö¸řű˙Â%ÝäŔŤżŞÔ˘˘łŢ9ŰÁŮÎ '‹Ďűş…¸'×Ő튻Iđ•Uo»DÜB†eGrpá±GVź»p˘782 -#ˇQďĐSŰőĽ ®ŽEŁ!^ČseV‰T±1°\źm‹ş“’B‘Ś>7Ň(źŹ‰Ŕ# }Ló´ë»]żGęź]?Źí JZg!ľ˝lMî#¬'¬đÝň†4‹z7oD@`ěŰŮ»ĂÝšőî· Ü|Â`¬€ë&ouO”+Ô…†Ď:ꚦ´ČŢL_ą0•\DEŢŻ9„¸‡§~LS5Ś|·¨ÚTň¸´`hČ‚}6ëh(&©*!‹âšýhx;UE|„ŹŘu¸zBQPĘ€ńšT'•Á5+ű{ŻN˛˘@ćîIźö®#Â&ĎuĂ”pnu4wź:¶bĚšeAÖP3¨C(NÄĽP?HŻ4 ÎBÄd„Hîb5°äy5,ÖígiÉB÷#/vđT×`6Ä/{‰&ţ»>őÄh–™ßqe“0pîa7ě_ř¨ţ†6ë›—weŻ­ŮšĺÂP3‘©,ŘéÇTšc.ÜĹČÔáYJ%ÇąmAj“‡#ŹŐíXÚt<Ńç<˘î±‡y[ş)H–Źß§0d`/¤˝°·Łö÷ ń“pAÝ˝mÉjPq"80F_kę—…ĐŞ ´Ę¬JĹTBkůĂbj(ęyžˇ%u7?řf kÁí.€ Në…Á!n}úĆÎ~·?ÎO|ŕŢv#ČÄÇ!ňluHcxQü&$,ŤŃgÔ€¬(zDHÄéđ/CZ1Ě+yG…u#@×1­ß˝7!ŻŤŹüoă,Ľ®dčŻd~cW”­Ť(ËňG”Ý@š÷©{¨´ů˝ c4@ C.*“‘¶¸°€šfÉ/Lk´˛Ź›…§SĎ{CAć¦Ü·Ër!Uń lŁĺša'ö›ý7 ą=P5†í`O‹ŔTV@Nîęî'ެs(1Đ\Č>a×!J€NdbžĹôĂv8A1îď‘zżµČ_j„w<¸”+®$†ßе›-3q ±"ŹuĚZb–˝éR˙işŞ˙*ŇČWh@ńWU*_©y ¶)Ý9Ęú{ćkŚ–nyühŤµ X3o±V|k1Ö鿆7±ś”P@÷Í"ú‚‚ Ťˇt.`ŇÜ”ÎspШ…ĐšX®• 榖×ى§Č1 –Ç-nAsöŘOg&ůw(™aţ¦d6_+™sĄ)żĂWU,™ A Ń€ý<·ŞR°AŢ:±5Ó2RÜín´ëü[Ç›±Š—¶wS¬áľ§đYDY]f„j±« ôăXHB~+N~řÇeWŔ¨ä7›2 đL4FčŕLĺňš4Dę·UŐV—AŮ^ęźIńVusd]”Ą€ô|— ę Ţ*éĂr…o/n žĎ ĐřŤśaIˇłä׉§FŢKÚÇí>¤¶–ľígŔSvĹ÷•Ä}Xá|?ÍĂ‚«tŹçŽ+Dsµ|Ö€‘0*şđßVI™GąĘ×b­DY©kăFű¸·ő …_ťŘ‰Úˇ¦Ö€űŔŕŃn0äŮ/iztÂ5>»áćĹ{Ťěí4Ňë]Ę(‹äÉ3Öl(™Ś!ŹA¸ľAůţ ­đpâÇÂâ۱Dd…v{%bD¬p©đÓ6űU`Äó2ůŕ^±\wW·b:ŽíŘëŰĎ\H@@dI¶P q·ďř¦ XsGé{˝ :ó4ÚzđxÔŔ@ÝŹ6ý0ŘńÜ3jŔyoô— Ë[ă4—ţKŠ Tě§î+5Ě.[dě۵'3çĎÂVŔ˙łCĚ„”2±*~C2úˇ @TgY@tń†}zš\턟­/ŕŞű&d %‘ąąÉžXH¶€H=ÓPhj¨Ú0¦ěOű´¸±kča TĐڤŕżçqoélTU°Ő lýĆ ł” şŠĎ7ŘďR_@AňŞÂ$g}0U$7śňjő“×č;Z¨oŽýh»ëŕ ×™ýűTźĚŞđŞŽ[ĽĆëg]NNoyŻŢJQMőŚŻ>µQű„&UÂŻś®éź†ú|ŚÂ”>ü˝‹˙"‹UFŇ?ěěç¶fś@¸ ZO@ ô^.‰ul˝e¨ľa  Ś›č÷ęÍ쵡3ŮMü7ůbA%¤,!M”YÁ)8dgę’ÓŔäĘĄu^ÁMôuf+„r‘•şţąÂR&RŔíJ¤E~ý˛¤’‰ŞÄ\$@ŕW÷ą!•Wůf±čË*)|NY#u›EŻHý}QçęŞZŤű°´‚ yČ(5ŤH}Ex9“ĹU¦ßşŘÝ×.EzGx™Ă oYĐÁ„^Ŕěát¦g‘ľĽ‘.w˙˘ŃčQđđ®Ln2ľ ć]U ©Ů¤TZ^-z˙đî˙n͉ý endstream endobj 1359 0 obj << /Length 4149 /Filter /FlateDecode >> stream xÚí<]ŹăĆ‘ďó+ř¨A¬ľţfÁg;Nŕŕ‚ł±‹{‰ó@i83L(R%;óﯪ«I6©ÖH;;Ţ»ŘfłX]ÝőŮUŐóě)ăŮźîxx~óńîßţ¨]V°ÂJ›}|Ě„R,·.ł&gR™ěăCö×ŐöąlźŞ‡űµ4|Uöô|욦»—fők˙·Źľűî㝢<™Ô‚ ­3+Ës›mww?g°čź2żňgŞp&ű5C0~aÁÓh-`u-L¶–’ŮĽ"3’qY(ťiĂ”q2;TŮÝcv÷Łź7¬L%ŚaMÁţŤÇŰÝlŽ´ŚĂR~Ę´Ç‘büůÇ /ôă°ŤŞŇ¬p¦3coŘLjáÜ2ˇ˛µ“Âńú˛&Ň—Ěs¦`hµd…*H_DÖ–ˇÄ<ěŰ&™tâF|gĽ/±FŔűúĚ(Iś‘4#m®şmĄ4ęmQŠĎR©pĚČ«: X3ťň„NżIČâ*Lţ/á˝Ă˙q¦ÓARIĄ}ťéô,Ü8Éś,چĹ.q/wĚZá2m™,lžŽ6~žű¤`Ł ¦”¸lâϱyĆ+ĄlSXÁ¬sźc›šĂJ^±MÍ5Äa÷˙$Ţ|Á¸toy^8Ć^‹8۵ţ,Ą*tâšR¬śkg”TZ©AasťŽjýy~ŢôWH#¬Őź@ ÓFfŠ3a\H¬˘8Č·…‰iÍ[­ćÇčź`g¦\Ź3¦ qSřKť…„%Ń4A2-s–ŽHg2ĚŮ)0GZÓĎ`î<żÄ$Âąy3wÉą6gÜ:ć$@bîľGîĽŔďrĺĽ2%r°`EGw&°^R'i¸÷4™…Tc˙0NdäD3wɤF{{ĐyÁÔ>ÚéKB‚©< (^š?“f 4Ń™YÔ¸Ĺ3Ţçţ÷…ýhÎtÚŹ"®/űQšë›ýčŞu˝ßFA…š_á; Ĺ|źűÎé=řž,ÝW«×ő6Čá„W,% ]1•‰Ô{ŰĘŠÓB‘=—ÉŔ¶«‚DĚľ´¨Žř‰ ›’“Ąp¶5˝'ęuOÄ˝x‚]Ř@[±űµVzőqŘBąß7ő¶<Ö]v69 ‹¸Ę€íî‡t»ýˇę{šk8lŐđľŞčeS…TČ µ;5á·݆„*% m5üá±;ĐŕP킬Q± ;<Ô[zźě‘Ľ %źä…­ń=´‰ţ+ JÎr‹=O±ŁŘë6ě÷ĂËwňBo±m˝DĎŐ†)7ľ¬µ!‘úĐ퀌ÍiÓT»ţ+´Á|ŐvÇr㍾ź»> ˇŠđůÍËÓCˇä%ef?—č ż ĚRIŹm×4a3rۮ폇˛K $zp€ó¬‹Ď­`s!Ç“ł–vťĹ”ăéAć†'dNçmů>AČ03ů‚7·sŻ‚SÂŚD~Gł’ŹEÂsrVŘe¶y±Šř}‚‚fb2°&ö@ąń`]÷X˙?Ҥ‚¤ebÚŤÉC‹@6aGuJ†\EĆ®’r-r7ŕT"‡Qźŕ¬uˇŢ&o ţpoQev±d® …żŔřÖôę¶ě+okvBŮ”˝ŹÁ°VŮš6/ô 3 ȑڧ¦Zb'6ľĆĆv÷b-źĺL^Ľ— îú˙X\6 ŕ qYr¦ąă2ĘA†Ůt>uŘń™€3ç€QüçE˙—ą^ŘÂl›Ş9žO±Lę¬LŐ˛vˇCóN§·ű¤Óś5+ţşEáĽlú®9…7 (L˛KĚ}cş]$«ý ¸>†%Ą(EV*Ô~DŹi|;†ŹX`ˇí *& Ź%úŶJhŻš#űľdľů5óźmľ22_ ŢëÍ7Ś’Ť<¨ýśTŻ™äË:RÜzÂ`—ú‹šÝµ¤Q/¬Nq˝ú¶ e$U‡ľš—˛ł'Żbag»DŚĂ‘X´—g{#™’1(rŇńAŠźě›Î[˘xí!]IĎÍ-’6ďťž“˙@®Ö±ČŞ_řŮěňŽ×&™`ąSŻŽ9S“\)˙˘u¤Gaµ«öˇ˙”`0 9"ÇNęTČ»˛ű|ŹAŢoeKĐŘ€&ořÜ7§'˙C||ćĂg,ŰŚ×ó°aoH\«U ńa<Öa†d[î“A–ÓgĘ˙ÍśCźÉ{‘Ŕ~_•‡@űt ^ ŚÇ·ÝéĐWsrÓn°ă”˛§z·ohKÔ!!…ŢЦůÁ·á†lŮĎý»N÷­BçéÜř¬˝âOJŞEp@m?¨•¨ď,jznQRť‡oʇnG“(ărŃ}¨Ę !4shYí>¦G+Ź4ëŤ śÚG ‰ÝL2Sů2ORĄŻQ„‚7*ř˘Ż§MSŹő6Đóę’%`ę‡úłŹSńçgúŠpdř“”jŢäŰ€«±â˘ĆÔ_Şş÷ęC€ä\˙žjÍśjü÷=v8zş®)©®G‰*SGT•ÁóÔű  ¨ß‰Pţ\ö ;o ăűć…že°vŮN€(‡‡Şí+brN©‹Őß«Ăęŕ‹%şVÎÖ®ęGš7(ۆ”ÔŇŮcŐ˘¶7oŁë¦Ĺi·C‹pQgÖľvĹ Ĺ›H´7”šĘúĘŐ CPZŹy1©]ŁĐ†‡ď‹Ć$|ě¸':¬4~eˇřÚśŞ€ 6ťČ\ŤdBĘ×XqL ' y䆊›‰9Â7ˇ_IýF86»`‘h§`ľĽ†gRźłć[;¦ßË|™Ę‡éšö,‰+ úZGX2·ú@·Cz ÇŃ BxŹś"•wĆÝńâŕuńb`<ńw©ś RM ™–dUŇc42‡’ÚÚ‰…˙@łL›E~&“ůsqĆÚ2—wŻćňřäé×&ęÂW9wĹܲB“ź‘!ô…ž%=¦Íâg) ‹Ř Ě^60 ź5XŔňęHÖ“Z|ľdó›%űŽ,]6á©ţŘ%Żň @T·[‹üÍxŠâ€ťâ@®0=˘p%!śůËDâsjm‡Z˘ŰÔ‰Eřq€Ré1]§j3ż*ÄŻÝüÔ°«SűŹ–j“Ö_?YČvđś8é{žŃbm§űŽŠ;žű…ý§żP€˙gž‡ `L·o)ůňÍOíč‰ÓŞĂěË@4d»ő¶{:”űgŘ@C|ďúŢKíű/°oşĺ¤öCčKŘĐĂ H ¨pu|B"Ž$9l°}h|¦îÁŹŤóS„Gu~.7Ń:0e#8ěźţéžamGďt7‹eqb‡ę‘˛Ç<śÖ‡:TCŇĆÂö9§\}Ý@)pz 3öQ®?G§ďĎ^}đeSUäk‹¤ęž5ř”¬BůҰŻWˇ_Q˝áďSđţ2>*ýUuľżTa@y(ŽĆ *q[]‡ćďÓP×@˝¶˛ŰÁŚ©0˘=Kş9¦Ýá/§ĆJ|ÁA1?ř_>ôGŞŽş-Ę VżV}»›§ă˝ÍŹ24–I9Šç‡z˙źő&AÂőTďĎš*`•}XK|­×e"tć‚ c>ĺGm࣯ĆË ß°9TUÔßűŽnĂ”ö8ŚÝܶ{óëaâĐńÍ%—Hý/ÎÁ"ú}çHď‹ú w|„K9ü‚މ (hnt €›˛'˙’>FŽdÔĚ‚ÂÔpÍĺ)VqT·aĂ»’\büCŔᯙrřŃřŁÇ`’3¬ď>Ţý…=-# endstream endobj 1370 0 obj << /Length 3277 /Filter /FlateDecode >> stream xÚÍŰŽě4ň}ľ˘÷--qBě܉]  V{łâxHwÜ39ŰIš8aľ~ë–[·ç̱g÷a&Nąb»ĘuŻŽv»h÷Ő]$ĎĎîď>ţ21»",2ťíîO;Çaž™]–桎ÓÝ}µű.ĘĂŮ–ăţŤÎUđTŹ<ŞŰʶoę¶,\ýІű7q®/ĘŁŕu'~ŹÖ ^ŰUÖń°)ź§ĺ†ľ«Ć#ˇDÝ«4řyčKžýiŻÓ ěk<Š›>Ř˙p˙g äŤRa‘N‡}„bÇ®d‘ Đ÷Ö]ş¶ŞŰ ?kA}°=Ş÷ű©vu×: (W‘P„łŔŤŹ:yλ˝•Ń6;öőŹ;ˇxÎëşó8Ŕ.€MôËG—˛—íEs–[ #˝úĘ•CíľŹ"M» <źoż®jÜY0şö áRâMăč%žůŘ Ô¦ŕŻp€Ľ†%:ľIXňăDZtk·™ů ɰý3żY8[×ÔÇňĚďO{`)“$Nđě-rضÝćć O?‚ע{ă´ńŕ#včĆsHYň‰Ř)|jŕĆš´€ˇĄc(o€ďŁ4ęÚó3<OˇDő-oóYKľjü†čŔĄíŕdٶšĐĎĄÜ Ż…GţřËBŻ45ÖiĆ@ťżvgĆŮjsf…špB"üMś¨Pk%ôg<÷uë¸äŹ|%€®_ŮČ„),%83µtÇfş—EÎF×ó ßeÎR`ď>1‚ˇuËĐŞvoÇö8°Ž’ä0BŰő ËLś`,§:Ěsł˝đűG1EpŇń<¬-UÍŐ+;ôőq¶P‹• „ľ{”†%>I#čn¶{-ŹĘłëxśŘ'Ń$ö­řűˇ›>Ź=bşHŞĺVŞPé˛4řW ”#Úäóó ±J6zżÚÚ‰éŃl aŢË]ś¸‹ČČ]Y®ôša4€fĽn Ć»ĺ'[¬Ëą“­…,Lńŕę_,x*›¦Ň[˘3°4_ËÚ®kd…cé¬CŇŤfnňj¸·Pţ'|Ĺ€{,ŃzĚR†—#—D¶0.e]Éý¶öĽ+­ĺîÝxpöÇÎđîb{Vr´Ryľ˛RěŰ ča›(B\pcöXMöQp"őIAžÇÁŐŮ(Śn›áě'řv$ 0>t+oD#Ě%ťIOŻ4"ŐW‘^kP#čŕđÁÓÖf7,Źá6Ďőż€7© ËŹFA÷˙şZĺbéćbižĽ)9Iś&Ir<oŃËž—sٶ%¸k§ĺ8ByÁ’wĂódlŔđYňě*9żlťáMßµV'~BÄ4«aOÚŔKç\MŢßVFáfuŻa?“F»˘·y’k›=ŢĘp!ˇÄńÉă”*B“Ş+˙p÷ĹýÝŹwŤvj§3ŔŹĚ.Ťt©|wlîľű!ÚU0 ‡ ăÂěžµŮé°0ŚÎ»oîţÉęf;PŠĐ9,ĄBŁ oz©/~§¤Ě|0–h â‚|!Őˇ÷z鑏Ârđ);xĐÍŠ3Q‰ă,ŰrôóBËv î-—’8ŚsőŞ5ŮěhŮWÄĘUGAś*8,AĐÖ(!„¬«Ú*nE 0Č:ŕ@ 1 8‰č0f#Bóu”x'a·ŕo`€ô…)ćXQ|ęÜŘŘé„dÓńłiqÖWŕ"ŞťÉoň$GÖN{AŁßsžË3E/¬l˝tŞ%äy‹Á‡gÂŢľ@Xö_!L.“34” [NîOY‰ÄV8ą“ÎƆ›ś–äŠaŕęćÂr›R”ĎŢVăĺ\)ôp¬€čFď¶ŻŃĚҡn8ÉWßµGŮ< ,¬˘t}n9f it…ł!őďy<ŐÎJä^r<ďËqšĂ«˛GśsótĘŠi˘›W¸eN˘0ÉŢÉÉVÔS‚ÁŞ…[ő•ílÇŻ¶•óʎ_E <[‰8Řąô„Ψ†lΚ¨é‚6a:•~0ÎÁmEQ|Žý°źĄXuż/ŔÓsăň–,L:L™U3 6ŘŚ¤$ÇDKy–'¤łŁ’篺‹ji’âlkmĺŢńóŇsDőXÄ©ÝjAŔłn­ç=»Ş ’Śţ¦žÇů?Ż “Ąđôr–“¬˛JZĚ—@n29šsA{¶ w|ńt5˝b–ěÓx^ ˛‡X%.SĆĘ f–áćA^•ş|EĄjNmáeŕ’2żl»»?ĂŠ”ťĂä Trâs=Č:«Šu¬Ąš‚pÉ6ßR«ČźW-«ŠJĽJ.]©—rÜŤđ€Ł™Š7X”ĂöÍ‘ZÜjęśÝÔędMź’ĄÂîWű¦eB÷iP^…ŕT#¬xŔ"«ÁţÖ¤Rf3XśłDyA2Ë0˛‡m'Çăy 3;±TD G¶Ĺľ„MÓçp…2‡ĹŠŁtYs8Ő·{Ă]9s˙.Ť,DŢ_¶4ňóěą4ő/óoŇ™%ř«˛@© Ü# «éwĂs6-–źYĚV_¶*äx imSÓFU펣ó7Â*ţ ×%H®Ëúěćn=§2µ›ĐĹch’«Ĺ˛ü]ü͑ͷ{4ĄC –ŐşW’OŃ˙`}©i¸Đś˘~a#“_H·t:Ňať^ů9Ě~Žż]é¦NWfŃÉçň1Ń\˘e«SwäFRć–â°ďęůÇ:1:é`›„ĺOżňHä7@q`›Ë řť Âôă˝ţńNL‘§ž~n…x˛V,k%äy=ţéz˘… Ä`2đů9Ŕ6ÁMy˘ĺčĆvâMúL˝ óböÜŤO˛)ŻIrůÍÉGü"•dÄ(ré(¦ŕo¦®ÎÁž;Š© Ü]µĄ€Ňúě™!ÍFú¦Ĺ3 ęřs{żť[~rp™\gĚ5÷Ę#±ZbnúňŘś˝5"l%ę:Ƭƞc¶D",?+äČ3‘vřD00h$ŢĎ?fÜ©, c“`C$T“B˛±Áúâţî?9@©‘ endstream endobj 1252 0 obj << /Type /ObjStm /N 100 /First 971 /Length 2229 /Filter /FlateDecode >> stream xÚĹZßo9~Ď_ˇÇ»N–DJ”€bíö˛wŔî˘hŠűôÁMf[c]Oŕ8‡öżżŹ;µ“I:¶'iRÎ EQäGŠ”ěCôĆ8Žř?˛ń’•H&HR‚ Ż„˛(Or&â-މE™©ĂS09ń  u’˝€Óu•***Őt^Áâ*C@+Ářč+m’÷*ďtňUA0…ŕ˝ÔˇŞg.:…Ş^T” ŽđŤ‚Ë* ňät4é˙tXU•ĘřČ!C|ĆŔR5VŠÉôMň˘\*éȬfru$ŘDµ ąČŃŐHˬVIJń^×.řZH0CCX”~-°±š‡0ŚHĺ‘ó T¦ VqäT'Nß(@>’Ş ©`nPdŘł×)ŘpUćaöUp‚Ő˛„G–îťÎ*EçŽÎ©/\1Ń«źÉĂá*”7‘ąŽĹ×a(ňÁDˇŞ đŐ˛Xw, Ě‹z0IÎWa *BM¬Ó¤ŔU,™DIĹBN¬đ™ÉA~(&%(ŤŹbRî( (¬âĐsRĹE#A'%*Fł¬CŘ«j”ˇşTL(©ĺ`Df"SöŮŞGĄ@ëh?ÜúŇcýx„őÓ>ÖO}.V+ŻaÜé ŐĹ@n–l ę®ÜČuYü@n”C6 =Ybşłń<¸koĄ©A‘}(Ęá ČnPě2 }ÜśĹ×™[­Q‡qSfË4;@ěďøe+ÁäFggi0sH¶řüdŕÜŞ«˛kßż–RÁ0­ ˙SmVQlÜß_!ŤÓ&őžfíQłđ’Da'ďĽČße^Ü{›zÝŮÇc´™‡r3â0ç†˙lDP@<ŔGĎ•7ď"ŕam#ŕ.8´ăuˇ`žëGęË ŰŔ<Të%î€JöŐv!_şuÔŁ‘5Á˘łR=éź7odCÜľ)·!ü†¸ýtdÓŕÔí_›†”lšŐ@ˇžYU5…ŠÄŢ®áb¶jěi3˝Y-gÍ2ç«érú©ÁĂĹvqś^^ĽÍ®řŘ—¬,–l‘OŐ«řńô­ž„Ĺ„ů=씀€(lQd>¬ÇËöfެŢ4%ʧ A࣠“ÇV1@—6Ë˶ťO›Mp.6źŻxnÜŹ§Ç ÁAŘH™Ąpڬ±U˛K+÷~şüßlŃţńWGŹ ÍíČ6Ńwôhś&dśŁv}BđVÎrTí¤@ŇÓŐčQ¦”Gě󯶽Ľ†Űčúc»\Ťh śńpTń6ęŮłD«ţrÁF~Ä>Żš_Úf9…Füöă˛iŽŃh÷Ăg˛)kí\l Ze zěŠ>Űą˙ăćýúĂžVĆ´Źł0 …hő(6D±.ÖCs$¦Gíłš7ż«ÇâőěÓŐ|öű—ŁŚłŐşŤV›(ű¦Vż5óëvÂÜ]}Ľ?ʰ+ˇ˝±zĽOl¦ôěúD·0ßę^Čę‰őáúhőĄq:¸hĽĂüŤ®¨ź›É–TrSÁ–ů{źł=\-ŽR˛ŃýFWŻn-Ůt˙±Ś"!«sÉ%ħֲČęXrň(_üUTő:íŃ”ßa^÷«%Z˝Ţ{Ş“ŻÝp;5˙#ćn§°…żĂsżqÔkşCëŇ^Ż×DB_ ŹÔN(X°?ĂZ•¸/ĎWń6şč‘:“łz‡ÍŚ}P7@©Â,»0nÉ $muŃQŃËŤb´,)P¦„O7óŐě~LÉ>1Ő×ŮŁ>ľCLí6é;9x'ÚŽż(%îi”ůđFYďÄ»Řaóę‹PÜ׎(˘Č‡‹E'k8Áˇäżűâ1‹FJh›;(ô*)NͶŢ;t*öxźÚűŞ Ź?çÜ}\ra ·–ćă@n­Z%”ďps@Ą2Îů%őÜŞÓĐ[őľŠ›Š›ý(nöُ9jŠiÜ#"´cččŁÓ śŘ;:ݨô¤úTżüňᲠλůěë™Áă5‹­*|*ŮŞ‘Řr®kÉç!ÍbOťUśC‚şŹ»« ']Ž–ť Ѧڅ˝ţ,ŁtĐ­é0“–„ěô°Ă~mf×÷~ž@]ŇÇĽNtTşh 7‘š° äFÝfSzşD·›§ÎgŐwŹé·SĺöÁüÁYOÜý¬—ňŔ¬·ů™ÁVÖK›ĂóîWŁŐ ě-p`a«ż0Ą˘Ç(¨#¶âřuĂí^ýGXHv endstream endobj 1377 0 obj << /Length 2853 /Filter /FlateDecode >> stream xڝ˒ă¸íľ_᣺˛ÖŠ”DIÇd“ŮLU©¤«rČć Ëě6kdÉŃc{˝_Ľ¨—ĺ$“Ă´Hx˘Ăű!:üđM$ß߼~óݧ$?aa´9ĽľT‡™É&ÍB§‡×óáAűörŚS”/˙|ýĂwź µÜ`B­ F?FĘ0ŇŠj´ ŹÓX¦f_Tü|ëlß»¶éĂ—ŁQIđąÁUÜĘnpŐX—ÝKß0Ë'Ś ËXkž®NźđOYŹĺ`{FZ/Óo{78FÂS3^O¶C Gť„‰‰GĄÂ"őš€3t‘}{µxR ] Ęăąë÷|F©pČ7fü˝Đžă!ßN>/Í÷źNćFŕÚZ ]‘ńGSÜcž­Î ľŻ·ŚĐˇc  ł×yŕkĆř›,x˝c“EóîÎâaîl; ¬ Ω¬ľ;čî8]ď„…‹`‚nşĎŢ­’w&‰Ź[ÉBĘo™Ĺ҇‰UDűpń’ ×ěßî+2ń:–Đ«˙á0ڧ… >ĽŕäPů’G‡HYľRGö ŽĚß9 &u0âŰfy2‰¬đ&!Ëţ˘rą( ]s,"üÍ%3NŐ^oµ,¬p/*ͧWńkäýěÄ‚ßIś9x:~ÝqyROy€Ä ł­'¤ůĽ4{l¬Ú¶WçW١͌ţá†ăŢu4pĐ&‚“00Ŕ`Ä~S¬ˇEĐĘ8°ygÁIV·1ź˘ŤńlÂ`­,ANS˝Ą @ś¨dL’ľ_0NZ{Câ{y€Ń"ڰ“\8EeżŮĆžUáÄ)ˇ^¦„IfIěó˝SŮýäšöËN^¨0źCĆČÍă¨r¦™ÂT óß_ZWŮ5÷ߣ“•Ť°řúR@rŇ]×Qüă⪋Dç–ż»Áë±ĂŞ+!¦˙j+~Ř•o‰UĚé(A,e;0ä´Öč<§hp=Ď@ĹAôh;Y!T“îąX”…Ćď9q·?ąÓŽC5—GSĺ5˛oé’OşŘ±s=ÔY =•ěŘ řŞ™4*O}[C4±b´ŢýâI’ĘITdé&soí^ lęüż‘SťY9 Ż\vĎ•ŚpAŹ%#8 *5Žŕ†J=ăňŰ pÄV9Z*‹˘ě‡Y ,f_SçŹ|,ж%™W4›ąĘŚ71őóá^*ŃČ„*Ţä`sF:™E82xÎJťx"#Ľ\Ą˙‡ŚôČaý"%żß‘¸ŹÚŢ>I›©˘] Ó‡bCJ‡J­˙ĽűćDˇ)&p}˝ĂąJGyĚ  Ŕ¤Ä*Q“}ČŚ3˘d©]S±‰ĐɛՓú–*\f·@;ě°yIÄ1ŹŕŇ'ÇÎ!Q|Ü9÷8‚#űÚTXĎŽś=‘Ţî$ ®p’Ômü”K†Rb¨‚éďiŽarB);¸ô®mČŹÇ«ßéĚř47?Ů‹#P…Ř,ގ §ěß‚"C,öžŃ"ŔňC«’¤^=”¤ +J’ ĹÄéó^,–žk×÷KÉĺ» )2ľ«Ř¸ŃąA ŞĚ9ú"7Ţ""$Ńđ}NŻ f÷\âJĎYűMHit8˘Nv X×r·_´×óKÂdŐň‹wś- ‹l —Ę0ë`˛ÄX«©Í… Ü>QËt  W[6”ă’\˝öÝ'­‚g‘Zĺć`/`ŹlŠŽ˛  cž <4OB“_9©‹@Ň´|Ŕ Ş`WIËn´śnÚŹŻŇŤ^˝Ü0ő`Nţ1ČŚ…[€])§ˇQŰ Lú¦Şď•}f‡QúDFű€n´ŻUÔ–)`tşďęŤy=Ď\ ćĺ‹ŇŕĆiđgÎÝtę Ç­¸ä{@ČąGGˇ\MK®F$¶"PŽrDę"Đe4Ň©ŘBĘ%RŰ  ÔÂô*P“Łď•6Ńş¦ůíXÖR’ŕS`–-ĹŇj‹0›MűW;D‹Pë á‡nü.ĺŃČŮÄFÍGS„‘Ň«b‡Ët…9;~­)ĺsviMáuA¸\#>jXů<_­K <Ńbi*,qŇöÖ3 ´äŤ3é—zŇ‘ăĄ+\Y»ŰÍ+oř¨R ^:fře/Z †“M]ă›?¸ÄĺŚo’! ĺUF”)·Iá[۲—ˇôe;ČLzf…ł"JŇÝÝ·R€´˘sďŘćŮZżq!´! 0˙Ć~_¨y˙ŞÁĄň\ěĂ"]%&×qĽźmé$«Éľ2ÝBfčÉ*¤džůÂ{şKŕ3:̢|Onť‰hîČĎV€±cQ[uö ą©4­°Aßđw"µľoßěÇÁ˛É†;Z&Zňâ4ç[íŘ +†ŹťĘ•Ű™qńoĹJíć@˛ÓQŁ=”8ě÷¤IüZHąŇś˛ćŤ¤TúŹq4=”Ĺ|«ně);^ż–çÝbő6žj. 3‰qcM…!–ń}Ë ľÁÄ3Ił9črA‡ňěE×ár5vW0ŮĘ‚ÓUôrL»źBŠ)ůß5ýÂÇÖ °©*Ň‹¨‰=Ć-ýňÔVÔ+˘ŘLĺź”ô.őşw©×%ż7z~ö~š­=ÍŕŹx=Ұ#–UM<#yĆŃĄěWxČ%?g Áwë×Č–Ô vˇăpůsWÄiŞńnŮzî»}¤RúĘëFeMZĎ$?Fď/űü~‡™'o`ۂթŰΛ,Cçpťë¦z\äÁď9u\Y9÷tŽc÷(}[]÷ŻQ¦”—ĆĂAđŹ/'.–ÍRśJBU »/HsZ¸4ýĘŔáŹvĎN…Ô›v`ř”·˝˛ţÉ [OÜąČř×Áu ”¶+ŮÔcČ|@ËV Yq˘Â&;č¦tňm7{›s‰ż˘ě….ďË_Φ_Öś4| ¬Şń:ÖŢ÷}‚rÓĹŕéô#ů9ĄTkúeČÉČÍ ,P’áhĄVXż{ýćßťĐ( endstream endobj 1389 0 obj << /Length 3044 /Filter /FlateDecode >> stream xÚ•Z[ŹŰş~?żbm VxѵOMŠ$M{P´ ¤@ÓYÖÚldÉŃ%ź_ßąQ–´ÚłŘ—%5$‡Ăá\>ŽWÝďÔݧ_”´ďďyű1Lď˛ ‹M|w˙p§Ă4H´ą‹Ł$06ş»?Üýgóůa»łĆnúSÉťKŢćç˛/ŰŽżĎů•;{™P—[mŽŰh“÷nk˘Íü.ßŔh¨‘O˝ŕŘ?aᎋMdjëŠoÜşňŔ=7áóßűżÝítda­˛HÄ?ç4-R›>ßWe>đ‡ë¸Í/—ĘCśŃHK‚A§hęžół¶»X«Íý‰V†™ “¦˘N87žÇĐvÂo¨Ű˛ĘűÉ~(·šKĚ»'Zv€Îtř|h›3÷Ć©rJ$ń)QÜÄnţŃô4Ď´Ýi¸ţr=Ď&aˇ­!äÜ´ĺ÷ÁµĺଅţĐ´~KXł"őTF­Y•Đ’M@űŐ ç&D;0ńfż5 ž‡ť´‡¦ě¸—WU¶óČźĽ?tşć,,‹ć@=ŇťA ÜŰŹ™™Řµ‰ o™Du]Ĺ“ćĆ1¬’9 ż0ł›Ďkě4xIű™żąËŻnżÂĐęŔ¦#C9őh«ÖDŔ%™+Ql­Ĺ[°ÉL§6ćË2_JŤŇ‰Ra^ň+ŘEa]öe‘łÎl,V„T28 Ě6NŘ”‰ˇ¬ s›A,¦ë]Ě kU]#˝ËĄĚ1\ŕŞńNfćN&#Ţ„q‡5źţčj0Źë6ŽP­&ÎČ~LŚÖćăNqfqiZr6Ú_ąý”sî~U‘2JeĐjaôxj&śšö6žES3cY.Z‚ĐÄßNÎqD˝Ń„¶Ů=™Ž°úějPąIA-çKEţ1“öIŐş1kť±ÎFóűí×5cN0çŕ9ßçÇ:GĂBĆeĎm^ÜńHń’suľí¸Ý—uůU)S¸Ľb z9ń9¸S =NN2rX>śČµÓ6 T–Î5—ąv†0ĐŁ—µ¤Ü×ÂMÓŔzФz` ĄŁÂ“¸™Íűśł\*/%oí=*ł7Ž®v=üéŤXm4ţăčţ7ós?ąs0ţ›Łăň 0~ťúČ–đ.°ńmpG‘wüÖć•űÝł€c;aýĎň0´íSaŃ«Ó N™Ë=9jÁą| ᆠ#3poǦuýéĚăś™q`ÝpŤ ¬5/Dá4˛Čϡ¨Ź¬J|ď*×_y‡âTßŘy2NcH=Î {90ڵxŕŃ%„yŢĺ;€¬‰ţň—¦ů†_!; PŮY€ łLŁĂŔ§M=$ŕ7}ŔĽ™aâ± ŤÉV’– Ë‚í«Ô«aź·?\ ň<ŐWQ|Ël3â ŰŔ]&Ńü°|©6šÉ ź$ł 7|Ó®­®LoN-ú…±“LC«¤=岜ł4’tB€í©Ě¨4mľl1 ńĐA[ÂUűĎVö¤čb1ÜÂV?đO㦧LŰ‘·(ły'«»Ćď•w YnZ_ _äk1Ţ|čcž@P‚gšPË3Ú$Ń^â' ' I`‚.é(‰ö eŞ$@%Q†KäF9T°"ůţ-ĐÄ+ÄnXáä/•¸›ŁzĆuΞôĚóî3ľ&•ńnSÚűzöĆ@9V\H˘Âż8}%tí€ĎťDNH`1›Eä§m©h2k_cŚáy‡i.‘8Ô|'A÷ Ţ>¨ÂÇ眛㤚R?˙°D ±şůŃ,AŔą;!Í$±™D<‡0¶—Eĺ÷Ŕ8˛j„”cúBJn%‰·/§bóž71d1É»šŇ/-›%Š˘ ” łZĄä wŔ4 7ŠŰiČą-Ó‘9+§ó””$€ŕŹ ¤ZˇĆâ ®,x»„YúÚ€…Ś‹ćĽÇ÷ ň§{€Vă´0»Ą?Puyëđő‚Ö…Ůć±Jldݢ÷».Ŕ*†4o¸NőX ­9_†^>ä%˙Ě9UDĺż×žŘQ`¦Đd·ťć/2 ˝ 4î,UO©0YŘsÎɤ.'ő ąŃęąŃ2ĹůJŇRŐs"Žd88 68GŠŠ0 …&#ú"×WbŘ*`ŇŁcÇ>ŕĆKTSJîܡô,ü´ˇm©Š‰ůâůOwÎýĂwk»Ä«—mU`TöjÜlń®1ÄG™äT U®›Ţ®Ż!䕢ş ˝Œ|€ÂĐy(üéjY0ćD<ŔěČ~¶3gaşV|6 ±(‚(oLHS~L«•ĆŚö…C°{Zv"cnÜGÉŮ[Ť$¦éń #Ej"GfŇs•s¶aEJ%HoŢŤŮ7”϶gł¨„µm6aÁ…«'łű)94ĺ$ş $˝‡K(ó„Sraž×+Ĺ1«ÁďÓ1î;{$×®•dĹ"\>5Ů0Mřj‹ŐŮŻ ˛ĆLžßćđ¦“-ÉŚ3=š1Íj*MËÚAÄőb“ŹĂ¤ĎpřŠI˙.ýŕĐ‹âł'q ĂĹsôĎr Zę§żţŽ .Ö›ů÷;ydŕ<ăBŠÖײЗ]Ď=Bxyuń›ť$ßNW«°Ă–Čcb耙՜‘ęÎB&W‹Őm^^ôňÜĘnđ ʰÉXIĹ1‰#‹]šőZ©üŔʤŮLô?­Ob ŮŚzą¸Kĺö;„ÚE»ŁŇÖ<˛µPc0ÝŢMoVXĂËG‡Ër÷NBä.±»c’„Ě“ź‰t`Ě1Ç;€)zYj©`€Úz—šÝŃć61±ZŰŚ=ŠĆs‹ ,c.„Ľ$yńG9}űAx˘mNB*ń Ąźń40%1Ä‹µ2 ĄF›Ů¤÷żüjđ— endstream endobj 1406 0 obj << /Length 2342 /Filter /FlateDecode >> stream xÚ­XI“ܶľĎŻč#[Ó a!R‰]e)¶«©¬”ş’¬§3Ť —ÉÖh’ĘĎ{xŕŇ#ŽU©ň –o_ČWw+ľúůŠc|˝»zůS.W9ËŤ4«ÝíJJ˸HWFg,“ůjwX}LŢűÓ[łŢ ÉyrS´ź}Ýü3~ú®\Úýňň§4›Áˇ™ űsO‡.ßJ™PĂ‘gp2&21śą»i`”d6ˆ3ďßżĹ3W?î®ţu…7ůJ¬„•Lh`J3ž¦«}uőń_`ď—g*ĎVádµ’ư<Ía^®>\ým C1®Ĺ˙¤|É–ľ¤]™4ei¦"ĺGpÍz›r.’Ý›őV )›«*2­ć©e*üý‚ě Sj<çyµŢJ+ňÄŐˇň´N”•ŐóŇJ93ąý8-‰Č¨ŔdnÓŔ˘¬‰b¦Rđ –y†s Är&R«r<.`Č…÷¶B°\›¨F@‘" @« Qđ"ź!ÚKDÓQ¦‰93óe-_Ô‰r4ŚĎÍ 0ý6…fä`6cŮN€A PŠe@;r5 QÚ‰é qF"ž_BĚŌưľ„(–ť˘ÍxňëŻďĎ p´kh’Í$REš&R.÷ů€Ä‰‘­8ţ qę›ěŢ4çŇőý6ĺ(94h•CŚ,}íőćžő"ęÁGď3ݞĚę1*ţĆ…Yp˙ŚI•O¸ěQLđ*‰­E°Ŕ ĘN°™±§P%XÚ=4Ď…Hü‡ÄÍA`2ŤÔÖýÓ^µéŔŃË–!˛Éaż;Wh!ÂR(56KŞâËh*č1Ę.¦2” j`+RÜ_ęá~ßT§Ň­…NEq+—€ÉËźŹiw• ¦yľ“€ Ř­Á®‹›-Es KĽBSâÉx¸h}×Ô´ÓÜŇřă$ĆAnőĂÖn­tâ+×]<7>»µŕ d°JYLĂwŘ—m×ÓŁ˝Ł™HöEřŽĆžnđä¶)Ëf-uňŕë;Ú;¸“«®ŢÇ;E]”ŹÝpóÔ6Ŕ`E·›ÖßůşčÇ»·mSŤ ČÓ' Ż"“CžÄ9Ţ»}OżqÍ˙ľ€äÚcTuw¤-‘ç¶}őÇ"^yX!EG áę\ű}Ń»C<ź9Ç7Ź4ľ.ÚđWďęăŮwŻ ôd°]ş/ÁP4ě?4|Ľ›{ů‰>¶ßÇE/6^nĽÚřtăőĆ›Ť·źm|ľń‚ÇÓŻh4üů;áę˝2”|Ô\Šp8•ŃPÔ‡eçż<(ç^’65D˘eB„|JŠŰ2€Ś Óą×ň…W[yťľđé6˝Î^x˝Í®…yáÍRE\+¸b!Î_¸”mMz Ďżđ9řhv-5\tjľS/îĺV]CĎý÷O‹Ţô$ölĚĄąTůîčC8“ĺK«fV;d×0© _ÓĚ×ÝÉ·EôkX¸mZşŮ5U<˘Ŕüzsę}ĺ˙nutzŔű.2bIAŠ- ‰"uçö çwms>ŃźÄ1Ćô M‹6\K*8Ź‹X‡sKÎśí\ŁëłőÖ€4Ć·§(5&ÎJó™Eć18ÉĚ ó:Z a$¬}1Ŕ·´,'o·?Ö®Ąc7 L @N*#9x˛u¨–@5íęÚ[zr?kŮ.ćó¦)clÂË&M\OcQ2ś¨ž!`áV &®Ť·HŞ8 A ®ZʱřsČ që'QŞü˛ÉĎMŐ´Ź´飣٠(óOxĚu•«YčË„K`b ™†ĆÁ|ŁłĂ3c ĂHß»ăH¸oÄÖČ;ňŮ„VŁYâz0X"ł <‘Y†ŰĽnš¶Ą\ĺ"pTě˝~Ľ;¸ąě˛§č9:ł—uh  *Ćč©.~Qb„IłTł©€3mvąh+śP4"Z÷XU®G…á×Áő;‡§niü0_D× S­ňäk¨F}lÎý2éx› f¤}˘iÝŕŃ!ďs“´çš\?úPo`Ec¬…†(¬AÁІj}ËćÉeI›ĎÁK ? L6Őřâk¦X˝éá Rđ5š°,ťŞăe ž3ĆĺĄD|˝/ĎÁX ,QĆäxmGľëÁ1•„ľ»?× É ÷„uÓVÁ a!ľB/ŕéĄĆĄ‘ŧĐaU4=<1y ^ŚájÁ‰‡Đ- t5MnŤ]SŇ úöqďbĂô“hjPý˘ű.Č:SĐVŤf&}-o•2=ýŠh5řÔ±čúŞH)rű%’¬X‚fŤzR:–C”Ëň!äPł˘â á˘ůÉ,jBy[$VLůWoÜđ.z\Ŕp˛{ÁdCŕG_Ć[ÁLâó‹IÇ %íđzhŃ@=­FdpHZ"“‘–‚"ěT.†zXCb ‰iw—&ˇ„ŃÓżĄßw5ńśĆđĹCC­Č »#fŇ'a´nbŹŃťO$sě &fqë!¶´]7ő¶Ź©ÎَăvŘEéűÇw*ö±GA¦q—’)nÖXLáTăcĹ4ő'‹)o ' xp1 Q 54PŮV4ť”Vq5¤Ő%·ĐŠMB~ö÷g¦Íó>‘MĄ$>Ú»¶ÂŽŠü6KŠŰ޵4śóŘ[A÷®ä“ήťű! ţű<3ď Í ž™Ë‡eü7 })zôms8ďÝWŢ۬§óGW.źźť»],C††Đťž˘'ăŮĆ ë°sěŐ|ěâćĎÁ…BOŃöĄ+"´µX$jť0Rä˘@Ćţ3„¶D&Ý:~Ž˙ůʇ1ßâ×_Ćôýµş‘Á ˛á˝+ę3•;6ˇrr­Gý‡Ú†…›]E\PŹôE˝§ę'F3dsHډŰvŞĚeý6cý…:‚-ý˘“Pź/sAŔy¬pŇşî\öq7tŃóÝât/‚ĺŇ»÷ë\&?ษTx  s̡esr‡KÄ‘\> stream xÚÝ[Ksä¶ľűWč8*k`ĽA–ăC’Š]N%)Wy+9Ä9P#Jâ†CŽIÎjőďÓŤźyh-k·r™@ŹĆ×O4ůŐĂżúá+ţ˙ôî«oľ×ÉUĘR+íŐ»ű+ˇs6ą˛Ć1©ĚŐ»»«ŻšüZšŐ‡kaVyVćw×k™$«î1ë°ä ”·95îšú¶Ě·-=ŘÔU—=ÚfŽđju“S§öy»Í»¦ČŰaÜ*Ľž…WoĂčwy—o:Z€[íŰőőŢýv˛‚Ą&¬¶¨ŕąőËÂB˛Ş±Ű7ß§b˛QeŢőďüÂ…ŁN3j$@´ďST9Ť «}¬ďÂĐ÷Ôö3¬«¨+j”L1Ă®×ĘĘŐŹUż˘Ą§-u˝š“«§0č®VU˛0P]•ì´wś÷ĽÖŠicç;ßć ]Ńná -úŇ|őµÔTŐnóĽ˘gĹvS{˛ÂŁçĽĂµiąş˝–|µď棉~4ľjkĆSEípöۢ%ňĂSŘĐľěÂÄE;*€Ä>+ˇ‡á«l·+‹M†;l™ď,4Kµžżń·ˇ¸†ĂÇ'ÇeÓ†FŔ[[Üĺ ŐžüбÓ# žWmߌ[÷ĄśßŐT÷ÔÁÂ.oîëfK•z¤N™É‹áăĽ?‡ąs1‚Ą\„íZz)9bIńŐń pL˝Í©´«‹Ęź–A°„FŹICř§Ąë‡;ƇUÝ=,KťJ°=Áu0 Í´öČć$ÓĘ]M:ý §~‰ť2S#ˇv‘ 3#•`ˇ7ô%…>_S+g¤¶ýăÇč"ěČěY@M:ĐžC‡o##h&ĚĐácdł 8”Ăn¤‰ěXćÔ°^N§…Ří–]´ÍžOdâX˘ĘľŹ‘łe»Çĺ<7x©ę¤s>C†Éd^Ŕ¨çw@nFŐM]î·5}@5ER—-´_v vo;lz3,wŠ;-ő w"˛)t6SÜ…iź‹2§E‘ŕ‡•ÖPj¨mBް©&ônň {˝¶kV I·–Č$´`Ę™9™<«yťĺ5Tşňbăp÷:aÚŠ/źéf6,fěĂy „€Auj_–q™Ěöőţ7îËýva2Ů××G6Ą‘:ĺu-‡]pÖ€“w=ĐčÉŃŇůŘ8ŠÁ°ń:ş´ ęÂĂlł©›;Ršđ¤«€jňtâhŃcx€M¸DiâÜ.#,(ƱĂrŻzX/áZiŕżęŽ ^Ł)m=›a§ š| ¬ŚT‹m¬ŻTÉĚ1i€Śß_Ü@µF˝ÜÂęôŞ'&Úpđ§.îÚžŚ×káa‰µF,Ţ>÷äíŤ.Y"çŘÚ•Ů&ŕU­˛˛Ś‰; đi±09sÉ × ~ő·Ďaô‡¶«×!P®ĽĎóT† 7šúnż!ßC­vY“™˝vjď ©Q›´ý“0ŕđşÝo‰®V0Éyv­Ľ©C˘*Ë”uoKÔĂÚqĺ]•ČŔ­°ŁŢŤÁň€MÚ)z&•đr[l‹2kţŘHőmöq$ĆVśi§żh;ă˙S3żv6Č·QSvâ×r’âdW*ĹxšĚu”ŹfkúWy“•čzY±*ó.B-ţ©†n˘ ărŔÉw‘!R&(ľXýÄéţť©<€7{,aĎ… äĹ!M41qKbĐłL$cč'§łĚč/x»XIC©wC°€~¶‰ýć‘ú»gÚł-HâN~áň3Ş_SĽyĄĄ,#ÇdmŔRË:ÜŤJÉÁBŘłö %ňň˛Mç­Dh ś ôó}CCN1Övx|¸% §˝€ČlS,ŔtE,Ł?qC‘Ö>‚OĘ’ 3wé ŁłĚéĹćÇe):˘DşŞęj˝«Űbę˘A$4¸/ŢpNE{;jp’1ä“ Jž’‚Ă–Ők ĺŚŽŮR­×Ť'˘ ¸Í2j0S†i›ÎĚó÷QE$Ś™›çQe”1z`ű8ZŇaĹOE÷ÓŐ`¸t1Ęâä(uľ‹,x~Dăjg¶Ťcij‰vÔď§ ŕŐ:a©”3–đI'€ěČŘ7q2Ź€xóNAŻ9PĂÜ™ą4>˘ËçľÔ‚^řR›čP(–#CÍČhz~îńŕńŚÜÜó˘Yýë:á«<Č6„L–˘-8čŚZrxíč®`etWb`K™uue!—şÚü¨‹hťb#Lz”›Ĺ< :)7ąx­•ÖGąTŢgŇ6HfĐĐŔpiú˛=ĆŚqgÍô!Ěç ŕI–Ů&ŕA&)K»đ˝Ď¬Ň!šŹĺi4?f˙˘pˇ„;a×cüUN ŕŰř…Sc´r4w–÷tµ¨3Ü\®Ć¤W\vKnOˇ›\ď1âkś á;TŻÁtŠ^¤ ¸ŇŁ÷…:·Ź" ĺđ«ż"Z`přp `IÎjHů ň¬‘ŚćĄ;­"É|šOÎŤ`> »Ĺq%ëN©XÍä('°r:& 3Ë‹żŚ.úĹ ­M*Q"ňäÄ ·Ă€‚ŕĐ?ŮshC­ň2öáŘwq[`ń˛“íŰPł0`ޓݑ4(÷ů°ÂHPR€•qpťü6–Č2šóÚ-I˝Ĺ[˙Ś.öŔLŤĘäíNIcäa;×8Ň%G!BPzŔ{ăĂšUŘőixtv΢wZĺěË=¶ ±\iĹüPŽŘťUw“اgB.ňC‚´VƸ}Jx«†˙} ÖtxĹçžé|©ÉŞ/qł(6’‡§” …Ľ,z/Gx źraîô«Oj鯑“ZÂ…× ƬśđćÖ<Ě abĘaű87fäěöMQďĂ+ĂÔ(™€.?LNŻ oO?­yň"Ő€ýňňYO0%ę¦xb”$RB ™Ţ$ĂY`ÉßpÂ?&îTˇ- ťN 2y‘D’ R«>EG,9LÎuH’˘˝ůe˛Ď/“S“–ő6,B,ŽůÇű¨B3ö-”÷ą:¸fIz–S>H%~3&QÉT‡d=(tŮQ=ĹD^{ŤŞ.jBąô6O¬flRi¸…‹č(ÇŚqçˇÎY’ŕ Ą3<Ä#–“ĺ˝ČD^&95ŹKżpň=OGXϯם]®eF™-÷aâ„q¶Âóčç ýŞcśń‡ËŘ">Ŕä%lY¨¨¦\z3#§Ç‚135y4`đ(űö&1rµúą¨6ŃëmĹäh‡5Q,OŔódóźőş@3gŇS~Ścν‚śP@’ä9nÓHşű(§©|‘ †öaz,«—öÜ|â‚ůô”ݤRÄW0ńcČđĆA4#sÉ|{*z`Ń›ô:‹»—ŃyÂĎň,ĎâćŤĂáK‘źÚěž˙˙Qwá{uŤ)¨–YąpßúŻ ŘŹu±ńß@%ŰÖ{ď?Ľ1 m»r˙đ@†Ô(Ůüŕ6€‹¨NG&ŽŢ1éŞ1ab¸&O™ęÄ=có—%yŁ‚ĄÜÁNą´ŻµdŞ·őŹç@'h=™; ŁąłuůÜ/T˝Öőş·ţ Ţ•îXÓćĺó5¸K^ČąŐĂÜQC¤gS ĐyR˝5ĎUȲż…†1Č•‰w6Ó¤÷Î&oŢ™¤ Fy.ŽďL˝3™ńÎśsJ}Ň5Ůé,¶°Ąń›/a|ÜL†\hÉłöąŹŠsć’EÚ{{Ä8‘Ľ®/ńć¸7LňŮĎĄÚäűzRsáÍęTs}}&Ł%~©ŁG ’á«Űš>&ŕ!O€˛żăiBá^‚—l0>´ČĎűi”ä ŹKrťNCŽqŻGZ}Ú‹´#[ž‘Fú5¤Ń›x*ź ŤĚ䤸4|hÇű (Ű•ÓCOTżv ~ífo蓼Ŕ}ˇć_ŁSôŻ÷ńٵ źg®Í<„Ň€*üŹYIp¶\śO‹ÖóĎö`´ń»+¬ źÓáZÓÔܰ}›…·y˙ßQš/”˝t„˘ăĹ]č”Q˛ţ]ŃŔ Ô4$sf“Źö€u—Q]óßAR†IbC^ ľŢúŔˇL´·}B16Ŕş(ěµĹtľ+}ť#甍<\şđYÁ08­ž‡/:K“áľ¶cf±ř~ÝCżuY×–dÂľŰyl|čp›ulĽĐŔńŔb”Ď .^*ű‘@ž_ŻphƬĚŰÍÜ?;YĚ‚•ŔÝAZüś‡I˙y-„EzW×eFB'SĽíĹÜťOCĆ"P˛O†×^ «}BŔ=÷>LR–ćĐí/ďľú‡'Si endstream endobj 1426 0 obj << /Length 2772 /Filter /FlateDecode >> stream xÚŐZYoÉ~÷Ż ßH¬ŮéűČŘ›ÝŔI€  ÄÎĂIł"g–ôďSŐÝsô°yřzČ çŞ©®ŞţęŇÉÝ„NţúŠĆă»Ĺ«ßýlő„I"¤ć“Ĺí„ Aڶ­ áBM7“SNÔlÎ(ĄÓĹĚČ馨·Ő®š1:ý„?ĺlÎťţ¸j¶űÍŚY¸ńźĹßgFśRž3ťĚą$\ąŽ'a‘ëűzçßknöË]ŐÔřz'¤çăÓ\G6ĚĐsůKů‘R^Wţ-/Eä‹§©˘˙śq:mPʧrn7·áX„ĂUą*đu fŁ…ť,Ě4'LpxäWţGą÷µš^eÁ|=-(ިkIy 0l@a‰°¦%řw €ĺ4qFX$Đ„ š™@TgÖ1„‚DóŐë@%íPrN´b‡Ňô‹Iâ,.ÖKä‰@Ä5›€} D7‘ `)X4.őC†‹ 6ʦ†vÖ°ŚĚ5a2nňu,]„Ăf&Ě4nZ|Pßŕ‰ž>äld‰áź»ŔaĽsF$ę©>R®:CÍ(Áe"'–Ńm.„i40ŁDęhÇÄÇ˝ęSô¦zżľÄ2ƦoÂťÝ}Y·”PqÓazd„w8TŰpĽ SŢDآ”঎P´:wD›«Ł¨”„±h‰hqK“”€¦ů€ę]´Ş˘’N!Bh˘XÜhë…ˇ~ói”âĎí=N¸ĺ™{ŃěßuB§Ëńű}f«ě¶C×QŰ`Źą0MŞŰÖô-üoY˘dçjĘ8ŁŐäIŚhC´T•“˝H€ ¸ĄÝR)ÓfĽ­CäŐÉ0Ł“ M@ÎTżĄG°ŻOéĹqŇ„`×Y2ŃŽ)"\żćŔߎŘ2ş¶‚×h˛Ëih¤ řˇČňv-E!ŇgŇA’‡ć‚ĽćOĺ§ŇďÓŃĄůókKkîŇDĹx>QA¶§g˘#şâ™DeĎ%*MŚş(Q s6Qńo–¨ÔW%*E ţ QĄqĂH‚ńv ľBáCa^ë;śĹŔćµaFX| Ď6´·jő‚|A¬Hrůٸ ąLöŁŰ(_tíëÓ.W«\ć Ů p˝MÉŻ‚ ¸&RĚśsb\ŢMúTŁ=’Tcľ1Ő¨ó©†ć"ه ’)”•RÎîâhx´8 ěĘ%ĄĽ$ŰŞDś$Ć`‡&Čş9hÜě9Z!Ć«·«]ą© 3®0)€ëË *Ş7xŚ1«Łb2^¬‹—pr]f‹ŤŞöő}˛Ö  9Č…©őű1ČÁß(éš”qľ<žt?d°Ő¦‘lŰ;őé2YI ž7~Ó‰}±ĄŻš8–Ę­Ř,6ŔIĹÎfUHŢj 7&Tަ-D V™.ÝŮUőŇ×ů2˘Or¨tö¨"^ŕX„Ăcłzą/o6Ĺ*v NAFÂI݄㪩ď|- ¤×ĺ1N^l¨ÇxkşSî¨éßQŘr塭Ĺ4t‰ŔsE ćś^˘-Ţ„Ęý).ş,ęx§Şeg†»˛.Ł>č¶e$lęUÔf٬÷»Vüř~ńř¸iž«u1oKŢ$é©­´ízx’3;ÜŹfE$uÓ_ďËMYlĂŁˇÖ6j Ç 5ś e:Í#·Nf¸Ř×7 âY· ąPŚOVŐC¬ „ÓwĺŞÜmŠp…BŕŃ '”şh}|żź7¨kP¸—Ĺ/ ”rÓĹ}yV­$w+Őq˝Dz=J&˘śypâOÁ#.,¤ÇŤ`€ź ł0žőşŔE'–eĚëşČ±ČÖ×¶oť·űĺ}`şC3dôpDq~>–&Łç„IJȱ<§%˘oY»™>SăB3ýËmk­ýĆ{RbLSQďZ=«m,Ű@7 ¬@&sđŚ*ś‡H×Ţ=ŕ=gt j¦mu˝*Ó"Ůr·÷.Ź7sţČ;̆[JŚů’­Hě©E%;-°´ŹZ Zg°XÝJB©ůmÓ»rąŐÍb™ř„ńdôxlâAaZ˘!žÁL±T©HIŢ 9e¬˘ dďű‹E¦wľLŰ÷„GŇr~±aC¶Z–D  •ă(ÉüŚŞ6¤¤Ť^^ŐwáŇ{<Ž,·|\‡c°¦4y!Ë.ť†·2–“”păÎĹ(;QČë)ňĽmV«W}J$˛Óm±.ŁâšÁFŤQźř”šnAüťßő;_6ĘŕJđ¤űxĺsŹj3.܆ýp'ŔXa¦|łÝ…»}Bň$‘Ë*o!Á´¸öKF-#3r•ĚHnaăłDN¨S©˝˛ăOŇ7"—ŚQâě<š(™:nšß:nöcW~,6°›ĐOäBµÔ FçyŮXCm'Äí¦YŹŘoĘí~qď/Cb#'g4LĂUš?=ëÇUŮĎgÄ©iІ’··ŕ[„ś Łhjő©ň5čMśN#oŠč"”ŐŤ/1&¨3 tPkÔ ěqÜB?‘¤d!éŞNĽŰü “w©ŕ9‹Ý/ń:?ą}bÎČ ý€´ŁaJ˛»ŘńQ?<é~nz—mx?ŽÁ‚ÎJ¨Ç˘5fsźŻŰţ@otZ€ fćí@Âç÷Řą>†“Ű&Ň›ë*a6/ɨ˝jGćťÎ·§5ńl42OşÓłąçśŻ›×h›…T~ĆŮÓč7< N¬9Ť­ÍáxmĄ.Őĺ·Ěű’}éű—Ĺ˝ A)Ž2÷*GJ†ô!Lź5ćŚâ|?qŔźc•ĺ<´>»ńO6ęp0’Ź2ŚŠŻŚ2g%úfă%ËąÜ.ßhj/…Ʊ‘·ýnÇŠ“Łü§(%ĚČ2Ł=ě-“šňďę­X¶±§°$sKđ?íĺ˙j§Ď±÷ŮaôůúM%UĄÎ…/~.|™QřJ˙´1ç”A€Ŕ4g‰í˙ąÁă?7~t#ľj Ç·XěCĺě˙Ô‘öoęy°§ŕSú°z6ŕJž‚ÓRü<#äńżş€oK »Ý7ąEŰWBSNřt۬ă­ícą ś}7*ún´íÉU;±ętGz%Ή짶W—|2;Ň ¤E¬˘hqBő¤+‹­źŘcIÄÜô—şUŃŹkZ­Ú1ť4 ž-Ö˛~¸…•č±ţYA’§z@€ďżiĘČąn"c4`„ŔݧjwnW»mąşŤőrčăsE(d*ÁNĎćĄ=?-23-şĄčż+¸»ŞáŮNưĘľžmo ˇÉµĐíSsąNLȬŮ]˙g#čńł V|_˝Ă·Ůa….¦ďëX’óPlŤľ{¶ĄMjgGŠ”ÉoŃTS™ţó ý6Y·ß ę¦ž—ëÇÝKßdŇ j1.;G©¸Ż-ŽýýCŚzíÁä«ÚŤ¦\˙ S@,˙šś@8Ńr§}R™® žÖΚŘĹŽ¦uďă$3Ž^Đ)ą bqÄÂăz8ľ”q|)|ł»Űě—‘ĽOýô3Á®ëpv$x2bűęWý9RŰD¦ä3ÜNć řOEë ›Řć×™ źh7v§ŘuÂîZńA]˘ŞţAŽë˘űFW!őŕŮÁ'ią0ř‡áĐ ¨_ŔŃ5g8cN/&LŁ«K˙W.kŰ”ÍTBőÓâŐ˙~H÷ endstream endobj 1444 0 obj << /Length 3668 /Filter /FlateDecode >> stream xÚŐŰŽă¶ő=_áĽyµÂ‹HJ R š"mQí-š´€ÖÖĚ(k[®$wvţľçđ)Ó3ďl<‰˘(ňđÜ/$[Ü-Ř⏟1÷üöíg_~—‹2+µĐ‹·· .eft±ĐĘdBŞĹŰÍâÇĺCłÝެ$cËu»ď›MÝݬDY.ëj}Oýí-ő ÷5uĽ«úfM}]˝­†~¤/Íţćßo˙ôĺwe.kňL–€˛ ţŤ†D•3¨Üd}ł;liťjłiöwž}MťmG»¶ó=ny./ŠL•ăě?1.¨¬4ĆŹéëÁÁ0Ř+É‹ŚI±Xqž•ʡ®‚E _nÚ]·íz[ďęý@/đł}V]×ܵüß WËÚőą1•ű±ŮUwubŽjżÁ önOŰĉď]ăö†łeµöëÝűYűvçFXâŃ/}m÷ÂâM¤P–geq Âňr૱Q•¶ŹÔő®¦gu8l›zC/FbBjżÜ»ŹWćpŇg7+ÍĚň­Ý)~hú7Đ0ůňˇ¦ÇĎ8!B`©Çě·Ś÷=q»Ň- ŤM“Ŕ‡fçć„~LÝŐűµ›“±Ěň˛śćd’ÉT1ÂüšP˘€ěőžöŐ쇺ëk‹křŕäŔ"\žiÁµÓCVG(¶ěŞ˝U"Ę)m…ł6=µ˛Ř÷‡f¸÷cÚ~ú-!­˛üI6Ô+ĆŔmÔÉ(NŠ2z:+°d¦Ť†=ÁV@şěżN [~îo ¨9GiI`u¤—ybEfH#ČąđTTĚâ\f ü«ŕ$…%€Ăä3,Íŕ(Ô8ŕó\Ŕ#5SË€1ťxí bD[ńĘEĆLkâŤ}ť‚‰q°|ůÄÜŠ”~Ę*ŕHéČXx§x+»ĚŠr6ô‡ĹQjFňBG$çl$yź@µÎt>0źŁ ,–·‰™8¸B“ţĘd&/gT‹§@ŞŤüőřÜ?0e ?,Ól®‰`(Y# ˘YޏŤÝvT“XOe‚ĺ‹` A&F2źÖú×8Ë´ńQ¸ÖOL¨‘E" äH.–ŕ4 ęQ…đ8F〕AJT'öŻśvÝţg¶•3s®gŞź•Ĺ"BR`ĘClć`©łEŇ&•&žM±ϡR23&I3:ZN\÷UŠɤÄüí1âßsňĎ„h6/Gů‘LEÔ‰ţç~ă˙LRßÚ>PyQFHŚ9©Ě„Ŕm‰R=ËMüYný| úO~´×o`fŃfđźcĎüYö<…´ Ôéű„›LŽĚô»¤ĎĐźťŃÇŁŃşK™Ř籕ÉVF†™ýžÜ„ć&Ü»4<ébżT.s0\‘”Skű`šäÔaËEbĐZ·»yW¶Ű5’Q—°ÄŻ 3Üę)őÄc×ôlˇźs)ŠĐżcĺňŻíPĎw;npÜ˝ł™h“O \!Xś(V±§{‰ 0đŢÔk±y_×Z|ßÚh¬b‡Ű €Uí\«ęiČřiÚ¤"˙ź6äFđ5™Č×ZĽČ·fĹň÷ŰľĄőöŽ Š¨@.Ŕ#ÉyŚéľqś"l2ĹĹą\ÚřzSwÇ žRođKľląik7ÖˇKB¸? „±´9x>Ü7:ÂĎm·ń_ję‚ũáQ&* 9đmůňĘîô‚ËÚ´ž!˘uńŹ yŞÎ7¶Ű÷ţP»pjp#ď ¨<řP©ŢąŃ}<ͦq5.ľ tXfÁĎ˝ĚóďoǵÇRčĐâr!P—x34ŁÜmëÁ‡‰gÄŇ0a×tĆB©ČBEö#˛P·iď±ĺŢ#O4ł÷¬Ś0t—d=ŁĆýOö'†I0Ř›z N°tÎĄ73—~FÔ%ws—:Ř$Ő$‡8vŚz3ňć)o{¦Ů¶ fŚę~žDĚĎŤ`JĐQŕÁЧ#Ŕ|ćqž0D>cČ%E~(~‹qݧ`‚“¸®ÖzA\73MF‰žTxˇ2%Ío;ş¸Î9OŇs®´|đ¨^EqiNv&N‘żL\dN”ü“‡)ü©0B Sq˘. Sňú“ĺÎ÷®ępčÚÍ®rţtaÄp¬#×ćÝl‡uŰ`@Ý÷ő~hŔxWˇ†ó\aŚőUňŽ:ôXwzľ­ÁÔ÷ď«Te¨Ć±ţŢfÔ°00V’Kł’J˙˘•/8i7łÎĎ82śŢ×ňUÜů“\Iďŕí(äĄB#tiđ•@äë ¬á•ęA§ÁÖőěşXâ.P€ŹSaú¶ífÓw5–DĆZµŹ0#µÇŹ•Ťu8_ý€—¬ś¶Ý{÷FµhŕC “o¨'YS– çüĹŃIb"“)ťngĹý1çXC¦ásή<ŕh€ÖäżĐŃ!ůŰ×/KZĎěřÄ«żŕ #ţÚ'ŚćÎÉtěâsC±"J^Ň_Ăń'ŽrrüÇ…ŠçŽ ©şŠšđqĎKë9!ĎŻĹńÔX0ę‹{Ř*ÁÓÜʡĽ\»~•Ŕ4„ ‚Ěâú\€ăS”ÂçhKĆ6Q°Č3%žuĂŠ«ňEłp˛:QŘşÝUcĎ3 .Í€Ň ‘)fÇ>ÚöU˝Űĺ*@’—˙Ŕ<â¸aĽoÝîł—řˇĄžˇzŹÉşi8"qŤÔq˛ĺ¸w >=¦ôüy Ěňn0S>2đ./ĺÇlšţçă~m«0żÝLN¨°‡ă@}&ĚVˇc:Ç„?ŢâqĆT1śÝŢŁÉvľPú[,2zy´beŔâz#mtxÓŢîĂOtgÔřSÔI—Dő2P˙Ýüä€1éË[ěłŃżPŇľÝE¤_Ą9§FFGÄb ĂĘŹ/ í\â…Ŕ懖n¶)WµVA%?á€CëOxHRůC’ŠŽ„Ö#pwµŻĄ+O-őc*7ťUáŃÄ0€ ÔxLö˙źőĆËÝ #2†K™gL:ş YĆAxűŮ˙6⣠endstream endobj 1460 0 obj << /Length 2875 /Filter /FlateDecode >> stream xÚÝ[[oăĆ~ĎŻPÚ‰&sżě" [´E (Ф¸˝ć®.Ie˝ýő=s!9CŤ$Ę–´/&EgÎĺ;—9sŚgfxö§Żp¸ţpűŐw︞d$•łŰ»a )©gR(D™Ý®f?Í?î›öfA%›[{ĄóÝC[mŞ˙mµŰ˘›ăz~{_úwőnY®öué?Y•Ͳ®Ţ—+˙ó}ąŢÝP1˙ěľ!xľŰŻĂ[řvµ_†‰ę˛ŮŻŰĆżi†:Ľ‡˙şý 0˛ ]—…ŁV‹yŃ„ërąŻ‹¶J9áów7DĚwµ×T›‡uµ¬Ú/7RĚż…‡†Ď?Ű4ź˙Ś1­‡Ůšý¦ô÷¸ŰîüuąŰ6m]TŰđĽÚZâľ{gH$]Ş âÂÉŽTžřQ’Î$2Ši;J"ŽĺŚ!I”‡ĂT<\K¤´ń#*?"QĄ@JŘi˘aĐö†ăůŻ7$ľţŐ ˇě´µżľ8q‚`iJR©–vŔcŐ´ĺ¶­Šőú |(čü—}ż­ś~±ÓĂ|uUĽ_—Ť…|÷ŹŤçĄ˙âsµ^ű»şl÷őÖŐîüł§-ăĺáĐ:Xŕu»ňĘÝÝůí}Őř'Mą @ćśµ ĄŞ˝ßíŰđe†(řjD L(1,<”ŕÝŇ™Ž˝YŞ»0‰%/Cő€&ǶDÂIRřt4É硉cíĐÄü "Pv·[‹něg˝o™-„@`Ě …ĂâĄ~ZŚÁ¶‹‡˘.6e[WK?o,‚ŽŕČOqË{Ň0ů{şcö±V0 qřŢ“ŕGiMÇŃb zĚ[!bD'ío2łh$ú÷Ë -qĘs´€Â†Y@‚Ć´üکȬfÁĽ[gTF@đ’‘S¤ŕBFŠb„""AS” i´Nłšzżî­î/ÔBŘ0ż¬ý‘’]h/Ą` ô¤Ć &Ł1«|s%ŤĄ´Ńx¦Ć(FDóTcú¤Ć*“ĺmËąŻ7ŕ™ÚĘÚ©÷ü^e›ęŃýZMŇ äF¦ ň:—ú§2ŁÇÜŔ ‰!–ůC:971ň7’ÓnŔ‡ĽzM-IÜóSf:…‹ ĹEŰŇnŔ?ŹÂm‘-€Ť]Ő°É8™ŞŢŰÜĆ2Ţ"ßťSţTލzŽ"ݞ ±őĚhÔ› µ6PŞs*Ďľ‘UH5^ëY°sXž°3Ž×ú&Ă}–N$z¤¨‘şµ‡A)U5awä2…ˇR•~Ěżł.Ś«Ő\«™¸ë¸¤6}÷Ô¸OFĽŹě âý·©^ŹüHTúËÉŮ ¬¦îŁř”B2á}ËŃr <6Qxěśđä)ái ¬Ţ4l˛g`Ó\kC| -/˝!ćSJ¸Ď´‚\†;rzTöÂ{“+s$!L*$¨‰ëŔ…`fOŠlôˇ)’®[›ăşsYiĎĺmŃe¨ĂČx§šě–0}ťě5tżnµ]•ľř#};\#âę4żöŻď˛Ą!Ş$Ó_őÜÄ×Äń®Ŕ üŃ0·íůi¸›űľG˘“´» E :č«bő— ®”HWMN•s©-ŕťđSŮŤ‰=Ĺńě&’Ň6[°ĆąFŮóqĄ®QłU8NŞP‰ş ´HňP°(Řé.Bš ÜgČ|Ŕ°Ű^yÉIf®¦@ ă:>±›vřG2 „}—ő$R˛=‚Q¶ęĄIH{—Ő©M @N[ÉYAZŞgH1»łŔKrś`ČŚÁX Ň2Čń÷ŮŤÓÜ•p°ĐoĆëôUŘ[4/–C{N­&®ˇ[đKpăĐKL@Ż{ąřĺŽ,!Áě>LŇ˙a÷fÓÝ•m:yµ-Ů몭|+1tSDRچôÓŃxp”ťŻ"DŃ-WFR¸S‘ö„+u±ËŞ5$»ß°ćq~“ä¨!üŕ#›Ý!ŕ´çówŐÖőű´3´gDęuěëuě5îđr\Ż<ł-Îî„™™®uÝŢůťIÚżÇgŽŚŮ)§«\“/î[ĚĂ"ÔĐ#ZÖťłőÄŮ®v›ÂůMCó}ÎŚóĂ`4Îý°Žđ¦ˇůz´i8T$'™čDg8}p©łJLrďke*ąCM-ĆŇiiUŻVQcćLE-"÷é%5[Ŕ#kăYw¬‡”ꬱ ópÔvľ`™tRŞ7:~0JMŞ,Fb8W>®Ďîí°pŤŚë<µ8ďeLÚ2jhîěĎbÝěrq*{‘:ťë+s´ĎFĎ0mó-^ߥ@€Ő˙şk­“¦}H |^ÝuO\ďŁ]ˇţ?ťě5jŔł?Ó`d?؆7~2‚<¨]M¶X‡_ĺşxě» f âŕŁ<<`€ Ó‹bJ‘ăÚíąÖŻđÄŻ$đ€<ŹŽĎ2G)Š<i\9Sěäňtž@mŢVůrý—ŤhT®CĘö˛ťMőĺi`ľ˝R1y*ÜŔţČ\Ř„ź/”,&´4Z#Úg¦¶×ŽŔCeÜ|hs_8k˛%ŔÖ˙GYűˇbÜVKźźsęëeîe05~Ře44×˙Äţçř\ÝýŻQÉożú/í˸ endstream endobj 1472 0 obj << /Length 3360 /Filter /FlateDecode >> stream xÚí[[s۸~ĎŻĐ>UšŤ¸¸L7™ŮînÚôˇÓÎşÓ‡lşCÓtĬ$zD:v¦Ó˙Ţs(H˛'ëvúb śóáÜ“ŮŰ™ýń ńż8{ňÍKafy–+¦fg—3Ęy¦•™)©3Ćĺěěböz^·‹%—r^-¨śße÷ž ›×Y•=]Ľ9űó7/sL"UF…ě×F¨,×ÜŕśđŮ’fşÝ~ ćŃb zžXŚŇŚĺĽ_ěŻn„bÁb@ŤŃ3ž)ŞÝ ’ Ě–*Ó&ʍ‰ aYN LC5s˛Ĺ^Í_m:ÝŞÇ©,ÚĘBDˇłÂ>5ŹŘU»®.+?ŞąL°LĎŚ=;?B“ ˘>G?ég2*Ç3ăŃĽ1ťĎ ÷ř§z}Í=śm˙욇Ĺő§â¶…ýT®vő;oqu­3ťü`Ěsé·’ćFe’ĚĎVŔ»qŕB˘2ű-X‡śDôĺ_šÎ®Gç«fÁäü¦ÂżýŠđ‚qz1¦őĽhÝŘ«¦ŢvŐ…{ß\w®÷üűýˇr/~ÚTţ ňÂ%H‹źŞľtݬD$”ŤŐD Đ»×ó*±TZa$ I÷„lę[Ë'°]:™ˇ™9rPxIj»]lµčޏ% ˝í­14Šóçs踮«]SV×;ű(ć›âëß6ťk”Íćęş«&3mš¶s_eyí ?®Đ –‘"P Ş0Aň~̶źî č»őLsB2jTĽ˙őĆzžóŃ͆!T&Ő€ďŻ ÁHľŻ·‘J:˝MD1µ\‡FńŐ’çl~Sw)ĂÎ tÂbdň eňq>&S‚H3ÍŮŕ‹ äŢ]ČK_Đ\ŻA™Ś fPŰđŰő7 d´­/Pő°ßÉ tom<ův[ÚŐŁ†şQŁ; Asp:Ţgś×Ë7|D¤Őj×Z”XQÇŢĆýbW±síşg‰ĆEŐ–»úĘË 9ž1 Ěň/.÷‹ľPŮi>żYŐkĎÝŤ˙mWÍőú˘‡ íŞÂă˸†]îăk÷-6`2čG±^§d71`őw¸X׸şäóöş\ąV°‹6˘&óWť{ăâi0'ë¶éżJĹĚâ"îcKĘşÚúEşf$Ă ),Ů­š¶ÚŁĎcE Xbu^•ŵýT`0Řśéŕ{÷Ň )sG„Đ@7„©ČdšŞ»J’®FĐúP‚ÇůźüÜď“ "ám2öf¨ÓŠĄ¦[4Nr1Çy‚ ™ÉŃ<ťä˘MĐIŕ!.Ä„‹ČÄD\”I6Y(äé˛AÖ“P»áq´p!}`Ć%Ź\­A/„Q‘X‹·}îű­isţBŔŢ ±‹Ús‡ °ůč”Í˙@Ц$. žň¤P-Ž…±żˇaÇuŹňă$Ö?Ö€O¶ňô¸ý(“u+tjÇíG“ dT7ÎćŻ.łA,Šöř­îP›€˘ł1+ÁłZm*ş®¨m›ĺ«mgSŘë­ÍuőÔ›$ća߇o Bâ•ug”żś~M s|ĚçmÁ<ĺî÷`¦‰/m¨‰Ť¶Ůř®j]m*›UâSşP/%ě‹~ä¦7ĂS3˙Fqž7WÂÖŞX@˛ĺˇŘ—KĄ°öú_`x÷B7iĆ çŰdDţÉâÍś‹hc—\ŚL5ö@˘(2Ăö‚źbäÁ/Ň1śŕr<€LŚąz76\ĘÖr›d¸ĚgwĚ× ˇ%wěÝëřćńE;÷Oś oíUů ł#„ĄŞ<¶ö€€m®°Ü:ŁhŚ·ý¤Ş}>Ow4>ËŹćÍRq<> 9 ⑌(áAzÁŻ0tŻ]ĎŕđZ÷˘Iťjs!Ží®ÔMq%+śÝ–pö€pťKýč 0ČAíqŮ6Űeµąę>,”Ä.Ł*<ÖŹá2˝™Ů$TQT†çc©2V&;ďŔ€<(úŰÄĽq[źĎv7üÁ» §ŃL‘Ş7Pť š’Ň&hŤvć‹hDdŇ’“6č‚›ăzĂ=WÓ1ŹB˝‘ÂIXÝO“F…O÷:ĺ¶‹~q™ż·MF3{f+ŻĚV–íɢ<´děz´ew•€ř)”€”ś»sđX3q/ĐM0[‚öŤćĘőÖ”IîÎWý{__`yÍ´vź:ަ 3÷®”·N>íĘ̉‹ ˘Gqa2vč~ čżRęńy8Ay©<ĂöČq8Vڏ ÷<ëÂé©ćáJ\ęłh‹ßN›j2F/ŘŢKť6y\ŐjÎ1-µá áóë¶ŢľuÍnµ«*×0×uiˇl]ĘţľÄT¤ŘýZ´żs†m ,(ă6;5¶ł'Íř©]°íńCŇÂĎ)ËXxxwgéw…oႚ¨™#ÝLŹ"ăó ˘TW@+ ďńÇ[ł®Ŕozřő!Űř™Ź‚ß-•F:<=óÖŐÖ SÂ8ÁUh€Bż«JŻĎ†§­•ÁËŹżşŠäom|qXěŠMŐU; żKn­–ů„Ě=AĚOçÖăÁ5K’ˇÄčŰÄ–đđFËłťKĽ;Ş0® 5ç¬×ł og(ŤNȤ˝yü€“Ç~Hĺôu[úiť_u6Ó+¶«L4Ű™ť6B‘‰ş[Űi:ů˙xÉ@ßyGŽ›–ç)}Š‹áÁ ĎŞ tÂÔd•ŕŕ„YťBÎ<„,łS˛¬ŹË2Ó™R"‹ż»l‘QĽ}˝s ôŢ ŮvQb °˛ĘÜ^gÄ×7î6ŁýÄŢ6ĹÖx‘ŹQ˙8Ř˝©o«‹qD·ł‘‡«V@߇Ôł bk'EO*¦ň˙@¦G%L×ĹéčěI G aČuU\ ęţ.5Ě!&˝ ¸BŹ~٬×ÍŤŰ*xvh/ĆŠ?óxońtú˝ď+×M{íě“™0™ú˙ÁÁť‚$3AŔŘ$˙÷e ŚOIRí˙ŢŚN˛}h-–ú?źI;Yëq;ňČÖ˙3ičőčNďË„]-Y ËÁÓ0ń#µ©ËŕújüŁäv4>Mž:B¤Ăp*ÄžBÇŁÎŹ řrTy§hŻ.ń*®˙·(ß?ÝTE¶®š/zČ®Ds®·O±Ń*7É«-€O§şŃ1Ýx-¨'(łmÜéá7ůct¶M!äXO…>ćÓőđô\Îź=wżŻ·o\cůÂýţË÷ă˙8`ú×î§ýĚ?şź~2ć~ţm­ţ?]čçľź¬\6ŐĺeÝ—°ç‡ߥŚ#ń\ůAýÖřŞĹŔ!1,ží]Ń=Ű'ďőëň—˛í<"ĺ/SĚ^×Ěż«ů›ˇš»ßo껆?Ľµ7AÔ¤Ŕµ˙Q‰u;l~í‘ćńuŹ}JЇ5ĆÄćĘË«ÂE›ŞŰŐĄ ˘@΋÷űţ“¨şSe2AÍýä;.„Ä—süw\n ˘ÎwP}ňăŮ“˙ŰqÜ endstream endobj 1481 0 obj << /Length 1575 /Filter /FlateDecode >> stream xÚíXKsŰ6ľçW¨7©6<’pâŞ$ťif2™ŚnÎc(‰˛ŮJ¤BŇŽ<ťü÷.đ´¨NzëÁ".»‹oż]On'xňű3<đümńěů[A'‰€“ĹfBCaM"Ęřd±žÜL?Ě ¬«§Ádżg˛űJ&.f,ś&RîČ]ËW˝ µR»UÄŐŐ±Y77«Ż«˛şÔ_ľfGžë‰«VB ^i±zÄŮZ č‘„Wď xŇĎ÷ÉĚÇÓ۸JłŰ™G9žVwI™¨!X®Ňw8äČ'(Ş5|Â$pl"ß§ŤLs&Rimş¤Y•3‚§e˛ę¶˙žVwZť(Bĺ˘Q8íŘ’`äŤÄĺŁó(ć‡Â ÉÜ Ôˇuá÷sŤ»! ŕkdL^|é-‡°P§ÁüC—žKńüťiő÷"ŢË…ňď>“oj~^'”˙ŞRdťďş—ľü{µsóçΨw§3ę»Uľ¬â4;#±üĽ:™K)ŐßRfĄUĘÔó嵕fśŇżJÄtňxQ›gv2ꉔZéÚ Ľ<™Ď/Gćł×ÚÚĹjq§ď÷ĹĚçÓüî ÇóLMoňB ţŇ IOˇď§7&Ž]äc~^®ě#A™É–hË|{/ÍÔü­qŐÂ-Đ‹ž@[Ł8-[:ű`»±ÁtŚľ7č"¸u€©}ČÍDCŮÄţniĐ(ňÔ#3Ţ]§©ţ­BšĹŰíăŚs8´&> Ůďö÷U˛śŹ-p$BŐü SÂP@Bµç…Ă*@ó'^Oj$~Bq™ÇĽ0ńŁKRXÓ]¬—ëG›n—Gs‡ }Ľá>íľsóžâGs÷!Ô¸·#°ń2†w uZç:‹¦3ą_‘ĆËmR*ˇ•D…,őĽ{¶Í‚ĄVµÚĆe™nUó@&;%Í]®ćLíuűB€|+ÚŐ] EŽa)›¨Á}–~»O¤Ýňmť@»¸K3iĂ~m„śŻ Löqď¤P aÄŢY [»ř`é:Ů'đ“é/ů¦SěČ„nđŹ„şź%Ń4‡E‰ŕE]áł t!ë·|)“JÉŞřÂĚR‹UE+ň•*K%5°U¨I$ uÎ3cUŘşíą¬Żcd|đtu¶* kZshËŕ2ëˇKŰ>ôoşu“Şa2#€c\0m‹ă#pÉÚRh}E˛ËĄžů“¬‘ÁĎßFÉ5®[`Ç»ýV롺xk±Ů­p`śöj ýN׍'­węĆ·UծƩĎiŠ4”Ü1E(â~ŁýÚA”AóÓdJ 0®T(ôŰ–ë°'ڦ×E+xpj˘”tš*(ba+ńčTAD+đ§2FhMĚÔDţ=µ¤Ô5‰şf#_č:Şźô„^Ě<„CJˇĺĹ\Z‰rÚ×zĄś ]Î`čzĹgB§3ÄÚ–ő·˝vYB‚őšlě´ź±°‘ˇŽťäIµ]¸«×‚Vž?Ť»ž‚/"Ň6*Ü7 ňžŤ26:&lţ°µÉNNyÝ)±Rűv˘YćA86ö®4,˛bo)čĹţd˘~”;‚aŕ,ŔPđ”®HXŽҞɭ3»iŞ+×–Q‚(›Aµí-vťşţ EťŁŕz†fŽş&Šáł•V«Ş±¬k›¦4·FٍÚX:bFË>¦×pŐ×ĺšd®ŐcŕţL¤~{.˙]Qc‹J8ş¨üÄŠŔÇT~nEŕc*˙鏩ü˙ŠŕĆŔÓ˙üŠp^ŘF`Ż|qj t|çv›Űft˙vââČŕâ^Ól^'IÝ˙JR(Š" :"ŚEoĎţc' ć endstream endobj 1487 0 obj << /Length 2955 /Filter /FlateDecode >> stream xÚŐ[[oŰČ~÷ŻĐ-@cëéÜ/ ňŇ"-¶O›Ô@înZ˘cmdR+J±˝żľg.g¨‘HŮršľXäđp8çţť3c<ů4Á“ż_ŕđű—ë‹?˙Íđ‰AFR9ąľťĆ’z"…B”‰ÉőlňSq}W]^1®Šę’ââqŢ®«z=/‹';,‹ß6%Ü˙Ś1­fžđKąš—7‹ŞőÓ˛öă7a˘Ye©kO.‹yxĽ®V÷á•ć6 mż˝,W—Dĺ}T—°¬g—ż\˙řą"Ö­€ \”­%fYĬ¦@Żá=”’ţ˝ź1až”QL[R ¶”¸!’hB‰” “čť'’""2`>!ař¶ŁúC ˘G¦ľR¶]Ć»•ĹßdL÷ކfĄ1bKđ} u®‘Ř=Żíó‹÷׿]Ă2ˇś!¦ÉD2Š0p2˝żřé<™ÁC:Ľ«'Žô~BP0¸\LţyńÁ›W˛X*8â”N$ĄH*˙I•‘ë#zB1Hz˛?fVN˘š‚Z"a{詚<ĄŮr9ZÉäR˛Ü®žP˛<¦d0Ě÷µĚ„FśË±ZfǴ̤A\ĄZ´ŚYV˱îbB¦J~ă\<[# wEÂ[u +W¤ĚAsp†Č….ʵ D«K1đ¶ńż~ř&ü®ý`ą¶1Í”6ň@Ü*ým/|RüÉ>0ĹĂÝ|Qe¸&ř–ă-V¤ĆŃgŠg™X˝ö«ďâąeAÜ…đ{}7oFX‹4ţÚN‰,Ö›U¸şŻĘş wĺ:cĺŠ!Cw±Le„‘–‰Ę*şďĹ,–É»ŚZ/fÝçža=śsMđcşě$ä5NCVd‰†`Ŕixű‚ŰĺĆŘśěî;{[ͧaҦn×~x^Ż­ýQÖŮ <‘ š*Ň%`j3˛ó¸Ĺúˇńc錭,;˙EÝÔWéZ¬ý`ăA…Ą6+˙B»ĽĽ"ESĎćő'x¤pń!#oŞ(„ËČ1¦ &řÍ™>•Hťzća…űľě Yp9c-b Ť2bĎ.R|§±ďěZuq›Y+ITk—šY"Cşcç1kô\ě¬đmfŽ [‚ß3ë€O¨Xb$Ă“t>Ľă)Ă Č]‘AfX'î§<3”Źfć!ëp’‹SůŐ+Čä‚,…üˇO†8‡0 4‰Ľk–ęФ6f “łěsVčµ Ëô6+tcv÷MvŃ…ÁĎYź‰ł™Ź$á–dçPβPVQÓ7ż>NÚ‰ę]'ILúŢ&ŮYL.ś[Ív˙6kťśé6XĎ’5Ľ"ô8~¦ˇÇÖflQđ9ËĆŞÇC˘LČ&E©Gç6MęäŮ>8 šÓC˛·ĎSTŤ0ĺd ‰)‹ł‰ŤĹBüd,Ôš‘Ř>gżY͸2eĎî¤TÇ|Ç JŹÎ9™’S"‘̆ÜHřy˙€ZwKđ)ŮiÇH.˘^1(o9dSGxčOü¸şĚÔüZM×&aZ4›µżđX “ÂuWĘ…ť6ĺ®řŘúÁŞž6łÝ áEZ,ŞúÓú.L{ë'Ű=\–ë»ÖÂFB‹Ů6 ‡ú€Ęţx*ß,*§ë\{&€ĆşťŻç_*ߣ™.švá1'Ž{‰a~ÜŮTgă6”i› Oí*őWcD34O„}iBŁFŰŕwą)°őt €W€8b ħBś´:íĹÚmĐ[gpĚäRL)9ą$˙Óđ,ąB 䊽hő‚T‘š@/¬ő”ĺ¨Óל@`b¦‡•+ź§|NŘĂSŻšKÄzâ}ĄuDyf†`ŻH˝6qšW–2ÖM÷2Z ˇnciL÷Ťf ”\Ř|áî\ŹČ]=¸F.ćźęfhŰć>\Íď—›í¨oGl[v`Q•+׸žµ~Şuă‡Ęđ¤iĂ .çŮÓéfUNm’zş”¶éĺ;$ĘúT2ňµďc„%ŮŽFŮV.OrŤş©móäη!ÄöłîŤ0ÉM ^UÓĆ~ü‹ýS­|[?m»*ëmóRč¬ZůLîf3,Ë•o6†OĚë\.}ęm—ŐtîđÜ<8=¶CŻĎéžÍ_ö$ ňô7Ž5›Á“ŐŔ€_Ťý@µÎEF‚îĄx°oâýĹä Ń*çiđ’Ž$gŔXúěč>f>©‘îĚ<„|-…ü6mřŽ@Ą0€€&8 JDć!…Ń˝äˇŇő’1˙{Çuţ•βk†w®"˘0$€+ń‚NpPfŠč%š‚f•ńý1Ó#EľÉ‰?iItňďăÂNţ‡Ěá°LpN&‰C뢆Ó^hM#'DVP!K]ĺˇJÝn”Ďq V@3>·]VlZËYăl{[Ż{Ř:ř‘u[>čµjŇ‘}Ě.k5f!"ňW˙YŻ…Oő9ÜVąmÂRť)mâ:“ł;ĐagY‡ź$BI=?E"‰çwŢÄ–“o›…Qłůmf†¤]ůYGŤť·]˝ÇŚbF 1C{ńáeĚŚŤ†Ł<$YĘľ«ž5nîuPř3LiO.fDl%/V!y…żgtŔ €FéS{F˝/˝eZ^ 0s°Cwĺ‡áŰSÂWiyŇܸ"hŢlZ_Ĺq_˛ń˘Ý,a™ŐÚß5·ą]đ|®OY§­m*nlçr¦. 1÷E%ďW™Ü›XX†ű]?-ĂßžVÎá=m= 4w•Ż.ýś®ôĂ+»-˝Ý’ÇŘ5’Ó˘m*µ›€ô6m5Ű–e=軵7ő®XËti¬˛ŰáűÁţ°NĽ—0ĎmĎ"Qń^‚«św'{Q jűBŽľ,ď—‹ŔE¶zs¤›án×áŻy,G”N ®¬„,§ĚˇîrZfđŃ[m‡şĆzÜa6⨀:*0~w=W8eçÇ^ą¬kć˛Swůí±ńűÜŢZ¦?űüď!ˇóÓŽ4äT«„˝}qdă‹÷č^©JNí¦űZTÚ:Ł×üץˇEpÖ»ňK•ł0[š]«Äëô‚ö|›=sGhŕ Pî°‡Ž‰^ŐšÉ1¤wrĹrŔĺč¨řcě÷Mz¶F {zÔ~wG„oč˘mlĆ7Ú÷UutŇw0µDëěůs;î2®ö'%í”»N*Ü<”O—B8Xa”o×Ŕhsł.·oí¦żm‹ća÷Ůrąô˝Źó«\ßöľěş=Äć.r»Ł»PâďóŰŮŚ'°9ś°eH1çͰáîIMöĄ6öěßiçv@{,“n>şh¤č•+?„ÝŻ|;~»QfĂ©=_Lu¶č8ĐÍŁďcO0Üćł=5§śę­‡öĎóˇIŠ×éç)\čkHcÇ˝ôßyFôë`Éó—Fěk€QsĘ‘Ŕg‚Qaśł&ţ0۵˙‹AĹiĹÎ9¶Đä¨-´Á’l#ás;‡˙čëÄŚ!ă<¨w†Ó@űvuĆŇÝ! ¶öfÖá_ç(ĹÉ;ďŻ/ţ ĆđA endstream endobj 1374 0 obj << /Type /ObjStm /N 100 /First 985 /Length 2561 /Filter /FlateDecode >> stream xÚÍZ[oŰĘ~ׯŘǶ«ť™˝ÁNâ&-Î)`ÄAŃ6Čâđ$jd)•ĺ"éŻď7+Ńu±i™q ńîçňÍeI“q†$‘ˇ@†©*Qo°aĎ b6śłŢ‰Ć'Q"› ü’Љ¤ĚŮ™•9“\áN69ęSŚŽő± ŠE)˝tőž7äCP ˙E§˘ü—DďA JX›őůĚu§*ńĽ †ť¨9‚u{HÎR·-ÉppşHü1ŕYOX)“n[Šá’°ŹÇŽB\)2Â!)ĹFĽKşG2ôY)ÁH îePľňPzb°%ÉzËŞ/˝Hń˘÷Äŕ!Ý{{&}”Ľń ¶ l|ŔšŚW&ô   "y•Ö”3ľř ™ŕ°+(6Ąţ*&TM{{,@Ä2R†©> »ĹXąp/9Ő‰8PAWĂţ!} ÁşŮc ˛šĂcĹPDŔ=¬¦÷°CQSŕh¤ŢKpŞT61y˙Ĺ\†(É©e˝w&QŞ™ (ßńUAŐôś‚ěá3¨¬ëaó׫0¨úÚ+gő[] ;u\]fRWóÁ›,,kWË>*=ä蔎›!>öŔ9–ú+žHUµO$uNŁÉ™ë˝ŞJ_Ă«©pl 2‡lŠ«o„ )ě«|Ń8öHŢ”PľVb•QUňú‰Ş:!ÔYŠĆW×q%Y‰ŐHúbŽS}2!T2„ą@yôěŮhüćŰ—ĆŚžĎ«ŃřâćýŞ^˙:ťŤź/–šĺ[§Á˙nü§ńźÇ/pAĆ˝Ť_7—+ó–YŤYNlá¸"ŢzŤŻ,Ö嶟ͳgf|aĆŻof|f~w9]5öe3ąY-§Í2ç/“ĺäŞÁĹĺďÍO?ŤđOĹ:3o*;ż6ăżýý.¶°#|#X8ĺüf6{włTf b”ŮŹ›r¶ĄP‡ŰŚ_,f‹ĺĹ—ÉecdýĚůdµj–sĂëË?~]˝şXMVŤj7Fă—‹ůŞľ÷K8$+ßK¸·ŔË6^Qcs‹ݲc"m.ŕw’ö„UZď éĆçËĹĺE+@¤ł—fü¦ůş2·Żą6ěůäc3Â;ĚWÍ|u­ŕ«PţZíw˝¸Y^6×k@®÷ţŇ|Nž/ľšjňgK…aÄóÉO+cŐ@G‘íŰő˛Q—y­uź“eč©7çh#ď»Ůh[ůul¤#Čeß9=ĚëČ˝ĆĆ5‹Ş<5‰ni ßk—ŰíäđÁŇFČl&.ZM˛HVŽG˙«É¬™°sĺKłĽ^Ě'łíČ, y‹8ÖĚe5ç+"E¤ĎT>—éüü×ᤠŕ­h†ÎĄţ…N,,śłđ¸/‹Ďš^}™5W0ôd5]Ě”+:‹ô;[ %†˝2ň‡°łĹ§ă‚ý2Y.©¤8ůí·éĽyŚ@ęŁ[)bҨuČĎ„<˘ćbÇÖQ>(Đjň~ÖXä›˝|7ęŹE]ć5şQćŇ“›ľ…ű˙ɧB‘wqŠ´L=ŠâoĘ-‘Zb­ÉZioî”ÍçZ‚Z‚…+‚—ˇ1ńř›Q…jŐRPuˇH¶©Äăî˙×fůiŇ|ü„Ř çźÎ†óęV+Eńđgص3ÔÂ…č0„^ăI Â¬Oâ&‰-0­PF6öÚĺX`&ţ‹ę¸j. –é`ݦóéŐô?ÓůÇáÄBÍn,ŐŠĺSĆkÇűĹ‚Ĺ>,3­lˇůŠT3mćđěŃt^5ë!™3„DOakEóc…SĎbx¤"Y{ˇëŕ!×ř="Üóo?@,rłé%â{  Îß©Í&kÁ€H”;ÚX I÷ř;§4°#ÎÖˇ©Dwlkc$Ĺ:çźL=;R•bٶ÷­+hđ‘h´łç!ËÉBiÓQHďäŘać[q¬±—Są‡ű¶¬w ĄF_frxÁÔ“›"ٸ“Ą™w;©¶›„˙×sít[IřäĽKűÝNvNÍ»:FÚ$×[Â?.vă—QNkZšŻ <`u®á©.Ĺďż;@Qąí8’Ő1dM¤^j˘ˇĂ‚ÜĽßČ‚ęQl0xÄ­× Pľ&öˇ|Ĺ5GRč› Ęôz¶·ô€{‡yS¦¨ Ţó4-óŃ2őŘ$ż…áŰ>ŰéUz\\ńz–OŻgu˛ş'n+Sć–!KTB^Ň;Á†tĽnIÓ7ňT ;JÔ_šŮěęÓx9[\ß,LJăIgŃp:†jč…‚”‰$"ý‘ĺBŃŮ9˘Ř+ ˇŮÍ9hČÜJzŢĚšŐőç:{PAč¦ëě—ŐbF§çâŁEVy¸85”ů!ůš¤É“Ą’űrCؤ/7×ĺnfÚÁEBŃWúŠŐ¸gí­ďuzCęą¶ Ń+;Pxś›tŹaëŚn㾍•xÔ3Îá`=Ň)A¶°rG{ď÷aÔs?őö`TÂ4%¶Dj‰v,ŕŰi€´„oÁ×ӵږ z„čQß–äkřjźľ¶ů×ÍdS>ë,fŕÄƇĘjŮŕuúĄőÔ˘&<©,\5  ü @!Ű ţč“XîEla5÷i]E*·ÍżĘ‚Vö©aţ¶ÝϡÎ"Y‡|¬PÄO!ήӸ JˇŐRXHÓ::-śď·TpŚĄÍé×Ń’e´ zŹ ŕ"ßŐ@”!#©čÜÎFQWŃ4ˇgýH*%ÝŻ”°—‡˝< o3‹Ë(Śň@›ş»ą TAţ B첷ąńNV*pëô=Üâj{"("Ł|ÇÎí„Öës'#vóů˛ţd?˝ťśŃ˘ŰĎh!źžŃBŰ„¶áŢŚęgf+ ó:9(ŠÓŹpt˘°Ŕ%ą‡g“0Ţá~zÎ× ăőŘć!Âä˛BÔď|´ó/ëę[G gĎÔC–4dňtk¸tž$hHŠCŞ@‰‘z@ň~đ Äó¦RwšĘ=Ü  ŽĹčÔ«|ϵőUô=k'ŃŘPAPß•µPľ‡ÔúˇKÚ#T{®íe=ż›[ĽéVÝo~šáI%ŹNRvp± §ťŽ ‹§hâ}MîÚvé7Ót•I”łÂ·5dD…âî]\\~ZN˙ůďf‰:_CF€“/Z0y‹ŕŚzęřÉĹá‚ÔOôu›č7‹¤¤í=ę¶»DĎš‹«fĄ'‡>á¨Á”čČŐenOČ˙Ă«•; ”Ł 7bÎßv°ťă…“/ÓŔ+ Ľm•g÷űt™7seç¬đ÷;†éŘgGźŰÖęµ×Čůt8®ÉátđKíĐ#oťŇü<šďţ endstream endobj 1497 0 obj << /Length 3370 /Filter /FlateDecode >> stream xÚí[Ksä¶ľűWŚoŁň Ćűa×’”ťÚ¸*•rtł“*j†#Ń‘2‡­ňëÓx8 g´»ĺÝ${Aj4ŤţúÁ«»^ýů žĽůâëď _d$•«›ÝŠ0†”Ô+)˘L¬n¶«źÖE˝˝ş¦ŻźJ˙ln»˘Ş}»»ťĹăc{ĹĹşy[=]ŐÔW˙¸ůËJ`Dřęšb$x ç>|ý˝¤ŃĽ )®'7ŕK ¨ôzçÇAÄźB¬ö3ŘI–Ŕ&˘ó6 `ŃŽ¸ŕý€o38"‚ôž3\łA2+’k1®(łŠ",FNÓHdÓýbĺéâĚŠ)2DŻ®ŁQ—.{:噹’eťÎu‰€~ÉňنĄźŐ™ź1n "xŘkš%BĚŔĹ?3\D©~—H¦HÂbS©śg8Í9†żĘ2Śy†áXđRŞĄ%k¤Ř9=¸hĹrşbžĺWb2=ŻdŽßݞüŠśâ&5ăËĹöÂ}ćH(“¬ú.s˘rë› 3×Ô845śov©Ţ4őˇÚ–­»mşűśľ€Fq°Ŕif ¬±„7Žű1v0˙§t)ś_B/Ą«Rş§ŇµÖ@`$Q©ă§¶%őjˇ: Q‚® ahó»Ł<‡Bě3 e—MßĹúüOŁĐ3ÉbĆ$źˇy~g ޵ĘÁ˝ ČbsV]źnuNmůgč~‰žś@7}očľxŹ?äV‹Čͨ%!S°ůkÓ•W;¸2|}ßL±ţ`7!Äw3@±˘–ĐŞľŐ?ëfřTúĆCs]Ĺfsl-˝˘ ß Ď!ń )&H«HšDf çĂžÖ=˝“Ř.đŇ3Ľ)B×mřŹćöÚ/Ĺ1jAÄaˇąÜ˘«k2ąńD,v7Ç}4ŚýoĆ3†Źć2ŕ¦Ć|ĐÍ˙?ČŹÝ/‰g?hŇŹš9cřßj’"ÖrDŁÎAŢç4Á‡ô5¦¸4Š…ßzęÁK¤ÁH@l•—/]]PťőźîËÍŻU}ç­ţwo‹MW—‡CfĹ D#©B ycaQí )I9NŐĂ& «t“•ĄŃíšÖÓíú ş¶€0»«®(¶EŮĐżŮ7‡c[f¦$,3`ćÇa{rá®L¶(a dîŐu4ĘÁ¬ťü60áĂÜrzźý$ňKąéś\ݨc×±„ÓŇŁq < ł~,ÚâˇěŔ)9]“€c4Ú…_3Ü‚ă0ŞĂ®m<Ń@ýüF0<Ł»ţCđ0ÂRÇ€rvŕŕfjv~˘q=ŤÝł§ěz”@ źlźl‘Ž3ąE3¤K2ŕŐp*ׯęMN7ްËWéý?łöţlĄóť¶WŻ—ĹŔ·c6Ĺ»Y©ÄAśŚ2˛Č‰9Y¨—ËâUN‘ ĄĎÇŃr=Uű˝çĽŘßrşĎđşč׉äŇ%Ž‘—Q5D92ŚO÷_p +ÓxŢX#ç›O÷%¨gNŁ´˙G&ľ±Ó^iÖmy8î;»ýOz]Ü`ͤŤóů.čŻKkěĐ®ń=QvŢş'4~Ȧ8”ßż-Ëzë-0Ľ:ĎFD|NspÚM$7±[J˛HsŕĂčdlž7űj“óaŘ@čUĐtNj'Bvł–Âv2˛Ě«…”ř°I Bż†Ö^˘8HűŘF’őĆîgÚőW»Ľ9ăä˝!@M <ŹKС)÷ĺCYwžÁžáŞ;”űťŐI×*Qî@ AgďÂęÄE˘”%¬ţLĎŠ\ŹľË›[Ö8f ¶X¤?™ Ü-C&!Řô`ęAĂl¤É±Íźç,¸RfIEŔŘ($!RHTÎéŠÍŽŹÚp’ŚjŁU˝=nRÂv=«BDmÓÖ€a ü"n4€›Ą¦+;2đ§Řű-AG…Űňľ8đđ¸/-ĺŔÖěţ3ÇldĎkwnaâV¦~§ÂÄ{°aÔëěůŹÜ×3ű«‹B?…"µ1ÔKšńĹH„Á)˙3xvşŮđƩ|ľ-`0qťÖLRťŁX€OAľ‰TN‘uá˝ö8Ű ď€|ŹeŰ=_Iá4ĐaÎ đŘćË0ĚÇ2z?óݵw©j˙ꔞÎ0ZĆB˙,";Đ’´ě¸z˙ě[ľĂłŞ(¦¦3-ź-bUü6¸Š?›îŚ.ş._ł”©$§UČhÔëlô‘ÝPţK˘Çs%Qz†™Ü=âhÔ—™ąŇ»Ďn˛_˛ Sr©r:ąFz9·3Zh¶ę ŢŇR^B!ˇőňU1L¦…ţÉ‘ă.é ʧ'j˛R™µ|&Bçá đ3w#ˀ߅áÉ ŰDÓĽž©Đłe§GŽžü]¶žŐ×mČĎÄl—¤ÇĂ–/t°ń¶ŚŹzş˛Ţ:G‚í§Ş»·-Ľ~,|‹¬÷e}×ÝBVbÍiRŁüíŘçzGźĚ'ţŕJyL†Ä c6l€8ç໫đtÁ ÉÇ˝ű©‘ýpďctTT9şĄoŚ©„Ş{öòU@ĘA÷Ä’ÔĽ˝ËBŞ>,O2Lí™îďľI şMŇq5© Hk˙ 5k§ěkĆ!jôé çĐ×Çľ6•îî?§”Ó<ö©˘đď6Ô¶]OeĎ–O  ˇś;¬‡«yx’™-Úrw´ĘŔUźăÚä6]‡©ű·9Ľ0,a‡˛¤Í\cBö{-…S}řšÍDÇHÉeĹŹ~âä™LÝSź9X‚#}ľ8¦3uâ‰5Ć\%uâŮâ¤ć\q Ź…W3ČĚ..ŽŘl[hfŞ\˛x•Ćp/e¦T&©/Ŕsˇ`ď>g7š`ÄČ»ěĂI˝žťü‚D ˝ c!RăuŤ|“ńNĘlĹ“śÝTŞÍň¦˛ńvĚܦ’¤â)ű$Ľ­ţ:á˛uwlʢŁô"Iň1™¨Ř0óë6şóˇËé/{&Év‘n˦©; >_»/đD­lú›3°•+‚BóéľqŮoÎťÁi]ţćŹo~lłEw9ÖĆ6MÓn«şčÜŤ Ä_ŀƿ˶ń“ůČĆ 0oń:ÂËHÄ˙CučyOo–9ă§×oj˙yHSk{br¨lvÓ–üű«.ř<9<7Ƕ…/>IÖŹe»kÚ˙⯖»Vi/ŰV6ËmŻ‹K1¨öß^MLë(D%>5lkWŰ0wî´sŠ”"—i•<{•8e“­p „;qAY|ôŽ~€kŮ‘ńµ·ŔšóTłdd:ú ^"%+„3WŁ+ŇNé€XݸËC|¸©Ŕú;slzKĎuő˙·Ů—EëüOÄ7˘ BĎ©őç(şET©’©[Ô—«†;K·÷T^Läxz‹Ěe¦›nřżO±o_+—›¶‚D‡_Ę-[ŘÜ´x<)JI2ę»›/ţ€…úr endstream endobj 1509 0 obj << /Length 3355 /Filter /FlateDecode >> stream xÚí[K“ă¶ľűWLN‘â/¤]ľ$±SŽ«’ŞdŞr°“*ŽÄ‘č•HIyĽůőéF7řh^;»§\F žŤF?ľn`ÄŐîJ\ýĺ ÁżĽůâ«ď3{%e’§©şşą»’Z'ÎfW6u‰ŇéŐÍöę§•JŇÄ¬ŻĄbőçrÓOMWŐ»őżoţúŐ÷ą™Ť0Î*ŢŹüőY¬!ُKU÷ÍúZĄbŐőíZf«¦Ţ>Pͦ©ërÓ—Űđ +×eÝw4­É®ň$·Ęâ¬×Rş$M-˛vŕ'˙áFZ±ę÷%Şútî©Ř–‡˘ŻšzŘĆ8W&‘Ą‹MĚV%ś¶ĐŃŚýśkśŐ^ż+×*]ýş–éŞl‹n'_Ý]µ™ÓŇr &rSđL·ĽSŃöUqđÂÚmـ«ë,ł“Č ä5Ń;Ç´e@ˇŘlÎm±Abpť™ł.§SŰüV‰AľęXpç[îSˇNBŰÚRííúĹł:÷(%~PQ/&ľö$‹±´ZÎÁoYlöTé’_SÉđźdPçřTô%t·é*Y_“®ľG:›–'ƏߊăéPľ[_kűą‹H‚ĘU˘Ť^B.']r¶AšżŤĚ%­ “Mr§3ě`AÚp"10Î÷’Ô iśĆ&©–W“N?E× /ZKĹ”Iëv9(~n?ţŘmâf,ëS7L ¨˛%J*˛8ĘÁĄ—&çˇŕ\LĚ®FéLg˘2ŁS×Ó«I§wä Ş¤LŢĹDFŽÚ9•Ł*/W7‰”Ě€/Ł‚ăŮIݏŇKašŤ§×š±ěŁM2Ó‹ZĘŞ:qŃ*€xč7¦E˝€›.i‰ô ĺBÄD¬ó+†Žź“đ‹¦GZű‰5ť[đ`|¤Äýr=é—&Âe3&}іޤ>XˇÉ53^©Äćsł4C-Ú™Őßš XÚŐžĽČK®ŤđĆĎąÁkH†qP”´­.`\iM˘Tú~[§éóü¶z&dĎđŰđŘ“~ŰŚĆ7Ńc±#đřŘUlú3Ckäbq‰SŚ<ýqhŚ("ĆÖsů۰Ҿ+_‹ň<7.ôÓťo»˛§rT3SŠ©^ćÔUtóBäS§~aó8Żýx pS™ér ŰLJ°Í°ÝĂB[ú8 ? krĆÇ»#‡PSq˙×Áă:“ …Ňq8uaÚ5A$&[¦sËpŰô1LĄ šé›đĂÍ0Ő»ÎĆąWťöĺěŚýśW§Ú®§Ź)ź¨ć2¸Ě`aăži`^Ę^ŰKČŁT8bś}<@Ü„·JA$â¶ÔvłGĄŐ‚ŘmY`ɱӆ*Ś×±bWÖ{¨ţ‹A36 DZa’|đŐ^J±ˇđŽŞ|F›12ÇĆcZa@MuýýZŠUĂëúô†'Z 1fáč&)0˛>ożŕ˛ŔŢž7ś:€šÁ›M2ÔqČřĎIľ˝*ŽŁŐj×§=Mt_yŤ„Ę‚{oŞÄęBbbSv rBúęf{‘,08=QnwaPŮß—e -°ëâtu·`ŞĹR̡ËcĆżŠXşôŁqČĺcËCÖf¶Ü/–SÓĺ˘éŚcőŰěm¶X]–Ű.€. l ăsתGB’ &´O±B?É P•ÍXÁVĄkŽlĺĐgt8@>nČk`xŰ˝ Q[†:ú-x5ÜKŰŁš'ÚĽ=Ř01˛¸'óň«ÍrUŞdtM€t„žk©@Č2@Ýŕ8mŔ,Ő©…°Üf±F"vĹę16W)‘Ź\2ß}YoË-‡ćʬN[¶]4Áh¦ŐʰĚD NSŹ) „k‘¤Ć',P/ZhůŐ‰tŠ:y̡Âm@Řž?Iúśäű%a2ÇÍyęݲ‘šq–č.«ÄČGŞFX€żw#1łt ×™!*7©y$*ÇVBSÓÉzÖüęĹdiŞâ8űGă~_ů—Qż^©H[ŔĹ´ŢŇ4m_ÔśĹeh’­ş}s>pyÓ´mŮ?ůŰ{Cś8|žšCł«6ţâ *<‘ŚĎ2  &‚In†Ú˛9js…Dg—«Ő?^ę릊_ĹB'Šťî«ĂJ§¶Ůž7e”´q?´”ĎŰ2MzF°ž¬d[ eŔ—p5ýgĄŁÔŁY˘ÍaKZKZ+ĎŤĘC÷ˇRŽh944ő5pţ‚(’H)H!aśĆcť%ɬo&KMëÚ—›÷ÝŚX;ŕ8PA0‰VЍ*¨±f€żX=F ĐÂTx íM™dSÉJřSÎEĎSMM?îR9: lăË˝M_—Óâ70aú©lďšöčÚ*:Cřĺ H«¦&GYůđŠcşoA‚U.R±íÜŇ=/,rćÉĽĆAĹ-¶Łőo1µpc˘?Ľ•ŽĎPLµ 9Ş$ľYh­Z.8z*ű3„ßcŃľÇcň†őĘ„írĘ÷#äóYLák÷ľ:ťÂ=3DŮĺ‹n¸ëI㡟›ÍßňpO·‡rńĄLĐ=I\0ŠÚ(›ĺŞnHąŚ"c5O˘ű ŔQŃr` KlµĄ:3(Lů‡“ĆrâĐ-äÄQ¶łÔK–źLLÂŐh„ý ďBHĎ–÷L;sÎű&íÂ:»j«Ýľ§ş=ť0šňjëťžČ$ŤC&ŇĂÉű1ýPĽĺŽ ÄĂvdş±ĄÖ8J;ŕ/ű»:”w=§ĹŮ©Ą@•ĄAćśű0ܡÄ2˝h€a|ÇI©ß˙Á™;°ţT‚$-¤Úźřmo¶Ŕ§ł$@M0ô5fěż?IŽC@ }/'đ•r‰~ç?/„hYfĎÂůVëW…ł Í&Ú©§ř6ŽŹ .ÝĽËÉÍ»VTĘŃ˝fBUÝ„;k“důâÚäíöPQxrN e&ČM6=ßŔ8#ÓĘz@•2`ź#VŚÚ†ŐKĹôCîÂ’%ŹŚ˘'Ť…QD†Xý6ĹÖ{˝/PY¦ó‘Ť:šŠŤź‡ZľÓöL Ë$±Đmއł°ŤKË}xŕ Dđbâ~Äŕ$óśś$Öy5őŤ ýŢňŔÁ˘âľ¤Üś ÂođţXµ/Q8&kă"ÓµÉő‰¸ą3¶ `3B´Xo‰,Ăt\bÉč?‰9ěŔgĘłxÉ`x2xĆnO‚ó±Ĭw' [eÇůUřđŽ)HÜBPöýţJá÷BşőhTˇLF5ă§GôPT­· YŔf§–ňzţ·ˇ>÷ĺ8Y,ňSÖýÜŰ *"h1A Ĺx˝°;·h»·âĂcH˙Jq4/b–AřŽ^ŠŃ,řŇ-ĆÎo¨ŇDč!Qř'ĐńĘGu2g‰ĂB»Ö•ř ˘Ż©ř·DmäÉ|Î,ىĂ}K‰‰ŘkŁ7’A§ŹóÄ`2‹” źŃő÷c‰&bW°µÔY’ąEî"§ÍH÷’“’mřq­QCÂÓÍ’O§8$Tyn 4śĂŚ=Ą“Ú$?ţN ý˛[äřM«Ěł§ÓEžÍ<󡙉ŢäŮc%Ď{ořhÖĄ^âdČźĽč&oá`]ަWGńňIŽđîbzw’g‹n-“Cćď·HNŽ3]ŢĂĎe4‘éŕĹ?DÉ0łt_ü0'ŻuË*Ŕň›±OmFżt3‹“±zŕé—ŃgĹé°ya· b|…Ď•Źäń7cÎä#7”‰ę™ňÍŹvůę*BĹüéŇTJĄsc’ŢE3ţ)>ĎpCô‚űaőőú¤ęµPëž­QnLŢâ~n|Ní[L˘”|†ň »QQĺ@?Ţý'Ęs§bÓWďf˘ ob Ňg[=Aeťűzŕ–˙L" ť†‚˘ó«PĄÔlĐw7_ü ž˛2 endstream endobj 1525 0 obj << /Length 5185 /Filter /FlateDecode >> stream xÚíť_sÜƱĹßő)6oTŮc0üQ®óŕT䪼EWUyp’*†˘ÄU(ʡä8®[÷»ßÁb·{z§É9”¶á딫lîŞys0 ĚŔbÍćͦŮ|ű¤©ĽúôłŮřŤď&7řiÓĹÎuŤß\ľ{ňĎMR}»ŮIź4.LcÜü¸™ËÚýôťóCӆ޼ˊmt!Ó´ąŮ<ůďťľqÉ(ý>˙ŘýŁĐ^ľ›•ŢMSŰťćÝ,÷SŚ)˘‹Óíf÷‹ů˙ţĺ9˙öőćO»ĽřŃ…®dľ0ą|€ň‘Ö&_׺Ř6^ć‹Á M7@ůHk“/ö®źB”ůúÁŤĂč$imň Ťű~Dľ±uMôĘGZ›|ctM×™oę]ŰvÓä#­Mľir­Ă(ňyżŰĺĹ6 ˝.Ś?ŠŘv.~čˇ$6ŠŘ.öMěeÄ0şˇ‹‹HbŁťw󛣱u“#‘Ä'ŤH=tŽ*()µ6ůr”Đ{%ĄÖ&_Ž*()µ6ůr”P@I©µÉ—Ł„ŠJJ­Mľ%TPRjmňĺ(áť@‰"6ęar”p@‰"6ŠŁ„«J±U?ťˇ„«JńI#RŁ„ŠJJ­Mľ%TPRjmňĺ(ˇ÷JJ­Mľ%TPRjmňĺ(ˇ"€’Rk“/G ””Z›|9Jx§P˘Ťz%\P˘Ť"ć(á*€ElŐOg(á*€E|ŇÔĂä(ˇ"€’Rk“/G ””Z›|9J¨ ¤ÔÚäËQBď””Z›|9J¨ ¤ÔÚäËQBE%ĄÖ&_ŽŢ©”(bŁ&G W”(bŁ9J¸  D[őÓJ¸  Dź4"íÁ9J¨ ¤ÔÚäËQBE%ĄÖ&_Ž*()µ6ůr”P@I©µÉ—Ł„Ţ()µ6ůr”P@I©µÉ—Ł„wj%ŠŘ¨‡ÉQÂU%ŠŘ(bŽ®(QÄVýt†®(QÄ'ŤH{HŽ*()µ6ůr”P@I©µÉ—Ł„ŠJJ­Mľ%TPRjmňĺ(ˇ"€’Rk“/G ˝PRjmňĺ(áť@‰"6ęar”p@‰"6ŠŁ„«J±U?ťˇ„«JńI#ŇŁ„ŠJJ­Mľ%TPRjmňĺ(ˇ"€’Rk“/G ””Z›|9J¨ ¤ÔÚäËQBE%ĄÖ&_ŽŢ©”(bŁ&G W”(bŁ9J¸  D[őÓJ¸  Dźö&3ú|ĹÝŔTEn.ĹFĹ ÁTEî.ĹFĹ=ÁTEn .ĹFĹmÁTEî .ĹFĹťÁTEn .ĹFĹÍÁTEî.ĹFĹýÁĽź#7+j«nGÜ"ĚeäaEm•RÜ%Ěeä6aEmÖ…ç7 sąSXQź6%µ  UĐ”bŁ4TE@SŠŤ" ĐPM)6Š(@CU4ĄŘ(˘ UĐ”bŁ4TE@SŠŤ" Đđ~Ž€FQ[u;4\F@ٍ­R ĐpŤ˘6ëÂsĐpŤ˘>ń°™C69ľńP…8bŁr㡠Ťq,ÄFĺ(ÇCćXŤ"ĘŽ‡*4ұE”cUh°c!6Š(‡;ŞĐxÇBlQŽx¤ýňXŞ­ş9č‘ĘШÇRm•RŽ{¤24đ±T›uábč#•ˇ±ŹĄÚ~3Š”đě´”Úc&O*Öă‘Ô~3yR±ʤ+ a&S®Ö˛v…ĚěJU !iWŔĚ®T’Ö(aŚnj†p”Ş@BŇ%L˝D36ĂQBŞ Ik”pě\;eBŞ Ik”p]×ń(!U„¤5šňÄ·®ošI&äj=!kíGZÓ©GvĄÔ~ 5yÖaWJíÇY“gvĄt…AÖd ŔNŃ®0Ćš]ë°S´+ ±f×:ě­QÂvěZ‡ť˘5JĂŽ]ë°S´F sرkvŠÖ(a;v­ĂNŃMĘ’ĂŽ\Ř)Zű±ŕt«»Rj?ś<ë°+Ąö#ÁÉł»RşÂ0p2`§hWήuŘ)ÚłkvŠÖ(a;v­ĂNŃ%ĚaÇ®uŘ)ZŁ„9ěص;Ek”0‡»Öa§hŤ¦ŤÉaG®ě­ýhuú:¤»Rj?Xť<ë°+ĄöcŐÉł»RşÂ@u2`§hW§Î®uŘ)Ú†©łkvŠÖ(a;v­ĂNŃ%ĚaÇ®uŘ)ZŁ„9ěص;Ek”0‡»Öa§hŤ&¶ÉaG®ě­ýxzúb˝»Rj?śž<ë°+ĄöŁéÉł»RşÂPz2`§hWIĎ®uŘ)ÚŇłkvŠÖ(a;v­ĂNŃ%ĚaÇ®uŘ)ZŁ„9ěص;Ek”0‡»Öa§hŤ¦ŢÉaG®ě­ýşE«»Rj?ŕź<ë°+ĄöăýÉł»RşÂ`2`§hWëĎ®uŘ)Ú†úłkvŠÖ(a;v­ĂNŃ%ĚaÇ®uŘ)ZŁ„9ěص;Ek”0‡»Öa§hŤ&ĘaG®ě­ýś|ŻoťvŠÖ~R6­óNŃÚĎJŔ¦uâ)Ú&%`W€yšx…Y 2Ű:ő4ń Ód¶uîibŁŚ9ř2Ű:ů4±QĆ}™mť}šŘ(cżĚ¶N?Ml”1Ç_f[çź&6šŇ( ŰÔÄkĚź@#I–Ú5¦O W‚ĄvŤŮČ `©]eę˛E0¨W™9}*âU&N`_„ŠŘ*¤ !ű$TÄV! Ů@ˇ"¶ )XČľ ±UHCö`¨­fd4$_„†ŠxŤIhÄ"@ĂR»Ćä аԮ1Ĺą4,µ«Ěď@¶ ń*Ó;°/@CEĽĘěě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶ )hČľ ±Ő´Q‚†ä‹ĐPŻ1ŤŚhXjׂ\–Ú5㎠W€†Ąv•I(ȡˇ"^e öh¨W™‚‚}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶šŰJĐ|*âÓ†¤M]а\3ů ˘a©5J(hH® K­QBACrhXjŤJ’-BCElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶ )hČľ ±QHICňEh¨O’¶"AĂŃ»¶Ź!"4,µF  É a©5J(hH® K­QBIC˛Eh¨­B ˛/@CElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"6 )iHľ ńiCŇ$h8Eץ˘a©5J(hH® K­QBACrhXjŤJ’-BCElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶ )hČľ ±QHICňEh¨O’Ö]ĚrÝL®÷­Gh¨hŤЉ®ÉéşÔ%s]“+0Ůu©5J(§»&[dľkElRĚxÍľŔ”׊Ř*¤ôš}YݱUH1ď5ű_+b«bęköćľVÄV!Ĺě×ě L­­BŠ °Ů[…”s`“/2 ¶">íÔĄ´XAĂ6¸aŚ˘a©5J(hH® K­QBACrhXjŤJ’-BCElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶ )hČľ ±QHICňEh¨O˛íÝ0tá†apS'†ĄÖ(ˇ !ą4,µF  É a©5J(iH¶ ±UHACöh¨­B ˛/@CElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄF!% ɡˇ">mČ®qS7 G4Ś­óˇ ô@ŔBk”P>đŕŠ<°Đ%”O<¸"Ź,´F Ź x°…ž XŠ­BĘg’/ňpŔRlR>|‘ç–b«ň ä‹<"°[…” $_ä)ĄŘ*¤|N ů" ,ĹV!ĺŁÉyV`)6 yô´Ŕ/ô¸ŔR|ÚiS÷­÷ť¤aß»ĐĢa©5J(hH® K­QBACrhXjŤJ’-BCElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"¶ )hČľ ±QHICňEh¨O˛OÝďÔĹ#ŽŤë†ÉC4,µF  É a©5J(hH® K­QBIC˛Eh¨­B ˛/@CElRĐ}*b«‚†ě ĐP[…4d_€†ŠŘ*¤ !ű4TÄV! Ů ˇ"6 )iHľ ń‰Üüŕ#Nťëc!–ZŁ„‚†ä аÔ%4$W€†ĄÖ(ˇ¤!Ů"4TÄV! Ů ˇ"¶ )hČľ ±UHACöh¨­B ˛/@CElRĐ}*b«‚†ě ĐP…”4$_„†Šř¤!Ó·»źÍćͦŮ|űħźÉ;i»É ~Úś'ž»ůŹ.ß=ůć哯žwăfrSßö›—ŻS¬ŢM~Řtˇw]ZŐ—Ż6ßť=ßľůáîęéy›łÖůgOĎoÎ^^ďKwW7·ďo—˝ľ{˙ny÷‡_Ľűţ†ţ.şáé__ţ‘’^żz>s‡ś§fNY7çí”Ö®_ĽĽŢ~Ř›= Ă™0<üćĂőű÷Ą7wO}<»řţz{yqsóÓ^·˙ĺó§]<›×h·$Z+·¬ŐźźNíˇz}ńŻ«9ňfnş0·áÎěýéĹü›]ëĄÂ8gďÓ<Î 5ť_T}›­aź>ľq“‰ţŇř~щ–śďűÔDÚ Â®Ý/Ć »!mW™čk%Óä|ÓĽ^“ :7µăAđ—&6JŕŕFO˙˝±.†ŕ·Ę:çŁ?~RctmČbčíŰŚń ůŤ˛´ë…ˇV&ŻŚl׾§ůB±]¤xµ5¦Ń?¶5Ž#¤CA4Â=ÍĺSÇÔÓRŢŞŤ>ÄéhMÄ"7t·gŰ)+3Ąî®=jĎŁ…´mą DlĄ“şŚÔ3Sd Í'Ţł&cuM˛?ݓ«BI|Ł.=oëo” çmÎĎ=@Ú”şî:Š˘_šlú%˙kż´jżTíüŻ“YǤďÍécčŃ®©ű%vMAlĄ-Ăń™ÚwMé8/Úq÷ű›«‹»tĽăŮ—Ë!Ö˝tM:~ť Ă,´;‹źtudwÔťĄÖmkŃ:ťuuíÔcV±t60ßÇ¢‹ŰWűĂî÷Ę&twúůĂB[éĎ‚OţŤóľý¤<Ü(ß)†)R;=®EZeCę$çé›ţ¸×O{/m^żt>ĺš´Oĺݡč/ÓľťÎ+ÎSżšv ĂXl:˝C7ŹW)Á+Ě=Qďj$m[‰ Q^4Ň=K0 ý`#®”ĄŐéź0ËňLś¶ő<őÖâtL˙Hűzy_/NýÇŁeČÎ%ş&жńű÷·¶Ż®îŇOýŮÇÝU†ôćčÄ?UŻ,Ůľąţ¸˙Ýëĺő›«›«Źţq±üëj˙Ű‹·Ľ™ű¤¶i¦D›ĐŚĺĄ$içýúËÝe€ó}ĐóÄż)îwűEűýÝü§ď_ýpyő ąÜĐşă‹(ĹuŤË‹ý›żď%Ż®>\Ţm˙~0¸ř )ú“¶‹é§~˙ëÓpčgčrŤĽäzµ]şwíH~Ü~Ľ^6†vw‡źĐUˇO?ş˙C»­$żI™‡Q=oň Ő3Ť™\{ÍVé)R1tüž/ŕłNš<°*ăńŞřŁSž€ž°„{ΙÚUă­zb–ťmUęĹ0<ćd¦˝ç`°?Š!\DkňAĘ˝ Ú—rîĹá#VµŘźÂĂűS–â5ńGŰĆăVĹ7óă¬jQôs }nâĽ~{ĎçÖ=âsó«®ěăzÂ>íoţá«g“wíđ9—Ď~íŔÖühUú©¶.ÇťÖg ŕ1׬ţşh˙Ëč˘m{×nŐ޵űy{W{.švŃá×.ú—|ŚíOuŚ]DčNň˝D_éăűStńá˙EßWşřv:Eßť˘»ůyLŢÖ8ţCŽÂOńÁÍh?ď˦ćŻx'ůmÓrí­ós®6»@—*ó˝Dóĺµ®9ű¸Üz”ŠG—čRĺőű»ĺÍ­Ň×Ě·FFţćđëÚ1ĹP;¦/6ĂŮ7ď?^/®CëĆ4}¸cDîAęÝŘžä*áBa_Ž…Ď·3\» .&$Ş_ŽÝó µÁuŘ4جBkýŐŻä®x1ww 7¤]4íˇËőüý—&?^o/绯—ë˝ĺú‹ĺ‹‰üňüż®î¶Ż÷÷ţđa{ű†˙pI"Žbłë€Ý˙‡ËK%)xjćË‹›ËR·óţîŮ}7Pćç~®źćÎnp]żďě^ř§ç±ŤgĎľ^^ż»ýëňćüwËë˙ěëŰ/ßýć»íŠĎ–—íňň_űĄµËËŰý./Ýň˛Ű”żąâŔâůŁńĂŕĆäGóV5ÝŠĺř#Ó·Şé˙ţvŮT›íg4Ő—ożŹo*5•Ţ8=Ţ8Ô8ňy¸©ÂçlU>5–·j¬RĽkş1LfŰ•SÓi¦óYÔa§tËË‹ĺŞRľ¤ť*HŐîĽdYtŁ,łý”e¶´Ě¬[‘ç€}·ĂÜ|_öşřĄooř›?Ľ|ň:ĺ{ endstream endobj 1537 0 obj << /Length 2997 /Filter /FlateDecode >> stream xÚÍZÝsă¶÷_ÁGş=!ř$€ľő¦ą4m§mĎô!é-Ń6ŠTEę|ţﻋżt´ĎŇÔşÎ$Ä.ö·ß Ě“ű„'ß]ń/Śţĺ‰H„ÍXfl˘µf^šd˝˝úO»ľKÂÖ+Δw&yLpů‡đ/ľgÖ[.pY:¦tć’~Ü&WF3a¬Iâh’*ąú©§ăVČ„ĆdÇ~ů3ÂőÉ$3žË ¶q`żĚ- ,s+%0Çuüżß­†—wÉAđŽ7Ü« Ní'pł¸VI_/úg„ÝĆ5×$şeÎŕź1ĺ÷‰ŽI§ąMwL{®`My&Ľő@k™±™öÉúâŰq‰ôâ Łš…ŕ€V{˛FĘ·~yę\BdLr°M’9ĆaMÔ/ …ˇ&”MŘJhoˇ9Čl¬M¨ĽćÎHJKmć0ˇ7Kä—GJJ–§ŇéEÄźzŮ(Ăé~¶D{B({+őÜŐ„ÔĚJ®¦Á@ =D¨Ś9eĚ2d­­jů_)ńút°Dű€ęŽéé,S ´—A ł ¦G¦2 xdvjŞĚ0áôTŮP¨%0<ËP#íW€9(;ĘăÎ1Ô@ű–F›eĐž1珮ŮçüŃąNĎůK´_ç¨îÓ“ţí… X vÜeG¦r‚i©ŚśÚĘ+f RĎ4n%ËôÂçXk¤ý PGŤGü9Öh/ÁĂ…GÚěČZ’{f-WSkI)ŮTă’CzË”=ÇZÚ·„:DÔ¬@§8oµ™t#ĂҤŃL¸3öÜnd‰ţň`'wŤ“»‘ÚË W­Ń8c72,Ť5zÔ÷y5z‰ţ+ •~zŤ^ ˝„YíĹ8˝v-Đ^Â,ˇŹbśžĐhß řĚ‘$Lj-'a3YĂĆ*¦ŤQg‡ÍýĺŃNÓĂföBfa3ŠqzŘ,Đ^Â,lF1N›Ú7…0t?ó°‘Ž<›„͸4„ †’ă2Ü‚Ď ›Eú˙)ZřŻ˙˙pµęąZM~şzsőÍím~s—H¸łzżoĚĐťŢl’źÓĺýa_\ݤá©dň×+%xzó—öE•weSÓÓÝľŮŇěŰOůvW t`ŢëßüĺłźÖľůŕőD‚•SLhź¬ŕ3†$ř)¨ tj¸1Ł8T‡ú°KŃ®;Ë2w‘qÓ:AU–ĄÝC±żV6-îq٦·˝Ţ6×ňc±ˇGŘô‡}qˇ¬i^?ŃÂ.ďŘő*3>ý¤&¶ýA4i‘´öŘÄăň¶\ÓIAşlß!@§ŔŃz‚ů^ŹČÎdéCţ1În3ÍĄ´őSEIÚŤý¨(؏ײqÓ/\d‹ őŕŇü»Úa?˛†›»éqż[8 PCü}á,»tÖĄ ÉE6FÍŽËëÍóÖ|c¬{ńJ î4•ÉgĚăßŔ<ň˛ĐÄIći›çͤȉÎgţJŰ?çPłÉhK\sJ ҶĘô–ÝCsč@ř¦vĂRýŽśÇćPmbC4ŹžËŘĺqŚťyĘnGQú©ÜNş¨_†÷x´şTŚîB(’D+€€Ň1#\ôVč¶ĚőJpÎÓâiůľ ÂFUMoš-X˘í%ě!äő}Ѳôfźś(´V™˙<Š&­\żg%ˢh7˝çŐ}łUo§ľ,ŇźŔA ř€8dÜ޶‡-Š„ÝCŢáLŽaQÖ»C§oH?÷V°/¤\ń’Ôžigú G!'ď‹|¨<Šł°„[B=#‡šĐđŚ r <ňşŤ}¸6\Ű@+eK/iDÇ ×6u~‹}tXF5좆pűÝJ%0ě^)Ô´Ű|…řŰB=˘Ľ(÷ĺµ4éGôÚ˘ŽńofĽ;Jn·Py Í•ôŃżpîBüá (NÇm> ţÜŕIĐççAŚpŚOĄý3!gIĺ^Ƭ˛ÁňAÍpnN‚ôV‚•€–z/j{™ËÁ PWD/ ĘĽźŁż-şÇ˘Ŕ0ö2LuÚ[iĹÜčaĐě¨a ~ď÷{0JäHáúŽLŠŚ'uÁp6ő|®+hBů†ůCSm‚ëiť~÷í0G¬!Wş†zSkĎ\&ŹËft‡®¤ ˘†Ü¸+ęMQŻ zwżĎwô*H¶Ż› ĺ~“ŁIs°$U‘Uow1Grb'AďB+P?˛ľ;»g‘â=@‚Tľ”±¸(!¨¸ŕ$ŽŔe6ICđ.c"Ö|EJÇő˛Ł«đ¦ ‰ Vę&ňÝćżaŢ-č©-ę6NC ŔX5ÍoDťG’Eg‘îűV˝Â[ÜÔ[Ö˝@˝;’ĂZČ~ćč:YvĹ~ptŁĆEq dG#ĎđÝŔ‘|\ČôďäŃrJé{'—Ţ Ű=M—‰zŰlĘ_8—!ůÂó‡*ÔѧÍę_×+\űWľs“ÚpgĐ…H?ĎËíC,Ř–’;ŽŘM”E\ Í‚í+%,Ě<žg٧Ůč›ČaóŰ›fME"0˘ńŻ·¨B/lCwcŁâPxź­űöŘb+˛ä˝±%WTJ ˛Ź™’Ö×UÓŇ7xhvŃÂř(áB@÷¸c“Ż&Đ‘kCă$âcü´»‰ÓĽ"„7}şŹld/»¶¨îBň‘/eznB|IŚyŐ64ć«-CQħ Ż‡Ă‹®XGšMŮţÚ”u˙4t9Č&t90şśébŹ­ĺ€çŹZ=¦:ŻČC«– ף»Ůß‚ůą‹–„Iě_$÷/ő/N©érLŚUî62ĎiUĎh–ЍQ îëۂŠMÎŔťľ]!çŃS¸:ć•<’v,~WéťdálÉ´˘ë–.ŇgA— `ř÷ËńÔ?-\ň𠬚ť*dSĐ—Ä‚;ĽJŐë|°ěč{Ďébz}ÔG=§)űEMÉ™LčÜ W7Đ÷oŁ"¨ăĄ†s~żpŽfř‡Ë|v­ź!Ę ěř)"Ň®vc ëçťÚyű%÷łgąź‹Ňwp8‹ÓľíH¬¶+v4+Łp!ŻŔóýľ9ÄW fĽö*Č7Ău|n&c ,Í‘ťfôľ~†ŕ×gÜb ŕm[E’ä$㮿'Ć~ÁIyx^8¬q·]¸Â5ôű;Z&ĂHüYoŔT`¤°o×+ʶkée‰szš@XB:¬†Că…‹ śp(â*VËA…Ě=ąrJ/ŮÖŹ˝.†+'bň>ý~°,Űp–ŽĹ”JC>[ €oĎ’T“ľ†wQV$i—DŤ^ypn/M8AŤ„5GŽßőZ†G*jŘE&Ĺć~ĘoéstoF˝2\ôK9(Ůěë^×ĺë‡Đb ŁäáKÎľŮíKhśz(ĺ>ŠJq=üb—ɤ…ËR0Š™¤žíúöćężpHú@ endstream endobj 1554 0 obj << /Length 3375 /Filter /FlateDecode >> stream xÚĺ]“۶ńý~uÓÁ7Á¤/M'N“tÚ&ľNlw†'ńNśP˘Ž¤jűßw_)śîlߤťń´Ř]ě Éî3’ýpE߇+ _’ŃŚržJgJń\SšmöWoŢ‘l ?ţ”‘Ľ(‹ě˝Ýg\(ʼnmöúꗀ컛«Ż_i••y©Ęnî2*hÎD¦¤ČĄ–ŮÍ6{łúS{ßő͸Ű_Ż™$+úÍő»›źľ~%t4Oą”š7»ÚÂî»mó–Vom˙UŰ]S˛ú¸]˙ëZ“UŐ»ŞmíoŐśLwgż?_3ąŞŰöŁíÖŁ‡Îmă-‘„–ĄÚ@"gaußߤ¤%INXń9Ňş$5 3X¦É5/¬~<OcBT̪ˉę›ËŮ›5ůüZ·ŐŘt‡ÁN/E4]ČĽÔÚO˙5@¨Ľ,¸F•+š­i.`Ôlą(XA}eĺI,¬bńúX^pOň-a"ÁW™ë ˙ŁűťÇ|ŰĚ|›ZXNeËCC‘˘ôL˛@I`ó0ěBakĘY.„‚ÍKé ýď§1­2NsBÄE•ýó¸­Foćýý:/'\—ő'/č[<‹ †ÓfgÉŹ»ĘyI]ů1ĎRJlT§^†#s´écŐ€śÇ:GoۦŻ7FĐ€µÔ9Ĺ\ÇjÜąiw}·OY‹Ę)¸ńÜŕîĆ.ularŹăh^Ľµ_š‹iŢ÷Őqg€ˇM’Uđ‡†Ę/-& 'R:*¸ő˝®Oń ~¤‚ůô gUąžxf‰Eip“ ą7$ái:geůl_=$(rZŞ)b’äcÚ1軄H@?…|lŤ Q]B0Ö%E΢:/uę$+€k0MÔ}źTEšČ¤Ć8źÉo¶řyOű ŃĹ,÷`&Ü«K“™×:‹Ăߥ´»29sQzF’Ł* ô‡_$[\Q¤xšY­T@ڶśŘâ Í%qÁhĄŰPcg]ŘKŰ˙—F+_Âh/۬*sĆ%ج;{Âf!Ě ů ›U"WĚ٬HpĹao”üSĂËĂ˙ą¦4dÁ…Î$µ¨'40J•OkJ2€Ó–¨Lp™·Bgs—Nµ4_xÓ,¦ ŽÂ^ňŐ#™R´‰¬YÁŃĚVö@Čd®Jú Ď×Ć>© ¶ĐCBŢ%€37ę'Ä †ŞµxZÜ`ř¬pâV ľÁ5ן•üĚ$dr‰8ůy4ŚË§Ą©ÍěżĚdŰÔ$gP ×1!CâNLń\bú>±ĄÉxűHsGŠY"ř–Đ”ěÁ‹•ü4Ń÷‰uBÂ#KăÍ",”&Ř‚MHÍÖů…BSĎšţý…–ÖT*W„¤E÷{jJ§45ŹŚHîMŕ /Ägfn2IĽŽL)4b'J:Ă ß3č0;Öć=& AěW‚¨±€#‘_MPá%+ÁÝ#Âx= ÖĆÔ8ۤŔă3ţę6,jw 9ŰěČš.sĐJ §Q Š„.?Żť~\OżŢeżíqaë <ŬНŕ;/ÉVŇľ4Ě“elÎŹrwú˘ěĄ7 nOüq…žĂľ(@ňMĆđNŕţűÎLÜ>&\ŔBaS2˘cŢ ‚·Fö›­Ý×/ç˝č:üR\RçĂuXIäI NÚ K×¶a˙ą+8źůŇk€óżOb×>‹]Gi¬)ĚjC>ťć ÝÂťX^5÷§+űś¬XÎżą^sBÜU&Ź.P GÍ­ăеÍÖţXő}‡5µ÷ą…4cÔ_ †ć~7şßîě7¦I-f˙Ówu[ŹĂo•íŐn˘˝öäöÚÎIĄżőÄÚn|RÜ]T3ş‹”±ŻC36Č箩\ą[ŚMŰ ČÄěR °Á^ާ/ÍÂ÷cł©`/Ľ~t·!Ç ‡OmŐ_ â/[M ‹ďťŰ:Uápş˘zQë{ü©ĄnŐŕ„U˙ń¬cńo bX÷ž•qÎ.}ĚzŃśĚE¶ewĆţ´“µťZśŻtbŃ^‘F5|–äP€Ĺ®#¨K·ŤkZÚ«5‡âú3nŤĎĘ\ĽL\WĚÎůü/5)ÓƵ–É5xˇ"Č5ĺE+đ„`lş;ňD/ŠbµŤn'`;K+Ě›[93»VĽwډBŔŽJ¦Ę˝%Ś%č XCyny19ĹĺŚÜ1A7“2&÷串HʰŕĎ v@čDO-ź=kůěy˧—WżöC˛âŻD‰ď ¤ŕĎŞ§‰çłë– ®bý6áFk§"‰ŘŕK¤sĄęx4M¨ž=G.FgZş° ýľOýÁ¶ml€Ćé`74aÜ iý„áÔŽÍá>˝(lGš~ůŁŽÄ8[z5,XLîŔŻß Pw—Ľ-Ç*—–µMc@nď÷9ľ(btľ;}oß%PŰSÝű}şVlĚđ{΂fĂÔâ–aĆ€m řţşíşŁ#ăđĎ´J­VŮędo ¤µŤKq•*Lb^DcRĎ®ÇÎsĽiOŰÚvü{#™Ę˝ś`J䜉ądďqş`Ź=›ŕŕ„^~6ÁKţÔł ŞřSZÓm0$VÇnš[ă]ŔŢ0V®ĺ3äŮ\AAٞź÷»¦­Ýtëxţ`[O,o“Š‚^âSAj]<˝Ö‹ODfďš0' ĹęoÝX{nÍSáUhW`<|®8 ‰Ĺ[Ƹ•öšÔ“‰1îŮ~…GćŚ ;Ćбᬠ›Ž RÂŕĆúîtżłťşęۦîm'N íČęä› ™‹/ş·Xx çłËČrëöÎň°«śśAą ĺ\ηµ±@| O¶ Sm6]ż…đl,LÄ``·`ť+›î4¸_|Čr}łŕkc,śF”61Ł 6a†ˇc2jŽÖ˛Y čěř{|ŮťÚí,ťWžk@"Ôj8…·ńö?Ż®p×á¸9MSF‹ă Ĺę48éĐ«TÎ úĚ«K1żš˝ŕČ ™zĽG¶)Ď+rÍŐ缲yxŚŞŽ©nşýńdÔŹ‹FmŁŚq`®v2íTŘE­ű)î±FŞž$íVe­Î2JĎŤÖŁb«ż6‡Ú¶TnŮř‹=wÖÓ~ÎaJÚĐhŕ+Św–·íűM~;Öýp¬7qRŕćŰf°ßşŚócŰlTĘě—–Ň`D·műÄdy4˝íF&p(12„ Ę­‡+~wŐ5#!CA ë¸ř[p\ě4‡€Ă Ő޵"Ť-¨Ą"”€äSŇOÓĆK¶şŮˇ€ĆĂ6±é^`ŃĆ}>b®›"ilOǶŮTfĂ`n›0‘VŚ"0/ ó2ÂćĆ(§áTŮ—ŃŚš}˝ďPlVv[;xűŃMíŞ¶6†š>–^Łę;‡6W”.˘1żš„2­Pď8ĚçŔ8֏ݵZl)X»‚ť@v&ć™ö­Űv‡ÍŁ€Ăj>ÚΦjĽÔ–g0•×Xź×:†±Ő9•„ĹŰŹ±vIŃ/ %ŮŰW˝(m+6ičëÍ©ÔOŰšę€t–`U»7;Ú®ŢŔ¦z;:,0ŚőíE—‘˝hŹ@Óčŕaşźíľo }hMƤ‰5&¬ěWŢÖŁ)zÂ]U, ·młÎ)/—śŕ€cbŚŢ:9ÔáCµ-Hç~6®ßČä{8Ĺő݇f_…2Ťô’€•;ÂUë•âŘ—îčŹ˙Ť‚±ŚÄL –Rű‡ÎCçž_Ç<“đÂŞr5Ą <_x»ŽÄµ))ŘŁÔ‡ CşĹ!,/“ç۸ŚOP†¦ŮIsá •qńb•;…«eúB-ÓĄ?0ôęZŔ†q˛łíoÔMżłÝ¸¦)\MSřš&źŐ4żZ¬bžţAţ'ěŃ]kWÓbL.˙úăż?5Ʀ endstream endobj 1573 0 obj << /Length 3271 /Filter /FlateDecode >> stream xÚí[ÝŹ·Ď_ˇľIČłü&măÔ©[  }pÚbOÚ»[[ÖŞÚ•/ţď;CrWäŠú:ßA§Ą¸łäpľ8ż!ULî&Ĺ䇯ŠđüîÍW߼˛bb‰ULMŢÜN(çD+3QRĆĺäÍbňvş™q=­Ö›™Óf±ťW‹Ů5“Ĺ´^ůç+|Qßm=ťďc„“Ů5§ĹôÍ}Ýú>˙~Yvuľś—ˇq>[Tí|Sßô3”íěßoţţÍ+Ĺb‰RtrÍ(áZxo=™0™ –X¦#řą…§I–ˉˇŞ§ů%đd!yOđmfA¨¤=Á§,‚ń šY‘"…‘=Í2P§fg,FŽŁ(b57=+brM‰°Ał,łdN,0]°ět.ž›+Y×Ţ\çč]VĘZĹâáž aÖŽx¶4"Đ„ÚaQ/2łXB‹A—,3…$ÂŚ40Z‡Rş'řOfKÓŹÓ!MćŃ’Ĺr}‘ťKěRny˘Ů Qž5kŘŁĚdo9<łśĂĘáÔ;Ń×ŮĺHůěÚ=:ÝČË™<°LŃÓŮ1˘e>âü€×Ň‚H:ŚôßĚ0׬€HRH°0!.ÖŹ4&vŽ1 ëŁgÓHĘĹik1Çô”x×Ó;ĎŰČy>ĺąĺćŇȵgUô ăć§Ś[}vH˘ÇVšěç8!{¦XŁíg™ĎĹ gîx'ŁÍX!üIőq:})}Śó<)Näy°V=čě.›{±ÝňÇ ×\hŘ…ŚO•'ü±é0}6fÚÝ—]ß ]‹ćCéuh7·Ł—ŰőCé˛rĚ·ŤgčřÉ RřŹŐfY®[ßóPw÷Ła63*§ĺęi«Smę»űn VËĽ¦”X™ Ś~n^hq 5ýXĎ+ßśŕ$myżťŢĚX1ÝvţĄ_=~ŕfĹ®~őŘF–đąŞ`0ŽŁÜź5]1öř#uÝ…®ća•¬AőkHđ§Á‰( ,AÇŔľĽőĎđ’N›ŔMŃ@)a)@©dŚÖ˙đbr_Dł·~@‡°Â~ÄۦÇiŘ Ŕ+Ł‹uąéjśŘ1AęuŤouˇ4-¨)3ý)ł;QĘ ĄĆďO" é‰I+ÂŤšDDn=L©ě¨Śex2(Íć =°DȨŕÓö5çř/۰ gˇĐx¸Ż»Đô,@ăfYÎŃÄŢűꋦk{ŕ“íc_x`íĘI˛<Ü2†Ţ®«yW¬–źfRNV~˝©—Kßwĺ1đC€Ć÷ĺGŻ+j`/ć‡1˙™‚&ťŠżČ„FČŇQDT/2‘+Ůr€X$‚§yÜ™LŃ'aęW^OR ŹY =QNí4+Ťh»ţ2Ň8€÷Ą}„0ž'#ý˛ <·2A%ÎĎ–~>úý %¤'‹ęŮRţ„4 ëFĽčc;=´Űp{NdżˇČ.ľhqWśSÜOSÜçwĹďĹÝCđ<ą(`‰g.î^'ąžYÍŻ śţ^Ü=RÜ…Ö.ËnĽÄpó¨­>ÍÖńí© 6[cX»`iÖk„ŃŚ¤Ťź‹‚ůZDç;¬Vń‚ýŮ=ťn׋˛óÇňlęjA‹ óĺvQůζn]ň¸Ż˝‘Ó*«Ňs`Ş2ěa5eó'BÉ1˝jöÉPcM*tarĺ×çKCĐż(Ű{żx &ŕ/B<„OV -ua¨á`ˇd-ŃT§őÂp7˘Ó•Ł}đ?˛ä„Q›Ź’©e‘d]ý ÍÍǺٶËOţgŞ…mŞP®wľlZoUÂJă;k4¬B#­š.Pă÷}Ĺq¨Wa'h´ŐĽYő/ă é#DY‘úw^ĹÝÔř\4® ©ÂäŘĺęa®ĺJśđ¬˛~U`ńBÇňă5aÜś:8¸kÁó…¬$‚PRŘ˝ęćˇQ!.őÁNśeľ ¨’ĹôoÍ3#W%§­šŰ|@Ę%ůŮęŕQţëÖł?ü•Óý¤&ND‘b/CŽűŰŠNńÄ aůąAâęö¤Śâ44Üôµ{)±8ě"E$đ§«÷I ™ q­~9öN˙1úćPgF"wz ĹŽfSßŐ«réĺĎ ß;dq—¸Âĺ,$ôT˙ŰÂľłńĎěÎ\p"(Ë&2ăŕn’ŕţ6ŘÍ/ ě‡6’łćÚyűe»Č3MfNďĚ{[ńDČS0są+5‚p˰pC$5đIÔěš1ĚÁ¶ $’ŐŞëőü˛ů°ŢvCPá<2°Ö(÷6.éx‹ŻuŃš.^ oUř\7m[ß,ˇŹ}ĐضŐívéŰ.vp;ť;Ą7illĽĚ„5ô‰~Nç á‡svĺOń|Wć\ë¦lëy¸ŚĽ íď2Î7A$°ŞčDĆżw'bóí@=ÍÔ·ąi Á/2*OŔč®ěÖ;`éa ŘlrĂĂv ر˙řCľ©Ý~­řCąnŻrx‡ŚPŽ6Ă źîĎ®/TgáÁÍa_EEš¬Żš"Î`”Áj®2ăgE"×QŽçäÎŰÓJH˙!ŹâŹŇŁ$g¤ÇĂS©c. ‘htТ Ű>'wĹjGń\Iy^>ˇŕđ2ľH12Ň—Łz™1ާ¦űKĆ…Éšť-~ť‰őŠH+\ŃQ •TůŇ8f`ÚřX7ÁľŘ‰± öQAÓÍŕFSĽŃp¸ ŕňôőzÓ”óűĐßř§űO<Űí|^µ-$<WŹń4$ö›íĽv©Íex] #şËT…ě!5@Ťş}·]Í»0€‡ÜŃűŇĄxw[Lhry°Ż 2atěĚmĐżŰ>°Úąň&‚sonŦZoŞ3*—˙a—»r•ţg[ŻîúW}žâ>\ö5TĆ,Â-r•[^Ëj\ŃKs7¤>{"˝ľőŻ‚ž …k¬ôâűfąp7´í·y şů†Bö|WĽČ˝·Ú~¸Á+[řIfÜ©'ö—śîeŻSeąŻž$Ż«D‡Ľ7ˇcSőÖaĆ/ Ç^U(ź‚Mlp¸Lvsi!ÓkôéXU/‰EŁC ‡-€ßáĹé>SÂľlgP„ǬĽÍÄMŚ’Ť×®\ĆwEŘ>}šQ=ŕtťT=tÂNd đjť°×#qéśăOň=‰fÝ‚…Ô«. •ÍíŰëĺóHp$)b$Ăžů¨^¬˘ŘőkĽŻę¸BÝ} u$¦‰•1˘a z•ÎgőÔ{öpé5cD:ţ;Ö÷Yć©ĐS,›ţkfüĹVŤ—A—Kßëg ±@cm2ÂĐj\†4»#—™™•§®€aťB:‡(ÎÂCŁcq¶ v‡„cż6f„÷Ž©Őpjţu­ ±‘WgćĚC§`óűě0,=ĚpćŻőnG vm u™žřÍŠłŢÓ1Ö»,˙¦ő5vŔÍ-Ź˙su\¤úđyąp)ŕuD…‡t\L˙›F…EÇTŐy^Ę%ń 4\ ąőÜgHăß…K9r”‚Jţ…9]ž‹XűÓ!›0ÂSEÜu§IEmd8¦xŻŐgÖÄqŻU§/ď\čµN!ţš8č*ÜÇÚQvts9”BńÁeX¸Z.}&ůRĆ )řްú÷Yž˘R}ɹ캲˙ńPŮř8s¦¶ ?‹ôČ!M+B.*‹]ˇ¤çŐ'u©AüE)ŰWMĘÚćîčšrqř/HŃř « BuDř}ţž…ÝKý0ěîÖä•'ü¸`=üÜŠ—u8@0`c*ˇú뛯ţÖB V endstream endobj 1588 0 obj << /Length 3201 /Filter /FlateDecode >> stream xÚí\IsąľűWđHUD ö%.WeĆΤ<©Ę!QUvmŞeöL‹­°ÉŃčßç=˝ \DI–äč"Bh4đđÖď ĐÉ× ťüí Ťż?ť˝ůági'Ž8Íőäěb„ FۉV†pˇ&gç“OÓbYŻóěüd&¨›Vđ«ěô3U”?ŚśĚ¤ŐÓłK§7WĹ<+Ë›­¦§'˙9ű凟ťěŔ8áNĂđľëˇÉJ¸vM‹ë˘,ĂČ_rüµÓ,ü[ŻWĹ|Ë›«|UçëĐŔ“/TëE(ťW—)Z¤%–©f¤¶M4qFXl˘ µv2cDBu`F‚bEă“^ŁląµĘ–‰#VĘ}ăš˝ăr"…éŹ%ńo”DŽ/Lf‚ "$Χ˘D׋|•_T+ä¨ăÓež#˝NL×U¨™/ňůo±j‘­C%p1+–ˇ6Ě*a†_óPçůUĐ{,ŔĂşX'\M?ajÎËŞŢ4g«X{•­â@Đ‘ź¬ć˝ÉŇáŢ'řˇ‰T­jˇ‚¦xOłG±Ţ‰]¬›KąKŃ aĐgG.; JSśśUö¬äÎDć`)ČK«ĽŢ”ë˙ŃÓ‹čxlĐľł^Ôˇ˘ńUŐXX[ćËŻh*Ř϶q©Ő­­ü–%śËn:\%¦Ś%Ó´a˝9{-Ŕńó˙n˛2¨.w‚0iFŞ Ę‹łT´ŐJ¬ôZ‰•Q+±íŮô"eţÔĺÜş 1CŐšˇ`lúń"Pµ¬Ö§-ŃË@U$źsťŻňË|ą†Yű'ŮŐŐŞĘć‹đxž-áőđäK޶( °XĎ$Ć,a\ ™¦=†Nżö„I/ŞbŢ0)Ĺ ®ÚĘűóGÇmź?(¦„<Ŕ¸>Ř`H3N´‘qţ:<ű˝Tµ:ĎW}Ď&BAöĄĚ‡OVůU™Íóe¦ěŘ ücN˘™i €Šä´gÜkřĺ&aKLkZCů}]ŕyNš`"x„DďP4n'j`„Ńv˛ő˘Ú”çC‰ľ×ů˛•yp1šeÔĐzŔ$ËÍ9ľĹL" ”†#ôÉ#źÎłiâ&ô¶ ­ěč-,6@ç)d0 Xoć‘Ü·ˇôńŇÓ±ËtXâ–‚¸őw 9‚ř€ ™ šBmÎ •đ‡řŤĚśÓó`Űř¬ÎnÂłXXGbý¦N;[©ÇŘ™ŚÄÖeď’ÇhŰÁěĚ5ÇAđÂBQ ú”ÔV.Z›M>đXX~˙T}ő@Éy0;ýrÂétłŚżBäx đ&%–Ë<[6őŮşalb®s‡±EšpµS–¨˘Nî–¦ę¸wiŽŔ©ě¤dd‰ŁâÝrζgMň°ThN×!!žq‹l-–1őLýĹQ2ÝČ4cCG߇4´î‚ýĽ@ y{& =o–0Ň` c®B]±MČ„Šób•Ď׍ís ČÍXÔž0×”®ç,|ŹąIp 1źč;‡4< câK eŔńĐbyćźö´ţËP‘Ç?UqŢ$‹Ö&0Ó7 ?1™NP( ˝n·ę-jĹĐá»Ěë‹-Q^GWŔô0CÝji Ë#ˇ‰N#B©=q€ďVÚlGÜŁsC{Xë°Ŕ8Xć†BĽŽIů"úş¸Pé|S÷ęä+Ż ČP)$„ ÉÄľR˝čçé×1±Tç%|·Ň|ż_ގ~Q[áRZ1ߔ٠ÝÎi¨,."3SĽ÷’2@I<Ĺ@;\gÉqÁ&Á< ř[ě‚đŞnR~€eÓ‹ĎݢI^ŕĘ.Äż­éŞ@Ć"OăT ó4Γԋ.-L; maf;é¸jÎĺýi—D+6 ť ™t†»#\ÁÖÁF씉Oá^łŹđD`ő€đq,39| śę żPč…Eó5őńëO_ ~Nű‰ń{âďl}ánžŘăaţ’ń°ů†MďÄĂR®d/86°'dĺ¶Ř ř1«%ݍű±}}bĹ÷•ŻCö¸,Ľ:ÜĂ] °€·Ábł?'ż»QĆ»ů™ä„™łŚűűŐŇ©†ź¬Ş«|µľlôČnŁgQ•çőé–]˘ô׎000ÜTľs/Čř˝ yź˝ ăOÇŕ^Ú= Ňfőb/ôxbXĐßja°›ĺňĎ”¦żO‘Ěŕdl3™'ŕřx UŚżM‰„děQ ScÉýf-Ř`jÝŇÍ C 3*d@q®Ů9}tÇý*žČŘďd``TöÖ'ť9(kUd­ęY+ę2Iëö¤P‚4äž™żŚśpsíŐýAÎĺžfłöĺć\©DĚQ1uP˘ ö% ĚA_©LA=Ź©Š!z‘ŞďS_o͸P¦śÇĚBĆaŻE™żËÝŰŐýp»%–ş»ŕvő0(ň!ŁĂŻÜÝBtň•îǧbj4†ÄTůX,íĂ-Ú™Cb±ąß×GD5N“;ůŘ_Ý!LĘç·PsĘÝłs5ü j˘ŁŹa^w3ŹßÍ”Ę˙S K„Šâ¶Q3ġ·Ę }ŞŐ¬@ —´¶­ÖŮ;¬Ö= Îz Őş¸ôŹXý˛4a'NO.ŞsmÔ6âtÖť6Vt·­Xn[±ţ@y«âM$P‰hk®cŁëĽCbąnÚĹęp±U¨ôu­hňá…Iř¤»0É·«Z:Â]ŕ*ĺčöŠŰ÷’ůäÂ*3YîD9ŮśjźGŕcźGXݤ#P…—1Ţ?KŹżńEĆ‚ż}ËęxT¤.Fk†÷Łů· Íń§ëÔ™ő"šĆđečŮ­T<ź®šĂÔŮ|MNf ÇéÇ <Ďn™ż™#ž‰oŮíë|^-c'É«ŰTŹBüÇßŢŁô蔌oÖŢ?Đ]ĆËŮ`FŃxĽP1s“áp·żŞ§9Zďh§ކCĹľä/đ…|ž×u¶*PÂş††Q/áčlŹ…»x?´¨c›ŽŢăóp?@Ý;|ňŇpgAľŞw]©…·4¨G¸ćĂ o/vś(Z_áŇstś›AŁżž˝ůźţ endstream endobj 1601 0 obj << /Length 2831 /Filter /FlateDecode >> stream xÚíZݓܶ ÷_±}Ű›Ţ2â‡HÉť<¤MҦmÚŽsť>ŘéŚN«»•­•Ö’6—ë__€ >¨ĺŢmŰ“Ěä‰E?@ŚV÷«hőÇ‘kó⳯˝âśĄq,V7w+.%3:YéŘ0!ăŐÍvőz-XĚĚŐ†GQ´ţ˘ľúţćĎź}ťŠůg±bđ%µó˙ľ/î3šćS—śÉdś¶©ĘwW,•‚ŃŽ’}X+a‰JĚ÷ …SâI6ŘżG ś«ä!jŢ~¨ë<Ő'ś3îŰ}-ˇÇ ż ˇ%aÂň5/=슶9Ó„Ą’?eI¨­ŃÔ›Üc“‰öÜ%ŤXP‚ťm ńĽł!Í>#4 x*©Xś…kđ×L«Ńn®4`‚Q‹ăčQÉQag=)áŰPűČGÖ:1s°ĎꞞʺ·0ë~Pé&ďžQčÝP77&|e x”`ę PU :ef’&(oÄĚä öŮ#Ńľ-BnF‚ţGąypóUšLúßHű"«ËúžčjB~{kav°ě¨­jŹ‡Ő ĚşmŽ“q4oÚ¶čM˝Ej}¤ʵĄĂJĐszBv'ŘŤĂ]ą/«¬E菚6gŔ¤ôĹ6%éú»cľ#˛H±=‹Šéu>ĚC¸kçßö€­ Ç+€ X)p|Ü7‰¤bŻ»ľÄÚˇ¸±^W "¬«OxIŇCgĐ1t­Ž;ę[~ ĄŁ ťmđ«‚kô™HĎ}lvť;š]Ń*Č(§ŔqăB¤ÍSPÁŠ™ď†ŽÝ‰A©Ns%:g @č‚vů!5 Wˇíěľ^ ë(]í'Iİ^ę»ÜŹďÄG…w^ĽĂ0zoĽTŚÇŁy„"“„'ň»€@s€Ęâ ĺ‘Z8˛ žĆ T¶0D#Ň‹H#bőŚ GőŚĺĆ.@ŇŚ‘sâţdś;iô  ›<tăç€núĐĺĎ]=ŐÓ@7YÍ&=tůsHW„–;AşrľÜ9¤Ë/Dşę¤«.Eşę¤«> Ň}*µ€/sŚëa5LńA?JřN™BGÄ×ۆjا  o©‹[*jŮ^ 0‡ăc`±¤¨aŔuÔ¶X+Ü*eż7ÝÉzÁ"ÜP™…#FŐµŞşQdš‡˛îPäeVŃCžu‹ĐGD[?šŠĄHĄT°,Î׏lPDS‘-ő¨ÂDc¶378mgđ-A¬a —NXZcŤ¦­ "š˝ľť1zç× 7!žł…¶Ž·]_śŽę…޶e÷öXç}çëh|żŘ“/úĹű˘Ţ^OC®‹«fŽ•ůˇ] ŕ8ÂDĚ] Zv56*ŠęňáŐSą+hďŹe[ŕş22ëŇÖňĚđ¨ ILVĺÇĘŐąđ{÷>Ł×ű¬®‡U¦Ŕĺs;Ő^-vfg~aË+§ Č›¬6ééuWćß/ŐH0. „@ÎpÜg·ó ^»bĄŐsĎ,ň/LThŘq•TĐśŔ"ş/H‰§óÂ#ŕtb L™*>ٲ7¦Ů•sŐäşŐđß ^ý€ăYutŹ˙)Ú†zc î±ÉSÍ<•2€z¦ň¦ŰbLř`‚ďnćQß9Ř’ěÚ/ŮO1'€@A-âÓćźÍÜÔÍÜĚ/+s‹>Zć&É? N27yq˘z.sÓżţˇřőĹ'řCĘŰ +ĄĆĎĚľ±•JM÷¤4'÷đĺCAďúl¸A‚ŁY 3*bÉd‚_†kĺńTęu%RŤ0÷Pą…vÇŞ˘Q<#®ŔW‚ą˙ß–ë;j!­ ńsMnîU@­řfôbŻŽRN•RHE"39ýO9WMM¦j*ĹUĹ™‹ôÍUCŢŰ€v€vÖúńASZNAŰew˝éÝׯŕU,YĚŐsđJ_ŻĚĎ^!I$Ý~=ä»"G]BNĐąk|Teě?ĄmioŘď•3nĽü$Áo«“ëD‡†îş¤†đ´Ţ% ă.aá†ń/aĽ í ˘Ů_żź˛;?[đŠľ‰IN#ř"J$é‰Áń…H H®ą¨ż Č é Š$őd^đ›@l“ŚC$žÝb1ëşv“šcí®äw-5®Ř‚;źA‚đE'ĎčBků»-˙».BXj–eÎĹϢ*ŠZŕ"ą…8MŢíI<×wĚ8Vn ËŤYžÔš ·?ŞOIĽ:č9«Őó:諝*¸˙żÝ˙śE7çĚÖ`FŔă˙Ńl˝íp qŮ8J—żý,k„$łÝě˘ ź\őňx2öę|3ŢA‹†TÇ/që˙´śÇÖYkK.˛¶Y P—řHő‘}äe¶Ć?‘±É°±-09d;߬ϟ˫ÎYš YÚâúM ëYĽŤ¸ŰŰ]SméČTâĺáPLłÄ•„HĽY_ÝĽř/q¬P endstream endobj 1490 0 obj << /Type /ObjStm /N 100 /First 999 /Length 2737 /Filter /FlateDecode >> stream xÚŐ[]o\·}ׯŕcűÂ%gČ! ě8J‹6¨ůˇ­akeăşQ´©´śßs¸˘¬Ő×®ä+ 5›w/ďĺÜáĚ9gH&¦R]p1Ő„ż"ŐIíŤćTŚŤě´Í\®…ŤčŠ*âjé übď„ĹÜöĐŞ.JkNžŃÄZF /Ž9অţ(.KÁ@9â˛E¶Bprb+:‰­·Ä‰jfKůNŰC+;±ţDÄ%›“Ś*žÂOlqě äÂV´’“¦ü-´*FĚ’śĆÖ‡EKűsšjŔnX!~Č4nÁWĐ)N[ lU´jď§.ĺ[Ô\í¶T—RěŁE—rć]—¬ ĆĐŕRퟆΩÚ§ÍÁn>‹WaDľY“Ëë·huřô3ú WŮ»ÁžlýsńÎ\´b¬.·Ř_§ÎbŕÝÔśIâá›Mű wů}h%gfü´”ť•î ĽŢZ˙4řµ„»9¸"ˇpŚŚ°Čý7C«;(Ł_b`ĺ\Ńbřdř°ĐŚĂŃ*´ŔR&|­ţfSWJw˝%´Ś®‚çJeđd„d ˝…)Ż‘š-»Şý7ř«&Ć\¶âj®˝U­ë1š«µĐŞ’\cŕ Śj!ó3Jv-243z4Ä?Z°»©qXÖňşe®•îHLX«‰O4Ümµ›W™}RůA*{V|WH‘3Â$ ąÇoÁ™üfFd¨ÝaĚ“ĐúcH¸WĐyś%tć`Ś6üiĚ$<5ĐWüÔžĆhbôhš÷^ĽŘ›˝ýý·…›˝<>^®öfgVýúŻźŽŮ›˝Zžü´8yďgšýyöí»‹đ~oöăâpĺŢĄP}Âűń1“ڏ.ľ**řhý^ş/ÜěŔÍľ_ľ]şŮk÷‡ĹĎć«OËc/>űţčľůf˙}˝1Z‚LšŞzÇ´&o/MęK¨ŰŤ)—myíŢÁ_†~tłż˙㟀(ńÁRBöřä㳣Ł÷wtÖŢYEĽ"/÷vło—GË“ß㇠§ëgŢĚW«Ĺɱ“őĺwźW߬櫅‹ý‡˝ŮţňxŐ­ßě)rŞ÷ŰÂZ9h1)ĹĆťH„:ż@D Ţ¸‚Źl\ŔjŤăˇČĽ×pnÔ>sAęz,Ř>{s˛<µí¦Č×…¦eoîČÁŇAŤŢČx}ŽůF[?­ţ/‹ŁŁßckvx´<=;YLç|!‰3«˘ ™“Bôň0t-óŰ}2żÝů K~¬ÄßČáÍÄż (‘_ â†Ä'I-7ŔĹCó>‡v-ď)ŻvĘ{ÄŃőĽ_ŢáşÂhÄŃѸ蓿6cxäÎ4LLÇţçˇ)Ľ¶ŰC˙íüä?óăŘĘ„yŘŁť$úZ¨d@w ¦qŰ’+égyč[mĹ7%<ö‡)PĐŃŰÓĎ&JxˇAŞÂČ-č"čv Ö¶Ä)“ŠŹŕ:R(Nču@%27_šî`LśĐ3|Ł¦Ĺż”ŽÄo”’˘±<¶c®Ä.ôbÖ^4"vYź‰ÔŕÇÜ˝űuńqţŻĂůŃáUŔfé¸3`_éĽl3NVÝÖ»5źľ„Ůvwg&€€Q5ă3w´#VE°LĘPżA#wHĆËł©7ć˛FÄ-<•ż’8$_'Ńë÷s.°Á J$L*5{RŮAÁ¨u!ţkgąE¤}ž˙úŰŃâzůń•ŔSŁ/1qĹÁ׼–® Z:Ĺ„RčfS~ţô˘ –Äéň\€! ˇř’J'§Š—ňŐ$ŢžčŻG‹Őé/s ˇMç–¦tL â†+GpČ!—“Ýíą9’î9—;w¤|)ĄÔ¶ôţRK¬•)a3ýoŐ—Ŕ°‘ý›Ŕ°‰3@^Żąző`(u$ţPŚ2Ł1©ă–”Đ‹>éqŕ˘ř*í\T_jÝŠuşÄH¨áfK(ČU—˛ˇôEĹŇ×vX:ÉjŠOĆ×\=W´Ä@žTrV}“ňÔ!łÄÚ˛z® % Ş ®”|3”žž}8ĹĂŹP|÷Bů&oĐ*ŁţÔŢí®äŐüdőďĺ\~8řnú"„wIGO@$v­¦§7H Ę ŕDŞg0 ”Ą@Ŕ3Ü%-ou‚­\yŐŐî«Ö7SP©Őrďęˇ÷XźŘč|Á=pLKeKď îÁ\űß­wlHĘĎŔT›jt“ŹľŘůhÍg›|”ĺá|¤c™" ®IkŇĹ­!_SŤˇcS9oä0ĺ*‡q3·|° ¨ą”X!%˘=M]1©EBŕqŰ%!Í#×öQYĺdO.$sńˇ*÷˝Â, ŚoO.8Ćpł®ť}\ţě'¬čóÓ(gKń‰ˇ¨M Â…VĹ[ś2˝Ń’ .â^béÔ$×Ü n/aŢľđqŇ•ŮÜćj©vRCôrn˛żĹ_ 6M8+đCˤBB&ü"™şv)ěJOčŕ‹' pFrßä}çč|˦Á%C&T-ś1î@ȸ!{Ĺ›Á%ŇÓčţŮŰ™'ë=(pŁ36đŮXťęν#¨ĽĄ7łÜd!xn·îÖ;WŔšn}wAJµâr1Ďťä-˝‘%q÷Ąö¶WK q™ ÜŰ !ż“\wV·:p¨Ô;…×c-líZĚ^®_7÷=nÝ3}°`(z]0”řpÁGqjC Ř6Ä€Ť"×Ú”ĺęX<±ś|Ľ´xb†”۶x2áVh_CBÖfŔ™ĄÚĄ@«<ŇYN?™TeĄCX@őÎ5~áń!.ąí°ž>ĺöpÎťs„¨¤g¤5ö´®­=¶1W6!×Gk †šM˙±cť5{Ž L…B¦ńDBv}@ĚÇ]6¨6Ź©t„˛űlv>/©j@Ę[z§`ľQXr$ýżl'_YĽ˛FŇZŻ#éúÄÍĂ´Śőľ2´ m·’–QžŐq« ®Ł`«:)ÚJ¦ŘŃ61{:Ő mBF—§=|Ňmâ6f0Ď}Şoq¸+ź]ŚÉŤ’ pĎ0çK`Ňç(MÇXćÚ)ßU…ňÓn €ćYL%Gä*ĘŹőň —wi"ĘÖ¤ĎrD‡…{Ŕ¬©]Ůł0ĽíŔ—ęlĘ-ůY!)q—Őˇ‚ĹiPčkOKŰÂóIý4č;ˇ—č1V Ô°KbĄiQÔ7\U4 ÉXb_[yî`Lž˛‡g¸| ž§‚qq‡Íę}§©Óęů;1öĺÎ ˛'‰3ڍ±né mL„v ÉĆŁäϰ]w+eOĚËBĽÎË­íĆËŇ5^®cąłŽ gďĚmÜj·w· î®S®„rCcs†Ň•'Ễf3«ćř Sţ8u 0 endstream endobj 1629 0 obj << /Length 2039 /Filter /FlateDecode >> stream xÚ•XKsŰFľűWđf°*ÎŔř&Kr­«$eťÝ8‘(ăUYůőŰ=Ó Htj¬ytOcćë7ůl=ăłźßpß?ĽY~Hă™Ô,I1{xš ĄX§3“$Ě(={XÍţŢŹeѬ»¬ÝĚ…‰^ć>\ăňNg–ŮXĆ^`±Hf #XĘ ÉÉÖuÖe?Í*ŃóÝÎ……1ŃŤutU”%1fő*Đ.‰öß o°ü`ĹţµdƤp˙­/\¨Ŕup-ĂŇdǓծ,3úđĂĆé·řƬ«˛°Ű”/·ę˛@ýX??łĽgŰşh;V ˶-—wÂ0ďn ÷I§ŃRČ?'uRśq!a’0«ä7lš-Â*ltáń—<:C¸‰Î›Ť«‰0çqtÍć ¤ Öí 7\rÎaDżÉľUVz?dC‘‚CTżµYÝM=˘§÷^©xĘRąCď—z ‘×si"6©XšŞC oń~YçŐV–>. XU7×&jć‚Gë@«X ČtäT3-Ő«ő®đY?ѡľHK­}pD_ęSč[ËTś|ţ_EÝ|E€µ ĂĂĐ0ům|Ć×4ÍŞKÂXŤÇÚ®(GĽ|żiş!L;»©=ö°Z»ÚáN˝ë§mť#ťÄ>5ťGThfµ&<ÉMËlµąđň¶)ę¦]óXşŞźŇž7O̩̟:«\7:8®o˛aCÓű&§™§TSłS iš5a G' nNşŤY’Śn H®tC˙5óĐ„źÄŕ8š=7Aňçą•ŃH)ŕhţµ ’×îźÝ{P’Ţ,é ĺź7U» AŽaăhҡW,Nęc(οІń„TQ^6ý¶ŁEóĆ, MĽÔ{”‰pÉ!č _Ăĺ¤ Tvä©é`Ţ›× Xż1lŰ’hť+˝ö,\á—zÂX„PĐä(÷üÓů§9˘DĽĺöĚl2şpîÜjAţ/cĆ­9ô@­:‘ţÁ*QZÜPÝ\%Ń*, ¤¸®~ő` ¸ ˘BŤę€hľř·÷6–­CÔ±az—}č†<Ě.¸ĹăLŞÝLďf'˝KB’I…>ň®f ÷R{Ş(ÔÁäwżˇŁ;·ň8Âş‹°đ. m)ꦪŔómŘj;·pÁ0t–Ű=ZAăŐí0i{J »4sůY–âĘuŇÝ\óčÓíÜB»{k§ňdóšµ3k#P´QSn+t‹ÔFB'<ĚŔDżżT˘Đ;?űčňaŚ2śůµ\¦řJC,ń—»Ď ożµTEJČŁűC12y-‘c‚5)łizĂ)ó:0\”ČA{?ŽÇcxŰ7—őʡ((;îQ ŃSpھɺ|3FR ßSaPôůüň!ěfŕÖ/}чŐcÖ»Uúx¬Ůc±6Â.†±,j # "V'ĂpŢlë1zó[a„„PązčÉ?Bâ®l ô ‘n„E&qÄĆľ–˙JçŤ/$3’_¤ŃĂ<Ńľ$´qt·…ĎuÚWDĽ"ÂĄ°“¬{")Ţqó‚Ć2Ď3n ’Ę»¦ďĂšÜSĐŮłízۤ<{Vľ˘‚Lp:“!R#ÚÜ a ™&ˇh)‹ż˝ć`”ôÉ!ł¬¶ůë٬\C`6UXb=ă'‡É 6 jÎĄŞ@sl*Tź7KžKçźš pT˝˘‹ÂłŁ‹˘Ď·}Oë”Z„ÖutĆZo©Üţ4búĄP±bÎDžßę˝ßőĹđ2ŹÇŠ÷貺`~E™=–deŮ0ŃŽč„ĹVt#Ë%d•¬gťk]Κn˝l—ůs‰żUŰ.ál3TĺDÁP/TĽß%~Ř‚H+ˇö‡f|áBkđ±qˇďľfaďllH.¨ňżĘ’çž¶ďďĘUTaXŮ;ńšgľ]Ż‹ş?îdĆă€>ślúM±ĘÂw¨VÓôťë¬>mÂ[hţv†oˇkěś7^}-ęUvѰq<2FľoŚcgĆt’˘–R‡3ŹÔ8ĽĹ‰Ř|­ż˛jäkÁď;1ť cËbcöz.‡oíˇí‚ś‰>Ş˘®blÍĺ÷ĹĐö‹%(č´Q‘ŕĂ&äúđA÷]}ĺă-”†03Ç•ÚD¦“Đ?ęýL§Aµ™ĺ€č {:Cż`’ÉLŚg(Ł _oŔÖ.‡üÉ 3ǵÖéô ^Ąe|TîĘ<©µĎÎĆřäšĆú‡ÉU¨*›Î ÷•/Éü”„ď§XlÓöK DA¸Ę÷k14}. f3‘ž¸ ?vűˇtO˝/?ŇđĎN~öeHýęĘ>DGŘ ]ě^ő=Ť÷Ů·±‚9­ď ŐĚ=¦źâéĺÖ±o€˛KÓą*°€˘ е!äń´ăŁßě)ť;”bŻ1÷  ž+ťß„zÍČ©JÂĄ>ő„Š š‚NüĘ詾Š[&¨aŤ…ČK^%Ą=`ş|xó?r·ţÔ endstream endobj 1656 0 obj << /Length 2601 /Filter /FlateDecode >> stream xÚĄYIwŰČľűWđ”€ď™Ţ°ĺ&K˛GÉŇĺř0žC l‹Á6Xś(ż>UÝ @eüršU˝TW}µµŘęiĹVްßwo~zŻâUâ'ˇWßV\ľŚUDľÁęa·úŐ{otß5™iÖŠyo×ÎXŕÝ­9çžżŢÄňľ˛€ń$ŽáˉüŔÓŤ. ,M-+;ä'ŘĘę¦z‚)EV>ůëß>ţô>QiD ýXIŐĘqvuŹ"ÜâbéÝ›7Ű@l(#Ďý6¸Ój#děÇI˛Úpî']ĺ¶^o‚Ŕű*Bµ–qŚëPĚ.«ĘŇäąYoDŔÂŢ!WŢy•Sďj}Ý’-[zďtŰU}î~  ‚1A ĹyŰ*˙nŻŠüöąíLŃ:މKX’\ů*ŕ?&«uÉ"?Rá\ë(XV˘XćĎ^çY—a\˛Ę|XGĚ3éľĚŇ!Ş4¦®šŽ”}wźmohüO«!Ó´:Ł·ŽřąĚ%ßŃ®ŔĘşçuŘ›Äf ńÉľsd˘:7š–ľG¸‘Ŕ¤ä„Xź*<Řť> ČŞAśjŚ•iU=Ţ3™HŹ‹B1G8q~?dŘíĎP …©(ś{¶`Đâ*řŢgŚÜJÜîłşugꢜç;Ş^7™~töî´űIu¢˙Ç…yů,í´[zU~«šBwäČ"Éř©ĐÍEşÉK7ቪŃIe\ÚôÁť˘¤RákęßHH€É‘ đ¶PkX„á®`Ź/ëDX§ĹPŔśÝ>önt›;p̦:ć]˙´'ňĄ%EŢ}Ő¶¦!"¸…ćn÷µÉÚB—Äs ´ň ÂĘ ťV]çX”ľB@0ępřÄ)O WňČ{°‰†ÇŢm᪾u€öDxiÚ$ŞĆý¶ÂŕÔ<{lt38źÝeîÚHj ¦ro)Ő’÷Ú‰€"”›ÍŤ~äp˘Ez PżäÔ§,(ÉA• Š# ZE”Ła‡K",ÄĺÜ‚Ŕ# J˛ |iA9ZđqÁ‚á«ä‰räIpdAdÍ …sŽ …“1˛Ű’‘pş:Nžr#%ţżŚĹŁ@Ů<Ş=ŁÚ|I¤ÚHŐ°8č?ščß±Ő¦“Ňűa-ŻŃP¸t“Ë:^šWmß·ŘUŕ:˘ÍIׂ^”Y‡+ ľ‚řWď[7vâĹÜËşR×9e›tUşďążů™H?÷ş|Â+&lŇEŔ>[˝Óϰ‡Ăp?ÓŠwş4ÍďĆĽ]r¤wLn=˛ÁÚkH/Đ3"˝OYZĺş'řÁVŃ4Iă®×ŽŚú˝Üµľ«™űឯáf°»ücóÚ‰PQg9¶{Ěk ŇŐxn§™ň_Ö†ZNÜjęŇžÁ&ĹÝŢ1ŹJO$YĚUÍíľŞiúőůÝůßě8$ łľx\ ćő-‘n÷Y5W7‰ôy{fcw É<őmçŇ#gĐrľĄqb7ÇiTɦĆě@äv)Ĺä8>Íq°… _(™qq&ĺ—_Z"âľ’c]pmŇ®·í8­ţTuCZĎJG=iYD>‹ŽękĐ1ľ`ľÝbC“šĺę:Â<=×5Ő/\„6O+F„mÝ€`ŰŔŐuX˝Bć[?1ö‡BŤŁwěßĹX žŽO!ľřk8Q8'2˘¶MF·%ÂĐÉě*Żô°ćf¤bÚá °ź•,Ľ —U‘Ů0Ó!ň7Őżłb°"ÎAh ŻŁ÷´Ą UHŮČ$ô DĹ? d7ĐŮ,öăž`P»7)tnü‰YżĐε٦ĄjiYu´ĽĐŁ1żáŹ«r)H~´Ő€ŚVţ9I7Ż‘bŐÇ9ćt$: EBć™vŚ˙™}T•ýč…ĄťÎmăŠzlABY)Ó”@sIŔcücťă™ÝÓ–EÜĹöŽš$ëA0¸„¸±ŰúµuŤ:…«Ű‹Ëíf±Í #źĎü b§’Ż—ÇÂgöag‚ÜO&‡Nł ź$áýňá…ťŠj †|K|@%Ńón™ýŮcţŔÝěÝqP/Ĺd|‡‡…Sz*Śp-ź^—Ů0‚ ’·sĎĘ.”H|é46”»!m1_r~” H˙Ăzúy~FČę¨ň0p…O‘?ňş°M÷Mö;ť7F a+*9–¨qxJé1Ô=bĚţPíWÍł[i=ľ×Yiđ5Ç„-tđ4yâžz§]°@”ř* ¦€ő«}éF_po¨ŐpçoC/}‰ąÖ·TňF*˛O!?ô>łuasźŤęęäŢG5ĆîÂ8ű9üq]a“×V,"mh—FŢmÚU‡ §ßÂj'WS·ÜÇg÷M«ľě†wÓĺP›•¶Ř\hUĚ˙ť‚Ś[÷ęAé8Pô”˘ĽzňĎ\=o÷†¦(žżń+áLJ×ŐăŠrr€3ĹfX4»ŔqubM^~s˙¸±%Đ oRŻŁ blžü“ú˘±Ěř °xű\ş2Ŕíé˘Đ/©ę<ęcNÍółíĺvxř˙‡ł5UźÓřÄMĺäĐ‹`|1Ź®<¶o\Î ĺ@äŐUäÇÔÓB98›růđćżc©éÜ endstream endobj 1666 0 obj << /Length 1150 /Filter /FlateDecode >> stream xÚŤVKsŰ6ľűWđHÍXžŮ›íاq›‰Őćä@S°„"9 ”ÄýőÝ@Ź”ČÓś@î.÷ńíîŇl›Ńě÷3úÂyą>[ÝČ2«HUđ"[?fL*"J•J.T¶Ţdňő˘¤yí>×ýůbÉ5Ďß8 ť¤Š˛Js8Y˝2Ło—)ĺnň(*óÉÔ®iŁşî7ńˇł=ŁÁÖŐă¬ď¶łľÝMdńiýzuSÉěx!Đäňşż˝¸‹ź˝^p•{××]t9ôřy¶ä˛$RđlÉ©TŞçjŘŤ{oű-Ř*šłé¨G«ç@Xg(ň<}!‹Źś¬ P5«¨ŇůÎů'tôČٲ(† 4©„˙Y0Ćră6ĂĐŐfÁTľ5ŕ[ë2ż—…1&ĄEÄ6bÁ;Ĺ(`1gřP»Ż¶ľś(E2RJ1¦(_1¦q“ B8J8‘y~±Đ ŃÚvőCg˘ĹŁv§ň‚đ˘šý·ŢŹż­V ý’%Ęcôť™Úť©=éŤ_Ťnřl?­ć V'J`…†ZůAôKťŞ—@g%'‚ż„»TUŔ]‚Ď„{•ÄŁł]šoT_ôxęÜö>}ď˘b2>j:űŕj÷ĄŹ‹R¨Ć|Ą5ĚéÓd'u›eŔ‹IRIyŚVěCßi±ŠC\éÜôűťq5ěC>·S§)(ŹGi×°­Ń"Z‚˘†Ń4ŢŮ&Ęǡ{ňĂhp@QŰGů»ô~9lě—S]Ŕ‚®7$Rĺ ţÖa%Óżu ¬Ýł©€”$Ź#Ś'“X#>á0±cÚČî(şúG(J ŤACĆOşÝh»°•Ńrňnß,!éÄ 9ŁăÄë×ČĂ‚Ó|śoŰ ‡)nßa?OPš©éÁ@ń*:čNô ¤Qţ ŚfDQ9;yMŠřÍźÇýGG¸˙(Šw–‰o÷M™SůIJtq_ŔAŔX3ET]—r*`I|¨X¸é¨JďqŰ!. ´ś÷¦«·ČÉÚ899áLüŇňă-lÓ "ú@xż€mBޤôy—đů5NcUĄżJŢ”ň覤Ôj†ŕnßy»±»Hpa¤ŔŮŰŔ\ÎÂd7Qrß`­Ůě;ä·Đ*E*ĘnĄŕ¨Mi˝J`j ú> stream xÚÍZmoÇţ®_±“/{»ł3űRě¸v¶€aą@Cdůb«QH–˘bçß÷™%÷(%y’I˘€-ÍÝÍî=;ď3'/%gĽ6ž“b(g%˘áP%#©Ů$žčČdaC1\ŠŢ¦°(K1Ąř [ŻĎ°‚‹ô×{xš—[Ჰ>đÎK˘”7Dú z2” †xůT_ě2Ţá5-×F€N¬T2ÁéöŃgüňi1ęSr&pE@ŢÉA)2!yĹBÁ„,)řJ–ŠÉ°S)„B Rı'{¬ňTÄË8°a2Ü ^ Pt­Rşq jQ‰$ěĚNpO©\A’ ‡ěK…ĚFp#x»RŃHUR d„K ÁHT +bŃŘJ21D°˘H]‘ „^WdĂ×Ĺ€W°3ĐŠ§Ś ™˘îÇÁÄ\Q1ĂTÇjO@„wp4‰ŠîCJŐv"Ăd$ňRď)]!Τ\m"I%Öó¢\5%I&ą8P)+ĺMzŽŔJ©1 ÍľJ÷8Ş>-‹*_ Ď,UVP@ŽÎ©Ž`­ š_T“ xyN Ţ‘AeśˇäśőlĐ2¨j8Ř*Ő‚)N`Šú ö…_Q……mŠwőH¸GŐ®đ†­„…@ö "‚ŚK’zĎ™’«WDüpŽT zç«"t[GU°AďXU!z^Ç©Ú`9ńfQ2VëÓepĄ“ÓÓ“îíďłŢtĎ&“éâ¤;»}ż¨×˙¸šürŇ=źÎ?ôówNť˙Ľű[÷C÷ý;=ž;?éŢô— 󎲷 ^(I¬:Üŵ­-îď™9=5Ý™é^MßNM÷Â|syµčíßűëëß})ńňzzs;ďż5ß}w‚O@w a u@íVťŤ]±– ŮXźÂFD7·ďo°öj:±dĹŇţŔ@Ř6AÁ±UďóKÉ+^¬&îM´P,Ć.Ł@ÔX.nÓ˙÷öb€âă>Őä­:8q¶Ń#”bŐtmv~łd±|•Šî›°Ď8¤A¬ú1E˛ŚB%˙4~}5 8óĆt˙ţń'S !jn뢙Ü^_źoa•^m=ÂávnĘl!…3¸áŰwąM÷ýôz:?›]\ö&,׼ľX,úůń©^ţőËâŐŮâbŃ«Tpă¤{9ť,ę‘_fx4tRů^"Ŕ·VŮ”†'Ś'˛ş@|ŇŘąĽđšGa_Ť–}»@˘H+/3”‚ěÜö˝Zn‚tŻçÓËłĘú/M÷¶˙˛0ç÷ő˙úâc‚ăNýdqŁ °čzUóÍôv~Ůß,“g˝÷ĎţĂŐĹóéS-CKT˝ńőĹ«5#đ’±ZŐ ^\kĹSK”%,˛"ĘŠđ®ŤÇS#B#¸ŇŘö ßvömgj;SŰ™ÚδÜů|Ł?<ä~pgÎ$‡äaüVó›Ŕ …ř|đ©ęRÝłÓÓú†îYuĆî¬ű×›ô˙7ź‹Ů_şîóçĎöňĆŢN®fs{µčfłëîŰĽu7:d: CÝâ˝őZŕĄhµVňőŇAŃ=:¨1ŇA/ ,ŠQë‘ă×`˙Kf°[dŞ=&ť†‚ł«ˇµˇ@mc‰[PĚ+kéŰPD~—· p˛Ç4c­ăĺµVE,ُ ©·)dź < •oÁČţ!Ó{L¸ěłEłl' {`ĺŽ$P‚h!żÄ,s±˛ĚÝ ä 8@y ĺ«/éHî1čĂ‹FpP1lŁlQ Š&‰ť üĂ–ą;±KÖˇAŇ‚łh+ ^« ơőŹN,Wú‹;ďgýĄťÎ?vłîňóµţ˙0›uĄ8űińëőŢ3Í€~%´5úcfŹŽ"•µÚ´°Ç2â†oĎ1(´ŮĘ´5ľć `±%­eá-_ŁeQë{ĘŹhî3ďj6qKH6˘ŢÉ ĎIe,NÉ7 Łt4’9ÔR $°łü‡ţh ·‡#!Ťă&(YGDă¸=˘A-nźĐ®‹?X_wż•»×ˇÝířî4yOnÉ$ţą%~zKF­•˘ÖJQkĄBëŽBë»BcŤ9 ĚCk×ú®Đú.n}·ľ‹ŰÎÜvć¶3·ťąíĚmgn;sŰYÚÎŇvÚŇČ=ąŕ`$ő4|Q`OĹąÂP¬JŚ(âţó€bśwŁđî˛đdě`ˇtáČér@Ńd±EÚ? тŭ“¶dTr,+Ťć-`VńÚ&[ E“Ĺn(`Ös ŠatÔáJJZ§čŚZŽ]×nš]¤˛ÍEč(ĺŻ]„GEµÍEhŹfŕ"1 }*j]ѧîu‚QčWçD!F  €aRCцI»Qđ¦ImrЦI»QČĆI E'íF0żh(Úc7Šô˙0ˡÄďŕČ:·®qň—Čpذţ€ľÜĆ­%ÎAćĆxçk€g¶eë×€űăµÚź¶Ż|Łć÷™Ű\˘Ŕ%üXîP¬~=ÉíŠE0É-1Á i,÷’ŤÜľŘ$cOÉąŘÇžňÁ ÉFfDiči$÷Ă’MÜ3–<–Ö–ňX äŮęߍăÖ/řîř•’‡?oßě¬ÓÍ>ţ<›|oŢ 0şýoW—ý›WĎĎÍö±IÜ06‰_16‘6¸6”Ť6ťm:Űt"¶ąG {SlkÍS|Z­=â«7BKÖé!,fľzGÔ1žĂŁÇ˙?Ďű›Ożö ;éÝl>ý^sÓ˝ż˙v5™ţ˛‡/ŕÚŻÇúq飤گ#• éW âťü·~Ě,,Łău/'ČD$[ł0ďżPĺY¤őL¶üíŐád1 ¸Ű]‡ř´OmOG Ó;źĎ9?®"‰Ź©HâŁ*’ř¨Š$>Ş"ŮÄ-˛ü#Ęűmy÷] endstream endobj 1686 0 obj << /Length1 772 /Length2 1246 /Length3 0 /Length 1798 /Filter /FlateDecode >> stream xÚuR{8Tűv˘ěmźv9nI—eGąŤYËŚŃĚŮ.3ĄáhĹČŚ™e¬ĚÍ̄̚íT(aă‘ËÉ-[Gi%ÚmçH$śÔ!ÇťHDe+"ś…ěçěösžőĎď}ßď÷űŢďý–±!ÓGĺ‰ŕbŠ,A EÁÔ06Ţ'…9("íç 0€¬đo‚ ŔA1DÁLVćĹË8üĺ ĐŠ VHĂ x`>"ŇŔ/?ď, i•çÉ%kÚ X*Ăš&XSSkÉ‹J€b÷ä+G&˶~§r„@ů˙uoᡀ ć!ráçŞ3Ę \Ş/€p•BdĚc"(7ädđ*XÄĄD3Ĺ2d9ŕgšg Á2`ýIrŁóćőiBl@ €Î<řąXE·öGĆ…E(°w óŕUÂę‹xźÇ€…»ţĂÉŃ…aľ˛ÂÉQÄó°˛&©”ŁÔCÖ@ u+°ań–"1Š]$r4K5–7A>p…[…ÖËPđ+&ĽD —­żőÄä "ÔS)ů5Úe“+ZŨT {#<4čKTŠ(|AK„0űÖN~żšF+ÂpÖ6Î ${!@"#~SÇ•KĄXz+˙–ÜD°ĄĂ°ćjt¶‹ąŽ:~3곥TPÜp󆾪ؤŁ÷ĎYŁ»;.…TżHo ˇ±yĹ[šŇ™Ď c·‡Mζ(X5Y§zÓśrQÇűC´7¸ĽĆżÔđá<ńV~«Mzěćëd÷í›Řľjľ{RĽŰ?FŰÜ#Ľ¸>ryˇJö‡<‚÷› Ó ĐjNŐřş¸Ł†FčĂŁ¬Íß˙Ię›!÷t>Üş°.ĘfׂłöŘ…VV ‰Rc`Żéq2›ĽÝ}}“ÎášD~łúÄ’ş“ó‰…=…•}}/ýršrĽŮÎ#Ü~wŽŰRšNÉNż]dřË+¤8V’÷÷Tă>ł pľ~RÍ–!/ʬsy÷\ŰĹZZď>|8’ŁůC¦Ź…ŽŮÖú/»bF •ö’†3ßŔ “MI©´Źc•xÚ»r Ëł/N™á­ýwʇdMs!·Ľ|ÔôÜâŰxBßŮóą$˝zú‘ŃŁ˛<_3GR§Ů×µ$ąó1Ô<6•â·pDJü6ĽkŘK-÷»âfËFé±Úł'ń-Ô˘SűŻůś%—Ů&©Đ—ţűÍÉ„§Š[wľ\Hl±Î+7±PÝőóRŠČ4´ÁĐkâÝşçăl@W˛ź!Ľ¨é|Ł*í.µ·^óíĚ…ÚÎlÍE˝Ĺ{KZ)ÉÚ÷Χú°=»7;toÔ?żÔŁ2lu»¤¶âĚÉ®4JB4űo‹×>I˘ ńöĺÔ]ě?Ë'˝;lčö™ťęűčČ€˛÷ó‚V%3 7řľť¸¶Sb΋šĘéöΩGmÝcćt­j“Ę+‰9eŢWfÂużŞŕčě„4{Ł–[¬5Ů7oˇţámäÉť­ĄÎx=‘´Ş¸´ůepâ »µ%}mŢ7 ţv•söCĂÄ †ćXH}ZĎŕŽ·™YÂ;®v*˝]íëK…i‡˛ž¶{{JS{ô^Ĺî°ĹüĘ.őQđŁs˛*š •nsP6¸˙i”ßő¬BQÔźeŰŰă¦Y|Îs‹Ë?˝hp˛ b~ôndL¶ĘŐŻËěşłýąůţrĘ帴ˇ3Ędá>Ű˝aFň9(óá×2ëŮL;ÜPŃx°[Ě>I¨Öw÷CNshŃçtťüćr2 ü˙ ú4™ż¬ŢČZď¸ŢŹď€kŤ-{1kx(ŠľŃÁÎ[‹ýşŕŠ˙şĹÔ°¨˛ą<źŠ4ś~ËĄě9Y3hąđőĆ—…Ón¶?·ÇE){”Ý:_ஂ™ŐÖ/y´ôkW†×Ö9‘ŻÓŘ©ä˛ŘÝż¤53/×ĺŤVé–'2GöąQÉŻĚ;‰˛kÄcˇ_Ľ˘ó‰P‡›ůŁ™ęé{@˘Ń·ôo ťżÁ’EmÓš6)ň‰ú1ŢâyaeúŮĚń Q;JXŰżn46¤•Îěi»u¤0@)TżČÖÉÚüÇż$¤zj°ŁmiÖĎ©‡BżžŃš”ŘěOoŃńvçł=<ž%ä€|ó‘o´zŠóKLÉ‹…‰¤hzbM»ż˝Ŕąˇ:ĺäŐŇpęŕć¤Ö­u;_ý zě@po.¸ĄZ“vpÓ¸ŞŞđC—©˙Óád%ľŠ¶ě›´űŃÖÓ ĎwNť}cř¤žĽ?{ş0Őćď¬Ŕ‡7ę ľĘłąă«Çr€Źąľr· âŠN_íVcÁ˝EuďÓó†] ¶MŹčU92ţ `#l endstream endobj 1688 0 obj << /Length1 769 /Length2 1030 /Length3 0 /Length 1575 /Filter /FlateDecode >> stream xÚ}R}TLi&䔯TBůxٍ™{§¦¦ŹMMjLL¦o•Ź®ą·é2Ý›™;™9’RćDq*«lµ2T˘˛»±%1•Żä«–|´SÂb#Š˝I{çěą˙ĽĎóüŢ÷÷üžßµµ3ĽQr5ćGfBn@F)WÇáŔ‘ ŰÚúČ0„ÂIb!Banfł`‹ A@(ąŃ‘. *äd b;Ëĺ8ł!€âb ¬Ć$8aĚh bH;ň¨"~HKŔdrş °Ł›Úş%JR@±úžB* @â0`7hě‰ĂĄŞ˙«ÇpI,섊+âľV"ĹĹŢ„DŠhÂĺ~¸CE8%Ž1TŽ ňˇŠÉ¤8‰H9> `Ŕô•‹‹×\8źĄ’ÂĹ´»°ĎSŇCÎ|Ń’Żť`qt|Cď!r1FP€;„Ql`&0ý::ŕO1°Âř‚ȰyźůIô%Ä$ŠŔć8D&CTĆ€iÄ`€Óć•SŇă˛IŃW@Ľ‚ÚbH™ńŔž`°i|,2@2N€ö$Ą™/ťś BTń˙:`í†q0%#×bá8JĹţ·DP2\1!¦yú:­řvTŹTn`Ŕ\WŔ`ł9ŔbW§Ť_Š2ڧߍlÇŕô®1L‰‰Ť[n‘b÷´5•i5oË˝­Ö3ô— ď?¬ÝšˇKçPsnl]2:ź}/-›Ň'şS¬nş•hĺđěíĺň3?¦´ĺ.ÚO óŐµó^0 ë{_ť‘`3PŇRrŐ%okűÄçŮÓ'DGŤŚš»3üVß—łŽťG;Šúkĺť‘®O@ĐôXçZQŰ˝÷Ő>1Ȱ¶yH5D,7Ůa*‹Ú­„^í7Hs™Ý/0üýŐĺjg·+yÍ"·¬f*%ŰŁ3ĚOčČŮúé«Ë°ß›ĐŇfś@úFäÔ±3k’ô»˘§ÉĎt˛–UÍ™»ĎSlúłZąX…§^žo}âŕ‹°OŤP]~·Qˇ1™Fž2Ś9ľ6ßbW˝jFŰý~Ó^ËFFS§ý´»ŢćűÇs—~:[×[{+Hץ.NÜü(}âîé*«´ĽM;ěÇ$ł×YÔśČúąiެ`sG©nŠĚóWCśĺ{ďµŕé"Ôr\ë͇5Ţű‚#=„ţMÜÚ]Ágކ)nĆÝîĎßř>ŁŇÇ8ďúşzÔŘy糨;š|׌“łĆç›;ˇíŐóű˝»U:ź0Ţ‚9Uת!­.ÓŰůŤ»ćŕŃÚćäwş°ŚYvÄçns_;6I`›BpK’¶đs´G†_ĐÔ4TWYsn÷"˝…’蔷׹+Kł_7>ż›rĺĂŚ$Š_~eÂ+ŕtŮÚp˝»Żę±]ÓË®ÜĐ™xˇ—fu±¦Ĺ$(»´Úeź}‚CHĂ˝ť6+Ô=ŕ\äčNźŢKĘ_ŞÝnŰóő!z›Şm­EęÓű·˘ÍËJÚNf>łĎĺ͵ŮÜŁ?4i¦´ÍqĺoáfúćŠ7uýÝi]+Ž'm‹L=\dŁÉó,Ť–…˝ţ`mrŰWŰ 5¶vVđ4}őÁě]†Ťţ—5k/¦–_.šÓ>ÄD««ĐĽś*6/H§ŕ•ôqśüéeŹĽÚCýÚÓ_4š-:pslOŹú$+‘(—O~0}FwjôŞŹď/ŢH©şpí\ŮöTO­ąóHéčҤń7‘JwŁÉívöŐ»FÍ2uÂ%ţÇ?–Iň<Ąşłéł”GÇÄ™[·C~S•Î>“Ç:\m¬¬˛±Z9×ä»^"öň-}•EVąh¬»JŘ“,Ől^hž~˝=ńľ>!ĎúŁzâ˝ÖŽ9đ_©ďž&ÚŮŠ ýÉ%%+fzy–´ o»żń ˛Či`tĺ.XšmĽčp}÷{sá㍓NˇYŤkâ?žäż–#ĚĐşĘ5ަ fďî> stream xÚuR{ďÚ†ĄÄ[±ř~ -Fđ$c˘ @Ä`bLÄl۶O2[3Đ ‘ $ L$‚" ô@sBËčN"!łXA$SPÁÔś„!ÄD?ÁÂâóö0›L—y–(đ› „hŔmş@[˛ř0/`lôžÇsf€€Á˘­?©Śň˙uâpŔŔ dA˘€ďU{„ÁV0‡Äe ÚBbE&`3xBp™w‡Y €Á Ť/„đ$"ń;ÍŤ 1ýaP(v|•śůÄD˝ŃżNhŘŃżw Ń}{Ź!d‚0Ă,p™ %@ő} h¸K!čÖNű¨¸Ą.I60“Ď‚`@Ţa 0F†P´%j] €btX‚1ĚGĐ+@  Ř|fqC$@`/q˲ˇß1Ĺ ňDÂ%⏞h FÜBŹvŃä&-ă€ďz@,„űż%N D‰˝‰ĆD" ĺŃďŰé🇦RůâP<‰Bđd˘™9`jN˙C!S$ ń-ýthtß0B·‚b‰éęä3-ŁŽUDÝ™+łŇĆ?TMôjŚŮč=Ë ĺ:®L·ű÷qęQÖUÍÖTÚóâčÇťaÚ†ăsmbźşĚľ”ý9śMă uź'›ź®ă€:,ľç‘YjěŕÚ‰_\7ýxÔ{…·ţEŹÎĎgÍęMFJţS°P-9´s.ĎŞaS´‘żYeWŹ*Äyau/5‰şŔ;MäfďţhA!Ęlë‚˝ĆۤG>ѦµNłI×’q–/Á *®MŢů[°›őż”ěŢřX]—"ŮÖk•íáQ˙cý ă FOc•đ#ďëzžkM8ĽďŘCź)ńVŮÓRţaďĎQC‡i…—źŞVH7'ö˝L=‘qŘěŢiz_‘đ`"?8_.eľđeüV7gáA~ئ.Ëd“ýH8ćEĽ“:ţÁe±#ÇTN§.%|msÉÝř•ů¶şŞ~ކQ<ŤđMÍ7ˇĚĄúŁlŻ2•Bżţ!'ŰťŠĆó«dÓyçňWŽÎTŤ=ą8í¨$€uŻOV°Ş_ŕ۲äF°řß${Ú» UčSó·­]ňĘ;?d“{čĘvš ˇVnńś ćŮH3Î<ýĺ]0 \»«ëë> ş-‚±MůEíęA%‘‘ć3oŠĆpÖĺIŃž2mŻĆ8×ň©f‡Ę‘÷Ź}ßů9ĆŰąFyÝ”ur&jłŁ!%ŞŞYDÄm{ÍZNeÁŁęŘÖCŽ›6´Ůq÷ďĂśXőI.tÜĄ$ÝěC)š“xaZw3úîv+z{äą*ÝkąYz\ÇŇŞ!qĹônoéük=wö|C.wÚ;[rë>Ç\-ýi|ősżÔÍü{3˙¬w+—Ţ9Zéź0­6fPÔđbŞ#ŽNľ5ä4f‡K9z¶ŇĄ<=îÜOÝţ •Ag&É·n)($}ŠýůRB@§Ď‰˘ô7Ď<5ĺşOáJčÚyĹň]O‡1ž[|ű3ł cIíĄ»Xrł3ra›(×xȦ‡ű‘Ă!m?ę+ oŘ:$ł6·yűoś_\Wť}R>˝ s]íuâh/±ú¶÷„{Lv°i=°±ďâ{\ÍNmŞÝČxÍĹž6ŃžÍ !ńŇ,:rsoSÚ<Ř7oŁÚł'm58 y;\qg˘ć:újjH÷xoB˛DR&}ăŢ˙á± źŃ•Ń™•ó9Ş děöŚ3\{×kkďdÖ@ťItÎig­ÚiĄÂž xE‡šgUÚř+ăýŰđŢ”ĆŇ8ĺěnBiŇ=yj¶Ŕ»z«üˇ |^s“Węó]׹§Ĺ4®ŘCÓŇŚO§¶‹m¶ËjzŹÜŞ‚8–’Źć1­7–Sk’\üC.p”ßHu0čô7˙5ęă…ŔÜű’}k_ZďL¦śgbö?[ÇYwůżNWĘ endstream endobj 1692 0 obj << /Length1 839 /Length2 1158 /Length3 0 /Length 1750 /Filter /FlateDecode >> stream xÚ}R}<Ôy÷TĚD$Ų®ŻJ„1żßdڇŇzn.cGy*Şý™ůżĚĚonć7Y‡NyČězZ•l]˛öpbĹéÁz¨e»8„J(+›y)®śÎY{?d»m_Ż{}˙ůľßźç÷çcmĹÝOóäăQ¨.&h°#䤄B„Ž0ŐÚÚ[Š"†‹}u03é ‚BČŤüp9¤[(G.C‹Ă Ŕ.,Ee@€Źń… 01•ľź-ŽĆěĽĚóĺ’Ű1T*#‹[˛čv@–äăba<ŕŁŃdś\( DD(°]ęë7fD„ ă˙ŹCŠ b`ËAů\ôľ•M BŚç)Q-SĚS |.Fđb@4"”ˇË|ŹJ…ĺâ2lQ@!č=[p Ć‹Ł2`ľ5âĆ#› };#9˘đçĽß *"Ĺ[ɇČx¨.+Ź.Ś·*濯)ď’ ô}ľű‚|í—·¸dóóp>&Ó R)O…L"&H€Fö®¨‚ś–î(Ć 2HäD"ĆĄÔĹ%Á0 #BI ˛H/1LW@çá"Ń;Ć™č‚Ĺ[AĄď8Đ…‹RüćčTŠáüw>dn™‘Ĺ,1ż‰‹`b"8^ňËfg\Âđ2ŢOHńX4 ă1˙ëÂA)¦€!&yň­üýV3//\‘@É«Ą1`'ŕ 1Ë™‘ř+Gž\*%Ő_şZRůŤ‘G˘ ”G}ôçą§­Im­ö´Ł=űÇęá‘ĆŚě­éLbŰĂ?'Äčú÷üÁë~ĄYűnŮ©{>µ°űçl§"˛Ą(ĺIÁž‹„†oë¨×+ÚĄż˙4Ý"@ÇÇÍ]¬3Łë^ćY~ˇa“öŕÍIÖ­Ş+c%ęF™ę ë Ą3FV„ŇóBă ­Ó¬¶ŽwD}f,Ť8+f‡t©µRY[Ôl“çů]‘§śÝÚck53˵-ý“?ľ˝­Śűd»=ń¸®1´Om&Ő©‹´™„­áVÉOÓśňÉś#ú,nR®Z§@tŞűnŞĺ—˙X÷Ő·cI¤ uĺ:âÎU çD®ľ3yörâ.Ą$ČÜęgzźŇX·Á4¶¸XóI{čŢ–ď•Ć''gđ욼/Ě;`uľ®FóaziĄIiyŤMó%ÔŐÝžYŘůl“šäX˙ôŹ żvsNŃBúéX˝Tď]îëö4*IQů.2ZÖěŇşP?tÖigQOß‘ŠţÄ-§˙„÷7)őŽ|ÜÓćżÁŞ•zgٞm@Ë˝Šţű!µÍĐHdł etLó€ď`řÖŰ÷_”áłň€UĚ:“ýŚNçő—żLlůWál§>ď5óŘńfĘ™Ňk»ˇÇM&›şĆË6j»g˙`ĐÁ-_( Żľ.+őŚ6-}P5¬ŤQšĆl”ÄÄUSzȻڽÖ@5;?ßk|©Ą·Ë§˝/ŁŘÝ6Ą7T= Ô[łáć=—”jď‹YagW xLŢhĆů §—[“{í ë®őČH>ËËYZ»P·&ËH7/Á.3µpŹë$®ŕŐÚŹ†»-zúŰ(*IÇ”N4ď Ą]p«Őţ+×7˘ăV9Ďę˛*öô¶„@5ró—¬0ęs—ôٸőŞźŹž¸tuKbnÎám)EőčÜd†űÖŔúęAWŤť':“ˇň(_Ńî…ř Ó®UsÁ×k™3_­7Ű˝`<őh4JäąV›j°˙VĂ‚I›2Z žą&Tcšs˛y¸¦ÖÝ@ĺ訧٪mćáz¦űQqc®Óřmů•Ę ë¦č } y&Ť&‰ĚšMUÉZőíçť×÷yľÉöŽ$Ą<çWŁ]yúĆą®k–ěĆŠ‹ő††×2;4X§K!¬†+·ş™> stream xÚu’y<”kÇm•¤BNZ^őeźĹd"Ů"ëÔX ŤmĚ<3ódĚ0óŚf’#˘×r’-űi(K*K)[ŚP*%Ů—NNšHQˇ„ă Őé=ťĎűyţąßßőÜ÷uýî[]ď¬kNfú‚ XĄ‡4X0—čë!eÔŐ÷ł@" 1–D4Ph @#‘H€‹”‘hljʎŕ8l"u©‰Ć ´>ZŤČ |A*ÄA,moË 0”ÁNć|ó‚@[t !:TIf2č<€ RD˙qčôDĐXjë_.Ѣóţżď BT hŕ@2Äń˙ѵ…‰tdΠŇAůAě$ă!D(D:üÂ3Č ‹1@<“ -%č˘Č<Dňc€l6°ű«u C$QoGľN(P°Ć;üŘ č/ŠîŰ~D6 dŔŔžoš ~čŻdŚAîr7ś“­ŁŁöň.[V “ 1¨z·@d±<$€©Ý@0 €D­s+ˇÇ`¢_€P,™ĄBK—č200C¤˙MP"Bˇ|—% }×»—ô÷rŚ>€ sŘß@°éD6m™üs0<bŔ.Ľ€żďgiŇeŤú˘ťaÓt…Č0íKpDq H=$%â˘ďŰĘóßÉYX0ąÁşX$ ‹Fí°†hŔ`Ź~Č?ęHKtËW˙7MD/ą I¦Ż›IÚqěFDͧRó­Çu‡ZVţ>(ŽwżµŢŮ“LsX•aÝháC.Úô(ß[x¦­űäV­·źžp=ęłÂRlř°Ő=ˇĹ¤nÎĂŮőTp™ą…ÚŠMŤĘO$8*Ż÷!Hv%ąvĎGbô_ç.ŘŻŹŽţ@ţŚśJĘVř¬ůÁD¬»ŠÚ Üěî!§Ŕ"¤q\l·.HD`UlG“[=Î=6 ăĂm)ÉľÇtú­n'^\é*.wŃź_{RšP/€ OŃňuö` ooFŤg\DDy%Ö7ÇhIÝ'ů©mśýÔßc¸˛f‰¸ËęĎ&Đ·ŁŐ{ßöNş­I}`žj4±ĘŢĆ@Žß—¤qĘ\jĽÔyXJő Á;ęéőB~™B‘ +ÉżČ+&cÇ ¶",âÇpîhČf kTmHČŤ÷‘ÓţZ­'°´Ç÷Ţ'Ś QL/¦Ŕ*‘žĽŃ~ačÚ±ŠV‡şQ—Í$Y/1ÉŘ-3?%Ř$±ęĽ7]lCMŢ[ß„ ĺŕÚDa@€C;Ôťehµńô`ďČŐmĎ`˝AśZŰP]Ca~¸żÉ:±˝s]W;ú7´űmî ”Vť|skőµ°ü4, 4ÝuÜ.%ˇ&bńÉČÓĚŞ ¨,úO^¬Ś»ĆÇIď,Ë…Ű×űPřěٵĄŤĺÝŹJ*(‡8ßOJçđşÎN[O)Ú'ď‹î6¤Ě§ő5Ł«xúĹ<ęO2?×çelCäŠbňâöb˘¬•’ÁäHíĚćÔ˝ŤfDS3¸­ ¦ŐY :†ÇmĹBZ#ś_Ż{p\aÇ—<˛|ˇż,Ýďw…3ó+Ź4Ő 7őÍ­˝Đ~ë“élë9ó VS3öM¦”Ř€çłÚ‹vZŮâŮS&‹}=¸?ú÷IuňU™;ĹzeşvîçőŮZi+Żx%YčqÚwŮN)îş}vsăĺŽĚăÉŃäJ¸îkoK”’憞J¬˘äѨś•bI+zL.–L{tF”ulÉ×›zĄ„ŹI¬J1mď+%ćĎř1 çšR¦SŻV‡Îo{ýďGÜąďCŢq«` Mľ…5îű!©`*Ëă^z˙†pą+çVđ*Ó*Ăl|Q¨ĚUě”óťÉ2?g~wrvQ6Oi"úlxzѡ;‚ý§lOę´żë,!nMŻ,j0Ń đä`•W sfF·z=]8Y XW1\µąBś›‹i\ŁJűŚXś”{ě×G±(”W|Ĺ SsÜrŘ҉W‹´2.ö•ÉíŰ 1žŻłą[Ňzů)ó˝ŤŰ‘śŇAŤ«LĎŤo]´âž\6ěŹ{Ţ_ů‹ęQď‚ ŰLü8fµ˝ßĐŰDĐźśIÄNěěQÚ¤ŇÁÍk‘âsÎK¶zµ…vĺëž9{iÍÔůqÉkNžĚž˝Ů÷”ŕă‰râź05ÝLéZÔŠjr–ЬŽ,c_>{:ÍŠ=Ąůô¨,9¤Hń»Ú0f؇éĽĚ\[Yrß7góČJbäÝćčĺŔĆW«őNô[‚ähiV°ť{‹ţ..÷˛Ň%¬|ó.U„'ŤŠ Dů]*T˘CäýŢîÎąđóâ‘ܸďíânfńÚâş'ó¦ś &Ťëv 4µi˛ö¶ ‹Ň˙MÎŔUja°V çp9T*ń}Ż,zŽňئ›Ę˛‰7*—oÉ*µ™DW<ĆGRopyφ87Ţ­ţS?ĚM&8·îŮśëÂQ…ąr…Šo{'vřÄí_SŻ Úil0­ľ›ŹU|“ţéBŞń^ŕWs‹Rţ‚„öĂeÉ١ź˝îd< ±%Ű_Ę™7ÖYŐÚś+x•AŽHG÷°BŠ:VĚLŹPĽwŞŞőČ6m{·V’ŃŢ]×ůßORő:űsÍ”4·Ü0ěqÇĄŐ©> stream xÚ}”y<”}÷ljěű’±tĆĚŘ… É®±“¤13ĚhĚdŚ}É–-;‘}—=![ Éľ“Ň Y"š,ůMÝĎ]žűy˝~Żëźë}ÎąÎůśóýžë¬0Ô ¨Ŕ9 Żŕ° D|@đr r2`†łgµđHŤĂ^†çYD$ 0™Î“_ Fä0K#w7Óϰ¬<@VVVAA @ á€Ň ŤeýĚŻ‡uÄ ŠŰî·˙ńy ńnä" rŃsrI‹ń ŽäďÜ1c  ńK×˙¸a.hŚ÷˙`…D;ˇ #$íîňo݆AĂ5°N$ü· íví…D@Ń8 @Ŕ»#˙6[`H<ŤEBqnčź#!`đż|ć(4üéćPřŹËG@ĂÉÚ,˙Ó"ąCi€ÔđßB.äŮý“ćGb ĺüŰ ű‹ř÷ČÓý5ĐKcëkRâ/ź6ŽC ±NYE ʇy3€2)|!4Y»éEn$ĹČźn»üŽ8<ĂĎ3RR€ š~‘2‚ţ&%ö‡” ‡?!ż…$`Ž„?vąßvüŻŁůíP€ŕżéçpAcHN‡üŤŠ?ÉŐ†9 9Cr§c(ˇ~ŁĽ™ĽoŁŘcdú’[»u É˝/FÖęň!d­ÇRAČępǬěö1$+s=†deřcH–áv ÉÓ˙3"rb Źü3ň=<Ź#ëv?†dÝǬŰó’wäu É齏!Y·Ď/üďË…ˇ±sďŰżWćçíűſٌ€ÇÝBZˇÔń#ůÄ˝lÁ2`ňa‚>˙ĽŮýďmÖÔÄyůe•Ék¦,PP”Tý˙+îŽÇ“×â×ß„Ľ˙°#šĽĚH¤Î0=«†:ׄ¶Ş5<‹ý4ďçžEĆŰtF(ţšĚőEҦ댸jŢDTžęM…N•† Oř H®“Ľ®·gͦčć(´;47y=ß·Űťg8~§AĄÔČöŤAÖ›¶Ô¶âIVw•:ä–«– źą-_SY¸ŠwŮ„S1ŮĎVOÜł›#Ľ¶ąÎË·}ŕn®g1xx"TIôPŹk%yđzâů×vw[pŔ¶>ÎYŠě@Ě…ŹŰ?zćÚ 4;8ÍŰ<ż]Ç>Ž> ÇÓ÷kfnćşę\¬ąůtŻQÍżľT˛Ą€Ńţt†í‘éz9AĽcýĹ-»őÍWʰO"ŰßkSúßáßÎ3="Ůąv”š3(ŇÖĄ˘Î–b_Żt_ť^˘?ą[±† ČdĽĽYz™aŮ€»Ű#G—ęř l,Q]ó4FĎ#2&«=ď%ź·šż)b[ł ”żŰ:rŢbrîŠ 5›\N yĎ ÔŻîŚÜ<84OŕôÇeűý`ͺáÝ{‘Ţ^’őŕvĆ—Š.™x\±űňem­á¦ŃĹ}í´ÂšˇľÁ„¬‹˘O6`ˇü;` ¦Şkˇ(6j~Sާ?ść¦«¸;Ä$&ŇĐcqRsr9?ĘőˇĚmę5UóŃDČóŰ‚Äf;‡;Ĺ©sń8ĂSŃiÄ[˛ÓĂi©YťOXŢ|}ˇĚ/©ÁôĘ…Ďnü L†Ľě&_'ζͅ÷í°·¦~Z,Í.™©Ď(ş•ć¶żanş6h!b·÷¦r9’Gjúé_śx3'âµ=µÖ»¦b×%TbٶRĘ^ii]—´'&9ź·.>#Š“¦Ś «ń~…–d+i-‹|1„B ÷ (ŤpÓ‹v¨gPŐ{E<@kµ¨“Ó$µěëY]<©[Âj滕ú™NŻC8{-OĽŘ›ÜsPíç/•©°– ˘çąŹŘ?^ë‚č™ĹÔÎü@ŚĺVőĘ“ÚęhĆăĎE†đsĺż™ŽśÔź[{…ő)ăVĽ]ˇKIŇ’•áRݡb=’h3›7N´â* çßGřmŠě9ś­“ìÁă‘[Z•ąpy·:ĺb­«:Ť´^Ĺ›,%iő-ßŘ<9ŻĽiď*ÚXü–ÎţĚurg]o¶y%`eĄ6MžŁX‡ó5ť÷Tv—Ţ,|GWZ– ±?%2!ťŽî’P‚ďň—/#”[ˇ­ň™śü8Şőş >gFF/3Be‹ŮC9śĹť\ćc°ĎŢę˝§ÖuÓn.ĹňŤ Z<âgŃ™ĹuO˘×LrŞ#CS™O‡F T­µn==ĚKj0(č1źSŠ8?ăI4»ÎJf•»°5m3F(˝şćß¶Eź $xVĎ®ą0©ŹHhřŢĹǬ]Ań—ÝÇÜëE¸Źš'ě|FYůé'Ŷ9h›’S0÷2KîR*ť‚^ŕłÔ &Kx[UlôĆôŽÚ&–&ŕ3ŘĚ-ű@Á"ˇjĆIŤ9ü0í˙ˇNs/¬LU›‚ľUćČ”aťR5óQMçí§±bŘEYń‡•FŇ˝ú™‹dݰ5Ř)čűą‹8e)3Ňb°ŁĂĄŻ?f‘<¶‘ęI.ť#Y+ws>2ŁÍu‡ÂJ*÷XF“kR=/}řô˛ř†ąfˇ©(1ńľľĄ‹Ö蕸Ýs÷†§Z]Dť|05ÁúŻŹź˝ľ%d4ńʱľI¤żCť{ľŠĐkěŢEŘJs1ňOW¸ěĂWÚp±ŞÂ[†-ł7­-ű"íţXd÷Ś8ťčű‘¨úZ7›ÂŤ%tŞvßUjxÍEŐő›|eŰ Ööąkqó"Ůk‡SG :š{ńÚŹp !ęků“Y¤7Ü)÷“b k†iѲ3™ăÍCm5kŹD72,{C9|űÜvýíľě&?bJÍý4É’-ĚżAŕB϶Ů(ĹšQ“Ö:TŰ ÓőU%užĐ下›čO Q }cÜľó¦‘Ňąľ’&-6;(3©wiČžjÍ©ňĆॲGb+ĽµÂŻŻ'ü·ăŕ+ă†v•˝ńÁ}j‹łqT¸'üßÓÜlÝŠBŚÄö‡ľë¦4:›Â,ćđłLqgą÷—ň–I}ÖŚ!‚ßHPWĺ Ú¨úńúÓdř‹™/›á„ŞÔbA =őńÎsŮUş©‰ńbI®©ł¤a’ Z”xâH­0ˇ(ď×H­”O0‘śŕXĐvťÜ/wiÄÍnşm˝a˝/ť}PĐsŇX (ŻOmŽT·Ńľ›?{;áówýDąQ zÜ•W8n—OY:áň`<‡$bdzží<‡žÜ3Qłáüi"ËL´˝[#{s$Ću¤˙Á>R2h¶Á'ł§ůµf$[¸ö/ÁSĎˆ˝Ö닣ŘŻUę€\ĂŢŽŠł»đ•–s¬`i|IJݡŮNc(Ú÷mhF¸g”‰*­ĺ™s··†Áăóo…\Ą, őŚačďZý5¸Ă5o™\*¤ý†.ÂŘ5ţ©-1fĺ5ň0yáYŕFź/÷Löx¨”íÚ{Ďd¦®ĂT"žU Kűđ=„u*V»†É·Ř7¤ňôŁQ ׋ŮÎv†éö‰Eq:fşJ1ş­Ox§$ýΖÓQ/á˝MÉ€ş+í¤ßťZ·ô^3unpĚÝ5Őß§µď÷Ge®‡[µ ˛B:rYQĐW Uú`k*ŁúŤůÍN‰MѶzľ¸ÉGŁ› \Ú'>cXVKż0źľěb+–›OěgC‹=±ŞĐŢ~Úá}XÁoMhm­J銛gRíÇbž§"> Żë qohŁĐőĽ)cçl‡‡ö§B‹+wąĚĂż­†Ć8LOqQÚ$»6®Fr­š^ůĺXn˝Ú(襬€ŐIV§'ťýJ˛÷¬Ržůé/I7ŕcş­&'ź dŔü î»‡ĘĘꍡŞk˝…ë9ź‘»7dŘl'ŕ波ĚjѶ)W]ć¸Ęç,ÇľYuś `Aźz!ľˇz`ÄźIáśěŹwEÔ…ă5çXR<_Ä+LžÝc§¤énäŚĚđ6mRN°fáÎA4d ÜŃ}‘"vąKDkjz]eżśÄYs•ť6jŃ+(ăE [{\¶Eo’Âv„»} o”úĽV~ňׇ›ňę[oIëgě©oe—8Ď;k/ľŻLŬyűŻľë3݉ÍŇé>˘o•×ŢŤ“^žţ˘^ĎŁ¦vÚ,Ç«Őm4°źÖÉŰč†íˇ°Ě9cŹRfe˙Ŕ*A"ÚthZĐ®_WĆBJL˘rŢŻŻS¸¦ó~¨µÍÇŕ´˝ŇR}mPŮ[±[sż˛ >Égf„¨/Ü4đ­¶Ý´LjnX[nN^ąčzOćÂtµČÍţˇĎ ý–:Á\´Rş7†oś†Íl”' ?ŃƇw×řf ‚‡"0ŰkŘđ“Ľwc‚8uJĺ|h“đRĽôSĄNmîĆĄy±˙ŁrZÔÇ>Ó‿˙”ňDę+‘@¬ż–OM¬ ËěŽÚQ`X]â´1NÂýJFýíÚS/xR_Đ^żĄ/3ň=Ĺs®ńp¸¬g¶@˛"™GcG IEu·~Ň |Űj×Ň'ĆđmFćŃ0ţ\+Î…3z"”xˇ–R··Ä‡¦ę6Ó®ôhÉą ×nLŘYŰ'ě— ËIq‡xřă*w H9vk„·mŮp›ŔÓŻ7öKUk»49|9ÍńęűEűÖ›aŮ /Ä/Ü> AKĂŰsč/H°0@P"=şy')űëç›qü†‡żöž©`WĆ OŢŁeÍ6OŞ»B¨9'^?·s$8ü2Ťńíˇkü%bŕĄd˘j‚]LĹĚčC'އ&ššśA%Ş_|)Jh·L6“vަé݇~Ô¶¬hqŢĽă12€íçMqy‹ž^łę:Ç|˝jď­¤T˝µ¤Ż¤Ă}™»]«ÍťęVŇľ_G9WŔ±šŚ˝Ő‡n&…BIĘFś)*=M«ˇBEąH»rŤĄçG:#2iă§0qě3Ďő.E$â˝1ŹŞ/1E™Z}šz§—´¬ZH| –-~YĹşĆu4{©®ˇŤ6ˇ÷ɢ©­6ľ©_}8işJÓĽ9n×A5ż™;§† ĄłîSˇVpęŔć2ů°3śš™ÉďĎ6˘ôŰ4Ku¸í&ľSű99ZĹbY TéQ^żřb·—VCíKrW´ßh~b8­ŽŰ¬[‰µSćöŘ…,ś™ciÚä)xDm˙F˘Đ›űűő˝Ţđ¬Őb7Ů@ť$ 6Ó(×ůŰë7IřÂ%žđhgÝÒgĘćén«ĚG2Ý‚‘‚ ľ‡f޶í{˘l•´ç3Ű݆Ąsoô3ŘoFřż˘¬Ýż+|m‘ňJExŢ/›Çrşîů–MŻ?XXs–ZqŔĐ«O™bačWá1uÂťÉQH2µyBşA˙Ł ŐťęĺÍ}ąŻíĺ±oł-OdňußóHʱMŤř(pÂ*z1!Ňß—Z:*ČÇ%~H˝xŘ…#U˙˛°Ç uäC›ý\O-¨Ý=Çśů`ŘCâôďÄ }ÖÎŢăŔĆ/¶Z=ľyŞ3lđkĎđĂŁ˘Ś_›¤UZŮÁ)«§ áńn^Á ”z–wOvÚeŘůzůýĄŢ »ěJ§ť«2J\ľ%:|@tSŮ '9‚ďëÖ Zú(×÷I^¬őňÍŕD9H)ÜŇ˙;[Ď6őęa˘‘nrxŻĺ­öJŚe3ŐňŮDnAĺč„ŕň§C †)¬†Ś‰~ë:Đ‚űűFťĂ‰ŢW¤­>ťáŰÝ“Iź,L™ku{LÍ ›]Q   Ę:i4§çµ€čb˙xíł’ endstream endobj 1698 0 obj << /Length1 1495 /Length2 3201 /Length3 0 /Length 3994 /Filter /FlateDecode >> stream xÚu”w<ŐďűÇŤ&˛5P˝­JÎ!ŽC…pĚl©ÎÁÉqg(Ł*##’ŃpĚlB*2ĘČ̱9Ů!#3|OósŞßďqţy_Żçµîë>×-!bl Ň@âěQÚ8,‘+DO”' /f“8…G!hVAD)9YČ1Y90 tK™ţal@wł0 Nß<ŔrÇ9Č1%y690€D;{”Ë&ű-˝.Ö@čH’Ű/ćÂčE€#ô˘’˝$‡ĹxH”#=Ž„Á"\QŔ‘omýC®hŚ×˙Ď-Qh'g"pÄ…D“\˙¦şDí u đ MĐF{˘Ćh˘3ŕŔP?ts,…Ç ±(cým"˙ĹĚśŃ.X(üD†8"ÚŢ›ĹĎŇ( ś6Ö˙»”+}tżň!(,Púe#Q?ąź ‹ü{ ôá~‚¬®¶¶‰•‰Ô÷+üŽ´°8$ëČ)(<áĹ tKđ†hzëžĘ“~XY,ŽHÜHÄ+€#Ďöí†ĺY{<ÂEwŁďš‚ŇO r$ÚëŠ`ÝŤü/@‘ÝţÓa?uü·[bĚa¤‚2†\đ±ÄEüVć$Úé7“˙91Ä)ü†ßsţř/c€ôS9bp8ü?9ĺˇ?ÉżA0z+śÚA`‘H4Á đúŹ*ü¦8üßľ8˛n< ű÷ńŔ ş=®xŚ0L—1Ă˝SbĐG ý©˙3#řŁ´Â„ˇöą‹ĂCu%zW’«ë÷wčď™( =Ý…`ôŢHŘ˙+Dţ'řĂB˙ź{ĐúnĐß„oäĎ-3F ±D3/·ßŹĹ·µűnC~ئD<Îe‰Fť] ôŹçY°  ˇëô߯Żs˙®ńÉ“8Oo’Ń÷ ˘†Pą+8:đôAż?Łô†ŮŽhzŰôEE9°őtâTČ ČĎ—ó4„.†›¶ |(żqŰúU°ńP×ogýí÷Nżu?i‡ĚŢű&Ö¸;#°­ÓGččôrł§me‚˙űťűD&­W´“źAëWć+ťP8A§hě ĎL„É~.»ł[ÎޞěüzZ%?š3BY/'ŚÚŔ&W u‘[$FŞ‘T>ÉrËZDü±ÁÚ–;Śö.ÉL׼eť… [×ĺźn± TTeu´` á´‡G‡erčĺCÇýIµµĎŘęőĂűŹĘ›QĘUĽTDŔL^N†Ýf´ËÎÜǢOöŘĺ,KĂ=Ó8p6Ăe‡ÜËÖý’ďŚMĹ@9‹(űsË×%”__çĐĐä îoYΰ›Śĺ‹Ţ÷xóÖ–3ŢOm¶wój ± âĂuá[s ÓYYţN‚ .SÎ[ú%Y\ű©CÎđ×r¤›ńÓVť÷âš¶)ĐŽ—`'kPŃĄ(¨8ĺő§‚_Ť‚Đ)oK;; —…]Ş\PK¦‰…†ú&a!R Ő ¤Ń7z1 ŘęÅݰÁŐś…;ĄíL¤Á2Ë9Ľ@×hđŢS­ˇ|6äć—Ę´âôlĹő?˛O*Cöç›"Şú FÎHTČAj)[äůĹËšń™Ş‹ř>%hč-$*YČ Ĺ^kŮ+ŰÔeÄJ ®"礧¦Ő9KH~]]CîŻlĹ71%fşĺŠ­§ĘsŻÁ­F­DT#ős!š…‡>úrĹĽWs¨&5„Fűë¬C‚źžź‚ V\5ĐfŽ=;}ľćPß߬eźż¶Ŕ'ďä—?yË‹ěͧĽó§֜čwwÉ7aaÂÂďł_€Ň ŽëĄ‘m<Ďy yÂ/[b\`a’'/´UC“EjÄž3.¬sţńłs8ßć|_ÄäńűíZU”V’tQŔ¸żŘe\ÄťU/ ,r¬ŻµŠ¤Ć•uľaf[u"Ě63w;ş*'řŘ=éöÄ;*`ăk6"­ÔŔű,Ľ7ń"včĎĎÇČzŐÖ,kŻ śţlf ܢőŘ8ŻŢßBP’ĄŚ2Ă$Ţ›?ŢŰĎ»3Ô‘ß—pĄŞ¦îH­Zdd0+h-‹Ż˛˘ŹźimźpőđŞhĂv¤żóűŻĚ »Ą Ň<”˛jĆ}n—ŮbŰj[†źąrĹ©\ô żK±Őż Ł9¬ZśĂöüţ›Áň˙C`´ˇą]Đ©śyřl~Ę]¦ÄŚÖ#3)u7çwLíŽß2KŮq4;:bźĽvŃĹç—-}Č%Ɇuž5fyµŞ ĚŢiÁ7eŢÓ|jś'بo7S6‰[ǢŮŰk[_ÝżfĂušÎăĂŻv_ĄY©Č,¬ë’âB–t®’Ţůж—•»~q_—;L™/´ó~ő˛zwn˙ń;,”@fncřa"k_~‘dű°b5Ascc$ŻŚ†?×µçăw‘…‚ĄsńÂ)ľ\1đ;˘g"ůdT¶:NířPeĽt ›së\¦sś˛zô¡ŻLę‚–#đ×îď©ď7ćO6ĘŢÁŢŤ©·^ ]35é–†ĂmÚćü˘|üżőĚ©Çč5kÚ„EMµm۬UfŇdtmZüä0őâZ$­%˛$›˝âăâL彪>MŽ´L\G{zŘ]R÷6UjťW Ë ‡n Zѧ`;x· "îş»őHżĎ ‰äTŻ §™ÎQŠX Ë3ô4±ťŻ¦Q°$jčą ç—<s&Pä©rąYCŹRŢŞGBéÍö›gćuĹF_ŹeJp4 ô¬‘,Řxşc{‚G‹_<âş!.—%p6ÝmŇRl NŞ5۱®5Żž¨ß§ĄÂÓőĹi¦ÍůöŢ|˙D»Ý˝7:ŞRÔ+Ł‹P©9P/ע¬±@^‡ďd©ĹŰ ĂńE©×c•]C§ vW‡róTÜßJiUb%v\şOîě~vwÂ6ZŞŁÔMzÔ7cď-c±íL9ĐĽ˘P©WŠ’Ô4N…­‚µĎĹž_Ň‘)N" )çF‚üŹn‰9Ű#Y]·'bř…ý&{Č=!4(FGmýR]îü)äŁćťú©ˇ{Wáâלńů1sů¶QÁ2DĘ6nű/ă×s•â@‡ĎTZ5#VářŃ€•Eíř‡WŇŇolm^Ô";u m§ŠËbUUb¨Fî.´e67ţ>6 wb 󝍜MĘÜĆĎů pŃzńĹZßŢ4Í™KmÉŘ ő†‰ť5IKIۤĆ`•ŘŐĆŢ/p/|ŢT–ĐNĂnI—ţ`´sç>sŁ™Źsú\j>|ŁĺÎw3.M*µ!↝ßĚŁŁóĆÂB(÷hű%ŐŞµ*›ě»É_˙‚ep»żśZGĚö".Aëń- 1ýà ⮿dĺžă¬I°”ݶ>çĚĄű#&t.FWDéęÄ}2čUyü6ÁH’ďjŽ:R˘Ü;ĘĆó&Yć~ â#)e>ΕzÝP!WŹţŽ]–J0Xý˙aR\Ç endstream endobj 1700 0 obj << /Length1 1434 /Length2 3596 /Length3 0 /Length 4472 /Filter /FlateDecode >> stream xÚuTy<(äŔ…@dŢžĘQ¦˝ }·äáJ ‰Ç8‘(7Ś]Čżů”÷ż ˙Ó©¨ůD‚÷_0„’Č KrsG’]ăR`ÎHâo€@Ěŕ_9ŔňĘCĄ8C‹ţ `( Í ó‡ü/Çź,ĐaP>÷míaŞćîAö%ýĆ­ ‰ú`ˇNđd,÷ W=Ŕ\pńŹ„ŞŞ?Đ?ł)@e`¶Ď $‚ž”ßX” x,ދǒ}˙#QءXúľŽżh ˘qĐ ţɡ Í GŔ`QHÚž_°ň/đźŘĐjŔÜ‘$2ᑺcńŇi €‚#c=p˙Ő$%!x€řż•`Đ|čí%†šű/˝¤Ź ííŻX!‚.8ЇDqţ]bůíľţîU˘¦ŕG ßF¶(?ş˙óPĚhVľżî}űrľŰň˙Ú–d"Á <‹ECŰř[ Zh\m |űůůćřż—¨ĄEđń“UPdU•” ĘŽÇTTţDQDHŽďBčžÚ.XčW‚> Šy¨ź€:~ůBéĺęŐš޲S»ßŚŐDĆŰ5E(“%nűąďIŐűÇSë<şđ@[˛Ů`^XOżż€4mµÓÇáYZđ(U˙y‡nÓ„ÖGŮĚ–µĹgPMŕÇtMŽśŕ\H0?Č~Á€L<Űżqĺh˝â»˘é;›5¤wöŞs€;ó…C„*@ŽǪ̋™Ł‹¶#·Ú9pÄq7(VÖ]›t—ŹŠněźMęrSQW}¤owă™Y¬Fgk2wGö»|öŰ9š¦×]Żjr'ËsźxýlŘĽ äµý((3îb‹—ň“ç+Ďę×n|á´ˇqpď•3oÜŔĹFÉÓš-ś_mv’¤Śy¦„˝vQ ¨Ëůó™CA{LS¬IoeüśžťťlN\ş]:ŔÄűvN#_·eM]G¸VŞZ¦{Uq`pä˝wđ4©şűuM‚eDPf‚Ő;Ć–«aŚĘJĐ<„ŕjZ-ËĹůw4Ů®$ë87§ýץ$˸ě oń_Şż}_łZw2…ţł2›UőC _|źi¶×VÄ! Ä'%Ĺą¦Ů±zě}ď9on{.~¨=Ľďđ#Šľ×óc˝ú†ţŰ2ç‘%©Ĺ.ŚÍĄ…Cű9¤ ±€°ÁçöYöşXŇ \QM÷­¬Ú (*Íl‚őŚCI ąóúˇşűb8Ţ6ćÍĄ“ůKĎ1mÍ;%¸ k"…šóDc÷,ÉUµ^ČŻ‰¸>š"íĽ/6u-fFËt›OČęŢ1ĽŻ2¸Ě«·Ľu­=ŃţRťj–Ď»ă /{‰=[÷[—$«C7ß×áÎ?Ľą_‘oÓńąÎµô>rT,›ŹÚŢ"łož^«;˘Kî¦Oů$}¶ţĆdÎË–~èé4Ů09ŇĽČÔËŢąÓđŤD–Ĺ nlé=oYŐp6D>űÜcż˝ˇÉoŻ:$ËUiD1ËvŤˇ„»l:ň*Z©JôňÎŇ‚+|ĺB÷2ľˇ|»udď«ěabEĎő^}/Ěą[mU€W$˘Ű(Ę 4W.FńQ™u¨ră¦Ô;'ş\C˘íĺ3(pď‘o°?Ŕ&ĘőÄbX?Ç*4'ˇ¦0Fć„Ä•ąY¬}Úî>é`[;87ÝÓ-»›şť(}—…ĚŮ‘NÜl|ôč‰s k8nZř"że­€we`Vš ËWŞdŔ{ʧrŐ˘W¦×ÚăZ)łľŚÍQŞŽFÇ‘«cĆ†Ę "Ö.¨SÄv)–Ą…UjäĘW¬řčPOź„9™ž'¶sąń -šVűP_÷Ž†Ĺ« ޴݇ť\݇ól‹lŚŻoŢ?Zo v~lő˝áÉ ŚýٰG›ćěIí%c«pz§řÜ#ł´¸d É{uv•ţ,jĹŤî»×Ľň&]ç%SŠ1/Mĺáľ,¬3vv¬ZBÇř¸"°6a·żIŠzźGŚ/ďÖäÔŐüŮĚ.˝$j±łˇHÚ;}oŔ—ô§ŹhĎSŇżŠ“á7%î3‰*yŤČS·L•zę‚Tcç…­šŘ„ů÷I[=ŐF>U’É Ă #ô”32ŹSnl0ĄÇű ł˘ ZÇtłÂ¦—{´âl¶rSŤ“ýصÚó“yžş°â8$ě ‹D>Q€Žř‰ŕőËDÔ怽BßfJZWÜ˝~´‰Ă.ʵĐą¸HmŘĂľ~pĎ«‰šůzŕ(}VvnŃÂ3‘Î/#_ęŕŽü˝.‘Úď_­o^ ű@gŽČ/›® °©PÍâ}Ňű×YzĎ©´šđÚö†Ţ=Pňśŕóm=A›ż*Îý@˝Ěar­qKçÖŁĆWÉoé*ąűÍoĂ °Lk!)iü§QĺÇdžiY)ŐYgWrŁzqON 8qJÇöËITUts—%&ËŚŁ$#t†ńTbŐľŞ‹w¦j8îpÍ|R÷ăŤÍcóFňűw±«ňgp˝Ú"k¸çkFí{îÄŃöŞ—[:}±Qôă#®ŻŰ‰2‚ˇÍŘ[´SMŢ—\–ÍÔ!Ă΄Ůţ˛§’MŘęwéÉ™3x \ë_őPşwşMmmĽňRGŚZd@Đ`on»~©Î ‹eŠ’ˇö@FNµT[ŹŻ-,'ĎřÜę@Ś8a< ďŰ­ţA˝ůćdÓ¬3ë]‹Ąú¦>_o0¦üsŠ?»Q”păŇ“6SFeŽÉŠO+UNrŹ{´×ËhođµU¸m’Ö†ÎćĐ«îmŹĎąČ}.`ńęžŇÍvM–ą‚]„»čá”T÷9FĎ=;BBďÇ+].Tç™â§ çD¬ővµ9žgIřČÄ4ŹŚ+Ď lż¸'ٵŮü\µµŻôý †ô3Ó\ŚNĹ‚«uď&ÚŹKŽ@ŇĆ‹­Vff[XŮŚOűclݧ•ëŽôX™>{Ψ&Ü«·içe śjůrâ‘–ŇŘéŻ c«ćSťxCŢq‘|˛Ĺ%É}ŢůnćÔ’Ážjü3Ľ c•őÓćs|Ă “Ó%NI­‹7ŹńěeQcjtWl±4JőjüŞă4ßµţaaçUŽ¨Í‡ôďŚo”…”ď7Ąôg– k¦ mäÜe9Ô1ťĺôäšĐĐIi)"éťJXőŰW3­ ›ĚÖ#37ĺS–9ď1¶7 ~ľ|l麇C‰HśÚIÁEĎ´Î Ů*:ŕő|­&óÖAV÷Ż‘žiŹćÔŹ…šŚËTp覱xĽ¶1´Ľĺmb~J>щ͝ R÷Š~fň]€ÍŠŠĹą0lTN:´tęJ˘ Őo9FÂiRŕ‰Üž=ŐßJg´k(UyĽ“ţÂN¶îMän3µŽ51ĽŹhŁćk0Ńŕ›u×j†«ýő,eŚě-’ďIš~U2b˘Ś\|±(îŞç®vW[úť3° eyy/>ţ|aôŕTíFt,[ĺ—Ž?¦Š‘®9{ …KŮ»u}–Jš÷=˝>p_A©%±p<@D´ŞXĺŮ\áÇ`ĄbŔ}ÉyEl*6éń™ĎŤ‘ŇŠR/Em\5ľťđ٬ŚÔÓ’M~XĆkÂöĄR¦ű–űÁ›ČÉ@˝ýĚ -ňłl;ĆŽďđżóbA»t„”Ą™·Éx~™±J?áW±6ç¨ŔˇçčłvD}eęx‡Ş‚Gu„ÁŇ8Ö¦Ńčô+Ţ"µ‘=ô=Ë™™ťłŃ9ěÍô79|諍öż9Ý&“ÝAżŃyĹo“ş^ËôůĘĎ>‡č;>‚QžÚÓ†yżŁµ–bOËoÄßśipŽyů$ÔPq“Őş, f̦{Ťëx8™Wg•8ţĄä" endstream endobj 1702 0 obj << /Length1 782 /Length2 1263 /Length3 0 /Length 1825 /Filter /FlateDecode >> stream xÚ}R{8Tůî†M[‰’’ś ŃdĚŐmęÇJą$ĺ’L1fŽqçčĚfrÜÂ&+r‰"K)6lmÖ5Ę5—-­č¶’[ĺ.Ú_‘=Č>żmźç÷śľďű~ľßĎűy?GŔ:J2á!n c$Ş… `bˇÄ  ëPd54LQAĽźL€J#Sd…B8ŽřeŤ—9X‹„ţ|…Ćht:M–FxÜ@>Ë’çß·„Ý€Ş·ČóD>Kš/ ń&€Ţt€·ä!°@đ@wüžH °áx€Ö‚ŻÉoH ů?Ž Ä÷Ŕ-k‰ĽżV-1ŽâšŔ|P)Hh‰A ¸€;G y{˘YšĎ Q)”Ż4;ëB! űE˛A0‹›sř2#>˘6`Î:ôµĐoé=Ž Â`°„yŕ"AűB€0ďëđxR ››;?rl÷â´0áA0 éęĺHd)Gş€?€pďbăÓ’u`ĂŻ>",pGPŮů%P˛í<µ€ )ůřßAČřˇČMbŕ)Á‚đOg,cvźżž·ş€©‹ř(†"^ #ÄĂ<ţ·ÄšˇŘ™˘CˇPq˙–N'ţ=úľ}ŘźÄĐĹwb Đht@ßřŹB®Eń~><Ŕ%ěá»A1Č•íę@¸{Â=‹ĂË˙,4Qö#őµH˙ńŞ2:Ţ©öŚ.¶óI¦żÇ!™4óG§öąň ”$ł:ó"v(Gţlł«ÓC_^°¸Ś-;Pűzß)«ńż“Ő|p;ŮĘoÓOŽ~˝aô[•ő®Î«ś5Ď;vĚDč×Đ~ę˙q¶R8pÜđŕ äNË.(cgM.Uľ[ëDP…59±ĺâäQ瑝Ą}ŰěŠp}µYËŤoŰŘ‘zĚÖäv3>A'ŚDF/ÖJ§ůö'DżâĚÜŤÝ•áŰőRö‚ rŔ)ˇ2_ËŇúűň ľ$gx(d¤íri˙>Ąë ,[Ýs†ÂZ´ %9cqTÓrëČÂçw©+‹rĺ6; Ň>ë*Ó“%ĆąweĎ&č6wŹök“FŚÜ×LĹ[Ź%ú¬ž2ăąo»Uilw^v=S­IÝň'uđžÉ°ě ĺ‡jße„ľý0Đ×:şć°ć‡BB¨O‘śvĚ‹đéy~FQă7焬śxĄç|˙ ™±ŰŠAÄ‘‹R qőE®ĺűo¬Îń©›şŮdnu:™ÂĽ4}îđű®0I‘‹© J")“ߊîŘÓżsľĎvLŤđ1ó`đ–LDÝôőŽoľĽÎĎ0 ɰŹpäĚG6\ŘÉľ^_¸±§mü0#Wuo…ÎÄŐ‡ő ?0¤žív91žsnu@őŢĽrČEL|Ö'Ł’dĄššnüţdÜĎľ‘/ĎšôL‡¬ÜryÔ0Ú$ź(šYÝ9ý:Q=Uá§ż1km»Zň.Ę­ŰńÝAň2HtJÁ,:U*•ŕy *hpŰ˙©?çÔ„j±Ořŕ2ďäUŹëéîo´Vť1Bž Ă‰ŹŹ×V0„Ҧ“ץ|ěŕÇOŽä«Ýk4OuvĹ75~ĽůśiSu«ń`wk(}B/¶ČÚěü±b×J>qůĐryÖůĆěÄߥ-×ŇČŞí™-ʶ­ŕţR1 ąžPUŚTő+ö¬çĺś1:vČ÷xŮßf7řNQ•#Î| H7rUë#ě”ú4Şyy˝ţéów>XiĺAé;*ó?w)9ćtˇ3ݦűÝď’Űń(Z<»ů™ß¦É+aYµ sź*ŹĎÍXĄ Ž»%Żn¬W5žÎí˝˙-ˇlHr·÷tńŮ'%ˇ*FwŞĘ’ľýŤ89·rNµY©V{ntL17yŽ!'¶®Z1®Bźň9®,#+˙HJ{éŢ—zĚ–Ám\BÎEö°ÄżŘźě~s‡¦˛S7Ü“‹]Ű|µł¨P b6 ;ŽÚc\űŐéëzS"cĘ !ĆÖ]‘śÎťýOŻśtŐMřńŐ‡żoi¶]wă„Vc׬§–§’M c›JOg—­o!lŮ8Ŕ ĹT·ń]N‘ŰgdNľ­·Î(÷ЬŰĘ8%ňŤ7Mp´ÉěBé!¬é˛VІćcWLb’·YĽŽň|Jý|đ¤ö532gfv˝Ó ɬRvĐzIF|Ż˙yúPÔ̰ťäŞÔTAuKóĂI… źwÓŢ TÍ”A•̵mg:Ý®k›ň;F+v Ą–1Í%QngČ(†'®Űćť1Ţţ4§JĆŃ>µ}$Ź÷hůĹ…‰Iţ,A6Ż©wľ u«ţĆ€áĹö|eĘËpz°{Ľ6ŤkČ˝p6?Ú油řZŐűÖÎŰŽÚžígvQŽzôŰ÷ę/|Ä endstream endobj 1704 0 obj << /Length1 772 /Length2 898 /Length3 0 /Length 1441 /Filter /FlateDecode >> stream xÚ}R}TLivjEĂ9ľďl"Łiî|TŠ•’čô5”:ł}Ţ™{gşŰtofîL3úPJ„’(}Ř>ÖŠXŞmcŹťZIYˇ%Ů’TčK©äëŘ[i9gĎýç}žç÷ľżç÷ü®1ťďδE!ę@ŕ$“mYR%W‹× ˘o”ˇ0‰¸=L˘Ö€Ía±y,A&)dMř.T™§‹BKF+ pŮCă@ÁD$˘ §±FßwÄĹ`[Śó"dBS˘29ŐPMWŞ%BŕR5@P1uO!•şÂÁ(0óő• cRő˙xˇ$&.(‚)‚'«Ž$,ĹD¶¸DŠhśÂä Eř) bX*GÇůí8‚ʤŽň 96š `˛!h’扂pT.ćź$W‚ÄD”9ĎO3R#š‚Í|çÉNĐ`*Ľ‰÷`ąĹI°f#č8ÁůD 829*ޱX®žŰěÜVŹoqLŰ„‹Ă%€cn`™ VÓ Ŕ¦9cŚň®¨Šš–e†$u„(Č &d´Ń%YX–8şCKGµ1šÇ¬Ď¨/íđa '=Ô!˙Ą:ęo łÇ±;)#‚P/ !?/qI¦ň†Ě MńÔ7qňýz^;;BĆd[B€ÉĺRqą` ŹńEĄH!“QŃŤýrTlXŚQGQ*˘5Ö˘µ±?ţ«)´5e¶ßŇii-‹OTî3'W4ä„:OËŘ|w‡]rnáŤcüůqwęĂ ˝#5*źňăŃÍ©[˛É)›*Űě^2sŻżyU.A—"ÄbI­ĺ±ř¶9}‡·ÎđţĆ{ĺŻú÷{,Żp;ĎwüňˇLŢůUyĂzôT2Á6«¬K뀀ľĽ•¬řč%Εy§)<·×~ĐŠµ4úŕ8ďĹŃZź8 ëšcu|ë¤dł&K–Y©“ˇěHŽo…ß_>°ę'ec3-Ő•Ř$H.űŐÄŃĺ &˛=ĹďŽę­”5ú×L«"źîzö§Ę©Â‹ąeJ˙ăäËDöFŤK\áŁËlí˘<˝žD©NČŔ¬˛Śů)×Ő6y—i Éć7÷u˛Š‰őâCI6N»^ Ńr@ÄK~/s%–zO9“cT˝Üń"śnżkí«©ç+<ă ąç˘_ĽîlŻé›á¶ňu!=:¤HĎt˙?±gŹç‡®ßŃ_đQ_>ÇI€\:¤laÚ2Č’ů‘ŚŢĚsSőŻm ĐŘźťŃs2¤j¨ ä,řĄYg rlŚQ'3D¤!±P1ŐövŃĹíÜ ŢW}ĽŇ÷„ő:ň)kö(“nfĎ {žbŐNß¶ď­^řŔç̵ÂyOjűÝxyËÖ•š śşsíďĂ<ťÎ¦Őţľý'醗ŻË×`ţ*FSű4è'čôă6~‰ĹʸćŰ'ĂQÚ‹˛»–ť"3N?čĘ ŞŞŘo“P˙ÄcľëĽç©Pqi´4µˇĘJoU×uµĺ»ććůµ›33jşÓ⇭Îwt[ÜŹěSËÓŚb$ýú Ń „ľlú©¬ű^qŽt}$~˝ÄqÝ[?P†˝Đ9Ýťł§±ęQZť’(J*ŞđMěűĐ.(ď¸U{æ1<çŕw4¸!Wˇt‡˘Ój}ď.čö®~Uź­ 2tožÉXzWľż©gnEIĎk»˝ KŰX-+Îśţůöň‡ĺľž;3µj#űe‘q˛ŰF',JşŔ`ţ»0aň>sAâ»oæ_ňÓ*îW·:0Šď…;Żä/Đć=˝—U=´ŰÍCܧ;ü¸´ţŢă¦ďé˝îĘEK¬ĘĄĺ\®Cr[şwG4”)×\ęŮŞG7+žî&$eŁXڶTa‹őú\Ă7KěJî’ÚFńłK3C\Fž?ü+ŔDfő‚ťôĂë endstream endobj 1706 0 obj << /Length1 2110 /Length2 9189 /Length3 0 /Length 10340 /Filter /FlateDecode >> stream xÚuxuXÚö6Ť„„¤ 0tĂ ŇÝŚ€tĂCÇĐH#"­4¤€’ŇÝÝH7"-ůŤçÜ{đÜßó=óĎĽk­˝ŢU{mzj°»„…ŁDÖŃĆâ `ž0€›IO/ĺ1…A¤Ma!‹ÄĂɦ08‚«ŔÍ´TÜ\M­~[ąx\ AA &`5‡Ě VPLÎßî, ľżĺnN˙ŐąC\\á$&8)3Niáč`ç°€XÂĎąŮŮ©šÚCLżĂú?ZS{¨ť×˙_Ż ZYĂL* ¨›ý˙j`¦vPs +;ř·ę* ő„X€ˇ0skĚĹ ň·řĄÄĹę;şBŔ˙G§i 5·u€¸şx˙ŁRu„AÍáˇiý'Ax~l9°ň˙±‡WîżţL]Í!0€Ŕ±äo׋˙­Ľ¶Հ󥄦š’ë_üK%ă`îhu°pńňL]\L˝0ń|@(^§ÄoŃßŔ)ů€řśRHŔ)ý€ś2˙ ~ €Söśr Ŕ)˙€¸ś ήô€ŕěĘήň€ŕěŞήö€łśOýÁů4€SóÁŮ_> 8źö‚óé< 8źî?Hniúâ†[šÚ;ÁŔŢ·˙JyŕQşÂ .PWۇpSł7135·uµ3uµţG â‚Glćbj±XÂţóţGěň×Ŕ˙ăô·Řű—˝ ÷?ň˙9OĹüÄ ŹČÜŃ>ą˙Îó[bo˙ŕď{Ŕiń„SB<Ŕ›ůßo˝ł›©ÝGŕ©Z>Çf u˙ĂÇoµŁ›Ëŕ&Váz«ß‹ ň§ <Ї˛ńŔËcíĺd qřĂ.ţá‘Úüá]´ýÂ+ń1ď‡ážĽ!.Gđď}6…:Ŕ4˝śţy•~/řż0čo¬sq´…hC-`Öš¨Âoł§>ż„Ŕßź˙~3üż†¤¤Ł§;/ü!/A^řBâçá{ő/3s7řÁţz­áŹÎ±%ţ\B žsĚąiGóç!6U!Ť—äě›ChË«Íńş]áĽ0†™lkeôtąqgI‹2ŇđlŃë±i_r–ĂËaO¶÷KÉňY0™®uÉ#öśľ_'mVJ G2«ţ”uüo^PŕščŁč3ľŐžľ ĺoçŢ.ßĘżmvÝÖÜŘ>śăQ'“Ăb$2›÷‘˘t©éVaýşx±O\ôSÝ4^ŽÜ"…đÓŢ*î%ŽĽćę7 mtdoő{J°„`'şsr×·Ú–h˘„v¶A ŮęqaŕPýĚÜcHňýQ¶łś˛’XŸI'gTťđ«š"–ĆF€ťĚ.%Ţ'őĂcűá'„;)S7“^Ó]š“_꓇]ľ­aşÔW tn˙xŮđ! óRDkŁEw*ŰŁ6·…z^zŕč÷K-č ´U‘®UëhŰÇý(!Ų¨ĘTQő5FÁ="&Ł-§ó©—đ+u‹ëÉ ;·ůâń˝Í1¶MŹ;ÍhĂ é„ŕeĽXvĹŠˇ€s@ŞPŕŚŔ}Í1Ó÷7Ă˙ o怆1 îŤÓ»qBAyN xş˛ôĽłóógĺ#±k™´üŞŃđ§#o2Äh«Ź†MCČÎ6LkŐźď|[ă)ˇ©#˝łÂ^ť«0#˛ěJŤIx€†áŕȺʝĹtW˘~Ü*RUľ˝§łů–—Đ`hć˙!e5ŢQ™4:MbĹ–kn,-ĄצIˤ_´Ř÷m­ş¬čwW2L?leü§Óô­«agřM)»Űť‘ÂĎ"ż*˘Mó(xtl"ę]OŢX¨` ÔęZo%yžµ˝ ţ&Y×ĆŢąĘfĐWNţÜ7/}×îŃ®†ĐbÇ #ŕĐŤ]¸ĺG©Ç€va˝†*®-ŮÚľ‹+ŢëňjĽHîgľŠúlť>ÂlĽŐ?ä5éçyL.'Błń8˙đü±ŕM®˙,=â…oVz?Áp¸+…Ë o3cꍩÄ6¶ó°(u©´’Aˇ0RętA‚•VáŠňáÍ}Ő(:Č0ç}hĺÂăC§ˇ»«“v€żÚŻXsĂŞJ*,Bě- 7)cv˝/1]_˘)Oż¶ŃučőŰpěű%vHm9•ŤŐ㕵¨®YĂżěűĄ´oŚÍ]©7MęjD3uĹ · źNU2ăâ-ĂÇG“HŚnŔ¸­B‚fĎ*źr\9Ż7oص7dMR—žÇş‹l®)ú„ŽĹ˛a—'›MŚKL/ÚÇ4¤¸s^m†KhżőĄM-Őp]–¶fôGęn^ĐüًފŁ˙óڨʆÝMĚ+ç±8^Wl”Fj䡔¨MMU»ÚÇ*oŰRTň‘…x]#żľ:L¸rcÖÇV Ř~źGźéâ1rzJąŞóž˝©Ú·ăăÄ3Ĺ^}ň DĆ5‰Bű ›«4çśî×ÇâŤč餡ŘĆŢŠ! Ľ…3ŁKÇ+¬F¨ú҆{Ľ—ýŻq"w. L‡ Ѝď>; ş­|łé·Č‚$'FŁŇŰ29®á^1…ćŞ &–áŽE^e!|fwµţžä6čȇńńżÝYlAŤ€ŻćMž$uoaKˇŤň‹é~jČ.®Ě7X ŕűt¸@ ŃĂœغýzŤ¨ŰyĘńĂŐŕ‰Ŕµµ:fńtŠbI´ôŹÁŰyI€ó\°]spŐňX4™¨Pąż»4%€x ¬´µŇ±¤ŇJ™ÄÝuŽ@ŚĄ;{ŔA›\–F,Gý•ďţôYnĘ8sV¨¦bnť}Ĺ‹J:bx’ÎŞ˛ô¶xođân»č”´é®F (ć™/áѢ㨥d1 }‹ÍŤ©–Ö¤Âd¸¤ŕ8“SťÓwµź°ýŤâČPg~v±Jńü+T7ĺu…J/ ¸Ŕ<Ž©­CĄÚšŰaAˇ˝5ĘHnÍßvbwI>µżě+ˇhSć!Ş€˛ŹŹ(HrĐŁerĎŮŢt“Ëř!7®±zY¦ş5ŹG¤´B?s›äÜ—B«‡kD1}ŮGŞ&ćîNýúëöĺ×ô ťíťFw‰撛ä#ŁÜĘ :wń®Tä‚ů ň48.úu15Ď€FoŚ-7wL´łh{Ů?‹ żśů©ĂfQĘŤŁlɨŚN1v3t´óF0¶BČ%ä…á\VüÜłĹFůATgÇ—xfׄČĘŤß˝6Gô‚‘Ő%ÇMG­jő žV7#§ŚV¤g# tI?q÷‰řq–ŢŐ,Ú˛ˇôdĐáZ˛V‰xěŐý€)@K]ź#8KÉş&Őç®3v·=^ ]+¤ŘŽňS[|pnx¬‰Ü2ÓýšgŹÄ\|ÍöµT§őe `DVcU»^ ź©—‡%Ś7F(ex±MoWňyŞĄ>ťň ×S/6ÚÉ:‘¦_>ŞfŘ­Ó,ł6ĎFaĚJş÷Ńé™jZµmçG4–é8¶ }—.n RŢ0t÷¶_«g"çNźűc&µ¤¦ŘF/e X÷śĂHĹšń1$‹ňă7)8ŞaćSOJ w}ŤBü?(D˝lXâM|LUä÷’ěĂ«… űů ŮŤĎŤő>ţśbÚ&޵ŁąsjŹ ă#ť©V Šžć5ha‰S|KĄç{ôŁ~çFŚŐIŠu2Z1[Í<7_ľ\Ç!XĆćđLŤUşçj™EäŞHě!Ą-#Ű^T[órÉÖ»MÓCR~]Ľ¶|O\MžŤ—S]fÉÄ8Ô5»żŃ^Dč=Ď mbŢË ŻčůŘą~]lđfEůMÝ%XËç˘T˘§.×ŬyGa4ăqKϤ&ňVµľý°Ś›SČHVÖ0Eçit CʬG0łŮcĄOUć*€LX}ŤşÍ¬ŔÝąľsqôfe,T'´ňD+ŢěĹú°a_Ň.ăé =!]ŤłźŽľš;a:†ßúx<XăĽíßóŔwř5uajÝůZ:ł‘kZP ­¨šź&!Ł÷:óůgv/t5$¦É<}ŐűYÓçŕŞĺĄiÝtD˝Î†GźĽź§l} b4Ě‘h}ŞŰ^Qµśý¨FoHóKk“w@(kWĎU˘)mâŠçE­[ŕN$Źę(řʸ6T¦1€/[|*\;pĆf*¬..«ÂÔ’'Zĺ‚m›šŽĂď››!kT€*§f‡ąAgmSş_/iłąč´třÄl'ŞŹj'«cpUbL†*ńIÔ€™×µW°®řN“p—‚'¤€ b ü‰-OŔ(Śâ3RF›—HT)…ă)żj‚=qKJ„¤ćO#šÍn|‘-*Şł2“ ě¦ë˝mă(ß6GAA«°óZŞĐ{–pî€ÇTBĄüĽ÷Ł#Jwdđ”ěŮÇ Grży íÜ˝˙ħŹĚ°·ĚŘ„2Ü/: †.oѕ˨ Í,ÔĄjGońëČG™Á…u™r “ŐişČH?Kdµß9ă÷ď*:ŚIH¸çđŻČęunK±řr”˛±ŐO¬6É‘_dqmg‘D Ľš%ĽÁúîlÂŁďwQĐÝlS÷ňąśUŽŞ’řü}ť=é“Ϥ»ąŁh2K“@V¤ŚxmÉ壒 ŃÖmń®§—ý Bn‡bskË7ˇKM^TÁ)Ó9´4 !a×WƤ˛Ł3ÇÔ4ČĐ*@ĄÉv#.ëü®ÁSU®ľUÎ÷†‹LdmI¤‰P”&'±ů„ëËG%3eY[6 YAźëePĘľxž=:Ůb}×pť{$θłfb{ť #nVdűbă"üEáţ6=úťěšă cĎÄÖęµr-ňtĐŢś!ă]˛4¦‡w·—Lý ŐĹ'bKb?.{BŃľtĘČĎWr@ú•ÍtíŇ}bny0ľ˛>Ă+Ż›/|ҲůFŃ== uX2J-s1ʬwCl\§VhIÝłI¤ă¸ŕŰ7 yBhŠmôXÉÇ^ÇŠĆGţňë~ŢC×…ŻŽD ·•©í_ś®`o"~ ąJ¨kôíÄb.™Ądz§ăÓÚ6şéâgÜćWQóECŻąLśud%\KôůEň†8‹2Éťć–"_W:vjO]š{Ö{‡X§ú~AQŁG‰ŞJBĺčŕIv˝Sú‡A˛r„HSb„VfőB@Ą0¸ [5ń¦·ł7dG[šŁ—¬fh9Úw Vuą[IâďdřÚ%·ĚŞŹŔ#›rtxž}jm„)›–Čđ6żę}÷>UO.'&¤µŔ=á Ó¶Ä|ô‡fŐŹ»L¶Hp¤%­jĘü9[ˇ|Úšúę#AÔîOšŞ˛Ú§8»FĽ ‰čpÍăŁÜćĚ3Eč¶:ÉW‹´ÔËËóźśjW’ŤĘPlô}ĺ9Ă; ěçDzěqíy©»ä„Fý<2Ď @Ľ¨ęE-Đ0_n–”n&“7łű†:śVŠFdgŇSÖSâä2 "űők“˛(]ŰTq–(=¶¦á#żź6`,‘ű1 ő# ¶°Ř3ŘMĂťŇî'VÔ¬Yбńö,íśg.07eq± öšrŃíËďRşú]×»]c7‘#xÖjź–pxśsYóq¸ďŇůčő¬­ŁN†|wůNČĐ„ŘĐ”±Qśą`|~9ńąĚ8Cç1łfń$…ó©˙žË§á~·ăř4Ś2Fâ móÖµwTl×­8\leF$y[!‰Oő\jĚ|ź,¬_Âň“uä’Ń“—żŇ÷}! ř~°¸Î|#r»O ňűµĚěɉY—’¬}Fš¶W Ťj'Ü>^cM‘FIľhjSlŮr2ŇÇîY·ôSĐ:K´éV ćW‚32ń.gţ°"d¶Ó-ë®nÓĽ@#G¶Ĺ‚,€'ÁĐÜÓó†áů8IÄ›Áwľ1†ŚlÎó^zůóq]ď«aAo»^U&˘Çß&ćbݫޔBú٦ô쩦§tP2P›_ 7RĘHÚ_T ŰÍuă/§Źo¶L^ŕ·ŻUÝ­¬{»Î´Ŕš¤¨Ý@̲-OWő&ČŐ´t…áSl™j5Kýśu+AćTt_Ţš“ć(98/u<ÚĂÇ#S`˛řŰóHÁúoÎV]Gţˇ9he˛*ŤK*NľËß,0 Ą©S=ÇłÇ3<Ň–]=­¬MMŘ4JĘ^ÚśýĽ'JÜ„,®ds•ď=ż0ÂLßänËní› âü0ţ„Î×-Ý,¶ŃăÄ~K„A3çץŇQŹú3ÇŢSţK®ńĎ;ĚË=oőŢYÉÜ_Ýfâ’ V#`)C¤­rĺZO_«Ľ¸Ů\KÔăk*Pó˘ş×˝ˇö<[Ľ˝ŐĐ"@ŐQ/а ŁgMTŘ\]+>~¦ďdŔ§sĎ2ő–ťü źĂَşąłi.Đ Ť®óJ%zLꌉ±žîVPV&Ě1-Ą¨ É†Té9K™/0 ž3|v•"l±f6¨ë)n> ęĚÚCmćL@Ěż«Ę`Äś6ýÖ3BĹ’şĄ–J )hż|nNűîWШć&±g >Ö:U¶…Ttý (ŮÖ~Ţĺf‹–źĄÂ•â¸Ţňě©%‰[#„U nE˘Ńßč.čyş¨_DŐ!ňřĚw5«/´jŰ‚Â5ăÚ’#1]›ňRâĺŠk ‚‰EËĺë»^™®Ü©4ÂęŚÂ:Bx¦@Ďšű›Öćłm)7QŠ4öyŻeí…BÄ˙B| ~Ňţś+Ëé‘ţÔv*űăWĘ<é'ţúěžŐ@"ä2„(‰0ó–Çó÷ţ/ş%ZŮzÍćÉÇ$VăŹ1;Ś…T×eߔݠt÷ď żâŃhÔ´JË©Ń{2ę;:ZŤz2 â-ŹËÚŘĺ®3ĹÜ©Cřvč.ĄŮű”fäijVß˵"µËü®Ł‘2€?"ÚNľĄ˘J,ľPQŢw·ľpŻëđ‹hnä$ßÄ"E›ç@T×4‹;}prꏵńĺ„ęʰÍR&đ´r[5ŐĐ)” ŽüDĎďOLM[Ď’Ű|ľŘçĂhŇŕΕ:Ô‚Ż?Îo-9ŠŞ1öĹ›¨>gô¦ˇKÓűě÷ń»ů'{oäHşX¤ę0źř™‰ý|{¦uŘš_H˙Ń&#®ĎjĂ*— k)*¤Q*“žJ;gŐ#<5Ľů8’đ©­ői%j4g„»‡u‹r”2¶óűšł¤˛+Á‘#tl_@OĂ‘oř¦°eÄ“TÁä޵=C‘ĐŃ`ľ .Ü#ľŮC\ř¸pšŃ4bżyń8b_ű"rósnVť=ŠŞžÚýň‰ˇ‰¤…JEn>!ÓŠyÚ$Ôđ#{¶¦Q[á–>S°ČĽ"ďJ®ĎŰš°x«°5ő:©öä Ç4•m3–¦Ƕݡ&¶6,,¦Ő/=ßrł”ĂP‚kBo»×dQŃ’UÔ„ĄŻí‚Ŕ [ýx=äj˘Ŕ¦·š~_Ĺ<ź9BZô€Ś7šBD[LČ}t+`č×â0X„ÝsZďµîA—Đš®Ó!oťxíÇÚťŐŠ[ŰD Ž._|÷ąÄgěsŔµ«!’9«÷Ý“#™ü!ÝďĂ0;ńv™ÖË@FŘ ëWŢÔdŻq±ďć©é‡ßĹź”vš…şLąy·Ľën—őúAQfuŕ/ĂĄą|Ď*9ä$='Ü´łíq'eĆs§Şň™?Ź÷'SFV_›Ű{ęQű { řaf/^ĺu,Ç©ÎV7śQL—Č/„Ëd%‘ă8ďńŠjŔ*E%b‰5l3†—™É™n[·ĂÓ—/±Ükhę=­X”Yę>ÉĘ\Ľś#{-ţ]Ë–o¤},Đɰö~g/6^{­&"Ü€óD H630ö]ÎâŔ¶í4& Č÷dEËwŢăŧ —ý+Zë–0󎹏m Ž «D­®E`m•ÓŁ2†Ś–vťŤŻ¤ą­7ęŢ·Q*!$`o/× Ë’žĐgŹ™/4v‘Ą?Ţĺm]˝ßxll‹őt€ÉÖ­Ňł â=9tľYŔí j§NLŹ" Ě[ÂÁWŁ©ŇKV"#Ĺżă`ţw©Ŕâhµ1TBIʵĎčT ©>»ĘhĚGŞ]~afÔąöq ŕ&±”áÜ*ó; ^Đ{­MO5Ęaą€’ů‰ëSD ÖÖ'ăTno–™=sčŢŠ…ĽáU”ždŚ ÄH9ÇĽ=úkč’@9—cÓ qî4dĹšR|‘«{qŔř“ ŔKKµ "­5qţŠMŔÉvhe&ŔDEđÝŢŹĽŚÁ™§ŹĘŠřóÚâm:1~zÔ  `˝^ôŰnő^ö-s:Ű/AC„5sJÜÔđY¦‰ˇ“:üh/«+Ľ<AŹŻÔŇęĐőx“ŃWXüîRÚ ČBőtżú+O'cnń^^¶KkśŹjy‘‚j9¤>ôN§)8ż+lu».)ägvď|z‹ÁóK`ŁĽ-<69'ĄCüČ™©aFżD!Ąú€ šŕ§@ŻÁ’żł|Űźţőt˘X<«2Üáz¦RS#I?´dXé®D;ާůKeľuąZ@ő˛Mq{_¶S÷ś«2F;’ů¸$1!ß,SµłŮ/@čqËŔ &‰RĘW¤gßY+ćG¸XG•řü ŞštŐDkř‘<ńur%őţŔ×Ő!Ń8¤ÇAÉ버Ɨd0^a·ä T÷¨áń•!ě[{ßě€őĘ`î4ŰŕS<śPVÎ~Ň+ÁĎú$Ä!·‘E˘t蟲Zz˘=çíK}7RËŚ§šôśwCW9yĺýDD´ŠęűPD–’Â`–Qs^Ő§¦šhLtůÁ‚ŰŘ ]ťˇX“ôý6©=®ŔkŰÁ1˘ő:°žŹ€eÝ\†Ň9"ÓŞXIš]Ď9ŰS>‚•s*ĆνBío/:ÄŠŢTúŢ*ä~PýN˝-9ČŤ!Ue5AšĎŃš§q}Ó*”•=§4;&¨‡rqŚ)Ů–5‹DL?¶ÓłŻŇY\¸Ľś˙ŹF…¦·0l(˘ąŕ94b­{‹w;9™ëKŮżXĚPEľw5@ƧqË=“KXą“ąđęÝÎÎ5˝9Ţ Ýo} SµpŰ鬄¦0ć_ž=fťŢ"ô¦8őľźŚ˛ďŻńUŘČZH4[5«Łű©’Ħ¨–Đ®fÔ|áňÇąrea»łAH]¬6)ţ™sżSȵ«!Ű“Z§Y›&§ŹŻN_«ďďa˙$ă]s^é)Tn®y[g ˛RäZ'őgűś­WáXBSúĹvł<(~-*ňÖljEpjłtÜ2î Qqf.*TĽ4ŚMđM>&®:šş°÷8n)8žÁs&Ć/í|ᥓĐß+ŢK"úŞ_s­†óŹĆĐxCÔN\Á̰>ĐŐX”¨§ˇn Ý"M˛>5Z uýE[k†K Z™G=A‚ĎŚéł)Ďs}´'ˇţ|XL: rômµ“E2tŻŘĹiĆćSĚXµX ̸RćxlőJű:ń“ŚaŹTäŰňíéh˨÷‘uńU7+fi~¶”Vâµ,c@rL{§„Fl˘`ÂU¸m„á9_U€#tú’¸4šÜ>MÔ÷“Şĺ .qá—SÂ(|1g8q¸Oéľ×“4'^¬ŞäŽ™}F™+ŁŚ`·\Ë_;˙ľ™Ń9éUeÜEiočuŢl]…ô¶Ôsá´Ą_;7°3:&ř)żr]Đ­6šXNůTˇg-ňę\¸"„ŢHvXď¶?/–ÖĎ@be49㫢.v~×C‚µ+¨Ń0QżíU7śzQM8;’ŮâhŃixČúüuę75ÍzBÖ=ćż~# h1őůłŘěvűQiĽŻĽJáí^~'Ý4Őňz'B ÔQuĂ30$/”-őŞÖGG8ďléŇ`\ ş.:,€í 3Cr4m|„†Ŕ=’Ăć“ČčÁói•Ʊv‡ě-\Ëşf–Ôe űľI}îŰ „ÍŹj’$Ým"Ű2ň-§`łßp@8ó+JHÁăÝo÷ܦuŁ>ż=]aë©™¬qd Łíţö¶ŤťvkńlsĄĂ»—1ó´ĐvéŃĄ‚=ćęÜÓčWhJwÎęLéőÜ›–O#ýóźnÄÄćWő  ěÄrś°Ç-˘2žF¬Ádü@w»î4Ú/ÔťY=öŰ@ňsűG&ćqc汇lň‡đőh˝µóK ZÖV'Źp(Ţ’7á̱Ç8ř.k4µAĹÂČžvŚ:*A‚Ĺp Ź)ŹyÔ‘ţ¤&n1áŞ÷pZqw‡_îⵊHeçŕRlŻ´(ńś«ÓAăz=˙Ň=ĆŰ|–_úěúHsMšě;żÎyúŹ–Aڍć3F 1óÓü!˝YţxuŻ€ŐzĹ’ŔOD4wžlÍńS0<9|DÝ™,9v÷ĺô8Ëç”KAđOߪ˘ćźŮ+ϱ m3Ŕ~VĘ´WJv jYď0§a qÓĺp) ÓMÚ ~Š<$ú¶Ł6[ŕzŹÖSłJšn‚¶o×ýď÷5[Ŕ©ťCŹd˘˝ÄŃ.Ć›qäÖ-{ŮĹ­ ›:Aľá6t[6˙‘ Ť endstream endobj 1708 0 obj << /Length1 1166 /Length2 5212 /Length3 0 /Length 5977 /Filter /FlateDecode >> stream xÚuSu\”[»Ą¤”ĆAQş»af€!fb‘n$%”’.ĄS@¤»$Ą‘đ˘çžsîwÎwďďŢk=ű‰µ×~Ě ĄË% †Ű@žŔaH.>n^q€ÔŮĆÝMצƥ±sÜ‚BÖxŹëA‘NŃ·„Ľ+Ä …ì‘·Ľž˝;@ÝÚŔĎ ŕăçâ»]ó üwhąBťáŢ-âę…ÝR p»3†ÔuG ś °Ä îî ‚¸‰lo;űwU€<r…ÚŮ#¬ú:†lś#|bbbÔź @âµo'8âWĄŰO!0ëmÓŕ_±Z¶ÖŠ`(ň׸V{$!Îðµ†ÜbÜn¶Ü0’‡í¶QEXîü+Ţ/Í ®ĐíP(žęć{Â|ţŰBaŕß#Ý<ú0¨‹;DYáo!Ľż1; ÄËĎ+ĆË€¸ ^ {ž_%őPČo’ďl űů ŕ€­µ“Äj ąýáů¸Y{@HWwźĎ˙%ţs‡ÇÇCAH€ ÄîöţÎ~ Cl˙Ř«[#]ˇ^S^n^^>ďŻďŻ•ůí…‚á0'ÔßáÖÎŹĽ’ˇ˘š"Ç?g˙+JN~›’‹ODŔĹ/*të”ŰŚbB˙Ěř—ęđŐ˛†ţoźĽ§T†ŮÂbŚs«ăź#y@\Ýn˝ `ýmc6Ŕć×€#ˇ €őoëń ńŢşćöÇ÷_-őü5Ö?kŚ\°¨ŕŘ9#+i"µźř$G(ä?úYy`Cc\("Ţ<ĐÂ˙ĂľIU¦˝•372‹eă§˙f©‡}Ś›21žnž€’r(@HÍYb„K“>žó©i„µ‡@tŠKfµmSćů(rÁ»03‹‘Ň] çéŇĘěym?ßdÓÜöČÎ<:¸›Ľ±öÓEşÁ„3ĹüóľŻňíÍŞË«ýhfôhÚ´ţđ˛Ä@ üĂ7_e]˶·iÂO_Ô :Éľ“ÜŻ¶"ú7—Će$ŕ>ü–I·1¤»oqhÁ|‡S«čô“Ď$őęU‰°\í]ăköOĄ§“°‰ęb5hÄL«×Cő(zTť“M¦;߆îĹ~“(K@ĺiH;ěÔ”–É˝Ł€yo×Ěő˝¤iĎ…NA03ăŃří®ţg#oqş=‹!8"ććl–ŇÓ­ń•¨óËÝ…đ˝üńy;Ŕó¬čpL‚ ´we‰”‚7ĄRíţÂNE†IŹ_„ÂzNÜeŹę–®HżŻzâAZ.`Ąrě]`“ Ôč×Ŕ4`©H¸^lvŻ:s– CpÎ|Ň €ÉäłŰťâV¶áĐŮżv’f>ĄT볬&ţ‚=?ô2$Ť<ľŽÂęą(rr›ô3O)Q,ĘÄ"€¤,L–Ú!+˘ş`řÚ·µś/}Cv7b%Bęx@Ö˝UÎX\ÎN¤lB‡ŚłţŃö!Ĺ9ßÇ´ľZiQ“OîzJ^ˇŚűUu (ďjOo±˝í}§şŹŔŤ(ḭ̂š”ŤŕÍŤąrˇFVŔ¨’«8áZĂφ]»ˇä%K…¨s;ďÉŞŚd -!ksttZ@0˛ĆV|Ć^Ęô˘±?˛˛Jú˘ŐĐ@hě6Ío6 6®Ŕ·¨î'g´Śť2ŇóŢ.™Ö”q¤uNţ®]˝>VĆ#ÁJkŽ-ŔÜe¨ľĽsĚ}:K€ĺ€Zéâ`FA⨶Kߦ–řk-ůČ ăCô-Ľs<Ę‚ëË ´X|TOJ]ýľÍŚ&ÎĐý7´ ŰCwÓz,Äőő—ś|ƉţÖ ĆóG«gXĆâÓ%Rn-q5ŹöXć›ÓůöV†f ÍB©ż¶čνp–XQrϸ¨OĎ79'Y mšż˛•0–žŔ…ĆŇUäúÍĹ·;sř |ö˝ŕcÚȤ˘/Ř Ą8ü|»yąŢksŚŢÓµÓM[żXńc&›4ˇÉń‘ÍÚ TkďŘ/OeĐĐUß˝´{{ŮÍtCJÖfGq•˘ŕŤÂŮÜťĎĂk‰}ćłÖŻÂrťĎBUܨ6A‰V5ﱫ˘6HźŹŘ‹ů§1á®n6&Ć(á%÷ź«{H=I#w´%ö „®)ž?ŔÄ(˛%>+¦g¦HCtjUłë›FËn‰Ę0űůQ'SëĹsyíşIĹíK}el¶©Ć°\ô&ĆËç°ćýŚ2uOz[ý•őâârxë 1VŮś+˝¤˘Ůr_ćŻh' ÜŽÝa dĹ}x÷ą©q@ ü*á”|ú¸^xšLó2"É0Ż÷‰óDNTrŢ˝4…‰źY#”ć ăt}éoÍęąyľ&›SN2łŇ‘h㸟,Ó”żF%űöŞś›ł'˘^Š¬Î¨uѤ,ţ„0ݱČA”%]­21ÎX[ČL]EŇBíšěÍŰŤs(›ćęF´ăŘg,ĺďç|ĹĘ7xŢmüfÎ[ňäCóFĆšP‹¶(µbÝljĘkjđŁí%XVkLĹůÜt•n`űLMÓRNâ ¶©=ÉoĘśśh×Őµ # “ť3gý*_C3hxÚş¬ŰnCeGűHŮÍÔéř¦·űˇFܶő«rjQę÷y ,; ŠÔ˝ŐMÂŚ\š‡ţĎŇŻŇ2ŤCő_ŤU"$Ž×ŇB»ĺ?>ţfîâBaν«–YɦşA}V'¬ŻťÍĆB®M:jŻ”"ĺ2]•â>±´@%rËqY¸~/4Đ›łŕŠÎ&¶łˇň­x›ŐcĹ„Ć erŃť±÷ŮŢŔ_%Ę*•C±-hTbXśńÖěRn“°.OŔ]ŠKO>F”QCŰ` á”X6¨Kćxnú*Á}r€21GcŃč;Q¸MbŔ—Ż86Y€’ťB®ÉjäyçJ‡ß§ŁL·DöÔ(ľ†Ë–*Ż–Ą‡[ŕËůúŽ=ěđŤ‡Cšßř|M#ŢŇf…ô§:+ĚaJ0&\>Î|óZvwíPĺg*`’­”‘ł,‰yXŢ”XhÉčÂgŹŃNˡ4ŮĆx©°¶AeE– °®3•¶ż>QÓÔóx yýîÍ㻑\ő”-şgËÓŐ¤»óĆÉykŤľG¸‰«ńö´łMS1ńůxo,îe=TU~ĺńţ[«ÜŐ˝Ůŕ>1 Ö÷&đu5ţ]긞I‹Ł3Ż´`ćÝ §ĎXhŢĽű!' ăpÜě°rĂyđM®Yäčűr™ĚŵÎÇĺ (­Bxą§2üüBbuČgÂůnE>=7Ł«]ße?Ąc·=)ăxE=nŔŮH)K¶F"RÚ™?-–ŞžBÔ9~Q!lŻrUJ\°~Żű-ĐBŐŚ&Ú~M¨ŮQP’i×ÁĚ–íqT^t˛¶OőV"fżQ›í±MR.úRIk gtv1ÍŞBҚЕó¬ÖcŐO÷;k"ÎÍוő™üÉ"ťĚÁŞu´:ţ,e ®u#gB9~Ý5_ rEü Vf) 5_ÚwďěZŠü‰XŚT5R‚” ň2ÖŕµJśRĄŽúy~ž)¦·´`s¶µěädHdµ·ZŮ+f67®@_ęIâNâgÂu˘Q)ú µŢřŃ ßmĺ‚s˛xíc̶Ć'ƇěU­dQÝu…wÚňpĐť™]s×5Áăľ%G*í˛5*^[é´ÝĆe2ţaFŔOĆđL‡7\ˇ#H«> [˙úŘAڬƠMóÇîńř‡@Ƈ^° ëVĽ“ z¦Čđ‹WţÄŻ‡ĐT`çMUÚô&KÜűdXźzôTÉÎ T(KźeQĽ§Í(fe7ďČřŇpćßë.X¶ůŘ ŇTŇýöăŮđđg¸Ë&ŠČžW<Ł– ˝ç:Ý˙ă3ú ˘›†5=RH?Wë PÝľx ÉÉ zîŐČ'ŰĹŹ ÓĚýŻ+ˇeĂJ]EVóč!J¶Ĺ¤f3)Ë“fŰw@˘4C…Čým9î‰ źďĺąPqŻňM”¤_ĘfXFOI7U Î4N":t‘™ř“‘÷óě•ň:rZŻíő×Ő3¨ë.Î)ľ¨x˛ZŽ—,^Lq´HU˛|4]=e-…„emDŘNÝĐzF¸đD‘Vż äˇďŹ×¬ÉlÝňŮ7{lCŇk°Jyf!‚'gáşSov\É–=$—zDęé÷Ü=>0W’Đ˝sëúl‰Š” >Ř \x<˘Ő¬™”ŘŕY1-EŞ(Ż9M[íßöŽ˝sŢL^…%…F/rÍţŇđ“èŐĆb˙ůňFY›fŞĚKžŠľՇʩ‚WÎŞ Ţ_m:ë˙‘ŻňÖ}ö„­˝~QŮ>^÷đő,Zrc–>gCż –mlzHĆŃÖQ2Ť´µďľŮKǡĄÄ§Lćo›†Ĺ1ú˘!Í5Óy ě‘ęŇň¶ í’ú˝ŽVČpť¨§ß’ó˘O^ľfô_§çyŰ©ÍĂX•¤Ě˛›WĹť›ńu‘úş°płŘÎŻůĺđaÄ[Šb…Ľ›ÇĄu‰OBć;ü2Čă"e¤wÍú‹wW®Äű _=vúÂ-} CÉĎž}a}Gß}I,öĄŇ#ˇĹ%SĚĂćfK3ś€Ľ Űpíü4BŰ%NÁ.ÇHßüáŰV31†6Ő8řk‘ó<'xĐ«ş<”4ýˇŁ~đú-/ćÂŹtĽ)~ŠYH÷‹k6eôś0çúŠ ^0fšC®<ó8_žÉĺ"K·Ú‚ŕŹh,ŇIŃN]ŹňĽíW-íň»ÓKŔ|#iĹ>¨ČĂÇů˘Ęĺż< ¸H>[+<×O†(żŚYęh¦qĽSŘCŘ©ťvń$‚—‚ëőµšÚLD21*Á/هgĺŁP»ŤOŹŃÚT®ôJŽ=Ŕ#Eoń¨a‹WO?ż·7 Ł"rĽeµGgGş¤ż(e‚NđÔ˙>Húšúľu¸@ŢjîMDŚ×Ψ6mÉkÄhGˇĺ™×ť^=łýúZ˛—Śô“Ž~]¨Sb•"DVyÇ–ş~¸ŽČ7ýíÓ¸–Éôń†ęřŢmŹs—Âlłüâ/Üřߌđg»ůDmąRŘÜp*>ť=Ĺad}äw0?*'çÄâ4ńzľŇßWŮŽĽ_KËXˇ$Ö?J-+o¤s|ĎůëČioĂ—7MoÄO7:ş5\řďŞ$N`;AIěKÎđ3-4µVČŘsĂż\VÉ0/3ĚÉśF–Z}§ ”— ´ŁJŠgÇ‚&)WŁĘ_{ĆFmî VąéŮ Ćć/WΨěěu§?ÓVBĹ1ôźß©Gz ¤”|ÁĐ»šÜÖ»ş¤jÔ}îÓ躏„Ľ|¤ÜO[—ĐŹp}·Ů¨Ř…3ŹŮ*|Íelz.­…ÚčËv6W¤ţĘŇtšöHäŘöˇä;Ąw,Ś‹owÉ‹ř©wCöußᛜăw3eŔ›Ń\6{ůs‡ÄÁŕtiĐčYi˙ú‘X­oĹĎĄ #hSËËó† ÇKEţł8Ő’áG€ŐY!îjşhWŽŃÇŐÉ‘˝ç˘§ĚŹŰ:Ăłő&{Ą_2˘ż™âó<<#öMá©Ö˛ ÷«¶ą»ÓXć ¶ž07,gxP\|’ďéeŐŘNPď0vlřr¤©€B©B°ş–Z¤‘Ľ˛ĹhďSdüK™Q—ť†?ĄÚvßŃ'ö—üŠU—rž€K’[Ýó\^_Â\¬ŻÁŔéŻGŃeXŰw Ďr˝äă–uUěő6Smŕ†M‹e«(Ěł·h™ůdN^đ•ua\Îşgg ĄČqqNőŻă.Ď9g“”GUôÖµPńłôŢ™č×FkmV LN!ŽDZ®Ó|™C÷út·ź Ĺ“đőýë”<‰ĘQIĚĄ‡O=ß%!NŰÄjC‘řç^ŽśŞôÇ›†WW\ŤëâAIý@Ü(ˇ™´Ď9%śkväÔ?9źÇŚo••§câ×vS*MŞ^á’sŕ 󬋊ł˙nŕ•וň¶p#3ż+MHx9÷ô vo׏ďޱĹüÓĎ98HçT˝©Ňä˝\ťďŘ:ËkEĺwpßT»«]Ůq¨Ľ˛qLr4W,ŤFg.tlBĽ”{&/ Ćż«Č uť{[lyAUżí(`î!°Hő2•/™0eyĎX€f–Ŕťëí\®z Lń â+śł¸ů€ULXfă<ň$ŢŚ<çëkzÁäňFXą-có/f9ÁŹĺ3iĂ 5€"®óČHaą˛–y¸ßĽYźąLtq0X¤Š G톂¨.A\¨‚?lűQ*p,0[•LB2Mmµ3ł˝5uÇDÍ÷K›-ÎŕŤ_¶ą:« źx’łZ˙—i–ˇ>ž·húljiÚJ˘Ů‘ÉNŻ)í:†ă$up*6SŘž4Z=˘­‰C]‹ÚË`řÍď‘“´TVĽŁZí\ľô+Ő 9×ńíĹuĚ¬Ô ţ˘8Ďną˘ąÉł-Dď äáÉź§R™—·` }P9µZJK9Ýżb°đźé;&Ö‰§|šUĐx†Ś]Óírî8ó}ÉâIÄo!Ž~ćzw¶»ďĆĂ™čSý¶ÎO˝9Â(ń®üTz˝oG%ńz"÷vĎGwi‚ig|€°Ď½q˝Lě’ěŐҲ±˛qg&h¦a” W„ß鍫MxHÍź_ë6ŢÉs3ćÜkY*¸ąŁ¶Łş°Fď şHy†ő(‡ =IFˇEW8XɤMéniŁgĄÂ(zHÖżObkędťŻđŻ`;!ů.Ý ÷Yă5ˇ‹Ś2^ó‹ű,˝*îˇKź¨f—O $YeóĄ^e虎ěyÝŁRJä˝K0mŻ•HĆcŢ1;ŢĐč­Yx‘Ůßc©’çI‘´¶'vžř3Üí°i‹F°¶ŤVŚ$®ż0zrÍ…?6“׏i4 (•+IΡ"jĹŐét—č/ Í:é2µĺĽöYžCÝ˝*$ŐÉ®śšŮ¶6čÉB“űđčVô†fěŞJ4‚EJ=MÉŻµ±T·:î/~”bżÂ˛\ŮyÄ1ÜMă‹ëÜAó_eѓŸ+Â[ĄCĂ؉›!YÂ!#@ŘĆ\5wčŁýÚFĺ|32Ąv$Ů÷4ÂçAµQ> stream xÚ­·cxeíÖ&WT±*\±m۶ťU°˘ŞŘŞ b۶m«b۶uęÝ»»żľöéó§Ď÷c^×|ď1îńڵ&9±’*˝°™˝ PÂŢΙž™‰ `ekââ¤bo«`Ď-G/4łü•łĂ““‹:Ťť­ěíÄŚť<M @ h `a0sssĂ“DíAnŽV–Î*uMjZZş˙’üc0qűźšżžNVvŠż/?€6ö [ ťóß˙׎Ş@ ŔŮ0·˛D•´Ą$T’ ęI ĐŃŘ äbbce ł2Ú9©ćöŽ›¦övfV˙”ćÄđ7–°ŔŕšZýuşšA˙¨č  Ł­•“Óßw€•ŔÂŃŘÎůośíVv¦6.f˙ř+7·˙ Łý_ ŰżşżÁ”ěťśťL­@΀żY•Ä$ţŤÓŮŇŘůźÜNVŐ{óż–fö¦.˙”ô/Ýß0µÎĆVvNg «ó?ąL€3+'Ť±ŰßÜ­ţĂĹÉĘÎâżĐĆŽf6@'§żaţĆţ§;˙U'ŕ«Ţ˛qű—·ýż¬ţ+g' Ť9<3Ëßś¦Îs[XŮÁ3ţ3+Ňvćöf¦ËÍ\@˙S÷čřŻQý33ÔA›ŮŰٸĚ€ćđŚ öÎS¨ţďXfřď#ůżâ˙‚˙[čý˙Gîrôż]â˙ż÷ů?CK¸ŘŘ(Űţ€ďŔß%clř»gr€Ť‹í˙ËĹŘÖĘĆí˙Ëé?­5˙F+bocöź:igăż-¶łřK Óż…VNV®@3%+gSK€ą±Íß~ýK®ngt´±˛ţĺő_-Đ331ý‡NÍŇĘô»Ý?°˙[´3űOř©úxF%am MÚ˙Ărý—ˇŇß!pVsýĹö?J‘·7ű_‡ÂŘ»<č™9¸ô¬lĚďŢ_@ÜL^˙‡”˙ Äü_gycgG+W€îßş™˙Uý˙xţë¤˙aÄíLíÍţUgc;łż“öż˙¨M]˙üŻË˙·ę˙yţ×Ě®@Sřĺ{SŢ@ëä´çjě¬Áq1ÝŢnfČÁ PQťZ~®oĄ}—Orčw™Ń[UCý$ĎG‹Űü č}O†f¸ˆ˛+x‘ďEJÝ“‹şNŃĆI»ďĎhPô5ĺT3ÂărNnJ‡Ic{\YĹ đ †`˛ŤŐöň‘Ú—ôG®/ŮÉŰ4©6 łĄ ­:ďä”"îčń˛dhp ëşgŹ63 Žś×Ű;á„8ŢŮÍČń®Îôúĺ'L}Ĥ#ł,ĘcÖĐš*o^±Nă“ĆŘG[ˇĹ°=_Uůpk+ź áŻ!bűP(¦ěRu4S#éŐÔß?OVťJ\ý˘ÝýŮŕ 2rđ˙‡“‰ť±Z†µĽş™ę—E7úŻc0z"¨bYW¶čw~ö„©|żov…7“Ôýp`Ç]Ď18ŹH0÷9”vŞűŇ•ß0˛ ĚJV)ě5Q¤x}ۢ ÎĄOHr&Ź\6÷Š;ŐŐưÉP2d6ŚĐoL,őÖďŠ-ěá‚’Ľ·Ť,úĘ?G+ÖpnđŘ“V+ )ű‰Zwĺôëźüxź‹ßĆžÁńç ¦ĺhω>$Ee,ţ†÷LŻâüĄö_•Ac4Ü«ě].X´8Ů&?Ü =Ř}ëX™ŕŰVyCIÉŮçIÉÇ„s =’µ4ÎŻňlŠV h ه«jţn~.üiřŠaÎxEf6ęa ŇĂÎľ3´ó 5{rř‘ßŐ—[úş wřÁvĄ˙R;gŔךžÇЎšQň°’b58‡3XŹN¶ůó9­/ĺÖÔ_Ŕm=ű a&†ËÉP¦!mh¤7ă žpóňаĘŔ•űĹ9:Ăé¤Í®×®k\`yÎîčuóL˙Cç÷]LgztŐ¦9§$‚ďŘVŁXţ€`mÚńu¸%Má‡y×0#(©|Ô6µđ®î^ąázý‚…^÷q´•Âţ•Í´Âo6xĹƤĺ'íOnÍě^ě?­®Č1™K}AĆŃÔF‰çŬ?c­ńřiŞWpÉ„š»DTWŹť2AE>ťÄ÷˘Ün†¬`ްľ[pIŕövëéţÚRĄAş¬ďş/µ qďź»˝8]X›ůf^1ôF·“|úILźI–Î2“Eűö%Ý_–|Ż\ˇ;ĂŹŃîCŠM–ń•öjÚŞ\%'ÁZ"äyH-,i1éz,ëZ˘ˇŔˇH™Nľ;,˝ë|ňŠ sÓ1Sśeßé«°OÔďN˛*uOÚ±{¨.K‹$aoŢ_ÓĂKDĚZk"ŞĺGaŰ”úa usŠ0.Á#Űż­`a>ŹąíđëşY§°qg¤ëS(;dóS×cřÎjY]w?ŕĺÄÝhYNvÉ—8/‘×j§i—“KcAäÂĽ»µžT/—VwÖ}ąMD ˝–E2(¦0Nü"[jîHúy“Ô G߆ădňÚi8Wć;P‘ëŇ a;ĘUĚkŐůŢĆg‡ĽVi‡ 'f66‡Ľá¨]ßZű+<Ľńç.(;IŁýhý^)¶rf󍏱š(4z`o8sną~yŁNřZ&3_M·‰? {¶ĐYťő¶lr˛tO®xv°ËĎđůٸNň'`d®ŠLaqůŁŻu(G°ĚŚöFw-©{ěz/Sl†éjq÷}MÖu1'Č)Řđ§|çË)qpÖqŠt”ŕ+â4Řű¤`Ľ­—ŻÎńŞ’4ăě“sp-jĐ&›çm燌ßgů—T™Uá–X¬ěˇÁúÝá©äéfĆ?Ąč:č(¦‘—ľ˘QŐôÔIs<ë ć#“ü†v5‹*rhzÁ…‚î7qŁÓ!†Vą‡BM“ËĚßG>HżĽ­Ů‡=aŕüo\컕Gě>+WÉj $b'~ÇčŁfëm“ĺ±™ˇĽW%v.­âbÚe™ĐJ°Cŕë=´]ô…ŻťĘ»¦Ä\˛ŰDZUÄč—ę¦ÓLO˘©Ź8łMŐdX›úgeůď\¸ŮIÇš[ççÔ(¶ö-ÁOŇŇu ŰkÄŢaDiţáżő7PD ăËĎç@vDVŹÔ…Ą`Kí¬Ôq^;şŘĂTPËnF“%KL|oęÔ«î ٤‚§)ô““DŻ{Aśűâ›˝óÖ ]r_2…¶sr*’$ł¬Şëŕ!®mrОĄéŞ{‡wĺQF“áĹ(Ç ń|»Š<Łďä1˙·.ŹcŤęĺKȉ'lí߬€břKФ3Víčľb1„‘&sB( ŇÖ7ź/RDę>™rݡ4§JŚߢ>Íď…jLżÖE0Ŕę34}ýĆzÔ÷ÂŤ#5Ű1çż]­(š’B†âČŠ=&-ęuśLe[ßZ¸ »j\Ţ~naŕ!¤˙YnُŽÝG [Í6`đGYř2,i@y~ěZ#±rfú€ź5í{™0čY“/ŤÝ•˝;O˙n¦ídŃŹ´ĎDŢăýřÜLŃ®şě!Ô Š/Îz®/­Ţ/ G|žëwć¨WO|?ô€X"ť‡%I(ĺ!$ˇîZ~JuŤŹŽm¬?˘:ä!»ç|Ç47ţą–Őö;“M¦čúUĘą5ś—@V6%ú•ŤĆ0óĂ­©FaĚd´d¤¶lßs¬x@¨vŻ$X-¶@3°":¤ Ýb•0#ţü‚®ĎH-tnřőńÝÉ$`hž Ó;«YK+ĚlĆĘň» Â^`eńĆ ŤĐčůŻ~0ĘĄÔ/-f´'ç` ń9ÉnśÔÖţů°•Ţáç9ŮDW{‰Ă˛Ëii % śőĐ,‹m®uB]ÔˇĄ&ĆĽŰž{ý‹Q‰,©emŻĚvLĐ ňčqîń>śÂ÷í.aW|—1pv›jb…K͢Hą)F–úZ•ÉČ‘*˘çź6_ßh/YťËątĂđߊ!¶ű⹆äî•nUŠŽŕ€z»Š©}zš Dąř11 áŢ ăŰÇsĂëDÝ=ÇĂéš˝®0Zŕ XlC¶ńÚ®Ú7rS—ŚHČĎ2­c‘#Ć µ˘J’8ÁY†<’Ü}ë‡çö9Ć1#E]FÜnóé˛zĹÉüĎĹş1żď68 Ż­dÎ"kŃĎŮ·¤Ĺ‘bHB›ĄšÎŁŮ€š57 ţS©ÚZŽ’“kˇ"ńýŹUĚ-iEř0€ m?Ó{r:ŤĽL©¦>ŚJěţŢjLoËeyNŻ -ߥ4ëdÁ(GÄmQ•­ýü‡ü ëpÚn^ŐQÝXYč{ »?tŁ'fmmäUĚUąŕ˝ĎĽî±ŠU…¦ćÎK9/u®µ{ {ýRĹ!w­P¨ŐĚž“ánڦ† Ň%†%7,9^ČË-,bĹwdŻŃ{‚YöQ1íšĹĎX*č^ÜćÔĹő>˛ÖܡtďCƢŽĎ˛ÜY&`¸đB1q}İâ ű‹;_y!/¦g^†7¬Ä·TęĐNŻ+LëuéAOß ¸Ůj&Ăj8ˇlNňҲ5Oé ‹ł¤ŚüO;%Ô~¦Ašu›Ľ‰„"-—$ßűH~ dµDĽëYÇUŹ3 hO˝ŘyqßźEý¤ň+¤ÜÂĐążŐżĺe3Bň©â~u˝â°InDĚŚ¤ł ‹XűZ2ÝëżÄÝ%ŠP©Â, \H?đ8ډČ9VąôřEYăLâ_¤¦,™Łő·±ĺ˙±áiě ;ź±ŮzŔů>ă?|˝Žéşł‘d]ťŃTTPűrIÔČD/µ·ßđ˝(î· Đ*¸±µc=Ęqv˘%ňĎa Ó¦ťĘűF= —ń1>ž6ä%‰Jąń“RBM {‰>ťcł©łÔÚś†źůxÚ]©Ež¤‚šĂ.žččµ.›JÄ5}h8Ž›Ş™lďÁqŰ?ÓV%# Qf1ŔĆgs ɲĆqd›2ĺÁ8ä"úÎcv/·űŰE2蚀yC 5۲Á™™ďG±çJ\®×Žj80nşĄŐÄĚ÷))×Aľ )]ÜŤ¤u§äĚí¬ŮÄŢĎ%^YryRę ˘c°fŚ7@g6?*2N¨ÖľHrřX/ß»ŚëíÁŽYĽĎi=T3˛ezQŇuŃo|<Đ®'(†*u.Xe»g` N1…xôa¨jÎÖâ´Ćóą-Áf\VËşDK&×jńixáÚwîËtíHšÁ/cÍžšf™X´¸Ľiyl‡x–Şj-"ŘęŃŰsPŽq"ÇR 5®$E_ôÉ·L}两ÎI­Ńb‹ąúüţ€U…ŠŠĘ' UÝ×V©[gŘÚ.k´źvĘ×ŮZ5"j&Î6wC™4!má.;qź~!<"Nśg~>ÖĚ_$V;¸ dł‹©¦!łĺ×,`đ‚é&[OqAőŽĹő«Ŕw0—f©ĘŔ:-«·Ű<«‡şÜ!\dÓ`ÉáH7 ĆüQ;:vĐě<~¨‹~µÎÖ>»C'ý¬TuäŻ.łTď{-›‘Ş;㊾ůhĘY¸x’NËr[9.^$CI6< `Oş š~4€L@< Íń‰a3›ŰAd„ńK€ŘŚřşĐî=~ľUĆLŚUęľaǬD$XĹ5™čb+­Ş˘ś˙Öąt1ŘŔF†ԶǵMÓ*V¤ŁfÄÉ#ě»­±çR ?®÷O2đě®ýňůő5Ő3˘ŠA¤^ôG<Ó†1! ÁbžăݢGTŇüQ„r&lt3Á#śŹ=šQ6ľimŞ^O棥1WŘ0µ@Î>ٍJźfMßÔšNěÍŠ˘ŹŠ… Ä›s,v)Ś€dâl‚ä‹cTŰ}ű–Žî× dľ¨ŹDŇśŞ`őfa7´}]»€ş`f<(;O}'Şf >5>ŚVJ˝hˇ¨F\ťŐ¶}HKGibľy6sĎ4 ž-*ŠmŘH©Wdf^ÝEJ!ě HŰőBÔ"WŐÉş·P4â¬ů<ľÁtĺőB—Ŕˇ+$´`¶{·A{Řě3ŇÝsŮ×L‹Bfl°µ}Ń~©ěßÝ˝ö˝)AÄ ČAáB×öZĄ`:Ž3Z)FŰPv‰QÄś-Şmć'Ö7ţ\X_h^:,ŔxÜ÷źâ%ŢĚhuŞÜ˛¨¬I›nťÜ%4oóŰ…Vʤž¸’ŘđgDŹľ–źšÁÇśşŠ·Qɡ ™XüXZ˘ˇuÇâF.‰‰@Ű%U_XĘ}ôŇŹÇ(‘=̤qşďKÉő˘ů\u Ú[“ÝcöuI'c쉯»Ç%¸"ŚŰÜPĺ"Ş ’€E\‰~č8ywuü3ń$`]kdÓó.üBŚk |'3(hZ¦ĄjS“ŘĘŘ]ý=iŹŘVŚkľIY‰{îüA…Îŕ•kk‘9·tŹ˝ &Ü8}ÍŃL Ę|ßź”^mU˙äţĐńůEQg|7­+B§"´=‘ěfס›Fí÷”Ô{PĄ<łŐR:áÝŹQWä멌şÁ7"´Űx´N{|ŻguV{‘NŢŮë«(¤[Ş 4(T}ü”;WµŇ †š5:SED¦ˇ¦Č7oXrS@ŻŘÜňät “ŞĽ„X śfńn  䮞ÍţF­,®Ä®¦çB;“t0ccďőô6N¬H“:GrA ÷0ůËî›*ÝÇH‘—­:ĽTÔµ BŘLâ”ęIĆő¤_Ę…€fčĽO’´g9s>C§6>ăS0úł”L˘2Ď,Ešâu™+±ë nlÍqÔ n›őôëµÁ„ľ¦SĂĎ…»!­ĘÎOÁšY‘Ö#[˝xZG~ÜÄ×Sa_ą‘%Bz§żPT“˘ńŘtHIĂ~şžýꇑÓwżÉ~ÉU‰,ź‰Ô\ÇNjŹĺJďmz?pĹ,˙VČU‹ü¤cÉÍű­š'~×őý·'"ęL›1»†ŹyałĚ7â©qěŕüD¤t¬%eąü’…ž)8vg.z ™čĹ#áđÖ©AŁĄP+ÇĦq „ÜĺKĹÉq3µĹPÓÔw.ĚťG±Ş¤Ĺžé4r…6=č;‹jÂß«ŁŰ?TP. T‹ËS˘2a7So'˛ýČ=Ž Čf‰Lł*úr JޏäZŤ‚ ŐöݵůË Sˇç懠ŔçÄlúÄ[Ążđ©•ž>î_Z{łčóŻ„}Ös§ ĺÔÓ\§Ą«˛ú‹’ŕ2„ŐôyžÂ뎅%şčś"Űeó„»÷1çřC8Eµ#0Ż‘yüđíkűâuŘç0çcaĘyöáđQ"ś\”áá"hőjF´vžú­:ÂţIßpÝ”n¬ŇůşÓ]‰{­fűĺŚĹçşć5ű~q®î˛Ř‘ŐľhăbJvÚľ}ją¬řXVąVo‡Đ8bp\𳬆 Ý€‰ÇÇ™“AýsŇ e–ô2X¬_Gj Dt¦(°ŕŢ{ -üaѤ~˛·-<Ş`\Ił…$QIÇúXO˘žÝ4c€*ý°ă 7€Ăf¶EśŠiĂÓ ¦%«‰ĆTi[¨‘1ZuŁ·2Ç{ć^9ýĐşlöÍgí{2ÓÉmŹŇ2UDćAŘŹÇ%!AmZ¨ôâśA ů×ýRŻ0Ě:űłrťŇ·GĄS“ MeOŞ_*Lšrb›cL÷Q®Ä§TÔżˇăôźÇś±`®2 ©˛«ó—´5JcNEä÷^o°Ţ–a>^żáÓŚu<˛nąŰěE^ݫ٤žXťee-Pô¸eFí*¨˘GpÓ9žéj¬ŞďKJDűŇ?pjźžÉô}ĐšX]t„xŘ­ś˝)4ĆÚíĂř+lN+µ¤ě`ˇ!M5ál´ĘdnÂłŇ ëđęl˛r<Úy{ŤpL>…ďŘŽÜ.%O»`ěc@Ś\3ÖS~Q·Đ…/»­ëkˇťµO…mó3Î tm’Ň=¶Ć#’ÖýŽÓFĹeU.î§Q­ű•2ŚŰ—gôSŐ »ë6 Şač“ĺô‹»Ýć+ç ů†zw@ëĺćÝĐUH¦})“Şť`,L©%l=ŠľDnرľÜôë¤%öąřŕę3r.–4qx—˘pEúc<ąpőí–ŕńßźO-őĚďŰňâŤ(Gj‚Đ‹ fî1n,îQNŇ3˘IąÉtßôôČ#›aŮÇ%dW+łĹc·ŹF~>§V"ôÎBőuë¬q8>'»GĂł¤­vŠwޤ ł­îµ  5ă-–HCk‚®'Źlgő˘—o¸ ˇÉC¤Ëΰa˙©R+ż%Âś2ŰĎ–éôN«+5ÁÚ+M™Ě=ÜÚ.…ŚnÄěmLC ¦Ëw' ß7Ä6\VĘÉŽ”Ń+—pťUÇĘ˙H¤ŔÄŁŻôô~“­˙ţĆ{s„r1ť­X6×KQOĎ}†©éH=ł07& SÝLî¨7ŽmͲ‘Ö0éW4™űŔö¦ľĽ†}3[6d´Ő] ed˙단)qf‘$M¨śE´…Žo-?·$‰IÝ—Q—oěő\$\J)dRřičĽŮË)Ą<&Ř”Ř"ZpJÚ[~ŕŃç”3AŚŽ„‚7đúgpÂŹ#ŤC#tB%— '.=´2îHĽ8ˇň|ˇ*e§ě2'˛č•m­›őĆb+ŽëFřÓY¶pQ«ë6µÎrkĆ6 žD0?ŘçôĄPČöţB)ľ˝ż%«Ii«ŻhK'+źĎÄ[ě33fcaSĚŻd [É€d–cÁp ą™ÚĽH‡±úpíu­ů„hA,łď9ó-”÷=ÂTâmůÉHĐ_ VŻßжz%SK3cDčá 4×ɡH¬°f¬:„®#±†ç‘jĚ+[•j,#CĚŮJńSŔşcűĆNąDŰhŰę¦Ć`ϻſfŽd3á˝—ÚH&Î7ćZIŘâb¨»Ţ°ßĹYä3‰=i)Ý÷č;ťĚĹ­Pó‡šôő˙©Ĺ¤ăuyQPtK%Bĺé{·VĘţ™RăŁâf!m3?îÖ˘g r„Ś"¸Íw@ł«ŔŤ‘ň‡q»Çní«Óšy˙.Lću÷:˙f7i°§)rRlż™ŠíÄţĽńîľĐ§cŹŔôçÔ›Ć*łţW ř@ă%™ NÂÓ3»I /O@†F žĂÝ.ÔÇNŞT•a¬Ý˙&>`›(36Ϋ| ÂÖGŽîŕ˝DĂ(čŞq üő4î„–GiµTÁóz•dIŃ·ą«"Ť”á†â·ÉďâÇ&†…"[|–—xp!58\EW!8Ó©Âě;źb,şx]>Ú˘…¨ˇ[9wîpc°Â5÷ˇOŠVAÝÉP;BÔjňÖĹđ\m>śóyݱĽöŻH\Lg˛ÚÇKä©´|Ç ,çôŠüBĄK~4„,”şŇç¸Ęę*’iĚĄ#–…>ĄWDŇĂrü^# e›.F8Ë•f0 ĂzIżőńڰĆ"]vLĄ’6\&)Ę3o?¬…6Šzr;čäGz·‚A!=ă k­)™ąn~˝şí^Ľyů䟼/Héův+pŇÁýţq@cĐ8ŤŁ†ľ+ąäO…I!ŃJnÎ#PÖň•xTą›ÖŠ… ź‡YšÁ*YĂWyëL\óĄ‚fös#‹†ýé),jăâa«#˙2PŮď–†ă™Vvř٢2¨krÉ ?ÚiO,ĘL€91§šč;ž†BwÖ C` ’fB:Şžăď…ąĂÔLÜĘâ?í)G¨_•bšĹ'۵[ÜŹ„­]8§ ÝI…ĺ§Đ™®5V!™Z?¨jyÁ:m®ň®óŔ-c¬ŃXŮg Ą]!ˇČ\ú:sTčsO*ŢĆŠtşş‹…Émާlx›t]ÝŚp%âUŹŢŰr q×_ŰÂZăµá%)łđ%#„~ř×G śŻ›Ŕ[‘ČŘu“ ŢáâáňÚU/ŰpávsäWy»-Wd3üÚ’v—¶ŽŁ'čłĺ˝Č3 äY ‹"6&d±9p83ŐXíľ(|ułŃnĎĂ$©îGÄL¸qµĎóżśŃVpĺěM™{se+U2JŁ…2‚ěÉR ´eľ6KßN3T+ \Ů tEÉÎI˙ú€]5FąvĽc-}jŹŽ—z˘ľ›ÇiŻ…®;U°“ČĄ[ýŮȦëĘśĹq$±ÔŹîmš /„"zůçŰ;í)ŐÖ-ĂQ š“Ě~€Z \·:ČYŤ]ˇőĘ4l𞻣hFÝé“$űOđ~wčUáęËiłĺŠOHř¦©ú )t´"﵄Îś]ÔëÍ…¶aW g„_ŤTń–żťJ€{«;u®á#Ow†ŕŮÄůŤńóPeÄľŐúŚ˙Ęnű7i°?¶ĎŕĂ!š›+[´är˛5ľ]wš¤ĽÇ“…©/ˇ‡±ąĘ ĹgÔŹ˘d@ŤhŮ v±@ö2ýc˛wö=yôXąĺ4śÚ‹Đ[ öȵßs8˙é¦:ç—[ŔŻŮéëSĆV'Ô•ürýHHŞ)î&_´°ĆĺJt!Ř#÷k »…Ń_“éü"Ň1l3(:Ç@“ôŞ1O2›$q/Ý÷\ËíŁ}°*js«šrűö…éZc Bه'aůżĺ˘Ý  C}0vý›sÎjIE/-CŇÉYĽŢsXdý%Oßu«“ˇ#ĽŻŰ{Yň›Ź…T#/˘­ŞdúÂË!9Ч«z·ďIńÇ]ďTŔŹJz­â íIr&Ü·üö—A¦8H!Ţ{čŘ”˛-—×Oî/\|›·‹w×HcťŃęÔĽZ®¬Y4Ý9'Ş=śś¦+Ŕ? fÁ#V"@ÚĐ›Ďiµ¸$bôGAtxvâ.î̬Ë7Gď/ĄV&2Ůą&˘+ă?C.¬{żA$°ŚÁŤ“A¦FJĂęŚÔő›GgiĐÎőZ“­§ćçćŰW>Sňőt“6×›ŻěÄ®©đ®ă˙ÄPď@ŕ¶ÔođE@["7_¤ w_AHuŠgů^¸űZe[Vˇç€ß⍚;pYŹĺľ~NVíGŞG/+wbĺ=rť!fő˛# Ü$~űĽ}kE* Š°´ĺĎąGř-·„+Ůłź—â>A".P—đ}uVDxý™M—/iOÄ9’,ä Yţ‚míŘŔĄ,ŻX™ŰíkyşTˇęâŃídŃäOS ĎĘ^Ę 9BSwů%|ďÖáŻöEEČ?†Fş=Ërř_ĂZVńÇŕ‰łů“Q—q 2{/ďgD„—»Ź€<Ás·\ѦHO®Ľ/]švÚ,†®VDžtTČľT“ĂRöO÷şr›eÔ?łLI´Y‰˛¬+Wpnj}Üň’‚»­l‘äädef§%›®srYß\ Đł•W´nđĄos~nµ~b9Ř™­nřLé†8g1@W\GUŘżpš~U~í+§šą éăę Yń-Ľ”ěîź` 4Ş/JŇ!Ű1VÄÖó`‹QŔdľŞś69Ł”2u>ظ@čJő®hÖź<°’śpŻ·ÍMaˇX·wL¦TnăHÄň;]ÍvÉ+Q|"gI 9€Çˇv•ठľ÷eäÍ}ÔX«N% üTQfHÝ–%zÔ0ĆýäŕŇë&=dé&Í^> §µvI_ç'3„C"-ÜşöówŠ#qHfÜŘýV9f©—°QJkh÷2O4hxä[eζMśâBBr5Ež‡Îqě;j8˛T9C÷{H¦NX*˘ŻÂ‚ŚĎ7YÂVŐeŞ/˛F§cY §=QF:“X&Ęŕ!–<¶µ´}‹h‘Aôő‘- ŔpÉܡĎR^9żá ¨`îqLu ¨b©Jʆr¸BżÔ7X&0í °UţţKUąŻ÷PěňÓh kĎ´ďŤÍ•Ąú´LpYŐ]¬łU)¨EĘßxběŚärÚ3¬5ád¸ş‹sťö~Ö+Ô[ řÎ%Ë#‹?y%‰zKoiłżN23ăřóµZ’¬¤39#ćGs;µŃŕKe4mĺ¸ăi°ŽK?eÜcę6ÚšŮÓú±™±k7·kTüNśµ S ®˝l^T'ţýy˝q ţäęnBXQ}GŮ#Uqô÷á#‰…i–ęć,]ď@‚v—¶!V‡€ˇ±.7uˇŤU(ĘoGçNŃ—Ž}aÓߌ8Ô¶ß\iy:#ËĚ“ćLRhmQ(Ľ1'ř( Vď˙~Ťz¨Őż˝e5 {Jś/%Â>’7ŮéŮ ŘąWĄżöôČĘz#ű’ó–fšÜ]=PŢŁX$ë$ŠÓúg­|R§ňXu~Iß ¶Ľ' ď5E9G<€ęGľI*o";Gnńg/A·ŔK†H8ŇŢčün°Ň®ÂßMzމó.Důń}ęĺ/·okݍ&EIĚŰÖĆ4žçIq}ü ÝćF•tNMA“óÍž_ÁAťzÜ1*Ýs`c#.éĂąĎH;|AtŤŞ­ˇŢĺdĆ`aÜ‹ćó‘čX´f‹1Ľ[:.öŚĄťÇ¶R0‚ćaU¸ÚŕŢqˇ7î•EiţqÍ\ŇbÜ‚?Zőv’{b×ßd4`(˘Š÷¶ĺŃá¦çc~ű ±¶şvo4‹ĐŢTľ´$?‰ł˘pM)ľu±HaX łŰšcY±Ä•đ×*î§g×űMЇĎŮ{­»#KBS*KaŻ›č÷š‹Č•MţTŻó'Ďţů1Ô.}T“Żkp]ô˨v†ĺ™/!öÉXA|ÝBŚWqBOö§—śŚµÔM)ŚKµés C9aŚBe%—źqÁaÔ;śµ÷ťŁ˛®Ŕ ĽOŚR*koÇĄ.@k#¨Ş…zéŇůĆÎ6„}‚F•&śGîśČçNŔ *ćʰ%Ë o_b»ľ ®˛®ó @&vëýÄźI3U`Ýçç]˛ŻJŚ”c¤ kGű‹ţ§űâfĘĺĆi]oŻ‘ş8I( ź7üvČĐ©M6ă훀AŃöÍ]~Â*ŠV]ěDétĄŹ“„ß˝s…Oüzéb&ĆŻ~BÜ~ÖőčW_¦Â’ÎKä ožîżčM¬˘çäé‹«V€čő+­hŠúg='‘"f/r9 ŻĺP»ĆŞĄ±Ö~á3úR‘ †KMč3Ů›HWąz\šućă{°…ď ĘśhĂíŽXĹŞ†ő•—€f%V*jh=]š@°ŕ›* łŹéíJúbeáŞg/ ˘O‹Îť·ö5GbýŞňE˝×d‰N Lśâ¨F”)žPˇ ·#†7Ťd–Ä„ů%čH Aď»Îš]#>Cč—łcUKlôv^9ů*Í7=ŢĺPď¶ž>y'šK\Ć®ŢyřWđ•m¬Ţ´y‡„ĆĂ`xrN„†ĽôN'x Č6y—âóŐ«7ţVĽŐ/ÁO]2yfî>f®) ®-sméÎŻę‰GŃ—Fö~ßY»“­šĺ‡óč ﮹PôÚoř‘ôˇíżK,…Ť•Ç%U%ßŘoľ^/_"ňťĆ/ľłŹY «]·B5ha·Xř0)řa2… ˛Đ{ôךcł´“Út8€ŐOnä’଴gF¬¨?čŇ|wÓý^ßIŁĘ¨˝†jT[Ç 0«(”öÇ„}_ź´·…‰‰ęÉ˝"µ>kU٤ŁU—ĆČő(N ·Vź_t0éČ:ňfµzŤHąĂ9ĽŞ-(oCD§†Ú›±4Dě®`!]ăěŞŃ´+󸻩ŮÝAQŐĂ2ć_Ă÷gĘŔ“a›Ô…áɵ ŢźěŐ(LY„o¤.q^îóă}nE¤©´ŰkµwÝăóí€Ýµ –éň†ţâWnëŮŔsXµun$ö\w‡Q©ú”Ëść‘TtŤYŤ]eŰđ—ůŃŐ o/›Ü.m‡Vą‚MăŐ¨ äÝýůĐÜqŽN¦Dps«şâćBˇuďóË´Ho˛¨ĚϦŢo(AÖ0$ý„ičô?Ă’…RTH—qÖľL´x®óš<ĺ&+@€r #­ż-ÝÎî4Cޤśá›rî‚—ąÖÎĺ4 ţžkÎ= 5gt§3u ú ŘŢŻű±hR‡\LyÁ궬Ú-‰µcäµ6Ç-ś|`«w>c~nv˙&{QTŚśI) 11ˀȕK† 1Hł)P•:˝ëŹŚź<ő´[; É!Éă^ÍAç¸ĚMe¦±‚‘ô[ťĎ¨V$_=Ç=eî Č~xŔ{öh"6Ç– ÝŰÓďx­Účęjf=r8UGZ1Î8|ę­Â÷ĚhŔÓxÎeÜ ş`Ł1ůvĎăg^n2–©" XI˛‡6c"nAká©)ÍĚ{¨T.‚JsôŻ©AS môrmČ"áHyÝą2·_Ůeö>XíÂÂ(ýKńš˘Ĺ%Ă/ĎäÉÔ²JĐěJKĂ9Ákbďüt™B„ý覜…6…|K©¶h»ĄYk§;'<Řn˝Ť×µöٸ:rq}eĎ0ţTkX0ö#9>ş{î¨+r6JÁŔnojŕrÇjóÇPcIÜňÚ2UÝJ¤ÂŐ{ ”ač˝ ŐËâŽüŞČź„ÖÔţ–“ĹŻ•`Ľ dŢ?!|S ¶éăIY÷/QcnlAg)Äd €ť2&:¤Â”‹AN§ }Z]ďńcÇę?z‰+BĄjŢ©mŤ~x©+Ą‡Ń=¸†ţ±ĆۧÝ1©Ć¬x[;pĎĘ*Kß@r:ú‰qrąˇNŐ“ěW™c“Njg'íbą¨g˝IL1šD¦¶Y9]˝ě2ó@<5í×JŘđ–ANQŐ›j +ćĘů«‰vôĎ|ea«Ľ´ µďđUfů•čXWýˇtЦ±BÚJÇ QAŻYĐţ­ěĆ"|ĆÚňË/ý–ĆBr‡ŇřAţz˝äO®_NÎ1 ÚWg’§H¤ňKň6ćjӡͩÜW%¤ˇ(‚(ř™f‰e_Š·Ľű+Í=‘ÎŤ`ö(—ÝľňVužrC5©V÷‘ćíŚ[˙H ĆČŁ Ź’kÚ:ö;ş\ ¸ĺ&ěíÎľöľ6[ĺFčÖ„¶Žá‡ö¬ ötčĚ`2ÓÜÍ‚ŻĄÉ÷ĂřävýLŻĂŃAž”)úŻěÔQţnŁ˙oĽ«·Ę®ćĽuQSи…“bp -SŮëʦ(˙vŁ{ˇ+ňéäâčÇw´±Á1Ń/óö­§]'K˘c÷˘ŮŁŘú™ ‚†ŇÉBC3&Ëd7”iŰ˙etén3ŕdě–ĆçÖÇ6fß/¦O@¬kÎ ‚öĚ á{UzE‰6ŇŻŠ>‚FmR{úy[`3úÜئĹô=ÄEy2F Őř@ËÉţ«\Ó»‰µĘνě>ő"‘ëp§l!iĹ©ąô7C`Ąţ6©aô’;NiËXęp’;†ăŚb¬_¶ "ŠŹM—0$–y35ëéëZp<7»Ž®íĹţöőËéë`)¦ÎŽ×[3‚KKl5GŻ”\¦Ž0EńřW&&ě\Źmçu¬?ô‰žü¶ťĂ‰s«/ˇ‘q±F˘_“9'ű÷ÄľéÎu1SBŢÖ?đéÂZtŁŐS čÍŞŮ`ÁźăÓ: 3$—=—z'šŚÄ… ŕHᮑJĆżÓ9€L6“zšë Rđ˛µĹĹJúX ČĂ)aŁ0x÷>’Ę™×PX3/«4sď׾‘=í‰p·@ÖJ =ŹK‘Ö±pDx)yćę"t 0­´pžZXL$‹ĺ‡4ťL*?ËŁvýdνíi€–˛ůÜ«1‰E™c#ę°x‡măľŽŠ†Â‰aŠnź˙7ŔôQkńęBŹX«đ qň'u¤W±Šß›ťţČĆV ąÎn á4Ô‡{Á×úRń8ťOŤčŻ»ŃkÖ\ą V‚fŤîW…±˝©ž(CH»»Ű®€)`0ć´fĘ[»[€…š‹6 ‰g+Ěă©ŔIčđé;Âđ:X©ţŔ!şňKÓ+ĎPTúčđÜ9hďľE(6Ău!M'qIďý‘śAo‹Üo“ôüW…›úĘŕ›–ÇYű•ü0?šťđ%´Ŕł0¶fçÍ%¦|€…űxbSNآ˛°¶U’é\­ŕ329YM?Nť_ËáŽPéÔ±!Vąv<·µB‘ęďzą GSŐúÄĚjĘ‘wÇŤ,ĘÓFbůT¸'ńŁ2 ä±e¸ă˝˝űCżqŞĽśX<‚–ëF»ü$YĐ׺Čz&@‹ay«Gł«W^`Ö»b‡DQ*·žĹ™ňŐŮ«ťžŘzä–´Ŕg…•ćÄÚ_Ž|ζ&"š¸WŐ›G±BJµ38MĄ{5Ş‹ t oOY3»Ík<÷7dĚŐŔÔXy÷wüŤř€č-m^˙rł>;Sú{2ŁĘ=ť„jJ`/@ˇ‰–±Y›+eŔŮ–övKT÷ůsD™îF~!zW™ ÷¦LĄBŠ‘[­”Zľ{tn™CPřÓ|Łq—‡«"1ţ…˛Y–„vyłc^á§­RíĄ‹¨V\ŢâŹ/ׄ”n1O“Q%0{.†ľ€bKłzĺPóxŁ„č0çÇO[ËN=1ž»ú‰8ĄŇ´ĚË÷s±>Ý|qÎ ň†5dĆÁT«ŚM-ő$„WŚ3zŞfżčŢ“0>9˙ĆÓkÜŘúf>mHiVWaŤ¨†ŽdÝ#íJüüţű4úăvúö3÷–z¬Re„ą(uRŃBKŃźµ$-3dŕť†aÔ’·çâJ/‚ýeEËőÝŰjŚc©˙ö·1g#ĽC ™Đ4ČHś2ëđrÇä ˘’}GJ\!±-’âVÔ®R2»ű˙kj<} ÖU“ĹŘŃDapçő#‚Ţ^É÷š6éJó»W͉ŕ< z¸{ÎHę¤ćžŰ|ŕh¶ ^Z†iŐňGř]-[PÖŹĽá¤ůěĚ4p١"Ů}`j¸%íźŢčKµńŢŠ\Yh}á…[ŻŞŚľ˛őVQÉ3>pF’şďíÔ۲ĹţŰś¨©–Î…B5!ČTĺ*E˝|C`t)/ËŇZf"ŰŠí6|‹ ę"âź±éׄp˛ŰÝă=E3ÜJ}EyđłűSáuçô"‡›ćBÜbžé*Ö[¤Z=(ź9+BŐ+Qą'4â`{ČŽç_Â!ú]ĐBD"'ť&pô“ĄŁÉ˝6´ňXȧ×ăoŠÖ Áý:_fÉ„Ź}ן‹ëá´EŇśNé†)ĂD[¤Śc‡z{ÁĄšč†Ň~ĄĆ'®ßÝ ™ý7ó¸J;”ŹUQ€§ßÚ5śVľ˛=Ű#n8äµG9Ľŕg·Ľ¤Öň¨ VI–IöÍş¸BčP[Ę‹…tmxň4UW\L›’´©gw—žďĂElvąĐĆv¤ľT>%0ŻĂ­9+Śăľ¦Ě˙ľhůlAęWÍ‹YRŘ•Q&ŇsçÁóë‹f©9™hziŕé7aş·ŢcEí?Ţx·mŤ—Woňn–ěÁ¨ŔĆŮľyú7Á“ŁŔ›ôýÄ´l|#é‹ęŃxuW!y"h ë0‚¦<+‡šŮŽ]č1F·bżNMőCdiJăZUÝô<¸¦0(ŞĄ®I3J<očéçv»÷wcŔG12›ŰCâLŔaű:ZŃ÷ĐŞ* hĚŚ(±wÍű ^lča¶Sn«€¨ÄqŤMLÚ±Ą¦`‚ Tß” ¸zGaő32ÚµSmáŕYyëo ÷ ŮtđÄgG Ĺ6óŘä_J¤É%ŮO›,ŐEŽú–oĽěîBj`N·eŮ‚R&pIŻËýfQ”ppdÔšC í9ç«&Âm7ˤ´ă,…±5»Nüe˘1˛iťO$˘żľGŠ éĺŠĚŔż{­×Űľ4y|ÜuEĽşmPŃĎŘb‘ĺ"¦jŠżM€ů3TGńÎ{ő={®z:Ý8K‘1°5˝ł^á×PŁ®ŁŚz]"„? ůĘöAôel}X(ěŔjyVĺ†ĺxĄoőçSďmuDĺxčŃľ]jÄb ”×Içń•‘t™›5¤żŮ&•ÓKń{ä/Dp—÷}Ůí„ďĎĹU‰ź/ ‹eÖeučBh¦“ Ż+ŹľRŚnCýĚŻÂýâ<:HúA8ądęk!·55Ňđ0>Ü€ę(…h>n3sB”WúNJ,Ú_#L-öJ]]ヲćńĽ±ŰË\é]šŽit^Sµ…ćav ”ˇ ąáSp[Ď­UËďEóąťIÚ!*ÖeĘWú%ŹG ,[ô·\I@ňwýgë’>ĽÝěŻ/ßśŹĂ=–Śň†Är0Ó(îŚej&ĺu‚NŇ“ĺžËt/é}詬šÜ=’vXcü‹íŘ#‰¬8Ň‘JŐá×Ů0Á7`ěQ›·oŔë#Ľmď*´_u9ůŃ9ÜÖ‰ÁGy ?lQQ8+HÇČńŘP/ťż€‰ÂO\·µ|Ws˝ŇŘUk&_ôŰ^]~ý?ÂĐě endstream endobj 1712 0 obj << /Length1 1630 /Length2 19256 /Length3 0 /Length 20106 /Filter /FlateDecode >> stream xÚ¬·ctem·&ś¤bUŚŠvl۶mîěŘNĹN*¶ŤŠmŰNUP±mű«ç}O÷éqľî?ÝçÇcÝ×Ä5ď9Ö"'VRĄ6µ7IŘŰąĐ330ń,mM\ťUěměąĺčU@殀żrvxrrQ'±‹Ą˝ť±   2€3777<9@ÔŢÁÓÉŇÜÂ@Ą®˘IMKK÷ź’L&ž˙Có×ÓŮŇÜ@ń÷Ĺ dcď` ˛sů ńí¨ \,@3K@TQI[ZA@%© ŮśŚmJ®&6–@€ś%dç ˘Ů;lţ}ííL-˙)Í™á/–°3ŔŕěZţuyA˙¨č '[KgçżďKg€ą“±ťË߸Ř,í€6®¦˙$đWnf˙Ż„śě˙ZŘţŐýS˛wvq:Y:¸ţFU“řwž.Ć.˙Äv¶ü«Ř›ýµ4µşţSŇżtaţj]Ś-íś. —b™€¦–Î6Ćžc˙sp˛üW®Î–vć˙™Ŕ dnědjrvţ óűźîügť€˙ĄzcĎyŰ˙Ëęć`éâ ˛1c€gfůčň7¶ąĄ<ă?ł"mgf`fú·ÜÔŐáčÜ@N˙jŐ?3Cý7 cS{;O€)Č žQÁŢĺoHŐ˙Ë ˙}$˙7PüßBđ ˝˙oäţWŽţ—Kü˙zź˙+´„«ŤŤ‚±íßř÷Žü]2Ćv€ż{ řgŃŘ;ý˙|Śm-m<˙O^˙ŐZôďt˙`Ň.ĆŰ"lgţ—&¦ -ť%,=@¦J–.@ €™±ÍßžýK®ng r˛±´ýĺö_mĐ331ýťš…%ĐÚîŘ˙­Ů™ţ× ţŇőŻüŐĺ¤%Uh˙7 ö_†JÁEÍÓáon˙QŤĽ˝é˙<ü#"bďđ˘gćŕĐłp1˙˝âfaóůß„üóžĺŤ]ś,=şëfbţWő˙ńüçI˙żŔŰíM˙Uc;ÓżÓö?˙¨®NNIţ×ř[ő˙8˙kîA ~eŃČl•–™îR‹ť;<)¦ŰßËüe8ÄágZQµ}Ź_Zřw…Ń[MCă4ĎG›çď‡÷=šýŃ^,ĘžĐE>ľ)u_ę:E'í~ ŁÁO¤ôSÍ(ŻË_r›:LűŰ“Ę*%oĐÓ¬N°—ŹÔţ¤nţdČľŔÔúXĚN”F0´Ú“SŠÄŁÇĘÁ±‘ᡞk¨ľ=<ÚśX8r^clßäâ$O#§»ŕÔ‹§sĺď¬ÍjÔDu÷ďxŻ‹®Dd÷1[čĚé笄ćźÂŕ»LB‹&±˛îaˇ1,E tDă˘3j2uť‹Ň§ËÎęxҬ3—ąc,#%ÓH‹Ř7>P5¨„¤eę„Ć›Ji0qˇ¤+kkDňĎp˛Ő}$@ŽŞő+OÚ*Ž6čpń!„ĺď«RK¨Ë>U˘ć·üBÍ|ŕţăΑŹIHHŰ*”ć4ęćEĄŚ-Fp‡ďDĘz#–Hů”Uĺüđ Ś`ZSLjŤ»ěĹ.9ë nŞÔşm#O”t.ů­÷m˛AKŹnWwš8{ Ň‚ ŃĚaŁlÉ6¬gð¶T÷9X©,ś@ŚBž/[˛Îé;ň/“šˇĆF:ÝČ#˝­ Ľ¬v‘”Ěž;IĽ™€‡K6¬ 7Aőü”q¤PŹÖČ 1Cµh2cŕ÷†ŚćL6Ç2ŐZpőŢťH]łú§üâ¶±&ËŰ~roSk0˘Ż~Iîkym‘ä»pŢnn™żăňr«0Iw»ż»ö6y%ckĎë94¤;¬Í¸Ag­¦ÄY™XŹ« 4S ÁŃŐ¦ş”›dđĘĆČ“bÄü1Ö±ŔyNËŮSGÝLŢ}XŚ4ó.?>Ďo»/ohÍΛűâPňkŠxTđ|˙¶ŰŠÚ‡Ů„Ú@/Z7W‹¦W‰çé ) ęDó‘,Lç6°OĘk¤”Áč©IżšŠGlĽvČż ‚XJç5·„,ő C^)ž€ÍUý©FčpÄV&é˝Y(čő¬ę÷řÚk˙Ő‰<µK4<—ĐŮŠĂŘxČÄXK.ˇ)Ś”äl?ńZ IöiŇż SĚzÖY.H•˛CĐsďö–ę@ćéËé~Ešü¬IÚÇZ˝aLčěXµAQŇG ­itü0l«Ź—çÇnÔ‡ľˇścšqÝ[ Ţő]|źôi°OÔlއ/ŕÓ©@µąŃ˝_Ć„ÍyřË GTöUÁsě"çő'Š$]ôű/;ž¬TŠ6Ř­.ľµcškłŔ7Ţî–*Čn9đŇÄŢ€:ť™6:Cü:Mç+†“-őwŇŰPör ě—ńiçŞÚBˇ‹Ř ę´­¨n K,ťMÁŘ……4Ę=jňŹŐ˛ŽŁT}9¨Ĺ *qžë艚CßAŠĺčŽ ýá|š‹'Ľ !é>¨z-!QʍśožĐm’y5Ŕ_úţ·}Iďp–¸řľ ϲg™ßh_Âľ0ÔŁĺş{?‡P+ĺ™Č'•Űpp*´h)rŇ~ Ű%ś@kjBb e&i˘t—q©`^pÁ˛&&>7ă~Ć žq¨AÍ}Vç~w`Ňš ęĺŤÍ÷6ţcgÁ‘HöýşôeŇís°w% U*@‘pň›Eşá¤łbö÷ólسРˇrnĚ"Ä™w)†í¶2yČ*ÔčKó¦!mś)V`5Ëţ` |äI°ą”F§'±ĆčŔë;’“\Ý”Żx©%ÔHŔßďµá3Ű'Řq×#fúnŞWÔó>}ŢĆĺĎrű<H1r )kyŃŞ%o5ţţ±!TÂ]ň'ţx!Ă­Łď1ś6Âa/.¸4i—4DJT{Ň‘w+¶tŇíhg7öűŰ qYą #µËXGO«¶†`ěÉŻ.Qś2«R“A§en§–Ő#(ÇEé;31SżŇŠ_ě·Uâ„TŘę„ĺjşŚ ľŻůVÚGÂütüO:zqŠO<›BTŕĚôńҤŽ4˛űOQ+u®ýĹ41[ÍÖF‘`-Îřäď+ŰD-ĎvPČ«nůś”H2uÚ¨ż,g^uçÁ2d“ĚY0Ą÷ 6)—˙ěv6Şö‰¨Â¦HO µ~é¸<ĐQüń¦˘ćřz¸L”pŞÖRĐDN9Ç٤Ä"+Ň•ą‰˙qřb Qʉ=ę‡?ĹđçĚě4n‚hR ‰ Ëç·ž§9™ÔÍ€bë7őp۱"|Ntę[ÎÚśK"în:ëwÍg)O~ľ˝¬ĺ JËo´l”@˙ĺM¦ĺqŞď´ŽŹmP"µ§7e°lÎ'íÄ·]Ęű˛%3SY"qaÄ ®Ďˇ×)şŁ,ĄÁĚbö0—hŞ|V} ’_5ľ1ŢYnÍę§Oľ«ÉjPzŁ%K®‹ Eˇç››ě0ďë4˘¦Ę™ČËżF÷RS;´í[ćĎA•ňTÉXÖž7­&:—]y˝L˙˝/?B®Źś ˙öť0(>>ă&żVâbćŮü,(ÁÉ5G.§š™Eš˝Ă%1ăcř :¦5 YKúéH¶?Aٲw9ý^‡Cď#Şúq‡Ş˙,é0_šs·Ý¬ďŢ´ĺ‡{{†ďq;Ć€ükź˝ë˘_ä퇤!5vKŘI7ÂĹ"ÝVF>«öx3ń2!Á˘bŤxťÄϲ˘ˇž«ú)¶3{ňÓó˝Ă,CŽß1îŻçüMbeaíůŘ«^HDf‹AöęšwÁ4<řNĂőňśŃF<ľ—±#&Ď?ja!„ <",~˛ś‡˘öl˙ęd†S|oM2°vÍy .`ď ką±AtÉů-Ë5Ř«żú'7ÔXIă ÎöAâ÷mÚd*ö•˘ő+ßŕÔľńĚIhążÍ·ë¸b™3ş¨S*Ľ¨9˘Ćž*ĚŚÜ5ą˘8,¤ß“Tć†ęrö—Ľ ĹW†„o˘ă1 "G öBUäz;ńĐlËş&8ľčF§||3 ţ»Şuú™\nćRösňýÓĚH,硾n»ü5~ţQDĺ!ü»UŘâň±pżŰr$_©§ŐF#”ĽϰˇR,[ZH·WF°ď~XIčŃ?h|[N¶ŇÖ܇čű#¤Ëćş'˘´ËîÜÉÍ~Ł—ôi4Ű p„MFXm~o7önD:ş/?ąn’rŐ Ý'Ó_¤4‰˝SńĐYřžŘMS˛Ô?UkP˛LÓ†ŁgRÄJ+ źŹ[RYşFâŢČo.Ç—ł*&˝ţ›·dě\RÉŠHżŘŔŽ9Şpő”Ňqqš¤vď&Śľ®.-ýÇîŚ'g|`ďjÎrh§· -Ěő[şÇNóń™Ş¶§^mXS}dVzóBş»˛IQp0Bć÷e”fxlÄ‘gĆŘŹ •ď%{Ö?c@Sľ­,¸ĎďöË©>|yó2Żç’‚řŇk!{JxĐ\VzȢ ŁąĚë±P!E´ 8Ć ęŰż7ÝMýú ŕz`;X§ĂŰ~—˝ůöfŮ—E¸~=kŘî© ŚJö3ĄÉpHE2ÓŃÉčA¤´QŐęÍűĹ\»hááü¨Üţ!ř¶spz†Ą`›hvăZÓ‡ :lŚŢë Ń>€%± +}éÜß.ń Âč¶4ž’măŇŚÓ¨ą„ŇßZnĹĄ:A¨‰ ŻÖ]/+ Ů©8¬ŁÄ÷¬´ZzDô±Ą—O­M—$f–ĺNš­ u2x?ë`‹9¨ůNÉ ˇ±Ż` K– äĺôEž<ŤEěÄÉż·­±ĺq°łDŔńm=ňÇúÖ›ĺ÷!2­.¤I˛éív{(˙Ţ–Ě?^Őĺ—#ĺąp3%Ö%5E°®ţf¦#Q[#Íŕ;¨wƦńł»´ÝŹ”NŘęcéúçCÓy9U%‡'ßąś ßJ^ű`™“I8$ ´:%QčÍóQ ĺŇ?¬=}Ü´tÍ0úÄĎĆM)Ľß]1^îV4ŔŁ–joŕâU@Ó[ŞIíÇmĘŕ3Ą·ÄŠšŘĚÇ%2§—‡xÖÂź˛á] ĽÍ§x®ĺ8K]VH…Ůöuď9h , pu7Č¬Śł[—9hTbc˛©LÉÖc‰ˇÝőÁ…ÄŽđ( é»úD)†“Ž+nzzĽ7c϶ܤ¦¨|±˛ťé‡ük?Ád ö¸š(ÝiüZ đ”ă _¬!vOJQ"ů벋 ±OÎYiĚ Ja0¤UUfŠn˘âĐÇ:Té’˘á/wvň2côŹv[Ł3ĆďŕĂ_ÝČlôDĄš¶™xDQbm›śT/›é`~?—†Çă_©çEőřbÁ““Ąń}FOTí˘ä^=÷ą§ȦĐĚň@öĘZ@ĺÝ<íÂEYëkkŁăžd‹aW‰"&k1˛¶>Lń»GZ~Ćcß=Žř ä¸Á?j µIb˝Ű´©Y®sËaŇ.sőłł©$AÎ_ş«űŘ‘µŁ_fu ››)ÇŤ÷쵌¸+f*gżŔîAvq´o\ë2ÜęčéżígÎ`Zn§´vŻ}—xdµ°Ří˝\Ă$ż¸˛5¤VÓýI ÎBÎýÖ Ö5hö>ň}ăt€ćQ†ůz ŁŃŚÖô~Šeě3‘9JŇҦł•yq˙ł†ZU@%Jm‰u™9~s¶jÂľ‘÷6§Ż{n†Cş Lç ÁËI TýăÔ$qZ´žąËdVőŔńüˇµŔoŰxzĺçEŰ™oç˘.W`¤¦Q{#C Ô1xť¤$GÎźĹpć®´!<3»â#1ĹÉCĚĚ?.MN őâ ó&ßRn…ĺ#íŢaGż÷+ţ‚ż×©J+×ĐĐ؇‘źV·Ź59#Zärt%Ű0!ñŞM>AőǤ¦ťxR˘ĆÜ:ĹR?ž¨-ł}$ `ŇxúެXÁĺý}Ź Ěľö>r<4Z“[ uqŇA·’Áx…¶ź‚ąópř¦˛<)ĽőwčQ3´ĽG%YuL:€z“”oěMž«C0cťşÉĎóÂXk¬[ç/żđ$ĽłGÜWpd,¦‰Mď h+9®ĺWq!nĚÂŐä?LâäľÚŐˇyş -Đľ•E!X»¤ylîBe-Ěěďžń’Ş®BJK‡Ľs+‰C:C™ĂSNŽF_¨ŞK©Md‘ÜÝL‰)ë–n˝Ú®Ű-"Ł”H,­“˝üá|!3DPzÍiŚéÂIň ‰±w{‡ÝN+ďZ#X×ÓP}’AĽN/ˇłeÂqr+s™PŢ»±Nl!bm8ÜśÖZŇŢŁ`˛8ÔÄuĽĆ†€!;JeüŹ}}70˝B± s4ě;®ô ĎkLů[G®şĽÖśOŚ˝Yĺ*$ŽŻóŁĺJÁY)ÁkÍś žÔĚ´„¸Ú ĂFN±] /:kËjOÖ¨”ÜV3őiC ! ŁÔ1éSłîɲf›˝j7 ㋚¦YŇţ‰ţ‘?ÔŹí\ Ć€oÍ­ďHÄěTw[´ĽĺNDTł=é‘$VbJSu|!é‚YŢőş`±ř÷­±ÝĎ©"č.\űX¤ÓČÄýnŔ˛ě‹¸˝ YpęVĚ…çqŻi€XȆá%·=G ¦Ç5÷SÓŐONÁpíţšh ů°;ć¸#ăJ˘qěc­´CŦéôËTe¸·UŽąÚ˝|oH]ľ*XěJ¸Ůrď+.enhµM”5ŻľLăLĄ)ň7O=OuÍśäÜY+mÜ+äµědÉhßxę—ˤޓ™DdsáĺÎÁ!ĂŻä®Ůő ‘‰Ľ’$ý\rCřž‘xđ55†wúŐWí$wC*FĐm°úQ˛ÂLhđ.şóĺXA‡KĎ„° Ůâ;Ä>ŤK'ٶ¸-T]KR¨k.J˝ö>•ŘěĆqÓ;¬7éÖ1DRäĘţĎÇáĺ&7íú@"ĐE1”ßËöłĚ* § ˛s)8_jŰ0CÚźůŞĂ×ëf­âíďźfFEb|wIťŘeĂboc#\IŹń}*lÚć-çzaęőÁžĺÔ´•şĐĚb×9'Ć]ł¨·:ÇŻě9íjÝwGÚ¸yČČ´ČŕgbN¨8g˘[LĎĘ>‹'ŐőŮ-\ö¬5ˇSë.˘Gz±čbąăAFÄNÜŽ%6ózÂx˝ĂŠ{¤MAĽ3t?ËO×SÉGIĹrćş“7¬µCĂż/ËW`ŁaTĎÝÍö*zuăd"­u ˝ó˛EgÔc ŕFÉJľşQ»nËŮź´tě-&Ľöó'űõŔ‚;˝¦ĽÖąjú!ł–)Ł1ś^Łé÷ ‚Í+á{ĺvÎu0ü˘;T:ĐŁłÔ6!Ą±măÍ;H`qÄăÎö!<Ěîh¦Ż–†Cć˘hsÔ™¶BŚ-pÍUwo.ÉlHÉźgË0aĽÜj>­¤‘“?XÇUĄgÖAu—ěŢT‹tgůh3DżĄ]¶Â]e9ëÎđőĎ)˝‘¤ÂĄsÔąĘÜ­ÁŐ!˝'\śiŚO‰X˛z˘ŕ€?{lP ¤+ózlÓT‹ ‰6k„ČEE˘Ţ*ťČb*đeĽ<ÔĹYéQĄ–^÷QŤ»›ŞÓŠjnĆýŔ\›fuîXűM| ţp!]Xzh»’Ă„>e„¨í]÷»Č4`ÉĂ«e¨±ŚÂ"x^˙šŕšąŢ~KI¶őŐ'\ź I\/őěź˙Ă”~ nuÓĂ2RM€Â‹Žç©Ě»)©J‹÷ş¨Ł€C )Ý?pňş’ŹÓĚ,ÝÖRĺdhY¦µF§ÂHýĘ“+.w#Ą.řĐ‹6ŻśÁbŚ);Jěd‰őĂîĄĹRć=~ú łýĐN5‡ |‡%ŠÓ¸Y†‰łđ‡ç¤Łs˙Ŕę#Ă:Zr]m¨…2¤ÉbůąA·ę¦ś€äŔÄŹÇs8©đA'/€et ŃxňWŰÄ‚ffhÓB˝ťÉy"+…äţ:?…á‚éĎóU»)„&;«ú6E¨:?âÇ˝GľkřżëGqÉvĄŠ˝V#3I•™>}–Ă[í»GŇćîűt,!ČÓjGęPpWÄ€X-ý.Á@CH }±/ ň©jĤ źßUX9ŁĂmô÷†·V‘ŕ©Y“ĺG6 )*b{qçĐ™›ł{-r?NĚR-ńítřĎľĚÝ+ëY`“ÍëĂKm”—đ÷eď)â’wQ01řŢŻÉ˝Đôvd˙b_jüÂ\oĂčÓîú2v"eô.\YÔ—EúŽci š‚~‘ Ş)źăEYÓ,Č揱+Ú·1‘6!Ü~¨řLŮ|µTV-GUNůyIĐAëüFYZŘŢ8Î…Ť†'Ę•Ćxoá÷´Ď'U:>¬ú<›UÜ 6l­ďSͲfąDe>äP’‚M¸°Z˛®ňND»ŞX›)‡y´—Uôµ!]‹wüB˛´ÝimR ŐwáSLD“d” ¬ĹÁď8Zä(ű*-ÎÍßKRvDd2mřŇV§ÜŁžÍĚ`ł7˙kʰľčş|VĹRşűť™v Mâ5üą —égé‹«k©Á ]ÉwzpNÎ?†ˇ]÷ ±c…zČ+$÷GIâ4ŽPź&śź}ş*ṮÔÝß"DćNéÔĐeăd‘`¬ëák§ąL§(ígÝ‘h®$P]öËGĽî&GŰxcU9é)‹łn¶˝AË?µ$˝nT˝\5)ăŔŞn©č« Q'¤›ČF¬Ű ßJ«¨'#ţ¸řÝo7ň¬µŻ´—&™$îJŔٵ÷Ćé PDe3déM…ĹîRń9Ť}˝O$¨şâ/úńbüĆŕFąŠ…i”cĚľSŐŢY]'Ë6_čzžgŚÉ$@ăýâĺňřj‹˘M 7ĹIčÖ҉ѻŰËf:ýáqŮ—ź|ŞEł•b«żřž”›ţ&sŇáţÇ4šo“?ţĘJ¸¦•ă7ś”ŃýaoŐ«SľŘoRA‰˝…e¦ăń öî„4ÓPîŹOM¬'lÓŘeŚ âÄoĐ ş9Ęą´îq=E/¶qí 2ľĆĐ·{Głäͨ‹ěţěÚ¨p‘ŇĎçúVŞ~Ý™†×’z  sĺA’Ň&ćep“ţäÓdRë°Í˛S:ö~­¨8ybŮ.łkSĎĄ2F!X!&Ui˝ŁË۵c¬!|Únä`Ź$őđi=‹»%ĹýĚß”Lpş|ߡǕ”›^É>˘vŞárě!Wb_HÖÁL¤Uq¤F-8®kE Š:9pxY7ŞL±w~GĘŚq˝ŔKĺy4đńí\$göoě‚…R"ŽŃţp"B†—p 7Ήַ¨čwčt&ĽÂŮeBS ę–buą('Rs*ż¶9 ü¶+ŇDń‡0 ąV’j‚Z7Ě‹‹ăSĹčď‚Ëď 6ŤŃ:bóîa őÂ5ν* «‡÷eüů„oŰłůÔA>óîE{8ź…¬@Ť“j©ţI]%Ęš&\MsÄ#ŕů3¬Ç đÖJl"®çŃËgˇľ`ÓžÇL5 ‚‹Ě4¶ŠŤËvd•ŞĎűUĚę«ĚŤ„ëXˇĹˇ¤ÁĘěßŮ.áÎăČ沴w0ţo^Ó€?8á  ľ SĚôôüŠ9ş”qY`!ĘĄRŞîŞX˝?Ć~ĂÁv­^Päşqî‹»yoßíT˘b#째F<őň-:S,Zq8tó;%sĘ$GA-t˘÷°“´×O˛ mîĆę»É…‚žî-:Éšé†Éł záXtG4á4Ź ŕČLµ«‚_¬´ä.2„đ¬áZ’ŮukěÇ-fŮÄą“Ę>{7g·0[YÖ–Y’Ó1“Ľá×ţXś™žJP}:Ń \[-,’Çn2ń6D4“żH śŤšĘ® ÷ÖÜŹQ8“é’CŐ§PäJď'tń´qşŹ…LľáçćŻĐZ_† ĚÆ2µsőS»EŔ§¨‘]ŕToÓ(đ„|”é7F˘Éz´$“,0ëđŢśÎ{+Q'rŃ”†<÷GĚ™°ąâäś@ÜźHęYéöň‚~ťbáLąb°¦eą_>KŚŻ˛µµéM^çjŔÖn+Ć’Fű\˘»×vÍÍÚŢšŤuäšéź‹sRĺRnƨYß? łŚý0‰łÖĄâ‚Žam+nẤH Pˇ…Jń˝1 <›-Ů+mšÇŔ…g†3MĘN¬kÇ@± Ř ÚąŚ ¶b„«É…ÓŤFśţjé줋]·‹ŞüĚî C¸˝ôH=]X˛Ş#MKMÔ«S8[ N˙Ús€oZĂóÚ+‡×S-ÎÇ `/ůwŰXp=&•Ôy¸|,5žy3 }Iuń?śRňĎÜV€‡Mź7¸<–’î[ź—vU{Âť÷véŹö‘_Oi«ü-Eşđ¶ŽŃj<©jÍ~8ŕ,ţ^YńMěSóW@!ĆA¶ŘkJwţUg Đ•˙Q¸ă×đ uă±Jě’-µ=$$ő]~ËçËAćë(VąX)Ł—ČT“^Äg DĽŮ8jâ»4,Mí%D‰ş5V)L’ßJ'ÍńţśçnCĐÓÖ›)Ď黟ľ¦¦şL…K['źć÷±÷Í1ök\#™uz¬jag°%zQ~Ó˝č™3¨Ľ;?…Ą­ ±í9mo·Ö2ŰßKawLÔHĆú“€QÜů˘A»*P¬Ř›ěŁu^Ktő« í6©Č2‰aVˇá)Ŕ¤ást*Đ’«t1~\8(ŚE6ŕB닣/&AŽĐZ“㬜px…ŞäjŮ@G”ě–Ú@𡰨döîÍrFÚ7HLţ}qűye¶8]”A«˘ťęŹBÖ? ü”ů ‡uŞ”–Äóô<&­h´Ö!wŃË…šSx~ej5ĆÖ¨|…ŐKqś„IËĺWő9d—Ę©[Ą ç9 ş’Rž~Z ĹÜŇ9­ś!éLĹz0`YńÎ'µ3#vf—OŠ‹=CĹDʞßrDą‚q7ÚE´ď»<ňłšŮgÎs_ 4ő­5+äDňLŽ_âą –ńdJjĘ«ˇhű{w3ň|Ďú+ÝSýÝ ŻĎJ«¤Ü×faFiÇÎQź´„P'"iůúľÜ-‡éS‚ˇÚ¬âýü«SGo÷Ťf!8<‚äŰÎźT¨ÚŁF©uŕBu˶wőgĽş9ěrB†0O2B«är!ě5¨¤Ż,äH•fŃ&”sŁÄ„,§ 6mä´Ń”§—ë0zŁY€dô­Ćđ9M®oµŃ1Ä‹ýÂ$Đ~Ô#ß{9š âŁňPôHĄLýîfvVsśé€ţ­<•ëŻ#µCA±óö?‰v[PXFGŐb\śű”v»ß˛†­}ń[zëŇL:Q>¦E‰OšŔÔÉŮč\„wL;˛úmA9O'ĺQđ|ěń])Upî ü\š‡öÝ·voăx˝‹¦ BłüĹN`8ÓńÚňíđ›dŰvŚÔ}Wńr.ĂVčGeßČ*^:_ßŘ3bŠ0Ţ):×JMKSÍž_|¬Ű™±ě‰td{OŃ©ú/#Íľ:]_OÍĚĄÓł¬đö ¶HŚŰč_9›ĆqťĹšŁĄ¦Żg=źG(Wnł0[XL!•µ˝•Cw7ĺ'“t7~XĹß«BÎŽg°Á6MôĹô)¶cR9FÁ„?h왋Öa4uą ż„Ńöj’UF|C/Ĺç—´o•¨¸íŠÜ·1ë…ˇŻ=PdcQjOfSÓ“ŕŰ …’qFCŮd/dhlFO1Ż eŃđż’Iµł ś™0tc~WÝg˘Ě‘o[?ŽÚ]XYşµ{7BĚ­IŘ5TĆÇŰă`ó$hi h ńBîâzWÔn¸5¶úyżKťVśčy •Hő쳦1!Sé€JiÁÖ==6ŹSa!“Đă#]ŁZEŰŔ:P‚ă€ĆĐËŐ*áÍ­·×<íż^ßJŤ-@t8›śiÉĆ‹SomţâŞúţH˝Ń«RÇž ł gÖŕ)ÉÓ|z*Vnł?٦¬n`x¶ü{=?@ęGçÁ|­˙„;ç9ça“˘–č.Ä‘ű‹ĹôŇEB4YŐŇgt:ÎwéQ#z9« LCEŃBdEň`–uWH)AgmˇU±ŞŃ‰ž‰ŞD]$3Íô4o, Řü‰lß/Dł‹Ć=p|"őS>hގŃPâ+AůȜؔpâé"ÝüJÉÓµäѦµęŢ«€žă‚•hĽóűô±Ď9Č0–|4ĂgRô1g44ĺÝo™Ť!U€Ůt Ú Ú7µŚř óÄŰ[š¬8t>htďĄuŐđe:r`bĐ2 莼şčBě¬řăhďüÜL}RŕwA'Ď~żvçŕ•¶^v•űBě–ÇuPbýUoµó®€ŻóÍ­ žď¸*|u*«„É»{tL§Š×8_轵l컚k9_uzŹÁCOˇ${."Iërô°Ý$ĽsŔ˙Ę jřMVî_FCÔÄhz©- ţç1ň›ŚmĘ®'XFE!S’›ő$wÖNG^˛&†^ XJóÖdĺ'mF»E›´&Đwčşjđ C$Łő%ð€|íW?D¬›÷D†V<)lŁ´|NŁś"ł“5NŮ+ĘD:JĎZŘšAě^đ &j]ÁMÜNĎbŘŞONĐ:Đ.ő->ŻŔp$YWTŞjÓ{Ą%Ą ¤Ś˝ĘÜqFATu7ÉŞŠQ‡ő¨K_=We Źe 6ćÁD8wľđş?ŃUöôVČÁ8sGjă#<¶ŠR( A%˙ÁU®ŽÔ(oIŮ"ŢËSś¦§yaGĽb¤vÁk€~* &î×M6×rkń”4AP$ŕfNž˝C0rÉMť97®EĄi ˝hÓ÷sŞ`ĂqŤ‰5Cĺ†Ëłg/ Ďy_2+„ş,57˘čR”Lg»?I#­ÂŕžDˇ§±ă_ŞäWŞ@$«‹\,ě=±ź€^0š‹ă“č ÔÓk4F$É>ÔąJ´O‡ű°µ°Śżíໜ'ńp).ľ{bá;#v_Tý¨¶÷Nµ*Ł6Řőb’Ě S‡r®ÝÎMŃü=šăkŰhĐżŠ…Í}4Ár_UiĘ™V4áµňačŤŇŁeć‚ç§m9GgÁôÄŕşę´Ś˝}×§,=-,J },H—9ÁÉvʍĘЬ@++ KÍĹçŤŇL¸!íůĺ©‹µ¨ňT?Ž „ŠÎÚ[i•H-?Jë94=˙öC©ˇUŕŕ,GęW SÎfNţ°ĂăOö ¦ŐřÁĽv*ÎŢÔťcÓD™8śÝŢí\zÜŔgÚ›@Ţ?ŻX<­@(ó×™o‡R´‘8t6©ľŻĎé›Điɡ$䓳#‚€Ň ® Ś 6v¸cŞúżVP݆Ë-†zâ‘>}cąŁýO·nóÄÓ%ÄĽ8ôÓ‘ąĐçÜć˘sĵ1MZBĺMˇ ëü{ŐłDś»óéŐ ş^`ŁÄw=$[Ű˝‚Çfív;€ş%ľ0=–JW‘ŤŤŽç DQ O+ÁđÁw4çĺ•.QYpб]”eLN)ďlNjÔ!TíŇşB¶ĆÍËÇÄŢDzA°Zn'ĺąô‘Ţ×Ň客\—Űή(íŔ v»}žLOň#粢pţĽŽ?Č_Ď@佄·Ąňá1¨ýGÄ·¦‘éÖ.ž+>+°T®YuNńÍ8‘hń áQČ‹@oEŞtş$xQËŘ ÖOŃäßá’¨?Ď~ülëMą*|—nĹyă7¬q_®b6Í^%Š5×üŚ`ĚLkŻ”%ň@ě“LĽš%˛ Ă2­f8_BX —¤[bw*ďi†:d=Uű7ŘŤG‰âů"­!2a ińŻwIîřTˇVićŇń9ňÄÁŠč)ĹN+u?D™‹_ĹÎOü ÷ŁĎşp łŽ+#&ł8óŽŽDýˇ ±Q$±\N’ý™›‰Ź §9Ő§—KµcgB'íşµŁP>_jT1-eER\ŕďdÚŃüDÄźŞ8öĂdąuw§@řÎ 3S–%<;űJXsŠŔN é‘Z^äŮ–o~ž!-ę•Ú†ůvIkMsÁ!'>†F˘c˛b^ýĽĚi 8FPÇż§/p]…zY…i|±ŤúĄ ĄlF— »Ńz@QM)2Uşaą\GU˘ Prd‡Ş@,%wŰnz;B«yçŃ‚ĄąĄ­¸,Ş0• ¨{żxڤis$r01®F&);šĽ۞׹´ŢŢE0[…<Ěď'üu‰cxĂ6E4ĺ˘ŕzyZĎ"iď< żaÝCυцkĐ7‘j‘צ“±¦Ű?@ľ$¤Ź>zäŹ3X÷G,ű&†(!Ö|_Ddkk†8É&ި6× ă¦‹¦¬ÜŻ.(–ČăÁîq<řˇš»CĽÉÚ¶\iqĄ@é27ę ĺŕęGÝ´Ë^ý•¬?m©ŮŁ1ŇSśŻnú;Ň•Ąť SUĎż·4bDO‡˙|mb…{iv ¶v‰WÚF<{?ó:3AGMĄóy'a=–Śţµ:c—’đs@ű/ĹĐâ*€V…Ń1Ţďé9]GöĽ/ž…áXY·°Šě•’mŮ„0Ž·÷R¬°źOSÔ…ú&ٴڍ‚Néöâ3_řřŢ˝«Čc5oHsN5Ł<ŽľĆË7€‹”kyVţ˙Ščľ=“:—ő:=µż<ľˇíÁÄ@ř•Moe•|›_!ů<˘ÁjeÜđRŹĘä=e¨ ÜRźŇlžó˛żNjÖĚ…ć¸N8ŰB†3ůâĹXÂÉŹ||«P]ĐĆqÉ]ČŐ˙s±Ód秇 ©`űžŚáyâCC±‚AWذzp66Ů.AűŐQQđŻĹđGYÁĹĺÜ; †xí•Sé1¤5^3ů/tͺ̉Ü kцz϶I$ŰĂĹgHµ”+Nrűź¶ŽÖĺ­~úS†"~W/äi` 2Ż:/ÖńÖˇSĘ;âgň@řiŔWwńţ3›.™˛…ç‡P-B甯BâhľR»>rZcH ˝;ťXbźV)ŃXÓ‘3˝vŔ‹ćt1%yJ8Z5ëX0OĽZô#ŕĐ·+,b»ë»D‚­–ůSŽ‘Ř“Bă,EŮĄŇeŮšťÉ~R —…‰Ť¸öÉÇeG<ôţő‘‚Űz6€řÝî‡G0>ům9ođÔ=AÂĂDí‰7bµY˝&VŐügRŢÎl”V\3— ŰAö-ÄHZŐÇŽ–ŕ’Ę„éŔäďýJŚPšG9 ‘íi˝ÝŰşď‡Éřš&Lއ ¶Žn:lnxăňO•ńőĘšŁoÜáײjE2ÝÂöĂ #ż°‘zyÖË„Áâ*ŹE-üť5z\.pc#qóy•ĺĹ=Ŕřâ!čŚÁŘűD­ĎFńKń@J)á ×HČ ýü";«4Óżš›n·ĄŚt1ż¸2«gťďŕ[ÚĂYžńęŮŔZ„nu±řŢň,#Żöm kr%“E§_hŮn¨Oż­6ę+\č7<~–Ô{žŚŘN2nÄ5¨ź»«Ű$°~Ý_0Ëßd;™”14Ř)–˛ĹhäţßI–X§„d{ZBMżą‘®»8\˝i«» Ń C M·`ŐN×~Hô7JjUę–ĐOČb˛IďÂřéâ9;…7©?ÍŞđgł—•ądśzdÓĄ!\GâĎsśŇť™KÂwł02V(^;pëĎÉ“şTŠE[ŘuU&źosfŇCňhŕŢ?źťŹ×ľř2č@rF ˛_y€`BFščN%mÖŐóď!)7„÷ë\Śfş°ÁéźťŁ‰ú7„¶§ä—ÁÉHBýNPUBédŻq•b ˇÚ0:ĘßbżI1ťŹ„ř—Xnµ5‚î;UĚNަ„©ed0fš™ ΦÁ}Íj»§ëŮŢ$äŢ8>şz ×seͶjÁ~Ffë3(!Ťä>ń-!—*э޻ľĚ]źĽwçb÷ ë&¤ěŰ4SĂGĺÖůłC¦†÷ǦPŽÎ‹­–µKíą˝ă݉?ôÄ(möň €… ăKU\˝—bŃJĘMÚŮŚěäď‰o!ĽŘSaĘ<׿Ć[ŰmV: ýŮ ´xĂigvě~ÉÖECZ ™ ĹPĺÓźłÜl¬ ëPD$aBĚŕô|áIw”LÁę–,M§yBD ´ČË Ý×€Wŕ}´‹ z†Ă›„đŽ2ö(ęä€[é.v<Otđ}҇AÖçjď–‚†oreb3J—%ÂE1˝űnsĂX9ld4űđ±S8¤D›™ˇ_@b‘ÝŐ ;ô 2˘(c•ţ»ń(Î6ź‘Ę*ÝI>sÎg0Ü’äpĹqቌUEťršde¦ąły˝ą¸ÇŔU§tßi8Ă?Á)GGżljźô°%đL’Đ›:•n"żZ#’Ł,¤ý ݦlĂ©¦sĹ9Y’ë˝#ÁŃň+ÄV[Ŕe’%bĎł*ж÷KˇĚ7Hl$"šîş´v©‡m ŮŁ2EH]XŽÜKĘP(’rbއbćň›ó!O˙PuŘtr9M-xn…ÇŰ /@©žG;9őcÉFL4S%±/ża¨ě“WOÝń‚Ş–Ţp[ÇxÄă %ëŔĹ !;PąlÔÜc|ź”…&Poą7Ŕ7ÂűZ)]˝šC$IS¬ćÄU?Öšá¤?ř»Şź–đëLä&“-¸éµÔŁôďČFtüs˛ŃÝ0`ţąńălśËě ”ue ⮎sd+ÜĚ'ŽClČu˘8ö‡e4‹řXć•ŘëP-Ťş/QďŕufÚëűŞTó"Ô6ÂŞőÖö˘/ĺP)PťíĚjl§C©ÄN ťňŰłŢ#¸Ób`dÇ‘8íé¶#W9L`|˝ú49• ˙éLŠkţ!|$! Ŕ…Bŕů’ËîT˝<ĚŚ}.Ř?ĹĽ0ćć!(·/fÔţénóůákÖE0ţ‰{tő ĺN…ňő7ćoéĹčP!Yg΄•M#^iä˝™5u#7(y)'· ˇ7ţORV9ĺ\:\`s‹ú_ŚśÎ÷‡ĂđĆÁގ(5žäÇ´\W)‚Ú8†Űá¨ňF»^gNn ÓZ• ˙H¶I'¦ |F ×迏Ą'É®şHd\"ĐĆÁ$~X&ć*ˇ4:N“Ş-ą1gÇ »ŻiĐ.őŕ‰ýţÇL§E¶Ş˘I“ŞóZC ·liýôj/ŃYz1LŞĘŹĂö%ۧ°L›ĐŮý+Z k)b‘‡Đ~;^ůűS¦#jI–I´ťÇŔ) ięW{ćçĎ K%BíL´Í^ř śÓE5ćNézţ’uĂ-đ˝‡ěY¨¤·¤oą6ľţúŔńÝÚľV|ŕCĐŐJËŘ &Eł«„&Ţ@îÍqţćĎá`Ő"É^o‡ĄŘ§Ř˝ŚüM†!'GN;{%xVžŞóÁ± Öńn¸4S9¦'i˝í¦§Uüô’١Î!·GI@¸“­ľĹŞ ąČBl†ůJ5%V˛_f„fͱ‘h3‰ŃOýć·Ú˛,k|+ łKŰŽ6|9ł6Ţľ;ţ§ź7ÉXîťË; ˛ő(ąĎÔ°&’23âZ‘ńĹń¦M‰Čnŕ^ZCóQüÂş_d5ü8.őÝÁ˙P2±¸ő‚Ęvě2Ć 1W0e~űöă?˛ÂťHżĚ‹Ęg.‘ý"Ęş0R ź+ŮÚq˛ŇÜ_Ę‘ě4ęg Ćčąľ×I&<€đۉ[bĎdÉbă…°~‡ĆŕPu]ÖČrŰ âË&˝po:˙:·Eđ„gŠîăáę\Ś c|¤ŚG¤ÓE¶8ć×­Ě⣝ Öťřm˝XćíőÖ±ÍbÎ)7NĽ©JśĺJ0·áë_ççŃó5 K#ž @Z ě·5ňsuŽxŢ&xvJç7%_{oX?4óYZáPv±ŠÁłę{Ę/»9ą®ö†ÖkĹ ĹĆÂχT\âÉ‘­PSC2âzL軋ÄU|xɆ]6",µŘâĆRPS‰şžC¦çĚtýâwţęËűpqňTfQě}ćÇô#Bţ7ć®gŽęvťž~ţ›Ăţ^TĺYńćžKTöaáLĘ´/IqN9k˛G§ň`ľq‚2ÁŕŐ“yë• ČÖÔć_tÂb öÜY$E%‘«żyU+ľĚî!˙ UîÖ´áľă2{Źd}**ćy94“žd—­<»÷OlkăźŮ‰zúVîŽ[4q¤,)Şě‘ëłDRĽ<ňÓ3ĽäśŇ%˛*Ŕó¶ŘĚÄaÔ3ë·†ź8čŁĐ;RřźYî˘c[ĺš,(SţÔ~ü)Ĺ˝~T˛/Śż×Ůől•÷˙Ŕ÷´|Ä­ć!·bKűUZĹ˱BDĄŕą‹‹BĐs„3—iNe´Ţ2âý˛|:”Żé`ÄCä–néL ô–á9đ^›çbV9Ż ¶eđ„]˘ř,cSmĺw!|ľš¬ßÚ©šňS{ż¸ä‡Ťź§GŽŃ\±â°;Ô°ÄuΤîqC<Äşş" pXŔýx†žDR=ÎB•Á˘Ź—Ś>׌ýú˙ż‚ }ňâ†îJWĐĆĘť5‡i•l¶}ŘšôôČŠŽ93Ć,2×T{™ ń¬N›×™’¤ŻícĄ€Jţ#fQ“××t¦ů/a´‘lYh}ĄŤ/ÓNô#ýN ­á—5lç®{ĺFt^ďüîW6äř/ľŕÔ»ĺŽÎhyżCú22ń-¤ć|„tJ O'©‡ż ĚI‰%¶şÜp4ÇË}f‹Âsż×S§ŽČč@ŹY=śUăŞa3şQ;µdÉű˘ĺšhő[‘‹P8ě€ÄÓŞ úží–÷ë>ŕ˘|)~‡t0¦m쿉=Ĺ–m¤+M$]WaeDçÎě´ŠşŁÚGM®RO\–kcŠ“Jr€»ú”‰ô™ł%ħJePĽsls2÷‚YD·ô0Ľ{$v‹ÇN˘`?í˝t˘E&žę…+ĄĺĆă(÷‡ŠyB2Füú·ö}âóhaZIÂş17Żxë(Źö”MhĐä\ë»”/IČf¸ˇµ;îRź, ýq?_žÓ8r %črŐ†š6+¨Đŕyw0@ëFĎú‚ěňy?S’đ„P˛+_„ÜcLCťß-ĄĄ´|Á Ňŕ—ˇgćĽemE!›Aś—Đ?ĄG&Ů’‘`ĎÂô®ţË@{łzU#äđ(¸BëŘ6"Oą†¶¦DuĄ—ÍŹ_˛ü{®t§Ůc`ĎÚYâUÝ fŞ=)Cąfb$#Ťú+,\Ő›AfŇ» B,ÎULé?x7ź~l‹ßÖwŻ%Ż©.6«-Kor+ł•Ŕ‡`]aDe( :ÄGĽě¶ąŹZ[:q§~đÔK°Łďu|ťB2úŘעŕ…칡ýŔlq¦Ěĺ<.Žię+Ú,¨ˇ3Ă8†5äm™”jŕU4ţĆj©' …5ŇŹ#ÍVGç2JŘ`*ÁúĽ.é98ts'úř4o#j;ËtLďŞ-÷CŤA­Ó-ß(Ć đ¸â¦n72‹ćŰ’¬«Î čŃňĂüËWĽˇŢ^`,’xľ2~ÁĘPó‚ß3ŔI¤c÷F:-ă‰g ś7˘ö”›‰ź›FĆXtůT˘¸Ţ´‰ŁbT/üN„ĺ˝0ÍZB¸ŕPä$`GŻt•A÷”šl}šˇuYÍEé2/I/âÔi¨HkvtţÇĺ׌T÷ŕ$'{łY.&č=sďŕQ·>ě-[5¦3ŹHĐOI)riLîJŕŕ:ýv­ özëćrVďzDzáTä8 Af™ô—’'é! Ľml‚»ä‡GJťŹ¦řĄłdűُl‹¬5€9G4¨«w{_DżŤí\ôË›Ś¦ąž?”Ł5?Ü<â3Ĺy˛Ęę”őI´bMhďŃúłŇB \ľs·ô§ “âÖÁ ń{:«X١`JnäWuz‘ů‰‚łáă7<‰š­ˇr!T¤'>i>óůąTÁ`ÝE ׄ¬ĺçO,–qâĘÔ5ťRľ,™Ęă Đ„ˇŞu†‹*÷ŢŚtcŇb“'´˛Ńç3kKî?ŃCžŞ#1ć˘ÚÔV`NÇ׉@m›K ¶˘pă˛âsËđ ÉąU»Ď9ćű÷6ń>çYĹ”ćm{Á…3Ŕá1QP悝¬ý~e8(€itËlb¤˘8He/3†Swsů»îX «[Çăe­¬Ý]#‹?jęŇBÄ'Ň$ _Ü)fq0îĎmbÍ;Jn›uE“«[·Ć˘Ôj‹bśŘDČS?;ÉHťRpRň^ţ¨ŔM•#TőtA*JµLüyÓóŘpA™»ÍÜÚ游oĹn›JÎç±1s ěűŹŻPJé—jF?ęÔ …š¶Z° Vâ§öľűu„J˘9Ň „¦uCQgŃ{eÉ7ďyá÷2\:)ě"$.žě>M:’cçkÝŤ›­ aŰ—Ćn6xE8wŻĘübÔ›k31Ű čéá”jX>ÚĘ×\™«+Ş@ý "¸olŚcĚ=3gc6dg€Ż^Ś“š:'RŞlů—Ë{ÖęR=nkMbco>^vxô– şGO[V‚R *b&C סHľq[`‹íJÇöŚÁ+¸Be…7t Ăť‚đ»OĚŽ8Ë86ĄřcÚ†‹/SŽÁ„  ]”𣠞K2q+NđĹă č|ŐVGľŤRÚ·R„TpIĄä„Ť« 9¨ű„(cĽáŢ®"źG]‘Š4·Ĺ’=Đv«ă*@tS™^ęqţ K‚šĹ§† *ět6ĐQŠyă@˛Ő3ČśĄŔl‰›h“ŕ=ńĂÄ WégľÜOŘMît,ť6ŹÁqpăî|A6â„n}óO[żćĆ€Ç< ÓbtɦŔ>„čw5ˇK©Ŕ‚ÎM¤†?Ű ôŽ‹’$gOđuŘÝţčU8S@żˇoÚOĐVC±â8čk9Ьꔉ‘ĚGÎtdtć˝c[V?ýuÓRń© ŞŮJI Ak7÷—µk°"9m*ńIËc˘ŮSn/EEŢ«»$őQ™ľ‹ ę–tď:ÁLjł6°pNVPP&^đOCőzî'őű™'«»ĆÖXđ@Ĺąv&şîIáćI…±Á€kE&Q‡-ł CŃîx€Zµ.EñŤ ŤĐe–ŮvA‹WVţôsÔá66Q›Vˇ»ł|‚/€ Řá÷>Ů?Îý}±ęÎ'Ň­>f ‡‘$vp垏ËěŃđ¶éF1¸ÁޱnÚ|ěçÚ‰TŔŚ: žźi›3°±J9ňËÚ Ől<ŰV›¤3ȤĝĽd§Bd§¨ó ŚGÓŕü4W–#©z,F‡·n-Nż± Ěń˘4ť”jçšőË{Vż Ü~ Űí6X\¶çń˘Đűä†rĂU˝µ`QĽ6 Ľůíň"f˛ž[_g˛0’ęF8˙řUç‡gĽ/E;Ýăc!ŘJ 5ĺŮî}ÉE ü–8v?ţĂĆ҉MjžĐž´łĐTrŮý| hţ´UT“'ř® ĎőśŻ8ń^TPÓC˘>O6;бąZ¤—^•dy4dböfWw„ĹłFßJ$XÝCŐ«N'·öŔ¬Tn·«FpcĂ^M žRM2÷(o#:ú šZ_<‚ľâŐ†ąE6~$P™Ś ý$Ć6t,¶oٵŢeeŇ•-­ ) ŰžÂIś¦śfŰśü ä/ _V\P†Ç „H"Š?`3ššĘ)ŐîKmăßŇ4!0j™Ňφ!l{r“N* d;ĎH:X@ç„Su[ŠřÄtóÄř SńÜÎ żhŹ’aEž$tĺM´7ďLĄ+lĂőFWp…ăç4•,¶©Ć2}Ą¸¬Jţ-RőÂb/Ś„1ҦĘ#üÔ(ě÷¸AŻwµ‡Ľ€ žěfßÍmwqÂZvř÷w4ĺĂ–ŻMŤSź^4†ŚA“řŽBaĄt# ©YäšlL.$×C‘y9HŻńx ÉĄ1W#'Ămx&ę5¶f„YPUŽj†YrÝ{€wX‡ĂÎ,rź„D6TÜa…2}—čA,<î mXQĂAŞ\ßYsH€Í[í› ëHĺß^×fpoë6‡3ü7ôÔ®˘&öYV–É,Ý«*ĎŤ“­R Ë·Ţ›ÝŰ*O-®ć™Äň×R5Ě€…ŁůžŢ|‘ů”;=ÖţĐ*]'‚Ň^5ÖŮŔâĎ»{ )-ĎÓ90{ô@–‡ző=$¦ jYŮw«ŠŻYN+”:D_Dqާ¬ Ze©Ź” ‰âĄsŔ­*±Ý¤ „ EQ݉“P"l‰‘б˙Ëł"˙šćް¨5;?3ĺ??S· %&Đäcź¸Ş‰aZÂ^ ”Ü?#2üuŕŚA§»ůGA˙n«¸/`ŰFľQEwSôV„¨'Ó1űzVsg@‘xŕ'ĎŰÜ}“±źÇ>ťô‹©WLé[EcNÍd;5Z/˙DIŞĹŚýĚŃ•R m®żBćń!ɦ+€÷„‰céŮ&đÚBěčĘŻĚŁ([8UŚýv0°]JňÓe^š^ĄzKý÷]Ľ¨¬Á(X­µSł¤j RJ¶ŕŘůYAŽŤµ?٬"Q’)ť;ËÔ?lJ8ĎŢŚ¬Ő=–Ăak">Pý^ôˇ0A#ÜćüXŃąfn÷Yk“Ä÷‰†HÁ{®­çϨavÁÇÖí¬$´mVŘečô$p4vd"Xâ¨ËfĄÔ:ą2mť sƶĚŘOÜ>Ö4€ĎM/r¬OÂPůŮý=}÷LÚ>řlpëÍwTĹ$ ‹µ~aĹzrîúožŐCý1 {‰J{ endstream endobj 1714 0 obj << /Length1 1647 /Length2 15840 /Length3 0 /Length 16684 /Filter /FlateDecode >> stream xÚ¬¸ctem·&Űvvl۶mg§b۶+fŶm«bUR±“Żž÷íÓ§Çůş˙tź{ŹuĎkňľćścŤEA˘¬Ć bî` ”t°we`adć(ZŮ™şą¨:Ř):đČ3¨żąÉ¸šŘţbpbÎ@W+{qW /@ hšXY,<<×Kň»şśĚšGż¦TT Kߡg:Ůśa®źhČÜ‹0Č‘ľ›Ą7Äcvˇ4 Őź_P&ź>=R ŤŹŽ ÷Ţ@öâÓĺĹĂRđ™`O='Iqő2vľo4ű„|uçr÷@ôAĎüp# ´'Ípűé˝đÂ@ÝYv<Ł/šîҸnŮÄě}=ro)&@'}Ďâň ”¬'‹3 »ýr8Ŕ÷€ĚLşC'«‘Őí®đи–†č+ÉDÍ–u)ăykR e˘ÍnŮĘ'ąA­şI Żö(ę¦Ňrꏇ‘T»ę:5R8×K\× ×ßXb/A•xú–U4ľ‹ĺq*]ę«0Ş> ÆjBćť˙zFúxé,ŞZ«fÁ$xţsłą´Ęz=ćÖű˝Á’KúűŚ*Fz!ú‚źáL5¨ďč ÓS+KKm‘¸é]ď‰ŘN7NEŢç\h 'ŘUr?­đ[ŞĘýŃ„V\ěźÚŇ_°(ËýD‰úą{ůĘLÁŇwFěs±6AÓŞFlěĆŮŐŕő0ůJsZ…tÜËHÄďĆcđŇíK`¤‹Ö x?Ć0˘Kü±ôZq0Ůwát|¦ _âWÄ?ya‹đëqzÍľ›"É(^„đkém9šbüĘE‡ŹĘ«-Ź ˝J_ëřęfReณˇJ#ÂÉFŔâç4ě‰8ÓŐ[9¦[n>•ěľď§ŤR/‹ž±ęŻíń»w\e”$đş9-AóRđ@äÁ[˘~ź¨TšĽžEkV[{×ŃŽN˘Vő{5äÎĚ”P(¬ qG·Ë~˙qc‹T@{^HLwdWÓT/ÖëIÜŚ‰§@žŘ[´ÄĂóT ßÂĂ[ÁD[Gducî6$Ź®vj[őÔČaxŐ໩ÖÉc1půmd˙iěČŮ9H:·.„…š@2Ď÷˛lúZQÂ7°"iĽâ&ÇÉsąÝ†袠ÎŢŽŢ©uujqCÞͱ,k4żŢŰýÎĘ—é_Łěčëk :#ˇz_Ż ögÝ©˘!7t; éŇëO÷(ľ‹˙´¬qaĆx?A7Ú ‘›%ˇŔ˘ů ›/%uôq]ŐW$8a/f#p«č7RĂĺ÷ĺŇq* Ć…’ęjĂ^‡iäĘă= ęj*äźE/˛+eę`âmWŁ!il«Ú&ů•lôw\î:;ĽĄx8)ÉŽÖ$gŘÄGoäŕ>˘­ńdÁ(6ř]˝npÍú1Ň#$ů5?-Ż&89We¨+O/V.ÜÖ%lhűaĎÝ “ ČTŠĎ¸űD|Q†yÓ\Ţý<¬/˝T?Ç:–¬e±ăáď_ĺ‰(„\ů9fŰpŞy¸íw~ŘŰ.϶ŔYŞ7˙FęĐŔÖr‰˙4q2AŇȶń3aŰQźŮʍ¬˛°‘žéńJî“F&Ëg›94”ń42RŮiеŽř” ˙¦9 Ź3ĺv*Í@6´¤Č@¨Ň\ú|nöˇŠű2b2ĺî9Á§ÉËPÎĺEű‘ľ RZż™+/(ô­Röë1Hd‘Q: ťíeŚ5ś…ń†jV&„AH6~ĹŰÜ- ŞEĎ”í±B•Vě¸3 ’Ő.ŤMî xç]ˇŮ•1ólťďvUw%ę0ć‹%Y6ĄëÔ{@źaᨺłÓ2{°Kϧţ‚ŻÂ¬s?Ýň‹2!»k,ś űEÉ{ôNve#Ë€} 9hÉŽdĽÂdŞűNŘ ú| q˘ôyxKć§·ť ‹`w1ĆfĹ ‹ľżšJĆdÔt™EF“ľ"đËĎĚkĘ݇PXóŘŁažT|ÔňqĐ®őe[ o ĽúˇŠŢČHř:a÷ącŞ˘í‘ÄÂd°:V†MlÄ\”Ü´Ś8§ŁîŇśczcČÖn™ K$ ĂÚ}ú´ŕÉś­ÉÉŔÍ" ཪć+†¬×¶IŽr0K!vyô'}ě$Ó0őî;11 %űr‘Ô•BXP/ŁýZYęl&e^̉´ćĚ7H»ęŔ(˙R¤Fʬ a$(އ4Ň.,ăEőŻ ď•޲Ą><ż` Ť5™ő,cÁF;şPÓÇ>źĘöűýśT.”lN-Ş .ăo°áŤ9OŐ˝#fe uČśG¸ngš»*KHlÓă{Ę×VţĐ÷Hhîuű.»P4ËĆm˝dÎPĘŠúŹ÷÷’ÍHün"‚äpąüÜËlĘ}Î^~±”˝îV’mÓ)Ě ŃŻđńcGść4ő ˘@kŇÎśnĄ5 ŇĐő)˙#bZTE¸ÂUüiŐ;{-»¶B%öňşü±kç„Đ<ű¢řţ7ă\»Ůôl*ě[=äóréžť\jç ňóô临”KFDUşb¶ż‹Pgíwjt0yĹÝ÷řÂiđëÜ!˝Oq˛Şě%©í¶„‰X‡ö‰Šń´đIŇ.g++ßĐŚŞ6„×ËęX)Ně0ÔÖµcĚ*Z¤Ě)›IJqµ`™®'š¬¨CR'ŐˇłKqIHĘE›¬˝ůx5ß1ű—Őc ˛ĺ°şkżvą©/QZđ»ĘŔczô3ŽË^”żPôđQ0:¸¸o 8Ĺţ8Ü !:ă%~Ô¬eŮaĹBÚť˛­¸ď÷1©@řúóŢŞĹ÷/ÖĚĐtRţßç &§ŕÖß2y<»üS…¬‡Ű[ôçc8˛ŃZ./"ČWKßüüoeJUq2Ć1%6|TlâuCSŤ~´'ÁTK¬7ă‰Q‚Ŕw\ޫܓçwEÖeŞÁf:M«Z˝mFP0ľv ÁŔzę(-Ňîlp¸ö.u^‘¶€Ć´îłČ«ެUŹ 0›^đKΰ˝Ôł ö5CÓčŇŽŇ(o•¤)€ĘcdAyOH?śçµRdD͸Ó"cn.cÁ’VŢrZXďcoŕŇnú†+ŕt‰.¦ľ~źbšglE›ś:ÄÉú."ňśiŽ„°źHNŻ…PŚŽŕŽé%c Ut¬˘îµpł€¬ŇĎx,ç™WÔ·ßiü|ű ťŻĆÎ!n™Č<+W›q ·6Kńר'Zä°ŘŤ¤ům˙÷±­K(¬ŇÇ&]®ąĄ˘r1)Čň°ŕő|uľţ—ŞHżâ“h±CÝ@ď+"^ńł9g˘ĹřŽŚĚ ÎőµŢ1Ó&šh ­nho4 ď·PŻw-2‰.ş°úDý§íĽy,b>řu0†opëôČńź¦.Üg7ĎVäkţ&4ëěĺ Ż”xŹ_¬7RuÖyWB§1`ôČn/¨Ô‰d<,íOçH˘„aâžT‘•>űp ÝÂM#ňw‘çínsąůťśé?|ŃÍG™´Ű7Ú·‰ňř˝+Xb8öżGô^Ik˙Ř/J‚˛ăź×Ř©Şą,űśMń;}bîažz@çBUˇ_$·w†$Gi§Ť2çÎ űnb›ür6‡k·4\ľTÝ>łÝrŃMŇ@‘z¤ ?8‡‰MüŹőîŃ~K‡ňČBäÖoQ]7|‡ÍťĂ+·Çčţ™Ú Ă·€l~ě¨É’Q– ;C›‚\ţIpĚ+Č)-ö JÜZZJ÷,üaÍÖóUęńµBŢ F$ó‡qR]"KBYuo(ćÇ ÚŤ—Ą?dű"s•Zů˝C†0$‡!¦ 4’ľ×%sp"Đ×ŇŘ´ŇŽĚZ9\0´pŻ-«´š‰PÝkŤY%۵±BýfÂę ]—Ă{@ Ç ' ë÷˝śŽ™/ţŞŐŕS ®¨•®űŰí,˙ŇsЏ0šGšH˝ě#  ůďBć-gB»Ô bÁÚ¸_ř#ôerueÜVŞj~Ď&“z<ŮWĐŇ™ŇHcŰÔúZ@hJ0'°8őçţŢÝ- SBŢ*‚Ú a¨’‰ßę*ĎŃ'¶UŹî†¶UP+mŹz®ŔGi‰- Vşev7ó!3lk0˛ńŘ€Iá™· -™ďőYiĚP_°0çŘ©Ch_Éač.îśr•Ú»9ľÖ¤ÂuoŚ)şďGˇVd/QŽ;ĘśÝ9ę;v±o„ó+ńu7u¦?˘“ Č.‘7˘]†˘§łZ#«ç>u™€áÖĐaŤ3‘ŕ•ÉfąfýBćÖ$ _B›:šoě Áź2Q[őş3PŘŚŰä^Ý?Ł[í EJďCśL­‚‚édpŔ“Ł­đ×Ö- rkjěł­âbüjđo·˘ď3:öUáLť@ţ®ąxyQSĽŇąáζV‘ćE,Ý{§fđ†Y[´3$ó•ŻÇËŕҡhŹčY·iEŰěÂăědzjżáĘ´ÚU:ÖĘißj^~7úÄ‹ĂţÜ„*¬ÂŰnÜ!bo;[¨IS­co¶úöz÷¶ŇůŕZ•şĺ˛`uvÜ ¶|ě!€?ĄúžŚÇ"r)[vćÂłúaí¨šUľpir âŰr7őS&AŘglÁ˙ňH ć7cüÎá=– óqŠ0¤pČVj \\ý…<»Ł ‚ÖÜŁÜyüjçDěB0Ç? ~;¤jÓ˘—p!Fĺłljë†ü׏>řŰśESíŽ(¸ôo E#ڬExt9ĎٵsŇĚ›ÓPęIZĄzń.AČ™ă+#°Fô— ­‹™séSŹăżôń{<_Pk\Pwh®ä}ň•@W[h꺤8í9@¤Ţ÷Ż©Ĺźń·§á7ËőČh*äůOž¶bŢů ĘéŻw+,‚>›ú”˘šńĎ4enD¶piě1V×éd°¬tfł ëlÜÜ'–,S“-psj]­Ş˝6eŚco٤5µ ¶ĐŁŢĚíJŻYűGEľe¬ç_Â_™íoyčG˶·.|jT%AiˇŇóĂć1=6ü燰7DÇĘ đ÷kŤus`bMĆ43ŕp÷ĹvŁkőă/č]M$B Jµ"ljç÷KôŹĺ ~î2´*ČŻś©oSß+Si˝â\˛ÄĘ|™e›X='gÁóup“Ö|Ź_GŮn$ň‘“Kĺďç™%‡"I¸`[g»y‡LŮGŮ–ż˘F»ťGk|:ÚAĆiËA– ÷_pęo—Ĺ*#ŰçÉÖĐ|äľ’ĘJř€ÍŰ0Ý×ĎńqZéÉ kßňo -¨–pí*ęnYôRJf"é§ž`¤żD'mQŽöq¶wÜE@q č°*tG(Ç%7ÜNî@;í-€ď:ó9ŕbý˘b ˰óY\îş5h-đż žíűms€ç`.čAŠcÁ¬v‚ř[1äŤ/ ÄÜž‰%nrŞHŽâ@ëz"Ąä vňK‹Ś˛>EŁu[°Fa·l&Í_úY…0(K®Äíf[aJNë)Çë¤.á­/CŃöÔ»'â|ç¬ `ƆËR¤×1Ů.KMڍ»r{"+Ę}M©·Ë-€&;WüĹn2ąÜ®řj¨€©$’@ř8ѧŃ)Űűß}§°››ŘÇÚ‚µR ‡"7 ą_r’śncž˘I_ĂÉ˙¤ĎÝ€/_(eŘ=™é|Ź.Âď`7A×Eóąs¬3¸†Ó˛‚„tĆÍýŠ Í°]ćÝQ2—´“{Xńäx$EPs†›T%/5«·WusüŐŮâΙ—9ľę1ŇP2/’ĺEOLY»cą"ŘĚ'Ě*ĘŮ´ą°^Ě~Č9č>éëÍ:[ĺ5Đ_Ĺčn+u9ĘYń:{±üR5x yDąűčĐQ'|IąŐ± ť|Ú˙ÓU0ĽVűŁ5EdśćJ‚ďF$ţRI݆EÓîá°äëťRKyď—•{öbÖŕx4ŕÁ\ąý#†ăŇëü϶ĄąhÖF zg˝dm˘¬ţwJŞÚö“QDt¸Pš?ĽŞîd® ÂsÚôĘTމÄ=!ŠL~É‘6V'CݧVíMčó"5‡Ĺ  ń`%°°¨~㬊ŮľĚßëďâ>XŔŢ+ęQ7ů±Ľ1›'VáÚ9p˙hŤÖ±}đb\ăĎĆśkBT ] ů4Éóe1çň„J 7 űžxAŤQűäOKĺł7Żń.«¤rŔAtĽ4U’8SSOťΑPJ¬×.x¶e®u^â?Ż}ń-Đ^{{ĂbÓYĹRüŕTaKĚFŹeÇţľ˘ĺşö®`†˝|&\•=âŠěŽ‘if‹ŚLŚK*?ÜîŽ(ÉŹ‰2ô‘@Š ý™srśű$×4"ńrr ?Čo»ń!Ł5ÁöxgILŢ 1%yý@ćo'ś¦e#-¨E󴀬–Ŕ×îżô)·ĐĽ­č6Úń[&´Â n–ŕň$Ď7Žű#x’ťqˇF{çѬNeaa˛$·Ë[ vş•!•˙Őr<í˝CR‹›íZŢóĘ:ĚŠůâaDżb×čfRC §­Ö¦'ľĐ~ţŃm˝ÍS éKóyĐĐ]ű­q}+ÜzçZß Ź™yp5A?rQ˙›Pi”{±UŠ5ZÉÎČ|b\ŘFu›±¦NĐ؉^†´FVęÖ&@…š9$ŮvÔÓeĄŽ”HĆ“4Äŕ±`壻ôM&r®XÉ›™kšťřW%>+\b* âîoWÉ˙yC¦Ý·¸ÔŰ(@„1>irI©Ś‰ç€m褏xS[n‹n_`k>»_–Sór˛q˛§°Ý^LŢË: čY –á+ĹĎÂŁîĽlşĽ37hxHź20[Gk*ˇ;Q=˘÷Ă„ĺ¦sl®qP ;ÚFÚdłßząß–sI¸9\“Mě+NBŃÓáAWdž‹†ĂqAí5{PHsšh~ÚŕEéM5)č/Gtťž+»óKPđHĹBŹÓŁĂŕĺĚíÄi#%}KËŽ2|7Ăż ™Žđ`•e(/MufYlűĚm4DW)üŮę@z&ň&ă4Óč)í#I”ă‚UާŻG>Sb{ĽóKŹő÷)+Φh÷ŮĚT7T_ !0Âň.-«Óu|‡î|hY]¨š7<×ôŔ8ł)z_AŻlŔIĂ…pJ¤©ÎŇŇöFHeAo«`ÓYěHŘQś˙Ć“ٶ¶(e:#n¶[[°jT;[:[Žd0;xî!ÜÁ Şđ*0 Îh÷ VŐô-ôŃÔîÝőŇZ[„¬4×Ď˙˝+^©\©—­„ŹBxmv°k¬gHެ$«ÄÁŐkýŢ«™ěj¬ĺłŹh™ćO¬Ó"š÷“(˛eĐdZ§y»ń‚bř–÷÷…Iý§PtŇnÉ „‹ŔŠ·“ÚH—-ą RĂv}j5˛#aP©ŽŔ1Űćôh#[ׄćYnkČŔŃAAíçV\wj.Y°äŽÇ‘Ą>-oĐ—¤dŁú±IöcÁt6ĘoV‰ w˛Óp@[.ţ&:őłĚĂÔ1óĚkŔ˛+\ –Ľ˘Ű (R[>ž˘Á–Ň÷ś.‰ő=ë'ÁF”€( -ťČx”]Ú¬ĹěR¬ď×ý2<ě¶ßţ ›2°n[qÄúGÝźß<퍎” ţh/ĂŰĂR·E·x¬±ţ JißÚăfČFńřçMvőĄ$ÖEŽŠ]ën¸äŚđoň?QÇ^Ą2Đů80f2Ȥ±Xf~Jŕo±fďAͨ#Ö}¬Űě30Ł1”MUëřŇf!S٠Ʀść]ÔZ·éŰ&J *iXśč„)~Ř!gĆZˇF0č§8#Ź<üě‹ë´u­˛lDpÍj­ĽÄöŇ +j‘×ÍÜ8šOö^=ţ˘Îü©S!" Ďy¶S„ÂOQÔ—ăIˇů0ş”Śý ßë4…Ż#4˝šIÜ—!F•ŽŃ 7­_(;{HĂÜJÔîJžńps …c=”´¸|íS«ů\Ă8Ň^Ů)¸$<¦im*c·^Ö,š8ďóÂĽJ¬źŹ¬¦Cka,a4§ňu~kńŞ!ź/dÄyy'4—˙Ž-熒{Ó˝oáfË$Kqš_0"­tń” ‚ĺŹ'=¬˝´ů“&v€<µš:E?E¶cŹł@[Lm^“D3ŕ=1U0ęÁ3p¶ÂK’´p¦ę<ëđ$Mé6śďely 3Śô¦ćKŢ}]fëóPôŔ};Ś OOÄgx©[Ăw­"Ő›Ŕ6ş[rć%)¬źVČ5-¦pR:ÜÍé# çž*ŇĹayâăĆt}'ťŮÜe­ď~˛§×LžŤW–÷í×Aű~YS 龇K;CSňË$ÎiCżó#}ę…^ëjUlšö6‘ěÜ|ŰĚŔ˛‚Eóöq‹ě’=岍qíE\ ×.aÚĂÂěbt_YPÚ×í§ÁüŕH÷4úŁ—ębéŤk4n›ŔĚtĘ2d© ŠhB&:ń'ŮŻÝŔbÓŃuTuÖŠ9 -Ś·z‚Žm×€2­WžŃ_“›áśˇ·Ęx6ďt¶¤ŢÜĄ Ą*y§Ôµź‰[ť!@–ĺd¬Jxx?ĹÇč/׊9_ʇEç¨K·26ýédŞgaś‰ľ˘ęYđ·Y¨OÚF>Ĺ:/6ŢÓIpŽÔgşďž¶1U¸»ěW¤ř˝žş^Ĺ„’n¬”2eđšR‚)Ű~u´ČVŹt $†}ęn•9˙˝:šťn6Ą\Ź´ěň ٱ}đfâżŃ˘Ů,|­§Gň.júYÂóCĂ&‡ÂÝâŠ]WĎt\Ň'Mů[aëkÁ­îGš»‘VĄŠXlbß,J˝ěÚŤ»·BęJG=&čś»úă©QFź÷ čOl|Ţ”áMV‡ţ•BĆ‚:ł%€»¤ń4dŮWH˙],PĹÇÁҔޡá»aä±íVľ ß»/ L([“š\ľľ”ËÍôň,c‰ '}ű<6×5űWBßiŔŮô»ôĎ g¶Ĺ‰üĆűĂ…Ţ0Wâť& µśÄ»Ľ·¸ŽŃ7×=^$.ĄRőƵűÚěv§ů$ÖD€wTń"ÝóĘ/2Ôţ⋸ĺ‹sHĺżo™«S4a»qĚ éV‰Ë˛XdĂŻĹ3—ÜÂ.=?t<ěŽú­+S÷KĽűňä˝Ůxő‘50jL´.em‘ŮEĆ%´Ó-%řú®¨)BůzŃëćt$ă–b‘ĚîR†ĆÄ້YÔ:‰,Ŕč&Ő|¬‘¤ďűcĘq?H\Fîn?ĎqjĹĄi·4g˛«Â¬JI~Ú˛M§äŽŽ`á«6¬Ť7\4ü>˘âź ëHśŚ?Şy ÓúýË`&K‹Pź„$LňË0Č!ĹÝÁ>ÜŕĎ|ÜĄçWpp-÷Ž ®PÂä“N€Ü§–(TŁ>Ęs ±ę`zřŇśą¦Z™Ő{÷ÜgQľ±&mŇî-xČź8‡ §–^öşˇ}¦( #G7'×î÷ëCŁ:| UÎT$‡Ëş[“›ŮUEŹ»~ë ) ł*č»×ÉůŞň :nęHU‡-Ií±Đ»Ěv.ů(Ít/jÂI9`7tŻíE1«ł{Ýp6÷×Iĺ`ţšM úX°¤a8^âż[¨3˝ePSßŘňBâSWřŐ«·G~t öř@Q˝ŔcG~Ŕ=֙㰠ݬLROošŁ@u™$aî ¶ŕÓ_)Ő˙ g$ud –¦ĺ§S Ľ°gĂfq+ŻŰ~ó)z é>Ż<ÚđÚß\Y“äű“ÖŕZˇ4˝[&+6[hÍ“1ţm’|ŚŤÝ2–Řŕ¦ÉŢnEKŞ"p fż* pRT=füSeq9TĂçÔ óçµńŹ9ŃN×Fî |„~3·Ö×: ˙Ăׄş_VĂ>–áJźkűg÷‡ŽßĎ ˝5Ů*^T«núř!vG˝«ÚŚ¶ß ,˝çúĺOĹ!ĂÔ†ŮŃ\V¨ŔňöĎ•żt¬´•N«&Ë‘ěE›¶ĘĚ_´űEĐ ŐőÎÄ:öá„)e-$exzOńe†bío ¦\Ai{Üěś÷µw ö+Y®8ŹAąŃYţ˛`ĂlbžŐ¨Ŕ/B9ڰ +ýćÉ=¦~nEB6Ę©ßs€ç2đ ¦%Đ'Ŕź:űaF Ä#–Z˛u`łV±ZNřţR|D©ô˛ţôăzKˇĚç˝ţĽ!n»t"Aóz¬’?ęwqDůĹᯜ¦bßWĚöŔĆ˝|Ł1&ĚU¬ě dEe·Vî±ř ł3ő9Wâ3VpUĽŻŕÉţ ŻŃÇáEÇÉ樮>"&^őf_»»´bV}w´üĹĺÖ÷ —g…¦+\ĄćmšYÉ.(^a‘ł¸†ÓmđęW)JGAߴݦgöPĺ6r÷—ŻŁčx}iŃŁ&•Ĺ©źďüäźě´Ňi;1—gGĚŠXmwˇâń)ŔčÇ·9şšR~kĺMĺ°Pm(úČŰv>h7DŐ˘/iůz›n¤¨~­Â.C. [=ňX#¦ďĽĹ"Ć-KĂÍę/ďqěHF/9ÉŤ*hT¶˝†qHOk§ż%ˇňNÎ'ed«4Ęţř’‰–UyeQ”Ţ©é°ăokAĎď‚Ë<Ş ĺ[ PޤZ0ě 5˘hyK¦#fă»ĺݦeB$¸~Í[HĽ—üfţIŕŔOxG%¤ .E–]Ě–fý´ő…\ĺBžŐÔ üőéÇ'âÜ)Í'_í ľ˝(ŘU঒*'×ć\´Úâ K1= ľô5 Ş!†1¬\3óFc¨ĚH @ďÂŮLďšĚů.ąŁ[zŻ(ţX ˝ŰşTËđ‹:ŢóŢ »/Tůˇ˝K#á0ú:«ś·đB¦"OZ%K§m´Ű’×;”s-_‘S-iŇAM€µ%ęĘ#ëŕ¦DoéBsz:¸ŐHý,h8/¨µ«ľäé/ZÁĄŻE*ÁÍŹĚN VÖ ń€gGÜ×+¬Tł˘ăšÖ¤»űšˇëµ‡ň]†}ATf$eŻRµUd›ĎŐđöq/R…2CqZËę|ČBüş¶]Ľaú ›Ů ť!ĺp”ćËş±Ô“âݲŇ+ˇ5ŤÚU(,żyŔ¸„ż˙ yŔÍ[ěŃÖ Áµăöüú‚‘oőh+Źčî"Đr]ßęÔ!q.ü‰wvl53MlČ;|,)†%»#ţŽT4™â5…z†Kź_AÜR©Â¤%©˘Ă9ď§ !lŻ­qÝeOĂĚŽ Ľ?Eô¤ái¨JÝűFYMĽą•™˛V¸Ź:ŞěKŢ(1)şqŁŃ˛ÉŻ;ŞlÝi,QśßNBűa˘ ˝JpÍ b˛Â8ë“6±űŮą‡ÁłÚ¦ż`ă3ŇŹŞq(űo^68řźőŰ“/kÍČye("wgăŃ1š}•dű4qPU*±•3]Ŕ´'˛e ´k.‹U“vńÂČ_‰ďî9‹(J`ŔţѦ'·#ĽcšÍ3k4 nT(<)ą=žzD…ť{B¬ ‚öĎĆJp›÷Ú4Řz0ošPq‚˝óŕáflH;“Ö »ĘÖL„#zsaŚ#ÍţAëU6}ĐäŢwöۆ9i;¤›šÜ?0zÍ‘NéŮ[:QLÔ‡×:†P5:sL{łŘRaŮN$Řó Ŕ ڍń|mŮě —”“Y(I Ř˙Z…*ţA ß‹¤WÚ´żĺČ `Ĺ÷íŐ¤¤ę¨c› »…ât«˙,ĺ…‹űŢ+T&ď ÔÖVĽŞ8W!SŘG =“T0Źh0^@ź+RSÉ),Âpż‚çĹ.˝ —Ұ>“:qÍ‘Řl9”čNKŽÜă1űiř†Ąś, ÝŰm{70e;٦rę/ö,ögCI‰•|% qÝtľ[ůĆŐ •lô´ż.WÉóTÓĎAđăďŤďşëc¸§¨ŕ[%ŔńđB˙ő™Úá›$ĎńjxhI­ßËńGRŞ0r‘Ö´X,°[׬uÎ\_ŚŢ|qáHŚ@čôd?_×äĹg2k‚BˇŮ{ř1ĄĎ«–łż ÉÂÔ|ďK—Ţ-¤ÁI,Ołu1ö¸ˇyÎ”Ž‚ýÁňĄ]äâgĘJ•ţpčó'!€8ÜĄă A+Y®*ŹEŰĽćÓGć±s~5\Ź4r8n˛[V±ZnÓ™ŕFˇćÔXŐF‘§ßWaK źş,BU[x8*ÁQľ'7=3ČŻđgaĆY ´şŻY1Äâ¬;ŇŰPűń5őšR!jdž!'pť­Şe–ŐPTT?Îăă…`•{±*ś [©JI’Ĺ3•üP?€ç®ů¨ŇŠŃ›žë-­@O,ÓťtDUku ×2˛LA4O •^˘Ľ¸ďŁŔT@ŕR!Ţô“ŽŇ)8˝±ŰüęE‡;.®"ŔÜĆĂ´Ď%7 ńÝs¸č1šPŹĽăůJ6Ŕ=Ď€^®,řâ“7Řf ŢĎo!ů‚˝§F_ßjĎŽO‘śĐp.ë·ľ±ŞOĐ­ms-Ř`ď~ćóÝxZĚFŔ5˝O"ů–ĘšQĚťü{…ý žUąÖŽ©v›ŽÄGÁë÷”3Jţ±ĂĹFUä§đˇ ˝:@¸Y;żÇ/ĵÂţaA§m©ćz-_¤SʬĐ>lŁÂ.őMłíl˛ú‰™ď·J`î9ëÜr|@Wáź7Ťaĺľo/Ä—łl!*îCĺ[UýxŇŻ‚Ál_#ĘŃŻ¨jÂÓjž–:Ľw‹MľśĎˇÝVżC¬RÄU'·Řä•_ÔcÁ҉„3rcŤë˛đŔYäµ`cě3˛zň;Šń,·™P;SŢiŤŢLůTŃsI•ÜYUť( 4ŇLĚáěý™Î”–<)yqŐx^X‡8Î4d. QŁQSy’DÄĹľżYćË”~’…ýţĄ{Ę%…v˙ŮPÓ™0=$ĚďTěp5 §Ă†ă×Wp+(Ä@ëČmZ źY(˛ÎAߏzĎŹŻô`‰˙-(xîç’™ôť)©ţp/;JéQĹ@íŹhÎúFŕ˙4ZS#ò}jŢ7oĺoő…m` ľĂ– rđIYÔŃßB\P’ůşŘ^Ĺ˙“Ëś+~¸xă‰Y;!YdW‰¸tb,i#hsFX<Ę($SWjˇE&ÝÓícNu‚-ާ>^‹57ÔX˛ěrĺs˘Ë*¤Â3ĚÎÚ§ťë'Ş˝ŠJŐ"ÍŰꉛ ô”\âéiĐŚ–~‰$ ÷ ٤¦¸šą.lk˙K÷ňěˇ Ȥ€Đ¸eŔ–ż¬GĹąC7b?˙E—[…ń J…óůÄ*.BÉË0ůWlJ¨ĽLrâil˙Λ ?2Ô†“3‡¬gĂ7ާşă’ ç:ş“ÓÚg±0!tĆuńÔ.śuH/OB  ţAňh˘óqâ(˙#ĆÔš]Ă‚ĺ^xËÇo5ŞÔëwđ!ˇţ®âÓ #K©ăŹĄ{ë6ΗU‹&ÝÎŘ}6ÝOăř[D‰ÄčĘ}[b’V —+ďŢy$…‘°8ąÉ9FśKwö/Âp(˘6ń鯛»Ćś'ŤĎÁ@¦XÝď…ë5Ö‡š1‚6’zÇ}ÇĎ2„ Cń ß#%k°ő–­f˛űÖD•HU2ńp•—Ş©1࣏37űY±–{”´HčŽCŇŚÜĹzĚ´Že{ŐI>r4ř˝ýřmç»ʆöÖuh˙9Ý٢^@¶Ý{R*~Źţ ¸ń˛–˛Öŕ]Yšő:ˇç×É)â^ľüąG´‡s&ŹbźĚ;ŕ㪶uß—ąp¤eÍqµ2UűržJIjC & şpC-@›Ă˛’:FV˙Ó|Ś Ł@d©“zć®±0aÄ*PqtT‹äşM <ľŤ“éۨTLJűúĺ~_˙!ih"‘”yg|5Iőq>üŮ©‡üâ/1ŚÁ ń ×ÜD$Ż<$`QőÓvj‚©žĽ˛‹b—Ď-2üý›Gm"sţ!]4Ń5đBŕ4˝ –™Đ™Gd°[Eą˙==˝l© ]Í´Ö¨ęF-žŇ á™ÖJ¦ű1ľ‰ŚiídXâĽJ”h6¸sý+Ě…ů—Óy“˝fhZśu¨’…»€‡¶iÂŃP*ůÓ;8–đEoň{0ş ňĆă±î ‚×áěÝô+ŐÜ5®(n˙,éw*‹"ś‚ZÚĘTĚ8LVŮ9Ň…áů÷HNĎ\á®U7X1öa?•5š\ ±E¶‘Z˛ pÍ1Ţa7±ö›F2­Á›]!8x‰Qó5‰ëQÎ*˙bŻW<µáý)ýuBKŁ`ö}F#5’6Ü~Ó<"©Ź“ůޞ3 ˝IÄJ ďŃ[®ßž©2ŞF2(TČş""äÍ?`í©áýP˺κÝ4ßŞÚ {»Qn. `ńĄřŔ¶ó7“O‡&Ć*¦ťbÎ,Wx Íí«ą|ěî+x vâŻ}Ý÷Ě”Iđ&°%—Ď' Ůěg]ÚÚY;ëŰ~1F+D˙ŞŁ¶Ó’ě”AMMdîň§¦kýÓŔÝ×-“5îĎÇăş“†YĆI_’Lr‹¸§‰ůłşy~ťľŤ«ĽřçFŻ»˝:¬ HgĆÍcí/,ĆP šeď%ٞĽŇˇ ĘŤ¬ábĄŕ i˛NÂźĺüă÷Ťmą¦D '7°'e{MĄá¶> x—'¨ăą’nťĘđ=q/•›SpýčFÚ<.Ó»"j«_LŐNíj ş08S ’ŰbdŰúiďŘ´|±+é ďÖŮíNżú¶˙elÂýbço¬RüV˘>ý™đ™ž«đkřź‰)/ľĹĆ(® ă×ôô诖ý4â6jęX $x•Nő¶vŘń|y ,ŽM˘ŁĂRQbVŽ;ůš+—]Č“ŤĽöW%·Ü$^$žÔµ\›"űú&0:ŇÜŔ/üź, ×RÉ@A€˘ SĆnŔ1bę‘É`ř}mAńäa2âď~8 iO¤†ć:ĹHuŐł|ŃϰuăpMąpW×BďL XBđđnz7Ad¨Ą^Ü* ‚ć˙¤éIŐĚ~Łb‚ľ?g˝Ä˛ą§ůyôćÓL/9•¤Rť>ťiů;ÂV=Ä]Šs+@{&Ĺu+ÄČz ŁĎ޸µ;kü❤] ‡¸iµ?Hvź*—/ŹHM÷ĐÇ©›˘ď´.řÉĽjřIô[U´OOÖ1ˇ.a ͇ ôto e€×GşŽB«śĺBMú8@ÓČbéX[$ťôŤAí653 âa 4¸Ěg+¨¦ěg˙‘^źő\`;»ĘG:ĹÍş»¦ŕQŮ|ŃĆ$Ť‘śXeč‰âˇI(őŽ/8#íçPÇ(ş};%DéD¤ç…fMŹźţ§¬#)g°äyśţç‰Q;@öđyGŤŃ}„ť0ŚüžĄ˝ĐčŔ‰”âZ8l µłýiŐ‰wŁ{;˙NhúROŻ ˛çE ?fRÄóÚĆ61çČÔ뛆žÍF°ř/´ŁÚň-5Óšü(˘Ă«p ¨gQ@‚ž•âJÇqwł˙źě8Ť¬Đ•GĹ_F*ŚK5"»X*č"kţŐsŁw9Vő WÖP°<_U~ýµQŕ—áźiáu÷®÷˛~·/˘ß'~˛#§™~=·ÄŚ·m1·†2Őá2™” >nH ‹Üói˘ýgvä4 T&ŢtĄp ÍÔ«ĄŰó:v©/ó!ös:©ţFąŤĎ\§ěPk»‘^*SŽ6łQýĚ"Ük»›+Y/(RbĽg51ˇV\ľ°-†‰¤Ýsdżş˛­ţ¨fµ‘_’˛16ëѦ¶ŃíŁLQÉ­ď˘ăćücá†ňă$ÝôbbhbNš1/u ^ŻîYŢ- Ä`—ązÂ&ČGżˇ#n+ń¤; 餛+MGtž6@7~?a…żÍč<:“ň¦© ¬Ű;ôZŃJ^C@#bů§’uâ׌[±Č„ćl/Tá:’çwÖ.0.;a3vtVďÚÂo߲ťÇO.J=9S©úPŹäQdâ­@Ô˝ÄÓŇj/c“ť~xI|˛*®÷vÁ8b§‡›Hy´§¸(FÁăőÂ#L4IĆOĹ·żťy ^¶˝[ýP9LŻőú3Ęw¬sJrBި†Ť(ą„âŠ:¦'IŁÜĚŕÂY±đľ˙ňn˛ÓđŢżS~ĹĆPĆ $%q.^‘Ň4ÜŕO&Ś3äçŻul_:‚L|đ·g‰2}ŇS ˙;›Ë…dšfiôÔÖD‰ôl®ęp˘+8«vĘřővŮ•#Î*BL}TPC 1\™Dö«} /nĹę ”etP =`”Ő şTuĘĘ'DPoĂ׾Ţ?żî >ŤůÁ˛č"&)p[:'Ő j} Ż BĽüĎNäÉ$:É’TđŮŚŹ¦°Ä4/qi°ŹâPŠ{K 5É›‘˙F¤ˇ™”[[_3řŽ ‚Fqvź5±˝Ŕ^äNđÚw“őĚbQě›5CÇ}I­’ VćőýSM7×$#›@€ő}ď.ĎZŁłÖ~wőŻ%~üŚ–ľ…çqFéă`¨–ĺLjSF2˛6tZ{î!o]ݤňjĘüÉ ÷śÜHôđţŻvŠ4®Dşű]–”]ڬ S¬OŚ«‹v‚ßĹHd¤i·ücÎLŐ=žĘ§ F¸~áýeŃâŕ‹ĂT¦CigU±ď§©?!ć)l/˛ĆËc:ÜŹ­ĹZ+¦l~“z·Í ´şçéTUFw’bĆnjFűöéŤ+—šhüĹzŃČ,©Ł,jZ$ę†áYWť'h@ âłeńÉýŐ‘÷ë§]ůâ]8~ÖMHZâ/i ‚){C„65;GöJ}6ú9"SŰô_ňŃďň±h[J„ÇYUö«ŞhşŃń‹@/‚”d!Ă*k)ďí­ńľF'ô˘RízQđĂ'™ŤÎQϺчëě\k$˝c_Đe‚ĹŃÄŐn–¬{"‰:’ż[XŹG`&ľfĘáz˘L{٦đuŤŰ· ĽŃ4Ú ®6Ő/`¸ż&wAN(“Ońá 9†p:ŚJ”ΠǤőV*%-·|ĂÍżčů‘U7. ¸w~ŕ:ö;cއZ‰!Ń2@ĺkݱťŕ±ČĽ˙°ÔlS ?Úax©X&’Ś=!©ŕeΗŢŢÜ{sG‘ +˛ŽÚD Ľ ŕŇT×´€<ÎjoiÚct¦ú˝7pTűí©č×G°[!ÚŮĺčą(ă{‡Ń矢EZ§J‚ÓP¤‡šäíZd˘“éŹ@“ÁÝ=Mś!:Ö˛ /h+Ďę$ÖD•Ç…»NˇC˛KQ·ÂÚń8콄÷~t_^ŢÇ„Ů~—އř/é©ć-ě{‚‹ŮˇťŕIĄ‘©v8@ánďő—k¸P,ţ„bd \RbĎźŁ˝ÜčÖňšč’ECLW&Â,˙{P7ľŃŢšM`PO¨ŢÉ49őđsLbKÚç>ß!ĽąâŹ`Wę¦]Ř’¦šNÜAs–’ův‚^Ţä„FmpMł@ę›*¦ bç'óE›ŽÚŽr:(Č‚ ú¤e0•űŕݸP …±ďᝯőíOŰ-#±H®č?jOrŠËőxđî°'I˙@ž#s“ۨӄÂ!0îÝŻÚ¤´@Ô5d'łLaé^jÚ8p˛˘ú2AňţŠ›ĺ´&Ŕ 4şt/m˝źd{¸¸oäi'ëˇ}ńëëô7±ůCŤC@z‰°™+˛‰˙µ|d”“EqÜđÄ[:Ö·(— ŢÁmâ]·uw6Äg/Ž q¨o(qL˙Ĺ]kZ6´čT幩ռ«8ĐD??í8ôsΕŇńfżÍ™ôŕůš»`Ďj×N ś_®.]i*§X|[jZU¦ßČŔţ$Łü}ćyÇ|í÷ú!9¦×=yć´[ 9{ęęűţ(¦Űo$(Tc톭–"=í˙oűŠ,ö}ý˛íťţµw˙­Ĺ"ŤšJDTŠ#Č+ĺ›öć–k šQ endstream endobj 1669 0 obj << /Type /ObjStm /N 100 /First 1021 /Length 4648 /Filter /FlateDecode >> stream xÚí<Ůn9¶ďţŠzĽ ‹; 4Čć$7»Óť¤ôl—mMË’#•ÓÎ|ý=çđ°Ä*-¶¬`ćeP\ŠäŮR%K#eUWŇ9Sµ‡ŽŹŘ•ŚŞRAcCWÚÓ©¬·Ř€ŹZárk•¦ĚĐŇ@+@—ĆB])) ¶dĄŚÂµ¶µ÷…͵r4ĎTšWŘĘÔ‘Zľ2Ţ"F!V&:Ü%ĘĘJol`5ámeÁ¬m0¸6Ć †PTË °•ŘŇ•WžĆlĺ l-_y_lĹ*(űyŕK°N@KW!¦1[E+‰ňXĹh†®a«Z[‡M ¦6@Ń0»v˛®{˛öÚaŘ •0™ř¦mř} -ě*µ0°”65ě/ťBÖg`žEţ`+GaÖ¨ş¦ç@†‚ő•†9R!;JBix˘N1!–˛ČI(Ą5pçyä)ҢBTŔS\‘»¶®#…Ą%đŮ)l©č*‡»h GKmb8đ¶Ŕ{Żqž2Ľ]Đň¨J:¤Ľ–@#pˇ`] i«€ {E‰cd5ŽŮ:Dšç`‡Hó<°ZÖ (i~ÖŔHi"R[#Ă€2VeŇ–Äth*ĽF˝·Úä0|Xc‰Żđaúŕ!.sŽ ¬÷$mś° ×LĽpwR…jĺčCKÔ?ľ#ŃzÄÁÓ˝D[i¨nd}ČDŻ’ńlJŇ{%ĺU¨®( Ýb“ú’>©Źbő¨< ])‡»h˛B†xcÍÁ/ż'ŐWlÁUâóď_Pś÷0Ů„řwÔÖéődňÇÁ?ţł+ńx6™Í?\ŤNšJ§5ďFmŰ̧•Jݧ7íłí¨m*Iâp6m«_~©Ä!°5žć‚FˇŇsG‘âb ‰wóŮɇ¦­ľÂöO+ńksÓV„ÄWtD:lkűŚ€ěń_ĐšJ]iúĚ˙,đÚ…ĺ?˘^öB±|î :ą©D–ms,—áx0ľÜp7 TŤ.TÔ8XBWŻ@Ů­+ôśüx2Đç<jÚ"S rG÷ňłŔm,y®Ĺ6>ĎϢ1]Ć m`',š ÄŚ^QŠÇ‚†dČÚT'«SěcŔB© *äá¸Z*čTÝę:ô]X (0-,#NĐä`±tëĹZµąčĺú®Č@% ŕe@p ÎÔ©Cak] <š4— ¸Zü€éË˝Ö|ŕ4 .ř„šĽ+\@ŤC$˘$2şspĄH™B7ŕe 8xŚ_r ¸J‹§a BŠ N“Öa4¤¶xEüŔŁ!Eŕ„I¨Š‰8O“ŃŐVŁ0H(‰qhŞw)ʦ‚joŔ‡CŤiI썧24rK˘ŢîĽVKGvEúţ[v-ěä:)y™Ü"ómnŽ Ë¶ywqËYËHc\qąť´·^y®A‡Đţ–®ÜP!] É٢E˘^E°J->O4B" ą4v®'€ő8r¬ŕl1Ń8ˇŇN°WH¤<&R5äPh2´Q©ĆĽ M łéLÁě ’)ŽÇĐh±sX0„`Ů䔳“SŮy‡ hO"p˘\áÉsťnďŕęC¦>PÁ€q—ŇÍÓL kČĘČŐE2ŚB°ű´ÜZŠPąi.ŚÓ:ž×­ă6FŻĽ7Žg$°Ě'1Ž€TĐŐwmÄ硂á D¦ĐóĽ3`^“ŘćŚ^RČm ‘̡*€#ḫ9?QžĘZ—Ěv—VôPpyެŞ{łŘů±Ă…„4QĹÜČ?ĺZxLÜÂĽ"«Ä¦Ýé9ä©č°Ťg’ ‡¤Yěź9‰ň|rţţîÁ"ď{äB& pQ¨ąR™ó~¬9YŰĘą]~ĹÚŇĺT8Źó®Ě➼X2m”źÓŐ%mť†ňxˇEKúçĽŢqÄ Á¤˝,ŐÖČBó@ůô’c”2äO)ÂŽ,Ëbc±ÇPw*€(äąit%Šł p¶wé4ś…ťÇ4§Y4†sÓü˙Ćĺ˙@<ĎRĎÎ%Ľę ¬' x'g€JÎĆŤYdçtjöCo€ öő¸GWĐčş‹kc[/ůrŽ5݉űEŚ˘“S±Rnš©&D‚ě»ë’;ŕşďÖp» >E°Ę&Ż‹gĄŰ€çëdÉ!q K‡vŹĎî*K–˘1u¸Ő±#„űОË#0‡ă‚xF%˙]‡ŕž$)Ť`I–=ץĂďpç¶_CwƱäÉ@’pŇŞSÖ9vśŃ9ňľgç4é.eŘ [Řŕе#”YP]’Ő‘WŔ+];ŠhčÚi¬tíx-ő돫¦˘«Ł'Íâd>ľjgót•ôft O>ż~ţôĺëżÍŰ›cžŚÎ•IĎ=šÝT_X_=Px·(Aą#¨Ľx¸8i¦mUÇŁ«çÍřü‚:¸?ŹżhG“ńÉĂéů¤Áąü“â3Ď7:Ź/FsĽťúqv˙'âjr˝řßýp kĄ tËĹ·f·óńŮű_>1—ăőäH`ý®oNý]čęÝ’Ľ))R%EŁÉŐĹHś6“v4 (ěDŃ“×/?BŠ6Ńş zşüpAÝ_>ľ.1«âŻO¬w!ćčéŃűWO‘ŤŇQ¨ś–¤ăÔť¤ă7ěF‚’tNf——#q>oFm3“f±WÍ|<;‹Éhq1 UíBęç×G/ŢżGRçë)…h „âÉü_Đ÷[ŹJ[—T>AíÍ·ëŃ$‹0[ŮZ Í.ľ˙řćó—ż©µízál ć†ÁŻĆŁů’D_«’H8 ň„@zJcOžŻÄ;1Çâx>:ůłi'ÍY›Űsś/NÄ©h2+Äą¸?®.š©‹?ĹD\Š©‰+ńMĚĹB´˘˝7Ťh˙š‰kń]ü%nÄńŻ·vňL/ß~Üjn6¸YP‡HßÝá}…-4ßşMŞotŘäk!ÚlT~dLÓܤYuÜ.Ű—ăÓe§˝JmâažEťnőxsţŃř|Đ=ď Łxžűçâl2›Í»éÔ[>śĚÎÇ'ŁÉhzz:^\MF?ňČlž®Fófšˇwťă^§]¶ü® ŘS»CnŮ;î÷Ú˘“wČ X\3iÇłiƨ€©­¸žʍCĂßᣙž.Ć(ż‚í(ž>}~řű;P°ĹŹ Ö¨ŞtI…W ®0G‡†µÔ0ŻdiŽv“ă±jن=Łéyi‹Ën2ÇŃ|>ű‹› pľăĹźŔ« q<š/µŻP0q|=™4`ĆÍxB¬:ëÚé9,¸|EsyŐţXŔĚćf OŰ1|Ö­BݞŰO.a<=OÇíhŔآ9AąQDHĎ— ¸ÔF,3$RüüĐG“ž"řz§ űě٧/GźI6dtƢ_†#§˘›Ď"Jb\:fw—´ÁlT÷â‹ÎÚDkómHÖNőÍÇŁG‡o‰¬“ ą†T­éűüz°©Ć™’.÷Łëd6™M“b¤j@ŘNqô·‡żľ}‰qtSµE dD¦4[{ÂRj÷(ÚĎŠG`şOÄSq(ž‰çâ…x ‘őµx#ŢB|=ÄŻâ7ńI|żC´]^ˇ˛‚IdĆ FN©Ĺ3Ţꉩś’Q¬NvÍű ,CśÍ®ç»sÂVÄđR§ Cůt\OO‹“ŮĽYfâ_Í|6PšťŇ‰ÇĎ?=…LúÍřňřzńa4}őŕ¨9żŢdSă+.u-«h »đ˛—Qw™XKs˛J÷Uč¨Í[NɲdQ¦ĚëźEćĹÜ'Î21őú1ŕŇN1ńÝĂ7ż~b.Í.ßĚ⫯›ÓM‡ «Ć7Yđ¬ÉXakľokŘ-N vă‘·ľ§±˝ďĚí#ÜŹÉ6Đ*z†±bť-ÜfČúo¬ÖY™7dÁktWî ~{űęĹłŁT¶¨/JE…,eJ©ŘľTlO}Ăî'¦Uˇüß± ü‚žđäşmÖůĂQ»ýL˛ÁçMOŃš›“É貔ňäg zĹąŃĚÜI“ďŕîvĐťbýŃŁ‡G_ľ¬Ńç&-ÁkO/Ż µÄ…~R¶Ýí@ÂŰeacPęÉ6-ů´ÔŽeŚÜ$÷źnĎCî&˛5YĚÓéÉěrn`ŕřě ’ÚéIł¨ľ*B|RiÍJ[éPCĆZ|3k€ÉĚ&»ĽŚ! ‰jD=Al"†Qđ%˝L¬$&eueĹ­ś^*>Xć}l˝°ĺ*ęž9WŃłź^FşRnĺőBÁy|çr‹â—ěđ+¤L¬čěőqK]e}4Z4ôĆŕŕŠ·guéµ`”ł8Ď-jx%aő«w „÷OăÓöb‘^e^kĆŰ ďdWŕÇ­đ1 YÂŻďżw:„ĺԻݡ®]sť~ý`čkűű1Ľ©Ő\3PÇ@?O9Č=xfOň¦• ,0°”ŽĐ«ă÷’|KeÓ=$˝cNu’Ae•ä:îÄ—@¬N[͛ޜŮhY۬µ{±L‰cJ÷“ĘBÍýÄĆ{ ĽIŠ•KÎę$ý*kw Nń&Š7MĽ‡#‰ć:±Ńµć˝cŢ;ţUs śŮ'ŕ=€° sŽPńg҇őŠ#Üť„GŠďű*ľ?¨XÓń+*®í@XžÝ‡×Ü7 Ü$…đVî„eŕYžeŕSć™2ďöxóŔŔXĄ}dJXµC­î$¤ę*¤Tjîł,«vP{>°=¶‡Ŕn%°j[smv{@Ř­–E`Y–EŕźÖ…Pď$đć,‹Ŕ˛,‹Čn&Ööţ@b:¶U1]ÖĐŹ6¨ćH9RF˝%Qóćl‘í#˛}Dv7ŃîC Ë$˛L"Ë$˛L"Ë$î#“Č2‰,“Č2‰é«vĽaV౓9ŞşCWi›tčÂFä†Ňąáąˇĺ> t†`2Lcr#Ă´fĘiî ĘIކS!Yű Óg>s2}@…ŚzĚgÉ,"ÉţHJYďJ˛é@aJvdĐČ#:ĎŃqPl8ĐČÄdÉHÎ6ńWęą±SV˛Ęg84@#Ó2đÇ}@©,U3 Š#4 ĹéŹT»ě!¨,•˘8NH•µ^e­W»…!(›7vyc—G|&}’T»9Ą!(ŽRgvi>Ř@#?2ů‘ÝGVšh©3ęůŕ& §»Ňp\—fGY©(“•ݰgÇż-ŔŤ¬“&dPŃí*pđĎpCóĆ6ÍBłáVh6J?#;Â?GŔ0s’ťűżmcÝ#B÷Oë|g–¶Ăęlřą˝=…Ű%óŲ—±ěG%ÇĐÜí ˝ żË@µ"%Đśëňi7pÖ´ŰJ`źť#ź"ŰLäçńvoB ătm®‹IŮWËě˝Í>Ń_Í`Wš§Îľ&_ťiëˇWö`™ľ}rÖF]#)p}«ĂTýmoÇ|8Ë'Ć.ąďň°.$vžéîŘ`©[ÍXWL×ě:ß^·“ń—ŇĄ\Ĺ^Ľ“«ŘíwâëVŽŰIS)Ç ćChň-Ěç<0oľÓß*Żňxą].W˝ĺJ—«•ëľůúŔĄ>˛ endstream endobj 1727 0 obj << /Type /ObjStm /N 100 /First 902 /Length 3015 /Filter /FlateDecode >> stream xÚ}ZmŹÜ¶ţ~żBsl“Ăw ĆMQÄqŤŘh?A!źuwďÝ^w÷ ;żľ3#iÉ‘(0vw8>óĚ%ĽęTÎwÁăt˙‚Ťţµ¶3Ęâ§ęLD7ă;kqÜ@ç¬aŻ~ÚÎG} şŕBÚwŃฆ.)W±KŃá§é´ňşÓ)uZ›€_\§AŁ9ˇţŠh5Iá´ZďŻtH„*vš†=®Ż:¦=:D¦=:GĚB;tN†ňp´ ú8Ť ' FČČĚĐŤľÂu0E :J§MŮ3¤Ötö}(QźĐ˘Ń9ĐĘť#ů`Hä BJp…ůĺ}‡éZł3 U‡ÉŔđ›1Č4¦f,®€™‹`11ăĽë0şńČ6¦e‚ W• !vŢD›:ĚÉ$dS2 cFVyŔťŐČ<ćc‰RCC aüt”-P‡+ĚĹ: rđ“HB?Ź“Ń-yé¶}ĂŐło®KU Öü©ÉŮ9Ĺ6Óąŕ–Ë`7(Źß0 đrq@‘±ę>`3ŕ7ěžä9 ®LŤ§vzШŐČ őA@†±Ćü ™JÉáŘ™QŹ~ŽzŤVłŘu6ń·ĐEď¨7°“cÔü-u1î"…ő ć Hcž‹'ë 3]ň€g»=ŇŽËÔbJOˇzőmpVYÇÁµ8#”š śőĽJŽbŃ"ř‡"PÓjęęűďŻ^}Řť÷µîÇß®^ýíÇŻďúăđxćÝ7ţ>_xËňŻ·ĂWó–ýđC ^bŮf,±T-–ɱT+–Ťe¬ ĄŚ…ĄcYߌeE,¨Ĺr94c©2Ö„r+so6¸źf×Ř6™m#٦¬@b&ś?sö¦?ĺBľúéđŚ3_„ĺ"ą F5ˇÍ_6µ2@.Č2\fŹ€ˇ–.dâšłńP#2ń:¶biQ†*.ťË m3–hz¨5˝ÎlkŐŠĄDÓëŰ*ł­\3–±jMŻlŽĄ±Hg‹XŞĆ˝Rs,ťB3–±Ě:–N>Ç2őX<{Ƶ —Ů1µz;ŃŰb;]`ŽŰij·y;ĄĹ’1ć%]sI#ŕë ühs,]Ź5Ξŕ/fç2„E”™ČÝG‘űŚrĚ}>ł¦ÜÝbĹ‹Ĺr®Ě=Ô˛ ąX>µfű0Iö:–ĎUđ®KTˇŠËç*xÝŠĺDM|­&>×Ä…z¬ivm3¸ĚŻ“ü†‡q˘„3,.áL×V ].‚]Ádm-=›i·®9[Đîj´ŰL»Ő­XFĐ^Ç•i7ˇkš]ŁÝdÚÍ6í2“50˘Sľs ěr˝\5‰C-UČ%ך,*`j€\ĐŤPZ Ž*@‡V(A"ÔŞˇs5´i…ň kň 3ŃŞE´Ž®8*Ó®Z´ )ž1.BeÚUv!Ä3ÄE¤ ë©AşPa]Sá,©Á¸Đăšg5Ž ¶…§ ×Yaci!Ż5uÍâ, ť­ÉlVŮĐŕ8”Ç ĹY:CâPR*g ő Š…€Öô3˧oP,´ł&ťY9}b!›5Ő̢é ý¬ÉgVO× Ř•» ĹY!mb[Rě*g©´ Š…NÖd2«¤mP,$˛¦Y Mťâqf…Ő,Ž m\ŤĐF)ŤFJ#,´1KăBçĆĺ*f]\ȢŔVÓÁ, —®’a™ŕ„fLp™ßňŃ)_ ·—’Ďáµ[fľŻČËNUĺ/g{mĹééD^(Ĺ]F䣇ăĄ97ž?¦k·ŚŻE|ą€źxŰ? §î?ßý¸ż;ĽŮ=/őK}Mî Ľ+íŔö¸˛¶§•Ý’}^Ók“Ů»wo‰r#Ľżą?îţř2 [ŃsCůrt¸»ßQšţa÷č˙Ü=Ţ‘“.C|čŹô7°^čzë—€WÓę9ţk8~:öýp7PG_‘¨Ýđx3śŐ˛\Ň5íNĽ7t’.÷8~ŹUwcI­.;ć߇Ă'Ú9ćt cW(ąűŘżěź_¨—Ŕ[¦~ř4Üľ„IDa|BY%ßʤ°˘aŽí傆ŤQ-“4’ţBRŇč٨Ą1PfăÓo™DŁpÝ„Ë{B‰ĐŔü%Hsl´Ąx7Np‡˙=ó±[¸§ÚČ(îi 9BZMXá—,†s‹Čˇ±Ńˇ6ÄwŁů""‡řz”Şů†”Ş=oăU_­°®¦µÓI®ˇ ¬ő•Ë#ˇ2âx$VFřLqµb®X;1¸^Mj§5^•jôŹW¦üמD=çk`=Ŕé^JY p¶Ń¬8Ůš)q'Š9댊áŔ­f×kQ¦nŢ:ĺ@â[ő4ăvw‡ň6m?7_.VnäyC]¬ÜĂ•ĘHXĄ˙*…ýéĽG‰DąŔńĽoŐ„‡ź>âťďĹxjZ5xęďř Á–ÜÚV+aASś“™L8/šŐ}c…#»Ż0O#@śŤ„D+X2IŽLQ°!˘a dZid^;űmÄĘÇůij2%2ůҤ‰4ŹxŚAdA^Q’Mg[\ßŘóŇŮo1Фéč‹Qâ#¶’Č‚ŽşóšŘJ˘=4bHëó0Żťý¶&Š ş-± [I | É$˛ «@Á)2Ů |éşđŰŔ–"Fd+Á)x2I4ČV˛3±e§@éŰTHkgż €ˇŃ5†ŘrF-'X6Ä–ě\ClÉÎ5”~Pu|ąľč¶ŹČ’]m¬ (5D–lSCdÉ65D–lSKŮolZúâ¶ĎW˛Í-J‰>˛Ŕ6‘†5lyX’)ĄE"Ö±-ÔA€ě¸…’´LĚ<°MBŹl{Ç’)#ÚYŮŔN±×H]8n€tĚ›•a™7+Şč7'’qĚ›É8ć͉dá7—%ĹůMĚ›esĚ[Đ™·  ÓŰ!#v‘gޢhĎDÄ YˇőłăHĎĽÉV÷Ě[’€7-{Ő;¶‰^őžm"iODL˙z¸†éłúůMőó‘CHHÄ›–˝J/ѬčŔ ŘKp7mäL`Ű—>K`Ř”Ŕ@ĽiyćMĹys‚ËŔĽÉľ Ě›ěËŔDř ˇ ů  ›B7y%Ä›(ZdŢ‚ŕ-2oňôŚĚ›<>#‘6óŐ0nŞadŢäyů‰Vö ż˝Ů1°Mđ‰·éż“]l‰mGQĚš75#XY´DĽŽřÍČLüt/{0ńĂ˝T÷ÄĎövËLeÚTžÄ´ÉŁ11mňhLL›“~L›”'¦M¨7˝>wgeşăÖơK—mŠY= ŠY üŢ„Ä_‘€°1‹©~ý‹2’ßFbŃč ˘‹ĆČ•řeŠ‘Ůđ«+ç&~…(2¤ŰűĆÖćő/nŚń˙ ¦ endstream endobj 1821 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.40.14)/Keywords() /CreationDate (D:20160114182403+01'00') /ModDate (D:20160114182403+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/Debian) kpathsea version 6.1.1) >> endobj 1765 0 obj << /Type /ObjStm /N 56 /First 551 /Length 2177 /Filter /FlateDecode >> stream xÚťYMŹ7˝ĎŻĐ1˝‡éŇ) 0  6‡u’Ĺ~śÚIÁ`ěq<3‡ý÷áS5«Ą*©;›Ë@CQâ{ŻXKm#3™ŤĺA4Ţ; ’ 9c ‹—Ťq2ÉÂ'Z“eZâh-ś˘7ÖáßĹ5¸p'#2–bY »GWüäß”Š_2nňeßlśMđK“qŢĂ/YăB†ź8;#o\š°"ărĘ#‘ń6–YŕTÖ  Ŕ—’ńqŮ/źly2ÁZě’­ ®Ä?!Ů›Ŕ_ÂBŚL†lŮ%ł!_dĘŃĚ9J¶¬ˇ&‚ÓdرĂȩ؜a˘2ň"(d–íďdD†ł8ËMś–Q4Ń.Łd˘“Me”e„Ç’ěd„öłÖİ؜‰,[ÉČyLe6QNžG˛$ŁŚý¬ÄČÄEvR›dDe—l’+<ś¬q¨–?@ś&[ÄiŢâq¸0@ś¦HŽýÇÖŠF%@ť&›Ôi˛)@ťÜř@ť\ç— đ±fC[Ź>®µĐ¨†ĹňfC‘‡mýĘ‘‡Ą~F$ň°k|–f ÎK†ě€ŃZ6hT5(by-‰<ܤeXęt’>5ČÓä1őٵRđ¨P0äiň‰!×b0äiň‰!O¬±3äi qęZD]˝Ŕ OjBž¦I„öHŤ'×l˘Č›ň,ÔÇ•Ż>®(ňĦĹKý”"ÁRcŹ"Ot öKU‚ÇA†Ĺµ„‰×XĆňzĂyęG’Džj1äiÚ‚yBýŽ&0d‚®^}\ ň4– O“a ň4– O“a ňÄZćƱßq¤ő(JŁŁŮTď—!OÓçdČ“jěň4E-Cž\KÁ8÷kţŞWŐü,ę¤ĂR§SuĐÚV–Kă#ˇ’¦ÜóüëËĂÓçżÝŁ[ôięcĂyT{î^&-¶ˇíćh µ»Xqe·µ˘¨Ř<Ky·o©˝ĽÝ iĽŻGU˘D=/V=ťV«ĂľĹŤî—ăv[´“ň]3Ć­÷7ú`ÖÖěb…´.l­Č?ż ą­´hńˇł±˘ĹµË‰ŘE8ŤűähŤíN.ć­şĄ?Ü‚,=˛Ő¶ńbF›lwŹ Ý˘|ŚŰ1řthÝÇŕŃgĘ^Ľ Ż g·Ď ťťŇŽľ9\Ř™‹Čq›JľčÇÚSă~>Döa‹=iÜŞĘ—lئB(ł´ó.ßłĽŐ­§Ż€Ď‡Ö} M«$Č6qĐąŠy‡"ź+[mŽţgé;·Ft[WtžÚyŚ}Éîąâ4ŢU cKĺŢŢCňik„ŕikąŻĽĄUy)ľ#Ä2‰”ŰÝ‹Ň;ků‚ŢX]ÁśÜÖZ@óÖŠ$ÉÓö¦ńâvpuŢn¬ZE^?TĘśˇ3ă1Łw ›”ü©3îË18"â"Ű{6ŹŇĄőĂ•~¤?ĺpÜ÷§DďÄý)AÔDÄĽkß;X; oR”Ęxa§”ĆiŔ¤ś'}*hKú;–[+{“%z+o±,÷Y¶OłÜką(Ľ®OłÜs ’—KýUřüźn,w_»u·8˘©čçją!čΠë3GÖg€VżÇšĘ Ýyw0÷ë®sŁRĽşyCĄ‚uµ¦űrŮĘjW.±ş˘p‰Ĺ|•`Áş_wť ¨±ĄżS„ÜR'mîOEç˝ĆNŞÎkŤ)Ôđ)^%ČŰRş¬»F8¬íeLQw*b*w§Î[ߝʊť©’˘Îç+ĎX÷ë®,ŹÝß ÁC'Űť‚bDÝ)(Fą;ĹŘ_%¸KŃeÝŽŕËéĂă|î'|Ţ]ÓTÓŐxÝ忉—tĎK–Ű–ÁąfÚó N;äß>~|z÷đy^ú…o~}x™ď˙>ź^_ľ>Ě_łűôúřň°zn•d@:`D(°}>”(?śç“›¦üeţúüôůô(áçß_O—śŕ}ŕ Ü‚r Ęíś2Ppa§ił˙z3'ßťHJ((ˇ „‚*MІúwYÖ®—Y¶ľ`Ö¤ŘI±“b'–őݰíĺ®ŘÖ7fk EMŠš5«†¬8¸÷e/—_®“‚¬ Y±˛jĆť5zśný¸W˙tˇ!˘BŤ 5ŞdQŁG•,ňŤ!ę«Ř5‚BŽ 9*䤂%E‘ÜřRµ{­¤Q’˘NŠ:)ę¤â%E’ŇźĽŞ?.×HŠ>+ú¬čłjM§űmżÇˇĆËĘ#+ʬ<˛*zţA¤üZţ˙µh›zš&űתf:źĎĺ—ůó č€tŔ:7ŞćčÍĐ«Ěň#ţ28÷íĺ'üó@ˇXĺ͸­Ĺľ·˙“ZX%l•°˝E¸łŰ÷ółxÚóͬZ˙óż/ł9~wz9=>}Ľ;ţS=ă¬*!ďŽ?żľ<Ę®ĹÄ‹i9íů¦nYňăÓoóńżĎłşă»Ó‡ůńůÍ›ăOŻźž™dđďă÷oßZĽÇźżĚźż-˛·T űĚ«Űë endstream endobj 1822 0 obj << /Type /XRef /Index [0 1823] /Size 1823 /W [1 3 1] /Root 1820 0 R /Info 1821 0 R /ID [<60E5492006552F52CDDE7C1AB5B06A3D> <60E5492006552F52CDDE7C1AB5B06A3D>] /Length 4534 /Filter /FlateDecode >> stream xÚ%š}pŐyĆ÷ÝÝ{%K˛dÉÖ—eɲ-۲e[¶%Ů’,É–l­?ôa}ز>lY˛ 6M(C€Đ$%)Ű@čLK]&ĐB¦iK -¤tJihÔ N)Ó›˝Í†@‡–IvKšĚP’Ŕ0 éý=Öż9ç9{÷ž{Îóž=ű9N¶ě—®“ ¦Á9pŢuśŚcŽSḎÝPVĐVŹ˘pŃÖ˘ Pő€ŹVŽÖO5˛hŰŃú¨b´hG¨®%h;Ńz©–‚2´}h=Tׂr´ChÝT+Ŕ:´Ăh‡©V‚*´#h‡¨®ĐŽŁuQ­5h'Đ:©Ö‚:4bµj=ŘƸ¬¤Ú6ˇÍ˘ ÚšĐ.ˇí§ş4´Ü´vŞ[ŔV4őyŐm mm/Őí`Ú"ÚŞ;A«ë¸SZŐ]`7ÚÚnŞjŘ6‡¦KtÓ·ąů´VŞęPˇ§ŢśćW·×Ź)üJ/©DŰAUщV…¦®iˇŐٵPŐtŁ5˘égiňzѶ mĄŞ‰ďCŰŠ¦!‘iĐäŤfŞ2Ü1´ÝhÎA0„Ö†ÖDő88vMS1 ×ńW6 m˘zśBۆ¦i< δd=ÚFŞ#`­MăhuhuTĎ‚ 4Ťě3 ¦Đ6˘ŐPťçĐĐd=Ř Úf´ T/€Y´f4ŮvĚŁíA«˘ş.˘iÎeůK`í(Ú:Ş—ÁÚ14…Ë2¸‚6ŚVNuĄ€¨ěď:4ŚŇ@ĽE{ä˘Mˇ•Q%Ř#m ŤXŤö¨ě… •P%ŘŁb4™†8Ź„4M|1UÝ  mš>¦//GSŕd©ŇűhÚA4}%ż<ŞBëFó©2jQa83q)šşËG5h2żK•ŮŠęĐÚŃôS™éh#ÚY4‡*.‰6±&ş– 5V8,jBá޸3¶~ŽZ¬° éX>Âp!+\ČĘVńşˇě±ůi` cćÜ:¦†!ľă ĄS 0çÓÝj8 FŔisîţą´3`ŚšsϤŤ pś5çŢ«j,7á6Js`ĆśŻwňX‹`ŢśŻÜˇ†‹|B?p ,Yĺ˛9OŚę’+TĘá—\ÁC/µIĂC9L“«6çĺ9i)‡irućäçĄŐś“k0绿% 7ĺ´Áh2ç•iiiŰ@ Đ>v‡ŮňëjŘ ÚŔ.ł_Y¦m-{Ö©=f7ż&m/=čĄt´›}üU5ȉ]ŕ Ůi tCfź˝ŢÝĂŕč1»ű)işé1ĐgöŰׇ®°ˇ Őç šÝWŞÖ!pśl¨BÝô48iöű7ęşS` ś1űYi#`L€qł‡{ŐpLIłGľ m Ě€sf_m‘v,€‚˙žxGŻ#aĄEP0á“ëŐp Ču—Íľ1)m‰—•®ýM˝J+ćv}“RŢ…Őń…O«Š'óYŕ›­KË —/2{ńץaŃüşÁĐĺ±^ľÔěĄĎ޵ ŕÄ|ąŮË·K«3_iö/ĎIĂ“y,ź/Ř1ş& ‹ć7‚:łď·J«X/ß`öÚ]ŇŘŞ…”đ_ľÉěőŻ«a3Ŕů-foĽ+m+ŘZĚ~Ô% Çćwťféii5ĎU~·Ů[& łćŰÁ^ł·?%Ť÷Őđ(Ą`żŮŹM 5Ź;óf˙{ż4Ś™Çů‚1?†1óx(_0ć‡?’†1ó3ŻźUpçG_T†揚ë~^Ú =ĐĹĂูEŞ,š? pg>0·´S §xqb-ÉcÇüs+ת‹ć±c~ĚÜšviă;ć'ĚÝtý·Měź6·yL/Ëá ĄY0cnËżŞáŔ¶ů9s[ĄÍ›żhî…nÇćqlţ˛ąíăŇ–xΨtĹÜŹ©Tpěì ŢśĚÜ#»TĺM$äEq. |sű[Ôk@‘ąG÷K+ĺ ÄÜÁ6iĄ T{â省@•ąÁłŇÖZPmî©§Ąńš§´Ô™{ćzC=h ćž˝(mhMćNŽIŰ ¶-ćN?$m+ŘZĚť}UÚv° ě4÷âǤµňĺĽĎí»Í]Ľţ‹Ú@;ŘkîrĄ´}€÷ýąýć®üˇ´  t{ł#Ť×˙9Ţíç™űkŻH; Ž€so9#MőaJĽĚĎő™{ëSjč `ÖŰţOďösęéąwţĄ4ŤÚI0lî]ź’€3ŕ”ąźű±´Ó` Śű…ś4Ţ\C]<ĆÍ˝çE5śÓ`ŇÜßů+iS`ś3÷KŹH;ćŔs÷iłŕ"7÷÷J[—Á%sŻľ,ŤřC5,`F©`Ö/óÖá%ŽyŁ?UÉ®ą_yFU\ś`Ç$cîWo—†ě¬1÷ńoI+86)3÷É»¤iß©pĆ“IÁ¶O÷«Ű&5`ą'—$Őw&µć>Żń#µá%M ŕΗ¤áÎ'&›Í}éĎĄaÖd'(8ń;2WBš/dRHTxI«ąŻÜ¤ܙ຤ŕş7ŠĄáş›% `˝ôŞ”yRZ©ÓÜźĚIÉI8lî{ŰĄ)ˤRŻą|B ż—ń’~s?25(­¤śŃ1óÜ˙†IxÉqóŠ˙HšRHżŔĽňǤ1ˇ‰n:FÁióŞ>PëÉ$Ś”`¸dĚĽMŹŞüA8B ×%“ć5ݍAăşäśy»Ä ®Kp]rÁĽöii¸.ÁuÉĽy]×G×%¸.ądŢ‘{Ą-‚°dŢV¸d™/'µâ‚צľOf§`ż\ó›¦UÍ߼Ů署% ČĽ+Ą5 ”šwÓ·ŐPÖ‚JPaŢť jXŞA•yźo‘Fj-ŁTjĚűŇ5Ô‚Ť`¨7ď654€fĐhŢCű¤5Í l1ď‘o¨a+Řv‚Ý`»yŹ˙…Z[Á.VU ”ę^ĐfŢÓĎéRk!É˝•ý`źy{˝í 0ď›7J;Nó®-Kë‡ŔĐmŢËŹ«ˇô‚Đg^îŹŐĐÁQóľ{·4˛táYJ'ŔyŻýP ÇÁI0lŢ–HSnSţ;eŢĎI; Hf®čÇŚš÷?_VĆžLĺĘ48kŢĎ+Ô0 HC®ś3ßą~çótCĎ ćgŢV©ÉňŽ+ó毭“¶Č;®\dW.™ż®F­$W–vYoĹüşcĘ1:ć?÷–JJ%<ٲŞ*Že7âÖ?żő}iY:DOś`˝¤Řü=źQ+ŽM*ŔZói>XýdXgţŔĄáSV3?©6ôi5Ó$ŤćOOJĂfJV‡dC¬˘W /ô˙¬ŞNGÂiËt÷H[ nşV®ŞňÔE@ŮéR üóZ ¬s¨ëA‰ůůPź]GȤYžyÁi62Ě‹µ€Ľň"‰äŰ 4‚í`Ř`ţż?Ż›6f°p–Ŕ·eIŞ;ŔN°´źvčcšĆ+”ö€˝`h= Íü÷ętń~Đ:A88… Ř7[©}  €c` S ×üŹtçăŕ8 pIxŽŇ0FÁ ŕ8m™˛D÷gÁĐLi űÉM3`ĚZ¦î7ôŮ‹`pL†.V«Ćę˛e¶ż©ęX¦ÓÄ>ŐËěaSž‰]ŕYćé_¨ŠibLcšKĹ&ÎXfčI]ÂąFŚ}bN)âJŔŮDڇb,ëXÄ:dXk™‰V}ŻĹ8'Ö‰ţ‹ĺÖ‖€AڱOŚ_b ăŤX?KĹ –ąô î‡›bÜ3«1¶[Á.Đ0CŚsâ Ĺ2·^ď FŠńZL"9Đ­đKŚ_âĂ ŕ°¸×)üý’ľŠ±OŚAb|´ĚçÚuS,c©KĹ$ĆW1ľŠńUŚ‘bŚc¤°ŠőŁqNŚsbśă[Ä'-s˙Óş=¦‰ńKŚAb ă«xŕµ[Ä.Ć%1fYFb|OY桗u«KsĹ+ÖęŁh4Ŕ[eŔú  2@fX¶ĚcŹč:žVNf(ŤXć{Ď¨Ł…€=zŔ1yŔŃB …“Ö€S˛€ŤRŔeP xŤ 8 8t pD@ .ŕ1СŹ“€ýKŔ“$ŕä"(±Ě ÍúJÎaw2Gf•sµ€´ t‚.Ŕéz E#µ đNčéŇú'Ź™±€]K@Ú!ŕP ¸Čß»-sífuc÷€äT0 ű@aŞ'ŤîŚe˘DźĐ°ĎYŃvKŮP/óZÖ•eŘCí t&§ÁVŇ©pxę‡_ę­ułÎ2oT릕–I®ŞTe™wŞ´Ţ2ď}BĄ –ůđ•Ş-뽯RŤekWU޵ěÎXĄ:ËöĽ¨R˝e/Ş´Ń˛'oS©Á˛·LŞ´É˛÷nS©Ń˛˙ô®JMVTý3•”µgčBĺđ8·«± u¸ÁX…+'dQ—­čWqUťđ2 «ĚÂŞţŃA˙Ů cް ŻňđZ= ÎýĂ|y¸®’_ŐŮ'kçę$ĐŃŻţ!B˙ÁŠ´ŠłWéîŞţB˙f@wWéî*Ý]ŐżAčč٬ꌞ}IęXŃäP˛)łź2É)“ś2É)“ś2É)“ś2É)“ś2É)ó›2ż)ó›2ż)ó›Q)•Q)•Q)•Q)•Q)•Q)•Q)1“r®›2))nJŮ<ĄlSvU)»‘”‡ʆ*ĺ\7ĺqś~)˙¬—)q™—)á—~)á—~)á—~)á—~)á—¶˘Ű?Yś»źpţłłÍ endstream endobj startxref 491688 %%EOF isl-0.16.1/doc/mypod2latex0000755000175000017500000000031711250757011012252 00000000000000#!/usr/bin/perl use strict; use Pod::LaTeX; my ($in, $out) = @ARGV; my $parser = new Pod::LaTeX( AddPreamble => 0, AddPostamble => 0, LevelNoNum => 5, ); $parser->parse_from_file($in, $out); isl-0.16.1/doc/implementation.tex0000664000175000017500000023521612645737060013650 00000000000000\section{Sets and Relations} \begin{definition}[Polyhedral Set] A {\em polyhedral set}\index{polyhedral set} $S$ is a finite union of basic sets $S = \bigcup_i S_i$, each of which can be represented using affine constraints $$ S_i : \Z^n \to 2^{\Z^d} : \vec s \mapsto S_i(\vec s) = \{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e : A \vec x + B \vec s + D \vec z + \vec c \geq \vec 0 \,\} , $$ with $A \in \Z^{m \times d}$, $B \in \Z^{m \times n}$, $D \in \Z^{m \times e}$ and $\vec c \in \Z^m$. \end{definition} \begin{definition}[Parameter Domain of a Set] Let $S \in \Z^n \to 2^{\Z^d}$ be a set. The {\em parameter domain} of $S$ is the set $$\pdom S \coloneqq \{\, \vec s \in \Z^n \mid S(\vec s) \ne \emptyset \,\}.$$ \end{definition} \begin{definition}[Polyhedral Relation] A {\em polyhedral relation}\index{polyhedral relation} $R$ is a finite union of basic relations $R = \bigcup_i R_i$ of type $\Z^n \to 2^{\Z^{d_1+d_2}}$, each of which can be represented using affine constraints $$ R_i = \vec s \mapsto R_i(\vec s) = \{\, \vec x_1 \to \vec x_2 \in \Z^{d_1} \times \Z^{d_2} \mid \exists \vec z \in \Z^e : A_1 \vec x_1 + A_2 \vec x_2 + B \vec s + D \vec z + \vec c \geq \vec 0 \,\} , $$ with $A_i \in \Z^{m \times d_i}$, $B \in \Z^{m \times n}$, $D \in \Z^{m \times e}$ and $\vec c \in \Z^m$. \end{definition} \begin{definition}[Parameter Domain of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em parameter domain} of $R$ is the set $$\pdom R \coloneqq \{\, \vec s \in \Z^n \mid R(\vec s) \ne \emptyset \,\}.$$ \end{definition} \begin{definition}[Domain of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em domain} of $R$ is the polyhedral set $$\domain R \coloneqq \vec s \mapsto \{\, \vec x_1 \in \Z^{d_1} \mid \exists \vec x_2 \in \Z^{d_2} : (\vec x_1, \vec x_2) \in R(\vec s) \,\} . $$ \end{definition} \begin{definition}[Range of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The {\em range} of $R$ is the polyhedral set $$ \range R \coloneqq \vec s \mapsto \{\, \vec x_2 \in \Z^{d_2} \mid \exists \vec x_1 \in \Z^{d_1} : (\vec x_1, \vec x_2) \in R(\vec s) \,\} . $$ \end{definition} \begin{definition}[Composition of Relations] Let $R \in \Z^n \to 2^{\Z^{d_1+d_2}}$ and $S \in \Z^n \to 2^{\Z^{d_2+d_3}}$ be two relations, then the composition of $R$ and $S$ is defined as $$ S \circ R \coloneqq \vec s \mapsto \{\, \vec x_1 \to \vec x_3 \in \Z^{d_1} \times \Z^{d_3} \mid \exists \vec x_2 \in \Z^{d_2} : \vec x_1 \to \vec x_2 \in R(\vec s) \wedge \vec x_2 \to \vec x_3 \in S(\vec s) \,\} . $$ \end{definition} \begin{definition}[Difference Set of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation. The difference set ($\Delta \, R$) of $R$ is the set of differences between image elements and the corresponding domain elements, $$ \diff R \coloneqq \vec s \mapsto \{\, \vec \delta \in \Z^{d} \mid \exists \vec x \to \vec y \in R : \vec \delta = \vec y - \vec x \,\} $$ \end{definition} \section{Simple Hull}\label{s:simple hull} It is sometimes useful to have a single basic set or basic relation that contains a given set or relation. For rational sets, the obvious choice would be to compute the (rational) convex hull. For integer sets, the obvious choice would be the integer hull. However, {\tt isl} currently does not support an integer hull operation and even if it did, it would be fairly expensive to compute. The convex hull operation is supported, but it is also fairly expensive to compute given only an implicit representation. Usually, it is not required to compute the exact integer hull, and an overapproximation of this hull is sufficient. The ``simple hull'' of a set is such an overapproximation and it is defined as the (inclusion-wise) smallest basic set that is described by constraints that are translates of the constraints in the input set. This means that the simple hull is relatively cheap to compute and that the number of constraints in the simple hull is no larger than the number of constraints in the input. \begin{definition}[Simple Hull of a Set] The {\em simple hull} of a set $S = \bigcup_{1 \le i \le v} S_i$, with $$ S : \Z^n \to 2^{\Z^d} : \vec s \mapsto S(\vec s) = \left\{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e : \bigvee_{1 \le i \le v} A_i \vec x + B_i \vec s + D_i \vec z + \vec c_i \geq \vec 0 \,\right\} $$ is the set $$ H : \Z^n \to 2^{\Z^d} : \vec s \mapsto S(\vec s) = \left\{\, \vec x \in \Z^d \mid \exists \vec z \in \Z^e : \bigwedge_{1 \le i \le v} A_i \vec x + B_i \vec s + D_i \vec z + \vec c_i + \vec K_i \geq \vec 0 \,\right\} , $$ with $\vec K_i$ the (component-wise) smallest non-negative integer vectors such that $S \subseteq H$. \end{definition} The $\vec K_i$ can be obtained by solving a number of LP problems, one for each element of each $\vec K_i$. If any LP problem is unbounded, then the corresponding constraint is dropped. \section{Parametric Integer Programming} \subsection{Introduction}\label{s:intro} Parametric integer programming \shortcite{Feautrier88parametric} is used to solve many problems within the context of the polyhedral model. Here, we are mainly interested in dependence analysis \shortcite{Fea91} and in computing a unique representation for existentially quantified variables. The latter operation has been used for counting elements in sets involving such variables \shortcite{BouletRe98,Verdoolaege2005experiences} and lies at the core of the internal representation of {\tt isl}. Parametric integer programming was first implemented in \texttt{PipLib}. An alternative method for parametric integer programming was later implemented in {\tt barvinok} \cite{barvinok-0.22}. This method is not based on Feautrier's algorithm, but on rational generating functions \cite{Woods2003short} and was inspired by the ``digging'' technique of \shortciteN{DeLoera2004Three} for solving non-parametric integer programming problems. In the following sections, we briefly recall the dual simplex method combined with Gomory cuts and describe some extensions and optimizations. The main algorithm is applied to a matrix data structure known as a tableau. In case of parametric problems, there are two tableaus, one for the main problem and one for the constraints on the parameters, known as the context tableau. The handling of the context tableau is described in \autoref{s:context}. \subsection{The Dual Simplex Method} Tableaus can be represented in several slightly different ways. In {\tt isl}, the dual simplex method uses the same representation as that used by its incremental LP solver based on the \emph{primal} simplex method. The implementation of this LP solver is based on that of {\tt Simplify} \shortcite{Detlefs2005simplify}, which, in turn, was derived from the work of \shortciteN{Nelson1980phd}. In the original \shortcite{Nelson1980phd}, the tableau was implemented as a sparse matrix, but neither {\tt Simplify} nor the current implementation of {\tt isl} does so. Given some affine constraints on the variables, $A \vec x + \vec b \ge \vec 0$, the tableau represents the relationship between the variables $\vec x$ and non-negative variables $\vec y = A \vec x + \vec b$ corresponding to the constraints. The initial tableau contains $\begin{pmatrix} \vec b & A \end{pmatrix}$ and expresses the constraints $\vec y$ in the rows in terms of the variables $\vec x$ in the columns. The main operation defined on a tableau exchanges a column and a row variable and is called a pivot. During this process, some coefficients may become rational. As in the \texttt{PipLib} implementation, {\tt isl} maintains a shared denominator per row. The sample value of a tableau is one where each column variable is assigned zero and each row variable is assigned the constant term of the row. This sample value represents a valid solution if each constraint variable is assigned a non-negative value, i.e., if the constant terms of rows corresponding to constraints are all non-negative. The dual simplex method starts from an initial sample value that may be invalid, but that is known to be (lexicographically) no greater than any solution, and gradually increments this sample value through pivoting until a valid solution is obtained. In particular, each pivot exchanges a row variable $r = -n + \sum_i a_i \, c_i$ with negative sample value $-n$ with a column variable $c_j$ such that $a_j > 0$. Since $c_j = (n + r - \sum_{i\ne j} a_i \, c_i)/a_j$, the new row variable will have a positive sample value $n$. If no such column can be found, then the problem is infeasible. By always choosing the column that leads to the (lexicographically) smallest increment in the variables $\vec x$, the first solution found is guaranteed to be the (lexicographically) minimal solution \cite{Feautrier88parametric}. In order to be able to determine the smallest increment, the tableau is (implicitly) extended with extra rows defining the original variables in terms of the column variables. If we assume that all variables are non-negative, then we know that the zero vector is no greater than the minimal solution and then the initial extended tableau looks as follows. $$ \begin{tikzpicture} \matrix (m) [matrix of math nodes] { & {} & 1 & \vec c \\ \vec x && |(top)| \vec 0 & I \\ \vec r && \vec b & |(bottom)|A \\ }; \begin{pgfonlayer}{background} \node (core) [inner sep=0pt,fill=black!20,right delimiter=),left delimiter=(,fit=(top)(bottom)] {}; \end{pgfonlayer} \end{tikzpicture} $$ Each column in this extended tableau is lexicographically positive and will remain so because of the column choice explained above. It is then clear that the value of $\vec x$ will increase in each step. Note that there is no need to store the extra rows explicitly. If a given $x_i$ is a column variable, then the corresponding row is the unit vector $e_i$. If, on the other hand, it is a row variable, then the row already appears somewhere else in the tableau. In case of parametric problems, the sign of the constant term may depend on the parameters. Each time the constant term of a constraint row changes, we therefore need to check whether the new term can attain negative and/or positive values over the current set of possible parameter values, i.e., the context. If all these terms can only attain non-negative values, the current state of the tableau represents a solution. If one of the terms can only attain non-positive values and is not identically zero, the corresponding row can be pivoted. Otherwise, we pick one of the terms that can attain both positive and negative values and split the context into a part where it only attains non-negative values and a part where it only attains negative values. \subsection{Gomory Cuts} The solution found by the dual simplex method may have non-integral coordinates. If so, some rational solutions (including the current sample value), can be cut off by applying a (parametric) Gomory cut. Let $r = b(\vec p) + \sp {\vec a} {\vec c}$ be the row corresponding to the first non-integral coordinate of $\vec x$, with $b(\vec p)$ the constant term, an affine expression in the parameters $\vec p$, i.e., $b(\vec p) = \sp {\vec f} {\vec p} + g$. Note that only row variables can attain non-integral values as the sample value of the column variables is zero. Consider the expression $b(\vec p) - \ceil{b(\vec p)} + \sp {\fract{\vec a}} {\vec c}$, with $\ceil\cdot$ the ceiling function and $\fract\cdot$ the fractional part. This expression is negative at the sample value since $\vec c = \vec 0$ and $r = b(\vec p)$ is fractional, i.e., $\ceil{b(\vec p)} > b(\vec p)$. On the other hand, for each integral value of $r$ and $\vec c \ge 0$, the expression is non-negative because $b(\vec p) - \ceil{b(\vec p)} > -1$. Imposing this expression to be non-negative therefore does not invalidate any integral solutions, while it does cut away the current fractional sample value. To be able to formulate this constraint, a new variable $q = \floor{-b(\vec p)} = - \ceil{b(\vec p)}$ is added to the context. This integral variable is uniquely defined by the constraints $0 \le -d \, b(\vec p) - d \, q \le d - 1$, with $d$ the common denominator of $\vec f$ and $g$. In practice, the variable $q' = \floor{\sp {\fract{-f}} {\vec p} + \fract{-g}}$ is used instead and the coefficients of the new constraint are adjusted accordingly. The sign of the constant term of this new constraint need not be determined as it is non-positive by construction. When several of these extra context variables are added, it is important to avoid adding duplicates. Recent versions of {\tt PipLib} also check for such duplicates. \subsection{Negative Unknowns and Maximization} There are two places in the above algorithm where the unknowns $\vec x$ are assumed to be non-negative: the initial tableau starts from sample value $\vec x = \vec 0$ and $\vec c$ is assumed to be non-negative during the construction of Gomory cuts. To deal with negative unknowns, \shortciteN[Appendix A.2]{Fea91} proposed to use a ``big parameter'', say $M$, that is taken to be an arbitrarily large positive number. Instead of looking for the lexicographically minimal value of $\vec x$, we search instead for the lexicographically minimal value of $\vec x' = \vec M + \vec x$. The sample value $\vec x' = \vec 0$ of the initial tableau then corresponds to $\vec x = -\vec M$, which is clearly not greater than any potential solution. The sign of the constant term of a row is determined lexicographically, with the coefficient of $M$ considered first. That is, if the coefficient of $M$ is not zero, then its sign is the sign of the entire term. Otherwise, the sign is determined by the remaining affine expression in the parameters. If the original problem has a bounded optimum, then the final sample value will be of the form $\vec M + \vec v$ and the optimal value of the original problem is then $\vec v$. Maximization problems can be handled in a similar way by computing the minimum of $\vec M - \vec x$. When the optimum is unbounded, the optimal value computed for the original problem will involve the big parameter. In the original implementation of {\tt PipLib}, the big parameter could even appear in some of the extra variables $\vec q$ created during the application of a Gomory cut. The final result could then contain implicit conditions on the big parameter through conditions on such $\vec q$ variables. This problem was resolved in later versions of {\tt PipLib} by taking $M$ to be divisible by any positive number. The big parameter can then never appear in any $\vec q$ because $\fract {\alpha M } = 0$. It should be noted, though, that an unbounded problem usually (but not always) indicates an incorrect formulation of the problem. The original version of {\tt PipLib} required the user to ``manually'' add a big parameter, perform the reformulation and interpret the result \shortcite{Feautrier02}. Recent versions allow the user to simply specify that the unknowns may be negative or that the maximum should be computed and then these transformations are performed internally. Although there are some application, e.g., that of \shortciteN{Feautrier92multi}, where it is useful to have explicit control over the big parameter, negative unknowns and maximization are by far the most common applications of the big parameter and we believe that the user should not be bothered with such implementation issues. The current version of {\tt isl} therefore does not provide any interface for specifying big parameters. Instead, the user can specify whether a maximum needs to be computed and no assumptions are made on the sign of the unknowns. Instead, the sign of the unknowns is checked internally and a big parameter is automatically introduced when needed. For compatibility with {\tt PipLib}, the {\tt isl\_pip} tool does explicitly add non-negativity constraints on the unknowns unless the \verb+Urs_unknowns+ option is specified. Currently, there is also no way in {\tt isl} of expressing a big parameter in the output. Even though {\tt isl} makes the same divisibility assumption on the big parameter as recent versions of {\tt PipLib}, it will therefore eventually produce an error if the problem turns out to be unbounded. \subsection{Preprocessing} In this section, we describe some transformations that are or can be applied in advance to reduce the running time of the actual dual simplex method with Gomory cuts. \subsubsection{Feasibility Check and Detection of Equalities} Experience with the original {\tt PipLib} has shown that Gomory cuts do not perform very well on problems that are (non-obviously) empty, i.e., problems with rational solutions, but no integer solutions. In {\tt isl}, we therefore first perform a feasibility check on the original problem considered as a non-parametric problem over the combined space of unknowns and parameters. In fact, we do not simply check the feasibility, but we also check for implicit equalities among the integer points by computing the integer affine hull. The algorithm used is the same as that described in \autoref{s:GBR} below. Computing the affine hull is fairly expensive, but it can bring huge benefits if any equalities can be found or if the problem turns out to be empty. \subsubsection{Constraint Simplification} If the coefficients of the unknown and parameters in a constraint have a common factor, then this factor should be removed, possibly rounding down the constant term. For example, the constraint $2 x - 5 \ge 0$ should be simplified to $x - 3 \ge 0$. {\tt isl} performs such simplifications on all sets and relations. Recent versions of {\tt PipLib} also perform this simplification on the input. \subsubsection{Exploiting Equalities}\label{s:equalities} If there are any (explicit) equalities in the input description, {\tt PipLib} converts each into a pair of inequalities. It is also possible to write $r$ equalities as $r+1$ inequalities \shortcite{Feautrier02}, but it is even better to \emph{exploit} the equalities to reduce the dimensionality of the problem. Given an equality involving at least one unknown, we pivot the row corresponding to the equality with the column corresponding to the last unknown with non-zero coefficient. The new column variable can then be removed completely because it is identically zero, thereby reducing the dimensionality of the problem by one. The last unknown is chosen to ensure that the columns of the initial tableau remain lexicographically positive. In particular, if the equality is of the form $b + \sum_{i \le j} a_i \, x_i = 0$ with $a_j \ne 0$, then the (implicit) top rows of the initial tableau are changed as follows $$ \begin{tikzpicture} \matrix [matrix of math nodes] { & {} & |(top)| 0 & I_1 & |(j)| & \\ j && 0 & & 1 & \\ && 0 & & & |(bottom)|I_2 \\ }; \node[overlay,above=2mm of j,anchor=south]{j}; \begin{pgfonlayer}{background} \node (m) [inner sep=0pt,fill=black!20,right delimiter=),left delimiter=(,fit=(top)(bottom)] {}; \end{pgfonlayer} \begin{scope}[xshift=4cm] \matrix [matrix of math nodes] { & {} & |(top)| 0 & I_1 & \\ j && |(left)| -b/a_j & -a_i/a_j & \\ && 0 & & |(bottom)|I_2 \\ }; \begin{pgfonlayer}{background} \node (m2) [inner sep=0pt,fill=black!20,right delimiter=),left delimiter=(,fit=(top)(bottom)(left)] {}; \end{pgfonlayer} \end{scope} \draw [shorten >=7mm,-to,thick,decorate, decoration={snake,amplitude=.4mm,segment length=2mm, pre=moveto,pre length=5mm,post length=8mm}] (m) -- (m2); \end{tikzpicture} $$ Currently, {\tt isl} also eliminates equalities involving only parameters in a similar way, provided at least one of the coefficients is equal to one. The application of parameter compression (see below) would obviate the need for removing parametric equalities. \subsubsection{Offline Symmetry Detection}\label{s:offline} Some problems, notably those of \shortciteN{Bygde2010licentiate}, have a collection of constraints, say $b_i(\vec p) + \sp {\vec a} {\vec x} \ge 0$, that only differ in their (parametric) constant terms. These constant terms will be non-negative on different parts of the context and this context may have to be split for each of the constraints. In the worst case, the basic algorithm may have to consider all possible orderings of the constant terms. Instead, {\tt isl} introduces a new parameter, say $u$, and replaces the collection of constraints by the single constraint $u + \sp {\vec a} {\vec x} \ge 0$ along with context constraints $u \le b_i(\vec p)$. Any solution to the new system is also a solution to the original system since $\sp {\vec a} {\vec x} \ge -u \ge -b_i(\vec p)$. Conversely, $m = \min_i b_i(\vec p)$ satisfies the constraints on $u$ and therefore extends a solution to the new system. It can also be plugged into a new solution. See \autoref{s:post} for how this substitution is currently performed in {\tt isl}. The method described in this section can only detect symmetries that are explicitly available in the input. See \autoref{s:online} for the detection and exploitation of symmetries that appear during the course of the dual simplex method. \subsubsection{Parameter Compression}\label{s:compression} It may in some cases be apparent from the equalities in the problem description that there can only be a solution for a sublattice of the parameters. In such cases ``parameter compression'' \shortcite{Meister2004PhD,Meister2008} can be used to replace the parameters by alternative ``dense'' parameters. For example, if there is a constraint $2x = n$, then the system will only have solutions for even values of $n$ and $n$ can be replaced by $2n'$. Similarly, the parameters $n$ and $m$ in a system with the constraint $2n = 3m$ can be replaced by a single parameter $n'$ with $n=3n'$ and $m=2n'$. It is also possible to perform a similar compression on the unknowns, but it would be more complicated as the compression would have to preserve the lexicographical order. Moreover, due to our handling of equalities described above there should be no need for such variable compression. Although parameter compression has been implemented in {\tt isl}, it is currently not yet used during parametric integer programming. \subsection{Postprocessing}\label{s:post} The output of {\tt PipLib} is a quast (quasi-affine selection tree). Each internal node in this tree corresponds to a split of the context based on a parametric constant term in the main tableau with indeterminate sign. Each of these nodes may introduce extra variables in the context corresponding to integer divisions. Each leaf of the tree prescribes the solution in that part of the context that satisfies all the conditions on the path leading to the leaf. Such a quast is a very economical way of representing the solution, but it would not be suitable as the (only) internal representation of sets and relations in {\tt isl}. Instead, {\tt isl} represents the constraints of a set or relation in disjunctive normal form. The result of a parametric integer programming problem is then also converted to this internal representation. Unfortunately, the conversion to disjunctive normal form can lead to an explosion of the size of the representation. In some cases, this overhead would have to be paid anyway in subsequent operations, but in other cases, especially for outside users that just want to solve parametric integer programming problems, we would like to avoid this overhead in future. That is, we are planning on introducing quasts or a related representation as one of several possible internal representations and on allowing the output of {\tt isl\_pip} to optionally be printed as a quast. Currently, {\tt isl} also does not have an internal representation for expressions such as $\min_i b_i(\vec p)$ from the offline symmetry detection of \autoref{s:offline}. Assume that one of these expressions has $n$ bounds $b_i(\vec p)$. If the expression does not appear in the affine expression describing the solution, but only in the constraints, and if moreover, the expression only appears with a positive coefficient, i.e., $\min_i b_i(\vec p) \ge f_j(\vec p)$, then each of these constraints can simply be reduplicated $n$ times, once for each of the bounds. Otherwise, a conversion to disjunctive normal form leads to $n$ cases, each described as $u = b_i(\vec p)$ with constraints $b_i(\vec p) \le b_j(\vec p)$ for $j > i$ and $b_i(\vec p) < b_j(\vec p)$ for $j < i$. Note that even though this conversion leads to a size increase by a factor of $n$, not detecting the symmetry could lead to an increase by a factor of $n!$ if all possible orderings end up being considered. \subsection{Context Tableau}\label{s:context} The main operation that a context tableau needs to provide is a test on the sign of an affine expression over the elements of the context. This sign can be determined by solving two integer linear feasibility problems, one with a constraint added to the context that enforces the expression to be non-negative and one where the expression is negative. As already mentioned by \shortciteN{Feautrier88parametric}, any integer linear feasibility solver could be used, but the {\tt PipLib} implementation uses a recursive call to the dual simplex with Gomory cuts algorithm to determine the feasibility of a context. In {\tt isl}, two ways of handling the context have been implemented, one that performs the recursive call and one, used by default, that uses generalized basis reduction. We start with some optimizations that are shared between the two implementations and then discuss additional details of each of them. \subsubsection{Maintaining Witnesses}\label{s:witness} A common feature of both integer linear feasibility solvers is that they will not only say whether a set is empty or not, but if the set is non-empty, they will also provide a \emph{witness} for this result, i.e., a point that belongs to the set. By maintaining a list of such witnesses, we can avoid many feasibility tests during the determination of the signs of affine expressions. In particular, if the expression evaluates to a positive number on some of these points and to a negative number on some others, then no feasibility test needs to be performed. If all the evaluations are non-negative, we only need to check for the possibility of a negative value and similarly in case of all non-positive evaluations. Finally, in the rare case that all points evaluate to zero or at the start, when no points have been collected yet, one or two feasibility tests need to be performed depending on the result of the first test. When a new constraint is added to the context, the points that violate the constraint are temporarily removed. They are reconsidered when we backtrack over the addition of the constraint, as they will satisfy the negation of the constraint. It is only when we backtrack over the addition of the points that they are finally removed completely. When an extra integer division is added to the context, the new coordinates of the witnesses can easily be computed by evaluating the integer division. The idea of keeping track of witnesses was first used in {\tt barvinok}. \subsubsection{Choice of Constant Term on which to Split} Recall that if there are no rows with a non-positive constant term, but there are rows with an indeterminate sign, then the context needs to be split along the constant term of one of these rows. If there is more than one such row, then we need to choose which row to split on first. {\tt PipLib} uses a heuristic based on the (absolute) sizes of the coefficients. In particular, it takes the largest coefficient of each row and then selects the row where this largest coefficient is smaller than those of the other rows. In {\tt isl}, we take that row for which non-negativity of its constant term implies non-negativity of as many of the constant terms of the other rows as possible. The intuition behind this heuristic is that on the positive side, we will have fewer negative and indeterminate signs, while on the negative side, we need to perform a pivot, which may affect any number of rows meaning that the effect on the signs is difficult to predict. This heuristic is of course much more expensive to evaluate than the heuristic used by {\tt PipLib}. More extensive tests are needed to evaluate whether the heuristic is worthwhile. \subsubsection{Dual Simplex + Gomory Cuts} When a new constraint is added to the context, the first steps of the dual simplex method applied to this new context will be the same or at least very similar to those taken on the original context, i.e., before the constraint was added. In {\tt isl}, we therefore apply the dual simplex method incrementally on the context and backtrack to a previous state when a constraint is removed again. An initial implementation that was never made public would also keep the Gomory cuts, but the current implementation backtracks to before the point where Gomory cuts are added before adding an extra constraint to the context. Keeping the Gomory cuts has the advantage that the sample value is always an integer point and that this point may also satisfy the new constraint. However, due to the technique of maintaining witnesses explained above, we would not perform a feasibility test in such cases and then the previously added cuts may be redundant, possibly resulting in an accumulation of a large number of cuts. If the parameters may be negative, then the same big parameter trick used in the main tableau is applied to the context. This big parameter is of course unrelated to the big parameter from the main tableau. Note that it is not a requirement for this parameter to be ``big'', but it does allow for some code reuse in {\tt isl}. In {\tt PipLib}, the extra parameter is not ``big'', but this may be because the big parameter of the main tableau also appears in the context tableau. Finally, it was reported by \shortciteN{Galea2009personal}, who worked on a parametric integer programming implementation in {\tt PPL} \shortcite{PPL}, that it is beneficial to add cuts for \emph{all} rational coordinates in the context tableau. Based on this report, the initial {\tt isl} implementation was adapted accordingly. \subsubsection{Generalized Basis Reduction}\label{s:GBR} The default algorithm used in {\tt isl} for feasibility checking is generalized basis reduction \shortcite{Cook1991implementation}. This algorithm is also used in the {\tt barvinok} implementation. The algorithm is fairly robust, but it has some overhead. We therefore try to avoid calling the algorithm in easy cases. In particular, we incrementally keep track of points for which the entire unit hypercube positioned at that point lies in the context. This set is described by translates of the constraints of the context and if (rationally) non-empty, any rational point in the set can be rounded up to yield an integer point in the context. A restriction of the algorithm is that it only works on bounded sets. The affine hull of the recession cone therefore needs to be projected out first. As soon as the algorithm is invoked, we then also incrementally keep track of this recession cone. The reduced basis found by one call of the algorithm is also reused as initial basis for the next call. Some problems lead to the introduction of many integer divisions. Within a given context, some of these integer divisions may be equal to each other, even if the expressions are not identical, or they may be equal to some affine combination of other variables. To detect such cases, we compute the affine hull of the context each time a new integer division is added. The algorithm used for computing this affine hull is that of \shortciteN{Karr1976affine}, while the points used in this algorithm are obtained by performing integer feasibility checks on that part of the context outside the current approximation of the affine hull. The list of witnesses is used to construct an initial approximation of the hull, while any extra points found during the construction of the hull is added to this list. Any equality found in this way that expresses an integer division as an \emph{integer} affine combination of other variables is propagated to the main tableau, where it is used to eliminate that integer division. \subsection{Experiments} \autoref{t:comparison} compares the execution times of {\tt isl} (with both types of context tableau) on some more difficult instances to those of other tools, run on an Intel Xeon W3520 @ 2.66GHz. Easier problems such as the test cases distributed with {\tt Pip\-Lib} can be solved so quickly that we would only be measuring overhead such as input/output and conversions and not the running time of the actual algorithm. We compare the following versions: {\tt piplib-1.4.0-5-g0132fd9}, {\tt barvinok-0.32.1-73-gc5d7751}, {\tt isl-0.05.1-82-g3a37260} and {\tt PPL} version 0.11.2. The first test case is the following dependence analysis problem originating from the Phideo project \shortcite{Verhaegh1995PhD} that was communicated to us by Bart Kienhuis: \begin{lstlisting}[flexiblecolumns=true,breaklines=true]{} lexmax { [j1,j2] -> [i1,i2,i3,i4,i5,i6,i7,i8,i9,i10] : 1 <= i1,j1 <= 8 and 1 <= i2,i3,i4,i5,i6,i7,i8,i9,i10 <= 2 and 1 <= j2 <= 128 and i1-1 = j1-1 and i2-1+2*i3-2+4*i4-4+8*i5-8+16*i6-16+32*i7-32+64*i8-64+128*i9-128+256*i10-256=3*j2-3+66 }; \end{lstlisting} This problem was the main inspiration for some of the optimizations in \autoref{s:GBR}. The second group of test cases are projections used during counting. The first nine of these come from \shortciteN{Seghir2006minimizing}. The remaining two come from \shortciteN{Verdoolaege2005experiences} and were used to drive the first, Gomory cuts based, implementation in {\tt isl}. The third and final group of test cases are borrowed from \shortciteN{Bygde2010licentiate} and inspired the offline symmetry detection of \autoref{s:offline}. Without symmetry detection, the running times are 11s and 5.9s. All running times of {\tt barvinok} and {\tt isl} include a conversion to disjunctive normal form. Without this conversion, the final two cases can be solved in 0.07s and 0.21s. The {\tt PipLib} implementation has some fixed limits and will sometimes report the problem to be too complex (TC), while on some other problems it will run out of memory (OOM). The {\tt barvinok} implementation does not support problems with a non-trivial lineality space (line) nor maximization problems (max). The Gomory cuts based {\tt isl} implementation was terminated after 1000 minutes on the first problem. The gbr version introduces some overhead on some of the easier problems, but is overall the clear winner. \begin{table} \begin{center} \begin{tabular}{lrrrrr} & {\tt PipLib} & {\tt barvinok} & {\tt isl} cut & {\tt isl} gbr & {\tt PPL} \\ \hline \hline % bart.pip Phideo & TC & 793m & $>$999m & 2.7s & 372m \\ \hline e1 & 0.33s & 3.5s & 0.08s & 0.11s & 0.18s \\ e3 & 0.14s & 0.13s & 0.10s & 0.10s & 0.17s \\ e4 & 0.24s & 9.1s & 0.09s & 0.11s & 0.70s \\ e5 & 0.12s & 6.0s & 0.06s & 0.14s & 0.17s \\ e6 & 0.10s & 6.8s & 0.17s & 0.08s & 0.21s \\ e7 & 0.03s & 0.27s & 0.04s & 0.04s & 0.03s \\ e8 & 0.03s & 0.18s & 0.03s & 0.04s & 0.01s \\ e9 & OOM & 70m & 2.6s & 0.94s & 22s \\ vd & 0.04s & 0.10s & 0.03s & 0.03s & 0.03s \\ bouleti & 0.25s & line & 0.06s & 0.06s & 0.15s \\ difficult & OOM & 1.3s & 1.7s & 0.33s & 1.4s \\ \hline cnt/sum & TC & max & 2.2s & 2.2s & OOM \\ jcomplex & TC & max & 3.7s & 3.9s & OOM \\ \end{tabular} \caption{Comparison of Execution Times} \label{t:comparison} \end{center} \end{table} \subsection{Online Symmetry Detection}\label{s:online} Manual experiments on small instances of the problems of \shortciteN{Bygde2010licentiate} and an analysis of the results by the approximate MPA method developed by \shortciteN{Bygde2010licentiate} have revealed that these problems contain many more symmetries than can be detected using the offline method of \autoref{s:offline}. In this section, we present an online detection mechanism that has not been implemented yet, but that has shown promising results in manual applications. Let us first consider what happens when we do not perform offline symmetry detection. At some point, one of the $b_i(\vec p) + \sp {\vec a} {\vec x} \ge 0$ constraints, say the $j$th constraint, appears as a column variable, say $c_1$, while the other constraints are represented as rows of the form $b_i(\vec p) - b_j(\vec p) + c$. The context is then split according to the relative order of $b_j(\vec p)$ and one of the remaining $b_i(\vec p)$. The offline method avoids this split by replacing all $b_i(\vec p)$ by a single newly introduced parameter that represents the minimum of these $b_i(\vec p)$. In the online method the split is similarly avoided by the introduction of a new parameter. In particular, a new parameter is introduced that represents $\left| b_j(\vec p) - b_i(\vec p) \right|_+ = \max(b_j(\vec p) - b_i(\vec p), 0)$. In general, let $r = b(\vec p) + \sp {\vec a} {\vec c}$ be a row of the tableau such that the sign of $b(\vec p)$ is indeterminate and such that exactly one of the elements of $\vec a$ is a $1$, while all remaining elements are non-positive. That is, $r = b(\vec p) + c_j - f$ with $f = -\sum_{i\ne j} a_i c_i \ge 0$. We introduce a new parameter $t$ with context constraints $t \ge -b(\vec p)$ and $t \ge 0$ and replace the column variable $c_j$ by $c' + t$. The row $r$ is now equal to $b(\vec p) + t + c' - f$. The constant term of this row is always non-negative because any negative value of $b(\vec p)$ is compensated by $t \ge -b(\vec p)$ while and non-negative value remains non-negative because $t \ge 0$. We need to show that this transformation does not eliminate any valid solutions and that it does not introduce any spurious solutions. Given a valid solution for the original problem, we need to find a non-negative value of $c'$ satisfying the constraints. If $b(\vec p) \ge 0$, we can take $t = 0$ so that $c' = c_j - t = c_j \ge 0$. If $b(\vec p) < 0$, we can take $t = -b(\vec p)$. Since $r = b(\vec p) + c_j - f \ge 0$ and $f \ge 0$, we have $c' = c_j + b(\vec p) \ge 0$. Note that these choices amount to plugging in $t = \left|-b(\vec p)\right|_+ = \max(-b(\vec p), 0)$. Conversely, given a solution to the new problem, we need to find a non-negative value of $c_j$, but this is easy since $c_j = c' + t$ and both of these are non-negative. Plugging in $t = \max(-b(\vec p), 0)$ can be performed as in \autoref{s:post}, but, as in the case of offline symmetry detection, it may be better to provide a direct representation for such expressions in the internal representation of sets and relations or at least in a quast-like output format. \section{Coalescing}\label{s:coalescing} See \shortciteN{Verdoolaege2009isl}, for now. More details will be added later. \section{Transitive Closure} \subsection{Introduction} \begin{definition}[Power of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation and $k \in \Z_{\ge 1}$ a positive number, then power $k$ of relation $R$ is defined as \begin{equation} \label{eq:transitive:power} R^k \coloneqq \begin{cases} R & \text{if $k = 1$} \\ R \circ R^{k-1} & \text{if $k \ge 2$} . \end{cases} \end{equation} \end{definition} \begin{definition}[Transitive Closure of a Relation] Let $R \in \Z^n \to 2^{\Z^{d+d}}$ be a relation, then the transitive closure $R^+$ of $R$ is the union of all positive powers of $R$, $$ R^+ \coloneqq \bigcup_{k \ge 1} R^k . $$ \end{definition} Alternatively, the transitive closure may be defined inductively as \begin{equation} \label{eq:transitive:inductive} R^+ \coloneqq R \cup \left(R \circ R^+\right) . \end{equation} Since the transitive closure of a polyhedral relation may no longer be a polyhedral relation \shortcite{Kelly1996closure}, we can, in the general case, only compute an approximation of the transitive closure. Whereas \shortciteN{Kelly1996closure} compute underapproximations, we, like \shortciteN{Beletska2009}, compute overapproximations. That is, given a relation $R$, we will compute a relation $T$ such that $R^+ \subseteq T$. Of course, we want this approximation to be as close as possible to the actual transitive closure $R^+$ and we want to detect the cases where the approximation is exact, i.e., where $T = R^+$. For computing an approximation of the transitive closure of $R$, we follow the same general strategy as \shortciteN{Beletska2009} and first compute an approximation of $R^k$ for $k \ge 1$ and then project out the parameter $k$ from the resulting relation. \begin{example} As a trivial example, consider the relation $R = \{\, x \to x + 1 \,\}$. The $k$th power of this map for arbitrary $k$ is $$ R^k = k \mapsto \{\, x \to x + k \mid k \ge 1 \,\} . $$ The transitive closure is then $$ \begin{aligned} R^+ & = \{\, x \to y \mid \exists k \in \Z_{\ge 1} : y = x + k \,\} \\ & = \{\, x \to y \mid y \ge x + 1 \,\} . \end{aligned} $$ \end{example} \subsection{Computing an Approximation of $R^k$} \label{s:power} There are some special cases where the computation of $R^k$ is very easy. One such case is that where $R$ does not compose with itself, i.e., $R \circ R = \emptyset$ or $\domain R \cap \range R = \emptyset$. In this case, $R^k$ is only non-empty for $k=1$ where it is equal to $R$ itself. In general, it is impossible to construct a closed form of $R^k$ as a polyhedral relation. We will therefore need to make some approximations. As a first approximations, we will consider each of the basic relations in $R$ as simply adding one or more offsets to a domain element to arrive at an image element and ignore the fact that some of these offsets may only be applied to some of the domain elements. That is, we will only consider the difference set $\Delta\,R$ of the relation. In particular, we will first construct a collection $P$ of paths that move through a total of $k$ offsets and then intersect domain and range of this collection with those of $R$. That is, \begin{equation} \label{eq:transitive:approx} K = P \cap \left(\domain R \to \range R\right) , \end{equation} with \begin{equation} \label{eq:transitive:path} P = \vec s \mapsto \{\, \vec x \to \vec y \mid \exists k_i \in \Z_{\ge 0}, \vec\delta_i \in k_i \, \Delta_i(\vec s) : \vec y = \vec x + \sum_i \vec\delta_i \wedge \sum_i k_i = k > 0 \,\} \end{equation} and with $\Delta_i$ the basic sets that compose the difference set $\Delta\,R$. Note that the number of basic sets $\Delta_i$ need not be the same as the number of basic relations in $R$. Also note that since addition is commutative, it does not matter in which order we add the offsets and so we are allowed to group them as we did in \eqref{eq:transitive:path}. If all the $\Delta_i$s are singleton sets $\Delta_i = \{\, \vec \delta_i \,\}$ with $\vec \delta_i \in \Z^d$, then \eqref{eq:transitive:path} simplifies to \begin{equation} \label{eq:transitive:singleton} P = \{\, \vec x \to \vec y \mid \exists k_i \in \Z_{\ge 0} : \vec y = \vec x + \sum_i k_i \, \vec \delta_i \wedge \sum_i k_i = k > 0 \,\} \end{equation} and then the approximation computed in \eqref{eq:transitive:approx} is essentially the same as that of \shortciteN{Beletska2009}. If some of the $\Delta_i$s are not singleton sets or if some of $\vec \delta_i$s are parametric, then we need to resort to further approximations. To ease both the exposition and the implementation, we will for the remainder of this section work with extended offsets $\Delta_i' = \Delta_i \times \{\, 1 \,\}$. That is, each offset is extended with an extra coordinate that is set equal to one. The paths constructed by summing such extended offsets have the length encoded as the difference of their final coordinates. The path $P'$ can then be decomposed into paths $P_i'$, one for each $\Delta_i$, \begin{equation} \label{eq:transitive:decompose} P' = \left( (P_m' \cup \identity) \circ \cdots \circ (P_2' \cup \identity) \circ (P_1' \cup \identity) \right) \cap \{\, \vec x' \to \vec y' \mid y_{d+1} - x_{d+1} = k > 0 \,\} , \end{equation} with $$ P_i' = \vec s \mapsto \{\, \vec x' \to \vec y' \mid \exists k \in \Z_{\ge 1}, \vec \delta \in k \, \Delta_i'(\vec s) : \vec y' = \vec x' + \vec \delta \,\} . $$ Note that each $P_i'$ contains paths of length at least one. We therefore need to take the union with the identity relation when composing the $P_i'$s to allow for paths that do not contain any offsets from one or more $\Delta_i'$. The path that consists of only identity relations is removed by imposing the constraint $y_{d+1} - x_{d+1} > 0$. Taking the union with the identity relation means that that the relations we compose in \eqref{eq:transitive:decompose} each consist of two basic relations. If there are $m$ disjuncts in the input relation, then a direct application of the composition operation may therefore result in a relation with $2^m$ disjuncts, which is prohibitively expensive. It is therefore crucial to apply coalescing (\autoref{s:coalescing}) after each composition. Let us now consider how to compute an overapproximation of $P_i'$. Those that correspond to singleton $\Delta_i$s are grouped together and handled as in \eqref{eq:transitive:singleton}. Note that this is just an optimization. The procedure described below would produce results that are at least as accurate. For simplicity, we first assume that no constraint in $\Delta_i'$ involves any existentially quantified variables. We will return to existentially quantified variables at the end of this section. Without existentially quantified variables, we can classify the constraints of $\Delta_i'$ as follows \begin{enumerate} \item non-parametric constraints \begin{equation} \label{eq:transitive:non-parametric} A_1 \vec x + \vec c_1 \geq \vec 0 \end{equation} \item purely parametric constraints \begin{equation} \label{eq:transitive:parametric} B_2 \vec s + \vec c_2 \geq \vec 0 \end{equation} \item negative mixed constraints \begin{equation} \label{eq:transitive:mixed} A_3 \vec x + B_3 \vec s + \vec c_3 \geq \vec 0 \end{equation} such that for each row $j$ and for all $\vec s$, $$ \Delta_i'(\vec s) \cap \{\, \vec \delta' \mid B_{3,j} \vec s + c_{3,j} > 0 \,\} = \emptyset $$ \item positive mixed constraints $$ A_4 \vec x + B_4 \vec s + \vec c_4 \geq \vec 0 $$ such that for each row $j$, there is at least one $\vec s$ such that $$ \Delta_i'(\vec s) \cap \{\, \vec \delta' \mid B_{4,j} \vec s + c_{4,j} > 0 \,\} \ne \emptyset $$ \end{enumerate} We will use the following approximation $Q_i$ for $P_i'$: \begin{equation} \label{eq:transitive:Q} \begin{aligned} Q_i = \vec s \mapsto \{\, \vec x' \to \vec y' \mid {} & \exists k \in \Z_{\ge 1}, \vec f \in \Z^d : \vec y' = \vec x' + (\vec f, k) \wedge {} \\ & A_1 \vec f + k \vec c_1 \geq \vec 0 \wedge B_2 \vec s + \vec c_2 \geq \vec 0 \wedge A_3 \vec f + B_3 \vec s + \vec c_3 \geq \vec 0 \,\} . \end{aligned} \end{equation} To prove that $Q_i$ is indeed an overapproximation of $P_i'$, we need to show that for every $\vec s \in \Z^n$, for every $k \in \Z_{\ge 1}$ and for every $\vec f \in k \, \Delta_i(\vec s)$ we have that $(\vec f, k)$ satisfies the constraints in \eqref{eq:transitive:Q}. If $\Delta_i(\vec s)$ is non-empty, then $\vec s$ must satisfy the constraints in \eqref{eq:transitive:parametric}. Each element $(\vec f, k) \in k \, \Delta_i'(\vec s)$ is a sum of $k$ elements $(\vec f_j, 1)$ in $\Delta_i'(\vec s)$. Each of these elements satisfies the constraints in \eqref{eq:transitive:non-parametric}, i.e., $$ \left[ \begin{matrix} A_1 & \vec c_1 \end{matrix} \right] \left[ \begin{matrix} \vec f_j \\ 1 \end{matrix} \right] \ge \vec 0 . $$ The sum of these elements therefore satisfies the same set of inequalities, i.e., $A_1 \vec f + k \vec c_1 \geq \vec 0$. Finally, the constraints in \eqref{eq:transitive:mixed} are such that for any $\vec s$ in the parameter domain of $\Delta$, we have $-\vec r(\vec s) \coloneqq B_3 \vec s + \vec c_3 \le \vec 0$, i.e., $A_3 \vec f_j \ge \vec r(\vec s) \ge \vec 0$ and therefore also $A_3 \vec f \ge \vec r(\vec s)$. Note that if there are no mixed constraints and if the rational relaxation of $\Delta_i(\vec s)$, i.e., $\{\, \vec x \in \Q^d \mid A_1 \vec x + \vec c_1 \ge \vec 0\,\}$, has integer vertices, then the approximation is exact, i.e., $Q_i = P_i'$. In this case, the vertices of $\Delta'_i(\vec s)$ generate the rational cone $\{\, \vec x' \in \Q^{d+1} \mid \left[ \begin{matrix} A_1 & \vec c_1 \end{matrix} \right] \vec x' \,\}$ and therefore $\Delta'_i(\vec s)$ is a Hilbert basis of this cone \shortcite[Theorem~16.4]{Schrijver1986}. Note however that, as pointed out by \shortciteN{DeSmet2010personal}, if there \emph{are} any mixed constraints, then the above procedure may not compute the most accurate affine approximation of $k \, \Delta_i(\vec s)$ with $k \ge 1$. In particular, we only consider the negative mixed constraints that happen to appear in the description of $\Delta_i(\vec s)$, while we should instead consider \emph{all} valid such constraints. It is also sufficient to consider those constraints because any constraint that is valid for $k \, \Delta_i(\vec s)$ is also valid for $1 \, \Delta_i(\vec s) = \Delta_i(\vec s)$. Take therefore any constraint $\spv a x + \spv b s + c \ge 0$ valid for $\Delta_i(\vec s)$. This constraint is also valid for $k \, \Delta_i(\vec s)$ iff $k \, \spv a x + \spv b s + c \ge 0$. If $\spv b s + c$ can attain any positive value, then $\spv a x$ may be negative for some elements of $\Delta_i(\vec s)$. We then have $k \, \spv a x < \spv a x$ for $k > 1$ and so the constraint is not valid for $k \, \Delta_i(\vec s)$. We therefore need to impose $\spv b s + c \le 0$ for all values of $\vec s$ such that $\Delta_i(\vec s)$ is non-empty, i.e., $\vec b$ and $c$ need to be such that $- \spv b s - c \ge 0$ is a valid constraint of $\Delta_i(\vec s)$. That is, $(\vec b, c)$ are the opposites of the coefficients of a valid constraint of $\Delta_i(\vec s)$. The approximation of $k \, \Delta_i(\vec s)$ can therefore be obtained using three applications of Farkas' lemma. The first obtains the coefficients of constraints valid for $\Delta_i(\vec s)$. The second obtains the coefficients of constraints valid for the projection of $\Delta_i(\vec s)$ onto the parameters. The opposite of the second set is then computed and intersected with the first set. The result is the set of coefficients of constraints valid for $k \, \Delta_i(\vec s)$. A final application of Farkas' lemma is needed to obtain the approximation of $k \, \Delta_i(\vec s)$ itself. \begin{example} Consider the relation $$ n \to \{\, (x, y) \to (1 + x, 1 - n + y) \mid n \ge 2 \,\} . $$ The difference set of this relation is $$ \Delta = n \to \{\, (1, 1 - n) \mid n \ge 2 \,\} . $$ Using our approach, we would only consider the mixed constraint $y - 1 + n \ge 0$, leading to the following approximation of the transitive closure: $$ n \to \{\, (x, y) \to (o_0, o_1) \mid n \ge 2 \wedge o_1 \le 1 - n + y \wedge o_0 \ge 1 + x \,\} . $$ If, instead, we apply Farkas's lemma to $\Delta$, i.e., \begin{verbatim} D := [n] -> { [1, 1 - n] : n >= 2 }; CD := coefficients D; CD; \end{verbatim} we obtain \begin{verbatim} { rat: coefficients[[c_cst, c_n] -> [i2, i3]] : i3 <= c_n and i3 <= c_cst + 2c_n + i2 } \end{verbatim} The pure-parametric constraints valid for $\Delta$, \begin{verbatim} P := { [a,b] -> [] }(D); CP := coefficients P; CP; \end{verbatim} are \begin{verbatim} { rat: coefficients[[c_cst, c_n] -> []] : c_n >= 0 and 2c_n >= -c_cst } \end{verbatim} Negating these coefficients and intersecting with \verb+CD+, \begin{verbatim} NCP := { rat: coefficients[[a,b] -> []] -> coefficients[[-a,-b] -> []] }(CP); CK := wrap((unwrap CD) * (dom (unwrap NCP))); CK; \end{verbatim} we obtain \begin{verbatim} { rat: [[c_cst, c_n] -> [i2, i3]] : i3 <= c_n and i3 <= c_cst + 2c_n + i2 and c_n <= 0 and 2c_n <= -c_cst } \end{verbatim} The approximation for $k\,\Delta$, \begin{verbatim} K := solutions CK; K; \end{verbatim} is then \begin{verbatim} [n] -> { rat: [i0, i1] : i1 <= -i0 and i0 >= 1 and i1 <= 2 - n - i0 } \end{verbatim} Finally, the computed approximation for $R^+$, \begin{verbatim} T := unwrap({ [dx,dy] -> [[x,y] -> [x+dx,y+dy]] }(K)); R := [n] -> { [x,y] -> [x+1,y+1-n] : n >= 2 }; T := T * ((dom R) -> (ran R)); T; \end{verbatim} is \begin{verbatim} [n] -> { [x, y] -> [o0, o1] : o1 <= x + y - o0 and o0 >= 1 + x and o1 <= 2 - n + x + y - o0 and n >= 2 } \end{verbatim} \end{example} Existentially quantified variables can be handled by classifying them into variables that are uniquely determined by the parameters, variables that are independent of the parameters and others. The first set can be treated as parameters and the second as variables. Constraints involving the other existentially quantified variables are removed. \begin{example} Consider the relation $$ R = n \to \{\, x \to y \mid \exists \, \alpha_0, \alpha_1: 7\alpha_0 = -2 + n \wedge 5\alpha_1 = -1 - x + y \wedge y \ge 6 + x \,\} . $$ The difference set of this relation is $$ \Delta = \Delta \, R = n \to \{\, x \mid \exists \, \alpha_0, \alpha_1: 7\alpha_0 = -2 + n \wedge 5\alpha_1 = -1 + x \wedge x \ge 6 \,\} . $$ The existentially quantified variables can be defined in terms of the parameters and variables as $$ \alpha_0 = \floor{\frac{-2 + n}7} \qquad \text{and} \qquad \alpha_1 = \floor{\frac{-1 + x}5} . $$ $\alpha_0$ can therefore be treated as a parameter, while $\alpha_1$ can be treated as a variable. This in turn means that $7\alpha_0 = -2 + n$ can be treated as a purely parametric constraint, while the other two constraints are non-parametric. The corresponding $Q$~\eqref{eq:transitive:Q} is therefore $$ \begin{aligned} n \to \{\, (x,z) \to (y,w) \mid \exists\, \alpha_0, \alpha_1, k, f : {} & k \ge 1 \wedge y = x + f \wedge w = z + k \wedge {} \\ & 7\alpha_0 = -2 + n \wedge 5\alpha_1 = -k + x \wedge x \ge 6 k \,\} . \end{aligned} $$ Projecting out the final coordinates encoding the length of the paths, results in the exact transitive closure $$ R^+ = n \to \{\, x \to y \mid \exists \, \alpha_0, \alpha_1: 7\alpha_1 = -2 + n \wedge 6\alpha_0 \ge -x + y \wedge 5\alpha_0 \le -1 - x + y \,\} . $$ \end{example} The fact that we ignore some impure constraints clearly leads to a loss of accuracy. In some cases, some of this loss can be recovered by not considering the parameters in a special way. That is, instead of considering the set $$ \Delta = \diff R = \vec s \mapsto \{\, \vec \delta \in \Z^{d} \mid \exists \vec x \to \vec y \in R : \vec \delta = \vec y - \vec x \,\} $$ we consider the set $$ \Delta' = \diff R' = \{\, \vec \delta \in \Z^{n+d} \mid \exists (\vec s, \vec x) \to (\vec s, \vec y) \in R' : \vec \delta = (\vec s - \vec s, \vec y - \vec x) \,\} . $$ The first $n$ coordinates of every element in $\Delta'$ are zero. Projecting out these zero coordinates from $\Delta'$ is equivalent to projecting out the parameters in $\Delta$. The result is obviously a superset of $\Delta$, but all its constraints are of type \eqref{eq:transitive:non-parametric} and they can therefore all be used in the construction of $Q_i$. \begin{example} Consider the relation $$ % [n] -> { [x, y] -> [1 + x, 1 - n + y] | n >= 2 } R = n \to \{\, (x, y) \to (1 + x, 1 - n + y) \mid n \ge 2 \,\} . $$ We have $$ \diff R = n \to \{\, (1, 1 - n) \mid n \ge 2 \,\} $$ and so, by treating the parameters in a special way, we obtain the following approximation for $R^+$: $$ n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge y' \le 1 - n + y \wedge x' \ge 1 + x \,\} . $$ If we consider instead $$ R' = \{\, (n, x, y) \to (n, 1 + x, 1 - n + y) \mid n \ge 2 \,\} $$ then $$ \diff R' = \{\, (0, 1, y) \mid y \le -1 \,\} $$ and we obtain the approximation $$ n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge x' \ge 1 + x \wedge y' \le x + y - x' \,\} . $$ If we consider both $\diff R$ and $\diff R'$, then we obtain $$ n \to \{\, (x, y) \to (x', y') \mid n \ge 2 \wedge y' \le 1 - n + y \wedge x' \ge 1 + x \wedge y' \le x + y - x' \,\} . $$ Note, however, that this is not the most accurate affine approximation that can be obtained. That would be $$ n \to \{\, (x, y) \to (x', y') \mid y' \le 2 - n + x + y - x' \wedge n \ge 2 \wedge x' \ge 1 + x \,\} . $$ \end{example} \subsection{Checking Exactness} The approximation $T$ for the transitive closure $R^+$ can be obtained by projecting out the parameter $k$ from the approximation $K$ \eqref{eq:transitive:approx} of the power $R^k$. Since $K$ is an overapproximation of $R^k$, $T$ will also be an overapproximation of $R^+$. To check whether the results are exact, we need to consider two cases depending on whether $R$ is {\em cyclic}, where $R$ is defined to be cyclic if $R^+$ maps any element to itself, i.e., $R^+ \cap \identity \ne \emptyset$. If $R$ is acyclic, then the inductive definition of \eqref{eq:transitive:inductive} is equivalent to its completion, i.e., $$ R^+ = R \cup \left(R \circ R^+\right) $$ is a defining property. Since $T$ is known to be an overapproximation, we only need to check whether $$ T \subseteq R \cup \left(R \circ T\right) . $$ This is essentially Theorem~5 of \shortciteN{Kelly1996closure}. The only difference is that they only consider lexicographically forward relations, a special case of acyclic relations. If, on the other hand, $R$ is cyclic, then we have to resort to checking whether the approximation $K$ of the power is exact. Note that $T$ may be exact even if $K$ is not exact, so the check is sound, but incomplete. To check exactness of the power, we simply need to check \eqref{eq:transitive:power}. Since again $K$ is known to be an overapproximation, we only need to check whether $$ \begin{aligned} K'|_{y_{d+1} - x_{d+1} = 1} & \subseteq R' \\ K'|_{y_{d+1} - x_{d+1} \ge 2} & \subseteq R' \circ K'|_{y_{d+1} - x_{d+1} \ge 1} , \end{aligned} $$ where $R' = \{\, \vec x' \to \vec y' \mid \vec x \to \vec y \in R \wedge y_{d+1} - x_{d+1} = 1\,\}$, i.e., $R$ extended with path lengths equal to 1. All that remains is to explain how to check the cyclicity of $R$. Note that the exactness on the power is always sound, even in the acyclic case, so we only need to be careful that we find all cyclic cases. Now, if $R$ is cyclic, i.e., $R^+ \cap \identity \ne \emptyset$, then, since $T$ is an overapproximation of $R^+$, also $T \cap \identity \ne \emptyset$. This in turn means that $\Delta \, K'$ contains a point whose first $d$ coordinates are zero and whose final coordinate is positive. In the implementation we currently perform this test on $P'$ instead of $K'$. Note that if $R^+$ is acyclic and $T$ is not, then the approximation is clearly not exact and the approximation of the power $K$ will not be exact either. \subsection{Decomposing $R$ into strongly connected components} If the input relation $R$ is a union of several basic relations that can be partially ordered then the accuracy of the approximation may be improved by computing an approximation of each strongly connected components separately. For example, if $R = R_1 \cup R_2$ and $R_1 \circ R_2 = \emptyset$, then we know that any path that passes through $R_2$ cannot later pass through $R_1$, i.e., \begin{equation} \label{eq:transitive:components} R^+ = R_1^+ \cup R_2^+ \cup \left(R_2^+ \circ R_1^+\right) . \end{equation} We can therefore compute (approximations of) transitive closures of $R_1$ and $R_2$ separately. Note, however, that the condition $R_1 \circ R_2 = \emptyset$ is actually too strong. If $R_1 \circ R_2$ is a subset of $R_2 \circ R_1$ then we can reorder the segments in any path that moves through both $R_1$ and $R_2$ to first move through $R_1$ and then through $R_2$. This idea can be generalized to relations that are unions of more than two basic relations by constructing the strongly connected components in the graph with as vertices the basic relations and an edge between two basic relations $R_i$ and $R_j$ if $R_i$ needs to follow $R_j$ in some paths. That is, there is an edge from $R_i$ to $R_j$ iff \begin{equation} \label{eq:transitive:edge} R_i \circ R_j \not\subseteq R_j \circ R_i . \end{equation} The components can be obtained from the graph by applying Tarjan's algorithm \shortcite{Tarjan1972}. In practice, we compute the (extended) powers $K_i'$ of each component separately and then compose them as in \eqref{eq:transitive:decompose}. Note, however, that in this case the order in which we apply them is important and should correspond to a topological ordering of the strongly connected components. Simply applying Tarjan's algorithm will produce topologically sorted strongly connected components. The graph on which Tarjan's algorithm is applied is constructed on-the-fly. That is, whenever the algorithm checks if there is an edge between two vertices, we evaluate \eqref{eq:transitive:edge}. The exactness check is performed on each component separately. If the approximation turns out to be inexact for any of the components, then the entire result is marked inexact and the exactness check is skipped on the components that still need to be handled. It should be noted that \eqref{eq:transitive:components} is only valid for exact transitive closures. If overapproximations are computed in the right hand side, then the result will still be an overapproximation of the left hand side, but this result may not be transitively closed. If we only separate components based on the condition $R_i \circ R_j = \emptyset$, then there is no problem, as this condition will still hold on the computed approximations of the transitive closures. If, however, we have exploited \eqref{eq:transitive:edge} during the decomposition and if the result turns out not to be exact, then we check whether the result is transitively closed. If not, we recompute the transitive closure, skipping the decomposition. Note that testing for transitive closedness on the result may be fairly expensive, so we may want to make this check configurable. \begin{figure} \begin{center} \begin{tikzpicture}[x=0.5cm,y=0.5cm,>=stealth,shorten >=1pt] \foreach \x in {1,...,10}{ \foreach \y in {1,...,10}{ \draw[->] (\x,\y) -- (\x,\y+1); } } \foreach \x in {1,...,20}{ \foreach \y in {5,...,15}{ \draw[->] (\x,\y) -- (\x+1,\y); } } \end{tikzpicture} \end{center} \caption{The relation from \autoref{ex:closure4}} \label{f:closure4} \end{figure} \begin{example} \label{ex:closure4} Consider the relation in example {\tt closure4} that comes with the Omega calculator~\shortcite{Omega_calc}, $R = R_1 \cup R_2$, with $$ \begin{aligned} R_1 & = \{\, (x,y) \to (x,y+1) \mid 1 \le x,y \le 10 \,\} \\ R_2 & = \{\, (x,y) \to (x+1,y) \mid 1 \le x \le 20 \wedge 5 \le y \le 15 \,\} . \end{aligned} $$ This relation is shown graphically in \autoref{f:closure4}. We have $$ \begin{aligned} R_1 \circ R_2 &= \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 9 \wedge 5 \le y \le 10 \,\} \\ R_2 \circ R_1 &= \{\, (x,y) \to (x+1,y+1) \mid 1 \le x \le 10 \wedge 4 \le y \le 10 \,\} . \end{aligned} $$ Clearly, $R_1 \circ R_2 \subseteq R_2 \circ R_1$ and so $$ \left( R_1 \cup R_2 \right)^+ = \left(R_2^+ \circ R_1^+\right) \cup R_1^+ \cup R_2^+ . $$ \end{example} \begin{figure} \newcounter{n} \newcounter{t1} \newcounter{t2} \newcounter{t3} \newcounter{t4} \begin{center} \begin{tikzpicture}[>=stealth,shorten >=1pt] \setcounter{n}{7} \foreach \i in {1,...,\value{n}}{ \foreach \j in {1,...,\value{n}}{ \setcounter{t1}{2 * \j - 4 - \i + 1} \setcounter{t2}{\value{n} - 3 - \i + 1} \setcounter{t3}{2 * \i - 1 - \j + 1} \setcounter{t4}{\value{n} - \j + 1} \ifnum\value{t1}>0\ifnum\value{t2}>0 \ifnum\value{t3}>0\ifnum\value{t4}>0 \draw[thick,->] (\i,\j) to[out=20] (\i+3,\j); \fi\fi\fi\fi \setcounter{t1}{2 * \j - 1 - \i + 1} \setcounter{t2}{\value{n} - \i + 1} \setcounter{t3}{2 * \i - 4 - \j + 1} \setcounter{t4}{\value{n} - 3 - \j + 1} \ifnum\value{t1}>0\ifnum\value{t2}>0 \ifnum\value{t3}>0\ifnum\value{t4}>0 \draw[thick,->] (\i,\j) to[in=-20,out=20] (\i,\j+3); \fi\fi\fi\fi \setcounter{t1}{2 * \j - 1 - \i + 1} \setcounter{t2}{\value{n} - 1 - \i + 1} \setcounter{t3}{2 * \i - 1 - \j + 1} \setcounter{t4}{\value{n} - 1 - \j + 1} \ifnum\value{t1}>0\ifnum\value{t2}>0 \ifnum\value{t3}>0\ifnum\value{t4}>0 \draw[thick,->] (\i,\j) to (\i+1,\j+1); \fi\fi\fi\fi } } \end{tikzpicture} \end{center} \caption{The relation from \autoref{ex:decomposition}} \label{f:decomposition} \end{figure} \begin{example} \label{ex:decomposition} Consider the relation on the right of \shortciteN[Figure~2]{Beletska2009}, reproduced in \autoref{f:decomposition}. The relation can be described as $R = R_1 \cup R_2 \cup R_3$, with $$ \begin{aligned} R_1 &= n \mapsto \{\, (i,j) \to (i+3,j) \mid i \le 2 j - 4 \wedge i \le n - 3 \wedge j \le 2 i - 1 \wedge j \le n \,\} \\ R_2 &= n \mapsto \{\, (i,j) \to (i,j+3) \mid i \le 2 j - 1 \wedge i \le n \wedge j \le 2 i - 4 \wedge j \le n - 3 \,\} \\ R_3 &= n \mapsto \{\, (i,j) \to (i+1,j+1) \mid i \le 2 j - 1 \wedge i \le n - 1 \wedge j \le 2 i - 1 \wedge j \le n - 1\,\} . \end{aligned} $$ The figure shows this relation for $n = 7$. Both $R_3 \circ R_1 \subseteq R_1 \circ R_3$ and $R_3 \circ R_2 \subseteq R_2 \circ R_3$, which the reader can verify using the {\tt iscc} calculator: \begin{verbatim} R1 := [n] -> { [i,j] -> [i+3,j] : i <= 2 j - 4 and i <= n - 3 and j <= 2 i - 1 and j <= n }; R2 := [n] -> { [i,j] -> [i,j+3] : i <= 2 j - 1 and i <= n and j <= 2 i - 4 and j <= n - 3 }; R3 := [n] -> { [i,j] -> [i+1,j+1] : i <= 2 j - 1 and i <= n - 1 and j <= 2 i - 1 and j <= n - 1 }; (R1 . R3) - (R3 . R1); (R2 . R3) - (R3 . R2); \end{verbatim} $R_3$ can therefore be moved forward in any path. For the other two basic relations, we have both $R_2 \circ R_1 \not\subseteq R_1 \circ R_2$ and $R_1 \circ R_2 \not\subseteq R_2 \circ R_1$ and so $R_1$ and $R_2$ form a strongly connected component. By computing the power of $R_3$ and $R_1 \cup R_2$ separately and composing the results, the power of $R$ can be computed exactly using \eqref{eq:transitive:singleton}. As explained by \shortciteN{Beletska2009}, applying the same formula to $R$ directly, without a decomposition, would result in an overapproximation of the power. \end{example} \subsection{Partitioning the domains and ranges of $R$} The algorithm of \autoref{s:power} assumes that the input relation $R$ can be treated as a union of translations. This is a reasonable assumption if $R$ maps elements of a given abstract domain to the same domain. However, if $R$ is a union of relations that map between different domains, then this assumption no longer holds. In particular, when an entire dependence graph is encoded in a single relation, as is done by, e.g., \shortciteN[Section~6.1]{Barthou2000MSE}, then it does not make sense to look at differences between iterations of different domains. Now, arguably, a modified Floyd-Warshall algorithm should be applied to the dependence graph, as advocated by \shortciteN{Kelly1996closure}, with the transitive closure operation only being applied to relations from a given domain to itself. However, it is also possible to detect disjoint domains and ranges and to apply Floyd-Warshall internally. \LinesNumbered \begin{algorithm} \caption{The modified Floyd-Warshall algorithm of \protect\shortciteN{Kelly1996closure}} \label{a:Floyd} \SetKwInput{Input}{Input} \SetKwInput{Output}{Output} \Input{Relations $R_{pq}$, $0 \le p, q < n$} \Output{Updated relations $R_{pq}$ such that each relation $R_{pq}$ contains all indirect paths from $p$ to $q$ in the input graph} % \BlankLine \SetAlgoVlined \DontPrintSemicolon % \For{$r \in [0, n-1]$}{ $R_{rr} \coloneqq R_{rr}^+$ \nllabel{l:Floyd:closure}\; \For{$p \in [0, n-1]$}{ \For{$q \in [0, n-1]$}{ \If{$p \ne r$ or $q \ne r$}{ $R_{pq} \coloneqq R_{pq} \cup \left(R_{rq} \circ R_{pr}\right) \cup \left(R_{rq} \circ R_{rr} \circ R_{pr}\right)$ \nllabel{l:Floyd:update} } } } } \end{algorithm} Let the input relation $R$ be a union of $m$ basic relations $R_i$. Let $D_{2i}$ be the domains of $R_i$ and $D_{2i+1}$ the ranges of $R_i$. The first step is to group overlapping $D_j$ until a partition is obtained. If the resulting partition consists of a single part, then we continue with the algorithm of \autoref{s:power}. Otherwise, we apply Floyd-Warshall on the graph with as vertices the parts of the partition and as edges the $R_i$ attached to the appropriate pairs of vertices. In particular, let there be $n$ parts $P_k$ in the partition. We construct $n^2$ relations $$ R_{pq} \coloneqq \bigcup_{i \text{ s.t. } \domain R_i \subseteq P_p \wedge \range R_i \subseteq P_q} R_i , $$ apply \autoref{a:Floyd} and return the union of all resulting $R_{pq}$ as the transitive closure of $R$. Each iteration of the $r$-loop in \autoref{a:Floyd} updates all relations $R_{pq}$ to include paths that go from $p$ to $r$, possibly stay there for a while, and then go from $r$ to $q$. Note that paths that ``stay in $r$'' include all paths that pass through earlier vertices since $R_{rr}$ itself has been updated accordingly in previous iterations of the outer loop. In principle, it would be sufficient to use the $R_{pr}$ and $R_{rq}$ computed in the previous iteration of the $r$-loop in Line~\ref{l:Floyd:update}. However, from an implementation perspective, it is easier to allow either or both of these to have been updated in the same iteration of the $r$-loop. This may result in duplicate paths, but these can usually be removed by coalescing (\autoref{s:coalescing}) the result of the union in Line~\ref{l:Floyd:update}, which should be done in any case. The transitive closure in Line~\ref{l:Floyd:closure} is performed using a recursive call. This recursive call includes the partitioning step, but the resulting partition will usually be a singleton. The result of the recursive call will either be exact or an overapproximation. The final result of Floyd-Warshall is therefore also exact or an overapproximation. \begin{figure} \begin{center} \begin{tikzpicture}[x=1cm,y=1cm,>=stealth,shorten >=3pt] \foreach \x/\y in {0/0,1/1,3/2} { \fill (\x,\y) circle (2pt); } \foreach \x/\y in {0/1,2/2,3/3} { \draw (\x,\y) circle (2pt); } \draw[->] (0,0) -- (0,1); \draw[->] (0,1) -- (1,1); \draw[->] (2,2) -- (3,2); \draw[->] (3,2) -- (3,3); \draw[->,dashed] (2,2) -- (3,3); \draw[->,dotted] (0,0) -- (1,1); \end{tikzpicture} \end{center} \caption{The relation (solid arrows) on the right of Figure~1 of \protect\shortciteN{Beletska2009} and its transitive closure} \label{f:COCOA:1} \end{figure} \begin{example} Consider the relation on the right of Figure~1 of \shortciteN{Beletska2009}, reproduced in \autoref{f:COCOA:1}. This relation can be described as $$ \begin{aligned} \{\, (x, y) \to (x_2, y_2) \mid {} & (3y = 2x \wedge x_2 = x \wedge 3y_2 = 3 + 2x \wedge x \ge 0 \wedge x \le 3) \vee {} \\ & (x_2 = 1 + x \wedge y_2 = y \wedge x \ge 0 \wedge 3y \ge 2 + 2x \wedge x \le 2 \wedge 3y \le 3 + 2x) \,\} . \end{aligned} $$ Note that the domain of the upward relation overlaps with the range of the rightward relation and vice versa, but that the domain of neither relation overlaps with its own range or the domain of the other relation. The domains and ranges can therefore be partitioned into two parts, $P_0$ and $P_1$, shown as the white and black dots in \autoref{f:COCOA:1}, respectively. Initially, we have $$ \begin{aligned} R_{00} & = \emptyset \\ R_{01} & = \{\, (x, y) \to (x+1, y) \mid (x \ge 0 \wedge 3y \ge 2 + 2x \wedge x \le 2 \wedge 3y \le 3 + 2x) \,\} \\ R_{10} & = \{\, (x, y) \to (x_2, y_2) \mid (3y = 2x \wedge x_2 = x \wedge 3y_2 = 3 + 2x \wedge x \ge 0 \wedge x \le 3) \,\} \\ R_{11} & = \emptyset . \end{aligned} $$ In the first iteration, $R_{00}$ remains the same ($\emptyset^+ = \emptyset$). $R_{01}$ and $R_{10}$ are therefore also unaffected, but $R_{11}$ is updated to include $R_{01} \circ R_{10}$, i.e., the dashed arrow in the figure. This new $R_{11}$ is obviously transitively closed, so it is not changed in the second iteration and it does not have an effect on $R_{01}$ and $R_{10}$. However, $R_{00}$ is updated to include $R_{10} \circ R_{01}$, i.e., the dotted arrow in the figure. The transitive closure of the original relation is then equal to $R_{00} \cup R_{01} \cup R_{10} \cup R_{11}$. \end{example} \subsection{Incremental Computation} \label{s:incremental} In some cases it is possible and useful to compute the transitive closure of union of basic relations incrementally. In particular, if $R$ is a union of $m$ basic maps, $$ R = \bigcup_j R_j , $$ then we can pick some $R_i$ and compute the transitive closure of $R$ as \begin{equation} \label{eq:transitive:incremental} R^+ = R_i^+ \cup \left( \bigcup_{j \ne i} R_i^* \circ R_j \circ R_i^* \right)^+ . \end{equation} For this approach to be successful, it is crucial that each of the disjuncts in the argument of the second transitive closure in \eqref{eq:transitive:incremental} be representable as a single basic relation, i.e., without a union. If this condition holds, then by using \eqref{eq:transitive:incremental}, the number of disjuncts in the argument of the transitive closure can be reduced by one. Now, $R_i^* = R_i^+ \cup \identity$, but in some cases it is possible to relax the constraints of $R_i^+$ to include part of the identity relation, say on domain $D$. We will use the notation ${\cal C}(R_i,D) = R_i^+ \cup \identity_D$ to represent this relaxed version of $R^+$. \shortciteN{Kelly1996closure} use the notation $R_i^?$. ${\cal C}(R_i,D)$ can be computed by allowing $k$ to attain the value $0$ in \eqref{eq:transitive:Q} and by using $$ P \cap \left(D \to D\right) $$ instead of \eqref{eq:transitive:approx}. Typically, $D$ will be a strict superset of both $\domain R_i$ and $\range R_i$. We therefore need to check that domain and range of the transitive closure are part of ${\cal C}(R_i,D)$, i.e., the part that results from the paths of positive length ($k \ge 1$), are equal to the domain and range of $R_i$. If not, then the incremental approach cannot be applied for the given choice of $R_i$ and $D$. In order to be able to replace $R^*$ by ${\cal C}(R_i,D)$ in \eqref{eq:transitive:incremental}, $D$ should be chosen to include both $\domain R$ and $\range R$, i.e., such that $\identity_D \circ R_j \circ \identity_D = R_j$ for all $j\ne i$. \shortciteN{Kelly1996closure} say that they use $D = \domain R_i \cup \range R_i$, but presumably they mean that they use $D = \domain R \cup \range R$. Now, this expression of $D$ contains a union, so it not directly usable. \shortciteN{Kelly1996closure} do not explain how they avoid this union. Apparently, in their implementation, they are using the convex hull of $\domain R \cup \range R$ or at least an approximation of this convex hull. We use the simple hull (\autoref{s:simple hull}) of $\domain R \cup \range R$. It is also possible to use a domain $D$ that does {\em not\/} include $\domain R \cup \range R$, but then we have to compose with ${\cal C}(R_i,D)$ more selectively. In particular, if we have \begin{equation} \label{eq:transitive:right} \text{for each $j \ne i$ either } \domain R_j \subseteq D \text{ or } \domain R_j \cap \range R_i = \emptyset \end{equation} and, similarly, \begin{equation} \label{eq:transitive:left} \text{for each $j \ne i$ either } \range R_j \subseteq D \text{ or } \range R_j \cap \domain R_i = \emptyset \end{equation} then we can refine \eqref{eq:transitive:incremental} to $$ R_i^+ \cup \left( \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $\\ $\scriptstyle\range R_j \subseteq D$}} {\cal C} \circ R_j \circ {\cal C} \right) \cup \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$\\ $\scriptstyle\range R_j \subseteq D$}} \!\!\!\!\! {\cal C} \circ R_j \right) \cup \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $\\ $\scriptstyle\range R_j \cap \domain R_i = \emptyset$}} \!\!\!\!\! R_j \circ {\cal C} \right) \cup \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$\\ $\scriptstyle\range R_j \cap \domain R_i = \emptyset$}} \!\!\!\!\! R_j \right) \right)^+ . $$ If only property~\eqref{eq:transitive:right} holds, we can use $$ R_i^+ \cup \left( \left( R_i^+ \cup \identity \right) \circ \left( \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \subseteq D $}} R_j \circ {\cal C} \right) \cup \left( \bigcup_{\shortstack{$\scriptstyle\domain R_j \cap \range R_i = \emptyset$}} \!\!\!\!\! R_j \right) \right)^+ \right) , $$ while if only property~\eqref{eq:transitive:left} holds, we can use $$ R_i^+ \cup \left( \left( \left( \bigcup_{\shortstack{$\scriptstyle\range R_j \subseteq D $}} {\cal C} \circ R_j \right) \cup \left( \bigcup_{\shortstack{$\scriptstyle\range R_j \cap \domain R_i = \emptyset$}} \!\!\!\!\! R_j \right) \right)^+ \circ \left( R_i^+ \cup \identity \right) \right) . $$ It should be noted that if we want the result of the incremental approach to be transitively closed, then we can only apply it if all of the transitive closure operations involved are exact. If, say, the second transitive closure in \eqref{eq:transitive:incremental} contains extra elements, then the result does not necessarily contain the composition of these extra elements with powers of $R_i$. \subsection{An {\tt Omega}-like implementation} While the main algorithm of \shortciteN{Kelly1996closure} is designed to compute and underapproximation of the transitive closure, the authors mention that they could also compute overapproximations. In this section, we describe our implementation of an algorithm that is based on their ideas. Note that the {\tt Omega} library computes underapproximations \shortcite[Section 6.4]{Omega_lib}. The main tool is Equation~(2) of \shortciteN{Kelly1996closure}. The input relation $R$ is first overapproximated by a ``d-form'' relation $$ \{\, \vec i \to \vec j \mid \exists \vec \alpha : \vec L \le \vec j - \vec i \le \vec U \wedge (\forall p : j_p - i_p = M_p \alpha_p) \,\} , $$ where $p$ ranges over the dimensions and $\vec L$, $\vec U$ and $\vec M$ are constant integer vectors. The elements of $\vec U$ may be $\infty$, meaning that there is no upper bound corresponding to that element, and similarly for $\vec L$. Such an overapproximation can be obtained by computing strides, lower and upper bounds on the difference set $\Delta \, R$. The transitive closure of such a ``d-form'' relation is \begin{equation} \label{eq:omega} \{\, \vec i \to \vec j \mid \exists \vec \alpha, k : k \ge 1 \wedge k \, \vec L \le \vec j - \vec i \le k \, \vec U \wedge (\forall p : j_p - i_p = M_p \alpha_p) \,\} . \end{equation} The domain and range of this transitive closure are then intersected with those of the input relation. This is a special case of the algorithm in \autoref{s:power}. In their algorithm for computing lower bounds, the authors use the above algorithm as a substep on the disjuncts in the relation. At the end, they say \begin{quote} If an upper bound is required, it can be calculated in a manner similar to that of a single conjunct [sic] relation. \end{quote} Presumably, the authors mean that a ``d-form'' approximation of the whole input relation should be used. However, the accuracy can be improved by also trying to apply the incremental technique from the same paper, which is explained in more detail in \autoref{s:incremental}. In this case, ${\cal C}(R_i,D)$ can be obtained by allowing the value zero for $k$ in \eqref{eq:omega}, i.e., by computing $$ \{\, \vec i \to \vec j \mid \exists \vec \alpha, k : k \ge 0 \wedge k \, \vec L \le \vec j - \vec i \le k \, \vec U \wedge (\forall p : j_p - i_p = M_p \alpha_p) \,\} . $$ In our implementation we take as $D$ the simple hull (\autoref{s:simple hull}) of $\domain R \cup \range R$. To determine whether it is safe to use ${\cal C}(R_i,D)$, we check the following conditions, as proposed by \shortciteN{Kelly1996closure}: ${\cal C}(R_i,D) - R_i^+$ is not a union and for each $j \ne i$ the condition $$ \left({\cal C}(R_i,D) - R_i^+\right) \circ R_j \circ \left({\cal C}(R_i,D) - R_i^+\right) = R_j $$ holds. isl-0.16.1/doc/user.pod0000664000175000017500000133264112645737513011567 00000000000000=head1 Introduction C is a thread-safe C library for manipulating sets and relations of integer points bounded by affine constraints. The descriptions of the sets and relations may involve both parameters and existentially quantified variables. All computations are performed in exact integer arithmetic using C or C. The C library offers functionality that is similar to that offered by the C and C libraries, but the underlying algorithms are in most cases completely different. The library is by no means complete and some fairly basic functionality is still missing. Still, even in its current form, the library has been successfully used as a backend polyhedral library for the polyhedral scanner C and as part of an equivalence checker of static affine programs. For bug reports, feature requests and questions, visit the discussion group at L. =head2 Backward Incompatible Changes =head3 Changes since isl-0.02 =over =item * The old printing functions have been deprecated and replaced by C functions, see L. =item * Most functions related to dependence analysis have acquired an extra C argument. To obtain the old behavior, this argument should be given the value 1. See L. =back =head3 Changes since isl-0.03 =over =item * The function C has been renamed to C. Similarly, C has been renamed to C. =back =head3 Changes since isl-0.04 =over =item * All header files have been renamed from C to C. =back =head3 Changes since isl-0.05 =over =item * The functions C and C no longer print a newline. =item * The functions C and C now return the accesses for which no source could be found instead of the iterations where those accesses occur. =item * The functions C and C now take a B space as input. An old call C can be rewritten to C. =item * The function C no longer takes a parameter position as input. Instead, the exponent is now expressed as the domain of the resulting relation. =back =head3 Changes since isl-0.06 =over =item * The format of C's C output has changed. Use C to obtain the old output. =item * The C<*_fast_*> functions have been renamed to C<*_plain_*>. Some of the old names have been kept for backward compatibility, but they will be removed in the future. =back =head3 Changes since isl-0.07 =over =item * The function C has been renamed to C. Similarly, the function C has been renamed to C. =item * The C type has been renamed to C along with the associated functions. Some of the old names have been kept for backward compatibility, but they will be removed in the future. =item * Spaces of maps, sets and parameter domains are now treated differently. The distinction between map spaces and set spaces has always been made on a conceptual level, but proper use of such spaces was never checked. Furthermore, up until isl-0.07 there was no way of explicitly creating a parameter space. These can now be created directly using C or from other spaces using C. =item * The space in which C, C, C, C, C and C objects live is now a map space instead of a set space. This means, for example, that the dimensions of the domain of an C are now considered to be of type C instead of C. Extra functions have been added to obtain the domain space. Some of the constructors still take a domain space and have therefore been renamed. =item * The functions C and C now take an C instead of an C. An C can be created from an C using C. =item * The C type has been removed. Functions that used to return an C now return an C. Note that the space of an C is that of relation. When replacing a call to C by a call to C any C argument needs to be replaced by C. A call to C can be replaced by a call to C. A call to C call be replaced by the nested call isl_qpolynomial_from_aff(isl_aff_floor(div)) The function C has also been renamed to C. =item * The C argument has been removed from C and similar functions. When reading input in the original PolyLib format, the result will have no parameters. If parameters are expected, the caller may want to perform dimension manipulation on the result. =back =head3 Changes since isl-0.09 =over =item * The C option has been replaced by the C option. =item * The first argument of C is now an C instead of an C. A call C can be replaced by isl_pw_aff_cond(isl_set_indicator_function(a), b, c) =back =head3 Changes since isl-0.10 =over =item * The functions C and C have been renamed to C and C. The new C and C have slightly different meanings. =back =head3 Changes since isl-0.12 =over =item * C has been replaced by C. Some of the old functions are still available in C but they will be removed in the future. =item * The functions C, C, C and C have been changed to return an C instead of an C. =item * The function C has been removed. Essentially the same functionality is available through C, except that it requires setting up coincidence constraints. The option C has accordingly been replaced by the option C. =item * The function C has been changed to return an C instead of a rational C. The function C has been changed to return a regular basic set, rather than a rational basic set. =back =head3 Changes since isl-0.14 =over =item * The function C now consistently computes the sum on the shared definition domain. The function C has been added to compute the sum on the union of definition domains. The original behavior of C was confused and is no longer available. =item * Band forests have been replaced by schedule trees. =item * The function C has been replaced by the function C. Note that the may dependence relation returned by C is the union of the two dependence relations returned by C. Similarly for the no source relations. The function C is still available for backward compatibility, but it will be removed in the future. =item * The function C has been deprecated. =item * The function C has been renamed to C. The original name is still available for backward compatibility, but it will be removed in the future. =item * The C AST generation option has been deprecated. =item * The functions C and C have been renamed to C and C. The original names have been kept for backward compatibility, but they will be removed in the future. =item * The C option has been replaced by the C option. The effect of setting the C option to C is now obtained by turning on the C option. =back =head1 License C is released under the MIT license. =over Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =back Note that by default C requires C, which is released under the GNU Lesser General Public License (LGPL). This means that code linked against C is also linked against LGPL code. When configuring with C<--with-int=imath> or C<--with-int=imath-32>, C will link against C, a library for exact integer arithmetic released under the MIT license. =head1 Installation The source of C can be obtained either as a tarball or from the git repository. Both are available from L. The installation process depends on how you obtained the source. =head2 Installation from the git repository =over =item 1 Clone or update the repository The first time the source is obtained, you need to clone the repository. git clone git://repo.or.cz/isl.git To obtain updates, you need to pull in the latest changes git pull =item 2 Optionally get C submodule To build C with C, you need to obtain the C submodule by running in the git source tree of C git submodule init git submodule update This will fetch the required version of C in a subdirectory of C. =item 2 Generate C ./autogen.sh =back After performing the above steps, continue with the L. =head2 Common installation instructions =over =item 1 Obtain C By default, building C requires C, including its headers files. Your distribution may not provide these header files by default and you may need to install a package called C or something similar. Alternatively, C can be built from source, available from L. C is not needed if you build C with C. =item 2 Configure C uses the standard C C script. To run it, just type ./configure optionally followed by some configure options. A complete list of options can be obtained by running ./configure --help Below we discuss some of the more common options. =over =item C<--prefix> Installation prefix for C =item C<--with-int=[gmp|imath|imath-32]> Select the integer library to be used by C, the default is C. With C, C will use 32 bit integers, but fall back to C for values out of the 32 bit range. In most applications, C will run fastest with the C option, followed by C and C, the slowest. =item C<--with-gmp-prefix> Installation prefix for C (architecture-independent files). =item C<--with-gmp-exec-prefix> Installation prefix for C (architecture-dependent files). =back =item 3 Compile make =item 4 Install (optional) make install =back =head1 Integer Set Library =head2 Memory Management Since a high-level operation on isl objects usually involves several substeps and since the user is usually not interested in the intermediate results, most functions that return a new object will also release all the objects passed as arguments. If the user still wants to use one or more of these arguments after the function call, she should pass along a copy of the object rather than the object itself. The user is then responsible for making sure that the original object gets used somewhere else or is explicitly freed. The arguments and return values of all documented functions are annotated to make clear which arguments are released and which arguments are preserved. In particular, the following annotations are used =over =item C<__isl_give> C<__isl_give> means that a new object is returned. The user should make sure that the returned pointer is used exactly once as a value for an C<__isl_take> argument. In between, it can be used as a value for as many C<__isl_keep> arguments as the user likes. There is one exception, and that is the case where the pointer returned is C. Is this case, the user is free to use it as an C<__isl_take> argument or not. When applied to a C, the returned pointer needs to be freed using C. =item C<__isl_null> C<__isl_null> means that a C value is returned. =item C<__isl_take> C<__isl_take> means that the object the argument points to is taken over by the function and may no longer be used by the user as an argument to any other function. The pointer value must be one returned by a function returning an C<__isl_give> pointer. If the user passes in a C value, then this will be treated as an error in the sense that the function will not perform its usual operation. However, it will still make sure that all the other C<__isl_take> arguments are released. =item C<__isl_keep> C<__isl_keep> means that the function will only use the object temporarily. After the function has finished, the user can still use it as an argument to other functions. A C value will be treated in the same way as a C value for an C<__isl_take> argument. This annotation may also be used on return values of type C, in which case the returned pointer should not be freed by the user and is only valid until the object from which it was derived is updated or freed. =back =head2 Initialization All manipulations of integer sets and relations occur within the context of an C. A given C can only be used within a single thread. All arguments of a function are required to have been allocated within the same context. There are currently no functions available for moving an object from one C to another C. This means that there is currently no way of safely moving an object from one thread to another, unless the whole C is moved. An C can be allocated using C and freed using C. All objects allocated within an C should be freed before the C itself is freed. isl_ctx *isl_ctx_alloc(); void isl_ctx_free(isl_ctx *ctx); The user can impose a bound on the number of low-level I that can be performed by an C. This bound can be set and retrieved using the following functions. A bound of zero means that no bound is imposed. The number of operations performed can be reset using C. Note that the number of low-level operations needed to perform a high-level computation may differ significantly across different versions of C, but it should be the same across different platforms for the same version of C. Warning: This feature is experimental. C has good support to abort and bail out during the computation, but this feature may exercise error code paths that are normally not used that much. Consequently, it is not unlikely that hidden bugs will be exposed. void isl_ctx_set_max_operations(isl_ctx *ctx, unsigned long max_operations); unsigned long isl_ctx_get_max_operations(isl_ctx *ctx); void isl_ctx_reset_operations(isl_ctx *ctx); In order to be able to create an object in the same context as another object, most object types (described later in this document) provide a function to obtain the context in which the object was created. #include isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val); isl_ctx *isl_multi_val_get_ctx( __isl_keep isl_multi_val *mv); #include isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id); #include isl_ctx *isl_local_space_get_ctx( __isl_keep isl_local_space *ls); #include isl_ctx *isl_set_list_get_ctx( __isl_keep isl_set_list *list); #include isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff); isl_ctx *isl_multi_aff_get_ctx( __isl_keep isl_multi_aff *maff); isl_ctx *isl_pw_aff_get_ctx(__isl_keep isl_pw_aff *pa); isl_ctx *isl_pw_multi_aff_get_ctx( __isl_keep isl_pw_multi_aff *pma); isl_ctx *isl_multi_pw_aff_get_ctx( __isl_keep isl_multi_pw_aff *mpa); isl_ctx *isl_union_pw_aff_get_ctx( __isl_keep isl_union_pw_aff *upa); isl_ctx *isl_union_pw_multi_aff_get_ctx( __isl_keep isl_union_pw_multi_aff *upma); isl_ctx *isl_multi_union_pw_aff_get_ctx( __isl_keep isl_multi_union_pw_aff *mupa); #include isl_ctx *isl_id_to_ast_expr_get_ctx( __isl_keep isl_id_to_ast_expr *id2expr); #include isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt); #include isl_ctx *isl_vec_get_ctx(__isl_keep isl_vec *vec); #include isl_ctx *isl_mat_get_ctx(__isl_keep isl_mat *mat); #include isl_ctx *isl_vertices_get_ctx( __isl_keep isl_vertices *vertices); isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex); isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell); #include isl_ctx *isl_restriction_get_ctx( __isl_keep isl_restriction *restr); isl_ctx *isl_union_access_info_get_ctx( __isl_keep isl_union_access_info *access); isl_ctx *isl_union_flow_get_ctx( __isl_keep isl_union_flow *flow); #include isl_ctx *isl_schedule_get_ctx( __isl_keep isl_schedule *sched); isl_ctx *isl_schedule_constraints_get_ctx( __isl_keep isl_schedule_constraints *sc); #include isl_ctx *isl_schedule_node_get_ctx( __isl_keep isl_schedule_node *node); #include isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band); #include isl_ctx *isl_ast_build_get_ctx( __isl_keep isl_ast_build *build); #include isl_ctx *isl_ast_expr_get_ctx( __isl_keep isl_ast_expr *expr); isl_ctx *isl_ast_node_get_ctx( __isl_keep isl_ast_node *node); =head2 Return Types C uses two special return types for functions that either return a boolean or that in principle do not return anything. In particular, the C type has three possible values: C (a positive integer value), indicating I or I; C (the integer value zero), indicating I or I; and C (a negative integer value), indicating that something went wrong. The C type has two possible values: C (the integer value zero), indicating a successful operation; and C (a negative integer value), indicating that something went wrong. See L for more information on C and C. =head2 Values An C represents an integer value, a rational value or one of three special values, infinity, negative infinity and NaN. Some predefined values can be created using the following functions. #include __isl_give isl_val *isl_val_zero(isl_ctx *ctx); __isl_give isl_val *isl_val_one(isl_ctx *ctx); __isl_give isl_val *isl_val_negone(isl_ctx *ctx); __isl_give isl_val *isl_val_nan(isl_ctx *ctx); __isl_give isl_val *isl_val_infty(isl_ctx *ctx); __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx); Specific integer values can be created using the following functions. #include __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx, long i); __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx, unsigned long u); __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx, size_t n, size_t size, const void *chunks); The function C constructs an C from the C I, each consisting of C bytes, stored at C. The least significant digit is assumed to be stored first. Value objects can be copied and freed using the following functions. #include __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v); __isl_null isl_val *isl_val_free(__isl_take isl_val *v); They can be inspected using the following functions. #include long isl_val_get_num_si(__isl_keep isl_val *v); long isl_val_get_den_si(__isl_keep isl_val *v); __isl_give isl_val *isl_val_get_den_val( __isl_keep isl_val *v); double isl_val_get_d(__isl_keep isl_val *v); size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v, size_t size); int isl_val_get_abs_num_chunks(__isl_keep isl_val *v, size_t size, void *chunks); C returns the number of I of C bytes needed to store the absolute value of the numerator of C. C stores these digits at C, which is assumed to have been preallocated by the caller. The least significant digit is stored first. Note that C, C, C, C and C can only be applied to rational values. An C can be modified using the following function. #include __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v, long i); The following unary properties are defined on Cs. #include int isl_val_sgn(__isl_keep isl_val *v); isl_bool isl_val_is_zero(__isl_keep isl_val *v); isl_bool isl_val_is_one(__isl_keep isl_val *v); isl_bool isl_val_is_negone(__isl_keep isl_val *v); isl_bool isl_val_is_nonneg(__isl_keep isl_val *v); isl_bool isl_val_is_nonpos(__isl_keep isl_val *v); isl_bool isl_val_is_pos(__isl_keep isl_val *v); isl_bool isl_val_is_neg(__isl_keep isl_val *v); isl_bool isl_val_is_int(__isl_keep isl_val *v); isl_bool isl_val_is_rat(__isl_keep isl_val *v); isl_bool isl_val_is_nan(__isl_keep isl_val *v); isl_bool isl_val_is_infty(__isl_keep isl_val *v); isl_bool isl_val_is_neginfty(__isl_keep isl_val *v); Note that the sign of NaN is undefined. The following binary properties are defined on pairs of Cs. #include isl_bool isl_val_lt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_le(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_gt(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_ge(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_ne(__isl_keep isl_val *v1, __isl_keep isl_val *v2); isl_bool isl_val_abs_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2); The function C checks whether its two arguments are equal in absolute value. For integer Cs we additionally have the following binary property. #include isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1, __isl_keep isl_val *v2); An C can also be compared to an integer using the following function. The result is undefined for NaN. #include int isl_val_cmp_si(__isl_keep isl_val *v, long i); The following unary operations are available on Cs. #include __isl_give isl_val *isl_val_abs(__isl_take isl_val *v); __isl_give isl_val *isl_val_neg(__isl_take isl_val *v); __isl_give isl_val *isl_val_floor(__isl_take isl_val *v); __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v); __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v); __isl_give isl_val *isl_val_inv(__isl_take isl_val *v); __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v); The following binary operations are available on Cs. #include __isl_give isl_val *isl_val_min(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_max(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1, unsigned long v2); __isl_give isl_val *isl_val_div(__isl_take isl_val *v1, __isl_take isl_val *v2); On integer values, we additionally have the following operations. #include __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v); __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1, __isl_take isl_val *v2, __isl_give isl_val **x, __isl_give isl_val **y); The function C returns the greatest common divisor g of C and C as well as two integers C<*x> and C<*y> such that C<*x> * C + C<*y> * C = g. =head3 GMP specific functions These functions are only available if C has been compiled with C support. Specific integer and rational values can be created from C values using the following functions. #include __isl_give isl_val *isl_val_int_from_gmp(isl_ctx *ctx, mpz_t z); __isl_give isl_val *isl_val_from_gmp(isl_ctx *ctx, const mpz_t n, const mpz_t d); The numerator and denominator of a rational value can be extracted as C values using the following functions. #include int isl_val_get_num_gmp(__isl_keep isl_val *v, mpz_t z); int isl_val_get_den_gmp(__isl_keep isl_val *v, mpz_t z); =head2 Sets and Relations C uses six types of objects for representing sets and relations, C, C, C, C, C and C. C and C represent sets and relations that can be described as a conjunction of affine constraints, while C and C represent unions of Cs and Cs, respectively. However, all Cs or Cs in the union need to live in the same space. Cs and Cs represent unions of Cs or Cs in I spaces, where spaces are considered different if they have a different number of dimensions and/or different names (see L<"Spaces">). The difference between sets and relations (maps) is that sets have one set of variables, while relations have two sets of variables, input variables and output variables. =head2 Error Handling C supports different ways to react in case a runtime error is triggered. Runtime errors arise, e.g., if a function such as C is called with two maps that have incompatible spaces. There are three possible ways to react on error: to warn, to continue or to abort. The default behavior is to warn. In this mode, C prints a warning, stores the last error in the corresponding C and the function in which the error was triggered returns a value indicating that some error has occurred. In case of functions returning a pointer, this value is C. In case of functions returning an C or an C, this valus is C or C. An error does not corrupt internal state, such that isl can continue to be used. C also provides functions to read the last error and to reset the memory that stores the last error. The last error is only stored for information purposes. Its presence does not change the behavior of C. Hence, resetting an error is not required to continue to use isl, but only to observe new errors. #include enum isl_error isl_ctx_last_error(isl_ctx *ctx); void isl_ctx_reset_error(isl_ctx *ctx); Another option is to continue on error. This is similar to warn on error mode, except that C does not print any warning. This allows a program to implement its own error reporting. The last option is to directly abort the execution of the program from within the isl library. This makes it obviously impossible to recover from an error, but it allows to directly spot the error location. By aborting on error, debuggers break at the location the error occurred and can provide a stack trace. Other tools that automatically provide stack traces on abort or that do not want to continue execution after an error was triggered may also prefer to abort on error. The on error behavior of isl can be specified by calling C or by setting the command line option C<--isl-on-error>. Valid arguments for the function call are C, C and C. The choices for the command line option are C, C and C. It is also possible to query the current error mode. #include isl_stat isl_options_set_on_error(isl_ctx *ctx, int val); int isl_options_get_on_error(isl_ctx *ctx); =head2 Identifiers Identifiers are used to identify both individual dimensions and tuples of dimensions. They consist of an optional name and an optional user pointer. The name and the user pointer cannot both be C, however. Identifiers with the same name but different pointer values are considered to be distinct. Similarly, identifiers with different names but the same pointer value are also considered to be distinct. Equal identifiers are represented using the same object. Pairs of identifiers can therefore be tested for equality using the C<==> operator. Identifiers can be constructed, copied, freed, inspected and printed using the following functions. #include __isl_give isl_id *isl_id_alloc(isl_ctx *ctx, __isl_keep const char *name, void *user); __isl_give isl_id *isl_id_set_free_user( __isl_take isl_id *id, __isl_give void (*free_user)(void *user)); __isl_give isl_id *isl_id_copy(isl_id *id); __isl_null isl_id *isl_id_free(__isl_take isl_id *id); void *isl_id_get_user(__isl_keep isl_id *id); __isl_keep const char *isl_id_get_name(__isl_keep isl_id *id); __isl_give isl_printer *isl_printer_print_id( __isl_take isl_printer *p, __isl_keep isl_id *id); The callback set by C is called on the user pointer when the last reference to the C is freed. Note that C returns a pointer to some internal data structure, so the result can only be used while the corresponding C is alive. =head2 Spaces Whenever a new set, relation or similar object is created from scratch, the space in which it lives needs to be specified using an C. Each space involves zero or more parameters and zero, one or two tuples of set or input/output dimensions. The parameters and dimensions are identified by an C and a position. The type C refers to parameters, the type C refers to set dimensions (for spaces with a single tuple of dimensions) and the types C and C refer to input and output dimensions (for spaces with two tuples of dimensions). Local spaces (see L) also contain dimensions of type C. Note that parameters are only identified by their position within a given object. Across different objects, parameters are (usually) identified by their names or identifiers. Only unnamed parameters are identified by their positions across objects. The use of unnamed parameters is discouraged. #include __isl_give isl_space *isl_space_alloc(isl_ctx *ctx, unsigned nparam, unsigned n_in, unsigned n_out); __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx, unsigned nparam); __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim); __isl_give isl_space *isl_space_copy(__isl_keep isl_space *space); __isl_null isl_space *isl_space_free(__isl_take isl_space *space); The space used for creating a parameter domain needs to be created using C. For other sets, the space needs to be created using C, while for a relation, the space needs to be created using C. To check whether a given space is that of a set or a map or whether it is a parameter space, use these functions: #include isl_bool isl_space_is_params(__isl_keep isl_space *space); isl_bool isl_space_is_set(__isl_keep isl_space *space); isl_bool isl_space_is_map(__isl_keep isl_space *space); Spaces can be compared using the following functions: #include isl_bool isl_space_is_equal(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_is_domain(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_is_range(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_tuple_is_equal( __isl_keep isl_space *space1, enum isl_dim_type type1, __isl_keep isl_space *space2, enum isl_dim_type type2); C checks whether the first argument is equal to the domain of the second argument. This requires in particular that the first argument is a set space and that the second argument is a map space. C checks whether the given tuples (C, C or C) of the given spaces are the same. That is, it checks if they have the same identifier (if any), the same dimension and the same internal structure (if any). It is often useful to create objects that live in the same space as some other object. This can be accomplished by creating the new objects (see L or L) based on the space of the original object. #include __isl_give isl_space *isl_basic_set_get_space( __isl_keep isl_basic_set *bset); __isl_give isl_space *isl_set_get_space(__isl_keep isl_set *set); #include __isl_give isl_space *isl_union_set_get_space( __isl_keep isl_union_set *uset); #include __isl_give isl_space *isl_basic_map_get_space( __isl_keep isl_basic_map *bmap); __isl_give isl_space *isl_map_get_space(__isl_keep isl_map *map); #include __isl_give isl_space *isl_union_map_get_space( __isl_keep isl_union_map *umap); #include __isl_give isl_space *isl_constraint_get_space( __isl_keep isl_constraint *constraint); #include __isl_give isl_space *isl_qpolynomial_get_domain_space( __isl_keep isl_qpolynomial *qp); __isl_give isl_space *isl_qpolynomial_get_space( __isl_keep isl_qpolynomial *qp); __isl_give isl_space * isl_qpolynomial_fold_get_domain_space( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_space *isl_qpolynomial_fold_get_space( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_space *isl_pw_qpolynomial_get_domain_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_get_space( __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_space *isl_pw_qpolynomial_fold_get_domain_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_pw_qpolynomial_fold_get_space( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_space *isl_union_pw_qpolynomial_get_space( __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_give isl_space *isl_union_pw_qpolynomial_fold_get_space( __isl_keep isl_union_pw_qpolynomial_fold *upwf); #include __isl_give isl_space *isl_multi_val_get_space( __isl_keep isl_multi_val *mv); #include __isl_give isl_space *isl_aff_get_domain_space( __isl_keep isl_aff *aff); __isl_give isl_space *isl_aff_get_space( __isl_keep isl_aff *aff); __isl_give isl_space *isl_pw_aff_get_domain_space( __isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_pw_aff_get_space( __isl_keep isl_pw_aff *pwaff); __isl_give isl_space *isl_multi_aff_get_domain_space( __isl_keep isl_multi_aff *maff); __isl_give isl_space *isl_multi_aff_get_space( __isl_keep isl_multi_aff *maff); __isl_give isl_space *isl_pw_multi_aff_get_domain_space( __isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_pw_multi_aff_get_space( __isl_keep isl_pw_multi_aff *pma); __isl_give isl_space *isl_union_pw_aff_get_space( __isl_keep isl_union_pw_aff *upa); __isl_give isl_space *isl_union_pw_multi_aff_get_space( __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_space *isl_multi_pw_aff_get_domain_space( __isl_keep isl_multi_pw_aff *mpa); __isl_give isl_space *isl_multi_pw_aff_get_space( __isl_keep isl_multi_pw_aff *mpa); __isl_give isl_space * isl_multi_union_pw_aff_get_domain_space( __isl_keep isl_multi_union_pw_aff *mupa); __isl_give isl_space * isl_multi_union_pw_aff_get_space( __isl_keep isl_multi_union_pw_aff *mupa); #include __isl_give isl_space *isl_point_get_space( __isl_keep isl_point *pnt); The number of dimensions of a given type of space may be read off from a space or an object that lives in a space using the following functions. In case of C, type may be C, C (only for relations), C (only for relations), C (only for sets) or C. #include unsigned isl_space_dim(__isl_keep isl_space *space, enum isl_dim_type type); #include int isl_local_space_dim(__isl_keep isl_local_space *ls, enum isl_dim_type type); #include unsigned isl_basic_set_dim(__isl_keep isl_basic_set *bset, enum isl_dim_type type); unsigned isl_set_dim(__isl_keep isl_set *set, enum isl_dim_type type); #include unsigned isl_union_set_dim(__isl_keep isl_union_set *uset, enum isl_dim_type type); #include unsigned isl_basic_map_dim(__isl_keep isl_basic_map *bmap, enum isl_dim_type type); unsigned isl_map_dim(__isl_keep isl_map *map, enum isl_dim_type type); #include unsigned isl_union_map_dim(__isl_keep isl_union_map *umap, enum isl_dim_type type); #include unsigned isl_multi_val_dim(__isl_keep isl_multi_val *mv, enum isl_dim_type type); #include int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type); unsigned isl_multi_aff_dim(__isl_keep isl_multi_aff *maff, enum isl_dim_type type); unsigned isl_pw_aff_dim(__isl_keep isl_pw_aff *pwaff, enum isl_dim_type type); unsigned isl_pw_multi_aff_dim( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); unsigned isl_multi_pw_aff_dim( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type); unsigned isl_union_pw_aff_dim( __isl_keep isl_union_pw_aff *upa, enum isl_dim_type type); unsigned isl_union_pw_multi_aff_dim( __isl_keep isl_union_pw_multi_aff *upma, enum isl_dim_type type); unsigned isl_multi_union_pw_aff_dim( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type); #include unsigned isl_union_pw_qpolynomial_dim( __isl_keep isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type); unsigned isl_union_pw_qpolynomial_fold_dim( __isl_keep isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type); Note that an C, an C, an C, an C and an C only have parameters. The identifiers or names of the individual dimensions of spaces may be set or read off using the following functions on spaces or objects that live in spaces. These functions are mostly useful to obtain the identifiers, positions or names of the parameters. Identifiers of individual dimensions are essentially only useful for printing. They are ignored by all other operations and may not be preserved across those operations. #include __isl_give isl_space *isl_space_set_dim_id( __isl_take isl_space *space, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_space_has_dim_id(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_space_get_dim_id( __isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_give isl_space *isl_space_set_dim_name( __isl_take isl_space *space, enum isl_dim_type type, unsigned pos, __isl_keep const char *name); isl_bool isl_space_has_dim_name(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); __isl_keep const char *isl_space_get_dim_name( __isl_keep isl_space *space, enum isl_dim_type type, unsigned pos); #include __isl_give isl_local_space *isl_local_space_set_dim_id( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_local_space_has_dim_id( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_local_space_get_dim_id( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_local_space *isl_local_space_set_dim_name( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, const char *s); isl_bool isl_local_space_has_dim_name( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) const char *isl_local_space_get_dim_name( __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos); #include const char *isl_constraint_get_dim_name( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); #include __isl_give isl_id *isl_basic_set_get_dim_id( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); __isl_give isl_set *isl_set_set_dim_id( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_set_has_dim_id(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_set_get_dim_id( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); const char *isl_basic_set_get_dim_name( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos); isl_bool isl_set_has_dim_name(__isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); const char *isl_set_get_dim_name( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); #include __isl_give isl_map *isl_map_set_dim_id( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); isl_bool isl_basic_map_has_dim_id( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); isl_bool isl_map_has_dim_id(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_map_get_dim_id( __isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_union_map_get_dim_id( __isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned pos); const char *isl_basic_map_get_dim_name( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); isl_bool isl_map_has_dim_name(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); const char *isl_map_get_dim_name( __isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); #include __isl_give isl_multi_val *isl_multi_val_set_dim_id( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_id *isl_multi_val_get_dim_id( __isl_keep isl_multi_val *mv, enum isl_dim_type type, unsigned pos); __isl_give isl_multi_val *isl_multi_val_set_dim_name( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned pos, const char *s); #include __isl_give isl_aff *isl_aff_set_dim_id( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_multi_aff *isl_multi_aff_set_dim_id( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_pw_aff *isl_pw_aff_set_dim_id( __isl_take isl_pw_aff *pma, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_set_dim_id( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_set_dim_id( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id); __isl_give isl_id *isl_multi_aff_get_dim_id( __isl_keep isl_multi_aff *ma, enum isl_dim_type type, unsigned pos); isl_bool isl_pw_aff_has_dim_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_aff_get_dim_id( __isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_pw_multi_aff_get_dim_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_multi_pw_aff_get_dim_id( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned pos); __isl_give isl_id *isl_multi_union_pw_aff_get_dim_id( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_aff_set_dim_name( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_aff *isl_multi_aff_set_dim_name( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_set_dim_name( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_union_pw_aff * isl_union_pw_aff_set_dim_name( __isl_take isl_union_pw_aff *upa, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_set_dim_name( __isl_take isl_union_pw_multi_aff *upma, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_set_dim_name( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type, unsigned pos, const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned pos); const char *isl_pw_aff_get_dim_name( __isl_keep isl_pw_aff *pa, enum isl_dim_type type, unsigned pos); const char *isl_pw_multi_aff_get_dim_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos); #include __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name( __isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_set_dim_name( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_set_dim_name( __isl_take isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_set_dim_name( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_set_dim_name( __isl_take isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, unsigned pos, const char *s); Note that C returns a pointer to some internal data structure, so the result can only be used while the corresponding C is alive. Also note that every function that operates on two sets or relations requires that both arguments have the same parameters. This also means that if one of the arguments has named parameters, then the other needs to have named parameters too and the names need to match. Pairs of C, C, C and/or C arguments may have different parameters (as long as they are named), in which case the result will have as parameters the union of the parameters of the arguments. Given the identifier or name of a dimension (typically a parameter), its position can be obtained from the following functions. #include int isl_space_find_dim_by_id(__isl_keep isl_space *space, enum isl_dim_type type, __isl_keep isl_id *id); int isl_space_find_dim_by_name(__isl_keep isl_space *space, enum isl_dim_type type, const char *name); #include int isl_local_space_find_dim_by_name( __isl_keep isl_local_space *ls, enum isl_dim_type type, const char *name); #include int isl_multi_val_find_dim_by_id( __isl_keep isl_multi_val *mv, enum isl_dim_type type, __isl_keep isl_id *id); int isl_multi_val_find_dim_by_name( __isl_keep isl_multi_val *mv, enum isl_dim_type type, const char *name); #include int isl_set_find_dim_by_id(__isl_keep isl_set *set, enum isl_dim_type type, __isl_keep isl_id *id); int isl_set_find_dim_by_name(__isl_keep isl_set *set, enum isl_dim_type type, const char *name); #include int isl_map_find_dim_by_id(__isl_keep isl_map *map, enum isl_dim_type type, __isl_keep isl_id *id); int isl_basic_map_find_dim_by_name( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, const char *name); int isl_map_find_dim_by_name(__isl_keep isl_map *map, enum isl_dim_type type, const char *name); int isl_union_map_find_dim_by_name( __isl_keep isl_union_map *umap, enum isl_dim_type type, const char *name); #include int isl_multi_aff_find_dim_by_id( __isl_keep isl_multi_aff *ma, enum isl_dim_type type, __isl_keep isl_id *id); int isl_multi_pw_aff_find_dim_by_id( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type, __isl_keep isl_id *id); int isl_multi_union_pw_aff_find_dim_by_id( __isl_keep isl_union_multi_pw_aff *mupa, enum isl_dim_type type, __isl_keep isl_id *id); int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff, enum isl_dim_type type, const char *name); int isl_multi_aff_find_dim_by_name( __isl_keep isl_multi_aff *ma, enum isl_dim_type type, const char *name); int isl_pw_aff_find_dim_by_name(__isl_keep isl_pw_aff *pa, enum isl_dim_type type, const char *name); int isl_multi_pw_aff_find_dim_by_name( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type, const char *name); int isl_pw_multi_aff_find_dim_by_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type, const char *name); int isl_union_pw_aff_find_dim_by_name( __isl_keep isl_union_pw_aff *upa, enum isl_dim_type type, const char *name); int isl_union_pw_multi_aff_find_dim_by_name( __isl_keep isl_union_pw_multi_aff *upma, enum isl_dim_type type, const char *name); int isl_multi_union_pw_aff_find_dim_by_name( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type, const char *name); #include int isl_pw_qpolynomial_find_dim_by_name( __isl_keep isl_pw_qpolynomial *pwqp, enum isl_dim_type type, const char *name); int isl_pw_qpolynomial_fold_find_dim_by_name( __isl_keep isl_pw_qpolynomial_fold *pwf, enum isl_dim_type type, const char *name); int isl_union_pw_qpolynomial_find_dim_by_name( __isl_keep isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, const char *name); int isl_union_pw_qpolynomial_fold_find_dim_by_name( __isl_keep isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, const char *name); The identifiers or names of entire spaces may be set or read off using the following functions. #include __isl_give isl_space *isl_space_set_tuple_id( __isl_take isl_space *space, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_space *isl_space_reset_tuple_id( __isl_take isl_space *space, enum isl_dim_type type); isl_bool isl_space_has_tuple_id( __isl_keep isl_space *space, enum isl_dim_type type); __isl_give isl_id *isl_space_get_tuple_id( __isl_keep isl_space *space, enum isl_dim_type type); __isl_give isl_space *isl_space_set_tuple_name( __isl_take isl_space *space, enum isl_dim_type type, const char *s); isl_bool isl_space_has_tuple_name( __isl_keep isl_space *space, enum isl_dim_type type); const char *isl_space_get_tuple_name(__isl_keep isl_space *space, enum isl_dim_type type); #include __isl_give isl_local_space *isl_local_space_set_tuple_id( __isl_take isl_local_space *ls, enum isl_dim_type type, __isl_take isl_id *id); #include __isl_give isl_basic_set *isl_basic_set_set_tuple_id( __isl_take isl_basic_set *bset, __isl_take isl_id *id); __isl_give isl_set *isl_set_set_tuple_id( __isl_take isl_set *set, __isl_take isl_id *id); __isl_give isl_set *isl_set_reset_tuple_id( __isl_take isl_set *set); isl_bool isl_set_has_tuple_id(__isl_keep isl_set *set); __isl_give isl_id *isl_set_get_tuple_id( __isl_keep isl_set *set); __isl_give isl_basic_set *isl_basic_set_set_tuple_name( __isl_take isl_basic_set *set, const char *s); __isl_give isl_set *isl_set_set_tuple_name( __isl_take isl_set *set, const char *s); const char *isl_basic_set_get_tuple_name( __isl_keep isl_basic_set *bset); isl_bool isl_set_has_tuple_name(__isl_keep isl_set *set); const char *isl_set_get_tuple_name( __isl_keep isl_set *set); #include __isl_give isl_basic_map *isl_basic_map_set_tuple_id( __isl_take isl_basic_map *bmap, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_map *isl_map_set_tuple_id( __isl_take isl_map *map, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_map *isl_map_reset_tuple_id( __isl_take isl_map *map, enum isl_dim_type type); isl_bool isl_map_has_tuple_id(__isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_id *isl_map_get_tuple_id( __isl_keep isl_map *map, enum isl_dim_type type); __isl_give isl_map *isl_map_set_tuple_name( __isl_take isl_map *map, enum isl_dim_type type, const char *s); const char *isl_basic_map_get_tuple_name( __isl_keep isl_basic_map *bmap, enum isl_dim_type type); __isl_give isl_basic_map *isl_basic_map_set_tuple_name( __isl_take isl_basic_map *bmap, enum isl_dim_type type, const char *s); isl_bool isl_map_has_tuple_name(__isl_keep isl_map *map, enum isl_dim_type type); const char *isl_map_get_tuple_name( __isl_keep isl_map *map, enum isl_dim_type type); #include __isl_give isl_multi_val *isl_multi_val_set_tuple_id( __isl_take isl_multi_val *mv, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_val *isl_multi_val_reset_tuple_id( __isl_take isl_multi_val *mv, enum isl_dim_type type); isl_bool isl_multi_val_has_tuple_id( __isl_keep isl_multi_val *mv, enum isl_dim_type type); __isl_give isl_id *isl_multi_val_get_tuple_id( __isl_keep isl_multi_val *mv, enum isl_dim_type type); __isl_give isl_multi_val *isl_multi_val_set_tuple_name( __isl_take isl_multi_val *mv, enum isl_dim_type type, const char *s); const char *isl_multi_val_get_tuple_name( __isl_keep isl_multi_val *mv, enum isl_dim_type type); #include __isl_give isl_aff *isl_aff_set_tuple_id( __isl_take isl_aff *aff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_aff *isl_multi_aff_set_tuple_id( __isl_take isl_multi_aff *maff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_pw_aff *isl_pw_aff_set_tuple_id( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_tuple_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_set_tuple_id( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type, __isl_take isl_id *id); __isl_give isl_multi_aff *isl_multi_aff_reset_tuple_id( __isl_take isl_multi_aff *ma, enum isl_dim_type type); __isl_give isl_pw_aff *isl_pw_aff_reset_tuple_id( __isl_take isl_pw_aff *pa, enum isl_dim_type type); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_reset_tuple_id( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_reset_tuple_id( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_reset_tuple_id( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type); isl_bool isl_multi_aff_has_tuple_id( __isl_keep isl_multi_aff *ma, enum isl_dim_type type); __isl_give isl_id *isl_multi_aff_get_tuple_id( __isl_keep isl_multi_aff *ma, enum isl_dim_type type); isl_bool isl_pw_aff_has_tuple_id(__isl_keep isl_pw_aff *pa, enum isl_dim_type type); __isl_give isl_id *isl_pw_aff_get_tuple_id( __isl_keep isl_pw_aff *pa, enum isl_dim_type type); isl_bool isl_pw_multi_aff_has_tuple_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); __isl_give isl_id *isl_pw_multi_aff_get_tuple_id( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); isl_bool isl_multi_pw_aff_has_tuple_id( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type); __isl_give isl_id *isl_multi_pw_aff_get_tuple_id( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type); isl_bool isl_multi_union_pw_aff_has_tuple_id( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type); __isl_give isl_id *isl_multi_union_pw_aff_get_tuple_id( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type); __isl_give isl_multi_aff *isl_multi_aff_set_tuple_name( __isl_take isl_multi_aff *maff, enum isl_dim_type type, const char *s); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_set_tuple_name( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, const char *s); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_set_tuple_name( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type, const char *s); const char *isl_multi_aff_get_tuple_name( __isl_keep isl_multi_aff *multi, enum isl_dim_type type); isl_bool isl_pw_multi_aff_has_tuple_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); const char *isl_pw_multi_aff_get_tuple_name( __isl_keep isl_pw_multi_aff *pma, enum isl_dim_type type); const char *isl_multi_union_pw_aff_get_tuple_name( __isl_keep isl_multi_union_pw_aff *mupa, enum isl_dim_type type); The C argument needs to be one of C, C or C. As with C, the C function returns a pointer to some internal data structure. Binary operations require the corresponding spaces of their arguments to have the same name. To keep the names of all parameters and tuples, but reset the user pointers of all the corresponding identifiers, use the following function. #include __isl_give isl_space *isl_space_reset_user( __isl_take isl_space *space); #include __isl_give isl_set *isl_set_reset_user( __isl_take isl_set *set); #include __isl_give isl_map *isl_map_reset_user( __isl_take isl_map *map); #include __isl_give isl_union_set *isl_union_set_reset_user( __isl_take isl_union_set *uset); #include __isl_give isl_union_map *isl_union_map_reset_user( __isl_take isl_union_map *umap); #include __isl_give isl_multi_val *isl_multi_val_reset_user( __isl_take isl_multi_val *mv); #include __isl_give isl_multi_aff *isl_multi_aff_reset_user( __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_reset_user( __isl_take isl_pw_aff *pa); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_reset_user( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_reset_user( __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_user( __isl_take isl_union_pw_aff *upa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_reset_user( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_reset_user( __isl_take isl_union_pw_multi_aff *upma); #include __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_reset_user( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_reset_user( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_reset_user( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_reset_user( __isl_take isl_union_pw_qpolynomial_fold *upwf); Spaces can be nested. In particular, the domain of a set or the domain or range of a relation can be a nested relation. This process is also called I. The functions for detecting, constructing and deconstructing such nested spaces can be found in the wrapping properties of L, the wrapping operations of L and the Cartesian product operations of L. Spaces can be created from other spaces using the functions described in L and L. =head2 Local Spaces A local space is essentially a space with zero or more existentially quantified variables. The local space of various objects can be obtained using the following functions. #include __isl_give isl_local_space *isl_constraint_get_local_space( __isl_keep isl_constraint *constraint); #include __isl_give isl_local_space *isl_basic_set_get_local_space( __isl_keep isl_basic_set *bset); #include __isl_give isl_local_space *isl_basic_map_get_local_space( __isl_keep isl_basic_map *bmap); #include __isl_give isl_local_space *isl_aff_get_domain_local_space( __isl_keep isl_aff *aff); __isl_give isl_local_space *isl_aff_get_local_space( __isl_keep isl_aff *aff); A new local space can be created from a space using #include __isl_give isl_local_space *isl_local_space_from_space( __isl_take isl_space *space); They can be inspected, modified, copied and freed using the following functions. #include isl_bool isl_local_space_is_params( __isl_keep isl_local_space *ls); isl_bool isl_local_space_is_set( __isl_keep isl_local_space *ls); __isl_give isl_space *isl_local_space_get_space( __isl_keep isl_local_space *ls); __isl_give isl_aff *isl_local_space_get_div( __isl_keep isl_local_space *ls, int pos); __isl_give isl_local_space *isl_local_space_copy( __isl_keep isl_local_space *ls); __isl_null isl_local_space *isl_local_space_free( __isl_take isl_local_space *ls); Note that C can only be used on local spaces of sets. Two local spaces can be compared using isl_bool isl_local_space_is_equal( __isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2); Local spaces can be created from other local spaces using the functions described in L and L. =head2 Creating New Sets and Relations C has functions for creating some standard sets and relations. =over =item * Empty sets and relations __isl_give isl_basic_set *isl_basic_set_empty( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_empty( __isl_take isl_space *space); __isl_give isl_set *isl_set_empty( __isl_take isl_space *space); __isl_give isl_map *isl_map_empty( __isl_take isl_space *space); __isl_give isl_union_set *isl_union_set_empty( __isl_take isl_space *space); __isl_give isl_union_map *isl_union_map_empty( __isl_take isl_space *space); For Cs and Cs, the space is only used to specify the parameters. =item * Universe sets and relations __isl_give isl_basic_set *isl_basic_set_universe( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_universe( __isl_take isl_space *space); __isl_give isl_set *isl_set_universe( __isl_take isl_space *space); __isl_give isl_map *isl_map_universe( __isl_take isl_space *space); __isl_give isl_union_set *isl_union_set_universe( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_universe( __isl_take isl_union_map *umap); The sets and relations constructed by the functions above contain all integer values, while those constructed by the functions below only contain non-negative values. __isl_give isl_basic_set *isl_basic_set_nat_universe( __isl_take isl_space *space); __isl_give isl_basic_map *isl_basic_map_nat_universe( __isl_take isl_space *space); __isl_give isl_set *isl_set_nat_universe( __isl_take isl_space *space); __isl_give isl_map *isl_map_nat_universe( __isl_take isl_space *space); =item * Identity relations __isl_give isl_basic_map *isl_basic_map_identity( __isl_take isl_space *space); __isl_give isl_map *isl_map_identity( __isl_take isl_space *space); The number of input and output dimensions in C needs to be the same. =item * Lexicographic order __isl_give isl_map *isl_map_lex_lt( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_le( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_gt( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_ge( __isl_take isl_space *set_space); __isl_give isl_map *isl_map_lex_lt_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_le_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_gt_first( __isl_take isl_space *space, unsigned n); __isl_give isl_map *isl_map_lex_ge_first( __isl_take isl_space *space, unsigned n); The first four functions take a space for a B and return relations that express that the elements in the domain are lexicographically less (C), less or equal (C), greater (C) or greater or equal (C) than the elements in the range. The last four functions take a space for a map and return relations that express that the first C dimensions in the domain are lexicographically less (C), less or equal (C), greater (C) or greater or equal (C) than the first C dimensions in the range. =back A basic set or relation can be converted to a set or relation using the following functions. __isl_give isl_set *isl_set_from_basic_set( __isl_take isl_basic_set *bset); __isl_give isl_map *isl_map_from_basic_map( __isl_take isl_basic_map *bmap); Sets and relations can be converted to union sets and relations using the following functions. __isl_give isl_union_set *isl_union_set_from_basic_set( __isl_take isl_basic_set *bset); __isl_give isl_union_map *isl_union_map_from_basic_map( __isl_take isl_basic_map *bmap); __isl_give isl_union_set *isl_union_set_from_set( __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_from_map( __isl_take isl_map *map); The inverse conversions below can only be used if the input union set or relation is known to contain elements in exactly one space. __isl_give isl_set *isl_set_from_union_set( __isl_take isl_union_set *uset); __isl_give isl_map *isl_map_from_union_map( __isl_take isl_union_map *umap); Sets and relations can be copied and freed again using the following functions. __isl_give isl_basic_set *isl_basic_set_copy( __isl_keep isl_basic_set *bset); __isl_give isl_set *isl_set_copy(__isl_keep isl_set *set); __isl_give isl_union_set *isl_union_set_copy( __isl_keep isl_union_set *uset); __isl_give isl_basic_map *isl_basic_map_copy( __isl_keep isl_basic_map *bmap); __isl_give isl_map *isl_map_copy(__isl_keep isl_map *map); __isl_give isl_union_map *isl_union_map_copy( __isl_keep isl_union_map *umap); __isl_null isl_basic_set *isl_basic_set_free( __isl_take isl_basic_set *bset); __isl_null isl_set *isl_set_free(__isl_take isl_set *set); __isl_null isl_union_set *isl_union_set_free( __isl_take isl_union_set *uset); __isl_null isl_basic_map *isl_basic_map_free( __isl_take isl_basic_map *bmap); __isl_null isl_map *isl_map_free(__isl_take isl_map *map); __isl_null isl_union_map *isl_union_map_free( __isl_take isl_union_map *umap); Other sets and relations can be constructed by starting from a universe set or relation, adding equality and/or inequality constraints and then projecting out the existentially quantified variables, if any. Constraints can be constructed, manipulated and added to (or removed from) (basic) sets and relations using the following functions. #include __isl_give isl_constraint *isl_constraint_alloc_equality( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_constraint_alloc_inequality( __isl_take isl_local_space *ls); __isl_give isl_constraint *isl_constraint_set_constant_si( __isl_take isl_constraint *constraint, int v); __isl_give isl_constraint *isl_constraint_set_constant_val( __isl_take isl_constraint *constraint, __isl_take isl_val *v); __isl_give isl_constraint *isl_constraint_set_coefficient_si( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, int v); __isl_give isl_constraint * isl_constraint_set_coefficient_val( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_basic_map *isl_basic_map_add_constraint( __isl_take isl_basic_map *bmap, __isl_take isl_constraint *constraint); __isl_give isl_basic_set *isl_basic_set_add_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint); __isl_give isl_map *isl_map_add_constraint( __isl_take isl_map *map, __isl_take isl_constraint *constraint); __isl_give isl_set *isl_set_add_constraint( __isl_take isl_set *set, __isl_take isl_constraint *constraint); For example, to create a set containing the even integers between 10 and 42, you would use the following code. isl_space *space; isl_local_space *ls; isl_constraint *c; isl_basic_set *bset; space = isl_space_set_alloc(ctx, 0, 2); bset = isl_basic_set_universe(isl_space_copy(space)); ls = isl_local_space_from_space(space); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 1, 2); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_inequality(isl_local_space_copy(ls)); c = isl_constraint_set_constant_si(c, -10); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, 1); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_inequality(ls); c = isl_constraint_set_constant_si(c, 42); c = isl_constraint_set_coefficient_si(c, isl_dim_set, 0, -1); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1); Or, alternatively, isl_basic_set *bset; bset = isl_basic_set_read_from_str(ctx, "{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}"); A basic set or relation can also be constructed from two matrices describing the equalities and the inequalities. __isl_give isl_basic_set *isl_basic_set_from_constraint_matrices( __isl_take isl_space *space, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_basic_map *isl_basic_map_from_constraint_matrices( __isl_take isl_space *space, __isl_take isl_mat *eq, __isl_take isl_mat *ineq, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); The C arguments indicate the order in which different kinds of variables appear in the input matrices and should be a permutation of C, C, C and C for sets and of C, C, C, C and C for relations. A (basic or union) set or relation can also be constructed from a (union) (piecewise) (multiple) affine expression or a list of affine expressions (See L). __isl_give isl_basic_map *isl_basic_map_from_aff( __isl_take isl_aff *aff); __isl_give isl_map *isl_map_from_aff( __isl_take isl_aff *aff); __isl_give isl_set *isl_set_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_give isl_map *isl_map_from_pw_aff( __isl_take isl_pw_aff *pwaff); __isl_give isl_basic_map *isl_basic_map_from_aff_list( __isl_take isl_space *domain_space, __isl_take isl_aff_list *list); __isl_give isl_basic_map *isl_basic_map_from_multi_aff( __isl_take isl_multi_aff *maff) __isl_give isl_map *isl_map_from_multi_aff( __isl_take isl_multi_aff *maff) __isl_give isl_set *isl_set_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_map *isl_map_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_set_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_map *isl_map_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_union_map *isl_union_map_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_map * isl_union_map_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_map * isl_union_map_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa); The C argument describes the domain of the resulting basic relation. It is required because the C may consist of zero affine expressions. The C passed to C is not allowed to be zero-dimensional. The domain of the result is the shared domain of the union piecewise affine elements. =head2 Inspecting Sets and Relations Usually, the user should not have to care about the actual constraints of the sets and maps, but should instead apply the abstract operations explained in the following sections. Occasionally, however, it may be required to inspect the individual coefficients of the constraints. This section explains how to do so. In these cases, it may also be useful to have C compute an explicit representation of the existentially quantified variables. __isl_give isl_set *isl_set_compute_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_compute_divs( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_compute_divs( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_compute_divs( __isl_take isl_union_map *umap); This explicit representation defines the existentially quantified variables as integer divisions of the other variables, possibly including earlier existentially quantified variables. An explicitly represented existentially quantified variable therefore has a unique value when the values of the other variables are known. If, furthermore, the same existentials, i.e., existentials with the same explicit representations, should appear in the same order in each of the disjuncts of a set or map, then the user should call either of the following functions. __isl_give isl_set *isl_set_align_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_align_divs( __isl_take isl_map *map); Alternatively, the existentially quantified variables can be removed using the following functions, which compute an overapproximation. __isl_give isl_basic_set *isl_basic_set_remove_divs( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_remove_divs( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_remove_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_remove_divs( __isl_take isl_map *map); It is also possible to only remove those divs that are defined in terms of a given range of dimensions or only those for which no explicit representation is known. __isl_give isl_basic_set * isl_basic_set_remove_divs_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map * isl_basic_map_remove_divs_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_remove_divs_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_remove_divs_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set * isl_basic_set_remove_unknown_divs( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_unknown_divs( __isl_take isl_set *set); __isl_give isl_map *isl_map_remove_unknown_divs( __isl_take isl_map *map); To iterate over all the sets or maps in a union set or map, use isl_stat isl_union_set_foreach_set( __isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_set *set, void *user), void *user); isl_stat isl_union_map_foreach_map( __isl_keep isl_union_map *umap, isl_stat (*fn)(__isl_take isl_map *map, void *user), void *user); These functions call the callback function once for each (pair of) space(s) for which there are elements in the input. The argument to the callback contains all elements in the input with that (pair of) space(s). The number of sets or maps in a union set or map can be obtained from int isl_union_set_n_set(__isl_keep isl_union_set *uset); int isl_union_map_n_map(__isl_keep isl_union_map *umap); To extract the set or map in a given space from a union, use __isl_give isl_set *isl_union_set_extract_set( __isl_keep isl_union_set *uset, __isl_take isl_space *space); __isl_give isl_map *isl_union_map_extract_map( __isl_keep isl_union_map *umap, __isl_take isl_space *space); To iterate over all the basic sets or maps in a set or map, use isl_stat isl_set_foreach_basic_set(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_basic_set *bset, void *user), void *user); isl_stat isl_map_foreach_basic_map(__isl_keep isl_map *map, isl_stat (*fn)(__isl_take isl_basic_map *bmap, void *user), void *user); The callback function C should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1. It should be noted that C does not guarantee that the basic sets or maps passed to C are disjoint. If this is required, then the user should call one of the following functions first. __isl_give isl_set *isl_set_make_disjoint( __isl_take isl_set *set); __isl_give isl_map *isl_map_make_disjoint( __isl_take isl_map *map); The number of basic sets in a set can be obtained or the number of basic maps in a map can be obtained from #include int isl_set_n_basic_set(__isl_keep isl_set *set); #include int isl_map_n_basic_map(__isl_keep isl_map *map); It is also possible to obtain a list of basic sets from a set #include __isl_give isl_basic_set_list *isl_set_get_basic_set_list( __isl_keep isl_set *set); The returned list can be manipulated using the functions in L<"Lists">. To iterate over the constraints of a basic set or map, use #include int isl_basic_set_n_constraint( __isl_keep isl_basic_set *bset); isl_stat isl_basic_set_foreach_constraint( __isl_keep isl_basic_set *bset, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user); int isl_basic_map_n_constraint( __isl_keep isl_basic_map *bmap); isl_stat isl_basic_map_foreach_constraint( __isl_keep isl_basic_map *bmap, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user); __isl_null isl_constraint *isl_constraint_free( __isl_take isl_constraint *c); Again, the callback function C should return 0 if successful and -1 if an error occurs. In the latter case, or if any other error occurs, the above functions will return -1. The constraint C represents either an equality or an inequality. Use the following function to find out whether a constraint represents an equality. If not, it represents an inequality. isl_bool isl_constraint_is_equality( __isl_keep isl_constraint *constraint); It is also possible to obtain a list of constraints from a basic map or set #include __isl_give isl_constraint_list * isl_basic_map_get_constraint_list( __isl_keep isl_basic_map *bmap); __isl_give isl_constraint_list * isl_basic_set_get_constraint_list( __isl_keep isl_basic_set *bset); These functions require that all existentially quantified variables have an explicit representation. The returned list can be manipulated using the functions in L<"Lists">. The coefficients of the constraints can be inspected using the following functions. isl_bool isl_constraint_is_lower_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); isl_bool isl_constraint_is_upper_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos); __isl_give isl_val *isl_constraint_get_constant_val( __isl_keep isl_constraint *constraint); __isl_give isl_val *isl_constraint_get_coefficient_val( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); The explicit representations of the existentially quantified variables can be inspected using the following function. Note that the user is only allowed to use this function if the inspected set or map is the result of a call to C or C. The existentially quantified variable is equal to the floor of the returned affine expression. The affine expression itself can be inspected using the functions in L. __isl_give isl_aff *isl_constraint_get_div( __isl_keep isl_constraint *constraint, int pos); To obtain the constraints of a basic set or map in matrix form, use the following functions. __isl_give isl_mat *isl_basic_set_equalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_set_inequalities_matrix( __isl_keep isl_basic_set *bset, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4); __isl_give isl_mat *isl_basic_map_equalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); __isl_give isl_mat *isl_basic_map_inequalities_matrix( __isl_keep isl_basic_map *bmap, enum isl_dim_type c1, enum isl_dim_type c2, enum isl_dim_type c3, enum isl_dim_type c4, enum isl_dim_type c5); The C arguments dictate the order in which different kinds of variables appear in the resulting matrix. For set inputs, they should be a permutation of C, C, C and C. For map inputs, they should be a permutation of C, C, C, C and C. =head2 Points Points are elements of a set. They can be used to construct simple sets (boxes) or they can be used to represent the individual elements of a set. The zero point (the origin) can be created using __isl_give isl_point *isl_point_zero(__isl_take isl_space *space); The coordinates of a point can be inspected, set and changed using __isl_give isl_val *isl_point_get_coordinate_val( __isl_keep isl_point *pnt, enum isl_dim_type type, int pos); __isl_give isl_point *isl_point_set_coordinate_val( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_point *isl_point_add_ui( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); __isl_give isl_point *isl_point_sub_ui( __isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val); Points can be copied or freed using __isl_give isl_point *isl_point_copy( __isl_keep isl_point *pnt); void isl_point_free(__isl_take isl_point *pnt); A singleton set can be created from a point using __isl_give isl_basic_set *isl_basic_set_from_point( __isl_take isl_point *pnt); __isl_give isl_set *isl_set_from_point( __isl_take isl_point *pnt); __isl_give isl_union_set *isl_union_set_from_point( __isl_take isl_point *pnt); and a box can be created from two opposite extremal points using __isl_give isl_basic_set *isl_basic_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2); __isl_give isl_set *isl_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2); All elements of a B (union) set can be enumerated using the following functions. isl_stat isl_set_foreach_point(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user); isl_stat isl_union_set_foreach_point( __isl_keep isl_union_set *uset, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user); The function C is called for each integer point in C with as second argument the last argument of the C call. The function C should return C<0> on success and C<-1> on failure. In the latter case, C will stop enumerating and return C<-1> as well. If the enumeration is performed successfully and to completion, then C returns C<0>. To obtain a single point of a (basic or union) set, use __isl_give isl_point *isl_basic_set_sample_point( __isl_take isl_basic_set *bset); __isl_give isl_point *isl_set_sample_point( __isl_take isl_set *set); __isl_give isl_point *isl_union_set_sample_point( __isl_take isl_union_set *uset); If C does not contain any (integer) points, then the resulting point will be ``void'', a property that can be tested using isl_bool isl_point_is_void(__isl_keep isl_point *pnt); =head2 Functions Besides sets and relation, C also supports various types of functions. Each of these types is derived from the value type (see L) or from one of two primitive function types through the application of zero or more type constructors. We first describe the primitive type and then we describe the types derived from these primitive types. =head3 Primitive Functions C support two primitive function types, quasi-affine expressions and quasipolynomials. A quasi-affine expression is defined either over a parameter space or over a set and is composed of integer constants, parameters and set variables, addition, subtraction and integer division by an integer constant. For example, the quasi-affine expression [n] -> { [x] -> [2*floor((4 n + x)/9] } maps C to C<2*floor((4 n + x)/9>. A quasipolynomial is a polynomial expression in quasi-affine expression. That is, it additionally allows for multiplication. Note, though, that it is not allowed to construct an integer division of an expression involving multiplications. Here is an example of a quasipolynomial that is not quasi-affine expression [n] -> { [x] -> (n*floor((4 n + x)/9) } Note that the external representations of quasi-affine expressions and quasipolynomials are different. Quasi-affine expressions use a notation with square brackets just like binary relations, while quasipolynomials do not. This might change at some point. If a primitive function is defined over a parameter space, then the space of the function itself is that of a set. If it is defined over a set, then the space of the function is that of a relation. In both cases, the set space (or the output space) is single-dimensional, anonymous and unstructured. To create functions with multiple dimensions or with other kinds of set or output spaces, use multiple expressions (see L). =over =item * Quasi-affine Expressions Besides the expressions described above, a quasi-affine expression can also be set to NaN. Such expressions typically represent a failure to represent a result as a quasi-affine expression. The zero quasi affine expression or the quasi affine expression that is equal to a given value or a specified dimension on a given domain can be created using #include __isl_give isl_aff *isl_aff_zero_on_domain( __isl_take isl_local_space *ls); __isl_give isl_aff *isl_aff_val_on_domain( __isl_take isl_local_space *ls, __isl_take isl_val *val); __isl_give isl_aff *isl_aff_var_on_domain( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_aff_nan_on_domain( __isl_take isl_local_space *ls); Quasi affine expressions can be copied and freed using #include __isl_give isl_aff *isl_aff_copy( __isl_keep isl_aff *aff); __isl_null isl_aff *isl_aff_free( __isl_take isl_aff *aff); A (rational) bound on a dimension can be extracted from an C using the following function. The constraint is required to have a non-zero coefficient for the specified dimension. #include __isl_give isl_aff *isl_constraint_get_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos); The entire affine expression of the constraint can also be extracted using the following function. #include __isl_give isl_aff *isl_constraint_get_aff( __isl_keep isl_constraint *constraint); Conversely, an equality constraint equating the affine expression to zero or an inequality constraint enforcing the affine expression to be non-negative, can be constructed using __isl_give isl_constraint *isl_equality_from_aff( __isl_take isl_aff *aff); __isl_give isl_constraint *isl_inequality_from_aff( __isl_take isl_aff *aff); The coefficients and the integer divisions of an affine expression can be inspected using the following functions. #include __isl_give isl_val *isl_aff_get_constant_val( __isl_keep isl_aff *aff); __isl_give isl_val *isl_aff_get_coefficient_val( __isl_keep isl_aff *aff, enum isl_dim_type type, int pos); int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos); __isl_give isl_val *isl_aff_get_denominator_val( __isl_keep isl_aff *aff); __isl_give isl_aff *isl_aff_get_div( __isl_keep isl_aff *aff, int pos); They can be modified using the following functions. #include __isl_give isl_aff *isl_aff_set_constant_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_set_constant_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_set_coefficient_si( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_set_coefficient_val( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_add_constant_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_constant_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_add_constant_num_si( __isl_take isl_aff *aff, int v); __isl_give isl_aff *isl_aff_add_coefficient_si( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v); __isl_give isl_aff *isl_aff_add_coefficient_val( __isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v); Note that C and C set the I of the constant or coefficient, while C and C set the constant or coefficient as a whole. The C and C functions add an integer or rational value to the possibly rational constant or coefficient. The C functions add an integer value to the numerator. =item * Quasipolynomials Some simple quasipolynomials can be created using the following functions. #include __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain( __isl_take isl_space *domain); __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain( __isl_take isl_space *domain, __isl_take isl_val *val); __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain( __isl_take isl_space *domain, enum isl_dim_type type, unsigned pos); __isl_give isl_qpolynomial *isl_qpolynomial_from_aff( __isl_take isl_aff *aff); Recall that the space in which a quasipolynomial lives is a map space with a one-dimensional range. The C argument in some of the functions above corresponds to the domain of this map space. Quasipolynomials can be copied and freed again using the following functions. #include __isl_give isl_qpolynomial *isl_qpolynomial_copy( __isl_keep isl_qpolynomial *qp); __isl_null isl_qpolynomial *isl_qpolynomial_free( __isl_take isl_qpolynomial *qp); The constant term of a quasipolynomial can be extracted using __isl_give isl_val *isl_qpolynomial_get_constant_val( __isl_keep isl_qpolynomial *qp); To iterate over all terms in a quasipolynomial, use isl_stat isl_qpolynomial_foreach_term( __isl_keep isl_qpolynomial *qp, isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user); The terms themselves can be inspected and freed using these functions unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type); __isl_give isl_val *isl_term_get_coefficient_val( __isl_keep isl_term *term); int isl_term_get_exp(__isl_keep isl_term *term, enum isl_dim_type type, unsigned pos); __isl_give isl_aff *isl_term_get_div( __isl_keep isl_term *term, unsigned pos); void isl_term_free(__isl_take isl_term *term); Each term is a product of parameters, set variables and integer divisions. The function C returns the exponent of a given dimensions in the given term. =back =head3 Reductions A reduction represents a maximum or a minimum of its base expressions. The only reduction type defined by C is C. There are currently no functions to directly create such objects, but they do appear in the piecewise quasipolynomial reductions returned by the C function. See L. Reductions can be copied and freed using the following functions. #include __isl_give isl_qpolynomial_fold * isl_qpolynomial_fold_copy( __isl_keep isl_qpolynomial_fold *fold); void isl_qpolynomial_fold_free( __isl_take isl_qpolynomial_fold *fold); To iterate over all quasipolynomials in a reduction, use isl_stat isl_qpolynomial_fold_foreach_qpolynomial( __isl_keep isl_qpolynomial_fold *fold, isl_stat (*fn)(__isl_take isl_qpolynomial *qp, void *user), void *user); =head3 Multiple Expressions A multiple expression represents a sequence of zero or more base expressions, all defined on the same domain space. The domain space of the multiple expression is the same as that of the base expressions, but the range space can be any space. In case the base expressions have a set space, the corresponding multiple expression also has a set space. Objects of the value type do not have an associated space. The space of a multiple value is therefore always a set space. Similarly, the space of a multiple union piecewise affine expression is always a set space. The multiple expression types defined by C are C, C, C, C. A multiple expression with the value zero for each output (or set) dimension can be created using the following functions. #include __isl_give isl_multi_val *isl_multi_val_zero( __isl_take isl_space *space); #include __isl_give isl_multi_aff *isl_multi_aff_zero( __isl_take isl_space *space); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_zero( __isl_take isl_space *space); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_zero( __isl_take isl_space *space); Since there is no canonical way of representing a zero value of type C, the space passed to C needs to be zero-dimensional. An identity function can be created using the following functions. The space needs to be that of a relation with the same number of input and output dimensions. #include __isl_give isl_multi_aff *isl_multi_aff_identity( __isl_take isl_space *space); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_identity( __isl_take isl_space *space); A function that performs a projection on a universe relation or set can be created using the following functions. See also the corresponding projection operations in L. #include __isl_give isl_multi_aff *isl_multi_aff_domain_map( __isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_range_map( __isl_take isl_space *space); __isl_give isl_multi_aff *isl_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); A multiple expression can be created from a single base expression using the following functions. The space of the created multiple expression is the same as that of the base expression, except for C where the input lives in a parameter space and the output lives in a single-dimensional set space. #include __isl_give isl_multi_aff *isl_multi_aff_from_aff( __isl_take isl_aff *aff); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); A multiple expression can be created from a list of base expression in a specified space. The domain of this space needs to be the same as the domains of the base expressions in the list. If the base expressions have a set space (or no associated space), then this space also needs to be a set space. #include __isl_give isl_multi_val *isl_multi_val_from_val_list( __isl_take isl_space *space, __isl_take isl_val_list *list); #include __isl_give isl_multi_aff *isl_multi_aff_from_aff_list( __isl_take isl_space *space, __isl_take isl_aff_list *list); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_from_pw_aff_list( __isl_take isl_space *space, __isl_take isl_pw_aff_list *list); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_pw_aff_list( __isl_take isl_space *space, __isl_take isl_union_pw_aff_list *list); As a convenience, a multiple piecewise expression can also be created from a multiple expression. Each piecewise expression in the result has a single universe cell. #include __isl_give isl_multi_pw_aff * isl_multi_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma); Similarly, a multiple union expression can be created from a multiple expression. #include __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); A multiple quasi-affine expression can be created from a multiple value with a given domain space using the following function. #include __isl_give isl_multi_aff * isl_multi_aff_multi_val_on_space( __isl_take isl_space *space, __isl_take isl_multi_val *mv); Similarly, a multiple union piecewise affine expression can be created from a multiple value with a given domain or a multiple affine expression with a given domain using the following functions. #include __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_multi_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma); Multiple expressions can be copied and freed using the following functions. #include __isl_give isl_multi_val *isl_multi_val_copy( __isl_keep isl_multi_val *mv); __isl_null isl_multi_val *isl_multi_val_free( __isl_take isl_multi_val *mv); #include __isl_give isl_multi_aff *isl_multi_aff_copy( __isl_keep isl_multi_aff *maff); __isl_null isl_multi_aff *isl_multi_aff_free( __isl_take isl_multi_aff *maff); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_copy( __isl_keep isl_multi_pw_aff *mpa); __isl_null isl_multi_pw_aff *isl_multi_pw_aff_free( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_copy( __isl_keep isl_multi_union_pw_aff *mupa); __isl_null isl_multi_union_pw_aff * isl_multi_union_pw_aff_free( __isl_take isl_multi_union_pw_aff *mupa); The base expression at a given position of a multiple expression can be extracted using the following functions. #include __isl_give isl_val *isl_multi_val_get_val( __isl_keep isl_multi_val *mv, int pos); #include __isl_give isl_aff *isl_multi_aff_get_aff( __isl_keep isl_multi_aff *multi, int pos); __isl_give isl_pw_aff *isl_multi_pw_aff_get_pw_aff( __isl_keep isl_multi_pw_aff *mpa, int pos); __isl_give isl_union_pw_aff * isl_multi_union_pw_aff_get_union_pw_aff( __isl_keep isl_multi_union_pw_aff *mupa, int pos); It can be replaced using the following functions. #include __isl_give isl_multi_val *isl_multi_val_set_val( __isl_take isl_multi_val *mv, int pos, __isl_take isl_val *val); #include __isl_give isl_multi_aff *isl_multi_aff_set_aff( __isl_take isl_multi_aff *multi, int pos, __isl_take isl_aff *aff); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_set_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa, int pos, __isl_take isl_union_pw_aff *upa); As a convenience, a sequence of base expressions that have their domains in a given space can be extracted from a sequence of union expressions using the following function. #include __isl_give isl_multi_pw_aff * isl_multi_union_pw_aff_extract_multi_pw_aff( __isl_keep isl_multi_union_pw_aff *mupa, __isl_take isl_space *space); Note that there is a difference between C and C objects. The first is a sequence of unions of piecewise expressions, while the second is a union of piecewise sequences. In particular, multiple affine expressions in an C may live in different spaces, while there is only a single multiple expression in an C, which can therefore only live in a single space. This means that not every C can be converted to an C. Conversely, a zero-dimensional C carries no information about any possible domain and therefore cannot be converted to an C. Moreover, the elements of an C may be defined over different domains, while each multiple expression inside an C has a single domain. The conversion of an C of dimension greater than one may therefore not be exact. The following functions can be used to perform these conversions when they are possible. #include __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa); =head3 Piecewise Expressions A piecewise expression is an expression that is described using zero or more base expression defined over the same number of cells in the domain space of the base expressions. All base expressions are defined over the same domain space and the cells are disjoint. The space of a piecewise expression is the same as that of the base expressions. If the union of the cells is a strict subset of the domain space, then the value of the piecewise expression outside this union is different for types derived from quasi-affine expressions and those derived from quasipolynomials. Piecewise expressions derived from quasi-affine expressions are considered to be undefined outside the union of their cells. Piecewise expressions derived from quasipolynomials are considered to be zero outside the union of their cells. Piecewise quasipolynomials are mainly used by the C library for representing the number of elements in a parametric set or map. For example, the piecewise quasipolynomial [n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 } represents the number of points in the map [n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n } The piecewise expression types defined by C are C, C, C and C. A piecewise expression with no cells can be created using the following functions. #include __isl_give isl_pw_aff *isl_pw_aff_empty( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_empty( __isl_take isl_space *space); A piecewise expression with a single universe cell can be created using the following functions. #include __isl_give isl_pw_aff *isl_pw_aff_from_aff( __isl_take isl_aff *aff); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_from_multi_aff( __isl_take isl_multi_aff *ma); #include __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_from_qpolynomial( __isl_take isl_qpolynomial *qp); A piecewise expression with a single specified cell can be created using the following functions. #include __isl_give isl_pw_aff *isl_pw_aff_alloc( __isl_take isl_set *set, __isl_take isl_aff *aff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_alloc( __isl_take isl_set *set, __isl_take isl_multi_aff *maff); #include __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc( __isl_take isl_set *set, __isl_take isl_qpolynomial *qp); The following convenience functions first create a base expression and then create a piecewise expression over a universe domain. #include __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain( __isl_take isl_local_space *ls); __isl_give isl_pw_aff *isl_pw_aff_var_on_domain( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos); __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain( __isl_take isl_local_space *ls); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity( __isl_take isl_space *space); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map( __isl_take isl_space *space); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); #include __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero( __isl_take isl_space *space); The following convenience functions first create a base expression and then create a piecewise expression over a given domain. #include __isl_give isl_pw_aff *isl_pw_aff_val_on_domain( __isl_take isl_set *domain, __isl_take isl_val *v); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_multi_val_on_domain( __isl_take isl_set *domain, __isl_take isl_multi_val *mv); As a convenience, a piecewise multiple expression can also be created from a piecewise expression. Each multiple expression in the result is derived from the corresponding base expression. #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff( __isl_take isl_pw_aff *pa); Similarly, a piecewise quasipolynomial can be created from a piecewise quasi-affine expression using the following function. #include __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_from_pw_aff( __isl_take isl_pw_aff *pwaff); Piecewise expressions can be copied and freed using the following functions. #include __isl_give isl_pw_aff *isl_pw_aff_copy( __isl_keep isl_pw_aff *pwaff); __isl_null isl_pw_aff *isl_pw_aff_free( __isl_take isl_pw_aff *pwaff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_copy( __isl_keep isl_pw_multi_aff *pma); __isl_null isl_pw_multi_aff *isl_pw_multi_aff_free( __isl_take isl_pw_multi_aff *pma); #include __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy( __isl_keep isl_pw_qpolynomial *pwqp); __isl_null isl_pw_qpolynomial *isl_pw_qpolynomial_free( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_copy( __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_null isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_free( __isl_take isl_pw_qpolynomial_fold *pwf); To iterate over the different cells of a piecewise expression, use the following functions. #include isl_bool isl_pw_aff_is_empty(__isl_keep isl_pw_aff *pwaff); int isl_pw_aff_n_piece(__isl_keep isl_pw_aff *pwaff); isl_stat isl_pw_aff_foreach_piece( __isl_keep isl_pw_aff *pwaff, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user), void *user); isl_stat isl_pw_multi_aff_foreach_piece( __isl_keep isl_pw_multi_aff *pma, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_multi_aff *maff, void *user), void *user); #include isl_stat isl_pw_qpolynomial_foreach_piece( __isl_keep isl_pw_qpolynomial *pwqp, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); isl_stat isl_pw_qpolynomial_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial *pwqp, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial *qp, void *user), void *user); isl_stat isl_pw_qpolynomial_fold_foreach_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); isl_stat isl_pw_qpolynomial_fold_foreach_lifted_piece( __isl_keep isl_pw_qpolynomial_fold *pwf, isl_stat (*fn)(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user), void *user); As usual, the function C should return C<0> on success and C<-1> on failure. The difference between C and C is that C will first compute unique representations for all existentially quantified variables and then turn these existentially quantified variables into extra set variables, adapting the associated quasipolynomial accordingly. This means that the C passed to C will not have any existentially quantified variables, but that the dimensions of the sets may be different for different invocations of C. Similarly for C and C. A piecewise expression consisting of the expressions at a given position of a piecewise multiple expression can be extracted using the following function. #include __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff( __isl_keep isl_pw_multi_aff *pma, int pos); These expressions can be replaced using the following function. #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff( __isl_take isl_pw_multi_aff *pma, unsigned pos, __isl_take isl_pw_aff *pa); Note that there is a difference between C and C objects. The first is a sequence of piecewise affine expressions, while the second is a piecewise sequence of affine expressions. In particular, each of the piecewise affine expressions in an C may have a different domain, while all multiple expressions associated to a cell in an C have the same domain. It is possible to convert between the two, but when converting an C to an C, the domain of the result is the intersection of the domains of the input. The reverse conversion is exact. #include __isl_give isl_pw_multi_aff * isl_pw_multi_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); =head3 Union Expressions A union expression collects base expressions defined over different domains. The space of a union expression is that of the shared parameter space. The union expression types defined by C are C, C, C and C. In case of C, C and C, there can be at most one base expression for a given domain space. In case of C, there can be multiple such expressions for a given domain space, but the domains of these expressions need to be disjoint. An empty union expression can be created using the following functions. #include __isl_give isl_union_pw_aff *isl_union_pw_aff_empty( __isl_take isl_space *space); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_empty( __isl_take isl_space *space); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_zero( __isl_take isl_space *space); A union expression containing a single base expression can be created using the following functions. #include __isl_give isl_union_pw_aff * isl_union_pw_aff_from_pw_aff( __isl_take isl_pw_aff *pa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_aff( __isl_take isl_aff *aff); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_from_pw_qpolynomial( __isl_take isl_pw_qpolynomial *pwqp); The following functions create a base expression on each of the sets in the union set and collect the results. #include __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_union_pw_aff( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_aff * isl_union_pw_multi_aff_get_union_pw_aff( __isl_keep isl_union_pw_multi_aff *upma, int pos); __isl_give isl_union_pw_aff * isl_union_pw_aff_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_val *v); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv); An C that is equal to a (parametric) affine expression on a given domain can be created using the following function. #include __isl_give isl_union_pw_aff * isl_union_pw_aff_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_aff *aff); A base expression can be added to a union expression using the following functions. #include __isl_give isl_union_pw_aff * isl_union_pw_aff_add_pw_aff( __isl_take isl_union_pw_aff *upa, __isl_take isl_pw_aff *pa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_add_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_pw_multi_aff *pma); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_add_pw_qpolynomial( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_pw_qpolynomial *pwqp); Union expressions can be copied and freed using the following functions. #include __isl_give isl_union_pw_aff *isl_union_pw_aff_copy( __isl_keep isl_union_pw_aff *upa); __isl_null isl_union_pw_aff *isl_union_pw_aff_free( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_copy( __isl_keep isl_union_pw_multi_aff *upma); __isl_null isl_union_pw_multi_aff * isl_union_pw_multi_aff_free( __isl_take isl_union_pw_multi_aff *upma); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_copy( __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_null isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_free( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_copy( __isl_keep isl_union_pw_qpolynomial_fold *upwf); __isl_null isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_free( __isl_take isl_union_pw_qpolynomial_fold *upwf); To iterate over the base expressions in a union expression, use the following functions. #include int isl_union_pw_aff_n_pw_aff( __isl_keep isl_union_pw_aff *upa); isl_stat isl_union_pw_aff_foreach_pw_aff( __isl_keep isl_union_pw_aff *upa, isl_stat (*fn)(__isl_take isl_pw_aff *ma, void *user), void *user); int isl_union_pw_multi_aff_n_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma); isl_stat isl_union_pw_multi_aff_foreach_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma, isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user), void *user); #include int isl_union_pw_qpolynomial_n_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp); isl_stat isl_union_pw_qpolynomial_foreach_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, isl_stat (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user), void *user); int isl_union_pw_qpolynomial_fold_n_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf); isl_stat isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold( __isl_keep isl_union_pw_qpolynomial_fold *upwf, isl_stat (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf, void *user), void *user); To extract the base expression in a given space from a union, use the following functions. #include __isl_give isl_pw_aff *isl_union_pw_aff_extract_pw_aff( __isl_keep isl_union_pw_aff *upa, __isl_take isl_space *space); __isl_give isl_pw_multi_aff * isl_union_pw_multi_aff_extract_pw_multi_aff( __isl_keep isl_union_pw_multi_aff *upma, __isl_take isl_space *space); #include __isl_give isl_pw_qpolynomial * isl_union_pw_qpolynomial_extract_pw_qpolynomial( __isl_keep isl_union_pw_qpolynomial *upwqp, __isl_take isl_space *space); =head2 Input and Output For set and relation, C supports its own input/output format, which is similar to the C format, but also supports the C format in some cases. For other object types, typically only an C format is supported. =head3 C format The C format is similar to that of C, but has a different syntax for describing the parameters and allows for the definition of an existentially quantified variable as the integer division of an affine expression. For example, the set of integers C between C<0> and C such that C can be described as [n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and i - 10 a <= 6) } A set or relation can have several disjuncts, separated by the keyword C. Each disjunct is either a conjunction of constraints or a projection (C) of a conjunction of constraints. The constraints are separated by the keyword C. =head3 C format If the represented set is a union, then the first line contains a single number representing the number of disjuncts. Otherwise, a line containing the number C<1> is optional. Each disjunct is represented by a matrix of constraints. The first line contains two numbers representing the number of rows and columns, where the number of rows is equal to the number of constraints and the number of columns is equal to two plus the number of variables. The following lines contain the actual rows of the constraint matrix. In each row, the first column indicates whether the constraint is an equality (C<0>) or inequality (C<1>). The final column corresponds to the constant term. If the set is parametric, then the coefficients of the parameters appear in the last columns before the constant column. The coefficients of any existentially quantified variables appear between those of the set variables and those of the parameters. =head3 Extended C format The extended C format is nearly identical to the C format. The only difference is that the line containing the number of rows and columns of a constraint matrix also contains four additional numbers: the number of output dimensions, the number of input dimensions, the number of local dimensions (i.e., the number of existentially quantified variables) and the number of parameters. For sets, the number of ``output'' dimensions is equal to the number of set dimensions, while the number of ``input'' dimensions is zero. =head3 Input Objects can be read from input using the following functions. #include __isl_give isl_val *isl_val_read_from_str(isl_ctx *ctx, const char *str); __isl_give isl_multi_val *isl_multi_val_read_from_str( isl_ctx *ctx, const char *str); #include __isl_give isl_basic_set *isl_basic_set_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_basic_set *isl_basic_set_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx, FILE *input); __isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx, const char *str); #include __isl_give isl_basic_map *isl_basic_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_basic_map *isl_basic_map_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_map *isl_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx, const char *str); #include __isl_give isl_union_set *isl_union_set_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_union_set *isl_union_set_read_from_str( isl_ctx *ctx, const char *str); #include __isl_give isl_union_map *isl_union_map_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_union_map *isl_union_map_read_from_str( isl_ctx *ctx, const char *str); #include __isl_give isl_aff *isl_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_multi_aff *isl_multi_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_pw_aff *isl_pw_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_union_pw_aff * isl_union_pw_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_read_from_str( isl_ctx *ctx, const char *str); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_read_from_str( isl_ctx *ctx, const char *str); For sets and relations, the input format is autodetected and may be either the C format or the C format. =head3 Output Before anything can be printed, an C needs to be created. __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx, FILE *file); __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx); __isl_null isl_printer *isl_printer_free( __isl_take isl_printer *printer); __isl_give char *isl_printer_get_str( __isl_keep isl_printer *printer); The printer can be inspected using the following functions. FILE *isl_printer_get_file( __isl_keep isl_printer *printer); int isl_printer_get_output_format( __isl_keep isl_printer *p); int isl_printer_get_yaml_style(__isl_keep isl_printer *p); The behavior of the printer can be modified in various ways __isl_give isl_printer *isl_printer_set_output_format( __isl_take isl_printer *p, int output_format); __isl_give isl_printer *isl_printer_set_indent( __isl_take isl_printer *p, int indent); __isl_give isl_printer *isl_printer_set_indent_prefix( __isl_take isl_printer *p, const char *prefix); __isl_give isl_printer *isl_printer_indent( __isl_take isl_printer *p, int indent); __isl_give isl_printer *isl_printer_set_prefix( __isl_take isl_printer *p, const char *prefix); __isl_give isl_printer *isl_printer_set_suffix( __isl_take isl_printer *p, const char *suffix); __isl_give isl_printer *isl_printer_set_yaml_style( __isl_take isl_printer *p, int yaml_style); The C may be either C, C, C, C or C and defaults to C. Each line in the output is prefixed by C, indented by C (set by C) spaces (default: 0), prefixed by C and suffixed by C. In the C format output, the coefficients of the existentially quantified variables appear between those of the set variables and those of the parameters. The function C increases the indentation by the specified amount (which may be negative). The YAML style may be either C or C and when we are printing something in YAML format. To actually print something, use #include __isl_give isl_printer *isl_printer_print_double( __isl_take isl_printer *p, double d); #include __isl_give isl_printer *isl_printer_print_val( __isl_take isl_printer *p, __isl_keep isl_val *v); #include __isl_give isl_printer *isl_printer_print_basic_set( __isl_take isl_printer *printer, __isl_keep isl_basic_set *bset); __isl_give isl_printer *isl_printer_print_set( __isl_take isl_printer *printer, __isl_keep isl_set *set); #include __isl_give isl_printer *isl_printer_print_basic_map( __isl_take isl_printer *printer, __isl_keep isl_basic_map *bmap); __isl_give isl_printer *isl_printer_print_map( __isl_take isl_printer *printer, __isl_keep isl_map *map); #include __isl_give isl_printer *isl_printer_print_union_set( __isl_take isl_printer *p, __isl_keep isl_union_set *uset); #include __isl_give isl_printer *isl_printer_print_union_map( __isl_take isl_printer *p, __isl_keep isl_union_map *umap); #include __isl_give isl_printer *isl_printer_print_multi_val( __isl_take isl_printer *p, __isl_keep isl_multi_val *mv); #include __isl_give isl_printer *isl_printer_print_aff( __isl_take isl_printer *p, __isl_keep isl_aff *aff); __isl_give isl_printer *isl_printer_print_multi_aff( __isl_take isl_printer *p, __isl_keep isl_multi_aff *maff); __isl_give isl_printer *isl_printer_print_pw_aff( __isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff); __isl_give isl_printer *isl_printer_print_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma); __isl_give isl_printer *isl_printer_print_multi_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_pw_aff *mpa); __isl_give isl_printer *isl_printer_print_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_aff *upa); __isl_give isl_printer *isl_printer_print_union_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_multi_aff *upma); __isl_give isl_printer * isl_printer_print_multi_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_union_pw_aff *mupa); #include __isl_give isl_printer *isl_printer_print_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp); __isl_give isl_printer *isl_printer_print_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial *upwqp); __isl_give isl_printer * isl_printer_print_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf); __isl_give isl_printer * isl_printer_print_union_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial_fold *upwf); For C, C and C, the output format of the printer needs to be set to either C or C. For C and C, only C is supported. In case of printing in C, the user may want to set the names of all dimensions first. C also provides limited support for printing YAML documents, just enough for the internal use for printing such documents. #include __isl_give isl_printer *isl_printer_yaml_start_mapping( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_end_mapping( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_start_sequence( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_end_sequence( __isl_take isl_printer *p); __isl_give isl_printer *isl_printer_yaml_next( __isl_take isl_printer *p); A document is started by a call to either C or C. Anything printed to the printer after such a call belong to the first key of the mapping or the first element in the sequence. The function C moves to the value if we are currently printing a mapping key, the next key if we are printing a value or the next element if we are printing an element in a sequence. Nested mappings and sequences are initiated by the same C or C. Each call to these functions needs to have a corresponding call to C or C. When called on a file printer, the following function flushes the file. When called on a string printer, the buffer is cleared. __isl_give isl_printer *isl_printer_flush( __isl_take isl_printer *p); Alternatively, a string representation can be obtained directly using the following functions, which always print in isl format. #include __isl_give char *isl_space_to_str( __isl_keep isl_space *space); #include __isl_give char *isl_val_to_str(__isl_keep isl_val *v); __isl_give char *isl_multi_val_to_str( __isl_keep isl_multi_val *mv); #include __isl_give char *isl_set_to_str( __isl_keep isl_set *set); #include __isl_give char *isl_union_set_to_str( __isl_keep isl_union_set *uset); #include __isl_give char *isl_map_to_str( __isl_keep isl_map *map); #include __isl_give char *isl_union_map_to_str( __isl_keep isl_union_map *umap); #include __isl_give char *isl_multi_aff_to_str( __isl_keep isl_multi_aff *aff); __isl_give char *isl_union_pw_aff_to_str( __isl_keep isl_union_pw_aff *upa); __isl_give char *isl_union_pw_multi_aff_to_str( __isl_keep isl_union_pw_multi_aff *upma); __isl_give char *isl_multi_union_pw_aff_to_str( __isl_keep isl_multi_union_pw_aff *mupa); =head2 Properties =head3 Unary Properties =over =item * Emptiness The following functions test whether the given set or relation contains any integer points. The ``plain'' variants do not perform any computations, but simply check if the given set or relation is already known to be empty. isl_bool isl_basic_set_plain_is_empty( __isl_keep isl_basic_set *bset); isl_bool isl_basic_set_is_empty( __isl_keep isl_basic_set *bset); isl_bool isl_set_plain_is_empty( __isl_keep isl_set *set); isl_bool isl_set_is_empty(__isl_keep isl_set *set); isl_bool isl_union_set_is_empty( __isl_keep isl_union_set *uset); isl_bool isl_basic_map_plain_is_empty( __isl_keep isl_basic_map *bmap); isl_bool isl_basic_map_is_empty( __isl_keep isl_basic_map *bmap); isl_bool isl_map_plain_is_empty( __isl_keep isl_map *map); isl_bool isl_map_is_empty(__isl_keep isl_map *map); isl_bool isl_union_map_is_empty( __isl_keep isl_union_map *umap); =item * Universality isl_bool isl_basic_set_is_universe( __isl_keep isl_basic_set *bset); isl_bool isl_basic_map_is_universe( __isl_keep isl_basic_map *bmap); isl_bool isl_set_plain_is_universe( __isl_keep isl_set *set); isl_bool isl_map_plain_is_universe( __isl_keep isl_map *map); =item * Single-valuedness #include isl_bool isl_set_is_singleton(__isl_keep isl_set *set); #include isl_bool isl_basic_map_is_single_valued( __isl_keep isl_basic_map *bmap); isl_bool isl_map_plain_is_single_valued( __isl_keep isl_map *map); isl_bool isl_map_is_single_valued(__isl_keep isl_map *map); #include isl_bool isl_union_map_is_single_valued( __isl_keep isl_union_map *umap); =item * Injectivity isl_bool isl_map_plain_is_injective( __isl_keep isl_map *map); isl_bool isl_map_is_injective( __isl_keep isl_map *map); isl_bool isl_union_map_plain_is_injective( __isl_keep isl_union_map *umap); isl_bool isl_union_map_is_injective( __isl_keep isl_union_map *umap); =item * Bijectivity isl_bool isl_map_is_bijective( __isl_keep isl_map *map); isl_bool isl_union_map_is_bijective( __isl_keep isl_union_map *umap); =item * Position __isl_give isl_val * isl_basic_map_plain_get_val_if_fixed( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned pos); __isl_give isl_val *isl_set_plain_get_val_if_fixed( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); __isl_give isl_val *isl_map_plain_get_val_if_fixed( __isl_keep isl_map *map, enum isl_dim_type type, unsigned pos); If the set or relation obviously lies on a hyperplane where the given dimension has a fixed value, then return that value. Otherwise return NaN. =item * Stride isl_stat isl_set_dim_residue_class_val( __isl_keep isl_set *set, int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue); Check if the values of the given set dimension are equal to a fixed value modulo some integer value. If so, assign the modulo to C<*modulo> and the fixed value to C<*residue>. If the given dimension attains only a single value, then assign C<0> to C<*modulo> and the fixed value to C<*residue>. If the dimension does not attain only a single value and if no modulo can be found then assign C<1> to C<*modulo> and C<1> to C<*residue>. =item * Dependence To check whether the description of a set, relation or function depends on one or more given dimensions, the following functions can be used. #include isl_bool isl_constraint_involves_dims( __isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned first, unsigned n); #include isl_bool isl_basic_set_involves_dims( __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_set_involves_dims(__isl_keep isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); #include isl_bool isl_basic_map_involves_dims( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_map_involves_dims(__isl_keep isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); #include isl_bool isl_union_map_involves_dims( __isl_keep isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n); #include isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_pw_aff_involves_dims( __isl_keep isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_multi_aff_involves_dims( __isl_keep isl_multi_aff *ma, enum isl_dim_type type, unsigned first, unsigned n); isl_bool isl_multi_pw_aff_involves_dims( __isl_keep isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned first, unsigned n); #include isl_bool isl_qpolynomial_involves_dims( __isl_keep isl_qpolynomial *qp, enum isl_dim_type type, unsigned first, unsigned n); Similarly, the following functions can be used to check whether a given dimension is involved in any lower or upper bound. #include isl_bool isl_set_dim_has_any_lower_bound( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_any_upper_bound( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); Note that these functions return true even if there is a bound on the dimension on only some of the basic sets of C. To check if they have a bound for all of the basic sets in C, use the following functions instead. #include isl_bool isl_set_dim_has_lower_bound( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); isl_bool isl_set_dim_has_upper_bound( __isl_keep isl_set *set, enum isl_dim_type type, unsigned pos); =item * Space To check whether a set is a parameter domain, use this function: isl_bool isl_set_is_params(__isl_keep isl_set *set); isl_bool isl_union_set_is_params( __isl_keep isl_union_set *uset); =item * Wrapping The following functions check whether the space of the given (basic) set or relation range is a wrapped relation. #include isl_bool isl_space_is_wrapping( __isl_keep isl_space *space); isl_bool isl_space_domain_is_wrapping( __isl_keep isl_space *space); isl_bool isl_space_range_is_wrapping( __isl_keep isl_space *space); #include isl_bool isl_basic_set_is_wrapping( __isl_keep isl_basic_set *bset); isl_bool isl_set_is_wrapping(__isl_keep isl_set *set); #include isl_bool isl_map_domain_is_wrapping( __isl_keep isl_map *map); isl_bool isl_map_range_is_wrapping( __isl_keep isl_map *map); #include isl_bool isl_multi_val_range_is_wrapping( __isl_keep isl_multi_val *mv); #include isl_bool isl_multi_aff_range_is_wrapping( __isl_keep isl_multi_aff *ma); isl_bool isl_multi_pw_aff_range_is_wrapping( __isl_keep isl_multi_pw_aff *mpa); isl_bool isl_multi_union_pw_aff_range_is_wrapping( __isl_keep isl_multi_union_pw_aff *mupa); The input to C should be the space of a set, while that of C and C should be the space of a relation. =item * Internal Product isl_bool isl_basic_map_can_zip( __isl_keep isl_basic_map *bmap); isl_bool isl_map_can_zip(__isl_keep isl_map *map); Check whether the product of domain and range of the given relation can be computed, i.e., whether both domain and range are nested relations. =item * Currying #include isl_bool isl_space_can_curry( __isl_keep isl_space *space); #include isl_bool isl_basic_map_can_curry( __isl_keep isl_basic_map *bmap); isl_bool isl_map_can_curry(__isl_keep isl_map *map); Check whether the domain of the (basic) relation is a wrapped relation. #include __isl_give isl_space *isl_space_uncurry( __isl_take isl_space *space); #include isl_bool isl_basic_map_can_uncurry( __isl_keep isl_basic_map *bmap); isl_bool isl_map_can_uncurry(__isl_keep isl_map *map); Check whether the range of the (basic) relation is a wrapped relation. #include isl_bool isl_space_can_range_curry( __isl_keep isl_space *space); #include isl_bool isl_map_can_range_curry( __isl_keep isl_map *map); Check whether the domain of the relation wrapped in the range of the input is itself a wrapped relation. =item * Special Values #include isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff); isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff); Check whether the given expression is a constant. #include isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff); isl_bool isl_pw_aff_involves_nan( __isl_keep isl_pw_aff *pa); #include isl_bool isl_qpolynomial_fold_is_nan( __isl_keep isl_qpolynomial_fold *fold); Check whether the given expression is equal to or involves NaN. #include isl_bool isl_aff_plain_is_zero( __isl_keep isl_aff *aff); Check whether the affine expression is obviously zero. =back =head3 Binary Properties =over =item * Equality The following functions check whether two objects represent the same set, relation or function. The C variants only return true if the objects are obviously the same. That is, they may return false even if the objects are the same, but they will never return true if the objects are not the same. #include isl_bool isl_basic_set_plain_is_equal( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_basic_set_is_equal( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_set_plain_is_equal( __isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_is_equal(__isl_keep isl_set *set1, __isl_keep isl_set *set2); #include isl_bool isl_basic_map_is_equal( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_map_is_equal(__isl_keep isl_map *map1, __isl_keep isl_map *map2); isl_bool isl_map_plain_is_equal( __isl_keep isl_map *map1, __isl_keep isl_map *map2); #include isl_bool isl_union_set_is_equal( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); #include isl_bool isl_union_map_is_equal( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); #include isl_bool isl_aff_plain_is_equal( __isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2); isl_bool isl_multi_aff_plain_is_equal( __isl_keep isl_multi_aff *maff1, __isl_keep isl_multi_aff *maff2); isl_bool isl_pw_aff_plain_is_equal( __isl_keep isl_pw_aff *pwaff1, __isl_keep isl_pw_aff *pwaff2); isl_bool isl_pw_multi_aff_plain_is_equal( __isl_keep isl_pw_multi_aff *pma1, __isl_keep isl_pw_multi_aff *pma2); isl_bool isl_multi_pw_aff_plain_is_equal( __isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2); isl_bool isl_multi_pw_aff_is_equal( __isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2); isl_bool isl_union_pw_aff_plain_is_equal( __isl_keep isl_union_pw_aff *upa1, __isl_keep isl_union_pw_aff *upa2); isl_bool isl_union_pw_multi_aff_plain_is_equal( __isl_keep isl_union_pw_multi_aff *upma1, __isl_keep isl_union_pw_multi_aff *upma2); isl_bool isl_multi_union_pw_aff_plain_is_equal( __isl_keep isl_multi_union_pw_aff *mupa1, __isl_keep isl_multi_union_pw_aff *mupa2); #include isl_bool isl_union_pw_qpolynomial_plain_is_equal( __isl_keep isl_union_pw_qpolynomial *upwqp1, __isl_keep isl_union_pw_qpolynomial *upwqp2); isl_bool isl_union_pw_qpolynomial_fold_plain_is_equal( __isl_keep isl_union_pw_qpolynomial_fold *upwf1, __isl_keep isl_union_pw_qpolynomial_fold *upwf2); =item * Disjointness #include isl_bool isl_basic_set_is_disjoint( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_set_plain_is_disjoint( __isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2); #include isl_bool isl_basic_map_is_disjoint( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2); #include isl_bool isl_union_set_is_disjoint( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); #include isl_bool isl_union_map_is_disjoint( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); =item * Subset isl_bool isl_basic_set_is_subset( __isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2); isl_bool isl_set_is_subset(__isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_set_is_strict_subset( __isl_keep isl_set *set1, __isl_keep isl_set *set2); isl_bool isl_union_set_is_subset( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); isl_bool isl_union_set_is_strict_subset( __isl_keep isl_union_set *uset1, __isl_keep isl_union_set *uset2); isl_bool isl_basic_map_is_subset( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_basic_map_is_strict_subset( __isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); isl_bool isl_map_is_subset( __isl_keep isl_map *map1, __isl_keep isl_map *map2); isl_bool isl_map_is_strict_subset( __isl_keep isl_map *map1, __isl_keep isl_map *map2); isl_bool isl_union_map_is_subset( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); isl_bool isl_union_map_is_strict_subset( __isl_keep isl_union_map *umap1, __isl_keep isl_union_map *umap2); Check whether the first argument is a (strict) subset of the second argument. =item * Order Every comparison function returns a negative value if the first argument is considered smaller than the second, a positive value if the first argument is considered greater and zero if the two constraints are considered the same by the comparison criterion. #include int isl_constraint_plain_cmp( __isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2); This function is useful for sorting Cs. The order depends on the internal representation of the inputs. The order is fixed over different calls to the function (assuming the internal representation of the inputs has not changed), but may change over different versions of C. #include int isl_constraint_cmp_last_non_zero( __isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2); This function can be used to sort constraints that live in the same local space. Constraints that involve ``earlier'' dimensions or that have a smaller coefficient for the shared latest dimension are considered smaller than other constraints. This function only defines a B order. #include int isl_set_plain_cmp(__isl_keep isl_set *set1, __isl_keep isl_set *set2); This function is useful for sorting Cs. The order depends on the internal representation of the inputs. The order is fixed over different calls to the function (assuming the internal representation of the inputs has not changed), but may change over different versions of C. #include int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2); The function C can be used to sort Cs. The order is not strictly defined. The current order sorts expressions that only involve earlier dimensions before those that involve later dimensions. =back =head2 Unary Operations =over =item * Complement __isl_give isl_set *isl_set_complement( __isl_take isl_set *set); __isl_give isl_map *isl_map_complement( __isl_take isl_map *map); =item * Inverse map #include __isl_give isl_space *isl_space_reverse( __isl_take isl_space *space); #include __isl_give isl_basic_map *isl_basic_map_reverse( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_reverse( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_reverse( __isl_take isl_union_map *umap); =item * Projection #include __isl_give isl_space *isl_space_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_params( __isl_take isl_space *space); #include __isl_give isl_local_space *isl_local_space_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_range( __isl_take isl_local_space *ls); #include __isl_give isl_basic_set *isl_basic_set_project_out( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_project_out(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_params( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_params(__isl_take isl_set *set); #include __isl_give isl_basic_map *isl_basic_map_project_out( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_project_out(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_map_domain( __isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_map_range( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_params(__isl_take isl_map *map); __isl_give isl_set *isl_map_domain( __isl_take isl_map *bmap); __isl_give isl_set *isl_map_range( __isl_take isl_map *map); #include __isl_give isl_union_set *isl_union_set_project_out( __isl_take isl_union_set *uset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_union_set_params( __isl_take isl_union_set *uset); The function C can only project out parameters. #include __isl_give isl_union_map *isl_union_map_project_out( __isl_take isl_union_map *umap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_union_map_params( __isl_take isl_union_map *umap); __isl_give isl_union_set *isl_union_map_domain( __isl_take isl_union_map *umap); __isl_give isl_union_set *isl_union_map_range( __isl_take isl_union_map *umap); The function C can only project out parameters. #include __isl_give isl_aff *isl_aff_project_domain_on_params( __isl_take isl_aff *aff); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_project_domain_on_params( __isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_pw_aff_domain( __isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_multi_aff_domain( __isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_multi_pw_aff_domain( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_union_set *isl_union_pw_aff_domain( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_set *isl_union_pw_multi_aff_domain( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_set * isl_multi_union_pw_aff_domain( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_set *isl_pw_aff_params( __isl_take isl_pw_aff *pwa); The function C requires its input to have at least one set dimension. #include __isl_give isl_qpolynomial * isl_qpolynomial_project_domain_on_params( __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_project_domain_on_params( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_project_domain_on_params( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_set *isl_pw_qpolynomial_domain( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf); __isl_give isl_union_set *isl_union_pw_qpolynomial_domain( __isl_take isl_union_pw_qpolynomial *upwqp); #include __isl_give isl_space *isl_space_domain_map( __isl_take isl_space *space); __isl_give isl_space *isl_space_range_map( __isl_take isl_space *space); #include __isl_give isl_map *isl_set_wrapped_domain_map( __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_domain_map( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_range_map( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map); __isl_give isl_map *isl_map_range_map(__isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_domain_map( __isl_take isl_union_map *umap); __isl_give isl_union_pw_multi_aff * isl_union_map_domain_map_union_pw_multi_aff( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_range_map( __isl_take isl_union_map *umap); __isl_give isl_union_map * isl_union_set_wrapped_domain_map( __isl_take isl_union_set *uset); The functions above construct a (basic, regular or union) relation that maps (a wrapped version of) the input relation to its domain or range. C maps the input set to the domain of its wrapped relation. =item * Elimination __isl_give isl_basic_set *isl_basic_set_eliminate( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_eliminate( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_eliminate( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map *isl_map_eliminate( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); Eliminate the coefficients for the given dimensions from the constraints, without removing the dimensions. =item * Constructing a set from a parameter domain A zero-dimensional space or (basic) set can be constructed on a given parameter domain using the following functions. #include __isl_give isl_space *isl_space_set_from_params( __isl_take isl_space *space); #include __isl_give isl_basic_set *isl_basic_set_from_params( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_from_params( __isl_take isl_set *set); =item * Constructing a relation from one or two sets Create a relation with the given set(s) as domain and/or range. If only the domain or the range is specified, then the range or domain of the created relation is a zero-dimensional flat anonymous space. #include __isl_give isl_space *isl_space_from_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_from_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_map_from_set( __isl_take isl_space *space); __isl_give isl_space *isl_space_map_from_domain_and_range( __isl_take isl_space *domain, __isl_take isl_space *range); #include __isl_give isl_local_space *isl_local_space_from_domain( __isl_take isl_local_space *ls); #include __isl_give isl_map *isl_map_from_domain( __isl_take isl_set *set); __isl_give isl_map *isl_map_from_range( __isl_take isl_set *set); #include __isl_give isl_union_map * isl_union_map_from_domain_and_range( __isl_take isl_union_set *domain, __isl_take isl_union_set *range); #include __isl_give isl_multi_val *isl_multi_val_from_range( __isl_take isl_multi_val *mv); #include __isl_give isl_multi_aff *isl_multi_aff_from_range( __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_from_range( __isl_take isl_pw_aff *pwa); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_range( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_range( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain( __isl_take isl_set *set); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_domain( __isl_take isl_union_set *uset); =item * Slicing #include __isl_give isl_basic_set *isl_basic_set_fix_si( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_set *isl_basic_set_fix_val( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); __isl_give isl_set *isl_set_fix_si(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_fix_val( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); #include __isl_give isl_basic_map *isl_basic_map_fix_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_fix_val( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); __isl_give isl_map *isl_map_fix_si(__isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_map *isl_map_fix_val( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v); #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_fix_si( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos, int value); #include __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_fix_val( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned n, __isl_take isl_val *v); Intersect the set, relation or function domain with the hyperplane where the given dimension has the fixed given value. __isl_give isl_basic_map *isl_basic_map_lower_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_basic_map *isl_basic_map_upper_bound_si( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_lower_bound_si( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_lower_bound_val( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value); __isl_give isl_map *isl_map_lower_bound_si( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_upper_bound_si( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, int value); __isl_give isl_set *isl_set_upper_bound_val( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_take isl_val *value); __isl_give isl_map *isl_map_upper_bound_si( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int value); Intersect the set or relation with the half-space where the given dimension has a value bounded by the fixed given integer value. __isl_give isl_set *isl_set_equate(__isl_take isl_set *set, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_equate( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_equate(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the set or relation with the hyperplane where the given dimensions are equal to each other. __isl_give isl_map *isl_map_oppose(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the relation with the hyperplane where the given dimensions have opposite values. __isl_give isl_map *isl_map_order_le( __isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_order_ge( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_ge( __isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_lt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_basic_map *isl_basic_map_order_gt( __isl_take isl_basic_map *bmap, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); __isl_give isl_map *isl_map_order_gt(__isl_take isl_map *map, enum isl_dim_type type1, int pos1, enum isl_dim_type type2, int pos2); Intersect the relation with the half-space where the given dimensions satisfy the given ordering. =item * Locus #include __isl_give isl_basic_set *isl_aff_zero_basic_set( __isl_take isl_aff *aff); __isl_give isl_basic_set *isl_aff_neg_basic_set( __isl_take isl_aff *aff); __isl_give isl_set *isl_pw_aff_pos_set( __isl_take isl_pw_aff *pa); __isl_give isl_set *isl_pw_aff_nonneg_set( __isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_zero_set( __isl_take isl_pw_aff *pwaff); __isl_give isl_set *isl_pw_aff_non_zero_set( __isl_take isl_pw_aff *pwaff); __isl_give isl_union_set * isl_union_pw_aff_zero_union_set( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_set * isl_multi_union_pw_aff_zero_union_set( __isl_take isl_multi_union_pw_aff *mupa); The function C returns a basic set containing those elements in the domain space of C where C is negative. The function C returns a set containing those elements in the domain of C where C is non-negative. The function C returns a union set containing those elements in the domains of its elements where they are all zero. =item * Identity __isl_give isl_map *isl_set_identity( __isl_take isl_set *set); __isl_give isl_union_map *isl_union_set_identity( __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff * isl_union_set_identity_union_pw_multi_aff( __isl_take isl_union_set *uset); Construct an identity relation on the given (union) set. =item * Function Extraction A piecewise quasi affine expression that is equal to 1 on a set and 0 outside the set can be created using the following function. #include __isl_give isl_pw_aff *isl_set_indicator_function( __isl_take isl_set *set); A piecewise multiple quasi affine expression can be extracted from an C or C, provided the C is a singleton and the C is single-valued. In case of a conversion from an C to an C, these properties need to hold in each domain space. A conversion to a C additionally requires that the input is non-empty and involves only a single range space. #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map( __isl_take isl_map *map); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_union_set( __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_union_map( __isl_take isl_union_map *umap); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_map( __isl_take isl_union_map *umap); =item * Deltas __isl_give isl_basic_set *isl_basic_map_deltas( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_deltas(__isl_take isl_map *map); __isl_give isl_union_set *isl_union_map_deltas( __isl_take isl_union_map *umap); These functions return a (basic) set containing the differences between image elements and corresponding domain elements in the input. __isl_give isl_basic_map *isl_basic_map_deltas_map( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_deltas_map( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_deltas_map( __isl_take isl_union_map *umap); The functions above construct a (basic, regular or union) relation that maps (a wrapped version of) the input relation to its delta set. =item * Coalescing Simplify the representation of a set, relation or functions by trying to combine pairs of basic sets or relations into a single basic set or relation. #include __isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set); #include __isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map); #include __isl_give isl_union_set *isl_union_set_coalesce( __isl_take isl_union_set *uset); #include __isl_give isl_union_map *isl_union_map_coalesce( __isl_take isl_union_map *umap); #include __isl_give isl_pw_aff *isl_pw_aff_coalesce( __isl_take isl_pw_aff *pwqp); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_coalesce( __isl_take isl_pw_multi_aff *pma); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_coalesce( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_union_pw_aff *isl_union_pw_aff_coalesce( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_coalesce( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_coalesce( __isl_take isl_multi_union_pw_aff *aff); #include __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_coalesce( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_coalesce( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_coalesce( __isl_take isl_union_pw_qpolynomial_fold *upwf); One of the methods for combining pairs of basic sets or relations can result in coefficients that are much larger than those that appear in the constraints of the input. By default, the coefficients are not allowed to grow larger, but this can be changed by unsetting the following option. isl_stat isl_options_set_coalesce_bounded_wrapping( isl_ctx *ctx, int val); int isl_options_get_coalesce_bounded_wrapping( isl_ctx *ctx); =item * Detecting equalities __isl_give isl_basic_set *isl_basic_set_detect_equalities( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_detect_equalities( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_detect_equalities( __isl_take isl_set *set); __isl_give isl_map *isl_map_detect_equalities( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_detect_equalities( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_detect_equalities( __isl_take isl_union_map *umap); Simplify the representation of a set or relation by detecting implicit equalities. =item * Removing redundant constraints #include __isl_give isl_basic_set *isl_basic_set_remove_redundancies( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_remove_redundancies( __isl_take isl_set *set); #include __isl_give isl_union_set * isl_union_set_remove_redundancies( __isl_take isl_union_set *uset); #include __isl_give isl_basic_map *isl_basic_map_remove_redundancies( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_remove_redundancies( __isl_take isl_map *map); #include __isl_give isl_union_map * isl_union_map_remove_redundancies( __isl_take isl_union_map *umap); =item * Convex hull __isl_give isl_basic_set *isl_set_convex_hull( __isl_take isl_set *set); __isl_give isl_basic_map *isl_map_convex_hull( __isl_take isl_map *map); If the input set or relation has any existentially quantified variables, then the result of these operations is currently undefined. =item * Simple hull #include __isl_give isl_basic_set * isl_set_unshifted_simple_hull( __isl_take isl_set *set); __isl_give isl_basic_set *isl_set_simple_hull( __isl_take isl_set *set); __isl_give isl_basic_set * isl_set_unshifted_simple_hull_from_set_list( __isl_take isl_set *set, __isl_take isl_set_list *list); #include __isl_give isl_basic_map * isl_map_unshifted_simple_hull( __isl_take isl_map *map); __isl_give isl_basic_map *isl_map_simple_hull( __isl_take isl_map *map); __isl_give isl_basic_map * isl_map_unshifted_simple_hull_from_map_list( __isl_take isl_map *map, __isl_take isl_map_list *list); #include __isl_give isl_union_map *isl_union_map_simple_hull( __isl_take isl_union_map *umap); These functions compute a single basic set or relation that contains the whole input set or relation. In particular, the output is described by translates of the constraints describing the basic sets or relations in the input. In case of C, only the original constraints are used, without any translation. In case of C and C, the constraints are taken from the elements of the second argument. =begin latex (See \autoref{s:simple hull}.) =end latex =item * Affine hull __isl_give isl_basic_set *isl_basic_set_affine_hull( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_affine_hull( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_affine_hull( __isl_take isl_union_set *uset); __isl_give isl_basic_map *isl_basic_map_affine_hull( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_map_affine_hull( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_affine_hull( __isl_take isl_union_map *umap); In case of union sets and relations, the affine hull is computed per space. =item * Polyhedral hull __isl_give isl_basic_set *isl_set_polyhedral_hull( __isl_take isl_set *set); __isl_give isl_basic_map *isl_map_polyhedral_hull( __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_polyhedral_hull( __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_polyhedral_hull( __isl_take isl_union_map *umap); These functions compute a single basic set or relation not involving any existentially quantified variables that contains the whole input set or relation. In case of union sets and relations, the polyhedral hull is computed per space. =item * Other approximations #include __isl_give isl_basic_set * isl_basic_set_drop_constraints_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_set * isl_basic_set_drop_constraints_not_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set * isl_set_drop_constraints_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); #include __isl_give isl_basic_map * isl_basic_map_drop_constraints_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map * isl_basic_map_drop_constraints_not_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_map * isl_map_drop_constraints_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); These functions drop any constraints (not) involving the specified dimensions. Note that the result depends on the representation of the input. #include __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial( __isl_take isl_pw_qpolynomial *pwqp, int sign); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_to_polynomial( __isl_take isl_union_pw_qpolynomial *upwqp, int sign); Approximate each quasipolynomial by a polynomial. If C is positive, the polynomial will be an overapproximation. If C is negative, it will be an underapproximation. If C is zero, the approximation will lie somewhere in between. =item * Feasibility __isl_give isl_basic_set *isl_basic_set_sample( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_sample( __isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_sample( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_map_sample( __isl_take isl_map *map); If the input (basic) set or relation is non-empty, then return a singleton subset of the input. Otherwise, return an empty set. =item * Optimization #include __isl_give isl_val *isl_basic_set_max_val( __isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj); __isl_give isl_val *isl_set_min_val( __isl_keep isl_set *set, __isl_keep isl_aff *obj); __isl_give isl_val *isl_set_max_val( __isl_keep isl_set *set, __isl_keep isl_aff *obj); Compute the minimum or maximum of the integer affine expression C over the points in C, returning the result in C. The result is C in case of an error, the optimal value in case there is one, negative infinity or infinity if the problem is unbounded and NaN if the problem is empty. =item * Parametric optimization __isl_give isl_pw_aff *isl_set_dim_min( __isl_take isl_set *set, int pos); __isl_give isl_pw_aff *isl_set_dim_max( __isl_take isl_set *set, int pos); __isl_give isl_pw_aff *isl_map_dim_max( __isl_take isl_map *map, int pos); Compute the minimum or maximum of the given set or output dimension as a function of the parameters (and input dimensions), but independently of the other set or output dimensions. For lexicographic optimization, see L<"Lexicographic Optimization">. =item * Dual The following functions compute either the set of (rational) coefficient values of valid constraints for the given set or the set of (rational) values satisfying the constraints with coefficients from the given set. Internally, these two sets of functions perform essentially the same operations, except that the set of coefficients is assumed to be a cone, while the set of values may be any polyhedron. The current implementation is based on the Farkas lemma and Fourier-Motzkin elimination, but this may change or be made optional in future. In particular, future implementations may use different dualization algorithms or skip the elimination step. __isl_give isl_basic_set *isl_basic_set_coefficients( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_coefficients( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_coefficients( __isl_take isl_union_set *bset); __isl_give isl_basic_set *isl_basic_set_solutions( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_set_solutions( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_solutions( __isl_take isl_union_set *bset); =item * Power __isl_give isl_map *isl_map_fixed_power_val( __isl_take isl_map *map, __isl_take isl_val *exp); __isl_give isl_union_map * isl_union_map_fixed_power_val( __isl_take isl_union_map *umap, __isl_take isl_val *exp); Compute the given power of C, where C is assumed to be non-zero. If the exponent C is negative, then the -C th power of the inverse of C is computed. __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact); __isl_give isl_union_map *isl_union_map_power( __isl_take isl_union_map *umap, int *exact); Compute a parametric representation for all positive powers I of C. The result maps I to a nested relation corresponding to the Ith power of C. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. =item * Transitive closure __isl_give isl_map *isl_map_transitive_closure( __isl_take isl_map *map, int *exact); __isl_give isl_union_map *isl_union_map_transitive_closure( __isl_take isl_union_map *umap, int *exact); Compute the transitive closure of C. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. =item * Reaching path lengths __isl_give isl_map *isl_map_reaching_path_lengths( __isl_take isl_map *map, int *exact); Compute a relation that maps each element in the range of C to the lengths of all paths composed of edges in C that end up in the given element. The result may be an overapproximation. If the result is known to be exact, then C<*exact> is set to C<1>. To compute the I path length, the resulting relation should be postprocessed by C. In particular, if the input relation is a dependence relation (mapping sources to sinks), then the maximal path length corresponds to the free schedule. Note, however, that C expects the maximum to be finite, so if the path lengths are unbounded (possibly due to the overapproximation), then you will get an error message. =item * Wrapping #include __isl_give isl_space *isl_space_wrap( __isl_take isl_space *space); __isl_give isl_space *isl_space_unwrap( __isl_take isl_space *space); #include __isl_give isl_local_space *isl_local_space_wrap( __isl_take isl_local_space *ls); #include __isl_give isl_basic_map *isl_basic_set_unwrap( __isl_take isl_basic_set *bset); __isl_give isl_map *isl_set_unwrap( __isl_take isl_set *set); #include __isl_give isl_basic_set *isl_basic_map_wrap( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_map_wrap( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_set_unwrap( __isl_take isl_union_set *uset); #include __isl_give isl_union_set *isl_union_map_wrap( __isl_take isl_union_map *umap); The input to C should be the space of a set, while that of C should be the space of a relation. Conversely, the output of C is the space of a relation, while that of C is the space of a set. =item * Flattening Remove any internal structure of domain (and range) of the given set or relation. If there is any such internal structure in the input, then the name of the space is also removed. #include __isl_give isl_local_space * isl_local_space_flatten_domain( __isl_take isl_local_space *ls); __isl_give isl_local_space * isl_local_space_flatten_range( __isl_take isl_local_space *ls); #include __isl_give isl_basic_set *isl_basic_set_flatten( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_flatten( __isl_take isl_set *set); #include __isl_give isl_basic_map *isl_basic_map_flatten_domain( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_flatten_range( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_flatten_range( __isl_take isl_map *map); __isl_give isl_map *isl_map_flatten_domain( __isl_take isl_map *map); __isl_give isl_basic_map *isl_basic_map_flatten( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_flatten( __isl_take isl_map *map); #include __isl_give isl_multi_val *isl_multi_val_flatten_range( __isl_take isl_multi_val *mv); #include __isl_give isl_multi_aff *isl_multi_aff_flatten_domain( __isl_take isl_multi_aff *ma); __isl_give isl_multi_aff *isl_multi_aff_flatten_range( __isl_take isl_multi_aff *ma); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_flatten_range( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_flatten_range( __isl_take isl_multi_union_pw_aff *mupa); #include __isl_give isl_map *isl_set_flatten_map( __isl_take isl_set *set); The function above constructs a relation that maps the input set to a flattened version of the set. =item * Lifting Lift the input set to a space with extra dimensions corresponding to the existentially quantified variables in the input. In particular, the result lives in a wrapped map where the domain is the original space and the range corresponds to the original existentially quantified variables. #include __isl_give isl_basic_set *isl_basic_set_lift( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_lift( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_lift( __isl_take isl_union_set *uset); Given a local space that contains the existentially quantified variables of a set, a basic relation that, when applied to a basic set, has essentially the same effect as C, can be constructed using the following function. #include __isl_give isl_basic_map *isl_local_space_lifting( __isl_take isl_local_space *ls); #include __isl_give isl_multi_aff *isl_multi_aff_lift( __isl_take isl_multi_aff *maff, __isl_give isl_local_space **ls); If the C argument of C is not C, then it is assigned the local space that lies at the basis of the lifting applied. =item * Internal Product #include __isl_give isl_space *isl_space_zip( __isl_take isl_space *space); #include __isl_give isl_basic_map *isl_basic_map_zip( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_zip( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_zip( __isl_take isl_union_map *umap); Given a relation with nested relations for domain and range, interchange the range of the domain with the domain of the range. =item * Currying #include __isl_give isl_space *isl_space_curry( __isl_take isl_space *space); __isl_give isl_space *isl_space_uncurry( __isl_take isl_space *space); #include __isl_give isl_basic_map *isl_basic_map_curry( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_uncurry( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_curry( __isl_take isl_map *map); __isl_give isl_map *isl_map_uncurry( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_curry( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_uncurry( __isl_take isl_union_map *umap); Given a relation with a nested relation for domain, the C functions move the range of the nested relation out of the domain and use it as the domain of a nested relation in the range, with the original range as range of this nested relation. The C functions perform the inverse operation. #include __isl_give isl_space *isl_space_range_curry( __isl_take isl_space *space); #include __isl_give isl_map *isl_map_range_curry( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_range_curry( __isl_take isl_union_map *umap); These functions apply the currying to the relation that is nested inside the range of the input. =item * Aligning parameters Change the order of the parameters of the given set, relation or function such that the first parameters match those of C. This may involve the introduction of extra parameters. All parameters need to be named. #include __isl_give isl_space *isl_space_align_params( __isl_take isl_space *space1, __isl_take isl_space *space2) #include __isl_give isl_basic_set *isl_basic_set_align_params( __isl_take isl_basic_set *bset, __isl_take isl_space *model); __isl_give isl_set *isl_set_align_params( __isl_take isl_set *set, __isl_take isl_space *model); #include __isl_give isl_basic_map *isl_basic_map_align_params( __isl_take isl_basic_map *bmap, __isl_take isl_space *model); __isl_give isl_map *isl_map_align_params( __isl_take isl_map *map, __isl_take isl_space *model); #include __isl_give isl_multi_val *isl_multi_val_align_params( __isl_take isl_multi_val *mv, __isl_take isl_space *model); #include __isl_give isl_aff *isl_aff_align_params( __isl_take isl_aff *aff, __isl_take isl_space *model); __isl_give isl_multi_aff *isl_multi_aff_align_params( __isl_take isl_multi_aff *multi, __isl_take isl_space *model); __isl_give isl_pw_aff *isl_pw_aff_align_params( __isl_take isl_pw_aff *pwaff, __isl_take isl_space *model); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_align_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_space *model); __isl_give isl_union_pw_aff * isl_union_pw_aff_align_params( __isl_take isl_union_pw_aff *upa, __isl_take isl_space *model); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_align_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_space *model); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_align_params( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_space *model); #include __isl_give isl_qpolynomial *isl_qpolynomial_align_params( __isl_take isl_qpolynomial *qp, __isl_take isl_space *model); =item * Unary Arithmetic Operations #include __isl_give isl_set *isl_set_neg( __isl_take isl_set *set); #include __isl_give isl_map *isl_map_neg( __isl_take isl_map *map); C constructs a set containing the opposites of the elements in its argument. The domain of the result of C is the same as the domain of its argument. The corresponding range elements are the opposites of the corresponding range elements in the argument. #include __isl_give isl_multi_val *isl_multi_val_neg( __isl_take isl_multi_val *mv); #include __isl_give isl_aff *isl_aff_neg( __isl_take isl_aff *aff); __isl_give isl_multi_aff *isl_multi_aff_neg( __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_neg( __isl_take isl_pw_aff *pwaff); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_neg( __isl_take isl_pw_multi_aff *pma); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_neg( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_union_pw_aff *isl_union_pw_aff_neg( __isl_take isl_union_pw_aff *upa); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_neg( __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_neg( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_aff *isl_aff_ceil( __isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_pw_aff_ceil( __isl_take isl_pw_aff *pwaff); __isl_give isl_aff *isl_aff_floor( __isl_take isl_aff *aff); __isl_give isl_multi_aff *isl_multi_aff_floor( __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_floor( __isl_take isl_pw_aff *pwaff); __isl_give isl_union_pw_aff *isl_union_pw_aff_floor( __isl_take isl_union_pw_aff *upa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_floor( __isl_take isl_multi_union_pw_aff *mupa); #include __isl_give isl_pw_aff *isl_pw_aff_list_min( __isl_take isl_pw_aff_list *list); __isl_give isl_pw_aff *isl_pw_aff_list_max( __isl_take isl_pw_aff_list *list); #include __isl_give isl_qpolynomial *isl_qpolynomial_neg( __isl_take isl_qpolynomial *qp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_neg( __isl_take isl_union_pw_qpolynomial *upwqp); __isl_give isl_qpolynomial *isl_qpolynomial_pow( __isl_take isl_qpolynomial *qp, unsigned exponent); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow( __isl_take isl_pw_qpolynomial *pwqp, unsigned exponent); =item * Evaluation The following functions evaluate a function in a point. #include __isl_give isl_val *isl_pw_qpolynomial_eval( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_point *pnt); __isl_give isl_val *isl_pw_qpolynomial_fold_eval( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_point *pnt); __isl_give isl_val *isl_union_pw_qpolynomial_eval( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_point *pnt); __isl_give isl_val *isl_union_pw_qpolynomial_fold_eval( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_point *pnt); =item * Dimension manipulation It is usually not advisable to directly change the (input or output) space of a set or a relation as this removes the name and the internal structure of the space. However, the functions below can be useful to add new parameters, assuming C and C are not sufficient. #include __isl_give isl_space *isl_space_add_dims( __isl_take isl_space *space, enum isl_dim_type type, unsigned n); __isl_give isl_space *isl_space_insert_dims( __isl_take isl_space *space, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_space *isl_space_drop_dims( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_space *isl_space_move_dims( __isl_take isl_space *space, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); #include __isl_give isl_local_space *isl_local_space_add_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n); __isl_give isl_local_space *isl_local_space_insert_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_local_space *isl_local_space_drop_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n); #include __isl_give isl_basic_set *isl_basic_set_add_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned n); __isl_give isl_set *isl_set_add_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned n); __isl_give isl_basic_set *isl_basic_set_insert_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_set *isl_set_insert_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_set *isl_basic_set_move_dims( __isl_take isl_basic_set *bset, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_set *isl_set_move_dims( __isl_take isl_set *set, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); #include __isl_give isl_basic_map *isl_basic_map_add_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned n); __isl_give isl_map *isl_map_add_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned n); __isl_give isl_basic_map *isl_basic_map_insert_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_map *isl_map_insert_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, unsigned n); __isl_give isl_basic_map *isl_basic_map_move_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_map *isl_map_move_dims( __isl_take isl_map *map, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); #include __isl_give isl_multi_val *isl_multi_val_insert_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_val *isl_multi_val_add_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned n); __isl_give isl_multi_val *isl_multi_val_drop_dims( __isl_take isl_multi_val *mv, enum isl_dim_type type, unsigned first, unsigned n); #include __isl_give isl_aff *isl_aff_insert_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_insert_dims( __isl_take isl_multi_aff *ma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_insert_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_insert_dims( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_aff *isl_aff_add_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_add_dims( __isl_take isl_multi_aff *ma, enum isl_dim_type type, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_add_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned n); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add_dims( __isl_take isl_multi_pw_aff *mpa, enum isl_dim_type type, unsigned n); __isl_give isl_aff *isl_aff_drop_dims( __isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_drop_dims( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_drop_dims( __isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_drop_dims( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_aff *isl_union_pw_aff_drop_dims( __isl_take isl_union_pw_aff *upa, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_drop_dims( __isl_take isl_union_pw_multi_aff *upma, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_drop_dims( __isl_take isl_multi_union_pw_aff *mupa, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_aff *isl_aff_move_dims( __isl_take isl_aff *aff, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_multi_aff *isl_multi_aff_move_dims( __isl_take isl_multi_aff *ma, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_pw_aff *isl_pw_aff_move_dims( __isl_take isl_pw_aff *pa, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_move_dims( __isl_take isl_multi_pw_aff *pma, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); #include __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_drop_dims( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_drop_dims( __isl_take isl_union_pw_qpolynomial_fold *upwf, enum isl_dim_type type, unsigned first, unsigned n); The operations on union expressions can only manipulate parameters. =back =head2 Binary Operations The two arguments of a binary operation not only need to live in the same C, they currently also need to have the same (number of) parameters. =head3 Basic Operations =over =item * Intersection #include __isl_give isl_local_space *isl_local_space_intersect( __isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2); #include __isl_give isl_basic_set *isl_basic_set_intersect_params( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_basic_set *isl_basic_set_intersect( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_basic_set *isl_basic_set_list_intersect( __isl_take struct isl_basic_set_list *list); __isl_give isl_set *isl_set_intersect_params( __isl_take isl_set *set, __isl_take isl_set *params); __isl_give isl_set *isl_set_intersect( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_basic_map *isl_basic_map_intersect_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_intersect_range( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_intersect( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_list_intersect( __isl_take isl_basic_map_list *list); __isl_give isl_map *isl_map_intersect_params( __isl_take isl_map *map, __isl_take isl_set *params); __isl_give isl_map *isl_map_intersect_domain( __isl_take isl_map *map, __isl_take isl_set *set); __isl_give isl_map *isl_map_intersect_range( __isl_take isl_map *map, __isl_take isl_set *set); __isl_give isl_map *isl_map_intersect( __isl_take isl_map *map1, __isl_take isl_map *map2); #include __isl_give isl_union_set *isl_union_set_intersect_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_intersect( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); #include __isl_give isl_union_map *isl_union_map_intersect_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_intersect_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_intersect_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_intersect( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); #include __isl_give isl_pw_aff *isl_pw_aff_intersect_domain( __isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_intersect_domain( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *domain); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_domain( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_union_pw_aff *isl_union_pw_aff_intersect_domain( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_intersect_domain( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *uset); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_intersect_domain( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_union_set *uset); __isl_give isl_pw_aff *isl_pw_aff_intersect_params( __isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_intersect_params( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_intersect_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_union_pw_aff * isl_union_pw_aff_intersect_params( __isl_take isl_union_pw_aff *upa, __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_intersect_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_set *set); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_intersect_params( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *params); isl_multi_union_pw_aff_intersect_range( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *set); #include __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_intersect_domain( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_intersect_domain( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_intersect_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *uset); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_intersect_params( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_intersect_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_intersect_params( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_intersect_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *set); The second argument to the C<_params> functions needs to be a parametric (basic) set. For the other functions, a parametric set for either argument is only allowed if the other argument is a parametric set as well. The list passed to C needs to have at least one element and all elements need to live in the same space. The function C restricts the input function to those shared domain elements that map to the specified range. =item * Union #include __isl_give isl_set *isl_basic_set_union( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_set *isl_set_union( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_map *isl_basic_map_union( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_union( __isl_take isl_map *map1, __isl_take isl_map *map2); #include __isl_give isl_union_set *isl_union_set_union( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); __isl_give isl_union_set *isl_union_set_list_union( __isl_take isl_union_set_list *list); #include __isl_give isl_union_map *isl_union_map_union( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); =item * Set difference #include __isl_give isl_set *isl_set_subtract( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_map *isl_map_subtract( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_subtract_domain( __isl_take isl_map *map, __isl_take isl_set *dom); __isl_give isl_map *isl_map_subtract_range( __isl_take isl_map *map, __isl_take isl_set *dom); #include __isl_give isl_union_set *isl_union_set_subtract( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); #include __isl_give isl_union_map *isl_union_map_subtract( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_subtract_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); __isl_give isl_union_map *isl_union_map_subtract_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *dom); #include __isl_give isl_pw_aff *isl_pw_aff_subtract_domain( __isl_take isl_pw_aff *pa, __isl_take isl_set *set); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_subtract_domain( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_union_pw_aff * isl_union_pw_aff_subtract_domain( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *uset); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_subtract_domain( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_set *set); #include __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_subtract_domain( __isl_take isl_pw_qpolynomial *pwpq, __isl_take isl_set *set); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_subtract_domain( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *set); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_subtract_domain( __isl_take isl_union_pw_qpolynomial *upwpq, __isl_take isl_union_set *uset); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_subtract_domain( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *uset); =item * Application #include __isl_give isl_space *isl_space_join( __isl_take isl_space *left, __isl_take isl_space *right); #include __isl_give isl_basic_set *isl_basic_set_apply( __isl_take isl_basic_set *bset, __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_apply( __isl_take isl_set *set, __isl_take isl_map *map); __isl_give isl_union_set *isl_union_set_apply( __isl_take isl_union_set *uset, __isl_take isl_union_map *umap); __isl_give isl_basic_map *isl_basic_map_apply_domain( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_apply_range( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_apply_domain( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_apply_range( __isl_take isl_map *map1, __isl_take isl_map *map2); #include __isl_give isl_union_map *isl_union_map_apply_domain( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_apply_range( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); #include __isl_give isl_union_pw_aff * isl_multi_union_pw_aff_apply_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff); __isl_give isl_union_pw_aff * isl_multi_union_pw_aff_apply_pw_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_aff *pa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_apply_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_apply_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_multi_aff *pma); The result of C is defined over the shared domain of the elements of the input. The dimension is required to be greater than zero. The C argument of C is allowed to be zero-dimensional, but only if the range of the C argument is also zero-dimensional. Similarly for C. #include __isl_give isl_pw_qpolynomial_fold * isl_set_apply_pw_qpolynomial_fold( __isl_take isl_set *set, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_pw_qpolynomial_fold * isl_map_apply_pw_qpolynomial_fold( __isl_take isl_map *map, __isl_take isl_pw_qpolynomial_fold *pwf, int *tight); __isl_give isl_union_pw_qpolynomial_fold * isl_union_set_apply_union_pw_qpolynomial_fold( __isl_take isl_union_set *uset, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); __isl_give isl_union_pw_qpolynomial_fold * isl_union_map_apply_union_pw_qpolynomial_fold( __isl_take isl_union_map *umap, __isl_take isl_union_pw_qpolynomial_fold *upwf, int *tight); The functions taking a map compose the given map with the given piecewise quasipolynomial reduction. That is, compute a bound (of the same type as C or C itself) over all elements in the intersection of the range of the map and the domain of the piecewise quasipolynomial reduction as a function of an element in the domain of the map. The functions taking a set compute a bound over all elements in the intersection of the set and the domain of the piecewise quasipolynomial reduction. =item * Preimage #include __isl_give isl_basic_set * isl_basic_set_preimage_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_multi_aff *ma); __isl_give isl_set *isl_set_preimage_multi_aff( __isl_take isl_set *set, __isl_take isl_multi_aff *ma); __isl_give isl_set *isl_set_preimage_pw_multi_aff( __isl_take isl_set *set, __isl_take isl_pw_multi_aff *pma); __isl_give isl_set *isl_set_preimage_multi_pw_aff( __isl_take isl_set *set, __isl_take isl_multi_pw_aff *mpa); #include __isl_give isl_union_set * isl_union_set_preimage_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_multi_aff *ma); __isl_give isl_union_set * isl_union_set_preimage_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_set * isl_union_set_preimage_union_pw_multi_aff( __isl_take isl_union_set *uset, __isl_take isl_union_pw_multi_aff *upma); #include __isl_give isl_basic_map * isl_basic_map_preimage_domain_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma); __isl_give isl_map *isl_map_preimage_domain_multi_aff( __isl_take isl_map *map, __isl_take isl_multi_aff *ma); __isl_give isl_map *isl_map_preimage_range_multi_aff( __isl_take isl_map *map, __isl_take isl_multi_aff *ma); __isl_give isl_map * isl_map_preimage_domain_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma); __isl_give isl_map * isl_map_preimage_range_pw_multi_aff( __isl_take isl_map *map, __isl_take isl_pw_multi_aff *pma); __isl_give isl_map * isl_map_preimage_domain_multi_pw_aff( __isl_take isl_map *map, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_basic_map * isl_basic_map_preimage_range_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_multi_aff *ma); #include __isl_give isl_union_map * isl_union_map_preimage_domain_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma); __isl_give isl_union_map * isl_union_map_preimage_range_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_aff *ma); __isl_give isl_union_map * isl_union_map_preimage_domain_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map * isl_union_map_preimage_range_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map * isl_union_map_preimage_domain_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_map * isl_union_map_preimage_range_union_pw_multi_aff( __isl_take isl_union_map *umap, __isl_take isl_union_pw_multi_aff *upma); These functions compute the preimage of the given set or map domain/range under the given function. In other words, the expression is plugged into the set description or into the domain/range of the map. =item * Pullback #include __isl_give isl_aff *isl_aff_pullback_aff( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_pullback_multi_aff( __isl_take isl_aff *aff, __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_aff *ma); __isl_give isl_pw_aff *isl_pw_aff_pullback_pw_multi_aff( __isl_take isl_pw_aff *pa, __isl_take isl_pw_multi_aff *pma); __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_pullback_multi_aff( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_aff *ma); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_pullback_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_pullback_pw_multi_aff( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_pullback_pw_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_pullback_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_union_pw_aff * isl_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_union_pw_multi_aff *upma); These functions precompose the first expression by the second function. In other words, the second function is plugged into the first expression. =item * Locus #include __isl_give isl_basic_set *isl_aff_le_basic_set( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_basic_set *isl_aff_ge_basic_set( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_set *isl_pw_aff_eq_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ne_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_le_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_lt_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_ge_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_pw_aff_gt_set( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_set *isl_multi_aff_lex_le_set( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_set *isl_multi_aff_lex_ge_set( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_set *isl_pw_aff_list_eq_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ne_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_le_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_lt_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_ge_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); __isl_give isl_set *isl_pw_aff_list_gt_set( __isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2); The function C returns a basic set containing those elements in the shared space of C and C where C is greater than or equal to C. The function C returns a set containing those elements in the shared domain of C and C where C is greater than or equal to C. The function C returns a set containing those elements in the shared domain space where C is lexicographically smaller than or equal to C. The functions operating on C apply the corresponding C function to each pair of elements in the two lists. #include __isl_give isl_map *isl_pw_aff_eq_map( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_map *isl_pw_aff_lt_map( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_map *isl_pw_aff_gt_map( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_map *isl_multi_pw_aff_eq_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_map *isl_multi_pw_aff_lex_lt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_map *isl_multi_pw_aff_lex_gt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); These functions return a map between domain elements of the arguments where the function values satisfy the given relation. #include __isl_give isl_union_map * isl_union_map_eq_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_map * isl_union_map_lex_lt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_union_map * isl_union_map_lex_gt_at_multi_union_pw_aff( __isl_take isl_union_map *umap, __isl_take isl_multi_union_pw_aff *mupa); These functions select the subset of elements in the union map that have an equal or lexicographically smaller function value. =item * Cartesian Product #include __isl_give isl_space *isl_space_product( __isl_take isl_space *space1, __isl_take isl_space *space2); __isl_give isl_space *isl_space_domain_product( __isl_take isl_space *space1, __isl_take isl_space *space2); __isl_give isl_space *isl_space_range_product( __isl_take isl_space *space1, __isl_take isl_space *space2); The functions C, C and C take pairs or relation spaces and produce a single relations space, where either the domain, the range or both domain and range are wrapped spaces of relations between the domains and/or ranges of the input spaces. If the product is only constructed over the domain or the range then the ranges or the domains of the inputs should be the same. The function C also accepts a pair of set spaces, in which case it returns a wrapped space of a relation between the two input spaces. #include __isl_give isl_set *isl_set_product( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_basic_map *isl_basic_map_domain_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_basic_map *isl_basic_map_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_domain_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_range_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_product( __isl_take isl_map *map1, __isl_take isl_map *map2); #include __isl_give isl_union_set *isl_union_set_product( __isl_take isl_union_set *uset1, __isl_take isl_union_set *uset2); #include __isl_give isl_union_map *isl_union_map_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map *isl_union_map_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); #include __isl_give isl_multi_val *isl_multi_val_range_product( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val *isl_multi_val_product( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); #include __isl_give isl_multi_aff *isl_multi_aff_range_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_product( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_product( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_range_product( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); The above functions compute the cross product of the given sets, relations or functions. The domains and ranges of the results are wrapped maps between domains and ranges of the inputs. To obtain a ``flat'' product, use the following functions instead. #include __isl_give isl_basic_set *isl_basic_set_flat_product( __isl_take isl_basic_set *bset1, __isl_take isl_basic_set *bset2); __isl_give isl_set *isl_set_flat_product( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_basic_map *isl_basic_map_flat_range_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_domain_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_map *isl_map_flat_range_product( __isl_take isl_map *map1, __isl_take isl_map *map2); __isl_give isl_basic_map *isl_basic_map_flat_product( __isl_take isl_basic_map *bmap1, __isl_take isl_basic_map *bmap2); __isl_give isl_map *isl_map_flat_product( __isl_take isl_map *map1, __isl_take isl_map *map2); #include __isl_give isl_union_map * isl_union_map_flat_domain_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); __isl_give isl_union_map * isl_union_map_flat_range_product( __isl_take isl_union_map *umap1, __isl_take isl_union_map *umap2); #include __isl_give isl_multi_val *isl_multi_val_flat_range_product( __isl_take isl_multi_val *mv1, __isl_take isl_multi_aff *mv2); #include __isl_give isl_multi_aff *isl_multi_aff_flat_range_product( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_flat_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_flat_range_product( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_flat_range_product( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_flat_range_product( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); #include __isl_give isl_space *isl_space_factor_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_factor_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_domain_factor_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_domain_factor_range( __isl_take isl_space *space); __isl_give isl_space *isl_space_range_factor_domain( __isl_take isl_space *space); __isl_give isl_space *isl_space_range_factor_range( __isl_take isl_space *space); The functions C and C extract the two arguments from the result of a call to C. The arguments of a call to a product can be extracted from the result using the following functions. #include __isl_give isl_map *isl_map_factor_domain( __isl_take isl_map *map); __isl_give isl_map *isl_map_factor_range( __isl_take isl_map *map); __isl_give isl_map *isl_map_domain_factor_domain( __isl_take isl_map *map); __isl_give isl_map *isl_map_domain_factor_range( __isl_take isl_map *map); __isl_give isl_map *isl_map_range_factor_domain( __isl_take isl_map *map); __isl_give isl_map *isl_map_range_factor_range( __isl_take isl_map *map); #include __isl_give isl_union_map *isl_union_map_factor_domain( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_factor_range( __isl_take isl_union_map *umap); __isl_give isl_union_map * isl_union_map_domain_factor_domain( __isl_take isl_union_map *umap); __isl_give isl_union_map * isl_union_map_domain_factor_range( __isl_take isl_union_map *umap); __isl_give isl_union_map * isl_union_map_range_factor_domain( __isl_take isl_union_map *umap); __isl_give isl_union_map * isl_union_map_range_factor_range( __isl_take isl_union_map *umap); #include __isl_give isl_multi_val *isl_multi_val_factor_range( __isl_take isl_multi_val *mv); __isl_give isl_multi_val * isl_multi_val_range_factor_domain( __isl_take isl_multi_val *mv); __isl_give isl_multi_val * isl_multi_val_range_factor_range( __isl_take isl_multi_val *mv); #include __isl_give isl_multi_aff *isl_multi_aff_factor_range( __isl_take isl_multi_aff *ma); __isl_give isl_multi_aff * isl_multi_aff_range_factor_domain( __isl_take isl_multi_aff *ma); __isl_give isl_multi_aff * isl_multi_aff_range_factor_range( __isl_take isl_multi_aff *ma); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_factor_range( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_factor_domain( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_factor_range( __isl_take isl_multi_pw_aff *mpa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_factor_range( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_range_factor_domain( __isl_take isl_multi_union_pw_aff *mupa); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_range_factor_range( __isl_take isl_multi_union_pw_aff *mupa); The splice functions are a generalization of the flat product functions, where the second argument may be inserted at any position inside the first argument rather than being placed at the end. The functions C, C, C and C take functions that live in a set space. #include __isl_give isl_multi_val *isl_multi_val_range_splice( __isl_take isl_multi_val *mv1, unsigned pos, __isl_take isl_multi_val *mv2); #include __isl_give isl_multi_aff *isl_multi_aff_range_splice( __isl_take isl_multi_aff *ma1, unsigned pos, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_aff *isl_multi_aff_splice( __isl_take isl_multi_aff *ma1, unsigned in_pos, unsigned out_pos, __isl_take isl_multi_aff *ma2); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_range_splice( __isl_take isl_multi_pw_aff *mpa1, unsigned pos, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_splice( __isl_take isl_multi_pw_aff *mpa1, unsigned in_pos, unsigned out_pos, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_range_splice( __isl_take isl_multi_union_pw_aff *mupa1, unsigned pos, __isl_take isl_multi_union_pw_aff *mupa2); =item * Simplification When applied to a set or relation, the gist operation returns a set or relation that has the same intersection with the context as the input set or relation. Any implicit equality in the intersection is made explicit in the result, while all inequalities that are redundant with respect to the intersection are removed. In case of union sets and relations, the gist operation is performed per space. When applied to a function, the gist operation applies the set gist operation to each of the cells in the domain of the input piecewise expression. The context is also exploited to simplify the expression associated to each cell. #include __isl_give isl_basic_set *isl_basic_set_gist( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context); __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, __isl_take isl_set *context); __isl_give isl_set *isl_set_gist_params( __isl_take isl_set *set, __isl_take isl_set *context); #include __isl_give isl_basic_map *isl_basic_map_gist( __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context); __isl_give isl_basic_map *isl_basic_map_gist_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context); __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, __isl_take isl_map *context); __isl_give isl_map *isl_map_gist_params( __isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_domain( __isl_take isl_map *map, __isl_take isl_set *context); __isl_give isl_map *isl_map_gist_range( __isl_take isl_map *map, __isl_take isl_set *context); #include __isl_give isl_union_set *isl_union_set_gist( __isl_take isl_union_set *uset, __isl_take isl_union_set *context); __isl_give isl_union_set *isl_union_set_gist_params( __isl_take isl_union_set *uset, __isl_take isl_set *set); #include __isl_give isl_union_map *isl_union_map_gist( __isl_take isl_union_map *umap, __isl_take isl_union_map *context); __isl_give isl_union_map *isl_union_map_gist_params( __isl_take isl_union_map *umap, __isl_take isl_set *set); __isl_give isl_union_map *isl_union_map_gist_domain( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); __isl_give isl_union_map *isl_union_map_gist_range( __isl_take isl_union_map *umap, __isl_take isl_union_set *uset); #include __isl_give isl_aff *isl_aff_gist_params( __isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff, __isl_take isl_set *context); __isl_give isl_multi_aff *isl_multi_aff_gist_params( __isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_multi_aff *isl_multi_aff_gist( __isl_take isl_multi_aff *maff, __isl_take isl_set *context); __isl_give isl_pw_aff *isl_pw_aff_gist_params( __isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_give isl_pw_aff *isl_pw_aff_gist( __isl_take isl_pw_aff *pwaff, __isl_take isl_set *context); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist_params( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_gist( __isl_take isl_pw_multi_aff *pma, __isl_take isl_set *set); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist_params( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_gist( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_set *set); __isl_give isl_union_pw_aff *isl_union_pw_aff_gist( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_set *context); __isl_give isl_union_pw_aff *isl_union_pw_aff_gist_params( __isl_take isl_union_pw_aff *upa, __isl_take isl_set *context); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_gist_params( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_set *context); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_gist( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_union_set *context); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_gist_params( __isl_take isl_multi_union_pw_aff *aff, __isl_take isl_set *context); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_gist( __isl_take isl_multi_union_pw_aff *aff, __isl_take isl_union_set *context); #include __isl_give isl_qpolynomial *isl_qpolynomial_gist_params( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_qpolynomial *isl_qpolynomial_gist( __isl_take isl_qpolynomial *qp, __isl_take isl_set *context); __isl_give isl_qpolynomial_fold * isl_qpolynomial_fold_gist_params( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist_params( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_gist( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_gist_params( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_gist_params( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_set *context); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_union_set *context); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_gist( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_union_set *context); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_gist_params( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_set *context); =item * Binary Arithmetic Operations #include __isl_give isl_set *isl_set_sum( __isl_take isl_set *set1, __isl_take isl_set *set2); #include __isl_give isl_map *isl_map_sum( __isl_take isl_map *map1, __isl_take isl_map *map2); C computes the Minkowski sum of its two arguments, i.e., the set containing the sums of pairs of elements from C and C. The domain of the result of C is the intersection of the domains of its two arguments. The corresponding range elements are the sums of the corresponding range elements in the two arguments. #include __isl_give isl_multi_val *isl_multi_val_add( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val *isl_multi_val_sub( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); #include __isl_give isl_aff *isl_aff_add( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_multi_aff *isl_multi_aff_add( __isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2); __isl_give isl_pw_aff *isl_pw_aff_add( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_add( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_aff *isl_union_pw_aff_add( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_add( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); __isl_give isl_pw_aff *isl_pw_aff_min( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_max( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_aff *isl_aff_sub( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_multi_aff *isl_multi_aff_sub( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2); __isl_give isl_pw_aff *isl_pw_aff_sub( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_sub( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_aff *isl_union_pw_aff_sub( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_sub( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_sub( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); C subtracts the second argument from the first. #include __isl_give isl_qpolynomial *isl_qpolynomial_add( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_qpolynomial *isl_qpolynomial_sub( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold( __isl_take isl_pw_qpolynomial_fold *pwf1, __isl_take isl_pw_qpolynomial_fold *pwf2); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_fold( __isl_take isl_union_pw_qpolynomial_fold *upwf1, __isl_take isl_union_pw_qpolynomial_fold *upwf2); #include __isl_give isl_pw_aff *isl_pw_aff_union_add( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_union_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_union_add( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2); __isl_give isl_pw_aff *isl_pw_aff_union_min( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_union_max( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); The function C computes a piecewise quasi-affine expression with a domain that is the union of those of C and C and such that on each cell, the quasi-affine expression is the maximum of those of C and C. If only one of C or C is defined on a given cell, then the associated expression is the defined one. This in contrast to the C function, which is only defined on the shared definition domain of the arguments. #include __isl_give isl_multi_val *isl_multi_val_add_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_mod_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_scale_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); __isl_give isl_multi_val *isl_multi_val_scale_down_val( __isl_take isl_multi_val *mv, __isl_take isl_val *v); #include __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff, __isl_take isl_val *mod); __isl_give isl_pw_aff *isl_pw_aff_mod_val( __isl_take isl_pw_aff *pa, __isl_take isl_val *mod); __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *f); __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_multi_aff *isl_multi_aff_scale_val( __isl_take isl_multi_aff *ma, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_pw_aff_scale_val( __isl_take isl_pw_aff *pa, __isl_take isl_val *v); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_val( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_val *v); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_val *v); __isl_give isl_union_pw_multi_aff * __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *f); isl_union_pw_multi_aff_scale_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_val *val); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_scale_val( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_val *v); __isl_give isl_aff *isl_aff_scale_down_ui( __isl_take isl_aff *aff, unsigned f); __isl_give isl_aff *isl_aff_scale_down_val( __isl_take isl_aff *aff, __isl_take isl_val *v); __isl_give isl_multi_aff *isl_multi_aff_scale_down_val( __isl_take isl_multi_aff *ma, __isl_take isl_val *v); __isl_give isl_pw_aff *isl_pw_aff_scale_down_val( __isl_take isl_pw_aff *pa, __isl_take isl_val *f); __isl_give isl_multi_pw_aff *isl_multi_pw_aff_scale_down_val( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_val *v); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_down_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_val *v); __isl_give isl_union_pw_aff *isl_union_pw_aff_scale_down_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *v); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_scale_down_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_val *val); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_scale_down_val( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_val *v); #include __isl_give isl_qpolynomial *isl_qpolynomial_scale_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v); __isl_give isl_qpolynomial_fold * isl_qpolynomial_fold_scale_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_scale_val( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_scale_val( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_scale_val( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_scale_val( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_val *v); __isl_give isl_qpolynomial * isl_qpolynomial_scale_down_val( __isl_take isl_qpolynomial *qp, __isl_take isl_val *v); __isl_give isl_qpolynomial_fold * isl_qpolynomial_fold_scale_down_val( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial * isl_pw_qpolynomial_scale_down_val( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_val *v); __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_fold_scale_down_val( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial * isl_union_pw_qpolynomial_scale_down_val( __isl_take isl_union_pw_qpolynomial *upwqp, __isl_take isl_val *v); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_scale_down_val( __isl_take isl_union_pw_qpolynomial_fold *upwf, __isl_take isl_val *v); #include __isl_give isl_multi_val *isl_multi_val_mod_multi_val( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val *isl_multi_val_scale_multi_val( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); __isl_give isl_multi_val * isl_multi_val_scale_down_multi_val( __isl_take isl_multi_val *mv1, __isl_take isl_multi_val *mv2); #include __isl_give isl_multi_aff *isl_multi_aff_mod_multi_val( __isl_take isl_multi_aff *ma, __isl_take isl_multi_val *mv); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_mod_multi_val( __isl_take isl_multi_union_pw_aff *upma, __isl_take isl_multi_val *mv); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_mod_multi_val( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_val *mv); __isl_give isl_multi_aff *isl_multi_aff_scale_multi_val( __isl_take isl_multi_aff *ma, __isl_take isl_multi_val *mv); __isl_give isl_pw_multi_aff * isl_pw_multi_aff_scale_multi_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_val *mv); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_scale_multi_val( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_val *mv); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_scale_multi_val( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_val *mv); __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_scale_multi_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_multi_val *mv); __isl_give isl_multi_aff * isl_multi_aff_scale_down_multi_val( __isl_take isl_multi_aff *ma, __isl_take isl_multi_val *mv); __isl_give isl_multi_pw_aff * isl_multi_pw_aff_scale_down_multi_val( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_val *mv); __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_scale_down_multi_val( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_val *mv); C scales the elements of C by the corresponding elements of C. #include __isl_give isl_aff *isl_aff_mul( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_aff *isl_aff_div( __isl_take isl_aff *aff1, __isl_take isl_aff *aff2); __isl_give isl_pw_aff *isl_pw_aff_mul( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2); __isl_give isl_pw_aff *isl_pw_aff_div( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_tdiv_q( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); __isl_give isl_pw_aff *isl_pw_aff_tdiv_r( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2); When multiplying two affine expressions, at least one of the two needs to be a constant. Similarly, when dividing an affine expression by another, the second expression needs to be a constant. C computes the quotient of an integer division with rounding towards zero. C computes the corresponding remainder. #include __isl_give isl_qpolynomial *isl_qpolynomial_mul( __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul( __isl_take isl_pw_qpolynomial *pwqp1, __isl_take isl_pw_qpolynomial *pwqp2); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul( __isl_take isl_union_pw_qpolynomial *upwqp1, __isl_take isl_union_pw_qpolynomial *upwqp2); =back =head3 Lexicographic Optimization Given a (basic) set C (or C) and a zero-dimensional domain C, the following functions compute a set that contains the lexicographic minimum or maximum of the elements in C (or C) for those values of the parameters that satisfy C. If C is not C, then C<*empty> is assigned a set that contains the parameter values in C for which C (or C) has no elements. In other words, the union of the parameter values for which the result is non-empty and of C<*empty> is equal to C. #include __isl_give isl_set *isl_basic_set_partial_lexmin( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_basic_set_partial_lexmax( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmin( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_set *isl_set_partial_lexmax( __isl_take isl_set *set, __isl_take isl_set *dom, __isl_give isl_set **empty); Given a (basic) set C (or C), the following functions simply return a set containing the lexicographic minimum or maximum of the elements in C (or C). In case of union sets, the optimum is computed per space. #include __isl_give isl_set *isl_basic_set_lexmin( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_basic_set_lexmax( __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_lexmin( __isl_take isl_set *set); __isl_give isl_set *isl_set_lexmax( __isl_take isl_set *set); __isl_give isl_union_set *isl_union_set_lexmin( __isl_take isl_union_set *uset); __isl_give isl_union_set *isl_union_set_lexmax( __isl_take isl_union_set *uset); Given a (basic) relation C (or C) and a domain C, the following functions compute a relation that maps each element of C to the single lexicographic minimum or maximum of the elements that are associated to that same element in C (or C). If C is not C, then C<*empty> is assigned a set that contains the elements in C that do not map to any elements in C (or C). In other words, the union of the domain of the result and of C<*empty> is equal to C. #include __isl_give isl_map *isl_basic_map_partial_lexmax( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_basic_map_partial_lexmin( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmax( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); __isl_give isl_map *isl_map_partial_lexmin( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty); Given a (basic) map C (or C), the following functions simply return a map mapping each element in the domain of C (or C) to the lexicographic minimum or maximum of all elements associated to that element. In case of union relations, the optimum is computed per space. #include __isl_give isl_map *isl_basic_map_lexmin( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_basic_map_lexmax( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_lexmin( __isl_take isl_map *map); __isl_give isl_map *isl_map_lexmax( __isl_take isl_map *map); __isl_give isl_union_map *isl_union_map_lexmin( __isl_take isl_union_map *umap); __isl_give isl_union_map *isl_union_map_lexmax( __isl_take isl_union_map *umap); The following functions return their result in the form of a piecewise multi-affine expression, but are otherwise equivalent to the corresponding functions returning a basic set or relation. #include __isl_give isl_pw_multi_aff * isl_basic_set_partial_lexmin_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff * isl_basic_set_partial_lexmax_pw_multi_aff( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_set_lexmin_pw_multi_aff( __isl_take isl_set *set); __isl_give isl_pw_multi_aff *isl_set_lexmax_pw_multi_aff( __isl_take isl_set *set); #include __isl_give isl_pw_multi_aff * isl_basic_map_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap); __isl_give isl_pw_multi_aff * isl_basic_map_partial_lexmin_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff * isl_basic_map_partial_lexmax_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty); __isl_give isl_pw_multi_aff *isl_map_lexmin_pw_multi_aff( __isl_take isl_map *map); __isl_give isl_pw_multi_aff *isl_map_lexmax_pw_multi_aff( __isl_take isl_map *map); The following functions return the lexicographic minimum or maximum on the shared domain of the inputs and the single defined function on those parts of the domain where only a single function is defined. #include __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2); =head2 Ternary Operations #include __isl_give isl_pw_aff *isl_pw_aff_cond( __isl_take isl_pw_aff *cond, __isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false); The function C performs a conditional operator and returns an expression that is equal to C for elements where C is non-zero and equal to C for elements where C is zero. =head2 Lists Lists are defined over several element types, including C, C, C, C, C, C, C, C, C, C, C, C, C, C and C. Here we take lists of Cs as an example. Lists can be created, copied, modified and freed using the following functions. #include __isl_give isl_set_list *isl_set_list_from_set( __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_alloc( isl_ctx *ctx, int n); __isl_give isl_set_list *isl_set_list_copy( __isl_keep isl_set_list *list); __isl_give isl_set_list *isl_set_list_insert( __isl_take isl_set_list *list, unsigned pos, __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_add( __isl_take isl_set_list *list, __isl_take isl_set *el); __isl_give isl_set_list *isl_set_list_drop( __isl_take isl_set_list *list, unsigned first, unsigned n); __isl_give isl_set_list *isl_set_list_set_set( __isl_take isl_set_list *list, int index, __isl_take isl_set *set); __isl_give isl_set_list *isl_set_list_concat( __isl_take isl_set_list *list1, __isl_take isl_set_list *list2); __isl_give isl_set_list *isl_set_list_sort( __isl_take isl_set_list *list, int (*cmp)(__isl_keep isl_set *a, __isl_keep isl_set *b, void *user), void *user); __isl_null isl_set_list *isl_set_list_free( __isl_take isl_set_list *list); C creates an empty list with an initial capacity for C elements. C and C add elements to a list, increasing its capacity as needed. C creates a list with a single element. Lists can be inspected using the following functions. #include int isl_set_list_n_set(__isl_keep isl_set_list *list); __isl_give isl_set *isl_set_list_get_set( __isl_keep isl_set_list *list, int index); isl_stat isl_set_list_foreach(__isl_keep isl_set_list *list, isl_stat (*fn)(__isl_take isl_set *el, void *user), void *user); isl_stat isl_set_list_foreach_scc( __isl_keep isl_set_list *list, isl_bool (*follows)(__isl_keep isl_set *a, __isl_keep isl_set *b, void *user), void *follows_user isl_stat (*fn)(__isl_take isl_set *el, void *user), void *fn_user); The function C calls C on each of the strongly connected components of the graph with as vertices the elements of C and a directed edge from vertex C to vertex C iff C returns C<1>. The callbacks C and C should return C<-1> on error. Lists can be printed using #include __isl_give isl_printer *isl_printer_print_set_list( __isl_take isl_printer *p, __isl_keep isl_set_list *list); =head2 Associative arrays Associative arrays map isl objects of a specific type to isl objects of some (other) specific type. They are defined for several pairs of types, including (C, C), (C, C) and. (C, C). Here, we take associative arrays that map Cs to Cs as an example. Associative arrays can be created, copied and freed using the following functions. #include __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_alloc( isl_ctx *ctx, int min_size); __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_copy( __isl_keep isl_id_to_ast_expr *id2expr); __isl_null isl_id_to_ast_expr *isl_id_to_ast_expr_free( __isl_take isl_id_to_ast_expr *id2expr); The C argument to C can be used to specify the expected size of the associative array. The associative array will be grown automatically as needed. Associative arrays can be inspected using the following functions. #include isl_bool isl_id_to_ast_expr_has( __isl_keep isl_id_to_ast_expr *id2expr, __isl_keep isl_id *key); __isl_give isl_ast_expr *isl_id_to_ast_expr_get( __isl_keep isl_id_to_ast_expr *id2expr, __isl_take isl_id *key); isl_stat isl_id_to_ast_expr_foreach( __isl_keep isl_id_to_ast_expr *id2expr, isl_stat (*fn)(__isl_take isl_id *key, __isl_take isl_ast_expr *val, void *user), void *user); They can be modified using the following function. #include __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_set( __isl_take isl_id_to_ast_expr *id2expr, __isl_take isl_id *key, __isl_take isl_ast_expr *val); __isl_give isl_id_to_ast_expr *isl_id_to_ast_expr_drop( __isl_take isl_id_to_ast_expr *id2expr, __isl_take isl_id *key); Associative arrays can be printed using the following function. #include __isl_give isl_printer *isl_printer_print_id_to_ast_expr( __isl_take isl_printer *p, __isl_keep isl_id_to_ast_expr *id2expr); =head2 Vectors Vectors can be created, copied and freed using the following functions. #include __isl_give isl_vec *isl_vec_alloc(isl_ctx *ctx, unsigned size); __isl_give isl_vec *isl_vec_copy(__isl_keep isl_vec *vec); __isl_null isl_vec *isl_vec_free(__isl_take isl_vec *vec); Note that the elements of a newly created vector may have arbitrary values. The elements can be changed and inspected using the following functions. int isl_vec_size(__isl_keep isl_vec *vec); __isl_give isl_val *isl_vec_get_element_val( __isl_keep isl_vec *vec, int pos); __isl_give isl_vec *isl_vec_set_element_si( __isl_take isl_vec *vec, int pos, int v); __isl_give isl_vec *isl_vec_set_element_val( __isl_take isl_vec *vec, int pos, __isl_take isl_val *v); __isl_give isl_vec *isl_vec_set_si(__isl_take isl_vec *vec, int v); __isl_give isl_vec *isl_vec_set_val( __isl_take isl_vec *vec, __isl_take isl_val *v); int isl_vec_cmp_element(__isl_keep isl_vec *vec1, __isl_keep isl_vec *vec2, int pos); C will return a negative value if anything went wrong. In that case, the value of C<*v> is undefined. The following function can be used to concatenate two vectors. __isl_give isl_vec *isl_vec_concat(__isl_take isl_vec *vec1, __isl_take isl_vec *vec2); =head2 Matrices Matrices can be created, copied and freed using the following functions. #include __isl_give isl_mat *isl_mat_alloc(isl_ctx *ctx, unsigned n_row, unsigned n_col); __isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat); __isl_null isl_mat *isl_mat_free(__isl_take isl_mat *mat); Note that the elements of a newly created matrix may have arbitrary values. The elements can be changed and inspected using the following functions. int isl_mat_rows(__isl_keep isl_mat *mat); int isl_mat_cols(__isl_keep isl_mat *mat); __isl_give isl_val *isl_mat_get_element_val( __isl_keep isl_mat *mat, int row, int col); __isl_give isl_mat *isl_mat_set_element_si(__isl_take isl_mat *mat, int row, int col, int v); __isl_give isl_mat *isl_mat_set_element_val( __isl_take isl_mat *mat, int row, int col, __isl_take isl_val *v); C will return a negative value if anything went wrong. In that case, the value of C<*v> is undefined. The following function can be used to compute the (right) inverse of a matrix, i.e., a matrix such that the product of the original and the inverse (in that order) is a multiple of the identity matrix. The input matrix is assumed to be of full row-rank. __isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat); The following function can be used to compute the (right) kernel (or null space) of a matrix, i.e., a matrix such that the product of the original and the kernel (in that order) is the zero matrix. __isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat); =head2 Bounds on Piecewise Quasipolynomials and Piecewise Quasipolynomial Reductions The following functions determine an upper or lower bound on a quasipolynomial over its domain. __isl_give isl_pw_qpolynomial_fold * isl_pw_qpolynomial_bound( __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type, int *tight); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_bound( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_fold type, int *tight); The C argument may be either C or C. If C is not C, then C<*tight> is set to C<1> is the returned bound is known be tight, i.e., for each value of the parameters there is at least one element in the domain that reaches the bound. If the domain of C is not wrapping, then the bound is computed over all elements in that domain and the result has a purely parametric domain. If the domain of C is wrapping, then the bound is computed over the range of the wrapped relation. The domain of the wrapped relation becomes the domain of the result. =head2 Parametric Vertex Enumeration The parametric vertex enumeration described in this section is mainly intended to be used internally and by the C library. #include __isl_give isl_vertices *isl_basic_set_compute_vertices( __isl_keep isl_basic_set *bset); The function C performs the actual computation of the parametric vertices and the chamber decomposition and store the result in an C object. This information can be queried by either iterating over all the vertices or iterating over all the chambers or cells and then iterating over all vertices that are active on the chamber. isl_stat isl_vertices_foreach_vertex( __isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); isl_stat isl_vertices_foreach_cell( __isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user); isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user); Other operations that can be performed on an C object are the following. int isl_vertices_get_n_vertices( __isl_keep isl_vertices *vertices); void isl_vertices_free(__isl_take isl_vertices *vertices); Vertices can be inspected and destroyed using the following functions. int isl_vertex_get_id(__isl_keep isl_vertex *vertex); __isl_give isl_basic_set *isl_vertex_get_domain( __isl_keep isl_vertex *vertex); __isl_give isl_multi_aff *isl_vertex_get_expr( __isl_keep isl_vertex *vertex); void isl_vertex_free(__isl_take isl_vertex *vertex); C returns a multiple quasi-affine expression describing the vertex in terms of the parameters, while C returns the activity domain of the vertex. Chambers can be inspected and destroyed using the following functions. __isl_give isl_basic_set *isl_cell_get_domain( __isl_keep isl_cell *cell); void isl_cell_free(__isl_take isl_cell *cell); =head1 Polyhedral Compilation Library This section collects functionality in C that has been specifically designed for use during polyhedral compilation. =head2 Schedule Trees A schedule tree is a structured representation of a schedule, assigning a relative order to a set of domain elements. The relative order expressed by the schedule tree is defined recursively. In particular, the order between two domain elements is determined by the node that is closest to the root that refers to both elements and that orders them apart. Each node in the tree is of one of several types. The root node is always of type C (or C) and it describes the (extra) domain elements to which the schedule applies. The other types of nodes are as follows. =over =item C A band of schedule dimensions. Each schedule dimension is represented by a union piecewise quasi-affine expression. If this expression assigns a different value to two domain elements, while all previous schedule dimensions in the same band assign them the same value, then the two domain elements are ordered according to these two different values. Each expression is required to be total in the domain elements that reach the band node. =item C An expansion node maps each of the domain elements that reach the node to one or more domain elements. The image of this mapping forms the set of domain elements that reach the child of the expansion node. The function that maps each of the expanded domain elements to the original domain element from which it was expanded is called the contraction. =item C A filter node does not impose any ordering, but rather intersects the set of domain elements that the current subtree refers to with a given union set. The subtree of the filter node only refers to domain elements in the intersection. A filter node is typically only used a child of a sequence or set node. =item C A leaf of the schedule tree. Leaf nodes do not impose any ordering. =item C A mark node can be used to attach any kind of information to a subtree of the schedule tree. =item C A sequence node has one or more children, each of which is a filter node. The filters on these filter nodes form a partition of the domain elements that the current subtree refers to. If two domain elements appear in distinct filters then the sequence node orders them according to the child positions of the corresponding filter nodes. =item C A set node is similar to a sequence node, except that it expresses that domain elements appearing in distinct filters may have any order. The order of the children of a set node is therefore also immaterial. =back The following node types are only supported by the AST generator. =over =item C The context describes constraints on the parameters and the schedule dimensions of outer bands that the AST generator may assume to hold. It is also the only kind of node that may introduce additional parameters. The space of the context is that of the flat product of the outer band nodes. In particular, if there are no outer band nodes, then this space is the unnamed zero-dimensional space. Since a context node references the outer band nodes, any tree containing a context node is considered to be anchored. =item C An extension node instructs the AST generator to add additional domain elements that need to be scheduled. The additional domain elements are described by the range of the extension map in terms of the outer schedule dimensions, i.e., the flat product of the outer band nodes. Note that domain elements are added whenever the AST generator reaches the extension node, meaning that there are still some active domain elements for which an AST needs to be generated. The conditions under which some domain elements are still active may however not be completely described by the outer AST nodes generated at that point. An extension node may also appear as the root of a schedule tree, when it is intended to be inserted into another tree using C or C. In this case, the domain of the extension node should correspond to the flat product of the outer band nodes in this other schedule tree at the point where the extension tree will be inserted. =item C The guard describes constraints on the parameters and the schedule dimensions of outer bands that need to be enforced by the outer nodes in the generated AST. The space of the guard is that of the flat product of the outer band nodes. In particular, if there are no outer band nodes, then this space is the unnamed zero-dimensional space. Since a guard node references the outer band nodes, any tree containing a guard node is considered to be anchored. =back Except for the C nodes, none of the nodes may introduce any parameters that were not already present in the root domain node. A schedule tree is encapsulated in an C object. The simplest such objects, those with a tree consisting of single domain node, can be created using the following functions with either an empty domain or a given domain. #include __isl_give isl_schedule *isl_schedule_empty( __isl_take isl_space *space); __isl_give isl_schedule *isl_schedule_from_domain( __isl_take isl_union_set *domain); The function C described in L can also be used to construct schedules. C objects may be copied and freed using the following functions. #include __isl_give isl_schedule *isl_schedule_copy( __isl_keep isl_schedule *sched); __isl_null isl_schedule *isl_schedule_free( __isl_take isl_schedule *sched); The following functions checks whether two C objects are obviously the same. #include isl_bool isl_schedule_plain_is_equal( __isl_keep isl_schedule *schedule1, __isl_keep isl_schedule *schedule2); The domain of the schedule, i.e., the domain described by the root node, can be obtained using the following function. #include __isl_give isl_union_set *isl_schedule_get_domain( __isl_keep isl_schedule *schedule); An extra top-level band node (right underneath the domain node) can be introduced into the schedule using the following function. The schedule tree is assumed not to have any anchored nodes. #include __isl_give isl_schedule * isl_schedule_insert_partial_schedule( __isl_take isl_schedule *schedule, __isl_take isl_multi_union_pw_aff *partial); A top-level context node (right underneath the domain node) can be introduced into the schedule using the following function. #include __isl_give isl_schedule *isl_schedule_insert_context( __isl_take isl_schedule *schedule, __isl_take isl_set *context) A top-level guard node (right underneath the domain node) can be introduced into the schedule using the following function. #include __isl_give isl_schedule *isl_schedule_insert_guard( __isl_take isl_schedule *schedule, __isl_take isl_set *guard) A schedule that combines two schedules either in the given order or in an arbitrary order, i.e., with an C or an C node, can be created using the following functions. #include __isl_give isl_schedule *isl_schedule_sequence( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2); __isl_give isl_schedule *isl_schedule_set( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2); The domains of the two input schedules need to be disjoint. The following function can be used to restrict the domain of a schedule with a domain node as root to be a subset of the given union set. This operation may remove nodes in the tree that have become redundant. #include __isl_give isl_schedule *isl_schedule_intersect_domain( __isl_take isl_schedule *schedule, __isl_take isl_union_set *domain); The following function can be used to simplify the domain of a schedule with a domain node as root with respect to the given parameter domain. #include __isl_give isl_schedule *isl_schedule_gist_domain_params( __isl_take isl_schedule *schedule, __isl_take isl_set *context); The following function resets the user pointers on all parameter and tuple identifiers referenced by the nodes of the given schedule. #include __isl_give isl_schedule *isl_schedule_reset_user( __isl_take isl_schedule *schedule); The following function aligns the parameters of all nodes in the given schedule to the given space. #include __isl_give isl_schedule *isl_schedule_align_params( __isl_take isl_schedule *schedule, __isl_take isl_space *space); The following function allows the user to plug in a given function in the iteration domains. The input schedule is not allowed to contain any expansion nodes. #include __isl_give isl_schedule * isl_schedule_pullback_union_pw_multi_aff( __isl_take isl_schedule *schedule, __isl_take isl_union_pw_multi_aff *upma); An C representation of the schedule can be obtained from an C using the following function. #include __isl_give isl_union_map *isl_schedule_get_map( __isl_keep isl_schedule *sched); The resulting relation encodes the same relative ordering as the schedule by mapping the domain elements to a common schedule space. If the schedule_separate_components option is set, then the order of the children of a set node is explicitly encoded in the result. If the tree contains any expansion nodes, then the relation is formulated in terms of the expanded domain elements. Schedules can be read from input using the following functions. #include __isl_give isl_schedule *isl_schedule_read_from_file( isl_ctx *ctx, FILE *input); __isl_give isl_schedule *isl_schedule_read_from_str( isl_ctx *ctx, const char *str); A representation of the schedule can be printed using #include __isl_give isl_printer *isl_printer_print_schedule( __isl_take isl_printer *p, __isl_keep isl_schedule *schedule); __isl_give char *isl_schedule_to_str( __isl_keep isl_schedule *schedule); C prints the schedule in flow format. The schedule tree can be traversed through the use of C objects that point to a particular position in the schedule tree. Whenever a C is use to modify a node in the schedule tree, the original schedule tree is left untouched and the modifications are performed to a copy of the tree. The returned C then points to this modified copy of the tree. The root of the schedule tree can be obtained using the following function. #include __isl_give isl_schedule_node *isl_schedule_get_root( __isl_keep isl_schedule *schedule); A pointer to a newly created schedule tree with a single domain node can be created using the following functions. #include __isl_give isl_schedule_node * isl_schedule_node_from_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule_node * isl_schedule_node_from_extension( __isl_take isl_union_map *extension); C creates a tree with an extension node as root. Schedule nodes can be copied and freed using the following functions. #include __isl_give isl_schedule_node *isl_schedule_node_copy( __isl_keep isl_schedule_node *node); __isl_null isl_schedule_node *isl_schedule_node_free( __isl_take isl_schedule_node *node); The following functions can be used to check if two schedule nodes point to the same position in the same schedule. #include isl_bool isl_schedule_node_is_equal( __isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2); The following properties can be obtained from a schedule node. #include enum isl_schedule_node_type isl_schedule_node_get_type( __isl_keep isl_schedule_node *node); enum isl_schedule_node_type isl_schedule_node_get_parent_type( __isl_keep isl_schedule_node *node); __isl_give isl_schedule *isl_schedule_node_get_schedule( __isl_keep isl_schedule_node *node); The function C returns the type of the node, while C returns type of the parent of the node, which is required to exist. The function C returns a copy to the schedule to which the node belongs. The following functions can be used to move the schedule node to a different position in the tree or to check if such a position exists. #include isl_bool isl_schedule_node_has_parent( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_parent( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_root( __isl_take isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_ancestor( __isl_take isl_schedule_node *node, int generation); int isl_schedule_node_n_children( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_child( __isl_take isl_schedule_node *node, int pos); isl_bool isl_schedule_node_has_children( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_first_child( __isl_take isl_schedule_node *node); isl_bool isl_schedule_node_has_previous_sibling( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node * isl_schedule_node_previous_sibling( __isl_take isl_schedule_node *node); isl_bool isl_schedule_node_has_next_sibling( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node * isl_schedule_node_next_sibling( __isl_take isl_schedule_node *node); For C, the ancestor of generation 0 is the node itself, the ancestor of generation 1 is its parent and so on. It is also possible to query the number of ancestors of a node, the position of the current node within the children of its parent, the position of the subtree containing a node within the children of an ancestor or to obtain a copy of a given child without destroying the current node. Given two nodes that point to the same schedule, their closest shared ancestor can be obtained using C. #include int isl_schedule_node_get_tree_depth( __isl_keep isl_schedule_node *node); int isl_schedule_node_get_child_position( __isl_keep isl_schedule_node *node); int isl_schedule_node_get_ancestor_child_position( __isl_keep isl_schedule_node *node, __isl_keep isl_schedule_node *ancestor); __isl_give isl_schedule_node *isl_schedule_node_get_child( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node * isl_schedule_node_get_shared_ancestor( __isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2); All nodes in a schedule tree or all descendants of a specific node (including the node) can be visited in depth-first pre-order using the following functions. #include isl_stat isl_schedule_foreach_schedule_node_top_down( __isl_keep isl_schedule *sched, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); #include isl_stat isl_schedule_node_foreach_descendant_top_down( __isl_keep isl_schedule_node *node, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); The callback function is slightly different from the usual callbacks in that it not only indicates success (non-negative result) or failure (negative result), but also indicates whether the children of the given node should be visited. In particular, if the callback returns a positive value, then the children are visited, but if the callback returns zero, then the children are not visited. The ancestors of a node in a schedule tree can be visited from the root down to and including the parent of the node using the following function. #include isl_stat isl_schedule_node_foreach_ancestor_top_down( __isl_keep isl_schedule_node *node, isl_stat (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user); The following functions allows for a depth-first post-order traversal of the nodes in a schedule tree or of the descendants of a specific node (including the node itself), where the user callback is allowed to modify the visited node. #include __isl_give isl_schedule * isl_schedule_map_schedule_node_bottom_up( __isl_take isl_schedule *schedule, __isl_give isl_schedule_node *(*fn)( __isl_take isl_schedule_node *node, void *user), void *user); #include __isl_give isl_schedule_node * isl_schedule_node_map_descendant_bottom_up( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*fn)( __isl_take isl_schedule_node *node, void *user), void *user); The traversal continues from the node returned by the callback function. It is the responsibility of the user to ensure that this does not lead to an infinite loop. It is safest to always return a pointer to the same position (same ancestors and child positions) as the input node. The following function removes a node (along with its descendants) from a schedule tree and returns a pointer to the leaf at the same position in the updated tree. It is not allowed to remove the root of a schedule tree or a child of a set or sequence node. #include __isl_give isl_schedule_node *isl_schedule_node_cut( __isl_take isl_schedule_node *node); The following function removes a single node from a schedule tree and returns a pointer to the child of the node, now located at the position of the original node or to a leaf node at that position if there was no child. It is not allowed to remove the root of a schedule tree, a set or sequence node, a child of a set or sequence node or a band node with an anchored subtree. #include __isl_give isl_schedule_node *isl_schedule_node_delete( __isl_take isl_schedule_node *node); Most nodes in a schedule tree only contain local information. In some cases, however, a node may also refer to outer band nodes. This means that the position of the node within the tree should not be changed, or at least that no changes are performed to the outer band nodes. The following function can be used to test whether the subtree rooted at a given node contains any such nodes. #include isl_bool isl_schedule_node_is_subtree_anchored( __isl_keep isl_schedule_node *node); The following function resets the user pointers on all parameter and tuple identifiers referenced by the given schedule node. #include __isl_give isl_schedule_node *isl_schedule_node_reset_user( __isl_take isl_schedule_node *node); The following function aligns the parameters of the given schedule node to the given space. #include __isl_give isl_schedule_node * isl_schedule_node_align_params( __isl_take isl_schedule_node *node, __isl_take isl_space *space); Several node types have their own functions for querying (and in some cases setting) some node type specific properties. #include __isl_give isl_space *isl_schedule_node_band_get_space( __isl_keep isl_schedule_node *node); __isl_give isl_multi_union_pw_aff * isl_schedule_node_band_get_partial_schedule( __isl_keep isl_schedule_node *node); __isl_give isl_union_map * isl_schedule_node_band_get_partial_schedule_union_map( __isl_keep isl_schedule_node *node); unsigned isl_schedule_node_band_n_member( __isl_keep isl_schedule_node *node); isl_bool isl_schedule_node_band_member_get_coincident( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node * isl_schedule_node_band_member_set_coincident( __isl_take isl_schedule_node *node, int pos, int coincident); isl_bool isl_schedule_node_band_get_permutable( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node * isl_schedule_node_band_set_permutable( __isl_take isl_schedule_node *node, int permutable); enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node * isl_schedule_node_band_member_set_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type); __isl_give isl_union_set * enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_node *node, int pos); __isl_give isl_schedule_node * isl_schedule_node_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type); isl_schedule_node_band_get_ast_build_options( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node * isl_schedule_node_band_set_ast_build_options( __isl_take isl_schedule_node *node, __isl_take isl_union_set *options); The function C returns the space of the partial schedule of the band. The function C returns a representation of the partial schedule of the band node in the form of an C. The coincident and permutable properties are set by C on the schedule tree it produces. A scheduling dimension is considered to be ``coincident'' if it satisfies the coincidence constraints within its band. That is, if the dependence distances of the coincidence constraints are all zero in that direction (for fixed iterations of outer bands). A band is marked permutable if it was produced using the Pluto-like scheduler. Note that the scheduler may have to resort to a Feautrier style scheduling step even if the default scheduler is used. An C is one of C, C, C or C. For the meaning of these loop AST generation types and the difference between the regular loop AST generation type and the isolate loop AST generation type, see L. The functions C and C may return C if an error occurs. The AST build options govern how an AST is generated for the individual schedule dimensions during AST generation. See L. #include __isl_give isl_set * isl_schedule_node_context_get_context( __isl_keep isl_schedule_node *node); #include __isl_give isl_union_set * isl_schedule_node_domain_get_domain( __isl_keep isl_schedule_node *node); #include __isl_give isl_union_map * isl_schedule_node_expansion_get_expansion( __isl_keep isl_schedule_node *node); __isl_give isl_union_pw_multi_aff * isl_schedule_node_expansion_get_contraction( __isl_keep isl_schedule_node *node); #include __isl_give isl_union_map * isl_schedule_node_extension_get_extension( __isl_keep isl_schedule_node *node); #include __isl_give isl_union_set * isl_schedule_node_filter_get_filter( __isl_keep isl_schedule_node *node); #include __isl_give isl_set *isl_schedule_node_guard_get_guard( __isl_keep isl_schedule_node *node); #include __isl_give isl_id *isl_schedule_node_mark_get_id( __isl_keep isl_schedule_node *node); The following functions can be used to obtain an C, an C or C representation of partial schedules related to the node. #include __isl_give isl_multi_union_pw_aff * isl_schedule_node_get_prefix_schedule_multi_union_pw_aff( __isl_keep isl_schedule_node *node); __isl_give isl_union_pw_multi_aff * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff( __isl_keep isl_schedule_node *node); __isl_give isl_union_map * isl_schedule_node_get_prefix_schedule_union_map( __isl_keep isl_schedule_node *node); __isl_give isl_union_map * isl_schedule_node_get_prefix_schedule_relation( __isl_keep isl_schedule_node *node); __isl_give isl_union_map * isl_schedule_node_get_subtree_schedule_union_map( __isl_keep isl_schedule_node *node); In particular, the functions C, C and C return a relative ordering on the domain elements that reach the given node determined by its ancestors. The function C additionally includes the domain constraints in the result. The function C returns a representation of the partial schedule defined by the subtree rooted at the given node. If the tree contains any expansion nodes, then the subtree schedule is formulated in terms of the expanded domain elements. The tree passed to functions returning a prefix schedule may only contain extension nodes if these would not affect the result of these functions. That is, if one of the ancestors is an extension node, then all of the domain elements that were added by the extension node need to have been filtered out by filter nodes between the extension node and the input node. The tree passed to C may not contain in extension nodes in the selected subtree. The expansion/contraction defined by an entire subtree, combining the expansions/contractions on the expansion nodes in the subtree, can be obtained using the following functions. #include __isl_give isl_union_map * isl_schedule_node_get_subtree_expansion( __isl_keep isl_schedule_node *node); __isl_give isl_union_pw_multi_aff * isl_schedule_node_get_subtree_contraction( __isl_keep isl_schedule_node *node); The total number of outer band members of given node, i.e., the shared output dimension of the maps in the result of C can be obtained using the following function. #include int isl_schedule_node_get_schedule_depth( __isl_keep isl_schedule_node *node); The following functions return the elements that reach the given node or the union of universes in the spaces that contain these elements. #include __isl_give isl_union_set * isl_schedule_node_get_domain( __isl_keep isl_schedule_node *node); __isl_give isl_union_set * isl_schedule_node_get_universe_domain( __isl_keep isl_schedule_node *node); The input tree of C may only contain extension nodes if these would not affect the result of this function. That is, if one of the ancestors is an extension node, then all of the domain elements that were added by the extension node need to have been filtered out by filter nodes between the extension node and the input node. The following functions can be used to introduce additional nodes in the schedule tree. The new node is introduced at the point in the tree where the C points to and the results points to the new node. #include __isl_give isl_schedule_node * isl_schedule_node_insert_partial_schedule( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *schedule); This function inserts a new band node with (the greatest integer part of) the given partial schedule. The subtree rooted at the given node is assumed not to have any anchored nodes. #include __isl_give isl_schedule_node * isl_schedule_node_insert_context( __isl_take isl_schedule_node *node, __isl_take isl_set *context); This function inserts a new context node with the given context constraints. #include __isl_give isl_schedule_node * isl_schedule_node_insert_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); This function inserts a new filter node with the given filter. If the original node already pointed to a filter node, then the two filter nodes are merged into one. #include __isl_give isl_schedule_node * isl_schedule_node_insert_guard( __isl_take isl_schedule_node *node, __isl_take isl_set *guard); This function inserts a new guard node with the given guard constraints. #include __isl_give isl_schedule_node * isl_schedule_node_insert_mark( __isl_take isl_schedule_node *node, __isl_take isl_id *mark); This function inserts a new mark node with the give mark identifier. #include __isl_give isl_schedule_node * isl_schedule_node_insert_sequence( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters); __isl_give isl_schedule_node * isl_schedule_node_insert_set( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters); These functions insert a new sequence or set node with the given filters as children. #include __isl_give isl_schedule_node *isl_schedule_node_group( __isl_take isl_schedule_node *node, __isl_take isl_id *group_id); This function introduces an expansion node in between the current node and its parent that expands instances of a space with tuple identifier C to the original domain elements that reach the node. The group instances are identified by the prefix schedule of those domain elements. The ancestors of the node are adjusted to refer to the group instances instead of the original domain elements. The return value points to the same node in the updated schedule tree as the input node, i.e., to the child of the newly introduced expansion node. Grouping instances of different statements ensures that they will be treated as a single statement by the AST generator up to the point of the expansion node. The following function can be used to flatten a nested sequence. #include __isl_give isl_schedule_node * isl_schedule_node_sequence_splice_child( __isl_take isl_schedule_node *node, int pos); That is, given a sequence node C that has another sequence node in its child at position C (in particular, the child of that filter node is a sequence node), attach the children of that other sequence node as children of C, replacing the original child at position C. The partial schedule of a band node can be scaled (down) or reduced using the following functions. #include __isl_give isl_schedule_node * isl_schedule_node_band_scale( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); __isl_give isl_schedule_node * isl_schedule_node_band_scale_down( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); __isl_give isl_schedule_node * isl_schedule_node_band_mod( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv); The spaces of the two arguments need to match. After scaling, the partial schedule is replaced by its greatest integer part to ensure that the schedule remains integral. The partial schedule of a band node can be shifted by an C with a domain that is a superset of the domain of the partial schedule using the following function. #include __isl_give isl_schedule_node * isl_schedule_node_band_shift( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *shift); A band node can be tiled using the following function. #include __isl_give isl_schedule_node *isl_schedule_node_band_tile( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes); isl_stat isl_options_set_tile_scale_tile_loops(isl_ctx *ctx, int val); int isl_options_get_tile_scale_tile_loops(isl_ctx *ctx); isl_stat isl_options_set_tile_shift_point_loops(isl_ctx *ctx, int val); int isl_options_get_tile_shift_point_loops(isl_ctx *ctx); The C function tiles the band using the given tile sizes inside its schedule. A new child band node is created to represent the point loops and it is inserted between the modified band and its children. The subtree rooted at the given node is assumed not to have any anchored nodes. The C option specifies whether the tile loops iterators should be scaled by the tile sizes. If the C option is set, then the point loops are shifted to start at zero. A band node can be split into two nested band nodes using the following function. #include __isl_give isl_schedule_node *isl_schedule_node_band_split( __isl_take isl_schedule_node *node, int pos); The resulting outer band node contains the first C dimensions of the schedule of C while the inner band contains the remaining dimensions. The schedules of the two band nodes live in anonymous spaces. A band node can be moved down to the leaves of the subtree rooted at the band node using the following function. #include __isl_give isl_schedule_node *isl_schedule_node_band_sink( __isl_take isl_schedule_node *node); The subtree rooted at the given node is assumed not to have any anchored nodes. The result points to the node in the resulting tree that is in the same position as the node pointed to by C in the original tree. #include __isl_give isl_schedule_node * isl_schedule_node_order_before( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); __isl_give isl_schedule_node * isl_schedule_node_order_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter); These functions split the domain elements that reach C into those that satisfy C and those that do not and arranges for the elements that do satisfy the filter to be executed before (in case of C) or after (in case of C) those that do not. The order is imposed by a sequence node, possibly reusing the grandparent of C on two copies of the subtree attached to the original C. Both copies are simplified with respect to their filter. Return a pointer to the copy of the subtree that does not satisfy C. If there is no such copy (because all reaching domain elements satisfy the filter), then return the original pointer. #include __isl_give isl_schedule_node * isl_schedule_node_graft_before( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft); __isl_give isl_schedule_node * isl_schedule_node_graft_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft); This function inserts the C tree into the tree containing C such that it is executed before (in case of C) or after (in case of C) C. The root node of C should be an extension node where the domain of the extension is the flat product of all outer band nodes of C. The root node may also be a domain node. The elements of the domain or the range of the extension may not intersect with the domain elements that reach "node". The schedule tree of C may not be anchored. The schedule tree of C is modified to include an extension node corresponding to the root node of C as a child of the original parent of C. The original node that C points to and the child of the root node of C are attached to this extension node through a sequence, with appropriate filters and with the child of C appearing before or after the original C. If C already appears inside a sequence that is the child of an extension node and if the spaces of the new domain elements do not overlap with those of the original domain elements, then that extension node is extended with the new extension rather than introducing a new segment of extension and sequence nodes. Return a pointer to the same node in the modified tree that C pointed to in the original tree. A representation of the schedule node can be printed using #include __isl_give isl_printer *isl_printer_print_schedule_node( __isl_take isl_printer *p, __isl_keep isl_schedule_node *node); __isl_give char *isl_schedule_node_to_str( __isl_keep isl_schedule_node *node); C prints the schedule node in block format. =head2 Dependence Analysis C contains specialized functionality for performing array dataflow analysis. That is, given a I access relation and a collection of possible I access relations, C can compute relations that describe for each iteration of the sink access, which iteration of which of the source access relations was the last to access the same data element before the given iteration of the sink access. The resulting dependence relations map source iterations to either the corresponding sink iterations or pairs of corresponding sink iterations and accessed data elements. To compute standard flow dependences, the sink should be a read, while the sources should be writes. If any of the source accesses are marked as being I accesses, then there will be a dependence from the last I access B from any I access that follows this last I access. In particular, if I sources are I accesses, then memory based dependence analysis is performed. If, on the other hand, all sources are I accesses, then value based dependence analysis is performed. =head3 High-level Interface A high-level interface to dependence analysis is provided by the following function. #include __isl_give isl_union_flow * isl_union_access_info_compute_flow( __isl_take isl_union_access_info *access); The input C object describes the sink access relations, the source access relations and a schedule, while the output C object describes the resulting dependence relations and the subsets of the sink relations for which no source was found. An C is created, modified, copied and freed using the following functions. #include __isl_give isl_union_access_info * isl_union_access_info_from_sink( __isl_take isl_union_map *sink); __isl_give isl_union_access_info * isl_union_access_info_set_must_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *must_source); __isl_give isl_union_access_info * isl_union_access_info_set_may_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *may_source); __isl_give isl_union_access_info * isl_union_access_info_set_schedule( __isl_take isl_union_access_info *access, __isl_take isl_schedule *schedule); __isl_give isl_union_access_info * isl_union_access_info_set_schedule_map( __isl_take isl_union_access_info *access, __isl_take isl_union_map *schedule_map); __isl_give isl_union_access_info * isl_union_access_info_copy( __isl_keep isl_union_access_info *access); __isl_null isl_union_access_info * isl_union_access_info_free( __isl_take isl_union_access_info *access); The may sources set by C do not need to include the must sources set by C as a subset. The user is free not to call one (or both) of these functions, in which case the corresponding set is kept to its empty default. Similarly, the default schedule initialized by C is empty. The current schedule is determined by the last call to either C or C. The domain of the schedule corresponds to the domains of the access relations. In particular, the domains of the access relations are effectively intersected with the domain of the schedule and only the resulting accesses are considered by the dependence analysis. A representation of the information contained in an object of type C can be obtained using #include __isl_give isl_printer * isl_printer_print_union_access_info( __isl_take isl_printer *p, __isl_keep isl_union_access_info *access); __isl_give char *isl_union_access_info_to_str( __isl_keep isl_union_access_info *access); C prints the information in flow format. The output of C can be examined and freed using the following functions. #include __isl_give isl_union_map *isl_union_flow_get_must_dependence( __isl_keep isl_union_flow *flow); __isl_give isl_union_map *isl_union_flow_get_may_dependence( __isl_keep isl_union_flow *flow); __isl_give isl_union_map * isl_union_flow_get_full_must_dependence( __isl_keep isl_union_flow *flow); __isl_give isl_union_map * isl_union_flow_get_full_may_dependence( __isl_keep isl_union_flow *flow); __isl_give isl_union_map *isl_union_flow_get_must_no_source( __isl_keep isl_union_flow *flow); __isl_give isl_union_map *isl_union_flow_get_may_no_source( __isl_keep isl_union_flow *flow); __isl_null isl_union_flow *isl_union_flow_free( __isl_take isl_union_flow *flow); The relation returned by C relates domain elements of must sources to domain elements of the sink. The relation returned by C relates domain elements of must or may sources to domain elements of the sink and includes the previous relation as a subset. The relation returned by C relates domain elements of must sources to pairs of domain elements of the sink and accessed data elements. The relation returned by C relates domain elements of must or may sources to pairs of domain elements of the sink and accessed data elements. This relation includes the previous relation as a subset. The relation returned by C is the subset of the sink relation for which no dependences have been found. The relation returned by C is the subset of the sink relation for which no definite dependences have been found. That is, it contains those sink access that do not contribute to any of the elements in the relation returned by C. A representation of the information contained in an object of type C can be obtained using #include __isl_give isl_printer *isl_printer_print_union_flow( __isl_take isl_printer *p, __isl_keep isl_union_flow *flow); __isl_give char *isl_union_flow_to_str( __isl_keep isl_union_flow *flow); C prints the information in flow format. =head3 Low-level Interface A lower-level interface is provided by the following functions. #include typedef int (*isl_access_level_before)(void *first, void *second); __isl_give isl_access_info *isl_access_info_alloc( __isl_take isl_map *sink, void *sink_user, isl_access_level_before fn, int max_source); __isl_give isl_access_info *isl_access_info_add_source( __isl_take isl_access_info *acc, __isl_take isl_map *source, int must, void *source_user); __isl_null isl_access_info *isl_access_info_free( __isl_take isl_access_info *acc); __isl_give isl_flow *isl_access_info_compute_flow( __isl_take isl_access_info *acc); isl_stat isl_flow_foreach(__isl_keep isl_flow *deps, isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), void *user); __isl_give isl_map *isl_flow_get_no_source( __isl_keep isl_flow *deps, int must); void isl_flow_free(__isl_take isl_flow *deps); The function C performs the actual dependence analysis. The other functions are used to construct the input for this function or to read off the output. The input is collected in an C, which can be created through a call to C. The arguments to this functions are the sink access relation C, a token C used to identify the sink access to the user, a callback function for specifying the relative order of source and sink accesses, and the number of source access relations that will be added. The callback function has type C. The function is called with two user supplied tokens identifying either a source or the sink and it should return the shared nesting level and the relative order of the two accesses. In particular, let I be the number of loops shared by the two accesses. If C precedes C textually, then the function should return I<2 * n + 1>; otherwise, it should return I<2 * n>. The sources can be added to the C by performing (at most) C calls to C. C indicates whether the source is a I access or a I access. Note that a multi-valued access relation should only be marked I if every iteration in the domain of the relation accesses I elements in its image. The C token is again used to identify the source access. The range of the source access relation C should have the same dimension as the range of the sink access relation. The C function should usually not be called explicitly, because it is called implicitly by C. The result of the dependence analysis is collected in an C. There may be elements of the sink access for which no preceding source access could be found or for which all preceding sources are I accesses. The relations containing these elements can be obtained through calls to C, the first with C set and the second with C unset. In the case of standard flow dependence analysis, with the sink a read and the sources I writes, the first relation corresponds to the reads from uninitialized array elements and the second relation is empty. The actual flow dependences can be extracted using C. This function will call the user-specified callback function C for each B dependence between a source and the sink. The callback function is called with four arguments, the actual flow dependence relation mapping source iterations to sink iterations, a boolean that indicates whether it is a I or I dependence, a token identifying the source and an additional C with value equal to the third argument of the C call. A dependence is marked I if it originates from a I source and if it is not followed by any I sources. After finishing with an C, the user should call C to free all associated memory. =head3 Interaction with the Low-level Interface During the dependence analysis, we frequently need to perform the following operation. Given a relation between sink iterations and potential source iterations from a particular source domain, what is the last potential source iteration corresponding to each sink iteration. It can sometimes be convenient to adjust the set of potential source iterations before or after each such operation. The prototypical example is fuzzy array dataflow analysis, where we need to analyze if, based on data-dependent constraints, the sink iteration can ever be executed without one or more of the corresponding potential source iterations being executed. If so, we can introduce extra parameters and select an unknown but fixed source iteration from the potential source iterations. To be able to perform such manipulations, C provides the following function. #include typedef __isl_give isl_restriction *(*isl_access_restrict)( __isl_keep isl_map *source_map, __isl_keep isl_set *sink, void *source_user, void *user); __isl_give isl_access_info *isl_access_info_set_restrict( __isl_take isl_access_info *acc, isl_access_restrict fn, void *user); The function C should be called before calling C and registers a callback function that will be called any time C is about to compute the last potential source. The first argument is the (reverse) proto-dependence, mapping sink iterations to potential source iterations. The second argument represents the sink iterations for which we want to compute the last source iteration. The third argument is the token corresponding to the source and the final argument is the token passed to C. The callback is expected to return a restriction on either the input or the output of the operation computing the last potential source. If the input needs to be restricted then restrictions are needed for both the source and the sink iterations. The sink iterations and the potential source iterations will be intersected with these sets. If the output needs to be restricted then only a restriction on the source iterations is required. If any error occurs, the callback should return C. An C object can be created, freed and inspected using the following functions. #include __isl_give isl_restriction *isl_restriction_input( __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr); __isl_give isl_restriction *isl_restriction_output( __isl_take isl_set *source_restr); __isl_give isl_restriction *isl_restriction_none( __isl_take isl_map *source_map); __isl_give isl_restriction *isl_restriction_empty( __isl_take isl_map *source_map); __isl_null isl_restriction *isl_restriction_free( __isl_take isl_restriction *restr); C and C are special cases of C. C is essentially equivalent to isl_restriction_input(isl_set_universe( isl_space_range(isl_map_get_space(source_map))), isl_set_universe( isl_space_domain(isl_map_get_space(source_map)))); whereas C is essentially equivalent to isl_restriction_input(isl_set_empty( isl_space_range(isl_map_get_space(source_map))), isl_set_universe( isl_space_domain(isl_map_get_space(source_map)))); =head2 Scheduling B #include __isl_give isl_schedule * isl_schedule_constraints_compute_schedule( __isl_take isl_schedule_constraints *sc); The function C can be used to compute a schedule that satisfies the given schedule constraints. These schedule constraints include the iteration domain for which a schedule should be computed and dependences between pairs of iterations. In particular, these dependences include I dependences and I dependences. By default, the algorithm used to construct the schedule is similar to that of C. Alternatively, Feautrier's multi-dimensional scheduling algorithm can be selected. The generated schedule respects all validity dependences. That is, all dependence distances over these dependences in the scheduled space are lexicographically positive. The default algorithm tries to ensure that the dependence distances over coincidence constraints are zero and to minimize the dependence distances over proximity dependences. Moreover, it tries to obtain sequences (bands) of schedule dimensions for groups of domains where the dependence distances over validity dependences have only non-negative values. Note that when minimizing the maximal dependence distance over proximity dependences, a single affine expression in the parameters is constructed that bounds all dependence distances. If no such expression exists, then the algorithm will fail and resort to an alternative scheduling algorithm. In particular, this means that adding proximity dependences may eliminate valid solutions. A typical example where this phenomenon may occur is when some subset of the proximity dependences has no restriction on some parameter, forcing the coefficient of that parameter to be zero, while some other subset forces the dependence distance to depend on that parameter, requiring the same coefficient to be non-zero. When using Feautrier's algorithm, the coincidence and proximity constraints are only taken into account during the extension to a full-dimensional schedule. An C object can be constructed and manipulated using the following functions. #include __isl_give isl_schedule_constraints * isl_schedule_constraints_copy( __isl_keep isl_schedule_constraints *sc); __isl_give isl_schedule_constraints * isl_schedule_constraints_on_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_context( __isl_take isl_schedule_constraints *sc, __isl_take isl_set *context); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *validity); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_coincidence( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *coincidence); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_proximity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *proximity); __isl_give isl_schedule_constraints * isl_schedule_constraints_set_conditional_validity( __isl_take isl_schedule_constraints *sc, __isl_take isl_union_map *condition, __isl_take isl_union_map *validity); __isl_null isl_schedule_constraints * isl_schedule_constraints_free( __isl_take isl_schedule_constraints *sc); The initial C object created by C does not impose any constraints. That is, it has an empty set of dependences. The function C allows the user to specify additional constraints on the parameters that may be assumed to hold during the construction of the schedule. The function C replaces the validity dependences, mapping domain elements I to domain elements that should be scheduled after I. The function C replaces the coincidence dependences, mapping domain elements I to domain elements that should be scheduled together with I, if possible. The function C replaces the proximity dependences, mapping domain elements I to domain elements that should be scheduled either before I or as early as possible after I. The function C replaces the conditional validity constraints. A conditional validity constraint is only imposed when any of the corresponding conditions is satisfied, i.e., when any of them is non-zero. That is, the scheduler ensures that within each band if the dependence distances over the condition constraints are not all zero then all corresponding conditional validity constraints are respected. A conditional validity constraint corresponds to a condition if the two are adjacent, i.e., if the domain of one relation intersect the range of the other relation. The typical use case of conditional validity constraints is to allow order constraints between live ranges to be violated as long as the live ranges themselves are local to the band. To allow more fine-grained control over which conditions correspond to which conditional validity constraints, the domains and ranges of these relations may include I. That is, the domains and ranges of those relation may themselves be wrapped relations where the iteration domain appears in the domain of those wrapped relations and the range of the wrapped relations can be arbitrarily chosen by the user. Conditions and conditional validity constraints are only considered adjacent to each other if the entire wrapped relation matches. In particular, a relation with a tag will never be considered adjacent to a relation without a tag. An C object can be inspected using the following functions. #include __isl_give isl_union_set * isl_schedule_constraints_get_domain( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map * isl_schedule_constraints_get_validity( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map * isl_schedule_constraints_get_coincidence( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map * isl_schedule_constraints_get_conditional_validity( __isl_keep isl_schedule_constraints *sc); __isl_give isl_union_map * isl_schedule_constraints_get_conditional_validity_condition( __isl_keep isl_schedule_constraints *sc); The following function computes a schedule directly from an iteration domain and validity and proximity dependences and is implemented in terms of the functions described above. The use of C is discouraged. #include __isl_give isl_schedule *isl_union_set_compute_schedule( __isl_take isl_union_set *domain, __isl_take isl_union_map *validity, __isl_take isl_union_map *proximity); The generated schedule represents a schedule tree. For more information on schedule trees, see L. =head3 Options #include isl_stat isl_options_set_schedule_max_coefficient( isl_ctx *ctx, int val); int isl_options_get_schedule_max_coefficient( isl_ctx *ctx); isl_stat isl_options_set_schedule_max_constant_term( isl_ctx *ctx, int val); int isl_options_get_schedule_max_constant_term( isl_ctx *ctx); isl_stat isl_options_set_schedule_serialize_sccs( isl_ctx *ctx, int val); int isl_options_get_schedule_serialize_sccs(isl_ctx *ctx); isl_stat isl_options_set_schedule_maximize_band_depth( isl_ctx *ctx, int val); int isl_options_get_schedule_maximize_band_depth( isl_ctx *ctx); isl_stat isl_options_set_schedule_outer_coincidence( isl_ctx *ctx, int val); int isl_options_get_schedule_outer_coincidence( isl_ctx *ctx); isl_stat isl_options_set_schedule_split_scaled( isl_ctx *ctx, int val); int isl_options_get_schedule_split_scaled( isl_ctx *ctx); isl_stat isl_options_set_schedule_algorithm( isl_ctx *ctx, int val); int isl_options_get_schedule_algorithm( isl_ctx *ctx); isl_stat isl_options_set_schedule_separate_components( isl_ctx *ctx, int val); int isl_options_get_schedule_separate_components( isl_ctx *ctx); =over =item * schedule_max_coefficient This option enforces that the coefficients for variable and parameter dimensions in the calculated schedule are not larger than the specified value. This option can significantly increase the speed of the scheduling calculation and may also prevent fusing of unrelated dimensions. A value of -1 means that this option does not introduce bounds on the variable or parameter coefficients. =item * schedule_max_constant_term This option enforces that the constant coefficients in the calculated schedule are not larger than the maximal constant term. This option can significantly increase the speed of the scheduling calculation and may also prevent fusing of unrelated dimensions. A value of -1 means that this option does not introduce bounds on the constant coefficients. =item * schedule_serialize_sccs If this option is set, then all strongly connected components in the dependence graph are serialized as soon as they are detected. This means in particular that instances of statements will only appear in the same band node if these statements belong to the same strongly connected component at the point where the band node is constructed. =item * schedule_maximize_band_depth If this option is set, we do not split bands at the point where we detect splitting is necessary. Instead, we backtrack and split bands as early as possible. This reduces the number of splits and maximizes the width of the bands. Wider bands give more possibilities for tiling. Note that if the C options is set, then bands will be split as early as possible, even if there is no need. The C option therefore has no effect in this case. =item * schedule_outer_coincidence If this option is set, then we try to construct schedules where the outermost scheduling dimension in each band satisfies the coincidence constraints. =item * schedule_split_scaled If this option is set, then we try to construct schedules in which the constant term is split off from the linear part if the linear parts of the scheduling rows for all nodes in the graphs have a common non-trivial divisor. The constant term is then placed in a separate band and the linear part is reduced. =item * schedule_algorithm Selects the scheduling algorithm to be used. Available scheduling algorithms are C and C. =item * schedule_separate_components If this option is set then the function C will treat set nodes in the same way as sequence nodes. =back =head2 AST Generation This section describes the C functionality for generating ASTs that visit all the elements in a domain in an order specified by a schedule tree or a schedule map. In case the schedule given as a C, an AST is generated that visits all the elements in the domain of the C according to the lexicographic order of the corresponding image element(s). If the range of the C consists of elements in more than one space, then each of these spaces is handled separately in an arbitrary order. It should be noted that the schedule tree or the image elements in a schedule map only specify the I in which the corresponding domain elements should be visited. No direct relation between the partial schedule values or the image elements on the one hand and the loop iterators in the generated AST on the other hand should be assumed. Each AST is generated within a build. The initial build simply specifies the constraints on the parameters (if any) and can be created, inspected, copied and freed using the following functions. #include __isl_give isl_ast_build *isl_ast_build_alloc( isl_ctx *ctx); __isl_give isl_ast_build *isl_ast_build_from_context( __isl_take isl_set *set); __isl_give isl_ast_build *isl_ast_build_copy( __isl_keep isl_ast_build *build); __isl_null isl_ast_build *isl_ast_build_free( __isl_take isl_ast_build *build); The C argument is usually a parameter set with zero or more parameters. In fact, when creating an AST using C, this set is required to be a parameter set. An C created using C does not specify any parameter constraints. More C functions are described in L and L. Finally, the AST itself can be constructed using one of the following functions. #include __isl_give isl_ast_node *isl_ast_build_node_from_schedule( __isl_keep isl_ast_build *build, __isl_take isl_schedule *schedule); __isl_give isl_ast_node * isl_ast_build_node_from_schedule_map( __isl_keep isl_ast_build *build, __isl_take isl_union_map *schedule); =head3 Inspecting the AST The basic properties of an AST node can be obtained as follows. #include enum isl_ast_node_type isl_ast_node_get_type( __isl_keep isl_ast_node *node); The type of an AST node is one of C, C, C, C or C. An C represents a for node. An C represents an if node. An C represents a compound node. An C introduces a mark in the AST. An C represents an expression statement. An expression statement typically corresponds to a domain element, i.e., one of the elements that is visited by the AST. Each type of node has its own additional properties. #include __isl_give isl_ast_expr *isl_ast_node_for_get_iterator( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_init( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_expr *isl_ast_node_for_get_inc( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_for_get_body( __isl_keep isl_ast_node *node); isl_bool isl_ast_node_for_is_degenerate( __isl_keep isl_ast_node *node); An C is considered degenerate if it is known to execute exactly once. #include __isl_give isl_ast_expr *isl_ast_node_if_get_cond( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_then( __isl_keep isl_ast_node *node); isl_bool isl_ast_node_if_has_else( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_if_get_else( __isl_keep isl_ast_node *node); __isl_give isl_ast_node_list * isl_ast_node_block_get_children( __isl_keep isl_ast_node *node); __isl_give isl_id *isl_ast_node_mark_get_id( __isl_keep isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_mark_get_node( __isl_keep isl_ast_node *node); C returns the identifier of the mark. C returns the child node that is being marked. #include __isl_give isl_ast_expr *isl_ast_node_user_get_expr( __isl_keep isl_ast_node *node); Each of the returned Cs can in turn be inspected using the following functions. #include enum isl_ast_expr_type isl_ast_expr_get_type( __isl_keep isl_ast_expr *expr); The type of an AST expression is one of C, C or C. An C represents the result of an operation. An C represents an identifier. An C represents an integer value. Each type of expression has its own additional properties. #include enum isl_ast_op_type isl_ast_expr_get_op_type( __isl_keep isl_ast_expr *expr); int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_get_op_arg( __isl_keep isl_ast_expr *expr, int pos); isl_stat isl_ast_node_foreach_ast_op_type( __isl_keep isl_ast_node *node, isl_stat (*fn)(enum isl_ast_op_type type, void *user), void *user); C returns the type of the operation performed. C returns the number of arguments. C returns the specified argument. C calls C for each distinct C that appears in C. The operation type is one of the following. =over =item C Logical I of two arguments. Both arguments can be evaluated. =item C Logical I of two arguments. The second argument can only be evaluated if the first evaluates to true. =item C Logical I of two arguments. Both arguments can be evaluated. =item C Logical I of two arguments. The second argument can only be evaluated if the first evaluates to false. =item C Maximum of two or more arguments. =item C Minimum of two or more arguments. =item C Change sign. =item C Sum of two arguments. =item C Difference of two arguments. =item C Product of two arguments. =item C Exact division. That is, the result is known to be an integer. =item C Result of integer division, rounded towards negative infinity. =item C Result of integer division, where dividend is known to be non-negative. =item C Remainder of integer division, where dividend is known to be non-negative. =item C Equal to zero iff the remainder on integer division is zero. =item C Conditional operator defined on three arguments. If the first argument evaluates to true, then the result is equal to the second argument. Otherwise, the result is equal to the third argument. The second and third argument may only be evaluated if the first argument evaluates to true and false, respectively. Corresponds to C in C. =item C Conditional operator defined on three arguments. If the first argument evaluates to true, then the result is equal to the second argument. Otherwise, the result is equal to the third argument. The second and third argument may be evaluated independently of the value of the first argument. Corresponds to C in C. =item C Equality relation. =item C Less than or equal relation. =item C Less than relation. =item C Greater than or equal relation. =item C Greater than relation. =item C A function call. The number of arguments of the C is one more than the number of arguments in the function call, the first argument representing the function being called. =item C An array access. The number of arguments of the C is one more than the number of index expressions in the array access, the first argument representing the array being accessed. =item C A member access. This operation has two arguments, a structure and the name of the member of the structure being accessed. =back #include __isl_give isl_id *isl_ast_expr_get_id( __isl_keep isl_ast_expr *expr); Return the identifier represented by the AST expression. #include __isl_give isl_val *isl_ast_expr_get_val( __isl_keep isl_ast_expr *expr); Return the integer represented by the AST expression. =head3 Properties of ASTs #include isl_bool isl_ast_expr_is_equal( __isl_keep isl_ast_expr *expr1, __isl_keep isl_ast_expr *expr2); Check if two Cs are equal to each other. =head3 Manipulating and printing the AST AST nodes can be copied and freed using the following functions. #include __isl_give isl_ast_node *isl_ast_node_copy( __isl_keep isl_ast_node *node); __isl_null isl_ast_node *isl_ast_node_free( __isl_take isl_ast_node *node); AST expressions can be copied and freed using the following functions. #include __isl_give isl_ast_expr *isl_ast_expr_copy( __isl_keep isl_ast_expr *expr); __isl_null isl_ast_expr *isl_ast_expr_free( __isl_take isl_ast_expr *expr); New AST expressions can be created either directly or within the context of an C. #include __isl_give isl_ast_expr *isl_ast_expr_from_val( __isl_take isl_val *v); __isl_give isl_ast_expr *isl_ast_expr_from_id( __isl_take isl_id *id); __isl_give isl_ast_expr *isl_ast_expr_neg( __isl_take isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_address_of( __isl_take isl_ast_expr *expr); __isl_give isl_ast_expr *isl_ast_expr_add( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_sub( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_mul( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_div( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_pdiv_q( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_pdiv_r( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_and( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) __isl_give isl_ast_expr *isl_ast_expr_and_then( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) __isl_give isl_ast_expr *isl_ast_expr_or( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) __isl_give isl_ast_expr *isl_ast_expr_or_else( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) __isl_give isl_ast_expr *isl_ast_expr_eq( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_le( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_lt( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_ge( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_gt( __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); __isl_give isl_ast_expr *isl_ast_expr_access( __isl_take isl_ast_expr *array, __isl_take isl_ast_expr_list *indices); __isl_give isl_ast_expr *isl_ast_expr_call( __isl_take isl_ast_expr *function, __isl_take isl_ast_expr_list *arguments); The function C can be applied to an C of type C only. It is meant to represent the address of the C. The function C as well as C are short-circuit versions of C and C, respectively. #include __isl_give isl_ast_expr *isl_ast_build_expr_from_set( __isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa); __isl_give isl_ast_expr * isl_ast_build_access_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); __isl_give isl_ast_expr * isl_ast_build_access_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa); __isl_give isl_ast_expr * isl_ast_build_call_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); __isl_give isl_ast_expr * isl_ast_build_call_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa); The set and the domains of C, C and C should correspond to the schedule space of C. The tuple id of C or C is used as the array being accessed or the function being called. If the accessed space is a nested relation, then it is taken to represent an access of the member specified by the range of this nested relation of the structure specified by the domain of the nested relation. The following functions can be used to modify an C. #include __isl_give isl_ast_expr *isl_ast_expr_set_op_arg( __isl_take isl_ast_expr *expr, int pos, __isl_take isl_ast_expr *arg); Replace the argument of C at position C by C. #include __isl_give isl_ast_expr *isl_ast_expr_substitute_ids( __isl_take isl_ast_expr *expr, __isl_take isl_id_to_ast_expr *id2expr); The function C replaces the subexpressions of C of type C by the corresponding expression in C, if there is any. User specified data can be attached to an C and obtained from the same C using the following functions. #include __isl_give isl_ast_node *isl_ast_node_set_annotation( __isl_take isl_ast_node *node, __isl_take isl_id *annotation); __isl_give isl_id *isl_ast_node_get_annotation( __isl_keep isl_ast_node *node); Basic printing can be performed using the following functions. #include __isl_give isl_printer *isl_printer_print_ast_expr( __isl_take isl_printer *p, __isl_keep isl_ast_expr *expr); __isl_give isl_printer *isl_printer_print_ast_node( __isl_take isl_printer *p, __isl_keep isl_ast_node *node); __isl_give char *isl_ast_expr_to_str( __isl_keep isl_ast_expr *expr); More advanced printing can be performed using the following functions. #include __isl_give isl_printer *isl_ast_op_type_print_macro( enum isl_ast_op_type type, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print_macros( __isl_keep isl_ast_node *node, __isl_take isl_printer *p); __isl_give isl_printer *isl_ast_node_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_for_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); __isl_give isl_printer *isl_ast_node_if_print( __isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options); While printing an C in C, C may print out an AST that makes use of macros such as C, C and C. C prints out the macro corresponding to a specific C. C scans the C for expressions where these macros would be used and prints out the required macro definitions. Essentially, C calls C with C as function argument. C, C and C print an C in C, but allow for some extra control through an C object. This object can be created using the following functions. #include __isl_give isl_ast_print_options * isl_ast_print_options_alloc(isl_ctx *ctx); __isl_give isl_ast_print_options * isl_ast_print_options_copy( __isl_keep isl_ast_print_options *options); __isl_null isl_ast_print_options * isl_ast_print_options_free( __isl_take isl_ast_print_options *options); __isl_give isl_ast_print_options * isl_ast_print_options_set_print_user( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_user)( __isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); __isl_give isl_ast_print_options * isl_ast_print_options_set_print_for( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_for)( __isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user); The callback set by C is called whenever a node of type C needs to be printed. The callback set by C is called whenever a node of type C needs to be printed. Note that C will I call the callback set by C on the node on which C is called, but only on nested nodes of type C. It is therefore safe to call C from within the callback set by C. The following option determines the type to be used for iterators while printing the AST. isl_stat isl_options_set_ast_iterator_type( isl_ctx *ctx, const char *val); const char *isl_options_get_ast_iterator_type( isl_ctx *ctx); The AST printer only prints body nodes as blocks if these blocks cannot be safely omitted. For example, a C node with one body node will not be surrounded with braces in C. A block will always be printed by setting the following option. isl_stat isl_options_set_ast_always_print_block(isl_ctx *ctx, int val); int isl_options_get_ast_always_print_block(isl_ctx *ctx); =head3 Options #include isl_stat isl_options_set_ast_build_atomic_upper_bound( isl_ctx *ctx, int val); int isl_options_get_ast_build_atomic_upper_bound( isl_ctx *ctx); isl_stat isl_options_set_ast_build_prefer_pdiv(isl_ctx *ctx, int val); int isl_options_get_ast_build_prefer_pdiv(isl_ctx *ctx); isl_stat isl_options_set_ast_build_exploit_nested_bounds( isl_ctx *ctx, int val); int isl_options_get_ast_build_exploit_nested_bounds( isl_ctx *ctx); isl_stat isl_options_set_ast_build_group_coscheduled( isl_ctx *ctx, int val); int isl_options_get_ast_build_group_coscheduled( isl_ctx *ctx); isl_stat isl_options_set_ast_build_scale_strides( isl_ctx *ctx, int val); int isl_options_get_ast_build_scale_strides( isl_ctx *ctx); isl_stat isl_options_set_ast_build_allow_else(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_else(isl_ctx *ctx); isl_stat isl_options_set_ast_build_allow_or(isl_ctx *ctx, int val); int isl_options_get_ast_build_allow_or(isl_ctx *ctx); =over =item * ast_build_atomic_upper_bound Generate loop upper bounds that consist of the current loop iterator, an operator and an expression not involving the iterator. If this option is not set, then the current loop iterator may appear several times in the upper bound. For example, when this option is turned off, AST generation for the schedule [n] -> { A[i] -> [i] : 0 <= i <= 100, n } produces for (int c0 = 0; c0 <= 100 && n >= c0; c0 += 1) A(c0); When the option is turned on, the following AST is generated for (int c0 = 0; c0 <= min(100, n); c0 += 1) A(c0); =item * ast_build_prefer_pdiv If this option is turned off, then the AST generation will produce ASTs that may only contain C operators, but no C or C operators. If this options is turned on, then C will try to convert some of the C operators to (expressions containing) C or C operators. =item * ast_build_exploit_nested_bounds Simplify conditions based on bounds of nested for loops. In particular, remove conditions that are implied by the fact that one or more nested loops have at least one iteration, meaning that the upper bound is at least as large as the lower bound. For example, when this option is turned off, AST generation for the schedule [N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and 0 <= j <= M } produces if (M >= 0) for (int c0 = 0; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= M; c1 += 1) A(c0, c1); When the option is turned on, the following AST is generated for (int c0 = 0; c0 <= N; c0 += 1) for (int c1 = 0; c1 <= M; c1 += 1) A(c0, c1); =item * ast_build_group_coscheduled If two domain elements are assigned the same schedule point, then they may be executed in any order and they may even appear in different loops. If this options is set, then the AST generator will make sure that coscheduled domain elements do not appear in separate parts of the AST. This is useful in case of nested AST generation if the outer AST generation is given only part of a schedule and the inner AST generation should handle the domains that are coscheduled by this initial part of the schedule together. For example if an AST is generated for a schedule { A[i] -> [0]; B[i] -> [0] } then the C callback described below may get called twice, once for each domain. Setting this option ensures that the callback is only called once on both domains together. =item * ast_build_separation_bounds This option specifies which bounds to use during separation. If this option is set to C then all (possibly implicit) bounds on the current dimension will be used during separation. If this option is set to C then only those bounds that are explicitly available will be used during separation. =item * ast_build_scale_strides This option specifies whether the AST generator is allowed to scale down iterators of strided loops. =item * ast_build_allow_else This option specifies whether the AST generator is allowed to construct if statements with else branches. =item * ast_build_allow_or This option specifies whether the AST generator is allowed to construct if conditions with disjunctions. =back =head3 AST Generation Options (Schedule Tree) In case of AST construction from a schedule tree, the options that control how an AST is created from the individual schedule dimensions are stored in the band nodes of the tree (see L). In particular, a schedule dimension can be handled in four different ways, atomic, separate, unroll or the default. This loop AST generation type can be set using C. Alternatively, the first three can be selected by including a one-dimensional element with as value the position of the schedule dimension within the band and as name one of C, C or C in the options set by C. Only one of these three may be specified for any given schedule dimension within a band node. If none of these is specified, then the default is used. The meaning of the options is as follows. =over =item C When this option is specified, the AST generator will make sure that a given domains space only appears in a single loop at the specified level. For example, for the schedule tree domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }" child: schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]" options: "{ atomic[x] }" the following AST will be generated for (int c0 = 0; c0 <= 10; c0 += 1) { if (c0 >= 1) b(c0 - 1); if (c0 <= 9) a(c0); } On the other hand, for the schedule tree domain: "{ a[i] : 0 <= i < 10; b[i] : 0 <= i < 10 }" child: schedule: "[{ a[i] -> [i]; b[i] -> [i+1] }]" options: "{ separate[x] }" the following AST will be generated { a(0); for (int c0 = 1; c0 <= 9; c0 += 1) { b(c0 - 1); a(c0); } b(9); } If neither C nor C is specified, then the AST generator may produce either of these two results or some intermediate form. =item C When this option is specified, the AST generator will split the domain of the specified schedule dimension into pieces with a fixed set of statements for which instances need to be executed by the iterations in the schedule domain part. This option tends to avoid the generation of guards inside the corresponding loops. See also the C option. =item C When this option is specified, the AST generator will I unroll the corresponding schedule dimension. It is the responsibility of the user to ensure that such unrolling is possible. To obtain a partial unrolling, the user should apply an additional strip-mining to the schedule and fully unroll the inner schedule dimension. =back The C option is a bit more involved. It allows the user to isolate a range of schedule dimension values from smaller and greater values. Additionally, the user may specify a different atomic/separate/unroll choice for the isolated part and the remaining parts. The typical use case of the C option is to isolate full tiles from partial tiles. The part that needs to be isolated may depend on outer schedule dimensions. The option therefore needs to be able to reference those outer schedule dimensions. In particular, the space of the C option is that of a wrapped map with as domain the flat product of all outer band nodes and as range the space of the current band node. The atomic/separate/unroll choice for the isolated part is determined by an option that lives in an unnamed wrapped space with as domain a zero-dimensional C space and as range the regular C, C or C space. This option may also be set directly using C. The atomic/separate/unroll choice for the remaining part is determined by the regular C, C or C option. The use of the C option causes any tree containing the node to be considered anchored. As an example, consider the isolation of full tiles from partial tiles in a tiling of a triangular domain. The original schedule is as follows. domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }" child: schedule: "[{ A[i,j] -> [floor(i/10)] }, \ { A[i,j] -> [floor(j/10)] }, \ { A[i,j] -> [i] }, { A[i,j] -> [j] }]" The output is for (int c0 = 0; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); Isolating the full tiles, we have the following input domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }" child: schedule: "[{ A[i,j] -> [floor(i/10)] }, \ { A[i,j] -> [floor(j/10)] }, \ { A[i,j] -> [i] }, { A[i,j] -> [j] }]" options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \ 10a+9+10b+9 <= 100 }" and output { for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) for (int c3 = 10 * c1; c3 <= 10 * c1 + 9; c3 += 1) A(c2, c3); for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } We may then additionally unroll the innermost loop of the isolated part domain: "{ A[i,j] : 0 <= i,j and i + j <= 100 }" child: schedule: "[{ A[i,j] -> [floor(i/10)] }, \ { A[i,j] -> [floor(j/10)] }, \ { A[i,j] -> [i] }, { A[i,j] -> [j] }]" options: "{ isolate[[] -> [a,b,c,d]] : 0 <= 10a,10b and \ 10a+9+10b+9 <= 100; [isolate[] -> unroll[3]] }" to obtain { for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) { A(c2, 10 * c1); A(c2, 10 * c1 + 1); A(c2, 10 * c1 + 2); A(c2, 10 * c1 + 3); A(c2, 10 * c1 + 4); A(c2, 10 * c1 + 5); A(c2, 10 * c1 + 6); A(c2, 10 * c1 + 7); A(c2, 10 * c1 + 8); A(c2, 10 * c1 + 9); } for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(10 * c0 + 9, -10 * c1 + 100); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } =head3 AST Generation Options (Schedule Map) In case of AST construction using C, the options that control how an AST is created from the individual schedule dimensions are stored in the C. They can be set using the following function. #include __isl_give isl_ast_build * isl_ast_build_set_options( __isl_take isl_ast_build *control, __isl_take isl_union_map *options); The options are encoded in an C. The domain of this union relation refers to the schedule domain, i.e., the range of the schedule passed to C. In the case of nested AST generation (see L), the domain of C should refer to the extra piece of the schedule. That is, it should be equal to the range of the wrapped relation in the range of the schedule. The range of the options can consist of elements in one or more spaces, the names of which determine the effect of the option. The values of the range typically also refer to the schedule dimension to which the option applies. In case of nested AST generation (see L), these values refer to the position of the schedule dimension within the innermost AST generation. The constraints on the domain elements of the option should only refer to this dimension and earlier dimensions. We consider the following spaces. =over =item C B This space is a wrapped relation between two one dimensional spaces. The input space represents the schedule dimension to which the option applies and the output space represents the separation class. While constructing a loop corresponding to the specified schedule dimension(s), the AST generator will try to generate separate loops for domain elements that are assigned different classes. If only some of the elements are assigned a class, then those elements that are not assigned any class will be treated as belonging to a class that is separate from the explicitly assigned classes. The typical use case for this option is to separate full tiles from partial tiles. The other options, described below, are applied after the separation into classes. As an example, consider the separation into full and partial tiles of a tiling of a triangular domain. Take, for example, the domain { A[i,j] : 0 <= i,j and i + j <= 100 } and a tiling into tiles of 10 by 10. The input to the AST generator is then the schedule { A[i,j] -> [([i/10]),[j/10],i,j] : 0 <= i,j and i + j <= 100 } Without any options, the following AST is generated for (int c0 = 0; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); Separation into full and partial tiles can be obtained by assigning a class, say C<0>, to the full tiles. The full tiles are represented by those values of the first and second schedule dimensions for which there are values of the third and fourth dimensions to cover an entire tile. That is, we need to specify the following option { [a,b,c,d] -> separation_class[[0]->[0]] : exists b': 0 <= 10a,10b' and 10a+9+10b'+9 <= 100; [a,b,c,d] -> separation_class[[1]->[0]] : 0 <= 10a,10b and 10a+9+10b+9 <= 100 } which simplifies to { [a, b, c, d] -> separation_class[[1] -> [0]] : a >= 0 and b >= 0 and b <= 8 - a; [a, b, c, d] -> separation_class[[0] -> [0]] : a >= 0 and a <= 8 } With this option, the generated AST is as follows { for (int c0 = 0; c0 <= 8; c0 += 1) { for (int c1 = 0; c1 <= -c0 + 8; c1 += 1) for (int c2 = 10 * c0; c2 <= 10 * c0 + 9; c2 += 1) for (int c3 = 10 * c1; c3 <= 10 * c1 + 9; c3 += 1) A(c2, c3); for (int c1 = -c0 + 9; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(-c2 + 100, 10 * c1 + 9); c3 += 1) A(c2, c3); } for (int c0 = 9; c0 <= 10; c0 += 1) for (int c1 = 0; c1 <= -c0 + 10; c1 += 1) for (int c2 = 10 * c0; c2 <= min(-10 * c1 + 100, 10 * c0 + 9); c2 += 1) for (int c3 = 10 * c1; c3 <= min(10 * c1 + 9, -c2 + 100); c3 += 1) A(c2, c3); } =item C This is a single-dimensional space representing the schedule dimension(s) to which ``separation'' should be applied. Separation tries to split a loop into several pieces if this can avoid the generation of guards inside the loop. See also the C option. =item C This is a single-dimensional space representing the schedule dimension(s) for which the domains should be considered ``atomic''. That is, the AST generator will make sure that any given domain space will only appear in a single loop at the specified level. Consider the following schedule { a[i] -> [i] : 0 <= i < 10; b[i] -> [i+1] : 0 <= i < 10 } If the following option is specified { [i] -> separate[x] } then the following AST will be generated { a(0); for (int c0 = 1; c0 <= 9; c0 += 1) { a(c0); b(c0 - 1); } b(9); } If, on the other hand, the following option is specified { [i] -> atomic[x] } then the following AST will be generated for (int c0 = 0; c0 <= 10; c0 += 1) { if (c0 <= 9) a(c0); if (c0 >= 1) b(c0 - 1); } If neither C nor C is specified, then the AST generator may produce either of these two results or some intermediate form. =item C This is a single-dimensional space representing the schedule dimension(s) that should be I unrolled. To obtain a partial unrolling, the user should apply an additional strip-mining to the schedule and fully unroll the inner loop. =back =head3 Fine-grained Control over AST Generation Besides specifying the constraints on the parameters, an C object can be used to control various aspects of the AST generation process. In case of AST construction using C, the most prominent way of control is through ``options'', as explained above. Additional control is available through the following functions. #include __isl_give isl_ast_build * isl_ast_build_set_iterators( __isl_take isl_ast_build *control, __isl_take isl_id_list *iterators); The function C allows the user to specify a list of iterator Cs to be used as iterators. If the input schedule is injective, then the number of elements in this list should be as large as the dimension of the schedule space, but no direct correspondence should be assumed between dimensions and elements. If the input schedule is not injective, then an additional number of Cs equal to the largest dimension of the input domains may be required. If the number of provided Cs is insufficient, then additional names are automatically generated. #include __isl_give isl_ast_build * isl_ast_build_set_create_leaf( __isl_take isl_ast_build *control, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_build *build, void *user), void *user); The C function allows for the specification of a callback that should be called whenever the AST generator arrives at an element of the schedule domain. The callback should return an AST node that should be inserted at the corresponding position of the AST. The default action (when the callback is not set) is to continue generating parts of the AST to scan all the domain elements associated to the schedule domain element and to insert user nodes, ``calling'' the domain element, for each of them. The C argument contains the current state of the C. To ease nested AST generation (see L), all control information that is specific to the current AST generation such as the options and the callbacks has been removed from this C. The callback would typically return the result of a nested AST generation or a user defined node created using the following function. #include __isl_give isl_ast_node *isl_ast_node_alloc_user( __isl_take isl_ast_expr *expr); #include __isl_give isl_ast_build * isl_ast_build_set_at_each_domain( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_before_each_for( __isl_take isl_ast_build *build, __isl_give isl_id *(*fn)( __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_after_each_for( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_before_each_mark( __isl_take isl_ast_build *build, isl_stat (*fn)(__isl_keep isl_id *mark, __isl_keep isl_ast_build *build, void *user), void *user); __isl_give isl_ast_build * isl_ast_build_set_after_each_mark( __isl_take isl_ast_build *build, __isl_give isl_ast_node *(*fn)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user), void *user); The callback set by C will be called for each domain AST node. The callbacks set by C and C will be called for each for AST node. The first will be called in depth-first pre-order, while the second will be called in depth-first post-order. Since C is called before the for node is actually constructed, it is only passed an C. The returned C will be added as an annotation (using C) to the constructed for node. In particular, if the user has also specified an C callback, then the annotation can be retrieved from the node passed to that callback using C. The callbacks set by C and C will be called for each mark AST node that is created, i.e., for each mark schedule node in the input schedule tree. The first will be called in depth-first pre-order, while the second will be called in depth-first post-order. Since the callback set by C is called before the mark AST node is actually constructed, it is passed the identifier of the mark node. All callbacks should C (or -1) on failure. The given C can be used to create new C objects using C or C. =head3 Nested AST Generation C allows the user to create an AST within the context of another AST. These nested ASTs are created using the same C function that is used to create the outer AST. The C argument should be an C passed to a callback set by C. The space of the range of the C argument should refer to this build. In particular, the space should be a wrapped relation and the domain of this wrapped relation should be the same as that of the range of the schedule returned by C below. In practice, the new schedule is typically created by calling C on the old schedule and some extra piece of the schedule. The space of the schedule domain is also available from the C. #include __isl_give isl_union_map *isl_ast_build_get_schedule( __isl_keep isl_ast_build *build); __isl_give isl_space *isl_ast_build_get_schedule_space( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_restrict( __isl_take isl_ast_build *build, __isl_take isl_set *set); The C function returns a (partial) schedule for the domains elements for which part of the AST still needs to be generated in the current build. In particular, the domain elements are mapped to those iterations of the loops enclosing the current point of the AST generation inside which the domain elements are executed. No direct correspondence between the input schedule and this schedule should be assumed. The space obtained from C can be used to create a set for C to intersect with the current build. In particular, the set passed to C can have additional parameters. The ids of the set dimensions in the space returned by C correspond to the iterators of the already generated loops. The user should not rely on the ids of the output dimensions of the relations in the union relation returned by C having any particular value. =head1 Applications Although C is mainly meant to be used as a library, it also contains some basic applications that use some of the functionality of C. The input may be specified in either the L or the L. =head2 C C takes a polyhedron as input and prints an integer element of the polyhedron, if there is any. The first column in the output is the denominator and is always equal to 1. If the polyhedron contains no integer points, then a vector of length zero is printed. =head2 C C takes the same input as the C program from the C distribution, i.e., a set of constraints on the parameters, a line containing only -1 and finally a set of constraints on a parametric polyhedron. The coefficients of the parameters appear in the last columns (but before the final constant column). The output is the lexicographic minimum of the parametric polyhedron. As C currently does not have its own output format, the output is just a dump of the internal state. =head2 C C computes the minimum of some linear or affine objective function over the integer points in a polyhedron. If an affine objective function is given, then the constant should appear in the last column. =head2 C Given a polytope, C prints all integer points in the polytope. =head2 C Given a schedule, a context set and an options relation, C prints out an AST that scans the domain elements of the schedule in the order of their image(s) taking into account the constraints in the context set. isl-0.16.1/doc/Makefile.in0000664000175000017500000003305512645755062012145 00000000000000# Makefile.in generated by automake 1.14.1 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ subdir = doc DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/m4/ax_c___attribute__.m4 \ $(top_srcdir)/m4/ax_cc_maxopt.m4 \ $(top_srcdir)/m4/ax_check_compiler_flags.m4 \ $(top_srcdir)/m4/ax_compiler_vendor.m4 \ $(top_srcdir)/m4/ax_create_pkgconfig_info.m4 \ $(top_srcdir)/m4/ax_create_stdint_h.m4 \ $(top_srcdir)/m4/ax_detect_git_head.m4 \ $(top_srcdir)/m4/ax_detect_gmp.m4 \ $(top_srcdir)/m4/ax_detect_imath.m4 \ $(top_srcdir)/m4/ax_gcc_archflag.m4 \ $(top_srcdir)/m4/ax_gcc_warn_unused_result.m4 \ $(top_srcdir)/m4/ax_gcc_x86_cpuid.m4 \ $(top_srcdir)/m4/ax_set_warning_flags.m4 \ $(top_srcdir)/m4/ax_submodule.m4 $(top_srcdir)/m4/libtool.m4 \ $(top_srcdir)/m4/ltoptions.m4 $(top_srcdir)/m4/ltsugar.m4 \ $(top_srcdir)/m4/ltversion.m4 $(top_srcdir)/m4/lt~obsolete.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) mkinstalldirs = $(install_sh) -d CONFIG_HEADER = $(top_builddir)/isl_config.h CONFIG_CLEAN_FILES = CONFIG_CLEAN_VPATH_FILES = AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = SOURCES = DIST_SOURCES = am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CLANG_CXXFLAGS = @CLANG_CXXFLAGS@ CLANG_LDFLAGS = @CLANG_LDFLAGS@ CLANG_LIBS = @CLANG_LIBS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CXX = @CXX@ CXXCPP = @CXXCPP@ CXXDEPMODE = @CXXDEPMODE@ CXXFLAGS = @CXXFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GIT_HEAD = @GIT_HEAD@ GIT_HEAD_ID = @GIT_HEAD_ID@ GIT_HEAD_VERSION = @GIT_HEAD_VERSION@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIB_CLANG_EDIT = @LIB_CLANG_EDIT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ MP_CPPFLAGS = @MP_CPPFLAGS@ MP_LDFLAGS = @MP_LDFLAGS@ MP_LIBS = @MP_LIBS@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PDFLATEX = @PDFLATEX@ PERL = @PERL@ POD2HTML = @POD2HTML@ PRTDIAG = @PRTDIAG@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ WARNING_FLAGS = @WARNING_FLAGS@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_CXX = @ac_ct_CXX@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ llvm_config_found = @llvm_config_found@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ pkgconfig_libdir = @pkgconfig_libdir@ pkgconfig_libfile = @pkgconfig_libfile@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ versioninfo = @versioninfo@ CLEANFILES = \ manual.toc \ manual.bbl \ version.tex \ user.tex \ manual.pdf \ manual.aux \ manual.out \ manual.blg \ manual.log \ manual.brf all: all-am .SUFFIXES: $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ ( cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh ) \ && { if test -f $@; then exit 0; else break; fi; }; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign doc/Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign doc/Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $(subdir)/$@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(top_srcdir)/configure: $(am__configure_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(ACLOCAL_M4): $(am__aclocal_m4_deps) cd $(top_builddir) && $(MAKE) $(AM_MAKEFLAGS) am--refresh $(am__aclocal_m4_deps): mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs tags TAGS: ctags CTAGS: cscope cscopelist: distdir: $(DISTFILES) @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done check-am: all-am check: check-am all-am: Makefile installdirs: install: install-am install-exec: install-exec-am install-data: install-data-am uninstall: uninstall-am install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-am install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." clean: clean-am clean-am: clean-generic clean-libtool mostlyclean-am distclean: distclean-am -rm -f Makefile distclean-am: clean-am distclean-generic dvi: dvi-am dvi-am: html: html-am html-am: info: info-am info-am: install-data-am: install-dvi: install-dvi-am install-dvi-am: install-exec-am: install-html: install-html-am install-html-am: install-info: install-info-am install-info-am: install-man: install-pdf: install-pdf-am install-pdf-am: install-ps: install-ps-am install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-am -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-am mostlyclean-am: mostlyclean-generic mostlyclean-libtool pdf: pdf-am pdf-am: ps: ps-am ps-am: uninstall-am: .MAKE: install-am install-strip .PHONY: all all-am check check-am clean clean-generic clean-libtool \ cscopelist-am ctags-am distclean distclean-generic \ distclean-libtool distdir dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am install-man \ install-pdf install-pdf-am install-ps install-ps-am \ install-strip installcheck installcheck-am installdirs \ maintainer-clean maintainer-clean-generic mostlyclean \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ tags-am uninstall uninstall-am @GENERATE_DOC_TRUE@export TEXINPUTS := $(srcdir):$(TEXINPUTS) @GENERATE_DOC_TRUE@export BIBINPUTS := $(srcdir):$(BIBINPUTS) @GENERATE_DOC_TRUE@export BSTINPUTS := $(srcdir):$(BSTINPUTS) @GENERATE_DOC_TRUE@user.tex: user.pod @GENERATE_DOC_TRUE@ $(PERL) $(srcdir)/mypod2latex $< $@ @GENERATE_DOC_TRUE@manual.pdf: manual.tex user.tex $(srcdir)/implementation.tex @GENERATE_DOC_TRUE@ (cd ..; echo "@GIT_HEAD_VERSION@") > version.tex @GENERATE_DOC_TRUE@ $(PDFLATEX) $< @GENERATE_DOC_TRUE@ bibtex manual @GENERATE_DOC_TRUE@ $(PDFLATEX) $< @GENERATE_DOC_TRUE@ $(PDFLATEX) $< @GENERATE_DOC_TRUE@user.html: user.pod @GENERATE_DOC_TRUE@ (cd ..; echo "@GIT_HEAD_VERSION@") > version @GENERATE_DOC_TRUE@ $(POD2HTML) --infile=$< --outfile=$@ --title="Integer Set Library: Manual [version `cat version`]" # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: isl-0.16.1/doc/chicago.sty0000664000175000017500000002714012645737060012232 00000000000000% -*- LaTeX -*- %%% ==================================================================== %%% @LaTeX-style-file{ %%% author = "Glenn Paulley", %%% version = "4", %%% date = "31 August 1992", %%% time = "09:42:44 199", %%% filename = "chicago.sty", %%% address = "Data Structuring Group %%% Department of Computer Science %%% University of Waterloo %%% Waterloo, Ontario, Canada %%% N2L 3G1", %%% telephone = "(519) 885-1211", %%% FAX = "(519) 885-1208", %%% checksum = "44674 264 1050 10394", %%% email = "gnpaulle@bluebox.uwaterloo.ca", %%% codetable = "ISO/ASCII", %%% keywords = "", %%% supported = "yes", %%% abstract = "Contains the LaTeX style command definitions %%% for the Chicago BibTeX styles chicago.bst and %%% chicagoa.bst. For details, see below.", %%% docstring = "The checksum field above contains a CRC-16 %%% checksum as the first value, followed by the %%% equivalent of the standard UNIX wc (word %%% count) utility output of lines, words, and %%% characters. This is produced by Robert %%% Solovay's checksum utility.", %%% } %%% ==================================================================== % % chicago.sty: Style file for use with bibtex style chicago.bst, for % bibliographies formatted according to the 13th Edition of the Chicago % Manual of Style. % % 'newapa.bst' was made from 'plain.bst', 'named.bst', and 'apalike.bst', % with lots of tweaking to make it look like APA style, along with tips % from Young Ryu and Brian Reiser's modifications of 'apalike.bst'. % newapa.sty formed the basis of this style, chicago.sty. Author-date % references in newapa.bst formed the basis for chicago.bst. Chicagoa.bst % supports annotations. % % Version 4 (August, 1992): % - fixed chicago.bst and chicagoa.bst to handle long author lists in % sorting % - fixed chicago.bst and chicagoa.bst so that missing page numbers in % ``article'' entries are handled correctly % - modified chicago.sty to format entries with 2nd and subsequent lines % indented. % % Citation format: (author-last-name year) % (author-last-name and author-last-name year) % (author-last-name et al. year) % (author-last-name) % author-last-name % author-last-name (year) % (author-last-name and author-last-name) % (author-last-name et al.) % (year) or (year,year) % year or year,year % % Reference list ordering: alphabetical by author or whatever passes % for author in the absence of one. % % This BibTeX style has support for abbreviated author lists and for % year-only citations. This is done by having the citations % actually look like % % \citeauthoryear{full-author-info}{abbrev-author-info}{year} % % The LaTeX style has to have the following (or similar) % % \let\@internalcite\cite % \def\fullcite{\def\citeauthoryear##1##2##3{##1, ##3}\@internalcite} % \def\fullciteA{\def\citeauthoryear##1##2##3{##1}\@internalcite} % \def\shortcite{\def\citeauthoryear##1##2##3{##2, ##3}\@internalcite} % \def\shortciteA{\def\citeauthoryear##1##2##3{##2}\@internalcite} % \def\citeyear{\def\citeauthoryear##1##2##3{##3}\@internalcite} % % ------------------------------------------------------------------------- % This file implements citations for the ``chicago'' bibliography style. % Place it in a file called chicago.sty in the TeX search path. %(Placing it in the same directory as the LaTeX document should also work.) % % This file is a modification of the ``newapa'' LaTeX style, % originally adapted by Steven Spencer from the ``apalike'' LaTeX style. % It was originally modified by Stephen N. Spencer, with further % modifications by Young U. Ryu. % % The ``chicago'' BibTeX bibliography style creates citations with labels: % \citeauthoryear{author-info}{abbrev. author-info}{year} % % These labels are processed by the following LaTeX commands: % % \cite{key} % which produces citations with full author list and year. % eg. (Brown 1978; Jarke, Turner, Stohl, et al. 1985) % \citeNP{key} % which produces citations with full author list and year, but without % enclosing parentheses: % eg. Brown 1978; Jarke, Turner and Stohl 1985 % \citeA{key} % which produces citations with only the full author list. % eg. (Brown; Jarke, Turner and Stohl) % \citeANP{key} % which produces citations with only the full author list, without % parentheses eg. Brown; Jarke, Turner and Stohl % \citeN{key} % which produces citations with the full author list and year, but % can be used as nouns in a sentence; no parentheses appear around % the author names, but only around the year. % eg. Shneiderman (1978) states that...... % \citeN should only be used for a single citation. % \shortcite{key} % which produces citations with abbreviated author list and year. % \shortciteNP{key} % which produces citations with abbreviated author list and year. % \shortciteA{key} % which produces only the abbreviated author list. % \shortciteANP{key} % which produces only the abbreviated author list. % \shortciteN{key} % which produces the abbreviated author list and year, with only the % year in parentheses. Use with only one citation. % \citeyear{key} % which produces the year information only, within parentheses. % \citeyearNP{key} % which produces the year information only. % % Abbreviated author lists use the ``et al.'' construct. % % `NP' means `no parentheses'. % % This LaTeX style file must be used with the ``chicago'' or ``chicagoa'' % (annotated chicago style) BibTeX styles. % \typeout{Using Chicago Manual of Style bibliography: 31 August 1992} % % ------------------------------------------------------------------------- % % Citation macros. % \def\chicagoand/{ and } \def\chicagoetal/{ et~al.} % \let\@internalcite\cite % \def\cite{\def\@citeseppen{-1000}% \def\@cite##1##2{(##1\if@tempswa , ##2\fi)}% \def\citeauthortitleyear##1##2##3##4{##1\ ##4}\@internalcite} \def\citeNP{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2\fi}% \def\citeauthortitleyear##1##2##3##4{##1\ ##4}\@internalcite} \def\citetitleN{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2)\else{)}\fi}% \def\citeauthortitleyear##1##2##3##4{##3\ (##1; ##4}\@citedata} \def\citeN{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2)\else{)}\fi}% \def\citeauthortitleyear##1##2##3##4{##1\ (##4}\@citedata} \def\citeA{\def\@citeseppen{-1000}% \def\@cite##1##2{(##1\if@tempswa , ##2\fi)}% \def\citeauthortitleyear##1##2##3##4{##1}\@internalcite} \def\citeANP{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2\fi}% \def\citeauthortitleyear##1##2##3##4{##1}\@internalcite} % \def\shortcite{\def\@citeseppen{-1000}% \def\@cite##1##2{(##1\if@tempswa , ##2\fi)}% \def\citeauthortitleyear##1##2##3##4{##2\ ##4}\@internalcite} \def\shortciteNP{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2\fi}% \def\citeauthortitleyear##1##2##3##4{##2\ ##4}\@internalcite} \def\shortciteN{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2)\else{)}\fi}% \def\citeauthortitleyear##1##2##3##4{##2\ (##4}\@citedata} \def\shortciteA{\def\@citeseppen{-1000}% \def\@cite##1##2{(##1\if@tempswa , ##2\fi)}% \def\citeauthortitleyear##1##2##3##4{##2}\@internalcite} \def\shortciteANP{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2\fi}% \def\citeauthortitleyear##1##2##3##4{##2}\@internalcite} % \def\citeyear{\def\@citeseppen{-1000}% \def\@cite##1##2{(##1\if@tempswa , ##2\fi)}% \def\citeauthortitleyear##1##2##3##4{##4}\@citedata} \def\citeyearNP{\def\@citeseppen{-1000}% \def\@cite##1##2{##1\if@tempswa , ##2\fi}% \def\citeauthortitleyear##1##2##3##4{##4}\@citedata} % % \@citedata and \@citedatax: % % Place commas in-between citations in the same \citeyear, \citeyearNP, % \citeN, or \shortciteN command. % Use something like \citeN{ref1,ref2,ref3} and \citeN{ref4} for a list. % \def\@citedata{% \@ifnextchar [{\@tempswatrue\@citedatax}% {\@tempswafalse\@citedatax[]}% } \def\@citedatax[#1]#2{% \if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi% \def\@citea{}\@cite{\@for\@citeb:=#2\do% {\@citea\def\@citea{), }\@ifundefined% by Young {b@\@citeb}{{\bf ?}% \@warning{Citation `\@citeb' on page \thepage \space undefined}}% {\csname b@\@citeb\endcsname}}}{#1}}% \@ifpackageloaded{hyperref}{% \let\BRorg@citedatax\@citedatax \def\@citedatax[#1]#2{% \BRorg@citedatax[#1]{#2}% \Hy@backout{#2}% }% }{} \@ifpackageloaded{hyperref}{% \def\hyperemph#1{{\em\hyperpage{#1}}}% \def\bold#1{{\bf\hyperpage{#1}}}% }{% \def\hyperemph#1{{\em #1}}% \def\bold#1{{\bf #1}}% } \def\BR@@lbibitem[#1]#2#3\par{% \BRorg@bibitem[#1]{#2}#3\hfill\penalty100\hbox{} \newblock \backref\hfill[{\csname br@#2\endcsname}% ]\parskip=-10pt\penalty-10000\hbox{}\nobreak\par }% \def\BR@@bibitem#1#2\par{% \BRorg@bibitem{#1}#2 \newblock \backref\penalty-100\hbox{}\nobreak\hfill[\hbox{\csname br@#2\endcsname}% ]\par } \def\thepageorcolor{\thepage} \def\Hy@backout#1{% \@bsphack \ifx\@empty\@currentlabel \protected@write\@auxout{}{% \string\@writefile{brf}{% \string\backcite{#1}{{\thepageorcolor}{(document)}{Doc-Start}}% }% }% \else \protected@write\@auxout{}{% \string\@writefile{brf}{% \string\backcite{#1}{{\thepageorcolor}{\@currentlabel}{\@currentHref}}% }% }% \fi \@esphack } % don't box citations, separate with ; and a space % also, make the penalty between citations negative: a good place to break. % \def\@citex[#1]#2{% \if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi% \def\@citea{}\@cite{\@for\@citeb:=#2\do% {\@citea\def\@citea{; }\@ifundefined% by Young {b@\@citeb}{{\bf ?}% \@warning{Citation `\@citeb' on page \thepage \space undefined}}% {\csname b@\@citeb\endcsname}}}{#1}}% % (from apalike.sty) % No labels in the bibliography. % \def\@biblabel#1{} % (from apalike.sty) % Set length of hanging indentation for bibliography entries. % \newlength{\bibhang} \setlength{\bibhang}{2em} % Indent second and subsequent lines of bibliographic entries. Stolen % from openbib.sty: \newblock is set to {}. \newdimen\bibindent \bibindent=1.5em \@ifundefined{refname}% {\@ifundefined{chapter}% {\newcommand{\refname}{References}}% {\newcommand{\refname}{Bibliography}}% }% {}% \@ifundefined{chapter}% {\def\thebibliography#1{\section*{\refname\@mkboth {\uppercase{\refname}}{\uppercase{\refname}}} \addcontentsline{toc}{section}{References} \list {[\arabic{enumi}]}{\settowidth\labelwidth{[#1]} \leftmargin\labelwidth \advance\leftmargin\labelsep \advance\leftmargin\bibindent \itemindent -\bibindent \listparindent \itemindent \parsep \z@ \usecounter{enumi}} \def\newblock{} \sloppy \sfcode`\.=1000\relax}} {\def\thebibliography#1{\chapter*{\refname\@mkboth {\refname}{\refname}} \addcontentsline{toc}{chapter}{References} \list {[\arabic{enumi}]}{\settowidth\labelwidth{[#1]} \leftmargin\labelwidth \advance\leftmargin\labelsep \advance\leftmargin\bibindent \itemindent -\bibindent \listparindent \itemindent \parsep \z@ \usecounter{enumi}} \def\newblock{} \sloppy \sfcode`\.=1000\relax}} isl-0.16.1/doc/SubmittingPatches0000664000175000017500000000417412645737060013456 00000000000000[Mostly copied from git's SubmittingPatches] Commits: - make commits of logical units - check for unnecessary whitespace with "git diff --check" before committing - do not check in commented out code or unneeded files - the first line of the commit message should be a short description and should skip the full stop - the body should provide a meaningful commit message, which includes motivation for the change, and contrasts its implementation with previous behaviour - if you want your work included in isl.git, add a "Signed-off-by: Your Name " line to the commit message (or just use the option "-s" when committing) to confirm that you agree to the Developer's Certificate of Origin - make sure that you have tests for the bug you are fixing - make sure that the test suite passes after your commit Patch: - use "git format-patch -M" to create the patch - do not PGP sign your patch - send a single patch per mail, e.g., using git-send-email(1) - do not attach your patch, but read in the mail body, unless you cannot teach your mailer to leave the formatting of the patch alone. - be careful doing cut & paste into your mailer, not to corrupt whitespaces. - provide additional information (which is unsuitable for the commit message) between the "---" and the diffstat - if you change, add, or remove a command line option or make some other user interface change, the associated documentation should be updated as well. - if your name is not writable in ASCII, make sure that you send off a message in the correct encoding. - send the patch to the development mailing list (isl-development@googlegroups.com). If you use git-send-email(1), please test it first by sending email to yourself. Revisions: - add the revision number inside square brackets to the subject line (e.g., use --subject-prefix='PATCH v2' when creating the patch) - recall the major issues discovered during the previous review and explain how you addressed them or why you disagree. Do so either in a cover letter, between the "---" and the diffstat or in a separate message. isl-0.16.1/doc/isl.bib0000664000175000017500000002417312645737060011344 00000000000000@inproceedings{Kelly1996closure, author = {Wayne Kelly and William Pugh and Evan Rosser and Tatiana Shpeisman}, title = {Transitive Closure of Infinite Graphs and Its Applications}, pages = {126-140}, editor = {Chua-Huang Huang and P. Sadayappan and Utpal Banerjee and David Gelernter and Alexandru Nicolau and David A. Padua}, booktitle = {Languages and Compilers for Parallel Computing, 8th International Workshop, LCPC'95, Columbus, Ohio, USA, August 10-12, 1995, Proceedings}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, volume = {1033}, year = {1996}, isbn = {3-540-60765-X}, } @inproceedings{Beletska2009, author = {Beletska, Anna and Barthou, Denis and Bielecki, Wlodzimierz and Cohen, Albert}, title = {Computing the Transitive Closure of a Union of Affine Integer Tuple Relations}, booktitle = {COCOA '09: Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications}, year = {2009}, isbn = {978-3-642-02025-4}, pages = {98--109}, location = {Huangshan, China}, doi = {10.1007/978-3-642-02026-1_9}, publisher = {Springer-Verlag}, address = {Berlin, Heidelberg}, } @book{Schrijver1986, author = "Schrijver, Alexander", title = "Theory of Linear and Integer Programming", publisher = "John Wiley \& Sons", year = 1986 } @article{Tarjan1972, author = {Tarjan, Robert}, journal = {SIAM Journal on Computing}, number = {2}, pages = {146--160}, publisher = {SIAM}, title = {Depth-First Search and Linear Graph Algorithms}, volume = {1}, year = {1972} } @TechReport{ Omega_calc, author = "Wayne Kelly and Vadim Maslov and William Pugh and Evan Rosser and Tatiana Shpeisman and Dave Wonnacott", title = "The {Omega} Calculator and Library", month = nov, institution = "University of Maryland", year = 1996 } @TechReport{ Omega_lib, author = "Wayne Kelly and Vadim Maslov and William Pugh and Evan Rosser and Tatiana Shpeisman and Dave Wonnacott", title = "The {Omega} Library", month = nov, institution = "University of Maryland", year = 1996 } @unpublished{Verdoolaege2009isl, author = "Verdoolaege, Sven", title = "An integer set library for program analysis", note = "Advances in the Theory of Integer Linear Optimization and its Extensions,AMS 2009 Spring Western Section Meeting, San Francisco, California, 25-26 April 2009", month = Apr, year = "2009", url = "https://lirias.kuleuven.be/handle/123456789/228373", } @article{Barthou2000MSE, author = {Barthou, Denis and Cohen, Albert and Collard, Jean-Fran\c{c}ois}, title = {Maximal Static Expansion}, journal = {Int. J. Parallel Program.}, volume = {28}, number = {3}, year = {2000}, issn = {0885-7458}, pages = {213--243}, doi = {10.1023/A:1007500431910}, publisher = {Kluwer Academic Publishers}, address = {Norwell, MA, USA}, } @article{ Feautrier88parametric, author = "P. Feautrier", title = "Parametric Integer Programming", journal = "RAIRO Recherche Op\'erationnelle", volume = "22", number = "3", pages = "243--268", year = "1988", } @Article{ Fea91, author = {Feautrier, P.}, title = {Dataflow analysis of array and scalar references}, journal = {International Journal of Parallel Programming}, year = {1991}, OPTkey = {}, volume = {20}, number = {1}, OPTmonth = {}, pages = {23--53}, OPTnote = {}, OPTannote = {}, } @INPROCEEDINGS{BouletRe98, AUTHOR = {Pierre Boulet and Xavier Redon}, TITLE = {Communication Pre-evaluation in {HPF}}, BOOKTITLE = {EUROPAR'98}, PAGES = {263--272}, YEAR = 1998, VOLUME = 1470, series = {Lecture Notes in Computer Science}, PUBLISHER = {Springer-Verlag, Berlin}, ABSTRACT = { Parallel computers are difficult to program efficiently. We believe that a good way to help programmers write efficient programs is to provide them with tools that show them how their programs behave on a parallel computer. Data distribution is the major performance factor of data-parallel programs and so automatic data layout for HPF programs has been studied by many researchers recently. The communication volume induced by a data distribution is a good estimator of the efficiency of this data distribution. We present here a symbolic method to compute the communication volume generated by a given data distribution during the program writing phase (before compilation). We stay machine-independent to assure portability. Our goal is to help the programmer understand the data movements its program generates and thus find a good data distribution. Our method is based on parametric polyhedral computations. It can be applied to a large class of regular codes.}, } @INPROCEEDINGS {Verdoolaege2005experiences, AUTHOR = "Verdoolaege, Sven and Beyls, Kristof and Bruynooghe, Maurice and Catthoor, Francky", TITLE = {{E}xperiences with enumeration of integer projections of parametric polytopes}, BOOKTITLE = {{P}roceedings of 14th {I}nternational {C}onference on {C}ompiler {C}onstruction, {E}dinburgh, {S}cotland}, YEAR = {2005}, EDITOR = {Bodik, R.}, VOLUME = 3443, pages = "91-105", series = "Lecture Notes in Computer Science", publisher = "Springer-Verlag", address = "Berlin", doi = "10.1007/b107108", } @article{Detlefs2005simplify, author = {David Detlefs and Greg Nelson and James B. Saxe}, title = {Simplify: a theorem prover for program checking}, journal = {J. ACM}, volume = {52}, number = {3}, year = {2005}, issn = {0004-5411}, pages = {365--473}, doi = {10.1145/1066100.1066102}, publisher = {ACM}, address = {New York, NY, USA}, } @phdthesis{Nelson1980phd, author = {Charles Gregory Nelson}, title = {Techniques for program verification}, year = {1980}, order_no = {AAI8011683}, school = {Stanford University}, address = {Stanford, CA, USA}, } @article{Woods2003short, year = 2003, Journal = "J. Amer. Math. Soc.", volume = 16, pages = "957--979", month = apr, title = {{Short rational generating functions for lattice point problems}}, author = {Alexander Barvinok and Kevin Woods}, } @misc{barvinok-0.22, author = {Sven Verdoolaege}, title = {{\texttt{barvinok}}, version 0.22}, howpublished = {Available from \url{http://freshmeat.net/projects/barvinok/}}, year = 2006 } @inproceedings{DeLoera2004Three, title = "Three Kinds of Integer Programming Algorithms based on Barvinok's Rational Functions", author = "De Loera, J. A. and D. Haws and R. Hemmecke and P. Huggins and R. Yoshida", booktitle = "Integer Programming and Combinatorial Optimization: 10th International IPCO Conference", year = "2004", month = jan, series = "Lecture Notes in Computer Science", Volume = 3064, Pages = "244-255", } @TechReport{Feautrier02, author = {P. Feautrier and J. Collard and C. Bastoul}, title = {Solving systems of affine (in)equalities}, institution = {PRiSM, Versailles University}, year = 2002 } @article{ Feautrier92multi, author = "Paul Feautrier", title = "Some Efficient Solutions to the Affine Scheduling Problem. {P}art {II}. Multidimensional Time", journal = "International Journal of Parallel Programming", volume = "21", number = "6", pages = "389--420", year = "1992", month = dec, url = "citeseer.nj.nec.com/article/feautrier92some.html", } @misc{Bygde2010licentiate, author = {Stefan Bygde}, title = {Static {WCET} Analysis based on Abstract Interpretation and Counting of Elements}, month = {March}, year = {2010}, howpublished = {Licentiate thesis}, publisher = {M{\"{a}}lardalen University Press}, url = {http://www.mrtc.mdh.se/index.php?choice=publications&id=2144}, } @phdthesis{Meister2004PhD, title = {Stating and Manipulating Periodicity in the Polytope Model. Applications to Program Analysis and Optimization}, author= {Beno\^it Meister}, school = {Universit\'e Louis Pasteur}, month = Dec, year = {2004}, } @inproceedings{Meister2008, author = {Beno\^it Meister and Sven Verdoolaege}, title = {Polynomial Approximations in the Polytope Model: Bringing the Power of Quasi-Polynomials to the Masses}, year = {2008}, booktitle = {Digest of the 6th Workshop on Optimization for DSP and Embedded Systems, ODES-6}, editor = "Jagadeesh Sankaran and Vander Aa, Tom", month = apr, } @misc{Galea2009personal, author = "Fran\c{c}ois Galea", title = "personal communication", year = 2009, month = nov, } @misc{PPL, author = "R. Bagnara and P. M. Hill and E. Zaffanella", title = "The {Parma Polyhedra Library}", howpublished = {\url{http://www.cs.unipr.it/ppl/}}, } @TECHREPORT{Cook1991implementation, AUTHOR={William Cook and Thomas Rutherford and Herbert E. Scarf and David F. Shallcross}, TITLE={An Implementation of the Generalized Basis Reduction Algorithm for Integer Programming}, YEAR=1991, MONTH=Aug, INSTITUTION={Cowles Foundation, Yale University}, TYPE={Cowles Foundation Discussion Papers}, NOTE={available at \url{http://ideas.repec.org/p/cwl/cwldpp/990.html}}, NUMBER={990}, } @article{Karr1976affine, author={ Michael Karr}, title={ Affine Relationships Among Variables of a Program }, journal={Acta Informatica}, Volume={6}, pages={133-151}, year={1976}, publisher={Springer-Verlag}, ignore={ }, } @PhdThesis{Verhaegh1995PhD, title = "Multidimensional Periodic Scheduling", author = "Wim F. J. Verhaegh", school = "Technische Universiteit Eindhoven", year = 1995, } @INPROCEEDINGS{Seghir2006minimizing, AUTHOR = "Rachid Seghir and Vincent Loechner", TITLE = {Memory Optimization by Counting Points in Integer Transformations of Parametric Polytopes}, BOOKTITLE = {{P}roceedings of the {I}nternational {C}onference on {C}ompilers, {A}rchitectures, and {S}ynthesis for {E}mbedded Systems, CASES 2006, {S}eoul, {K}orea}, month = oct, YEAR = {2006} } @misc{DeSmet2010personal, author = "De Smet, Sven", title = "personal communication", year = 2010, month = apr, } isl-0.16.1/isl_range.h0000664000175000017500000000042412645737061011440 00000000000000#include int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound); __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( __isl_keep isl_qpolynomial *poly, int *signs, int sign); isl-0.16.1/isl_map_list.c0000664000175000017500000000065212645737061012152 00000000000000#include #include #undef EL #define EL isl_basic_map #include #undef BASE #define BASE basic_map #include #undef EL #define EL isl_map #include #undef BASE #define BASE map #include #undef EL #define EL isl_union_map #include #undef BASE #define BASE union_map #include isl-0.16.1/isl_bound.c0000664000175000017500000002124112645737060011445 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include #include #include #include #include /* Compute a bound on the polynomial defined over the parametric polytope * using either range propagation or bernstein expansion and * store the result in bound->pwf and bound->pwf_tight. * Since bernstein expansion requires bounded domains, we apply * range propagation on unbounded domains. Otherwise, we respect the choice * of the user. */ static int compressed_guarded_poly_bound(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user) { struct isl_bound *bound = (struct isl_bound *)user; int bounded; if (!bset || !poly) goto error; if (bset->ctx->opt->bound == ISL_BOUND_RANGE) return isl_qpolynomial_bound_on_domain_range(bset, poly, bound); bounded = isl_basic_set_is_bounded(bset); if (bounded < 0) goto error; if (bounded) return isl_qpolynomial_bound_on_domain_bernstein(bset, poly, bound); else return isl_qpolynomial_bound_on_domain_range(bset, poly, bound); error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return -1; } static int unwrapped_guarded_poly_bound(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user) { struct isl_bound *bound = (struct isl_bound *)user; isl_pw_qpolynomial_fold *top_pwf; isl_pw_qpolynomial_fold *top_pwf_tight; isl_space *dim; isl_morph *morph; int r; bset = isl_basic_set_detect_equalities(bset); if (!bset) goto error; if (bset->n_eq == 0) return compressed_guarded_poly_bound(bset, poly, user); morph = isl_basic_set_full_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); poly = isl_qpolynomial_morph_domain(poly, isl_morph_copy(morph)); dim = isl_morph_get_ran_space(morph); dim = isl_space_params(dim); top_pwf = bound->pwf; top_pwf_tight = bound->pwf_tight; dim = isl_space_from_domain(dim); dim = isl_space_add_dims(dim, isl_dim_out, 1); bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), bound->type); bound->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, bound->type); r = compressed_guarded_poly_bound(bset, poly, user); morph = isl_morph_dom_params(morph); morph = isl_morph_ran_params(morph); morph = isl_morph_inverse(morph); bound->pwf = isl_pw_qpolynomial_fold_morph_domain(bound->pwf, isl_morph_copy(morph)); bound->pwf_tight = isl_pw_qpolynomial_fold_morph_domain( bound->pwf_tight, morph); bound->pwf = isl_pw_qpolynomial_fold_fold(top_pwf, bound->pwf); bound->pwf_tight = isl_pw_qpolynomial_fold_fold(top_pwf_tight, bound->pwf_tight); return r; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return -1; } static int guarded_poly_bound(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, void *user) { struct isl_bound *bound = (struct isl_bound *)user; isl_space *dim; isl_pw_qpolynomial_fold *top_pwf; isl_pw_qpolynomial_fold *top_pwf_tight; int nparam; int n_in; int r; if (!bound->wrapping) return unwrapped_guarded_poly_bound(bset, poly, user); nparam = isl_space_dim(bound->dim, isl_dim_param); n_in = isl_space_dim(bound->dim, isl_dim_in); bset = isl_basic_set_move_dims(bset, isl_dim_param, nparam, isl_dim_set, 0, n_in); poly = isl_qpolynomial_move_dims(poly, isl_dim_param, nparam, isl_dim_in, 0, n_in); dim = isl_basic_set_get_space(bset); dim = isl_space_params(dim); top_pwf = bound->pwf; top_pwf_tight = bound->pwf_tight; dim = isl_space_from_domain(dim); dim = isl_space_add_dims(dim, isl_dim_out, 1); bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), bound->type); bound->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, bound->type); r = unwrapped_guarded_poly_bound(bset, poly, user); bound->pwf = isl_pw_qpolynomial_fold_reset_space(bound->pwf, isl_space_copy(bound->dim)); bound->pwf_tight = isl_pw_qpolynomial_fold_reset_space(bound->pwf_tight, isl_space_copy(bound->dim)); bound->pwf = isl_pw_qpolynomial_fold_fold(top_pwf, bound->pwf); bound->pwf_tight = isl_pw_qpolynomial_fold_fold(top_pwf_tight, bound->pwf_tight); return r; } static isl_stat guarded_qp(__isl_take isl_qpolynomial *qp, void *user) { struct isl_bound *bound = (struct isl_bound *)user; isl_stat r; r = isl_qpolynomial_as_polynomial_on_domain(qp, bound->bset, &guarded_poly_bound, user); isl_qpolynomial_free(qp); return r; } static isl_stat basic_guarded_fold(__isl_take isl_basic_set *bset, void *user) { struct isl_bound *bound = (struct isl_bound *)user; isl_stat r; bound->bset = bset; r = isl_qpolynomial_fold_foreach_qpolynomial(bound->fold, &guarded_qp, user); isl_basic_set_free(bset); return r; } static isl_stat guarded_fold(__isl_take isl_set *set, __isl_take isl_qpolynomial_fold *fold, void *user) { struct isl_bound *bound = (struct isl_bound *)user; if (!set || !fold) goto error; set = isl_set_make_disjoint(set); bound->fold = fold; bound->type = isl_qpolynomial_fold_get_type(fold); if (isl_set_foreach_basic_set(set, &basic_guarded_fold, bound) < 0) goto error; isl_set_free(set); isl_qpolynomial_fold_free(fold); return isl_stat_ok; error: isl_set_free(set); isl_qpolynomial_fold_free(fold); return isl_stat_error; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound( __isl_take isl_pw_qpolynomial_fold *pwf, int *tight) { unsigned nvar; struct isl_bound bound; int covers; if (!pwf) return NULL; bound.dim = isl_pw_qpolynomial_fold_get_domain_space(pwf); bound.wrapping = isl_space_is_wrapping(bound.dim); if (bound.wrapping) bound.dim = isl_space_unwrap(bound.dim); nvar = isl_space_dim(bound.dim, isl_dim_out); bound.dim = isl_space_domain(bound.dim); bound.dim = isl_space_from_domain(bound.dim); bound.dim = isl_space_add_dims(bound.dim, isl_dim_out, 1); if (nvar == 0) { if (tight) *tight = 1; return isl_pw_qpolynomial_fold_reset_space(pwf, bound.dim); } if (isl_pw_qpolynomial_fold_is_zero(pwf)) { enum isl_fold type = pwf->type; isl_pw_qpolynomial_fold_free(pwf); if (tight) *tight = 1; return isl_pw_qpolynomial_fold_zero(bound.dim, type); } bound.pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim), pwf->type); bound.pwf_tight = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim), pwf->type); bound.check_tight = !!tight; if (isl_pw_qpolynomial_fold_foreach_lifted_piece(pwf, guarded_fold, &bound) < 0) goto error; covers = isl_pw_qpolynomial_fold_covers(bound.pwf_tight, bound.pwf); if (covers < 0) goto error; if (tight) *tight = covers; isl_space_free(bound.dim); isl_pw_qpolynomial_fold_free(pwf); if (covers) { isl_pw_qpolynomial_fold_free(bound.pwf); return bound.pwf_tight; } bound.pwf = isl_pw_qpolynomial_fold_fold(bound.pwf, bound.pwf_tight); return bound.pwf; error: isl_pw_qpolynomial_fold_free(bound.pwf_tight); isl_pw_qpolynomial_fold_free(bound.pwf); isl_pw_qpolynomial_fold_free(pwf); isl_space_free(bound.dim); return NULL; } __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound( __isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type, int *tight) { isl_pw_qpolynomial_fold *pwf; pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp); return isl_pw_qpolynomial_fold_bound(pwf, tight); } struct isl_union_bound_data { enum isl_fold type; int tight; isl_union_pw_qpolynomial_fold *res; }; static isl_stat bound_pw(__isl_take isl_pw_qpolynomial *pwqp, void *user) { struct isl_union_bound_data *data = user; isl_pw_qpolynomial_fold *pwf; pwf = isl_pw_qpolynomial_bound(pwqp, data->type, data->tight ? &data->tight : NULL); data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold( data->res, pwf); return isl_stat_ok; } __isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound( __isl_take isl_union_pw_qpolynomial *upwqp, enum isl_fold type, int *tight) { isl_space *dim; struct isl_union_bound_data data = { type, 1, NULL }; if (!upwqp) return NULL; if (!tight) data.tight = 0; dim = isl_union_pw_qpolynomial_get_space(upwqp); data.res = isl_union_pw_qpolynomial_fold_zero(dim, type); if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &bound_pw, &data) < 0) goto error; isl_union_pw_qpolynomial_free(upwqp); if (tight) *tight = data.tight; return data.res; error: isl_union_pw_qpolynomial_free(upwqp); isl_union_pw_qpolynomial_fold_free(data.res); return NULL; } isl-0.16.1/isl_map_to_basic_set.c0000664000175000017500000000036212645737061013633 00000000000000#include #include #include #define KEY_BASE map #define KEY_EQUAL isl_map_plain_is_equal #define VAL_BASE basic_set #define VAL_EQUAL isl_basic_set_plain_is_equal #include isl-0.16.1/isl_ffs.c0000664000175000017500000000123112645737060011111 00000000000000#include #if !HAVE_DECL_FFS && !HAVE_DECL___BUILTIN_FFS && HAVE_DECL__BITSCANFORWARD #include /* Implementation of ffs in terms of _BitScanForward. * * ffs returns the position of the least significant bit set in i, * with the least significant bit is position 1, or 0 if not bits are set. * * _BitScanForward returns 1 if mask is non-zero and sets index * to the position of the least significant bit set in i, * with the least significant bit is position 0. */ int isl_ffs(int i) { unsigned char non_zero; unsigned long index, mask = i; non_zero = _BitScanForward(&index, mask); return non_zero ? 1 + index : 0; } #endif isl-0.16.1/isl_hmap_templ.c0000664000175000017500000002004412645737060012464 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #define xCAT(A,B) A ## B #define CAT(A,B) xCAT(A,B) #define KEY CAT(isl_,KEY_BASE) #define VAL CAT(isl_,VAL_BASE) #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xHMAP(KEY,VAL_BASE) KEY ## _to_ ## VAL_BASE #define yHMAP(KEY,VAL_BASE) xHMAP(KEY,VAL_BASE) #define HMAP yHMAP(KEY,VAL_BASE) #define HMAP_BASE yHMAP(KEY_BASE,VAL_BASE) #define xS(TYPE1,TYPE2,NAME) struct isl_ ## TYPE1 ## _ ## TYPE2 ## _ ## NAME #define yS(TYPE1,TYPE2,NAME) xS(TYPE1,TYPE2,NAME) #define S(NAME) yS(KEY_BASE,VAL_BASE,NAME) struct HMAP { int ref; isl_ctx *ctx; struct isl_hash_table table; }; S(pair) { KEY *key; VAL *val; }; __isl_give HMAP *FN(HMAP,alloc)(isl_ctx *ctx, int min_size) { HMAP *hmap; hmap = isl_calloc_type(ctx, HMAP); if (!hmap) return NULL; hmap->ctx = ctx; isl_ctx_ref(ctx); hmap->ref = 1; if (isl_hash_table_init(ctx, &hmap->table, min_size) < 0) return FN(HMAP,free)(hmap); return hmap; } static isl_stat free_pair(void **entry, void *user) { S(pair) *pair = *entry; FN(KEY,free)(pair->key); FN(VAL,free)(pair->val); free(pair); *entry = NULL; return isl_stat_ok; } __isl_null HMAP *FN(HMAP,free)(__isl_take HMAP *hmap) { if (!hmap) return NULL; if (--hmap->ref > 0) return NULL; isl_hash_table_foreach(hmap->ctx, &hmap->table, &free_pair, NULL); isl_hash_table_clear(&hmap->table); isl_ctx_deref(hmap->ctx); free(hmap); return NULL; } isl_ctx *FN(HMAP,get_ctx)(__isl_keep HMAP *hmap) { return hmap ? hmap->ctx : NULL; } /* Add a mapping from "key" to "val" to the associative array * pointed to by user. */ static isl_stat add_key_val(__isl_take KEY *key, __isl_take VAL *val, void *user) { HMAP **hmap = (HMAP **) user; *hmap = FN(HMAP,set)(*hmap, key, val); if (!*hmap) return isl_stat_error; return isl_stat_ok; } __isl_give HMAP *FN(HMAP,dup)(__isl_keep HMAP *hmap) { HMAP *dup; if (!hmap) return NULL; dup = FN(HMAP,alloc)(hmap->ctx, hmap->table.n); if (FN(HMAP,foreach)(hmap, &add_key_val, &dup) < 0) return FN(HMAP,free)(dup); return dup; } __isl_give HMAP *FN(HMAP,cow)(__isl_take HMAP *hmap) { if (!hmap) return NULL; if (hmap->ref == 1) return hmap; hmap->ref--; return FN(HMAP,dup)(hmap); } __isl_give HMAP *FN(HMAP,copy)(__isl_keep HMAP *hmap) { if (!hmap) return NULL; hmap->ref++; return hmap; } static int has_key(const void *entry, const void *c_key) { const S(pair) *pair = entry; KEY *key = (KEY *) c_key; return KEY_EQUAL(pair->key, key); } isl_bool FN(HMAP,has)(__isl_keep HMAP *hmap, __isl_keep KEY *key) { uint32_t hash; if (!hmap) return isl_bool_error; hash = FN(KEY,get_hash)(key); return !!isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 0); } __isl_give VAL *FN(HMAP,get)(__isl_keep HMAP *hmap, __isl_take KEY *key) { struct isl_hash_table_entry *entry; S(pair) *pair; uint32_t hash; if (!hmap || !key) goto error; hash = FN(KEY,get_hash)(key); entry = isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 0); FN(KEY,free)(key); if (!entry) return NULL; pair = entry->data; return FN(VAL,copy)(pair->val); error: FN(KEY,free)(key); return NULL; } /* Remove the mapping between "key" and its associated value (if any) * from "hmap". * * If "key" is not mapped to anything, then we leave "hmap" untouched" */ __isl_give HMAP *FN(HMAP,drop)(__isl_take HMAP *hmap, __isl_take KEY *key) { struct isl_hash_table_entry *entry; S(pair) *pair; uint32_t hash; if (!hmap || !key) goto error; hash = FN(KEY,get_hash)(key); entry = isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 0); if (!entry) { FN(KEY,free)(key); return hmap; } hmap = FN(HMAP,cow)(hmap); if (!hmap) goto error; entry = isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 0); FN(KEY,free)(key); if (!entry) isl_die(hmap->ctx, isl_error_internal, "missing entry" , goto error); pair = entry->data; isl_hash_table_remove(hmap->ctx, &hmap->table, entry); FN(KEY,free)(pair->key); FN(VAL,free)(pair->val); free(pair); return hmap; error: FN(KEY,free)(key); FN(HMAP,free)(hmap); return NULL; } /* Add a mapping from "key" to "val" to "hmap". * If "key" was already mapped to something else, then that mapping * is replaced. * If key happened to be mapped to "val" already, then we leave * "hmap" untouched. */ __isl_give HMAP *FN(HMAP,set)(__isl_take HMAP *hmap, __isl_take KEY *key, __isl_take VAL *val) { struct isl_hash_table_entry *entry; S(pair) *pair; uint32_t hash; if (!hmap || !key || !val) goto error; hash = FN(KEY,get_hash)(key); entry = isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 0); if (entry) { int equal; pair = entry->data; equal = VAL_EQUAL(pair->val, val); if (equal < 0) goto error; if (equal) { FN(KEY,free)(key); FN(VAL,free)(val); return hmap; } } hmap = FN(HMAP,cow)(hmap); if (!hmap) goto error; entry = isl_hash_table_find(hmap->ctx, &hmap->table, hash, &has_key, key, 1); if (!entry) goto error; if (entry->data) { pair = entry->data; FN(VAL,free)(pair->val); pair->val = val; FN(KEY,free)(key); return hmap; } pair = isl_alloc_type(hmap->ctx, S(pair)); if (!pair) goto error; entry->data = pair; pair->key = key; pair->val = val; return hmap; error: FN(KEY,free)(key); FN(VAL,free)(val); return FN(HMAP,free)(hmap); } /* Internal data structure for isl_map_to_basic_set_foreach. * * fn is the function that should be called on each entry. * user is the user-specified final argument to fn. */ S(foreach_data) { isl_stat (*fn)(__isl_take KEY *key, __isl_take VAL *val, void *user); void *user; }; /* Call data->fn on a copy of the key and value in *entry. */ static isl_stat call_on_copy(void **entry, void *user) { S(pair) *pair = *entry; S(foreach_data) *data = (S(foreach_data) *) user; return data->fn(FN(KEY,copy)(pair->key), FN(VAL,copy)(pair->val), data->user); } /* Call "fn" on each pair of key and value in "hmap". */ isl_stat FN(HMAP,foreach)(__isl_keep HMAP *hmap, isl_stat (*fn)(__isl_take KEY *key, __isl_take VAL *val, void *user), void *user) { S(foreach_data) data = { fn, user }; if (!hmap) return isl_stat_error; return isl_hash_table_foreach(hmap->ctx, &hmap->table, &call_on_copy, &data); } /* Internal data structure for print_pair. * * p is the printer on which the associative array is being printed. * first is set if the current key-value pair is the first to be printed. */ S(print_data) { isl_printer *p; int first; }; /* Print the given key-value pair to data->p. */ static isl_stat print_pair(__isl_take KEY *key, __isl_take VAL *val, void *user) { S(print_data) *data = user; if (!data->first) data->p = isl_printer_print_str(data->p, ", "); data->p = FN(isl_printer_print,KEY_BASE)(data->p, key); data->p = isl_printer_print_str(data->p, ": "); data->p = FN(isl_printer_print,VAL_BASE)(data->p, val); data->first = 0; FN(KEY,free)(key); FN(VAL,free)(val); return isl_stat_ok; } /* Print the associative array to "p". */ __isl_give isl_printer *FN(isl_printer_print,HMAP_BASE)( __isl_take isl_printer *p, __isl_keep HMAP *hmap) { S(print_data) data; if (!p || !hmap) return isl_printer_free(p); p = isl_printer_print_str(p, "{"); data.p = p; data.first = 1; if (FN(HMAP,foreach)(hmap, &print_pair, &data) < 0) data.p = isl_printer_free(data.p); p = data.p; p = isl_printer_print_str(p, "}"); return p; } void FN(HMAP,dump)(__isl_keep HMAP *hmap) { isl_printer *printer; if (!hmap) return; printer = isl_printer_to_file(FN(HMAP,get_ctx)(hmap), stderr); printer = FN(isl_printer_print,HMAP_BASE)(printer, hmap); printer = isl_printer_end_line(printer); isl_printer_free(printer); } isl-0.16.1/isl_multi_apply_templ.c0000664000175000017500000000417712645737061014110 00000000000000/* * Copyright 2011 Sven Verdoolaege * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include /* Transform the elements of "multi" by applying "fn" to them * with extra argument "set". * * The parameters of "multi" and "set" are assumed to have been aligned. */ __isl_give MULTI(BASE) *FN(FN(MULTI(BASE),apply_aligned),APPLY_DOMBASE)( __isl_take MULTI(BASE) *multi, __isl_take APPLY_DOM *set, __isl_give EL *(*fn)(EL *el, __isl_take APPLY_DOM *set)) { int i; if (!multi || !set) goto error; if (multi->n == 0) { FN(APPLY_DOM,free)(set); return multi; } multi = FN(MULTI(BASE),cow)(multi); if (!multi) goto error; for (i = 0; i < multi->n; ++i) { multi->p[i] = fn(multi->p[i], FN(APPLY_DOM,copy)(set)); if (!multi->p[i]) goto error; } FN(APPLY_DOM,free)(set); return multi; error: FN(APPLY_DOM,free)(set); FN(MULTI(BASE),free)(multi); return NULL; } /* Transform the elements of "multi" by applying "fn" to them * with extra argument "set". * * Align the parameters if needed and call apply_set_aligned. */ static __isl_give MULTI(BASE) *FN(FN(MULTI(BASE),apply),APPLY_DOMBASE)( __isl_take MULTI(BASE) *multi, __isl_take APPLY_DOM *set, __isl_give EL *(*fn)(EL *el, __isl_take APPLY_DOM *set)) { isl_ctx *ctx; if (!multi || !set) goto error; if (isl_space_match(multi->space, isl_dim_param, set->dim, isl_dim_param)) return FN(FN(MULTI(BASE),apply_aligned),APPLY_DOMBASE)(multi, set, fn); ctx = FN(MULTI(BASE),get_ctx)(multi); if (!isl_space_has_named_params(multi->space) || !isl_space_has_named_params(set->dim)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); multi = FN(MULTI(BASE),align_params)(multi, FN(APPLY_DOM,get_space)(set)); set = FN(APPLY_DOM,align_params)(set, FN(MULTI(BASE),get_space)(multi)); return FN(FN(MULTI(BASE),apply_aligned),APPLY_DOMBASE)(multi, set, fn); error: FN(MULTI(BASE),free)(multi); FN(APPLY_DOM,free)(set); return NULL; } isl-0.16.1/isl_multi_macro.h0000664000175000017500000000043012645737061012654 00000000000000#define xCAT(A,B) A ## B #define CAT(A,B) xCAT(A,B) #undef EL #define EL CAT(isl_,BASE) #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xMULTI(BASE) isl_multi_ ## BASE #define MULTI(BASE) xMULTI(BASE) #undef DOM #define DOM CAT(isl_,DOMBASE) isl-0.16.1/isl_val_imath.c0000664000175000017500000000332112645737061012302 00000000000000#include /* Return a reference to an isl_val representing the unsigned * integer value stored in the "n" chunks of size "size" at "chunks". * The least significant chunk is assumed to be stored first. */ __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx, size_t n, size_t size, const void *chunks) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; impz_import(v->n, n, -1, size, 0, 0, chunks); isl_int_set_si(v->d, 1); return v; } /* Store a representation of the absolute value of the numerator of "v" * in terms of chunks of size "size" at "chunks". * The least significant chunk is stored first. * The number of chunks in the result can be obtained by calling * isl_val_n_abs_num_chunks. The user is responsible for allocating * enough memory to store the results. * * In the special case of a zero value, isl_val_n_abs_num_chunks will * return one, while impz_export will not fill in any chunks. We therefore * do it ourselves. */ int isl_val_get_abs_num_chunks(__isl_keep isl_val *v, size_t size, void *chunks) { if (!v || !chunks) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); impz_export(chunks, NULL, -1, size, 0, 0, v->n); if (isl_val_is_zero(v)) memset(chunks, 0, size); return 0; } /* Return the number of chunks of size "size" required to * store the absolute value of the numerator of "v". */ size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v, size_t size) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); size *= 8; return (impz_sizeinbase(v->n, 2) + size - 1) / size; } isl-0.16.1/configure.ac0000664000175000017500000002253512645754751011626 00000000000000AC_INIT([isl], [0.16.1], [isl-development@googlegroups.com]) AC_CONFIG_AUX_DIR([.]) AC_CONFIG_MACRO_DIR([m4]) AM_INIT_AUTOMAKE([foreign]) m4_ifdef([AM_SILENT_RULES],[AM_SILENT_RULES([yes])]) AC_SUBST(versioninfo) versioninfo=16:1:1 if test "x$prefix" != "xNONE"; then prefix_wd=`cd $prefix && pwd` srcdir_wd=`cd $srcdir && pwd` wd=`pwd` if test "x$prefix_wd" = "x$srcdir_wd"; then AC_MSG_ERROR(Installation in source directory not supported) fi if test "x$prefix_wd" = "x$wd"; then AC_MSG_ERROR(Installation in build directory not supported) fi fi AC_PROG_CC AC_PROG_CXX AX_CC_MAXOPT AX_GCC_WARN_UNUSED_RESULT AX_C___ATTRIBUTE__ AC_PROG_LIBTOOL AC_CHECK_PROG(PERL, perl, perl, []) AC_CHECK_PROG(PDFLATEX, pdflatex, pdflatex, []) AC_CHECK_PROG(POD2HTML, pod2html, pod2html, []) AM_CONDITIONAL(GENERATE_DOC, test -n "$PERL" -a -n "$PDFLATEX" -a -n "$POD2HTML") AX_CREATE_STDINT_H(include/isl/stdint.h) AC_ARG_WITH([int], [AS_HELP_STRING([--with-int=gmp|imath|imath-32], [Which package to use to represent multi-precision integers [default=gmp]])], [], [with_int=gmp]) case "$with_int" in gmp|imath|imath-32) ;; *) AC_MSG_ERROR( [bad value ${withval} for --with-int (use gmp, imath or imath-32)]) esac AC_SUBST(MP_CPPFLAGS) AC_SUBST(MP_LDFLAGS) AC_SUBST(MP_LIBS) case "$with_int" in gmp) AX_DETECT_GMP ;; imath|imath-32) AX_DETECT_IMATH ;; esac if test "x$with_int" = "ximath-32" -a "x$GCC" = "xyes"; then MP_CPPFLAGS="-std=gnu99 $MP_CPPFLAGS" fi AM_CONDITIONAL(IMATH_FOR_MP, test x$with_int = ximath -o x$with_int = ximath-32) AM_CONDITIONAL(GMP_FOR_MP, test x$with_int = xgmp) AM_CONDITIONAL(SMALL_INT_OPT, test "x$with_int" == "ximath-32") AS_IF([test "x$with_int" == "ximath-32"], [ AC_DEFINE([USE_SMALL_INT_OPT], [], [Use small integer optimization]) ]) AC_CHECK_DECLS(ffs,[],[],[#include ]) AC_CHECK_DECLS(__builtin_ffs,[],[],[]) AC_CHECK_DECLS([_BitScanForward],[],[],[#include ]) if test "x$ac_cv_have_decl_ffs" = xno -a \ "x$ac_cv_have_decl___builtin_ffs" = xno -a \ "x$ac_cv_have_decl__BitScanForward" = xno; then AC_MSG_ERROR([No ffs implementation found]) fi AC_CHECK_DECLS([strcasecmp,strncasecmp],[],[],[#include ]) AC_CHECK_DECLS([_stricmp,_strnicmp],[],[],[#include ]) if test "x$ac_cv_have_decl_strcasecmp" = xno -a \ "x$ac_cv_have_decl__stricmp" = xno; then AC_MSG_ERROR([No strcasecmp implementation found]) fi if test "x$ac_cv_have_decl_strncasecmp" = xno -a \ "x$ac_cv_have_decl__strnicmp" = xno; then AC_MSG_ERROR([No strncasecmp implementation found]) fi AC_CHECK_DECLS([snprintf,_snprintf],[],[],[#include ]) if test "x$ac_cv_have_decl_snprintf" = xno -a \ "x$ac_cv_have_decl__snprintf" = xno; then AC_MSG_ERROR([No snprintf implementation found]) fi AC_SUBST(CLANG_CXXFLAGS) AC_SUBST(CLANG_LDFLAGS) AC_SUBST(CLANG_LIBS) AX_SUBMODULE(clang,system|no,no) case "$with_clang" in system) AC_PROG_GREP AC_PROG_SED llvm_config="llvm-config" AC_CHECK_PROG([llvm_config_found], ["$llvm_config"], [yes]) if test "x$with_clang_prefix" != "x"; then llvm_config="$with_clang_prefix/bin/llvm-config" if test -x "$llvm_config"; then llvm_config_found=yes fi fi if test "$llvm_config_found" != yes; then AC_MSG_ERROR([llvm-config not found]) fi CLANG_CXXFLAGS=`$llvm_config --cxxflags | \ $SED -e 's/-Wcovered-switch-default//'` CLANG_LDFLAGS=`$llvm_config --ldflags` targets=`$llvm_config --targets-built` components="$targets asmparser bitreader support mc" $llvm_config --components | $GREP option > /dev/null 2> /dev/null if test $? -eq 0; then components="$components option" fi CLANG_LIBS=`$llvm_config --libs $components` systemlibs=`$llvm_config --system-libs 2> /dev/null | tail -1` if test $? -eq 0; then CLANG_LIBS="$CLANG_LIBS $systemlibs" fi CLANG_PREFIX=`$llvm_config --prefix` AC_DEFINE_UNQUOTED(CLANG_PREFIX, ["$CLANG_PREFIX"], [Clang installation prefix]) SAVE_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CLANG_CXXFLAGS $CPPFLAGS" AC_LANG_PUSH(C++) AC_CHECK_HEADER([clang/Basic/SourceLocation.h], [], [AC_ERROR([clang header file not found])]) AC_EGREP_HEADER([getDefaultTargetTriple], [llvm/Support/Host.h], [], [AC_DEFINE([getDefaultTargetTriple], [getHostTriple], [Define to getHostTriple for older versions of clang])]) AC_EGREP_HEADER([getExpansionLineNumber], [clang/Basic/SourceLocation.h], [], [AC_DEFINE([getExpansionLineNumber], [getInstantiationLineNumber], [Define to getInstantiationLineNumber for older versions of clang])]) AC_EGREP_HEADER([DiagnosticsEngine], [clang/Basic/Diagnostic.h], [], [AC_DEFINE([DiagnosticsEngine], [Diagnostic], [Define to Diagnostic for older versions of clang])]) AC_EGREP_HEADER([ArrayRef], [clang/Driver/Driver.h], [AC_DEFINE([USE_ARRAYREF], [], [Define if Driver::BuildCompilation takes ArrayRef])]) AC_EGREP_HEADER([CXXIsProduction], [clang/Driver/Driver.h], [AC_DEFINE([HAVE_CXXISPRODUCTION], [], [Define if Driver constructor takes CXXIsProduction argument])]) AC_EGREP_HEADER([ IsProduction], [clang/Driver/Driver.h], [AC_DEFINE([HAVE_ISPRODUCTION], [], [Define if Driver constructor takes IsProduction argument])]) AC_TRY_COMPILE([#include ], [ using namespace clang; DiagnosticsEngine *Diags; new driver::Driver("", "", "", *Diags); ], [AC_DEFINE([DRIVER_CTOR_TAKES_DEFAULTIMAGENAME], [], [Define if Driver constructor takes default image name])]) AC_EGREP_HEADER([void HandleTopLevelDecl\(], [clang/AST/ASTConsumer.h], [AC_DEFINE([HandleTopLevelDeclReturn], [void], [Return type of HandleTopLevelDeclReturn]) AC_DEFINE([HandleTopLevelDeclContinue], [], [Return type of HandleTopLevelDeclReturn])], [AC_DEFINE([HandleTopLevelDeclReturn], [bool], [Return type of HandleTopLevelDeclReturn]) AC_DEFINE([HandleTopLevelDeclContinue], [true], [Return type of HandleTopLevelDeclReturn])]) AC_CHECK_HEADER([clang/Basic/DiagnosticOptions.h], [AC_DEFINE([HAVE_BASIC_DIAGNOSTICOPTIONS_H], [], [Define if clang/Basic/DiagnosticOptions.h exists])]) AC_TRY_COMPILE([#include ], [ using namespace clang; std::shared_ptr TO; DiagnosticsEngine *Diags; TargetInfo::CreateTargetInfo(*Diags, TO); ], [AC_DEFINE([CREATETARGETINFO_TAKES_SHARED_PTR], [], [Define if TargetInfo::CreateTargetInfo takes shared_ptr])]) AC_TRY_COMPILE([#include ], [ using namespace clang; TargetOptions *TO; DiagnosticsEngine *Diags; TargetInfo::CreateTargetInfo(*Diags, TO); ], [AC_DEFINE([CREATETARGETINFO_TAKES_POINTER], [], [Define if TargetInfo::CreateTargetInfo takes pointer])]) AC_TRY_COMPILE([#include ], [ using namespace clang; DiagnosticConsumer *client; CompilerInstance *Clang; Clang->createDiagnostics(client); ], [], [AC_DEFINE([CREATEDIAGNOSTICS_TAKES_ARG], [], [Define if CompilerInstance::createDiagnostics takes argc and argv])]) AC_TRY_COMPILE([#include ], [ using namespace clang; HeaderSearchOptions HSO; HSO.AddPath("", frontend::Angled, false, false); ], [AC_DEFINE([ADDPATH_TAKES_4_ARGUMENTS], [], [Define if HeaderSearchOptions::AddPath takes 4 arguments])]) AC_EGREP_HEADER([getNumParams], [clang/AST/CanonicalType.h], [AC_DEFINE([getNumArgs], [getNumParams], [Define to getNumParams for newer versions of clang]) AC_DEFINE([getArgType], [getParamType], [Define to getParamType for newer versions of clang])]) AC_EGREP_HEADER([getReturnType], [clang/AST/CanonicalType.h], [], [AC_DEFINE([getReturnType], [getResultType], [Define to getResultType for older versions of clang])]) AC_TRY_COMPILE([#include ], [ using namespace clang; CompilerInstance *Clang; Clang->createPreprocessor(TU_Complete); ], [AC_DEFINE([CREATEPREPROCESSOR_TAKES_TUKIND], [], [Define if CompilerInstance::createPreprocessor takes TranslationUnitKind])]) AC_EGREP_HEADER([setMainFileID], [clang/Basic/SourceManager.h], [AC_DEFINE([HAVE_SETMAINFILEID], [], [Define if SourceManager has a setMainFileID method])]) AC_CHECK_HEADER([llvm/ADT/OwningPtr.h], [AC_DEFINE([HAVE_ADT_OWNINGPTR_H], [], [Define if llvm/ADT/OwningPtr.h exists])]) AC_EGREP_HEADER([initializeBuiltins], [clang/Basic/Builtins.h], [], [AC_DEFINE([initializeBuiltins], [InitializeBuiltins], [Define to InitializeBuiltins for older versions of clang])]) AC_LANG_POP CPPFLAGS="$SAVE_CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" LDFLAGS="$CLANG_LDFLAGS $LDFLAGS" AC_SUBST(LIB_CLANG_EDIT) AC_CHECK_LIB([clangEdit], [main], [LIB_CLANG_EDIT=-lclangEdit], []) LDFLAGS="$SAVE_LDFLAGS" ;; esac AM_CONDITIONAL(HAVE_CLANG, test $with_clang = system) AX_SET_WARNING_FLAGS AC_SUBST(WARNING_FLAGS) PACKAGE_CFLAGS="$MP_CPPFLAGS" PACKAGE_LDFLAGS="$MP_LDFLAGS" PACKAGE_LIBS="-lisl $MP_LIBS" AX_CREATE_PKGCONFIG_INFO AX_DETECT_GIT_HEAD AH_BOTTOM([#include ]) AC_CONFIG_HEADERS(isl_config.h) AC_CONFIG_FILES(Makefile) AC_CONFIG_FILES(doc/Makefile) if test $with_clang = system; then AC_CONFIG_FILES(interface/Makefile) fi AC_CONFIG_FILES([bound_test.sh], [chmod +x bound_test.sh]) AC_CONFIG_FILES([codegen_test.sh], [chmod +x codegen_test.sh]) AC_CONFIG_FILES([pip_test.sh], [chmod +x pip_test.sh]) AC_CONFIG_COMMANDS_POST([ dnl pass on arguments to subdir configures, but don't dnl add them to config.status ac_configure_args="$ac_configure_args $isl_configure_args" ]) AC_OUTPUT isl-0.16.1/isl_reordering.c0000664000175000017500000001036612645737061012505 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include __isl_give isl_reordering *isl_reordering_alloc(isl_ctx *ctx, int len) { isl_reordering *exp; exp = isl_alloc(ctx, struct isl_reordering, sizeof(struct isl_reordering) + (len - 1) * sizeof(int)); if (!exp) return NULL; exp->ref = 1; exp->len = len; exp->dim = NULL; return exp; } __isl_give isl_reordering *isl_reordering_copy(__isl_keep isl_reordering *exp) { if (!exp) return NULL; exp->ref++; return exp; } __isl_give isl_reordering *isl_reordering_dup(__isl_keep isl_reordering *r) { int i; isl_reordering *dup; if (!r) return NULL; dup = isl_reordering_alloc(r->dim->ctx, r->len); if (!dup) return NULL; dup->dim = isl_space_copy(r->dim); if (!dup->dim) return isl_reordering_free(dup); for (i = 0; i < dup->len; ++i) dup->pos[i] = r->pos[i]; return dup; } __isl_give isl_reordering *isl_reordering_cow(__isl_take isl_reordering *r) { if (!r) return NULL; if (r->ref == 1) return r; r->ref--; return isl_reordering_dup(r); } void *isl_reordering_free(__isl_take isl_reordering *exp) { if (!exp) return NULL; if (--exp->ref > 0) return NULL; isl_space_free(exp->dim); free(exp); return NULL; } /* Construct a reordering that maps the parameters of "alignee" * to the corresponding parameters in a new dimension specification * that has the parameters of "aligner" first, followed by * any remaining parameters of "alignee" that do not occur in "aligner". */ __isl_give isl_reordering *isl_parameter_alignment_reordering( __isl_keep isl_space *alignee, __isl_keep isl_space *aligner) { int i, j; isl_reordering *exp; if (!alignee || !aligner) return NULL; exp = isl_reordering_alloc(alignee->ctx, alignee->nparam); if (!exp) return NULL; exp->dim = isl_space_copy(aligner); for (i = 0; i < alignee->nparam; ++i) { isl_id *id_i; id_i = isl_space_get_dim_id(alignee, isl_dim_param, i); if (!id_i) isl_die(alignee->ctx, isl_error_invalid, "cannot align unnamed parameters", goto error); for (j = 0; j < aligner->nparam; ++j) { isl_id *id_j; id_j = isl_space_get_dim_id(aligner, isl_dim_param, j); isl_id_free(id_j); if (id_i == id_j) break; } if (j < aligner->nparam) { exp->pos[i] = j; isl_id_free(id_i); } else { int pos; pos = isl_space_dim(exp->dim, isl_dim_param); exp->dim = isl_space_add_dims(exp->dim, isl_dim_param, 1); exp->dim = isl_space_set_dim_id(exp->dim, isl_dim_param, pos, id_i); exp->pos[i] = pos; } } if (!exp->dim) return isl_reordering_free(exp); return exp; error: isl_reordering_free(exp); return NULL; } __isl_give isl_reordering *isl_reordering_extend(__isl_take isl_reordering *exp, unsigned extra) { int i; isl_reordering *res; int offset; if (!exp) return NULL; if (extra == 0) return exp; offset = isl_space_dim(exp->dim, isl_dim_all) - exp->len; res = isl_reordering_alloc(exp->dim->ctx, exp->len + extra); if (!res) goto error; res->dim = isl_space_copy(exp->dim); for (i = 0; i < exp->len; ++i) res->pos[i] = exp->pos[i]; for (i = exp->len; i < res->len; ++i) res->pos[i] = offset + i; isl_reordering_free(exp); return res; error: isl_reordering_free(exp); return NULL; } __isl_give isl_reordering *isl_reordering_extend_space( __isl_take isl_reordering *exp, __isl_take isl_space *dim) { isl_reordering *res; if (!exp || !dim) goto error; res = isl_reordering_extend(isl_reordering_copy(exp), isl_space_dim(dim, isl_dim_all) - exp->len); res = isl_reordering_cow(res); if (!res) goto error; isl_space_free(res->dim); res->dim = isl_space_replace(dim, isl_dim_param, exp->dim); isl_reordering_free(exp); if (!res->dim) return isl_reordering_free(res); return res; error: isl_reordering_free(exp); isl_space_free(dim); return NULL; } void isl_reordering_dump(__isl_keep isl_reordering *exp) { int i; isl_space_dump(exp->dim); for (i = 0; i < exp->len; ++i) fprintf(stderr, "%d -> %d; ", i, exp->pos[i]); fprintf(stderr, "\n"); } isl-0.16.1/isl_int_sioimath.h0000664000175000017500000011011512645737060013031 00000000000000/* * Copyright 2015 INRIA Paris-Rocquencourt * * Use of this software is governed by the MIT license * * Written by Michael Kruse, INRIA Paris-Rocquencourt, * Domaine de Voluceau, Rocquenqourt, B.P. 105, * 78153 Le Chesnay Cedex France */ #ifndef ISL_INT_SIOIMATH_H #define ISL_INT_SIOIMATH_H #include #include #include #include #include #include #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array)) /* Visual Studio before VS2015 does not support the inline keyword when * compiling in C mode because it was introduced in C99 which it does not * officially support. Instead, it has a proprietary extension using __inline. */ #if defined(_MSC_VER) && (_MSC_VER < 1900) #define inline __inline #endif /* The type to represent integers optimized for small values. It is either a * pointer to an mp_int ( = mpz_t*; big representation) or an int32_t (small * represenation) with a discriminator at the least significant bit. In big * representation it will be always zero because of heap alignment. It is set * to 1 for small representation and use the 32 most significant bits for the * int32_t. * * Structure on 64 bit machines, with 8-byte aligment (3 bits): * * Big representation: * MSB LSB * |------------------------------------------------------------000 * | mpz_t* | * | != NULL | * * Small representation: * MSB 32 LSB * |------------------------------|00000000000000000000000000000001 * | int32_t | * | 2147483647 ... -2147483647 | * ^ * | * discriminator bit * * On 32 bit machines isl_sioimath type is blown up to 8 bytes, i.e. * isl_sioimath is guaranteed to be at least 8 bytes. This is to ensure the * int32_t can be hidden in that type without data loss. In the future we might * optimize this to use 31 hidden bits in a 32 bit pointer. We may also use 63 * bits on 64 bit machines, but this comes with the cost of additional overflow * checks because there is no standardized 128 bit integer we could expand to. * * We use native integer types and avoid union structures to avoid assumptions * on the machine's endianness. * * This implementation makes the following assumptions: * - long can represent any int32_t * - mp_small is signed long * - mp_usmall is unsigned long * - adresses returned by malloc are aligned to 2-byte boundaries (leastmost * bit is zero) */ #if UINT64_MAX > UINTPTR_MAX typedef uint64_t isl_sioimath; #else typedef uintptr_t isl_sioimath; #endif /* The negation of the smallest possible number in int32_t, INT32_MIN * (0x80000000u, -2147483648), cannot be represented in an int32_t, therefore * every operation that may produce this value needs to special-case it. * The operations are: * abs(INT32_MIN) * -INT32_MIN (negation) * -1 * INT32_MIN (multiplication) * INT32_MIN/-1 (any division: divexact, fdiv, cdiv, tdiv) * To avoid checking these cases, we exclude INT32_MIN from small * representation. */ #define ISL_SIOIMATH_SMALL_MIN (-INT32_MAX) /* Largest possible number in small representation */ #define ISL_SIOIMATH_SMALL_MAX INT32_MAX /* Used for function parameters the function modifies. */ typedef isl_sioimath *isl_sioimath_ptr; /* Used for function parameters that are read-only. */ typedef isl_sioimath isl_sioimath_src; /* Return whether the argument is stored in small representation. */ inline int isl_sioimath_is_small(isl_sioimath val) { return val & 0x00000001; } /* Return whether the argument is stored in big representation. */ inline int isl_sioimath_is_big(isl_sioimath val) { return !isl_sioimath_is_small(val); } /* Get the number of an isl_int in small representation. Result is undefined if * val is not stored in that format. */ inline int32_t isl_sioimath_get_small(isl_sioimath val) { return val >> 32; } /* Get the number of an in isl_int in big representation. Result is undefined if * val is not stored in that format. */ inline mp_int isl_sioimath_get_big(isl_sioimath val) { return (mp_int)(uintptr_t) val; } /* Return 1 if val is stored in small representation and store its value to * small. We rely on the compiler to optimize the isl_sioimath_get_small such * that the shift is moved into the branch that executes in case of small * representation. If there is no such branch, then a single shift is still * cheaper than introducing branching code. */ inline int isl_sioimath_decode_small(isl_sioimath val, int32_t *small) { *small = isl_sioimath_get_small(val); return isl_sioimath_is_small(val); } /* Return 1 if val is stored in big representation and store its value to big. */ inline int isl_sioimath_decode_big(isl_sioimath val, mp_int *big) { *big = isl_sioimath_get_big(val); return isl_sioimath_is_big(val); } /* Encode a small representation into an isl_int. */ inline isl_sioimath isl_sioimath_encode_small(int32_t val) { return ((isl_sioimath) val) << 32 | 0x00000001; } /* Encode a big representation. */ inline isl_sioimath isl_sioimath_encode_big(mp_int val) { return (isl_sioimath)(uintptr_t) val; } /* A common situation is to call an IMath function with at least one argument * that is currently in small representation or an integer parameter, i.e. a big * representation of the same number is required. Promoting the original * argument comes with multiple problems, such as modifying a read-only * argument, the responsibility of deallocation and the execution cost. Instead, * we make a copy by 'faking' the IMath internal structure. * * We reserve the maximum number of required digits on the stack to avoid heap * allocations. * * mp_digit can be uint32_t or uint16_t. This code must work for little and big * endian digits. The structure for an uint64_t argument and 32-bit mp_digits is * sketched below. * * |----------------------------| * uint64_t * * |-------------||-------------| * mp_digit mp_digit * digits[1] digits[0] * Most sig digit Least sig digit */ typedef struct { mpz_t big; mp_digit digits[(sizeof(uintmax_t) + sizeof(mp_digit) - 1) / sizeof(mp_digit)]; } isl_sioimath_scratchspace_t; /* Convert a native integer to IMath's digit representation. A native integer * might be big- or little endian, but IMath always stores the least significant * digit in the lowest array indices. memcpy therefore is not possible. * * We also have to consider that long and mp_digit can be of different sizes, * depending on the compiler (LP64, LLP64) and IMath's USE_64BIT_WORDS. This * macro should work for all of them. * * "used" is set to the number of written digits. It must be minimal (IMath * checks zeroness using the used field), but always at least one. Also note * that the result of num>>(sizeof(num)*CHAR_BIT) is undefined. */ #define ISL_SIOIMATH_TO_DIGITS(num, digits, used) \ do { \ int i = 0; \ do { \ (digits)[i] = \ ((num) >> (sizeof(mp_digit) * CHAR_BIT * i)); \ i += 1; \ if (i >= (sizeof(num) + sizeof(mp_digit) - 1) / \ sizeof(mp_digit)) \ break; \ if (((num) >> (sizeof(mp_digit) * CHAR_BIT * i)) == 0) \ break; \ } while (1); \ (used) = i; \ } while (0) inline void isl_siomath_uint32_to_digits(uint32_t num, mp_digit *digits, mp_size *used) { ISL_SIOIMATH_TO_DIGITS(num, digits, *used); } inline void isl_siomath_ulong_to_digits(unsigned long num, mp_digit *digits, mp_size *used) { ISL_SIOIMATH_TO_DIGITS(num, digits, *used); } inline void isl_siomath_uint64_to_digits(uint64_t num, mp_digit *digits, mp_size *used) { ISL_SIOIMATH_TO_DIGITS(num, digits, *used); } /* Get the IMath representation of an isl_int without modifying it. * For the case it is not in big representation yet, pass some scratch space we * can use to store the big representation in. * In order to avoid requiring init and free on the scratch space, we directly * modify the internal representation. * * The name derives from its indented use: getting the big representation of an * input (src) argument. */ inline mp_int isl_sioimath_bigarg_src(isl_sioimath arg, isl_sioimath_scratchspace_t *scratch) { mp_int big; int32_t small; uint32_t num; if (isl_sioimath_decode_big(arg, &big)) return big; small = isl_sioimath_get_small(arg); scratch->big.digits = scratch->digits; scratch->big.alloc = ARRAY_SIZE(scratch->digits); if (small >= 0) { scratch->big.sign = MP_ZPOS; num = small; } else { scratch->big.sign = MP_NEG; num = -small; } isl_siomath_uint32_to_digits(num, scratch->digits, &scratch->big.used); return &scratch->big; } /* Create a temporary IMath mp_int for a signed long. */ inline mp_int isl_sioimath_siarg_src(signed long arg, isl_sioimath_scratchspace_t *scratch) { unsigned long num; scratch->big.digits = scratch->digits; scratch->big.alloc = ARRAY_SIZE(scratch->digits); if (arg >= 0) { scratch->big.sign = MP_ZPOS; num = arg; } else { scratch->big.sign = MP_NEG; num = (arg == LONG_MIN) ? ((unsigned long) LONG_MAX) + 1 : -arg; } isl_siomath_ulong_to_digits(num, scratch->digits, &scratch->big.used); return &scratch->big; } /* Create a temporary IMath mp_int for an int64_t. */ inline mp_int isl_sioimath_si64arg_src(int64_t arg, isl_sioimath_scratchspace_t *scratch) { uint64_t num; scratch->big.digits = scratch->digits; scratch->big.alloc = ARRAY_SIZE(scratch->digits); if (arg >= 0) { scratch->big.sign = MP_ZPOS; num = arg; } else { scratch->big.sign = MP_NEG; num = (arg == INT64_MIN) ? ((uint64_t) INT64_MAX) + 1 : -arg; } isl_siomath_uint64_to_digits(num, scratch->digits, &scratch->big.used); return &scratch->big; } /* Create a temporary IMath mp_int for an unsigned long. */ inline mp_int isl_sioimath_uiarg_src(unsigned long arg, isl_sioimath_scratchspace_t *scratch) { scratch->big.digits = scratch->digits; scratch->big.alloc = ARRAY_SIZE(scratch->digits); scratch->big.sign = MP_ZPOS; isl_siomath_ulong_to_digits(arg, scratch->digits, &scratch->big.used); return &scratch->big; } /* Ensure big representation. Does not preserve the current number. * Callers may use the fact that the value _is_ preserved if the presentation * was big before. */ inline mp_int isl_sioimath_reinit_big(isl_sioimath_ptr ptr) { if (isl_sioimath_is_small(*ptr)) *ptr = isl_sioimath_encode_big(mp_int_alloc()); return isl_sioimath_get_big(*ptr); } /* Set ptr to a number in small representation. */ inline void isl_sioimath_set_small(isl_sioimath_ptr ptr, int32_t val) { if (isl_sioimath_is_big(*ptr)) mp_int_free(isl_sioimath_get_big(*ptr)); *ptr = isl_sioimath_encode_small(val); } /* Set ptr to val, choosing small representation if possible. */ inline void isl_sioimath_set_int32(isl_sioimath_ptr ptr, int32_t val) { if (ISL_SIOIMATH_SMALL_MIN <= val && val <= ISL_SIOIMATH_SMALL_MAX) { isl_sioimath_set_small(ptr, val); return; } mp_int_init_value(isl_sioimath_reinit_big(ptr), val); } /* Assign an int64_t number using small representation if possible. */ inline void isl_sioimath_set_int64(isl_sioimath_ptr ptr, int64_t val) { if (ISL_SIOIMATH_SMALL_MIN <= val && val <= ISL_SIOIMATH_SMALL_MAX) { isl_sioimath_set_small(ptr, val); return; } isl_sioimath_scratchspace_t scratch; mp_int_copy(isl_sioimath_si64arg_src(val, &scratch), isl_sioimath_reinit_big(ptr)); } /* Convert to big representation while preserving the current number. */ inline void isl_sioimath_promote(isl_sioimath_ptr dst) { int32_t small; if (isl_sioimath_is_big(*dst)) return; small = isl_sioimath_get_small(*dst); mp_int_set_value(isl_sioimath_reinit_big(dst), small); } /* Convert to small representation while preserving the current number. Does * nothing if dst doesn't fit small representation. */ inline void isl_sioimath_try_demote(isl_sioimath_ptr dst) { mp_small small; if (isl_sioimath_is_small(*dst)) return; if (mp_int_to_int(isl_sioimath_get_big(*dst), &small) != MP_OK) return; if (ISL_SIOIMATH_SMALL_MIN <= small && small <= ISL_SIOIMATH_SMALL_MAX) isl_sioimath_set_small(dst, small); } /* Initialize an isl_int. The implicit value is 0 in small representation. */ inline void isl_sioimath_init(isl_sioimath_ptr dst) { *dst = isl_sioimath_encode_small(0); } /* Free the resources taken by an isl_int. */ inline void isl_sioimath_clear(isl_sioimath_ptr dst) { if (isl_sioimath_is_small(*dst)) return; mp_int_free(isl_sioimath_get_big(*dst)); } /* Copy the value of one isl_int to another. */ inline void isl_sioimath_set(isl_sioimath_ptr dst, isl_sioimath_src val) { if (isl_sioimath_is_small(val)) { isl_sioimath_set_small(dst, isl_sioimath_get_small(val)); return; } mp_int_copy(isl_sioimath_get_big(val), isl_sioimath_reinit_big(dst)); } /* Store a signed long into an isl_int. */ inline void isl_sioimath_set_si(isl_sioimath_ptr dst, long val) { if (ISL_SIOIMATH_SMALL_MIN <= val && val <= ISL_SIOIMATH_SMALL_MAX) { isl_sioimath_set_small(dst, val); return; } mp_int_set_value(isl_sioimath_reinit_big(dst), val); } /* Store an unsigned long into an isl_int. */ inline void isl_sioimath_set_ui(isl_sioimath_ptr dst, unsigned long val) { if (val <= ISL_SIOIMATH_SMALL_MAX) { isl_sioimath_set_small(dst, val); return; } mp_int_set_uvalue(isl_sioimath_reinit_big(dst), val); } /* Return whether a number can be represented by a signed long. */ inline int isl_sioimath_fits_slong(isl_sioimath_src val) { mp_small dummy; if (isl_sioimath_is_small(val)) return 1; return mp_int_to_int(isl_sioimath_get_big(val), &dummy) == MP_OK; } /* Return a number as signed long. Result is undefined if the number cannot be * represented as long. */ inline long isl_sioimath_get_si(isl_sioimath_src val) { mp_small result; if (isl_sioimath_is_small(val)) return isl_sioimath_get_small(val); mp_int_to_int(isl_sioimath_get_big(val), &result); return result; } /* Return whether a number can be represented as unsigned long. */ inline int isl_sioimath_fits_ulong(isl_sioimath_src val) { mp_usmall dummy; if (isl_sioimath_is_small(val)) return isl_sioimath_get_small(val) >= 0; return mp_int_to_uint(isl_sioimath_get_big(val), &dummy) == MP_OK; } /* Return a number as unsigned long. Result is undefined if the number cannot be * represented as unsigned long. */ inline unsigned long isl_sioimath_get_ui(isl_sioimath_src val) { mp_usmall result; if (isl_sioimath_is_small(val)) return isl_sioimath_get_small(val); mp_int_to_uint(isl_sioimath_get_big(val), &result); return result; } /* Return a number as floating point value. */ inline double isl_sioimath_get_d(isl_sioimath_src val) { mp_int big; double result = 0; int i; if (isl_sioimath_is_small(val)) return isl_sioimath_get_small(val); big = isl_sioimath_get_big(val); for (i = 0; i < big->used; ++i) result = result * (double) ((uintmax_t) MP_DIGIT_MAX + 1) + (double) big->digits[i]; if (big->sign == MP_NEG) result = -result; return result; } /* Format a number as decimal string. * * The largest possible string from small representation is 12 characters * ("-2147483647"). */ inline char *isl_sioimath_get_str(isl_sioimath_src val) { char *result; if (isl_sioimath_is_small(val)) { result = malloc(12); snprintf(result, 12, "%" PRIi32, isl_sioimath_get_small(val)); return result; } return impz_get_str(NULL, 10, isl_sioimath_get_big(val)); } /* Return the absolute value. */ inline void isl_sioimath_abs(isl_sioimath_ptr dst, isl_sioimath_src arg) { if (isl_sioimath_is_small(arg)) { isl_sioimath_set_small(dst, labs(isl_sioimath_get_small(arg))); return; } mp_int_abs(isl_sioimath_get_big(arg), isl_sioimath_reinit_big(dst)); } /* Return the negation of a number. */ inline void isl_sioimath_neg(isl_sioimath_ptr dst, isl_sioimath_src arg) { if (isl_sioimath_is_small(arg)) { isl_sioimath_set_small(dst, -isl_sioimath_get_small(arg)); return; } mp_int_neg(isl_sioimath_get_big(arg), isl_sioimath_reinit_big(dst)); } /* Swap two isl_ints. * * isl_sioimath can be copied bytewise; nothing depends on its address. It can * also be stored in a CPU register. */ inline void isl_sioimath_swap(isl_sioimath_ptr lhs, isl_sioimath_ptr rhs) { isl_sioimath tmp = *lhs; *lhs = *rhs; *rhs = tmp; } /* Add an unsigned long to the number. * * On LP64 unsigned long exceeds the range of an int64_t, therefore we check in * advance whether small representation possibly overflows. */ inline void isl_sioimath_add_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs) { int32_t smalllhs; isl_sioimath_scratchspace_t lhsscratch; if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs <= (uint64_t) INT64_MAX - (uint64_t) ISL_SIOIMATH_SMALL_MAX)) { isl_sioimath_set_int64(dst, (int64_t) smalllhs + rhs); return; } impz_add_ui(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs); isl_sioimath_try_demote(dst); } /* Subtract an unsigned long. * * On LP64 unsigned long exceeds the range of an int64_t. If * ISL_SIOIMATH_SMALL_MIN-rhs>=INT64_MIN we can do the calculation using int64_t * without risking an overflow. */ inline void isl_sioimath_sub_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs) { int32_t smalllhs; isl_sioimath_scratchspace_t lhsscratch; if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs < (uint64_t) INT64_MIN - (uint64_t) ISL_SIOIMATH_SMALL_MIN)) { isl_sioimath_set_int64(dst, (int64_t) smalllhs - rhs); return; } impz_sub_ui(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs); isl_sioimath_try_demote(dst); } /* Sum of two isl_ints. */ inline void isl_sioimath_add(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs, smallrhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && isl_sioimath_decode_small(rhs, &smallrhs)) { isl_sioimath_set_int64( dst, (int64_t) smalllhs + (int64_t) smallrhs); return; } mp_int_add(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_bigarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Subtract two isl_ints. */ inline void isl_sioimath_sub(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs, smallrhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && isl_sioimath_decode_small(rhs, &smallrhs)) { isl_sioimath_set_int64( dst, (int64_t) smalllhs - (int64_t) smallrhs); return; } mp_int_sub(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_bigarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Multiply two isl_ints. */ inline void isl_sioimath_mul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs, smallrhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && isl_sioimath_decode_small(rhs, &smallrhs)) { isl_sioimath_set_int64( dst, (int64_t) smalllhs * (int64_t) smallrhs); return; } mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_bigarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Shift lhs by rhs bits to the left and store the result in dst. Effectively, * this operation computes 'lhs * 2^rhs'. */ inline void isl_sioimath_mul_2exp(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs) { isl_sioimath_scratchspace_t scratchlhs; int32_t smalllhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs <= 32ul)) { isl_sioimath_set_int64(dst, ((int64_t) smalllhs) << rhs); return; } mp_int_mul_pow2(isl_sioimath_bigarg_src(lhs, &scratchlhs), rhs, isl_sioimath_reinit_big(dst)); } /* Multiply an isl_int and a signed long. */ inline void isl_sioimath_mul_si(isl_sioimath_ptr dst, isl_sioimath lhs, signed long rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs > LONG_MIN) && (labs(rhs) <= UINT32_MAX)) { isl_sioimath_set_int64(dst, (int64_t) smalllhs * (int64_t) rhs); return; } mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_siarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Multiply an isl_int and an unsigned long. */ inline void isl_sioimath_mul_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs; if (isl_sioimath_decode_small(lhs, &smalllhs) && (rhs <= UINT32_MAX)) { isl_sioimath_set_int64(dst, (int64_t) smalllhs * (int64_t) rhs); return; } mp_int_mul(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_uiarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Compute the power of an isl_int to an unsigned long. * Always let IMath do it; the result is unlikely to be small except in some * special cases. * Note: 0^0 == 1 */ inline void isl_sioimath_pow_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs) { isl_sioimath_scratchspace_t scratchlhs, scratchrhs; int32_t smalllhs; switch (rhs) { case 0: isl_sioimath_set_small(dst, 1); return; case 1: isl_sioimath_set(dst, lhs); return; case 2: isl_sioimath_mul(dst, lhs, lhs); return; } if (isl_sioimath_decode_small(lhs, &smalllhs)) { switch (smalllhs) { case 0: isl_sioimath_set_small(dst, 0); return; case 1: isl_sioimath_set_small(dst, 1); return; case 2: isl_sioimath_set_small(dst, 1); isl_sioimath_mul_2exp(dst, *dst, rhs); return; default: if ((MP_SMALL_MIN <= rhs) && (rhs <= MP_SMALL_MAX)) { mp_int_expt_value(smalllhs, rhs, isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); return; } } } mp_int_expt_full(isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_uiarg_src(rhs, &scratchrhs), isl_sioimath_reinit_big(dst)); isl_sioimath_try_demote(dst); } /* Fused multiply-add. */ inline void isl_sioimath_addmul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath tmp; isl_sioimath_init(&tmp); isl_sioimath_mul(&tmp, lhs, rhs); isl_sioimath_add(dst, *dst, tmp); isl_sioimath_clear(&tmp); } /* Fused multiply-add with an unsigned long. */ inline void isl_sioimath_addmul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs) { isl_sioimath tmp; isl_sioimath_init(&tmp); isl_sioimath_mul_ui(&tmp, lhs, rhs); isl_sioimath_add(dst, *dst, tmp); isl_sioimath_clear(&tmp); } /* Fused multiply-subtract. */ inline void isl_sioimath_submul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath tmp; isl_sioimath_init(&tmp); isl_sioimath_mul(&tmp, lhs, rhs); isl_sioimath_sub(dst, *dst, tmp); isl_sioimath_clear(&tmp); } /* Fused multiply-add with an unsigned long. */ inline void isl_sioimath_submul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs) { isl_sioimath tmp; isl_sioimath_init(&tmp); isl_sioimath_mul_ui(&tmp, lhs, rhs); isl_sioimath_sub(dst, *dst, tmp); isl_sioimath_clear(&tmp); } void isl_sioimath_gcd(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); void isl_sioimath_lcm(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); /* Divide lhs by rhs, rounding to zero (Truncate). */ inline void isl_sioimath_tdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, rhssmall; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { isl_sioimath_set_small(dst, lhssmall / rhssmall); return; } mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch), isl_sioimath_reinit_big(dst), NULL); isl_sioimath_try_demote(dst); return; } /* Divide lhs by an unsigned long rhs, rounding to zero (Truncate). */ inline void isl_sioimath_tdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall; if (isl_sioimath_is_small(lhs) && (rhs <= (unsigned long) INT32_MAX)) { lhssmall = isl_sioimath_get_small(lhs); isl_sioimath_set_small(dst, lhssmall / (int32_t) rhs); return; } if (rhs <= MP_SMALL_MAX) { mp_int_div_value(isl_sioimath_bigarg_src(lhs, &lhsscratch), rhs, isl_sioimath_reinit_big(dst), NULL); isl_sioimath_try_demote(dst); return; } mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_uiarg_src(rhs, &rhsscratch), isl_sioimath_reinit_big(dst), NULL); isl_sioimath_try_demote(dst); } /* Divide lhs by rhs, rounding to positive infinity (Ceil). */ inline void isl_sioimath_cdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { int32_t lhssmall, rhssmall; isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t q; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { if ((lhssmall >= 0) && (rhssmall >= 0)) q = ((int64_t) lhssmall + (int64_t) rhssmall - 1) / rhssmall; else if ((lhssmall < 0) && (rhssmall < 0)) q = ((int64_t) lhssmall + (int64_t) rhssmall + 1) / rhssmall; else q = lhssmall / rhssmall; isl_sioimath_set_small(dst, q); return; } impz_cdiv_q(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch)); isl_sioimath_try_demote(dst); } /* Divide lhs by rhs, rounding to negative infinity (Floor). */ inline void isl_sioimath_fdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, rhssmall; int32_t q; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { if ((lhssmall < 0) && (rhssmall >= 0)) q = ((int64_t) lhssmall - ((int64_t) rhssmall - 1)) / rhssmall; else if ((lhssmall >= 0) && (rhssmall < 0)) q = ((int64_t) lhssmall - ((int64_t) rhssmall + 1)) / rhssmall; else q = lhssmall / rhssmall; isl_sioimath_set_small(dst, q); return; } impz_fdiv_q(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch)); isl_sioimath_try_demote(dst); } /* Compute the division of lhs by a rhs of type unsigned long, rounding towards * negative infinity (Floor). */ inline void isl_sioimath_fdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, q; if (isl_sioimath_decode_small(lhs, &lhssmall) && (rhs <= INT32_MAX)) { if (lhssmall >= 0) q = (uint32_t) lhssmall / rhs; else q = ((int64_t) lhssmall - ((int64_t) rhs - 1)) / (int64_t) rhs; isl_sioimath_set_small(dst, q); return; } impz_fdiv_q(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_uiarg_src(rhs, &rhsscratch)); isl_sioimath_try_demote(dst); } /* Get the remainder of: lhs divided by rhs rounded towards negative infinite * (Floor). */ inline void isl_sioimath_fdiv_r(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int64_t lhssmall, rhssmall; int32_t r; if (isl_sioimath_is_small(lhs) && isl_sioimath_is_small(rhs)) { lhssmall = isl_sioimath_get_small(lhs); rhssmall = isl_sioimath_get_small(rhs); r = (rhssmall + lhssmall % rhssmall) % rhssmall; isl_sioimath_set_small(dst, r); return; } impz_fdiv_r(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch)); isl_sioimath_try_demote(dst); } void isl_sioimath_read(isl_sioimath_ptr dst, const char *str); /* Return: * +1 for a positive number * -1 for a negative number * 0 if the number is zero */ inline int isl_sioimath_sgn(isl_sioimath_src arg) { int32_t small; if (isl_sioimath_decode_small(arg, &small)) return (small > 0) - (small < 0); return mp_int_compare_zero(isl_sioimath_get_big(arg)); } /* Return: * +1 if lhs > rhs * -1 if lhs < rhs * 0 if lhs = rhs */ inline int isl_sioimath_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, rhssmall; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) return (lhssmall > rhssmall) - (lhssmall < rhssmall); if (isl_sioimath_decode_small(rhs, &rhssmall)) return mp_int_compare_value( isl_sioimath_bigarg_src(lhs, &lhsscratch), rhssmall); if (isl_sioimath_decode_small(lhs, &lhssmall)) return -mp_int_compare_value( isl_sioimath_bigarg_src(rhs, &rhsscratch), lhssmall); return mp_int_compare( isl_sioimath_get_big(lhs), isl_sioimath_get_big(rhs)); } /* As isl_sioimath_cmp, but with signed long rhs. */ inline int isl_sioimath_cmp_si(isl_sioimath_src lhs, signed long rhs) { int32_t lhssmall; if (isl_sioimath_decode_small(lhs, &lhssmall)) return (lhssmall > rhs) - (lhssmall < rhs); return mp_int_compare_value(isl_sioimath_get_big(lhs), rhs); } /* Return: * +1 if |lhs| > |rhs| * -1 if |lhs| < |rhs| * 0 if |lhs| = |rhs| */ inline int isl_sioimath_abs_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, rhssmall; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { lhssmall = labs(lhssmall); rhssmall = labs(rhssmall); return (lhssmall > rhssmall) - (lhssmall < rhssmall); } return mp_int_compare_unsigned( isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch)); } /* Return whether lhs is divisible by rhs. */ inline int isl_sioimath_is_divisible_by(isl_sioimath_src lhs, isl_sioimath_src rhs) { isl_sioimath_scratchspace_t lhsscratch, rhsscratch; int32_t lhssmall, rhssmall; mpz_t rem; int cmp; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) return lhssmall % rhssmall == 0; if (isl_sioimath_decode_small(rhs, &rhssmall)) return mp_int_divisible_value( isl_sioimath_bigarg_src(lhs, &lhsscratch), rhssmall); mp_int_init(&rem); mp_int_div(isl_sioimath_bigarg_src(lhs, &lhsscratch), isl_sioimath_bigarg_src(rhs, &rhsscratch), NULL, &rem); cmp = mp_int_compare_zero(&rem); mp_int_clear(&rem); return cmp == 0; } /* Return a hash code of an isl_sioimath. * The hash code for a number in small and big representation must be identical * on the same machine because small representation if not obligatory if fits. */ inline uint32_t isl_sioimath_hash(isl_sioimath_src arg, uint32_t hash) { int32_t small; int i; uint32_t num; mp_digit digits[(sizeof(uint32_t) + sizeof(mp_digit) - 1) / sizeof(mp_digit)]; mp_size used; const unsigned char *digitdata = (const unsigned char *) &digits; if (isl_sioimath_decode_small(arg, &small)) { if (small < 0) isl_hash_byte(hash, 0xFF); num = labs(small); isl_siomath_uint32_to_digits(num, digits, &used); for (i = 0; i < used * sizeof(mp_digit); i += 1) isl_hash_byte(hash, digitdata[i]); return hash; } return isl_imath_hash(isl_sioimath_get_big(arg), hash); } /* Return the number of digits in a number of the given base or more, i.e. the * string length without sign and null terminator. * * Current implementation for small representation returns the maximal number * of binary digits in that representation, which can be much larger than the * smallest possible solution. */ inline size_t isl_sioimath_sizeinbase(isl_sioimath_src arg, int base) { int32_t small; if (isl_sioimath_decode_small(arg, &small)) return sizeof(int32_t) * CHAR_BIT - 1; return impz_sizeinbase(isl_sioimath_get_big(arg), base); } void isl_sioimath_print(FILE *out, isl_sioimath_src i, int width); void isl_sioimath_dump(isl_sioimath_src arg); typedef isl_sioimath isl_int[1]; #define isl_int_init(i) isl_sioimath_init((i)) #define isl_int_clear(i) isl_sioimath_clear((i)) #define isl_int_set(r, i) isl_sioimath_set((r), *(i)) #define isl_int_set_si(r, i) isl_sioimath_set_si((r), i) #define isl_int_set_ui(r, i) isl_sioimath_set_ui((r), i) #define isl_int_fits_slong(r) isl_sioimath_fits_slong(*(r)) #define isl_int_get_si(r) isl_sioimath_get_si(*(r)) #define isl_int_fits_ulong(r) isl_sioimath_fits_ulong(*(r)) #define isl_int_get_ui(r) isl_sioimath_get_ui(*(r)) #define isl_int_get_d(r) isl_sioimath_get_d(*(r)) #define isl_int_get_str(r) isl_sioimath_get_str(*(r)) #define isl_int_abs(r, i) isl_sioimath_abs((r), *(i)) #define isl_int_neg(r, i) isl_sioimath_neg((r), *(i)) #define isl_int_swap(i, j) isl_sioimath_swap((i), (j)) #define isl_int_swap_or_set(i, j) isl_sioimath_swap((i), (j)) #define isl_int_add_ui(r, i, j) isl_sioimath_add_ui((r), *(i), j) #define isl_int_sub_ui(r, i, j) isl_sioimath_sub_ui((r), *(i), j) #define isl_int_add(r, i, j) isl_sioimath_add((r), *(i), *(j)) #define isl_int_sub(r, i, j) isl_sioimath_sub((r), *(i), *(j)) #define isl_int_mul(r, i, j) isl_sioimath_mul((r), *(i), *(j)) #define isl_int_mul_2exp(r, i, j) isl_sioimath_mul_2exp((r), *(i), j) #define isl_int_mul_si(r, i, j) isl_sioimath_mul_si((r), *(i), j) #define isl_int_mul_ui(r, i, j) isl_sioimath_mul_ui((r), *(i), j) #define isl_int_pow_ui(r, i, j) isl_sioimath_pow_ui((r), *(i), j) #define isl_int_addmul(r, i, j) isl_sioimath_addmul((r), *(i), *(j)) #define isl_int_addmul_ui(r, i, j) isl_sioimath_addmul_ui((r), *(i), j) #define isl_int_submul(r, i, j) isl_sioimath_submul((r), *(i), *(j)) #define isl_int_submul_ui(r, i, j) isl_sioimath_submul_ui((r), *(i), j) #define isl_int_gcd(r, i, j) isl_sioimath_gcd((r), *(i), *(j)) #define isl_int_lcm(r, i, j) isl_sioimath_lcm((r), *(i), *(j)) #define isl_int_divexact(r, i, j) isl_sioimath_tdiv_q((r), *(i), *(j)) #define isl_int_divexact_ui(r, i, j) isl_sioimath_tdiv_q_ui((r), *(i), j) #define isl_int_tdiv_q(r, i, j) isl_sioimath_tdiv_q((r), *(i), *(j)) #define isl_int_cdiv_q(r, i, j) isl_sioimath_cdiv_q((r), *(i), *(j)) #define isl_int_fdiv_q(r, i, j) isl_sioimath_fdiv_q((r), *(i), *(j)) #define isl_int_fdiv_r(r, i, j) isl_sioimath_fdiv_r((r), *(i), *(j)) #define isl_int_fdiv_q_ui(r, i, j) isl_sioimath_fdiv_q_ui((r), *(i), j) #define isl_int_read(r, s) isl_sioimath_read((r), s) #define isl_int_sgn(i) isl_sioimath_sgn(*(i)) #define isl_int_cmp(i, j) isl_sioimath_cmp(*(i), *(j)) #define isl_int_cmp_si(i, si) isl_sioimath_cmp_si(*(i), si) #define isl_int_eq(i, j) (isl_sioimath_cmp(*(i), *(j)) == 0) #define isl_int_ne(i, j) (isl_sioimath_cmp(*(i), *(j)) != 0) #define isl_int_lt(i, j) (isl_sioimath_cmp(*(i), *(j)) < 0) #define isl_int_le(i, j) (isl_sioimath_cmp(*(i), *(j)) <= 0) #define isl_int_gt(i, j) (isl_sioimath_cmp(*(i), *(j)) > 0) #define isl_int_ge(i, j) (isl_sioimath_cmp(*(i), *(j)) >= 0) #define isl_int_abs_cmp(i, j) isl_sioimath_abs_cmp(*(i), *(j)) #define isl_int_abs_eq(i, j) (isl_sioimath_abs_cmp(*(i), *(j)) == 0) #define isl_int_abs_ne(i, j) (isl_sioimath_abs_cmp(*(i), *(j)) != 0) #define isl_int_abs_lt(i, j) (isl_sioimath_abs_cmp(*(i), *(j)) < 0) #define isl_int_abs_gt(i, j) (isl_sioimath_abs_cmp(*(i), *(j)) > 0) #define isl_int_abs_ge(i, j) (isl_sioimath_abs_cmp(*(i), *(j)) >= 0) #define isl_int_is_divisible_by(i, j) isl_sioimath_is_divisible_by(*(i), *(j)) #define isl_int_hash(v, h) isl_sioimath_hash(*(v), h) #define isl_int_free_str(s) free(s) #define isl_int_print(out, i, width) isl_sioimath_print(out, *(i), width) #endif /* ISL_INT_SIOIMATH_H */ isl-0.16.1/isl_ast_int.c0000664000175000017500000000057412645737060012005 00000000000000#include #include #include int isl_ast_expr_get_int(__isl_keep isl_ast_expr *expr, isl_int *v) { if (!expr) return -1; if (expr->type != isl_ast_expr_int) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an int", return -1); return isl_val_get_num_isl_int(expr->u.v, v); } isl-0.16.1/isl_multi_templ.h0000664000175000017500000000031612645737061012677 00000000000000#include #include struct MULTI(BASE) { int ref; isl_space *space; int n; EL *p[1]; }; __isl_give MULTI(BASE) *CAT(MULTI(BASE),_alloc)(__isl_take isl_space *space); isl-0.16.1/isl_multi_templ.c0000664000175000017500000010754412645737450012707 00000000000000/* * Copyright 2011 Sven Verdoolaege * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #define MULTI_NAME(BASE) "isl_multi_" #BASE #define xLIST(EL) EL ## _list #define LIST(EL) xLIST(EL) isl_ctx *FN(MULTI(BASE),get_ctx)(__isl_keep MULTI(BASE) *multi) { return multi ? isl_space_get_ctx(multi->space) : NULL; } __isl_give isl_space *FN(MULTI(BASE),get_space)(__isl_keep MULTI(BASE) *multi) { return multi ? isl_space_copy(multi->space) : NULL; } /* Return the position of the dimension of the given type and name * in "multi". * Return -1 if no such dimension can be found. */ int FN(MULTI(BASE),find_dim_by_name)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type, const char *name) { if (!multi) return -1; return isl_space_find_dim_by_name(multi->space, type, name); } __isl_give isl_space *FN(MULTI(BASE),get_domain_space)( __isl_keep MULTI(BASE) *multi) { return multi ? isl_space_domain(isl_space_copy(multi->space)) : NULL; } __isl_give MULTI(BASE) *FN(MULTI(BASE),alloc)(__isl_take isl_space *space) { isl_ctx *ctx; int n; MULTI(BASE) *multi; if (!space) return NULL; ctx = isl_space_get_ctx(space); n = isl_space_dim(space, isl_dim_out); multi = isl_calloc(ctx, MULTI(BASE), sizeof(MULTI(BASE)) + (n - 1) * sizeof(struct EL *)); if (!multi) goto error; multi->space = space; multi->n = n; multi->ref = 1; return multi; error: isl_space_free(space); return NULL; } __isl_give MULTI(BASE) *FN(MULTI(BASE),dup)(__isl_keep MULTI(BASE) *multi) { int i; MULTI(BASE) *dup; if (!multi) return NULL; dup = FN(MULTI(BASE),alloc)(isl_space_copy(multi->space)); if (!dup) return NULL; for (i = 0; i < multi->n; ++i) dup = FN(FN(MULTI(BASE),set),BASE)(dup, i, FN(EL,copy)(multi->p[i])); return dup; } __isl_give MULTI(BASE) *FN(MULTI(BASE),cow)(__isl_take MULTI(BASE) *multi) { if (!multi) return NULL; if (multi->ref == 1) return multi; multi->ref--; return FN(MULTI(BASE),dup)(multi); } __isl_give MULTI(BASE) *FN(MULTI(BASE),copy)(__isl_keep MULTI(BASE) *multi) { if (!multi) return NULL; multi->ref++; return multi; } __isl_null MULTI(BASE) *FN(MULTI(BASE),free)(__isl_take MULTI(BASE) *multi) { int i; if (!multi) return NULL; if (--multi->ref > 0) return NULL; isl_space_free(multi->space); for (i = 0; i < multi->n; ++i) FN(EL,free)(multi->p[i]); free(multi); return NULL; } #ifndef NO_DIMS /* Check whether "multi" has non-zero coefficients for any dimension * in the given range or if any of these dimensions appear * with non-zero coefficients in any of the integer divisions involved. */ isl_bool FN(MULTI(BASE),involves_dims)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!multi) return isl_bool_error; if (multi->n == 0 || n == 0) return isl_bool_false; for (i = 0; i < multi->n; ++i) { isl_bool involves; involves = FN(EL,involves_dims)(multi->p[i], type, first, n); if (involves < 0 || involves) return involves; } return isl_bool_false; } __isl_give MULTI(BASE) *FN(MULTI(BASE),insert_dims)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!multi) return NULL; if (type == isl_dim_out) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "cannot insert output/set dimensions", return FN(MULTI(BASE),free)(multi)); if (n == 0 && !isl_space_is_named_or_nested(multi->space, type)) return multi; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; multi->space = isl_space_insert_dims(multi->space, type, first, n); if (!multi->space) return FN(MULTI(BASE),free)(multi); for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,insert_dims)(multi->p[i], type, first, n); if (!multi->p[i]) return FN(MULTI(BASE),free)(multi); } return multi; } __isl_give MULTI(BASE) *FN(MULTI(BASE),add_dims)(__isl_take MULTI(BASE) *multi, enum isl_dim_type type, unsigned n) { unsigned pos; pos = FN(MULTI(BASE),dim)(multi, type); return FN(MULTI(BASE),insert_dims)(multi, type, pos, n); } #endif unsigned FN(MULTI(BASE),dim)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type) { return multi ? isl_space_dim(multi->space, type) : 0; } /* Return the position of the first dimension of "type" with id "id". * Return -1 if there is no such dimension. */ int FN(MULTI(BASE),find_dim_by_id)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type, __isl_keep isl_id *id) { if (!multi) return -1; return isl_space_find_dim_by_id(multi->space, type, id); } /* Return the id of the given dimension. */ __isl_give isl_id *FN(MULTI(BASE),get_dim_id)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type, unsigned pos) { return multi ? isl_space_get_dim_id(multi->space, type, pos) : NULL; } __isl_give MULTI(BASE) *FN(MULTI(BASE),set_dim_name)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type, unsigned pos, const char *s) { int i; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; multi->space = isl_space_set_dim_name(multi->space, type, pos, s); if (!multi->space) return FN(MULTI(BASE),free)(multi); if (type == isl_dim_out) return multi; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,set_dim_name)(multi->p[i], type, pos, s); if (!multi->p[i]) return FN(MULTI(BASE),free)(multi); } return multi; } const char *FN(MULTI(BASE),get_tuple_name)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type) { return multi ? isl_space_get_tuple_name(multi->space, type) : NULL; } /* Does the specified tuple have an id? */ isl_bool FN(MULTI(BASE),has_tuple_id)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type) { if (!multi) return isl_bool_error; return isl_space_has_tuple_id(multi->space, type); } /* Return the id of the specified tuple. */ __isl_give isl_id *FN(MULTI(BASE),get_tuple_id)(__isl_keep MULTI(BASE) *multi, enum isl_dim_type type) { return multi ? isl_space_get_tuple_id(multi->space, type) : NULL; } __isl_give EL *FN(FN(MULTI(BASE),get),BASE)(__isl_keep MULTI(BASE) *multi, int pos) { isl_ctx *ctx; if (!multi) return NULL; ctx = FN(MULTI(BASE),get_ctx)(multi); if (pos < 0 || pos >= multi->n) isl_die(ctx, isl_error_invalid, "index out of bounds", return NULL); return FN(EL,copy)(multi->p[pos]); } __isl_give MULTI(BASE) *FN(FN(MULTI(BASE),set),BASE)( __isl_take MULTI(BASE) *multi, int pos, __isl_take EL *el) { isl_space *multi_space = NULL; isl_space *el_space = NULL; int match; multi = FN(MULTI(BASE),cow)(multi); if (!multi || !el) goto error; multi_space = FN(MULTI(BASE),get_space)(multi); match = FN(EL,matching_params)(el, multi_space); if (match < 0) goto error; if (!match) { multi = FN(MULTI(BASE),align_params)(multi, FN(EL,get_space)(el)); isl_space_free(multi_space); multi_space = FN(MULTI(BASE),get_space)(multi); el = FN(EL,align_params)(el, isl_space_copy(multi_space)); } if (FN(EL,check_match_domain_space)(el, multi_space) < 0) goto error; if (pos < 0 || pos >= multi->n) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "index out of bounds", goto error); FN(EL,free)(multi->p[pos]); multi->p[pos] = el; isl_space_free(multi_space); isl_space_free(el_space); return multi; error: FN(MULTI(BASE),free)(multi); FN(EL,free)(el); isl_space_free(multi_space); isl_space_free(el_space); return NULL; } /* Reset the space of "multi". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both, * which we pass along to the element function since we don't how * that is represented either. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),reset_space_and_domain)( __isl_take MULTI(BASE) *multi, __isl_take isl_space *space, __isl_take isl_space *domain) { int i; multi = FN(MULTI(BASE),cow)(multi); if (!multi || !space || !domain) goto error; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,reset_domain_space)(multi->p[i], isl_space_copy(domain)); if (!multi->p[i]) goto error; } isl_space_free(domain); isl_space_free(multi->space); multi->space = space; return multi; error: isl_space_free(domain); isl_space_free(space); FN(MULTI(BASE),free)(multi); return NULL; } __isl_give MULTI(BASE) *FN(MULTI(BASE),reset_domain_space)( __isl_take MULTI(BASE) *multi, __isl_take isl_space *domain) { isl_space *space; space = isl_space_extend_domain_with_range(isl_space_copy(domain), isl_space_copy(multi->space)); return FN(MULTI(BASE),reset_space_and_domain)(multi, space, domain); } __isl_give MULTI(BASE) *FN(MULTI(BASE),reset_space)( __isl_take MULTI(BASE) *multi, __isl_take isl_space *space) { isl_space *domain; domain = isl_space_domain(isl_space_copy(space)); return FN(MULTI(BASE),reset_space_and_domain)(multi, space, domain); } /* Set the id of the given dimension of "multi" to "id". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),set_dim_id)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { isl_space *space; multi = FN(MULTI(BASE),cow)(multi); if (!multi || !id) goto error; space = FN(MULTI(BASE),get_space)(multi); space = isl_space_set_dim_id(space, type, pos, id); return FN(MULTI(BASE),reset_space)(multi, space); error: isl_id_free(id); FN(MULTI(BASE),free)(multi); return NULL; } __isl_give MULTI(BASE) *FN(MULTI(BASE),set_tuple_name)( __isl_keep MULTI(BASE) *multi, enum isl_dim_type type, const char *s) { isl_space *space; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; space = FN(MULTI(BASE),get_space)(multi); space = isl_space_set_tuple_name(space, type, s); return FN(MULTI(BASE),reset_space)(multi, space); } __isl_give MULTI(BASE) *FN(MULTI(BASE),set_tuple_id)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type, __isl_take isl_id *id) { isl_space *space; multi = FN(MULTI(BASE),cow)(multi); if (!multi) goto error; space = FN(MULTI(BASE),get_space)(multi); space = isl_space_set_tuple_id(space, type, id); return FN(MULTI(BASE),reset_space)(multi, space); error: isl_id_free(id); return NULL; } /* Drop the id on the specified tuple. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),reset_tuple_id)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type) { isl_space *space; if (!multi) return NULL; if (!FN(MULTI(BASE),has_tuple_id)(multi, type)) return multi; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; space = FN(MULTI(BASE),get_space)(multi); space = isl_space_reset_tuple_id(space, type); return FN(MULTI(BASE),reset_space)(multi, space); } /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "multi". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),reset_user)( __isl_take MULTI(BASE) *multi) { isl_space *space; space = FN(MULTI(BASE),get_space)(multi); space = isl_space_reset_user(space); return FN(MULTI(BASE),reset_space)(multi, space); } __isl_give MULTI(BASE) *FN(MULTI(BASE),realign_domain)( __isl_take MULTI(BASE) *multi, __isl_take isl_reordering *exp) { int i; multi = FN(MULTI(BASE),cow)(multi); if (!multi || !exp) goto error; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,realign_domain)(multi->p[i], isl_reordering_copy(exp)); if (!multi->p[i]) goto error; } multi = FN(MULTI(BASE),reset_domain_space)(multi, isl_space_copy(exp->dim)); isl_reordering_free(exp); return multi; error: isl_reordering_free(exp); FN(MULTI(BASE),free)(multi); return NULL; } /* Align the parameters of "multi" to those of "model". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),align_params)( __isl_take MULTI(BASE) *multi, __isl_take isl_space *model) { isl_ctx *ctx; isl_reordering *exp; if (!multi || !model) goto error; if (isl_space_match(multi->space, isl_dim_param, model, isl_dim_param)) { isl_space_free(model); return multi; } ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(multi->space)) isl_die(ctx, isl_error_invalid, "input has unnamed parameters", goto error); model = isl_space_params(model); exp = isl_parameter_alignment_reordering(multi->space, model); exp = isl_reordering_extend_space(exp, FN(MULTI(BASE),get_domain_space)(multi)); multi = FN(MULTI(BASE),realign_domain)(multi, exp); isl_space_free(model); return multi; error: isl_space_free(model); FN(MULTI(BASE),free)(multi); return NULL; } __isl_give MULTI(BASE) *FN(FN(MULTI(BASE),from),LIST(BASE))( __isl_take isl_space *space, __isl_take LIST(EL) *list) { int i; int n; isl_ctx *ctx; MULTI(BASE) *multi; if (!space || !list) goto error; ctx = isl_space_get_ctx(space); n = FN(FN(LIST(EL),n),BASE)(list); if (n != isl_space_dim(space, isl_dim_out)) isl_die(ctx, isl_error_invalid, "invalid number of elements in list", goto error); multi = FN(MULTI(BASE),alloc)(isl_space_copy(space)); for (i = 0; i < n; ++i) { multi = FN(FN(MULTI(BASE),set),BASE)(multi, i, FN(FN(LIST(EL),get),BASE)(list, i)); } isl_space_free(space); FN(LIST(EL),free)(list); return multi; error: isl_space_free(space); FN(LIST(EL),free)(list); return NULL; } #ifndef NO_IDENTITY /* Create a multi expression in the given space that maps each * input dimension to the corresponding output dimension. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),identity)(__isl_take isl_space *space) { int i, n; isl_local_space *ls; MULTI(BASE) *multi; if (!space) return NULL; if (isl_space_is_set(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "expecting map space", goto error); n = isl_space_dim(space, isl_dim_out); if (n != isl_space_dim(space, isl_dim_in)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "number of input and output dimensions needs to be " "the same", goto error); multi = FN(MULTI(BASE),alloc)(isl_space_copy(space)); if (!n) { isl_space_free(space); return multi; } space = isl_space_domain(space); ls = isl_local_space_from_space(space); for (i = 0; i < n; ++i) { EL *el; el = FN(EL,var_on_domain)(isl_local_space_copy(ls), isl_dim_set, i); multi = FN(FN(MULTI(BASE),set),BASE)(multi, i, el); } isl_local_space_free(ls); return multi; error: isl_space_free(space); return NULL; } #endif #ifndef NO_ZERO /* Construct a multi expression in the given space with value zero in * each of the output dimensions. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),zero)(__isl_take isl_space *space) { int n; MULTI(BASE) *multi; if (!space) return NULL; n = isl_space_dim(space , isl_dim_out); multi = FN(MULTI(BASE),alloc)(isl_space_copy(space)); if (!n) isl_space_free(space); else { int i; isl_local_space *ls; EL *el; space = isl_space_domain(space); ls = isl_local_space_from_space(space); el = FN(EL,zero_on_domain)(ls); for (i = 0; i < n; ++i) multi = FN(FN(MULTI(BASE),set),BASE)(multi, i, FN(EL,copy)(el)); FN(EL,free)(el); } return multi; } #endif #ifndef NO_FROM_BASE /* Create a multiple expression with a single output/set dimension * equal to "el". * For most multiple expression types, the base type has a single * output/set dimension and the space of the result is therefore * the same as the space of the input. * In the case of isl_multi_union_pw_aff, however, the base type * lives in a parameter space and we therefore need to add * a single set dimension. */ __isl_give MULTI(BASE) *FN(FN(MULTI(BASE),from),BASE)(__isl_take EL *el) { isl_space *space; MULTI(BASE) *multi; space = FN(EL,get_space(el)); if (isl_space_is_params(space)) { space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, 1); } multi = FN(MULTI(BASE),alloc)(space); multi = FN(FN(MULTI(BASE),set),BASE)(multi, 0, el); return multi; } #endif __isl_give MULTI(BASE) *FN(MULTI(BASE),drop_dims)( __isl_take MULTI(BASE) *multi, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; dim = FN(MULTI(BASE),dim)(multi, type); if (first + n > dim || first + n < first) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "index out of bounds", return FN(MULTI(BASE),cow)(multi)); multi->space = isl_space_drop_dims(multi->space, type, first, n); if (!multi->space) return FN(MULTI(BASE),cow)(multi); if (type == isl_dim_out) { for (i = 0; i < n; ++i) FN(EL,free)(multi->p[first + i]); for (i = first; i + n < multi->n; ++i) multi->p[i] = multi->p[i + n]; multi->n -= n; return multi; } for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,drop_dims)(multi->p[i], type, first, n); if (!multi->p[i]) return FN(MULTI(BASE),cow)(multi); } return multi; } /* Align the parameters of "multi1" and "multi2" (if needed) and call "fn". */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),align_params_multi_multi_and)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2, __isl_give MULTI(BASE) *(*fn)(__isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2)) { isl_ctx *ctx; if (!multi1 || !multi2) goto error; if (isl_space_match(multi1->space, isl_dim_param, multi2->space, isl_dim_param)) return fn(multi1, multi2); ctx = FN(MULTI(BASE),get_ctx)(multi1); if (!isl_space_has_named_params(multi1->space) || !isl_space_has_named_params(multi2->space)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); multi1 = FN(MULTI(BASE),align_params)(multi1, FN(MULTI(BASE),get_space)(multi2)); multi2 = FN(MULTI(BASE),align_params)(multi2, FN(MULTI(BASE),get_space)(multi1)); return fn(multi1, multi2); error: FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return NULL; } /* Given two MULTI(BASE)s A -> B and C -> D, * construct a MULTI(BASE) (A * C) -> [B -> D]. * * The parameters are assumed to have been aligned. */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),range_product_aligned)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { int i, n1, n2; EL *el; isl_space *space; MULTI(BASE) *res; if (!multi1 || !multi2) goto error; space = isl_space_range_product(FN(MULTI(BASE),get_space)(multi1), FN(MULTI(BASE),get_space)(multi2)); res = FN(MULTI(BASE),alloc)(space); n1 = FN(MULTI(BASE),dim)(multi1, isl_dim_out); n2 = FN(MULTI(BASE),dim)(multi2, isl_dim_out); for (i = 0; i < n1; ++i) { el = FN(FN(MULTI(BASE),get),BASE)(multi1, i); res = FN(FN(MULTI(BASE),set),BASE)(res, i, el); } for (i = 0; i < n2; ++i) { el = FN(FN(MULTI(BASE),get),BASE)(multi2, i); res = FN(FN(MULTI(BASE),set),BASE)(res, n1 + i, el); } FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return res; error: FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return NULL; } /* Given two MULTI(BASE)s A -> B and C -> D, * construct a MULTI(BASE) (A * C) -> [B -> D]. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),range_product)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),align_params_multi_multi_and)(multi1, multi2, &FN(MULTI(BASE),range_product_aligned)); } /* Is the range of "multi" a wrapped relation? */ isl_bool FN(MULTI(BASE),range_is_wrapping)(__isl_keep MULTI(BASE) *multi) { if (!multi) return isl_bool_error; return isl_space_range_is_wrapping(multi->space); } /* Given a function A -> [B -> C], extract the function A -> B. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),range_factor_domain)( __isl_take MULTI(BASE) *multi) { isl_space *space; int total, keep; if (!multi) return NULL; if (!isl_space_range_is_wrapping(multi->space)) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "range is not a product", return FN(MULTI(BASE),free)(multi)); space = FN(MULTI(BASE),get_space)(multi); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_domain(space); keep = isl_space_dim(space, isl_dim_out); multi = FN(MULTI(BASE),drop_dims)(multi, isl_dim_out, keep, total - keep); multi = FN(MULTI(BASE),reset_space)(multi, space); return multi; } /* Given a function A -> [B -> C], extract the function A -> C. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),range_factor_range)( __isl_take MULTI(BASE) *multi) { isl_space *space; int total, keep; if (!multi) return NULL; if (!isl_space_range_is_wrapping(multi->space)) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "range is not a product", return FN(MULTI(BASE),free)(multi)); space = FN(MULTI(BASE),get_space)(multi); total = isl_space_dim(space, isl_dim_out); space = isl_space_range_factor_range(space); keep = isl_space_dim(space, isl_dim_out); multi = FN(MULTI(BASE),drop_dims)(multi, isl_dim_out, 0, total - keep); multi = FN(MULTI(BASE),reset_space)(multi, space); return multi; } /* Given a function [B -> C], extract the function C. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),factor_range)( __isl_take MULTI(BASE) *multi) { isl_space *space; int total, keep; if (!multi) return NULL; if (!isl_space_is_wrapping(multi->space)) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "not a product", return FN(MULTI(BASE),free)(multi)); space = FN(MULTI(BASE),get_space)(multi); total = isl_space_dim(space, isl_dim_out); space = isl_space_factor_range(space); keep = isl_space_dim(space, isl_dim_out); multi = FN(MULTI(BASE),drop_dims)(multi, isl_dim_out, 0, total - keep); multi = FN(MULTI(BASE),reset_space)(multi, space); return multi; } #ifndef NO_PRODUCT /* Given two MULTI(BASE)s A -> B and C -> D, * construct a MULTI(BASE) [A -> C] -> [B -> D]. * * The parameters are assumed to have been aligned. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),product_aligned)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { int i; EL *el; isl_space *space; MULTI(BASE) *res; int in1, in2, out1, out2; in1 = FN(MULTI(BASE),dim)(multi1, isl_dim_in); in2 = FN(MULTI(BASE),dim)(multi2, isl_dim_in); out1 = FN(MULTI(BASE),dim)(multi1, isl_dim_out); out2 = FN(MULTI(BASE),dim)(multi2, isl_dim_out); space = isl_space_product(FN(MULTI(BASE),get_space)(multi1), FN(MULTI(BASE),get_space)(multi2)); res = FN(MULTI(BASE),alloc)(isl_space_copy(space)); space = isl_space_domain(space); for (i = 0; i < out1; ++i) { el = FN(FN(MULTI(BASE),get),BASE)(multi1, i); el = FN(EL,insert_dims)(el, isl_dim_in, in1, in2); el = FN(EL,reset_domain_space)(el, isl_space_copy(space)); res = FN(FN(MULTI(BASE),set),BASE)(res, i, el); } for (i = 0; i < out2; ++i) { el = FN(FN(MULTI(BASE),get),BASE)(multi2, i); el = FN(EL,insert_dims)(el, isl_dim_in, 0, in1); el = FN(EL,reset_domain_space)(el, isl_space_copy(space)); res = FN(FN(MULTI(BASE),set),BASE)(res, out1 + i, el); } isl_space_free(space); FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return res; } /* Given two MULTI(BASE)s A -> B and C -> D, * construct a MULTI(BASE) [A -> C] -> [B -> D]. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),product)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),align_params_multi_multi_and)(multi1, multi2, &FN(MULTI(BASE),product_aligned)); } #endif __isl_give MULTI(BASE) *FN(MULTI(BASE),flatten_range)( __isl_take MULTI(BASE) *multi) { if (!multi) return NULL; if (!multi->space->nested[1]) return multi; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; multi->space = isl_space_flatten_range(multi->space); if (!multi->space) return FN(MULTI(BASE),free)(multi); return multi; } /* Given two MULTI(BASE)s A -> B and C -> D, * construct a MULTI(BASE) (A * C) -> (B, D). */ __isl_give MULTI(BASE) *FN(MULTI(BASE),flat_range_product)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { MULTI(BASE) *multi; multi = FN(MULTI(BASE),range_product)(multi1, multi2); multi = FN(MULTI(BASE),flatten_range)(multi); return multi; } /* Given two multi expressions, "multi1" * * [A] -> [B1 B2] * * where B2 starts at position "pos", and "multi2" * * [A] -> [D] * * return the multi expression * * [A] -> [B1 D B2] */ __isl_give MULTI(BASE) *FN(MULTI(BASE),range_splice)( __isl_take MULTI(BASE) *multi1, unsigned pos, __isl_take MULTI(BASE) *multi2) { MULTI(BASE) *res; unsigned dim; if (!multi1 || !multi2) goto error; dim = FN(MULTI(BASE),dim)(multi1, isl_dim_out); if (pos > dim) isl_die(FN(MULTI(BASE),get_ctx)(multi1), isl_error_invalid, "index out of bounds", goto error); res = FN(MULTI(BASE),copy)(multi1); res = FN(MULTI(BASE),drop_dims)(res, isl_dim_out, pos, dim - pos); multi1 = FN(MULTI(BASE),drop_dims)(multi1, isl_dim_out, 0, pos); res = FN(MULTI(BASE),flat_range_product)(res, multi2); res = FN(MULTI(BASE),flat_range_product)(res, multi1); return res; error: FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return NULL; } #ifndef NO_SPLICE /* Given two multi expressions, "multi1" * * [A1 A2] -> [B1 B2] * * where A2 starts at position "in_pos" and B2 starts at position "out_pos", * and "multi2" * * [C] -> [D] * * return the multi expression * * [A1 C A2] -> [B1 D B2] * * We first insert input dimensions to obtain * * [A1 C A2] -> [B1 B2] * * and * * [A1 C A2] -> [D] * * and then apply range_splice. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),splice)( __isl_take MULTI(BASE) *multi1, unsigned in_pos, unsigned out_pos, __isl_take MULTI(BASE) *multi2) { unsigned n_in1; unsigned n_in2; if (!multi1 || !multi2) goto error; n_in1 = FN(MULTI(BASE),dim)(multi1, isl_dim_in); if (in_pos > n_in1) isl_die(FN(MULTI(BASE),get_ctx)(multi1), isl_error_invalid, "index out of bounds", goto error); n_in2 = FN(MULTI(BASE),dim)(multi2, isl_dim_in); multi1 = FN(MULTI(BASE),insert_dims)(multi1, isl_dim_in, in_pos, n_in2); multi2 = FN(MULTI(BASE),insert_dims)(multi2, isl_dim_in, n_in2, n_in1 - in_pos); multi2 = FN(MULTI(BASE),insert_dims)(multi2, isl_dim_in, 0, in_pos); return FN(MULTI(BASE),range_splice)(multi1, out_pos, multi2); error: FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return NULL; } #endif /* This function is currently only used from isl_aff.c */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),bin_op)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2, __isl_give EL *(*fn)(__isl_take EL *, __isl_take EL *)) __attribute__ ((unused)); /* Pairwise perform "fn" to the elements of "multi1" and "multi2" and * return the result. */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),bin_op)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2, __isl_give EL *(*fn)(__isl_take EL *, __isl_take EL *)) { int i; isl_ctx *ctx; multi1 = FN(MULTI(BASE),cow)(multi1); if (!multi1 || !multi2) goto error; ctx = FN(MULTI(BASE),get_ctx)(multi1); if (!isl_space_is_equal(multi1->space, multi2->space)) isl_die(ctx, isl_error_invalid, "spaces don't match", goto error); for (i = 0; i < multi1->n; ++i) { multi1->p[i] = fn(multi1->p[i], FN(EL,copy)(multi2->p[i])); if (!multi1->p[i]) goto error; } FN(MULTI(BASE),free)(multi2); return multi1; error: FN(MULTI(BASE),free)(multi1); FN(MULTI(BASE),free)(multi2); return NULL; } /* Add "multi2" from "multi1" and return the result. * * The parameters of "multi1" and "multi2" are assumed to have been aligned. */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),add_aligned)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),bin_op)(multi1, multi2, &FN(EL,add)); } /* Add "multi2" from "multi1" and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),add)(__isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),align_params_multi_multi_and)(multi1, multi2, &FN(MULTI(BASE),add_aligned)); } /* Subtract "multi2" from "multi1" and return the result. * * The parameters of "multi1" and "multi2" are assumed to have been aligned. */ static __isl_give MULTI(BASE) *FN(MULTI(BASE),sub_aligned)( __isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),bin_op)(multi1, multi2, &FN(EL,sub)); } /* Subtract "multi2" from "multi1" and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),sub)(__isl_take MULTI(BASE) *multi1, __isl_take MULTI(BASE) *multi2) { return FN(MULTI(BASE),align_params_multi_multi_and)(multi1, multi2, &FN(MULTI(BASE),sub_aligned)); } /* Multiply the elements of "multi" by "v" and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),scale_val)(__isl_take MULTI(BASE) *multi, __isl_take isl_val *v) { int i; if (!multi || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return multi; } if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational factor", goto error); multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,scale_val)(multi->p[i], isl_val_copy(v)); if (!multi->p[i]) goto error; } isl_val_free(v); return multi; error: isl_val_free(v); return FN(MULTI(BASE),free)(multi); } /* Divide the elements of "multi" by "v" and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),scale_down_val)( __isl_take MULTI(BASE) *multi, __isl_take isl_val *v) { int i; if (!multi || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return multi; } if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,scale_down_val)(multi->p[i], isl_val_copy(v)); if (!multi->p[i]) goto error; } isl_val_free(v); return multi; error: isl_val_free(v); return FN(MULTI(BASE),free)(multi); } /* Multiply the elements of "multi" by the corresponding element of "mv" * and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),scale_multi_val)( __isl_take MULTI(BASE) *multi, __isl_take isl_multi_val *mv) { int i; if (!multi || !mv) goto error; if (!isl_space_tuple_is_equal(multi->space, isl_dim_out, mv->space, isl_dim_set)) isl_die(isl_multi_val_get_ctx(mv), isl_error_invalid, "spaces don't match", goto error); multi = FN(MULTI(BASE),cow)(multi); if (!multi) goto error; for (i = 0; i < multi->n; ++i) { isl_val *v; v = isl_multi_val_get_val(mv, i); multi->p[i] = FN(EL,scale_val)(multi->p[i], v); if (!multi->p[i]) goto error; } isl_multi_val_free(mv); return multi; error: isl_multi_val_free(mv); return FN(MULTI(BASE),free)(multi); } /* Divide the elements of "multi" by the corresponding element of "mv" * and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),scale_down_multi_val)( __isl_take MULTI(BASE) *multi, __isl_take isl_multi_val *mv) { int i; if (!multi || !mv) goto error; if (!isl_space_tuple_is_equal(multi->space, isl_dim_out, mv->space, isl_dim_set)) isl_die(isl_multi_val_get_ctx(mv), isl_error_invalid, "spaces don't match", goto error); multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { isl_val *v; v = isl_multi_val_get_val(mv, i); multi->p[i] = FN(EL,scale_down_val)(multi->p[i], v); if (!multi->p[i]) goto error; } isl_multi_val_free(mv); return multi; error: isl_multi_val_free(mv); return FN(MULTI(BASE),free)(multi); } /* Compute the residues of the elements of "multi" modulo * the corresponding element of "mv" and return the result. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),mod_multi_val)( __isl_take MULTI(BASE) *multi, __isl_take isl_multi_val *mv) { int i; if (!multi || !mv) goto error; if (!isl_space_tuple_is_equal(multi->space, isl_dim_out, mv->space, isl_dim_set)) isl_die(isl_multi_val_get_ctx(mv), isl_error_invalid, "spaces don't match", goto error); multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { isl_val *v; v = isl_multi_val_get_val(mv, i); multi->p[i] = FN(EL,mod_val)(multi->p[i], v); if (!multi->p[i]) goto error; } isl_multi_val_free(mv); return multi; error: isl_multi_val_free(mv); return FN(MULTI(BASE),free)(multi); } #ifndef NO_MOVE_DIMS /* Move the "n" dimensions of "src_type" starting at "src_pos" of "multi" * to dimensions of "dst_type" at "dst_pos". * * We only support moving input dimensions to parameters and vice versa. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),move_dims)(__isl_take MULTI(BASE) *multi, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (!multi) return NULL; if (n == 0 && !isl_space_is_named_or_nested(multi->space, src_type) && !isl_space_is_named_or_nested(multi->space, dst_type)) return multi; if (dst_type == isl_dim_out || src_type == isl_dim_out) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "cannot move output/set dimension", return FN(MULTI(BASE),free)(multi)); if (dst_type == isl_dim_div || src_type == isl_dim_div) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "cannot move divs", return FN(MULTI(BASE),free)(multi)); if (src_pos + n > isl_space_dim(multi->space, src_type)) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "range out of bounds", return FN(MULTI(BASE),free)(multi)); if (dst_type == src_type) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_unsupported, "moving dims within the same type not supported", return FN(MULTI(BASE),free)(multi)); multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; multi->space = isl_space_move_dims(multi->space, dst_type, dst_pos, src_type, src_pos, n); if (!multi->space) return FN(MULTI(BASE),free)(multi); for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,move_dims)(multi->p[i], dst_type, dst_pos, src_type, src_pos, n); if (!multi->p[i]) return FN(MULTI(BASE),free)(multi); } return multi; } #endif /* Convert a multiple expression defined over a parameter domain * into one that is defined over a zero-dimensional set. */ __isl_give MULTI(BASE) *FN(MULTI(BASE),from_range)( __isl_take MULTI(BASE) *multi) { isl_space *space; if (!multi) return NULL; if (!isl_space_is_set(multi->space)) isl_die(FN(MULTI(BASE),get_ctx)(multi), isl_error_invalid, "not living in a set space", return FN(MULTI(BASE),free)(multi)); space = FN(MULTI(BASE),get_space)(multi); space = isl_space_from_range(space); multi = FN(MULTI(BASE),reset_space)(multi, space); return multi; } /* Are "multi1" and "multi2" obviously equal? */ isl_bool FN(MULTI(BASE),plain_is_equal)(__isl_keep MULTI(BASE) *multi1, __isl_keep MULTI(BASE) *multi2) { int i; isl_bool equal; if (!multi1 || !multi2) return isl_bool_error; if (multi1->n != multi2->n) return isl_bool_false; equal = isl_space_is_equal(multi1->space, multi2->space); if (equal < 0 || !equal) return equal; for (i = 0; i < multi1->n; ++i) { equal = FN(EL,plain_is_equal)(multi1->p[i], multi2->p[i]); if (equal < 0 || !equal) return equal; } return isl_bool_true; } #ifndef NO_DOMAIN /* Return the shared domain of the elements of "multi". */ __isl_give isl_set *FN(MULTI(BASE),domain)(__isl_take MULTI(BASE) *multi) { int i; isl_set *dom; if (!multi) return NULL; dom = isl_set_universe(FN(MULTI(BASE),get_domain_space)(multi)); for (i = 0; i < multi->n; ++i) { isl_set *dom_i; dom_i = FN(EL,domain)(FN(FN(MULTI(BASE),get),BASE)(multi, i)); dom = isl_set_intersect(dom, dom_i); } FN(MULTI(BASE),free)(multi); return dom; } #endif #ifndef NO_NEG /* Return the opposite of "multi". */ __isl_give MULTI(BASE) *FN(MULTI(BASE),neg)(__isl_take MULTI(BASE) *multi) { int i; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,neg)(multi->p[i]); if (!multi->p[i]) return FN(MULTI(BASE),free)(multi); } return multi; } #endif isl-0.16.1/isl_val_private.h0000664000175000017500000000450512645737061012664 00000000000000#ifndef ISL_VAL_PRIVATE_H #define ISL_VAL_PRIVATE_H #include #include #include #include /* Represents a "value", which may be an integer value, a rational value, * plus or minus infinity or "not a number". * * Internally, +infinity is represented as 1/0, * -infinity as -1/0 and NaN as 0/0. * * A rational value is always normalized before it is passed to the user. */ struct isl_val { int ref; isl_ctx *ctx; isl_int n; isl_int d; }; #undef EL #define EL isl_val #include __isl_give isl_val *isl_val_alloc(isl_ctx *ctx); __isl_give isl_val *isl_val_normalize(__isl_take isl_val *v); __isl_give isl_val *isl_val_int_from_isl_int(isl_ctx *ctx, isl_int n); __isl_give isl_val *isl_val_rat_from_isl_int(isl_ctx *ctx, isl_int n, isl_int d); __isl_give isl_val *isl_val_cow(__isl_take isl_val *val); int isl_val_involves_dims(__isl_keep isl_val *v, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_val *isl_val_insert_dims(__isl_take isl_val *v, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_val *isl_val_drop_dims(__isl_take isl_val *v, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_val *isl_val_set_dim_name(__isl_take isl_val *v, enum isl_dim_type type, unsigned pos, const char *s); __isl_give isl_space *isl_val_get_space(__isl_keep isl_val *v); __isl_give isl_val *isl_val_reset_domain_space(__isl_take isl_val *v, __isl_take isl_space *space); __isl_give isl_val *isl_val_align_params(__isl_take isl_val *v, __isl_take isl_space *space); __isl_give isl_val *isl_val_realign_domain(__isl_take isl_val *v, __isl_take isl_reordering *r); __isl_give isl_val *isl_val_zero_on_domain(__isl_take isl_local_space *ls); __isl_give isl_val *isl_val_scale_val(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_scale_down_val(__isl_take isl_val *v1, __isl_take isl_val *v2); __isl_give isl_val *isl_val_mod_val(__isl_take isl_val *v1, __isl_take isl_val *v2); int isl_val_plain_is_equal(__isl_keep isl_val *val1, __isl_keep isl_val *val2); int isl_val_matching_params(__isl_keep isl_val *v, __isl_keep isl_space *space); int isl_val_check_match_domain_space(__isl_keep isl_val *v, __isl_keep isl_space *space); #undef BASE #define BASE val #include #endif isl-0.16.1/isl_ast_build_expr.c0000664000175000017500000015662612645737060013362 00000000000000/* * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include /* Compute the "opposite" of the (numerator of the) argument of a div * with denonimator "d". * * In particular, compute * * -aff + (d - 1) */ static __isl_give isl_aff *oppose_div_arg(__isl_take isl_aff *aff, __isl_take isl_val *d) { aff = isl_aff_neg(aff); aff = isl_aff_add_constant_val(aff, d); aff = isl_aff_add_constant_si(aff, -1); return aff; } /* Internal data structure used inside isl_ast_expr_add_term. * The domain of "build" is used to simplify the expressions. * "build" needs to be set by the caller of isl_ast_expr_add_term. * "cst" is the constant term of the expression in which the added term * appears. It may be modified by isl_ast_expr_add_term. * * "v" is the coefficient of the term that is being constructed and * is set internally by isl_ast_expr_add_term. */ struct isl_ast_add_term_data { isl_ast_build *build; isl_val *cst; isl_val *v; }; /* Given the numerator "aff" of the argument of an integer division * with denominator "d", check if it can be made non-negative over * data->build->domain by stealing part of the constant term of * the expression in which the integer division appears. * * In particular, the outer expression is of the form * * v * floor(aff/d) + cst * * We already know that "aff" itself may attain negative values. * Here we check if aff + d*floor(cst/v) is non-negative, such * that we could rewrite the expression to * * v * floor((aff + d*floor(cst/v))/d) + cst - v*floor(cst/v) * * Note that aff + d*floor(cst/v) can only possibly be non-negative * if data->cst and data->v have the same sign. * Similarly, if floor(cst/v) is zero, then there is no point in * checking again. */ static int is_non_neg_after_stealing(__isl_keep isl_aff *aff, __isl_keep isl_val *d, struct isl_ast_add_term_data *data) { isl_aff *shifted; isl_val *shift; int is_zero; int non_neg; if (isl_val_sgn(data->cst) != isl_val_sgn(data->v)) return 0; shift = isl_val_div(isl_val_copy(data->cst), isl_val_copy(data->v)); shift = isl_val_floor(shift); is_zero = isl_val_is_zero(shift); if (is_zero < 0 || is_zero) { isl_val_free(shift); return is_zero < 0 ? -1 : 0; } shift = isl_val_mul(shift, isl_val_copy(d)); shifted = isl_aff_copy(aff); shifted = isl_aff_add_constant_val(shifted, shift); non_neg = isl_ast_build_aff_is_nonneg(data->build, shifted); isl_aff_free(shifted); return non_neg; } /* Given the numerator "aff' of the argument of an integer division * with denominator "d", steal part of the constant term of * the expression in which the integer division appears to make it * non-negative over data->build->domain. * * In particular, the outer expression is of the form * * v * floor(aff/d) + cst * * We know that "aff" itself may attain negative values, * but that aff + d*floor(cst/v) is non-negative. * Find the minimal positive value that we need to add to "aff" * to make it positive and adjust data->cst accordingly. * That is, compute the minimal value "m" of "aff" over * data->build->domain and take * * s = ceil(m/d) * * such that * * aff + d * s >= 0 * * and rewrite the expression to * * v * floor((aff + s*d)/d) + (cst - v*s) */ static __isl_give isl_aff *steal_from_cst(__isl_take isl_aff *aff, __isl_keep isl_val *d, struct isl_ast_add_term_data *data) { isl_set *domain; isl_val *shift, *t; domain = isl_ast_build_get_domain(data->build); shift = isl_set_min_val(domain, aff); isl_set_free(domain); shift = isl_val_neg(shift); shift = isl_val_div(shift, isl_val_copy(d)); shift = isl_val_ceil(shift); t = isl_val_copy(shift); t = isl_val_mul(t, isl_val_copy(data->v)); data->cst = isl_val_sub(data->cst, t); shift = isl_val_mul(shift, isl_val_copy(d)); return isl_aff_add_constant_val(aff, shift); } /* Create an isl_ast_expr evaluating the div at position "pos" in "ls". * The result is simplified in terms of data->build->domain. * This function may change (the sign of) data->v. * * "ls" is known to be non-NULL. * * Let the div be of the form floor(e/d). * If the ast_build_prefer_pdiv option is set then we check if "e" * is non-negative, so that we can generate * * (pdiv_q, expr(e), expr(d)) * * instead of * * (fdiv_q, expr(e), expr(d)) * * If the ast_build_prefer_pdiv option is set and * if "e" is not non-negative, then we check if "-e + d - 1" is non-negative. * If so, we can rewrite * * floor(e/d) = -ceil(-e/d) = -floor((-e + d - 1)/d) * * and still use pdiv_q, while changing the sign of data->v. * * Otherwise, we check if * * e + d*floor(cst/v) * * is non-negative and if so, replace floor(e/d) by * * floor((e + s*d)/d) - s * * with s the minimal shift that makes the argument non-negative. */ static __isl_give isl_ast_expr *var_div(struct isl_ast_add_term_data *data, __isl_keep isl_local_space *ls, int pos) { isl_ctx *ctx = isl_local_space_get_ctx(ls); isl_aff *aff; isl_ast_expr *num, *den; isl_val *d; enum isl_ast_op_type type; aff = isl_local_space_get_div(ls, pos); d = isl_aff_get_denominator_val(aff); aff = isl_aff_scale_val(aff, isl_val_copy(d)); den = isl_ast_expr_from_val(isl_val_copy(d)); type = isl_ast_op_fdiv_q; if (isl_options_get_ast_build_prefer_pdiv(ctx)) { int non_neg = isl_ast_build_aff_is_nonneg(data->build, aff); if (non_neg >= 0 && !non_neg) { isl_aff *opp = oppose_div_arg(isl_aff_copy(aff), isl_val_copy(d)); non_neg = isl_ast_build_aff_is_nonneg(data->build, opp); if (non_neg >= 0 && non_neg) { data->v = isl_val_neg(data->v); isl_aff_free(aff); aff = opp; } else isl_aff_free(opp); } if (non_neg >= 0 && !non_neg) { non_neg = is_non_neg_after_stealing(aff, d, data); if (non_neg >= 0 && non_neg) aff = steal_from_cst(aff, d, data); } if (non_neg < 0) aff = isl_aff_free(aff); else if (non_neg) type = isl_ast_op_pdiv_q; } isl_val_free(d); num = isl_ast_expr_from_aff(aff, data->build); return isl_ast_expr_alloc_binary(type, num, den); } /* Create an isl_ast_expr evaluating the specified dimension of "ls". * The result is simplified in terms of data->build->domain. * This function may change (the sign of) data->v. * * The isl_ast_expr is constructed based on the type of the dimension. * - divs are constructed by var_div * - set variables are constructed from the iterator isl_ids in data->build * - parameters are constructed from the isl_ids in "ls" */ static __isl_give isl_ast_expr *var(struct isl_ast_add_term_data *data, __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos) { isl_ctx *ctx = isl_local_space_get_ctx(ls); isl_id *id; if (type == isl_dim_div) return var_div(data, ls, pos); if (type == isl_dim_set) { id = isl_ast_build_get_iterator_id(data->build, pos); return isl_ast_expr_from_id(id); } if (!isl_local_space_has_dim_id(ls, type, pos)) isl_die(ctx, isl_error_internal, "unnamed dimension", return NULL); id = isl_local_space_get_dim_id(ls, type, pos); return isl_ast_expr_from_id(id); } /* Does "expr" represent the zero integer? */ static int ast_expr_is_zero(__isl_keep isl_ast_expr *expr) { if (!expr) return -1; if (expr->type != isl_ast_expr_int) return 0; return isl_val_is_zero(expr->u.v); } /* Create an expression representing the sum of "expr1" and "expr2", * provided neither of the two expressions is identically zero. */ static __isl_give isl_ast_expr *ast_expr_add(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { if (!expr1 || !expr2) goto error; if (ast_expr_is_zero(expr1)) { isl_ast_expr_free(expr1); return expr2; } if (ast_expr_is_zero(expr2)) { isl_ast_expr_free(expr2); return expr1; } return isl_ast_expr_add(expr1, expr2); error: isl_ast_expr_free(expr1); isl_ast_expr_free(expr2); return NULL; } /* Subtract expr2 from expr1. * * If expr2 is zero, we simply return expr1. * If expr1 is zero, we return * * (isl_ast_op_minus, expr2) * * Otherwise, we return * * (isl_ast_op_sub, expr1, expr2) */ static __isl_give isl_ast_expr *ast_expr_sub(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { if (!expr1 || !expr2) goto error; if (ast_expr_is_zero(expr2)) { isl_ast_expr_free(expr2); return expr1; } if (ast_expr_is_zero(expr1)) { isl_ast_expr_free(expr1); return isl_ast_expr_neg(expr2); } return isl_ast_expr_sub(expr1, expr2); error: isl_ast_expr_free(expr1); isl_ast_expr_free(expr2); return NULL; } /* Return an isl_ast_expr that represents * * v * (aff mod d) * * v is assumed to be non-negative. * The result is simplified in terms of build->domain. */ static __isl_give isl_ast_expr *isl_ast_expr_mod(__isl_keep isl_val *v, __isl_keep isl_aff *aff, __isl_keep isl_val *d, __isl_keep isl_ast_build *build) { isl_ast_expr *expr; isl_ast_expr *c; if (!aff) return NULL; expr = isl_ast_expr_from_aff(isl_aff_copy(aff), build); c = isl_ast_expr_from_val(isl_val_copy(d)); expr = isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr, c); if (!isl_val_is_one(v)) { c = isl_ast_expr_from_val(isl_val_copy(v)); expr = isl_ast_expr_mul(c, expr); } return expr; } /* Create an isl_ast_expr that scales "expr" by "v". * * If v is 1, we simply return expr. * If v is -1, we return * * (isl_ast_op_minus, expr) * * Otherwise, we return * * (isl_ast_op_mul, expr(v), expr) */ static __isl_give isl_ast_expr *scale(__isl_take isl_ast_expr *expr, __isl_take isl_val *v) { isl_ast_expr *c; if (!expr || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return expr; } if (isl_val_is_negone(v)) { isl_val_free(v); expr = isl_ast_expr_neg(expr); } else { c = isl_ast_expr_from_val(v); expr = isl_ast_expr_mul(c, expr); } return expr; error: isl_val_free(v); isl_ast_expr_free(expr); return NULL; } /* Add an expression for "*v" times the specified dimension of "ls" * to expr. * If the dimension is an integer division, then this function * may modify data->cst in order to make the numerator non-negative. * The result is simplified in terms of data->build->domain. * * Let e be the expression for the specified dimension, * multiplied by the absolute value of "*v". * If "*v" is negative, we create * * (isl_ast_op_sub, expr, e) * * except when expr is trivially zero, in which case we create * * (isl_ast_op_minus, e) * * instead. * * If "*v" is positive, we simply create * * (isl_ast_op_add, expr, e) * */ static __isl_give isl_ast_expr *isl_ast_expr_add_term( __isl_take isl_ast_expr *expr, __isl_keep isl_local_space *ls, enum isl_dim_type type, int pos, __isl_take isl_val *v, struct isl_ast_add_term_data *data) { isl_ast_expr *term; if (!expr) return NULL; data->v = v; term = var(data, ls, type, pos); v = data->v; if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) { v = isl_val_neg(v); term = scale(term, v); return ast_expr_sub(expr, term); } else { term = scale(term, v); return ast_expr_add(expr, term); } } /* Add an expression for "v" to expr. */ static __isl_give isl_ast_expr *isl_ast_expr_add_int( __isl_take isl_ast_expr *expr, __isl_take isl_val *v) { isl_ast_expr *expr_int; if (!expr || !v) goto error; if (isl_val_is_zero(v)) { isl_val_free(v); return expr; } if (isl_val_is_neg(v) && !ast_expr_is_zero(expr)) { v = isl_val_neg(v); expr_int = isl_ast_expr_from_val(v); return ast_expr_sub(expr, expr_int); } else { expr_int = isl_ast_expr_from_val(v); return ast_expr_add(expr, expr_int); } error: isl_ast_expr_free(expr); isl_val_free(v); return NULL; } /* Internal data structure used inside extract_modulos. * * If any modulo expressions are detected in "aff", then the * expression is removed from "aff" and added to either "pos" or "neg" * depending on the sign of the coefficient of the modulo expression * inside "aff". * * "add" is an expression that needs to be added to "aff" at the end of * the computation. It is NULL as long as no modulos have been extracted. * * "i" is the position in "aff" of the div under investigation * "v" is the coefficient in "aff" of the div * "div" is the argument of the div, with the denominator removed * "d" is the original denominator of the argument of the div * * "nonneg" is an affine expression that is non-negative over "build" * and that can be used to extract a modulo expression from "div". * In particular, if "sign" is 1, then the coefficients of "nonneg" * are equal to those of "div" modulo "d". If "sign" is -1, then * the coefficients of "nonneg" are opposite to those of "div" modulo "d". * If "sign" is 0, then no such affine expression has been found (yet). */ struct isl_extract_mod_data { isl_ast_build *build; isl_aff *aff; isl_ast_expr *pos; isl_ast_expr *neg; isl_aff *add; int i; isl_val *v; isl_val *d; isl_aff *div; isl_aff *nonneg; int sign; }; /* Given that data->v * div_i in data->aff is equal to * * f * (term - (arg mod d)) * * with data->d * f = data->v, add * * f * term * * to data->add and * * abs(f) * (arg mod d) * * to data->neg or data->pos depending on the sign of -f. */ static int extract_term_and_mod(struct isl_extract_mod_data *data, __isl_take isl_aff *term, __isl_take isl_aff *arg) { isl_ast_expr *expr; int s; data->v = isl_val_div(data->v, isl_val_copy(data->d)); s = isl_val_sgn(data->v); data->v = isl_val_abs(data->v); expr = isl_ast_expr_mod(data->v, arg, data->d, data->build); isl_aff_free(arg); if (s > 0) data->neg = ast_expr_add(data->neg, expr); else data->pos = ast_expr_add(data->pos, expr); data->aff = isl_aff_set_coefficient_si(data->aff, isl_dim_div, data->i, 0); if (s < 0) data->v = isl_val_neg(data->v); term = isl_aff_scale_val(data->div, isl_val_copy(data->v)); if (!data->add) data->add = term; else data->add = isl_aff_add(data->add, term); if (!data->add) return -1; return 0; } /* Given that data->v * div_i in data->aff is of the form * * f * d * floor(div/d) * * with div nonnegative on data->build, rewrite it as * * f * (div - (div mod d)) = f * div - f * (div mod d) * * and add * * f * div * * to data->add and * * abs(f) * (div mod d) * * to data->neg or data->pos depending on the sign of -f. */ static int extract_mod(struct isl_extract_mod_data *data) { return extract_term_and_mod(data, isl_aff_copy(data->div), isl_aff_copy(data->div)); } /* Given that data->v * div_i in data->aff is of the form * * f * d * floor(div/d) (1) * * check if div is non-negative on data->build and, if so, * extract the corresponding modulo from data->aff. * If not, then check if * * -div + d - 1 * * is non-negative on data->build. If so, replace (1) by * * -f * d * floor((-div + d - 1)/d) * * and extract the corresponding modulo from data->aff. * * This function may modify data->div. */ static int extract_nonneg_mod(struct isl_extract_mod_data *data) { int mod; mod = isl_ast_build_aff_is_nonneg(data->build, data->div); if (mod < 0) goto error; if (mod) return extract_mod(data); data->div = oppose_div_arg(data->div, isl_val_copy(data->d)); mod = isl_ast_build_aff_is_nonneg(data->build, data->div); if (mod < 0) goto error; if (mod) { data->v = isl_val_neg(data->v); return extract_mod(data); } return 0; error: data->aff = isl_aff_free(data->aff); return -1; } /* Is the affine expression of constraint "c" "simpler" than data->nonneg * for use in extracting a modulo expression? * * We currently only consider the constant term of the affine expression. * In particular, we prefer the affine expression with the smallest constant * term. * This means that if there are two constraints, say x >= 0 and -x + 10 >= 0, * then we would pick x >= 0 * * More detailed heuristics could be used if it turns out that there is a need. */ static int mod_constraint_is_simpler(struct isl_extract_mod_data *data, __isl_keep isl_constraint *c) { isl_val *v1, *v2; int simpler; if (!data->nonneg) return 1; v1 = isl_val_abs(isl_constraint_get_constant_val(c)); v2 = isl_val_abs(isl_aff_get_constant_val(data->nonneg)); simpler = isl_val_lt(v1, v2); isl_val_free(v1); isl_val_free(v2); return simpler; } /* Check if the coefficients of "c" are either equal or opposite to those * of data->div modulo data->d. If so, and if "c" is "simpler" than * data->nonneg, then replace data->nonneg by the affine expression of "c" * and set data->sign accordingly. * * Both "c" and data->div are assumed not to involve any integer divisions. * * Before we start the actual comparison, we first quickly check if * "c" and data->div have the same non-zero coefficients. * If not, then we assume that "c" is not of the desired form. * Note that while the coefficients of data->div can be reasonably expected * not to involve any coefficients that are multiples of d, "c" may * very well involve such coefficients. This means that we may actually * miss some cases. * * If the constant term is "too large", then the constraint is rejected, * where "too large" is fairly arbitrarily set to 1 << 15. * We do this to avoid picking up constraints that bound a variable * by a very large number, say the largest or smallest possible * variable in the representation of some integer type. */ static isl_stat check_parallel_or_opposite(__isl_take isl_constraint *c, void *user) { struct isl_extract_mod_data *data = user; enum isl_dim_type c_type[2] = { isl_dim_param, isl_dim_set }; enum isl_dim_type a_type[2] = { isl_dim_param, isl_dim_in }; int i, t; int n[2]; int parallel = 1, opposite = 1; for (t = 0; t < 2; ++t) { n[t] = isl_constraint_dim(c, c_type[t]); for (i = 0; i < n[t]; ++i) { int a, b; a = isl_constraint_involves_dims(c, c_type[t], i, 1); b = isl_aff_involves_dims(data->div, a_type[t], i, 1); if (a != b) parallel = opposite = 0; } } if (parallel || opposite) { isl_val *v; v = isl_val_abs(isl_constraint_get_constant_val(c)); if (isl_val_cmp_si(v, 1 << 15) > 0) parallel = opposite = 0; isl_val_free(v); } for (t = 0; t < 2; ++t) { for (i = 0; i < n[t]; ++i) { isl_val *v1, *v2; if (!parallel && !opposite) break; v1 = isl_constraint_get_coefficient_val(c, c_type[t], i); v2 = isl_aff_get_coefficient_val(data->div, a_type[t], i); if (parallel) { v1 = isl_val_sub(v1, isl_val_copy(v2)); parallel = isl_val_is_divisible_by(v1, data->d); v1 = isl_val_add(v1, isl_val_copy(v2)); } if (opposite) { v1 = isl_val_add(v1, isl_val_copy(v2)); opposite = isl_val_is_divisible_by(v1, data->d); } isl_val_free(v1); isl_val_free(v2); } } if ((parallel || opposite) && mod_constraint_is_simpler(data, c)) { isl_aff_free(data->nonneg); data->nonneg = isl_constraint_get_aff(c); data->sign = parallel ? 1 : -1; } isl_constraint_free(c); if (data->sign != 0 && data->nonneg == NULL) return isl_stat_error; return isl_stat_ok; } /* Given that data->v * div_i in data->aff is of the form * * f * d * floor(div/d) (1) * * see if we can find an expression div' that is non-negative over data->build * and that is related to div through * * div' = div + d * e * * or * * div' = -div + d - 1 + d * e * * with e some affine expression. * If so, we write (1) as * * f * div + f * (div' mod d) * * or * * -f * (-div + d - 1) - f * (div' mod d) * * exploiting (in the second case) the fact that * * f * d * floor(div/d) = -f * d * floor((-div + d - 1)/d) * * * We first try to find an appropriate expression for div' * from the constraints of data->build->domain (which is therefore * guaranteed to be non-negative on data->build), where we remove * any integer divisions from the constraints and skip this step * if "div" itself involves any integer divisions. * If we cannot find an appropriate expression this way, then * we pass control to extract_nonneg_mod where check * if div or "-div + d -1" themselves happen to be * non-negative on data->build. * * While looking for an appropriate constraint in data->build->domain, * we ignore the constant term, so after finding such a constraint, * we still need to fix up the constant term. * In particular, if a is the constant term of "div" * (or d - 1 - the constant term of "div" if data->sign < 0) * and b is the constant term of the constraint, then we need to find * a non-negative constant c such that * * b + c \equiv a mod d * * We therefore take * * c = (a - b) mod d * * and add it to b to obtain the constant term of div'. * If this constant term is "too negative", then we add an appropriate * multiple of d to make it positive. * * * Note that the above is a only a very simple heuristic for finding an * appropriate expression. We could try a bit harder by also considering * sums of constraints that involve disjoint sets of variables or * we could consider arbitrary linear combinations of constraints, * although that could potentially be much more expensive as it involves * the solution of an LP problem. * * In particular, if v_i is a column vector representing constraint i, * w represents div and e_i is the i-th unit vector, then we are looking * for a solution of the constraints * * \sum_i lambda_i v_i = w + \sum_i alpha_i d e_i * * with \lambda_i >= 0 and alpha_i of unrestricted sign. * If we are not just interested in a non-negative expression, but * also in one with a minimal range, then we don't just want * c = \sum_i lambda_i v_i to be non-negative over the domain, * but also beta - c = \sum_i mu_i v_i, where beta is a scalar * that we want to minimize and we now also have to take into account * the constant terms of the constraints. * Alternatively, we could first compute the dual of the domain * and plug in the constraints on the coefficients. */ static int try_extract_mod(struct isl_extract_mod_data *data) { isl_basic_set *hull; isl_val *v1, *v2; int r, n; if (!data->build) goto error; n = isl_aff_dim(data->div, isl_dim_div); if (isl_aff_involves_dims(data->div, isl_dim_div, 0, n)) return extract_nonneg_mod(data); hull = isl_set_simple_hull(isl_set_copy(data->build->domain)); hull = isl_basic_set_remove_divs(hull); data->sign = 0; data->nonneg = NULL; r = isl_basic_set_foreach_constraint(hull, &check_parallel_or_opposite, data); isl_basic_set_free(hull); if (!data->sign || r < 0) { isl_aff_free(data->nonneg); if (r < 0) goto error; return extract_nonneg_mod(data); } v1 = isl_aff_get_constant_val(data->div); v2 = isl_aff_get_constant_val(data->nonneg); if (data->sign < 0) { v1 = isl_val_neg(v1); v1 = isl_val_add(v1, isl_val_copy(data->d)); v1 = isl_val_sub_ui(v1, 1); } v1 = isl_val_sub(v1, isl_val_copy(v2)); v1 = isl_val_mod(v1, isl_val_copy(data->d)); v1 = isl_val_add(v1, v2); v2 = isl_val_div(isl_val_copy(v1), isl_val_copy(data->d)); v2 = isl_val_ceil(v2); if (isl_val_is_neg(v2)) { v2 = isl_val_mul(v2, isl_val_copy(data->d)); v1 = isl_val_sub(v1, isl_val_copy(v2)); } data->nonneg = isl_aff_set_constant_val(data->nonneg, v1); isl_val_free(v2); if (data->sign < 0) { data->div = oppose_div_arg(data->div, isl_val_copy(data->d)); data->v = isl_val_neg(data->v); } return extract_term_and_mod(data, isl_aff_copy(data->div), data->nonneg); error: data->aff = isl_aff_free(data->aff); return -1; } /* Check if "data->aff" involves any (implicit) modulo computations based * on div "data->i". * If so, remove them from aff and add expressions corresponding * to those modulo computations to data->pos and/or data->neg. * * "aff" is assumed to be an integer affine expression. * * In particular, check if (v * div_j) is of the form * * f * m * floor(a / m) * * and, if so, rewrite it as * * f * (a - (a mod m)) = f * a - f * (a mod m) * * and extract out -f * (a mod m). * In particular, if f > 0, we add (f * (a mod m)) to *neg. * If f < 0, we add ((-f) * (a mod m)) to *pos. * * Note that in order to represent "a mod m" as * * (isl_ast_op_pdiv_r, a, m) * * we need to make sure that a is non-negative. * If not, we check if "-a + m - 1" is non-negative. * If so, we can rewrite * * floor(a/m) = -ceil(-a/m) = -floor((-a + m - 1)/m) * * and still extract a modulo. */ static int extract_modulo(struct isl_extract_mod_data *data) { data->div = isl_aff_get_div(data->aff, data->i); data->d = isl_aff_get_denominator_val(data->div); if (isl_val_is_divisible_by(data->v, data->d)) { data->div = isl_aff_scale_val(data->div, isl_val_copy(data->d)); if (try_extract_mod(data) < 0) data->aff = isl_aff_free(data->aff); } isl_aff_free(data->div); isl_val_free(data->d); return 0; } /* Check if "aff" involves any (implicit) modulo computations. * If so, remove them from aff and add expressions corresponding * to those modulo computations to *pos and/or *neg. * We only do this if the option ast_build_prefer_pdiv is set. * * "aff" is assumed to be an integer affine expression. * * A modulo expression is of the form * * a mod m = a - m * floor(a / m) * * To detect them in aff, we look for terms of the form * * f * m * floor(a / m) * * rewrite them as * * f * (a - (a mod m)) = f * a - f * (a mod m) * * and extract out -f * (a mod m). * In particular, if f > 0, we add (f * (a mod m)) to *neg. * If f < 0, we add ((-f) * (a mod m)) to *pos. */ static __isl_give isl_aff *extract_modulos(__isl_take isl_aff *aff, __isl_keep isl_ast_expr **pos, __isl_keep isl_ast_expr **neg, __isl_keep isl_ast_build *build) { struct isl_extract_mod_data data = { build, aff, *pos, *neg }; isl_ctx *ctx; int n; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); if (!isl_options_get_ast_build_prefer_pdiv(ctx)) return aff; n = isl_aff_dim(data.aff, isl_dim_div); for (data.i = 0; data.i < n; ++data.i) { data.v = isl_aff_get_coefficient_val(data.aff, isl_dim_div, data.i); if (!data.v) return isl_aff_free(aff); if (isl_val_is_zero(data.v) || isl_val_is_one(data.v) || isl_val_is_negone(data.v)) { isl_val_free(data.v); continue; } if (extract_modulo(&data) < 0) data.aff = isl_aff_free(data.aff); isl_val_free(data.v); if (!data.aff) break; } if (data.add) data.aff = isl_aff_add(data.aff, data.add); *pos = data.pos; *neg = data.neg; return data.aff; } /* Check if aff involves any non-integer coefficients. * If so, split aff into * * aff = aff1 + (aff2 / d) * * with both aff1 and aff2 having only integer coefficients. * Return aff1 and add (aff2 / d) to *expr. */ static __isl_give isl_aff *extract_rational(__isl_take isl_aff *aff, __isl_keep isl_ast_expr **expr, __isl_keep isl_ast_build *build) { int i, j, n; isl_aff *rat = NULL; isl_local_space *ls = NULL; isl_ast_expr *rat_expr; isl_val *v, *d; enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div }; enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div }; if (!aff) return NULL; d = isl_aff_get_denominator_val(aff); if (!d) goto error; if (isl_val_is_one(d)) { isl_val_free(d); return aff; } aff = isl_aff_scale_val(aff, isl_val_copy(d)); ls = isl_aff_get_domain_local_space(aff); rat = isl_aff_zero_on_domain(isl_local_space_copy(ls)); for (i = 0; i < 3; ++i) { n = isl_aff_dim(aff, t[i]); for (j = 0; j < n; ++j) { isl_aff *rat_j; v = isl_aff_get_coefficient_val(aff, t[i], j); if (!v) goto error; if (isl_val_is_divisible_by(v, d)) { isl_val_free(v); continue; } rat_j = isl_aff_var_on_domain(isl_local_space_copy(ls), l[i], j); rat_j = isl_aff_scale_val(rat_j, v); rat = isl_aff_add(rat, rat_j); } } v = isl_aff_get_constant_val(aff); if (isl_val_is_divisible_by(v, d)) { isl_val_free(v); } else { isl_aff *rat_0; rat_0 = isl_aff_val_on_domain(isl_local_space_copy(ls), v); rat = isl_aff_add(rat, rat_0); } isl_local_space_free(ls); aff = isl_aff_sub(aff, isl_aff_copy(rat)); aff = isl_aff_scale_down_val(aff, isl_val_copy(d)); rat_expr = isl_ast_expr_from_aff(rat, build); rat_expr = isl_ast_expr_div(rat_expr, isl_ast_expr_from_val(d)); *expr = ast_expr_add(*expr, rat_expr); return aff; error: isl_aff_free(rat); isl_local_space_free(ls); isl_aff_free(aff); isl_val_free(d); return NULL; } /* Construct an isl_ast_expr that evaluates the affine expression "aff", * The result is simplified in terms of build->domain. * * We first extract hidden modulo computations from the affine expression * and then add terms for each variable with a non-zero coefficient. * Finally, if the affine expression has a non-trivial denominator, * we divide the resulting isl_ast_expr by this denominator. */ __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff, __isl_keep isl_ast_build *build) { int i, j; int n; isl_val *v; isl_ctx *ctx = isl_aff_get_ctx(aff); isl_ast_expr *expr, *expr_neg; enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div }; enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div }; isl_local_space *ls; struct isl_ast_add_term_data data; if (!aff) return NULL; expr = isl_ast_expr_alloc_int_si(ctx, 0); expr_neg = isl_ast_expr_alloc_int_si(ctx, 0); aff = extract_rational(aff, &expr, build); aff = extract_modulos(aff, &expr, &expr_neg, build); expr = ast_expr_sub(expr, expr_neg); ls = isl_aff_get_domain_local_space(aff); data.build = build; data.cst = isl_aff_get_constant_val(aff); for (i = 0; i < 3; ++i) { n = isl_aff_dim(aff, t[i]); for (j = 0; j < n; ++j) { v = isl_aff_get_coefficient_val(aff, t[i], j); if (!v) expr = isl_ast_expr_free(expr); if (isl_val_is_zero(v)) { isl_val_free(v); continue; } expr = isl_ast_expr_add_term(expr, ls, l[i], j, v, &data); } } expr = isl_ast_expr_add_int(expr, data.cst); isl_local_space_free(ls); isl_aff_free(aff); return expr; } /* Add terms to "expr" for each variable in "aff" with a coefficient * with sign equal to "sign". * The result is simplified in terms of data->build->domain. */ static __isl_give isl_ast_expr *add_signed_terms(__isl_take isl_ast_expr *expr, __isl_keep isl_aff *aff, int sign, struct isl_ast_add_term_data *data) { int i, j; isl_val *v; enum isl_dim_type t[] = { isl_dim_param, isl_dim_in, isl_dim_div }; enum isl_dim_type l[] = { isl_dim_param, isl_dim_set, isl_dim_div }; isl_local_space *ls; ls = isl_aff_get_domain_local_space(aff); for (i = 0; i < 3; ++i) { int n = isl_aff_dim(aff, t[i]); for (j = 0; j < n; ++j) { v = isl_aff_get_coefficient_val(aff, t[i], j); if (sign * isl_val_sgn(v) <= 0) { isl_val_free(v); continue; } v = isl_val_abs(v); expr = isl_ast_expr_add_term(expr, ls, l[i], j, v, data); } } isl_local_space_free(ls); return expr; } /* Should the constant term "v" be considered positive? * * A positive constant will be added to "pos" by the caller, * while a negative constant will be added to "neg". * If either "pos" or "neg" is exactly zero, then we prefer * to add the constant "v" to that side, irrespective of the sign of "v". * This results in slightly shorter expressions and may reduce the risk * of overflows. */ static int constant_is_considered_positive(__isl_keep isl_val *v, __isl_keep isl_ast_expr *pos, __isl_keep isl_ast_expr *neg) { if (ast_expr_is_zero(pos)) return 1; if (ast_expr_is_zero(neg)) return 0; return isl_val_is_pos(v); } /* Check if the equality * * aff = 0 * * represents a stride constraint on the integer division "pos". * * In particular, if the integer division "pos" is equal to * * floor(e/d) * * then check if aff is equal to * * e - d floor(e/d) * * or its opposite. * * If so, the equality is exactly * * e mod d = 0 * * Note that in principle we could also accept * * e - d floor(e'/d) * * where e and e' differ by a constant. */ static int is_stride_constraint(__isl_keep isl_aff *aff, int pos) { isl_aff *div; isl_val *c, *d; int eq; div = isl_aff_get_div(aff, pos); c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos); d = isl_aff_get_denominator_val(div); eq = isl_val_abs_eq(c, d); if (eq >= 0 && eq) { aff = isl_aff_copy(aff); aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0); div = isl_aff_scale_val(div, d); if (isl_val_is_pos(c)) div = isl_aff_neg(div); eq = isl_aff_plain_is_equal(div, aff); isl_aff_free(aff); } else isl_val_free(d); isl_val_free(c); isl_aff_free(div); return eq; } /* Are all coefficients of "aff" (zero or) negative? */ static int all_negative_coefficients(__isl_keep isl_aff *aff) { int i, n; if (!aff) return 0; n = isl_aff_dim(aff, isl_dim_param); for (i = 0; i < n; ++i) if (isl_aff_coefficient_sgn(aff, isl_dim_param, i) > 0) return 0; n = isl_aff_dim(aff, isl_dim_in); for (i = 0; i < n; ++i) if (isl_aff_coefficient_sgn(aff, isl_dim_in, i) > 0) return 0; return 1; } /* Give an equality of the form * * aff = e - d floor(e/d) = 0 * * or * * aff = -e + d floor(e/d) = 0 * * with the integer division "pos" equal to floor(e/d), * construct the AST expression * * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0)) * * If e only has negative coefficients, then construct * * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(-e), expr(d)), expr(0)) * * instead. */ static __isl_give isl_ast_expr *extract_stride_constraint( __isl_take isl_aff *aff, int pos, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_val *c; isl_ast_expr *expr, *cst; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); c = isl_aff_get_coefficient_val(aff, isl_dim_div, pos); aff = isl_aff_set_coefficient_si(aff, isl_dim_div, pos, 0); if (all_negative_coefficients(aff)) aff = isl_aff_neg(aff); cst = isl_ast_expr_from_val(isl_val_abs(c)); expr = isl_ast_expr_from_aff(aff, build); expr = isl_ast_expr_alloc_binary(isl_ast_op_zdiv_r, expr, cst); cst = isl_ast_expr_alloc_int_si(ctx, 0); expr = isl_ast_expr_alloc_binary(isl_ast_op_eq, expr, cst); return expr; } /* Construct an isl_ast_expr that evaluates the condition "constraint", * The result is simplified in terms of build->domain. * * We first check if the constraint is an equality of the form * * e - d floor(e/d) = 0 * * i.e., * * e mod d = 0 * * If so, we convert it to * * (isl_ast_op_eq, (isl_ast_op_zdiv_r, expr(e), expr(d)), expr(0)) * * Otherwise, let the constraint by either "a >= 0" or "a == 0". * We first extract hidden modulo computations from "a" * and then collect all the terms with a positive coefficient in cons_pos * and the terms with a negative coefficient in cons_neg. * * The result is then of the form * * (isl_ast_op_ge, expr(pos), expr(-neg))) * * or * * (isl_ast_op_eq, expr(pos), expr(-neg))) * * However, if the first expression is an integer constant (and the second * is not), then we swap the two expressions. This ensures that we construct, * e.g., "i <= 5" rather than "5 >= i". * * Furthermore, is there are no terms with positive coefficients (or no terms * with negative coefficients), then the constant term is added to "pos" * (or "neg"), ignoring the sign of the constant term. */ static __isl_give isl_ast_expr *isl_ast_expr_from_constraint( __isl_take isl_constraint *constraint, __isl_keep isl_ast_build *build) { int i, n; isl_ctx *ctx; isl_ast_expr *expr_pos; isl_ast_expr *expr_neg; isl_ast_expr *expr; isl_aff *aff; int eq; enum isl_ast_op_type type; struct isl_ast_add_term_data data; if (!constraint) return NULL; aff = isl_constraint_get_aff(constraint); eq = isl_constraint_is_equality(constraint); isl_constraint_free(constraint); n = isl_aff_dim(aff, isl_dim_div); if (eq && n > 0) for (i = 0; i < n; ++i) { int is_stride; is_stride = is_stride_constraint(aff, i); if (is_stride < 0) goto error; if (is_stride) return extract_stride_constraint(aff, i, build); } ctx = isl_aff_get_ctx(aff); expr_pos = isl_ast_expr_alloc_int_si(ctx, 0); expr_neg = isl_ast_expr_alloc_int_si(ctx, 0); aff = extract_modulos(aff, &expr_pos, &expr_neg, build); data.build = build; data.cst = isl_aff_get_constant_val(aff); expr_pos = add_signed_terms(expr_pos, aff, 1, &data); data.cst = isl_val_neg(data.cst); expr_neg = add_signed_terms(expr_neg, aff, -1, &data); data.cst = isl_val_neg(data.cst); if (constant_is_considered_positive(data.cst, expr_pos, expr_neg)) { expr_pos = isl_ast_expr_add_int(expr_pos, data.cst); } else { data.cst = isl_val_neg(data.cst); expr_neg = isl_ast_expr_add_int(expr_neg, data.cst); } if (isl_ast_expr_get_type(expr_pos) == isl_ast_expr_int && isl_ast_expr_get_type(expr_neg) != isl_ast_expr_int) { type = eq ? isl_ast_op_eq : isl_ast_op_le; expr = isl_ast_expr_alloc_binary(type, expr_neg, expr_pos); } else { type = eq ? isl_ast_op_eq : isl_ast_op_ge; expr = isl_ast_expr_alloc_binary(type, expr_pos, expr_neg); } isl_aff_free(aff); return expr; error: isl_aff_free(aff); return NULL; } /* Wrapper around isl_constraint_cmp_last_non_zero for use * as a callback to isl_constraint_list_sort. * If isl_constraint_cmp_last_non_zero cannot tell the constraints * apart, then use isl_constraint_plain_cmp instead. */ static int cmp_constraint(__isl_keep isl_constraint *a, __isl_keep isl_constraint *b, void *user) { int cmp; cmp = isl_constraint_cmp_last_non_zero(a, b); if (cmp != 0) return cmp; return isl_constraint_plain_cmp(a, b); } /* Construct an isl_ast_expr that evaluates the conditions defining "bset". * The result is simplified in terms of build->domain. * * If "bset" is not bounded by any constraint, then we contruct * the expression "1", i.e., "true". * * Otherwise, we sort the constraints, putting constraints that involve * integer divisions after those that do not, and construct an "and" * of the ast expressions of the individual constraints. * * Each constraint is added to the generated constraints of the build * after it has been converted to an AST expression so that it can be used * to simplify the following constraints. This may change the truth value * of subsequent constraints that do not satisfy the earlier constraints, * but this does not affect the outcome of the conjunction as it is * only true if all the conjuncts are true (no matter in what order * they are evaluated). In particular, the constraints that do not * involve integer divisions may serve to simplify some constraints * that do involve integer divisions. */ __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset) { int i, n; isl_constraint *c; isl_constraint_list *list; isl_ast_expr *res; isl_set *set; list = isl_basic_set_get_constraint_list(bset); isl_basic_set_free(bset); list = isl_constraint_list_sort(list, &cmp_constraint, NULL); if (!list) return NULL; n = isl_constraint_list_n_constraint(list); if (n == 0) { isl_ctx *ctx = isl_constraint_list_get_ctx(list); isl_constraint_list_free(list); return isl_ast_expr_alloc_int_si(ctx, 1); } build = isl_ast_build_copy(build); c = isl_constraint_list_get_constraint(list, 0); bset = isl_basic_set_from_constraint(isl_constraint_copy(c)); set = isl_set_from_basic_set(bset); res = isl_ast_expr_from_constraint(c, build); build = isl_ast_build_restrict_generated(build, set); for (i = 1; i < n; ++i) { isl_ast_expr *expr; c = isl_constraint_list_get_constraint(list, i); bset = isl_basic_set_from_constraint(isl_constraint_copy(c)); set = isl_set_from_basic_set(bset); expr = isl_ast_expr_from_constraint(c, build); build = isl_ast_build_restrict_generated(build, set); res = isl_ast_expr_and(res, expr); } isl_constraint_list_free(list); isl_ast_build_free(build); return res; } /* Construct an isl_ast_expr that evaluates the conditions defining "set". * The result is simplified in terms of build->domain. * * If "set" is an (obviously) empty set, then return the expression "0". * * If there are multiple disjuncts in the description of the set, * then subsequent disjuncts are simplified in a context where * the previous disjuncts have been removed from build->domain. * In particular, constraints that ensure that there is no overlap * with these previous disjuncts, can be removed. * This is mostly useful for disjuncts that are only defined by * a single constraint (relative to the build domain) as the opposite * of that single constraint can then be removed from the other disjuncts. * In order not to increase the number of disjuncts in the build domain * after subtracting the previous disjuncts of "set", the simple hull * is computed after taking the difference with each of these disjuncts. * This means that constraints that prevent overlap with a union * of multiple previous disjuncts are not removed. * * "set" lives in the internal schedule space. */ __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { int i, n; isl_basic_set *bset; isl_basic_set_list *list; isl_set *domain; isl_ast_expr *res; list = isl_set_get_basic_set_list(set); isl_set_free(set); if (!list) return NULL; n = isl_basic_set_list_n_basic_set(list); if (n == 0) { isl_ctx *ctx = isl_ast_build_get_ctx(build); isl_basic_set_list_free(list); return isl_ast_expr_from_val(isl_val_zero(ctx)); } domain = isl_ast_build_get_domain(build); bset = isl_basic_set_list_get_basic_set(list, 0); set = isl_set_from_basic_set(isl_basic_set_copy(bset)); res = isl_ast_build_expr_from_basic_set(build, bset); for (i = 1; i < n; ++i) { isl_ast_expr *expr; isl_set *rest; rest = isl_set_subtract(isl_set_copy(domain), set); rest = isl_set_from_basic_set(isl_set_simple_hull(rest)); domain = isl_set_intersect(domain, rest); bset = isl_basic_set_list_get_basic_set(list, i); set = isl_set_from_basic_set(isl_basic_set_copy(bset)); bset = isl_basic_set_gist(bset, isl_set_simple_hull(isl_set_copy(domain))); expr = isl_ast_build_expr_from_basic_set(build, bset); res = isl_ast_expr_or(res, expr); } isl_set_free(domain); isl_set_free(set); isl_basic_set_list_free(list); return res; } /* Construct an isl_ast_expr that evaluates the conditions defining "set". * The result is simplified in terms of build->domain. * * If "set" is an (obviously) empty set, then return the expression "0". * * "set" lives in the external schedule space. * * The internal AST expression generation assumes that there are * no unknown divs, so make sure an explicit representation is available. * Since the set comes from the outside, it may have constraints that * are redundant with respect to the build domain. Remove them first. */ __isl_give isl_ast_expr *isl_ast_build_expr_from_set( __isl_keep isl_ast_build *build, __isl_take isl_set *set) { if (isl_ast_build_need_schedule_map(build)) { isl_multi_aff *ma; ma = isl_ast_build_get_schedule_map_multi_aff(build); set = isl_set_preimage_multi_aff(set, ma); } set = isl_set_compute_divs(set); set = isl_ast_build_compute_gist(build, set); return isl_ast_build_expr_from_set_internal(build, set); } struct isl_from_pw_aff_data { isl_ast_build *build; int n; isl_ast_expr **next; isl_set *dom; }; /* This function is called during the construction of an isl_ast_expr * that evaluates an isl_pw_aff. * Adjust data->next to take into account this piece. * * data->n is the number of pairs of set and aff to go. * data->dom is the domain of the entire isl_pw_aff. * * If this is the last pair, then data->next is set to evaluate aff * and the domain is ignored. * Otherwise, data->next is set to a select operation that selects * an isl_ast_expr corresponding to "aff" on "set" and to an expression * that will be filled in by later calls otherwise. * * In both cases, the constraints of "set" are added to the generated * constraints of the build such that they can be exploited to simplify * the AST expression constructed from "aff". */ static isl_stat ast_expr_from_pw_aff(__isl_take isl_set *set, __isl_take isl_aff *aff, void *user) { struct isl_from_pw_aff_data *data = user; isl_ctx *ctx; isl_ast_build *build; ctx = isl_set_get_ctx(set); data->n--; if (data->n == 0) { build = isl_ast_build_copy(data->build); build = isl_ast_build_restrict_generated(build, set); *data->next = isl_ast_expr_from_aff(aff, build); isl_ast_build_free(build); if (!*data->next) return isl_stat_error; } else { isl_ast_expr *ternary, *arg; isl_set *gist; ternary = isl_ast_expr_alloc_op(ctx, isl_ast_op_select, 3); gist = isl_set_gist(isl_set_copy(set), isl_set_copy(data->dom)); arg = isl_ast_build_expr_from_set_internal(data->build, gist); ternary = isl_ast_expr_set_op_arg(ternary, 0, arg); build = isl_ast_build_copy(data->build); build = isl_ast_build_restrict_generated(build, set); arg = isl_ast_expr_from_aff(aff, build); isl_ast_build_free(build); ternary = isl_ast_expr_set_op_arg(ternary, 1, arg); if (!ternary) return isl_stat_error; *data->next = ternary; data->next = &ternary->u.op.args[2]; } return isl_stat_ok; } /* Construct an isl_ast_expr that evaluates "pa". * The result is simplified in terms of build->domain. * * The domain of "pa" lives in the internal schedule space. */ __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa) { struct isl_from_pw_aff_data data; isl_ast_expr *res = NULL; pa = isl_ast_build_compute_gist_pw_aff(build, pa); pa = isl_pw_aff_coalesce(pa); if (!pa) return NULL; data.build = build; data.n = isl_pw_aff_n_piece(pa); data.next = &res; data.dom = isl_pw_aff_domain(isl_pw_aff_copy(pa)); if (isl_pw_aff_foreach_piece(pa, &ast_expr_from_pw_aff, &data) < 0) res = isl_ast_expr_free(res); else if (!res) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "cannot handle void expression", res = NULL); isl_pw_aff_free(pa); isl_set_free(data.dom); return res; } /* Construct an isl_ast_expr that evaluates "pa". * The result is simplified in terms of build->domain. * * The domain of "pa" lives in the external schedule space. */ __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa) { isl_ast_expr *expr; if (isl_ast_build_need_schedule_map(build)) { isl_multi_aff *ma; ma = isl_ast_build_get_schedule_map_multi_aff(build); pa = isl_pw_aff_pullback_multi_aff(pa, ma); } expr = isl_ast_build_expr_from_pw_aff_internal(build, pa); return expr; } /* Set the ids of the input dimensions of "mpa" to the iterator ids * of "build". * * The domain of "mpa" is assumed to live in the internal schedule domain. */ static __isl_give isl_multi_pw_aff *set_iterator_names( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) { int i, n; n = isl_multi_pw_aff_dim(mpa, isl_dim_in); for (i = 0; i < n; ++i) { isl_id *id; id = isl_ast_build_get_iterator_id(build, i); mpa = isl_multi_pw_aff_set_dim_id(mpa, isl_dim_in, i, id); } return mpa; } /* Construct an isl_ast_expr of type "type" with as first argument "arg0" and * the remaining arguments derived from "mpa". * That is, construct a call or access expression that calls/accesses "arg0" * with arguments/indices specified by "mpa". */ static __isl_give isl_ast_expr *isl_ast_build_with_arguments( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_ast_expr *arg0, __isl_take isl_multi_pw_aff *mpa) { int i, n; isl_ctx *ctx; isl_ast_expr *expr; ctx = isl_ast_build_get_ctx(build); n = isl_multi_pw_aff_dim(mpa, isl_dim_out); expr = isl_ast_expr_alloc_op(ctx, type, 1 + n); expr = isl_ast_expr_set_op_arg(expr, 0, arg0); for (i = 0; i < n; ++i) { isl_pw_aff *pa; isl_ast_expr *arg; pa = isl_multi_pw_aff_get_pw_aff(mpa, i); arg = isl_ast_build_expr_from_pw_aff_internal(build, pa); expr = isl_ast_expr_set_op_arg(expr, 1 + i, arg); } isl_multi_pw_aff_free(mpa); return expr; } static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_multi_pw_aff *mpa); /* Construct an isl_ast_expr that accesses the member specified by "mpa". * The range of "mpa" is assumed to be wrapped relation. * The domain of this wrapped relation specifies the structure being * accessed, while the range of this wrapped relation spacifies the * member of the structure being accessed. * * The domain of "mpa" is assumed to live in the internal schedule domain. */ static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_member( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) { isl_id *id; isl_multi_pw_aff *domain; isl_ast_expr *domain_expr, *expr; enum isl_ast_op_type type = isl_ast_op_access; domain = isl_multi_pw_aff_copy(mpa); domain = isl_multi_pw_aff_range_factor_domain(domain); domain_expr = isl_ast_build_from_multi_pw_aff_internal(build, type, domain); mpa = isl_multi_pw_aff_range_factor_range(mpa); if (!isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out)) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "missing field name", goto error); id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out); expr = isl_ast_expr_from_id(id); expr = isl_ast_expr_alloc_binary(isl_ast_op_member, domain_expr, expr); return isl_ast_build_with_arguments(build, type, expr, mpa); error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct an isl_ast_expr of type "type" that calls or accesses * the element specified by "mpa". * The first argument is obtained from the output tuple name. * The remaining arguments are given by the piecewise affine expressions. * * If the range of "mpa" is a mapped relation, then we assume it * represents an access to a member of a structure. * * The domain of "mpa" is assumed to live in the internal schedule domain. */ static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff_internal( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_multi_pw_aff *mpa) { isl_ctx *ctx; isl_id *id; isl_ast_expr *expr; if (!mpa) goto error; if (type == isl_ast_op_access && isl_multi_pw_aff_range_is_wrapping(mpa)) return isl_ast_build_from_multi_pw_aff_member(build, mpa); mpa = set_iterator_names(build, mpa); if (!build || !mpa) goto error; ctx = isl_ast_build_get_ctx(build); if (isl_multi_pw_aff_has_tuple_id(mpa, isl_dim_out)) id = isl_multi_pw_aff_get_tuple_id(mpa, isl_dim_out); else id = isl_id_alloc(ctx, "", NULL); expr = isl_ast_expr_from_id(id); return isl_ast_build_with_arguments(build, type, expr, mpa); error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct an isl_ast_expr of type "type" that calls or accesses * the element specified by "pma". * The first argument is obtained from the output tuple name. * The remaining arguments are given by the piecewise affine expressions. * * The domain of "pma" is assumed to live in the internal schedule domain. */ static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff_internal( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_pw_multi_aff *pma) { isl_multi_pw_aff *mpa; mpa = isl_multi_pw_aff_from_pw_multi_aff(pma); return isl_ast_build_from_multi_pw_aff_internal(build, type, mpa); } /* Construct an isl_ast_expr of type "type" that calls or accesses * the element specified by "mpa". * The first argument is obtained from the output tuple name. * The remaining arguments are given by the piecewise affine expressions. * * The domain of "mpa" is assumed to live in the external schedule domain. */ static __isl_give isl_ast_expr *isl_ast_build_from_multi_pw_aff( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_multi_pw_aff *mpa) { int is_domain; isl_ast_expr *expr; isl_space *space_build, *space_mpa; space_build = isl_ast_build_get_space(build, 0); space_mpa = isl_multi_pw_aff_get_space(mpa); is_domain = isl_space_tuple_is_equal(space_build, isl_dim_set, space_mpa, isl_dim_in); isl_space_free(space_build); isl_space_free(space_mpa); if (is_domain < 0) goto error; if (!is_domain) isl_die(isl_ast_build_get_ctx(build), isl_error_invalid, "spaces don't match", goto error); if (isl_ast_build_need_schedule_map(build)) { isl_multi_aff *ma; ma = isl_ast_build_get_schedule_map_multi_aff(build); mpa = isl_multi_pw_aff_pullback_multi_aff(mpa, ma); } expr = isl_ast_build_from_multi_pw_aff_internal(build, type, mpa); return expr; error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct an isl_ast_expr that calls the domain element specified by "mpa". * The name of the function is obtained from the output tuple name. * The arguments are given by the piecewise affine expressions. * * The domain of "mpa" is assumed to live in the external schedule domain. */ __isl_give isl_ast_expr *isl_ast_build_call_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) { return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_call, mpa); } /* Construct an isl_ast_expr that accesses the array element specified by "mpa". * The name of the array is obtained from the output tuple name. * The index expressions are given by the piecewise affine expressions. * * The domain of "mpa" is assumed to live in the external schedule domain. */ __isl_give isl_ast_expr *isl_ast_build_access_from_multi_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_multi_pw_aff *mpa) { return isl_ast_build_from_multi_pw_aff(build, isl_ast_op_access, mpa); } /* Construct an isl_ast_expr of type "type" that calls or accesses * the element specified by "pma". * The first argument is obtained from the output tuple name. * The remaining arguments are given by the piecewise affine expressions. * * The domain of "pma" is assumed to live in the external schedule domain. */ static __isl_give isl_ast_expr *isl_ast_build_from_pw_multi_aff( __isl_keep isl_ast_build *build, enum isl_ast_op_type type, __isl_take isl_pw_multi_aff *pma) { isl_multi_pw_aff *mpa; mpa = isl_multi_pw_aff_from_pw_multi_aff(pma); return isl_ast_build_from_multi_pw_aff(build, type, mpa); } /* Construct an isl_ast_expr that calls the domain element specified by "pma". * The name of the function is obtained from the output tuple name. * The arguments are given by the piecewise affine expressions. * * The domain of "pma" is assumed to live in the external schedule domain. */ __isl_give isl_ast_expr *isl_ast_build_call_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma) { return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_call, pma); } /* Construct an isl_ast_expr that accesses the array element specified by "pma". * The name of the array is obtained from the output tuple name. * The index expressions are given by the piecewise affine expressions. * * The domain of "pma" is assumed to live in the external schedule domain. */ __isl_give isl_ast_expr *isl_ast_build_access_from_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma) { return isl_ast_build_from_pw_multi_aff(build, isl_ast_op_access, pma); } /* Construct an isl_ast_expr that calls the domain element * specified by "executed". * * "executed" is assumed to be single-valued, with a domain that lives * in the internal schedule space. */ __isl_give isl_ast_node *isl_ast_build_call_from_executed( __isl_keep isl_ast_build *build, __isl_take isl_map *executed) { isl_pw_multi_aff *iteration; isl_ast_expr *expr; iteration = isl_pw_multi_aff_from_map(executed); iteration = isl_ast_build_compute_gist_pw_multi_aff(build, iteration); iteration = isl_pw_multi_aff_intersect_domain(iteration, isl_ast_build_get_domain(build)); expr = isl_ast_build_from_pw_multi_aff_internal(build, isl_ast_op_call, iteration); return isl_ast_node_alloc_user(expr); } isl-0.16.1/isl_lp_private.h0000664000175000017500000000142412645737060012511 00000000000000#ifndef ISL_LP_PRIVATE_H #define ISL_LP_PRIVATE_H #include #include #include enum isl_lp_result isl_basic_map_solve_lp(__isl_keep isl_basic_map *bmap, int max, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol); enum isl_lp_result isl_basic_set_solve_lp(__isl_keep isl_basic_set *bset, int max, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol); enum isl_lp_result isl_map_solve_lp(__isl_keep isl_map *map, int max, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol); enum isl_lp_result isl_set_solve_lp(__isl_keep isl_set *set, int max, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, __isl_give isl_vec **sol); #endif isl-0.16.1/isl_schedule_tree.c0000664000175000017500000022443112645737061013160 00000000000000/* * Copyright 2013-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #undef EL #define EL isl_schedule_tree #include #undef BASE #define BASE schedule_tree #include /* Is "tree" the leaf of a schedule tree? */ int isl_schedule_tree_is_leaf(__isl_keep isl_schedule_tree *tree) { return isl_schedule_tree_get_type(tree) == isl_schedule_node_leaf; } /* Create a new schedule tree of type "type". * The caller is responsible for filling in the type specific fields and * the children. * * By default, the single node tree does not have any anchored nodes. * The caller is responsible for updating the anchored field if needed. */ static __isl_give isl_schedule_tree *isl_schedule_tree_alloc(isl_ctx *ctx, enum isl_schedule_node_type type) { isl_schedule_tree *tree; if (type == isl_schedule_node_error) return NULL; tree = isl_calloc_type(ctx, isl_schedule_tree); if (!tree) return NULL; tree->ref = 1; tree->ctx = ctx; isl_ctx_ref(ctx); tree->type = type; tree->anchored = 0; return tree; } /* Return a fresh copy of "tree". */ __isl_take isl_schedule_tree *isl_schedule_tree_dup( __isl_keep isl_schedule_tree *tree) { isl_ctx *ctx; isl_schedule_tree *dup; if (!tree) return NULL; ctx = isl_schedule_tree_get_ctx(tree); dup = isl_schedule_tree_alloc(ctx, tree->type); if (!dup) return NULL; switch (tree->type) { case isl_schedule_node_error: isl_die(ctx, isl_error_internal, "allocation should have failed", isl_schedule_tree_free(dup)); case isl_schedule_node_band: dup->band = isl_schedule_band_copy(tree->band); if (!dup->band) return isl_schedule_tree_free(dup); break; case isl_schedule_node_context: dup->context = isl_set_copy(tree->context); if (!dup->context) return isl_schedule_tree_free(dup); break; case isl_schedule_node_domain: dup->domain = isl_union_set_copy(tree->domain); if (!dup->domain) return isl_schedule_tree_free(dup); break; case isl_schedule_node_expansion: dup->contraction = isl_union_pw_multi_aff_copy(tree->contraction); dup->expansion = isl_union_map_copy(tree->expansion); if (!dup->contraction || !dup->expansion) return isl_schedule_tree_free(dup); break; case isl_schedule_node_extension: dup->extension = isl_union_map_copy(tree->extension); if (!dup->extension) return isl_schedule_tree_free(dup); break; case isl_schedule_node_filter: dup->filter = isl_union_set_copy(tree->filter); if (!dup->filter) return isl_schedule_tree_free(dup); break; case isl_schedule_node_guard: dup->guard = isl_set_copy(tree->guard); if (!dup->guard) return isl_schedule_tree_free(dup); break; case isl_schedule_node_mark: dup->mark = isl_id_copy(tree->mark); if (!dup->mark) return isl_schedule_tree_free(dup); break; case isl_schedule_node_leaf: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } if (tree->children) { dup->children = isl_schedule_tree_list_copy(tree->children); if (!dup->children) return isl_schedule_tree_free(dup); } dup->anchored = tree->anchored; return dup; } /* Return an isl_schedule_tree that is equal to "tree" and that has only * a single reference. * * This function is called before a tree is modified. * A static tree (with negative reference count) should never be modified, * so it is not allowed to call this function on a static tree. */ __isl_give isl_schedule_tree *isl_schedule_tree_cow( __isl_take isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->ref < 0) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "static trees cannot be modified", return isl_schedule_tree_free(tree)); if (tree->ref == 1) return tree; tree->ref--; return isl_schedule_tree_dup(tree); } /* Return a new reference to "tree". * * A static tree (with negative reference count) does not keep track * of the number of references and should not be modified. */ __isl_give isl_schedule_tree *isl_schedule_tree_copy( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->ref < 0) return tree; tree->ref++; return tree; } /* Free "tree" and return NULL. */ __isl_null isl_schedule_tree *isl_schedule_tree_free( __isl_take isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->ref < 0) return NULL; if (--tree->ref > 0) return NULL; switch (tree->type) { case isl_schedule_node_band: isl_schedule_band_free(tree->band); break; case isl_schedule_node_context: isl_set_free(tree->context); break; case isl_schedule_node_domain: isl_union_set_free(tree->domain); break; case isl_schedule_node_expansion: isl_union_pw_multi_aff_free(tree->contraction); isl_union_map_free(tree->expansion); break; case isl_schedule_node_extension: isl_union_map_free(tree->extension); break; case isl_schedule_node_filter: isl_union_set_free(tree->filter); break; case isl_schedule_node_guard: isl_set_free(tree->guard); break; case isl_schedule_node_mark: isl_id_free(tree->mark); break; case isl_schedule_node_sequence: case isl_schedule_node_set: case isl_schedule_node_error: case isl_schedule_node_leaf: break; } isl_schedule_tree_list_free(tree->children); isl_ctx_deref(tree->ctx); free(tree); return NULL; } /* Create and return a new leaf schedule tree. */ __isl_give isl_schedule_tree *isl_schedule_tree_leaf(isl_ctx *ctx) { return isl_schedule_tree_alloc(ctx, isl_schedule_node_leaf); } /* Create a new band schedule tree referring to "band" * with no children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_band( __isl_take isl_schedule_band *band) { isl_ctx *ctx; isl_schedule_tree *tree; if (!band) return NULL; ctx = isl_schedule_band_get_ctx(band); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_band); if (!tree) goto error; tree->band = band; tree->anchored = isl_schedule_band_is_anchored(band); return tree; error: isl_schedule_band_free(band); return NULL; } /* Create a new context schedule tree with the given context and no children. * Since the context references the outer schedule dimension, * the tree is anchored. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_context( __isl_take isl_set *context) { isl_ctx *ctx; isl_schedule_tree *tree; if (!context) return NULL; ctx = isl_set_get_ctx(context); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_context); if (!tree) goto error; tree->context = context; tree->anchored = 1; return tree; error: isl_set_free(context); return NULL; } /* Create a new domain schedule tree with the given domain and no children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_domain( __isl_take isl_union_set *domain) { isl_ctx *ctx; isl_schedule_tree *tree; if (!domain) return NULL; ctx = isl_union_set_get_ctx(domain); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_domain); if (!tree) goto error; tree->domain = domain; return tree; error: isl_union_set_free(domain); return NULL; } /* Create a new expansion schedule tree with the given contraction and * expansion and no children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_expansion( __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_ctx *ctx; isl_schedule_tree *tree; if (!contraction || !expansion) goto error; ctx = isl_union_map_get_ctx(expansion); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_expansion); if (!tree) goto error; tree->contraction = contraction; tree->expansion = expansion; return tree; error: isl_union_pw_multi_aff_free(contraction); isl_union_map_free(expansion); return NULL; } /* Create a new extension schedule tree with the given extension and * no children. * Since the domain of the extension refers to the outer schedule dimension, * the tree is anchored. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_extension( __isl_take isl_union_map *extension) { isl_ctx *ctx; isl_schedule_tree *tree; if (!extension) return NULL; ctx = isl_union_map_get_ctx(extension); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_extension); if (!tree) goto error; tree->extension = extension; tree->anchored = 1; return tree; error: isl_union_map_free(extension); return NULL; } /* Create a new filter schedule tree with the given filter and no children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_filter( __isl_take isl_union_set *filter) { isl_ctx *ctx; isl_schedule_tree *tree; if (!filter) return NULL; ctx = isl_union_set_get_ctx(filter); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_filter); if (!tree) goto error; tree->filter = filter; return tree; error: isl_union_set_free(filter); return NULL; } /* Create a new guard schedule tree with the given guard and no children. * Since the guard references the outer schedule dimension, * the tree is anchored. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_guard( __isl_take isl_set *guard) { isl_ctx *ctx; isl_schedule_tree *tree; if (!guard) return NULL; ctx = isl_set_get_ctx(guard); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_guard); if (!tree) goto error; tree->guard = guard; tree->anchored = 1; return tree; error: isl_set_free(guard); return NULL; } /* Create a new mark schedule tree with the given mark identifier and * no children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_mark( __isl_take isl_id *mark) { isl_ctx *ctx; isl_schedule_tree *tree; if (!mark) return NULL; ctx = isl_id_get_ctx(mark); tree = isl_schedule_tree_alloc(ctx, isl_schedule_node_mark); if (!tree) goto error; tree->mark = mark; return tree; error: isl_id_free(mark); return NULL; } /* Does "tree" have any node that depends on its position * in the complete schedule tree? */ isl_bool isl_schedule_tree_is_subtree_anchored( __isl_keep isl_schedule_tree *tree) { return tree ? tree->anchored : isl_bool_error; } /* Does the root node of "tree" depend on its position in the complete * schedule tree? * Band nodes may be anchored depending on the associated AST build options. * Context, extension and guard nodes are always anchored. */ int isl_schedule_tree_is_anchored(__isl_keep isl_schedule_tree *tree) { if (!tree) return -1; switch (isl_schedule_tree_get_type(tree)) { case isl_schedule_node_error: return -1; case isl_schedule_node_band: return isl_schedule_band_is_anchored(tree->band); case isl_schedule_node_context: case isl_schedule_node_extension: case isl_schedule_node_guard: return 1; case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_filter: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: return 0; } isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "unhandled case", return -1); } /* Update the anchored field of "tree" based on whether the root node * itself in anchored and the anchored fields of the children. * * This function should be called whenever the children of a tree node * are changed or the anchoredness of the tree root itself changes. */ __isl_give isl_schedule_tree *isl_schedule_tree_update_anchored( __isl_take isl_schedule_tree *tree) { int i, n; int anchored; if (!tree) return NULL; anchored = isl_schedule_tree_is_anchored(tree); if (anchored < 0) return isl_schedule_tree_free(tree); n = isl_schedule_tree_list_n_schedule_tree(tree->children); for (i = 0; !anchored && i < n; ++i) { isl_schedule_tree *child; child = isl_schedule_tree_get_child(tree, i); if (!child) return isl_schedule_tree_free(tree); anchored = child->anchored; isl_schedule_tree_free(child); } if (anchored == tree->anchored) return tree; tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; tree->anchored = anchored; return tree; } /* Create a new tree of the given type (isl_schedule_node_sequence or * isl_schedule_node_set) with the given children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_children( enum isl_schedule_node_type type, __isl_take isl_schedule_tree_list *list) { isl_ctx *ctx; isl_schedule_tree *tree; if (!list) return NULL; ctx = isl_schedule_tree_list_get_ctx(list); tree = isl_schedule_tree_alloc(ctx, type); if (!tree) goto error; tree->children = list; tree = isl_schedule_tree_update_anchored(tree); return tree; error: isl_schedule_tree_list_free(list); return NULL; } /* Construct a tree with a root node of type "type" and as children * "tree1" and "tree2". * If the root of one (or both) of the input trees is itself of type "type", * then the tree is replaced by its children. */ __isl_give isl_schedule_tree *isl_schedule_tree_from_pair( enum isl_schedule_node_type type, __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2) { isl_ctx *ctx; isl_schedule_tree_list *list; if (!tree1 || !tree2) goto error; ctx = isl_schedule_tree_get_ctx(tree1); if (isl_schedule_tree_get_type(tree1) == type) { list = isl_schedule_tree_list_copy(tree1->children); isl_schedule_tree_free(tree1); } else { list = isl_schedule_tree_list_alloc(ctx, 2); list = isl_schedule_tree_list_add(list, tree1); } if (isl_schedule_tree_get_type(tree2) == type) { isl_schedule_tree_list *children; children = isl_schedule_tree_list_copy(tree2->children); list = isl_schedule_tree_list_concat(list, children); isl_schedule_tree_free(tree2); } else { list = isl_schedule_tree_list_add(list, tree2); } return isl_schedule_tree_from_children(type, list); error: isl_schedule_tree_free(tree1); isl_schedule_tree_free(tree2); return NULL; } /* Construct a tree with a sequence root node and as children * "tree1" and "tree2". * If the root of one (or both) of the input trees is itself a sequence, * then the tree is replaced by its children. */ __isl_give isl_schedule_tree *isl_schedule_tree_sequence_pair( __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2) { return isl_schedule_tree_from_pair(isl_schedule_node_sequence, tree1, tree2); } /* Return the isl_ctx to which "tree" belongs. */ isl_ctx *isl_schedule_tree_get_ctx(__isl_keep isl_schedule_tree *tree) { return tree ? tree->ctx : NULL; } /* Return the type of the root of the tree or isl_schedule_node_error * on error. */ enum isl_schedule_node_type isl_schedule_tree_get_type( __isl_keep isl_schedule_tree *tree) { return tree ? tree->type : isl_schedule_node_error; } /* Are "tree1" and "tree2" obviously equal to each other? */ isl_bool isl_schedule_tree_plain_is_equal(__isl_keep isl_schedule_tree *tree1, __isl_keep isl_schedule_tree *tree2) { isl_bool equal; int i, n; if (!tree1 || !tree2) return isl_bool_error; if (tree1 == tree2) return isl_bool_true; if (tree1->type != tree2->type) return isl_bool_false; switch (tree1->type) { case isl_schedule_node_band: equal = isl_schedule_band_plain_is_equal(tree1->band, tree2->band); break; case isl_schedule_node_context: equal = isl_set_is_equal(tree1->context, tree2->context); break; case isl_schedule_node_domain: equal = isl_union_set_is_equal(tree1->domain, tree2->domain); break; case isl_schedule_node_expansion: equal = isl_union_map_is_equal(tree1->expansion, tree2->expansion); if (equal >= 0 && equal) equal = isl_union_pw_multi_aff_plain_is_equal( tree1->contraction, tree2->contraction); break; case isl_schedule_node_extension: equal = isl_union_map_is_equal(tree1->extension, tree2->extension); break; case isl_schedule_node_filter: equal = isl_union_set_is_equal(tree1->filter, tree2->filter); break; case isl_schedule_node_guard: equal = isl_set_is_equal(tree1->guard, tree2->guard); break; case isl_schedule_node_mark: equal = tree1->mark == tree2->mark; break; case isl_schedule_node_leaf: case isl_schedule_node_sequence: case isl_schedule_node_set: equal = isl_bool_true; break; case isl_schedule_node_error: equal = isl_bool_error; break; } if (equal < 0 || !equal) return equal; n = isl_schedule_tree_n_children(tree1); if (n != isl_schedule_tree_n_children(tree2)) return isl_bool_false; for (i = 0; i < n; ++i) { isl_schedule_tree *child1, *child2; child1 = isl_schedule_tree_get_child(tree1, i); child2 = isl_schedule_tree_get_child(tree2, i); equal = isl_schedule_tree_plain_is_equal(child1, child2); isl_schedule_tree_free(child1); isl_schedule_tree_free(child2); if (equal < 0 || !equal) return equal; } return isl_bool_true; } /* Does "tree" have any children, other than an implicit leaf. */ int isl_schedule_tree_has_children(__isl_keep isl_schedule_tree *tree) { if (!tree) return -1; return tree->children != NULL; } /* Return the number of children of "tree", excluding implicit leaves. */ int isl_schedule_tree_n_children(__isl_keep isl_schedule_tree *tree) { if (!tree) return -1; return isl_schedule_tree_list_n_schedule_tree(tree->children); } /* Return a copy of the (explicit) child at position "pos" of "tree". */ __isl_give isl_schedule_tree *isl_schedule_tree_get_child( __isl_keep isl_schedule_tree *tree, int pos) { if (!tree) return NULL; if (!tree->children) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "schedule tree has no explicit children", return NULL); return isl_schedule_tree_list_get_schedule_tree(tree->children, pos); } /* Return a copy of the (explicit) child at position "pos" of "tree" and * free "tree". */ __isl_give isl_schedule_tree *isl_schedule_tree_child( __isl_take isl_schedule_tree *tree, int pos) { isl_schedule_tree *child; child = isl_schedule_tree_get_child(tree, pos); isl_schedule_tree_free(tree); return child; } /* Remove all (explicit) children from "tree". */ __isl_give isl_schedule_tree *isl_schedule_tree_reset_children( __isl_take isl_schedule_tree *tree) { tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; tree->children = isl_schedule_tree_list_free(tree->children); return tree; } /* Remove the child at position "pos" from the children of "tree". * If there was only one child to begin with, then remove all children. */ __isl_give isl_schedule_tree *isl_schedule_tree_drop_child( __isl_take isl_schedule_tree *tree, int pos) { int n; tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; if (!isl_schedule_tree_has_children(tree)) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "tree does not have any explicit children", return isl_schedule_tree_free(tree)); n = isl_schedule_tree_list_n_schedule_tree(tree->children); if (pos < 0 || pos >= n) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "position out of bounds", return isl_schedule_tree_free(tree)); if (n == 1) return isl_schedule_tree_reset_children(tree); tree->children = isl_schedule_tree_list_drop(tree->children, pos, 1); if (!tree->children) return isl_schedule_tree_free(tree); return tree; } /* Replace the child at position "pos" of "tree" by "child". * * If the new child is a leaf, then it is not explicitly * recorded in the list of children. Instead, the list of children * (which is assumed to have only one element) is removed. * Note that the children of set and sequence nodes are always * filters, so they cannot be replaced by empty trees. */ __isl_give isl_schedule_tree *isl_schedule_tree_replace_child( __isl_take isl_schedule_tree *tree, int pos, __isl_take isl_schedule_tree *child) { tree = isl_schedule_tree_cow(tree); if (!tree || !child) goto error; if (isl_schedule_tree_is_leaf(child)) { isl_schedule_tree_free(child); if (!tree->children && pos == 0) return tree; if (isl_schedule_tree_n_children(tree) != 1) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "can only replace single child by leaf", goto error); return isl_schedule_tree_reset_children(tree); } if (!tree->children && pos == 0) tree->children = isl_schedule_tree_list_from_schedule_tree(child); else tree->children = isl_schedule_tree_list_set_schedule_tree( tree->children, pos, child); if (!tree->children) return isl_schedule_tree_free(tree); tree = isl_schedule_tree_update_anchored(tree); return tree; error: isl_schedule_tree_free(tree); isl_schedule_tree_free(child); return NULL; } /* Replace the (explicit) children of "tree" by "children"? */ __isl_give isl_schedule_tree *isl_schedule_tree_set_children( __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_tree_list *children) { tree = isl_schedule_tree_cow(tree); if (!tree || !children) goto error; isl_schedule_tree_list_free(tree->children); tree->children = children; return tree; error: isl_schedule_tree_free(tree); isl_schedule_tree_list_free(children); return NULL; } /* Create a new band schedule tree referring to "band" * with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_band( __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_band *band) { isl_schedule_tree *res; res = isl_schedule_tree_from_band(band); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new context schedule tree with the given context and * with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_context( __isl_take isl_schedule_tree *tree, __isl_take isl_set *context) { isl_schedule_tree *res; res = isl_schedule_tree_from_context(context); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new domain schedule tree with the given domain and * with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain) { isl_schedule_tree *res; res = isl_schedule_tree_from_domain(domain); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new expansion schedule tree with the given contraction and * expansion and with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_expansion( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_schedule_tree *res; res = isl_schedule_tree_from_expansion(contraction, expansion); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new extension schedule tree with the given extension and * with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_extension( __isl_take isl_schedule_tree *tree, __isl_take isl_union_map *extension) { isl_schedule_tree *res; res = isl_schedule_tree_from_extension(extension); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new filter schedule tree with the given filter and single child. * * If the root of "tree" is itself a filter node, then the two * filter nodes are merged into one node. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter) { isl_schedule_tree *res; if (isl_schedule_tree_get_type(tree) == isl_schedule_node_filter) { isl_union_set *tree_filter; tree_filter = isl_schedule_tree_filter_get_filter(tree); tree_filter = isl_union_set_intersect(tree_filter, filter); tree = isl_schedule_tree_filter_set_filter(tree, tree_filter); return tree; } res = isl_schedule_tree_from_filter(filter); return isl_schedule_tree_replace_child(res, 0, tree); } /* Insert a filter node with filter set "filter" * in each of the children of "tree". */ __isl_give isl_schedule_tree *isl_schedule_tree_children_insert_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter) { int i, n; if (!tree || !filter) goto error; n = isl_schedule_tree_n_children(tree); for (i = 0; i < n; ++i) { isl_schedule_tree *child; child = isl_schedule_tree_get_child(tree, i); child = isl_schedule_tree_insert_filter(child, isl_union_set_copy(filter)); tree = isl_schedule_tree_replace_child(tree, i, child); } isl_union_set_free(filter); return tree; error: isl_union_set_free(filter); isl_schedule_tree_free(tree); return NULL; } /* Create a new guard schedule tree with the given guard and * with "tree" as single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_guard( __isl_take isl_schedule_tree *tree, __isl_take isl_set *guard) { isl_schedule_tree *res; res = isl_schedule_tree_from_guard(guard); return isl_schedule_tree_replace_child(res, 0, tree); } /* Create a new mark schedule tree with the given mark identifier and * single child. */ __isl_give isl_schedule_tree *isl_schedule_tree_insert_mark( __isl_take isl_schedule_tree *tree, __isl_take isl_id *mark) { isl_schedule_tree *res; res = isl_schedule_tree_from_mark(mark); return isl_schedule_tree_replace_child(res, 0, tree); } /* Return the number of members in the band tree root. */ unsigned isl_schedule_tree_band_n_member(__isl_keep isl_schedule_tree *tree) { if (!tree) return 0; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return 0); return isl_schedule_band_n_member(tree->band); } /* Is the band member at position "pos" of the band tree root * marked coincident? */ isl_bool isl_schedule_tree_band_member_get_coincident( __isl_keep isl_schedule_tree *tree, int pos) { if (!tree) return isl_bool_error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_bool_error); return isl_schedule_band_member_get_coincident(tree->band, pos); } /* Mark the given band member as being coincident or not * according to "coincident". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_member_set_coincident( __isl_take isl_schedule_tree *tree, int pos, int coincident) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_schedule_tree_free(tree)); if (isl_schedule_tree_band_member_get_coincident(tree, pos) == coincident) return tree; tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; tree->band = isl_schedule_band_member_set_coincident(tree->band, pos, coincident); if (!tree->band) return isl_schedule_tree_free(tree); return tree; } /* Is the band tree root marked permutable? */ isl_bool isl_schedule_tree_band_get_permutable( __isl_keep isl_schedule_tree *tree) { if (!tree) return isl_bool_error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_bool_error); return isl_schedule_band_get_permutable(tree->band); } /* Mark the band tree root permutable or not according to "permutable"? */ __isl_give isl_schedule_tree *isl_schedule_tree_band_set_permutable( __isl_take isl_schedule_tree *tree, int permutable) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_schedule_tree_free(tree)); if (isl_schedule_tree_band_get_permutable(tree) == permutable) return tree; tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; tree->band = isl_schedule_band_set_permutable(tree->band, permutable); if (!tree->band) return isl_schedule_tree_free(tree); return tree; } /* Return the schedule space of the band tree root. */ __isl_give isl_space *isl_schedule_tree_band_get_space( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return NULL); return isl_schedule_band_get_space(tree->band); } /* Intersect the domain of the band schedule of the band tree root * with "domain". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_intersect_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain) { if (!tree || !domain) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree->band = isl_schedule_band_intersect_domain(tree->band, domain); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_schedule_tree_free(tree); isl_union_set_free(domain); return NULL; } /* Return the schedule of the band tree root in isolation. */ __isl_give isl_multi_union_pw_aff *isl_schedule_tree_band_get_partial_schedule( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return NULL); return isl_schedule_band_get_partial_schedule(tree->band); } /* Replace the schedule of the band tree root by "schedule". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_set_partial_schedule( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_union_pw_aff *schedule) { tree = isl_schedule_tree_cow(tree); if (!tree || !schedule) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return NULL); tree->band = isl_schedule_band_set_partial_schedule(tree->band, schedule); return tree; error: isl_schedule_tree_free(tree); isl_multi_union_pw_aff_free(schedule); return NULL; } /* Return the loop AST generation type for the band member * of the band tree root at position "pos". */ enum isl_ast_loop_type isl_schedule_tree_band_member_get_ast_loop_type( __isl_keep isl_schedule_tree *tree, int pos) { if (!tree) return isl_ast_loop_error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_ast_loop_error); return isl_schedule_band_member_get_ast_loop_type(tree->band, pos); } /* Set the loop AST generation type for the band member of the band tree root * at position "pos" to "type". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_member_set_ast_loop_type( __isl_take isl_schedule_tree *tree, int pos, enum isl_ast_loop_type type) { tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_schedule_tree_free(tree)); tree->band = isl_schedule_band_member_set_ast_loop_type(tree->band, pos, type); if (!tree->band) return isl_schedule_tree_free(tree); return tree; } /* Return the loop AST generation type for the band member * of the band tree root at position "pos" for the isolated part. */ enum isl_ast_loop_type isl_schedule_tree_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_tree *tree, int pos) { if (!tree) return isl_ast_loop_error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_ast_loop_error); return isl_schedule_band_member_get_isolate_ast_loop_type(tree->band, pos); } /* Set the loop AST generation type for the band member of the band tree root * at position "pos" for the isolated part to "type". */ __isl_give isl_schedule_tree * isl_schedule_tree_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_tree *tree, int pos, enum isl_ast_loop_type type) { tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_schedule_tree_free(tree)); tree->band = isl_schedule_band_member_set_isolate_ast_loop_type( tree->band, pos, type); if (!tree->band) return isl_schedule_tree_free(tree); return tree; } /* Return the AST build options associated to the band tree root. */ __isl_give isl_union_set *isl_schedule_tree_band_get_ast_build_options( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return NULL); return isl_schedule_band_get_ast_build_options(tree->band); } /* Replace the AST build options associated to band tree root by "options". * Updated the anchored field if the anchoredness of the root node itself * changes. */ __isl_give isl_schedule_tree *isl_schedule_tree_band_set_ast_build_options( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *options) { int was_anchored; tree = isl_schedule_tree_cow(tree); if (!tree || !options) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); was_anchored = isl_schedule_tree_is_anchored(tree); tree->band = isl_schedule_band_set_ast_build_options(tree->band, options); if (!tree->band) return isl_schedule_tree_free(tree); if (isl_schedule_tree_is_anchored(tree) != was_anchored) tree = isl_schedule_tree_update_anchored(tree); return tree; error: isl_schedule_tree_free(tree); isl_union_set_free(options); return NULL; } /* Return the context of the context tree root. */ __isl_give isl_set *isl_schedule_tree_context_get_context( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_context) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a context node", return NULL); return isl_set_copy(tree->context); } /* Return the domain of the domain tree root. */ __isl_give isl_union_set *isl_schedule_tree_domain_get_domain( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_domain) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a domain node", return NULL); return isl_union_set_copy(tree->domain); } /* Replace the domain of domain tree root "tree" by "domain". */ __isl_give isl_schedule_tree *isl_schedule_tree_domain_set_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain) { tree = isl_schedule_tree_cow(tree); if (!tree || !domain) goto error; if (tree->type != isl_schedule_node_domain) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a domain node", goto error); isl_union_set_free(tree->domain); tree->domain = domain; return tree; error: isl_schedule_tree_free(tree); isl_union_set_free(domain); return NULL; } /* Return the contraction of the expansion tree root. */ __isl_give isl_union_pw_multi_aff *isl_schedule_tree_expansion_get_contraction( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_expansion) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not an expansion node", return NULL); return isl_union_pw_multi_aff_copy(tree->contraction); } /* Return the expansion of the expansion tree root. */ __isl_give isl_union_map *isl_schedule_tree_expansion_get_expansion( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_expansion) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not an expansion node", return NULL); return isl_union_map_copy(tree->expansion); } /* Replace the contraction and the expansion of the expansion tree root "tree" * by "contraction" and "expansion". */ __isl_give isl_schedule_tree * isl_schedule_tree_expansion_set_contraction_and_expansion( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { tree = isl_schedule_tree_cow(tree); if (!tree || !contraction || !expansion) goto error; if (tree->type != isl_schedule_node_expansion) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not an expansion node", return NULL); isl_union_pw_multi_aff_free(tree->contraction); tree->contraction = contraction; isl_union_map_free(tree->expansion); tree->expansion = expansion; return tree; error: isl_schedule_tree_free(tree); isl_union_pw_multi_aff_free(contraction); isl_union_map_free(expansion); return NULL; } /* Return the extension of the extension tree root. */ __isl_give isl_union_map *isl_schedule_tree_extension_get_extension( __isl_take isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_extension) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not an extension node", return NULL); return isl_union_map_copy(tree->extension); } /* Replace the extension of extension tree root "tree" by "extension". */ __isl_give isl_schedule_tree *isl_schedule_tree_extension_set_extension( __isl_take isl_schedule_tree *tree, __isl_take isl_union_map *extension) { tree = isl_schedule_tree_cow(tree); if (!tree || !extension) goto error; if (tree->type != isl_schedule_node_extension) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not an extension node", return NULL); isl_union_map_free(tree->extension); tree->extension = extension; return tree; error: isl_schedule_tree_free(tree); isl_union_map_free(extension); return NULL; } /* Return the filter of the filter tree root. */ __isl_give isl_union_set *isl_schedule_tree_filter_get_filter( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_filter) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a filter node", return NULL); return isl_union_set_copy(tree->filter); } /* Replace the filter of the filter tree root by "filter". */ __isl_give isl_schedule_tree *isl_schedule_tree_filter_set_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter) { tree = isl_schedule_tree_cow(tree); if (!tree || !filter) goto error; if (tree->type != isl_schedule_node_filter) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a filter node", return NULL); isl_union_set_free(tree->filter); tree->filter = filter; return tree; error: isl_schedule_tree_free(tree); isl_union_set_free(filter); return NULL; } /* Return the guard of the guard tree root. */ __isl_give isl_set *isl_schedule_tree_guard_get_guard( __isl_take isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_guard) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a guard node", return NULL); return isl_set_copy(tree->guard); } /* Return the mark identifier of the mark tree root "tree". */ __isl_give isl_id *isl_schedule_tree_mark_get_id( __isl_keep isl_schedule_tree *tree) { if (!tree) return NULL; if (tree->type != isl_schedule_node_mark) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a mark node", return NULL); return isl_id_copy(tree->mark); } /* Set dim to the range dimension of "map" and abort the search. */ static isl_stat set_range_dim(__isl_take isl_map *map, void *user) { int *dim = user; *dim = isl_map_dim(map, isl_dim_out); isl_map_free(map); return isl_stat_error; } /* Return the dimension of the range of "umap". * "umap" is assumed not to be empty and * all maps inside "umap" are assumed to have the same range. * * We extract the range dimension from the first map in "umap". */ static int range_dim(__isl_keep isl_union_map *umap) { int dim = -1; if (!umap) return -1; if (isl_union_map_n_map(umap) == 0) isl_die(isl_union_map_get_ctx(umap), isl_error_internal, "unexpected empty input", return -1); isl_union_map_foreach_map(umap, &set_range_dim, &dim); return dim; } /* Append an "extra" number of zeros to the range of "umap" and * return the result. */ static __isl_give isl_union_map *append_range(__isl_take isl_union_map *umap, int extra) { isl_union_set *dom; isl_space *space; isl_multi_val *mv; isl_union_pw_multi_aff *suffix; isl_union_map *universe; isl_union_map *suffix_umap; universe = isl_union_map_universe(isl_union_map_copy(umap)); dom = isl_union_map_domain(universe); space = isl_union_set_get_space(dom); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, extra); mv = isl_multi_val_zero(space); suffix = isl_union_pw_multi_aff_multi_val_on_domain(dom, mv); suffix_umap = isl_union_map_from_union_pw_multi_aff(suffix); umap = isl_union_map_flat_range_product(umap, suffix_umap); return umap; } /* Should we skip the root of "tree" while looking for the first * descendant with schedule information? * That is, is it impossible to derive any information about * the iteration domain from this node? * * We do not want to skip leaf or error nodes because there is * no point in looking any deeper from these nodes. * We can only extract partial iteration domain information * from an extension node, but extension nodes are not supported * by the caller and it will error out on them. */ static int domain_less(__isl_keep isl_schedule_tree *tree) { enum isl_schedule_node_type type; type = isl_schedule_tree_get_type(tree); switch (type) { case isl_schedule_node_band: return isl_schedule_tree_band_n_member(tree) == 0; case isl_schedule_node_context: case isl_schedule_node_guard: case isl_schedule_node_mark: return 1; case isl_schedule_node_leaf: case isl_schedule_node_error: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_filter: case isl_schedule_node_set: case isl_schedule_node_sequence: return 0; } isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "unhandled case", return 0); } /* Move down to the first descendant of "tree" that contains any schedule * information or return "leaf" if there is no such descendant. */ __isl_give isl_schedule_tree *isl_schedule_tree_first_schedule_descendant( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree *leaf) { while (domain_less(tree)) { if (!isl_schedule_tree_has_children(tree)) { isl_schedule_tree_free(tree); return isl_schedule_tree_copy(leaf); } tree = isl_schedule_tree_child(tree, 0); } return tree; } static __isl_give isl_union_map *subtree_schedule_extend( __isl_keep isl_schedule_tree *tree, __isl_take isl_union_map *outer); /* Extend the schedule map "outer" with the subtree schedule * of the (single) child of "tree", if any. * * If "tree" does not have any descendants (apart from those that * do not carry any schedule information), then we simply return "outer". * Otherwise, we extend the schedule map "outer" with the subtree schedule * of the single child. */ static __isl_give isl_union_map *subtree_schedule_extend_child( __isl_keep isl_schedule_tree *tree, __isl_take isl_union_map *outer) { isl_schedule_tree *child; isl_union_map *res; if (!tree) return isl_union_map_free(outer); if (!isl_schedule_tree_has_children(tree)) return outer; child = isl_schedule_tree_get_child(tree, 0); if (!child) return isl_union_map_free(outer); res = subtree_schedule_extend(child, outer); isl_schedule_tree_free(child); return res; } /* Extract the parameter space from one of the children of "tree", * which are assumed to be filters. */ static __isl_give isl_space *extract_space_from_filter_child( __isl_keep isl_schedule_tree *tree) { isl_space *space; isl_union_set *dom; isl_schedule_tree *child; child = isl_schedule_tree_list_get_schedule_tree(tree->children, 0); dom = isl_schedule_tree_filter_get_filter(child); space = isl_union_set_get_space(dom); isl_union_set_free(dom); isl_schedule_tree_free(child); return space; } /* Extend the schedule map "outer" with the subtree schedule * of a set or sequence node. * * The schedule for the set or sequence node itself is composed of * pieces of the form * * filter -> [] * * or * * filter -> [index] * * The first form is used if there is only a single child or * if the current node is a set node and the schedule_separate_components * option is not set. * * Each of the pieces above is extended with the subtree schedule of * the child of the corresponding filter, if any, padded with zeros * to ensure that all pieces have the same range dimension. */ static __isl_give isl_union_map *subtree_schedule_extend_from_children( __isl_keep isl_schedule_tree *tree, __isl_take isl_union_map *outer) { int i, n; int dim; int separate; isl_ctx *ctx; isl_val *v = NULL; isl_multi_val *mv; isl_space *space; isl_union_map *umap; if (!tree) return NULL; ctx = isl_schedule_tree_get_ctx(tree); if (!tree->children) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "missing children", return NULL); n = isl_schedule_tree_list_n_schedule_tree(tree->children); if (n == 0) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "missing children", return NULL); separate = n > 1 && (tree->type == isl_schedule_node_sequence || isl_options_get_schedule_separate_components(ctx)); space = extract_space_from_filter_child(tree); umap = isl_union_map_empty(isl_space_copy(space)); space = isl_space_set_from_params(space); if (separate) { space = isl_space_add_dims(space, isl_dim_set, 1); v = isl_val_zero(ctx); } mv = isl_multi_val_zero(space); dim = isl_multi_val_dim(mv, isl_dim_set); for (i = 0; i < n; ++i) { isl_union_pw_multi_aff *upma; isl_union_map *umap_i; isl_union_set *dom; isl_schedule_tree *child; int dim_i; int empty; child = isl_schedule_tree_list_get_schedule_tree( tree->children, i); dom = isl_schedule_tree_filter_get_filter(child); if (separate) { mv = isl_multi_val_set_val(mv, 0, isl_val_copy(v)); v = isl_val_add_ui(v, 1); } upma = isl_union_pw_multi_aff_multi_val_on_domain(dom, isl_multi_val_copy(mv)); umap_i = isl_union_map_from_union_pw_multi_aff(upma); umap_i = isl_union_map_flat_range_product( isl_union_map_copy(outer), umap_i); umap_i = subtree_schedule_extend_child(child, umap_i); isl_schedule_tree_free(child); empty = isl_union_map_is_empty(umap_i); if (empty < 0) umap_i = isl_union_map_free(umap_i); else if (empty) { isl_union_map_free(umap_i); continue; } dim_i = range_dim(umap_i); if (dim_i < 0) { umap = isl_union_map_free(umap); } else if (dim < dim_i) { umap = append_range(umap, dim_i - dim); dim = dim_i; } else if (dim_i < dim) { umap_i = append_range(umap_i, dim - dim_i); } umap = isl_union_map_union(umap, umap_i); } isl_val_free(v); isl_multi_val_free(mv); isl_union_map_free(outer); return umap; } /* Extend the schedule map "outer" with the subtree schedule of "tree". * * If the root of the tree is a set or a sequence, then we extend * the schedule map in subtree_schedule_extend_from_children. * Otherwise, we extend the schedule map with the partial schedule * corresponding to the root of the tree and then continue with * the single child of this root. * In the special case of an expansion, the schedule map is "extended" * by applying the expansion to the domain of the schedule map. */ static __isl_give isl_union_map *subtree_schedule_extend( __isl_keep isl_schedule_tree *tree, __isl_take isl_union_map *outer) { isl_multi_union_pw_aff *mupa; isl_union_map *umap; isl_union_set *domain; if (!tree) return NULL; switch (tree->type) { case isl_schedule_node_error: return isl_union_map_free(outer); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot construct subtree schedule of tree " "with extension nodes", return isl_union_map_free(outer)); case isl_schedule_node_context: case isl_schedule_node_guard: case isl_schedule_node_mark: return subtree_schedule_extend_child(tree, outer); case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) return subtree_schedule_extend_child(tree, outer); mupa = isl_schedule_band_get_partial_schedule(tree->band); umap = isl_union_map_from_multi_union_pw_aff(mupa); outer = isl_union_map_flat_range_product(outer, umap); umap = subtree_schedule_extend_child(tree, outer); break; case isl_schedule_node_domain: domain = isl_schedule_tree_domain_get_domain(tree); umap = isl_union_map_from_domain(domain); outer = isl_union_map_flat_range_product(outer, umap); umap = subtree_schedule_extend_child(tree, outer); break; case isl_schedule_node_expansion: umap = isl_schedule_tree_expansion_get_expansion(tree); outer = isl_union_map_apply_domain(outer, umap); umap = subtree_schedule_extend_child(tree, outer); break; case isl_schedule_node_filter: domain = isl_schedule_tree_filter_get_filter(tree); umap = isl_union_map_from_domain(domain); outer = isl_union_map_flat_range_product(outer, umap); umap = subtree_schedule_extend_child(tree, outer); break; case isl_schedule_node_leaf: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "leaf node should be handled by caller", return NULL); case isl_schedule_node_set: case isl_schedule_node_sequence: umap = subtree_schedule_extend_from_children(tree, outer); break; } return umap; } static __isl_give isl_union_set *initial_domain( __isl_keep isl_schedule_tree *tree); /* Extract a universe domain from the children of the tree root "tree", * which is a set or sequence, meaning that its children are filters. * In particular, return the union of the universes of the filters. */ static __isl_give isl_union_set *initial_domain_from_children( __isl_keep isl_schedule_tree *tree) { int i, n; isl_space *space; isl_union_set *domain; if (!tree->children) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "missing children", return NULL); n = isl_schedule_tree_list_n_schedule_tree(tree->children); if (n == 0) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "missing children", return NULL); space = extract_space_from_filter_child(tree); domain = isl_union_set_empty(space); for (i = 0; i < n; ++i) { isl_schedule_tree *child; isl_union_set *domain_i; child = isl_schedule_tree_get_child(tree, i); domain_i = initial_domain(child); domain = isl_union_set_union(domain, domain_i); isl_schedule_tree_free(child); } return domain; } /* Extract a universe domain from the tree root "tree". * The caller is responsible for making sure that this node * would not be skipped by isl_schedule_tree_first_schedule_descendant * and that it is not a leaf node. */ static __isl_give isl_union_set *initial_domain( __isl_keep isl_schedule_tree *tree) { isl_multi_union_pw_aff *mupa; isl_union_set *domain; isl_union_map *exp; if (!tree) return NULL; switch (tree->type) { case isl_schedule_node_error: return NULL; case isl_schedule_node_context: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "context node should be handled by caller", return NULL); case isl_schedule_node_guard: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "guard node should be handled by caller", return NULL); case isl_schedule_node_mark: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "mark node should be handled by caller", return NULL); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot construct subtree schedule of tree " "with extension nodes", return NULL); case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "0D band should be handled by caller", return NULL); mupa = isl_schedule_band_get_partial_schedule(tree->band); domain = isl_multi_union_pw_aff_domain(mupa); domain = isl_union_set_universe(domain); break; case isl_schedule_node_domain: domain = isl_schedule_tree_domain_get_domain(tree); domain = isl_union_set_universe(domain); break; case isl_schedule_node_expansion: exp = isl_schedule_tree_expansion_get_expansion(tree); exp = isl_union_map_universe(exp); domain = isl_union_map_domain(exp); break; case isl_schedule_node_filter: domain = isl_schedule_tree_filter_get_filter(tree); domain = isl_union_set_universe(domain); break; case isl_schedule_node_leaf: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "leaf node should be handled by caller", return NULL); case isl_schedule_node_set: case isl_schedule_node_sequence: domain = initial_domain_from_children(tree); break; } return domain; } /* Return the subtree schedule of a node that contains some schedule * information, i.e., a node that would not be skipped by * isl_schedule_tree_first_schedule_descendant and that is not a leaf. * * If the tree contains any expansions, then the returned subtree * schedule is formulated in terms of the expanded domains. * The tree is not allowed to contain any extension nodes. * * We start with an initial zero-dimensional subtree schedule based * on the domain information in the root node and then extend it * based on the schedule information in the root node and its descendants. */ __isl_give isl_union_map *isl_schedule_tree_get_subtree_schedule_union_map( __isl_keep isl_schedule_tree *tree) { isl_union_set *domain; isl_union_map *umap; domain = initial_domain(tree); umap = isl_union_map_from_domain(domain); return subtree_schedule_extend(tree, umap); } /* Multiply the partial schedule of the band root node of "tree" * with the factors in "mv". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_scale( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv) { if (!tree || !mv) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree = isl_schedule_tree_cow(tree); if (!tree) goto error; tree->band = isl_schedule_band_scale(tree->band, mv); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_schedule_tree_free(tree); isl_multi_val_free(mv); return NULL; } /* Divide the partial schedule of the band root node of "tree" * by the factors in "mv". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_scale_down( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv) { if (!tree || !mv) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree = isl_schedule_tree_cow(tree); if (!tree) goto error; tree->band = isl_schedule_band_scale_down(tree->band, mv); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_schedule_tree_free(tree); isl_multi_val_free(mv); return NULL; } /* Reduce the partial schedule of the band root node of "tree" * modulo the factors in "mv". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_mod( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv) { if (!tree || !mv) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree = isl_schedule_tree_cow(tree); if (!tree) goto error; tree->band = isl_schedule_band_mod(tree->band, mv); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_schedule_tree_free(tree); isl_multi_val_free(mv); return NULL; } /* Shift the partial schedule of the band root node of "tree" by "shift". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_shift( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_union_pw_aff *shift) { if (!tree || !shift) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree = isl_schedule_tree_cow(tree); if (!tree) goto error; tree->band = isl_schedule_band_shift(tree->band, shift); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_schedule_tree_free(tree); isl_multi_union_pw_aff_free(shift); return NULL; } /* Given two trees with sequence roots, replace the child at position * "pos" of "tree" with the children of "child". */ __isl_give isl_schedule_tree *isl_schedule_tree_sequence_splice( __isl_take isl_schedule_tree *tree, int pos, __isl_take isl_schedule_tree *child) { int n; isl_schedule_tree_list *list1, *list2; tree = isl_schedule_tree_cow(tree); if (!tree || !child) goto error; if (isl_schedule_tree_get_type(tree) != isl_schedule_node_sequence) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a sequence node", goto error); n = isl_schedule_tree_n_children(tree); if (pos < 0 || pos >= n) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "position out of bounds", goto error); if (isl_schedule_tree_get_type(child) != isl_schedule_node_sequence) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a sequence node", goto error); list1 = isl_schedule_tree_list_copy(tree->children); list1 = isl_schedule_tree_list_drop(list1, pos, n - pos); list2 = isl_schedule_tree_list_copy(tree->children); list2 = isl_schedule_tree_list_drop(list2, 0, pos + 1); list1 = isl_schedule_tree_list_concat(list1, isl_schedule_tree_list_copy(child->children)); list1 = isl_schedule_tree_list_concat(list1, list2); isl_schedule_tree_free(tree); isl_schedule_tree_free(child); return isl_schedule_tree_from_children(isl_schedule_node_sequence, list1); error: isl_schedule_tree_free(tree); isl_schedule_tree_free(child); return NULL; } /* Tile the band root node of "tree" with tile sizes "sizes". * * We duplicate the band node, change the schedule of one of them * to the tile schedule and the other to the point schedule and then * attach the point band as a child to the tile band. */ __isl_give isl_schedule_tree *isl_schedule_tree_band_tile( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *sizes) { isl_schedule_tree *child = NULL; if (!tree || !sizes) goto error; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); child = isl_schedule_tree_copy(tree); tree = isl_schedule_tree_cow(tree); child = isl_schedule_tree_cow(child); if (!tree || !child) goto error; tree->band = isl_schedule_band_tile(tree->band, isl_multi_val_copy(sizes)); if (!tree->band) goto error; child->band = isl_schedule_band_point(child->band, tree->band, sizes); if (!child->band) child = isl_schedule_tree_free(child); tree = isl_schedule_tree_replace_child(tree, 0, child); return tree; error: isl_schedule_tree_free(child); isl_schedule_tree_free(tree); isl_multi_val_free(sizes); return NULL; } /* Split the band root node of "tree" into two nested band nodes, * one with the first "pos" dimensions and * one with the remaining dimensions. */ __isl_give isl_schedule_tree *isl_schedule_tree_band_split( __isl_take isl_schedule_tree *tree, int pos) { int n; isl_schedule_tree *child; if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", return isl_schedule_tree_free(tree)); n = isl_schedule_tree_band_n_member(tree); if (pos < 0 || pos > n) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "position out of bounds", return isl_schedule_tree_free(tree)); child = isl_schedule_tree_copy(tree); tree = isl_schedule_tree_cow(tree); child = isl_schedule_tree_cow(child); if (!tree || !child) goto error; child->band = isl_schedule_band_drop(child->band, 0, pos); tree->band = isl_schedule_band_drop(tree->band, pos, n - pos); if (!child->band || !tree->band) goto error; tree = isl_schedule_tree_replace_child(tree, 0, child); return tree; error: isl_schedule_tree_free(child); isl_schedule_tree_free(tree); return NULL; } /* Attach "tree2" at each of the leaves of "tree1". * * If "tree1" does not have any explicit children, then make "tree2" * its single child. Otherwise, attach "tree2" to the leaves of * each of the children of "tree1". */ __isl_give isl_schedule_tree *isl_schedule_tree_append_to_leaves( __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2) { int i, n; if (!tree1 || !tree2) goto error; n = isl_schedule_tree_n_children(tree1); if (n == 0) { isl_schedule_tree_list *list; list = isl_schedule_tree_list_from_schedule_tree(tree2); tree1 = isl_schedule_tree_set_children(tree1, list); return tree1; } for (i = 0; i < n; ++i) { isl_schedule_tree *child; child = isl_schedule_tree_get_child(tree1, i); child = isl_schedule_tree_append_to_leaves(child, isl_schedule_tree_copy(tree2)); tree1 = isl_schedule_tree_replace_child(tree1, i, child); } isl_schedule_tree_free(tree2); return tree1; error: isl_schedule_tree_free(tree1); isl_schedule_tree_free(tree2); return NULL; } /* Reset the user pointer on all identifiers of parameters and tuples * in the root of "tree". */ __isl_give isl_schedule_tree *isl_schedule_tree_reset_user( __isl_take isl_schedule_tree *tree) { if (isl_schedule_tree_is_leaf(tree)) return tree; tree = isl_schedule_tree_cow(tree); if (!tree) return NULL; switch (tree->type) { case isl_schedule_node_error: return isl_schedule_tree_free(tree); case isl_schedule_node_band: tree->band = isl_schedule_band_reset_user(tree->band); if (!tree->band) return isl_schedule_tree_free(tree); break; case isl_schedule_node_context: tree->context = isl_set_reset_user(tree->context); if (!tree->context) return isl_schedule_tree_free(tree); break; case isl_schedule_node_domain: tree->domain = isl_union_set_reset_user(tree->domain); if (!tree->domain) return isl_schedule_tree_free(tree); break; case isl_schedule_node_expansion: tree->contraction = isl_union_pw_multi_aff_reset_user(tree->contraction); tree->expansion = isl_union_map_reset_user(tree->expansion); if (!tree->contraction || !tree->expansion) return isl_schedule_tree_free(tree); break; case isl_schedule_node_extension: tree->extension = isl_union_map_reset_user(tree->extension); if (!tree->extension) return isl_schedule_tree_free(tree); break; case isl_schedule_node_filter: tree->filter = isl_union_set_reset_user(tree->filter); if (!tree->filter) return isl_schedule_tree_free(tree); break; case isl_schedule_node_guard: tree->guard = isl_set_reset_user(tree->guard); if (!tree->guard) return isl_schedule_tree_free(tree); break; case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return tree; } /* Align the parameters of the root of "tree" to those of "space". */ __isl_give isl_schedule_tree *isl_schedule_tree_align_params( __isl_take isl_schedule_tree *tree, __isl_take isl_space *space) { if (!space) goto error; if (isl_schedule_tree_is_leaf(tree)) { isl_space_free(space); return tree; } tree = isl_schedule_tree_cow(tree); if (!tree) goto error; switch (tree->type) { case isl_schedule_node_error: goto error; case isl_schedule_node_band: tree->band = isl_schedule_band_align_params(tree->band, space); if (!tree->band) return isl_schedule_tree_free(tree); break; case isl_schedule_node_context: tree->context = isl_set_align_params(tree->context, space); if (!tree->context) return isl_schedule_tree_free(tree); break; case isl_schedule_node_domain: tree->domain = isl_union_set_align_params(tree->domain, space); if (!tree->domain) return isl_schedule_tree_free(tree); break; case isl_schedule_node_expansion: tree->contraction = isl_union_pw_multi_aff_align_params(tree->contraction, isl_space_copy(space)); tree->expansion = isl_union_map_align_params(tree->expansion, space); if (!tree->contraction || !tree->expansion) return isl_schedule_tree_free(tree); break; case isl_schedule_node_extension: tree->extension = isl_union_map_align_params(tree->extension, space); if (!tree->extension) return isl_schedule_tree_free(tree); break; case isl_schedule_node_filter: tree->filter = isl_union_set_align_params(tree->filter, space); if (!tree->filter) return isl_schedule_tree_free(tree); break; case isl_schedule_node_guard: tree->guard = isl_set_align_params(tree->guard, space); if (!tree->guard) return isl_schedule_tree_free(tree); break; case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: isl_space_free(space); break; } return tree; error: isl_space_free(space); isl_schedule_tree_free(tree); return NULL; } /* Does "tree" involve the iteration domain? * That is, does it need to be modified * by isl_schedule_tree_pullback_union_pw_multi_aff? */ static int involves_iteration_domain(__isl_keep isl_schedule_tree *tree) { if (!tree) return -1; switch (tree->type) { case isl_schedule_node_error: return -1; case isl_schedule_node_band: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_filter: return 1; case isl_schedule_node_context: case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: return 0; } isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "unhandled case", return -1); } /* Compute the pullback of the root node of "tree" by the function * represented by "upma". * In other words, plug in "upma" in the iteration domains of * the root node of "tree". * We currently do not handle expansion nodes. * * We first check if the root node involves any iteration domains. * If so, we handle the specific cases. */ __isl_give isl_schedule_tree *isl_schedule_tree_pullback_union_pw_multi_aff( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *upma) { int involves; if (!tree || !upma) goto error; involves = involves_iteration_domain(tree); if (involves < 0) goto error; if (!involves) { isl_union_pw_multi_aff_free(upma); return tree; } tree = isl_schedule_tree_cow(tree); if (!tree) goto error; if (tree->type == isl_schedule_node_band) { tree->band = isl_schedule_band_pullback_union_pw_multi_aff( tree->band, upma); if (!tree->band) return isl_schedule_tree_free(tree); } else if (tree->type == isl_schedule_node_domain) { tree->domain = isl_union_set_preimage_union_pw_multi_aff(tree->domain, upma); if (!tree->domain) return isl_schedule_tree_free(tree); } else if (tree->type == isl_schedule_node_expansion) { isl_die(isl_schedule_tree_get_ctx(tree), isl_error_unsupported, "cannot pullback expansion node", goto error); } else if (tree->type == isl_schedule_node_extension) { tree->extension = isl_union_map_preimage_range_union_pw_multi_aff( tree->extension, upma); if (!tree->extension) return isl_schedule_tree_free(tree); } else if (tree->type == isl_schedule_node_filter) { tree->filter = isl_union_set_preimage_union_pw_multi_aff(tree->filter, upma); if (!tree->filter) return isl_schedule_tree_free(tree); } return tree; error: isl_union_pw_multi_aff_free(upma); isl_schedule_tree_free(tree); return NULL; } /* Compute the gist of the band tree root with respect to "context". */ __isl_give isl_schedule_tree *isl_schedule_tree_band_gist( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *context) { if (!tree) return NULL; if (tree->type != isl_schedule_node_band) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "not a band node", goto error); tree = isl_schedule_tree_cow(tree); if (!tree) goto error; tree->band = isl_schedule_band_gist(tree->band, context); if (!tree->band) return isl_schedule_tree_free(tree); return tree; error: isl_union_set_free(context); isl_schedule_tree_free(tree); return NULL; } /* Are any members in "band" marked coincident? */ static int any_coincident(__isl_keep isl_schedule_band *band) { int i, n; n = isl_schedule_band_n_member(band); for (i = 0; i < n; ++i) if (isl_schedule_band_member_get_coincident(band, i)) return 1; return 0; } /* Print the band node "band" to "p". * * The permutable and coincident properties are only printed if they * are different from the defaults. * The coincident property is always printed in YAML flow style. */ static __isl_give isl_printer *print_tree_band(__isl_take isl_printer *p, __isl_keep isl_schedule_band *band) { isl_union_set *options; int empty; p = isl_printer_print_str(p, "schedule"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_multi_union_pw_aff(p, band->mupa); p = isl_printer_print_str(p, "\""); if (isl_schedule_band_get_permutable(band)) { p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "permutable"); p = isl_printer_yaml_next(p); p = isl_printer_print_int(p, 1); } if (any_coincident(band)) { int i, n; int style; p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "coincident"); p = isl_printer_yaml_next(p); style = isl_printer_get_yaml_style(p); p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW); p = isl_printer_yaml_start_sequence(p); n = isl_schedule_band_n_member(band); for (i = 0; i < n; ++i) { p = isl_printer_print_int(p, isl_schedule_band_member_get_coincident(band, i)); p = isl_printer_yaml_next(p); } p = isl_printer_yaml_end_sequence(p); p = isl_printer_set_yaml_style(p, style); } options = isl_schedule_band_get_ast_build_options(band); empty = isl_union_set_is_empty(options); if (empty < 0) p = isl_printer_free(p); if (!empty) { p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "options"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_set(p, options); p = isl_printer_print_str(p, "\""); } isl_union_set_free(options); return p; } /* Print "tree" to "p". * * If "n_ancestor" is non-negative, then "child_pos" contains the child * positions of a descendant of the current node that should be marked * (by the comment "YOU ARE HERE"). In particular, if "n_ancestor" * is zero, then the current node should be marked. * The marking is only printed in YAML block format. * * Implicit leaf nodes are not printed, except if they correspond * to the node that should be marked. */ __isl_give isl_printer *isl_printer_print_schedule_tree_mark( __isl_take isl_printer *p, __isl_keep isl_schedule_tree *tree, int n_ancestor, int *child_pos) { int i, n; int sequence = 0; int block; block = isl_printer_get_yaml_style(p) == ISL_YAML_STYLE_BLOCK; p = isl_printer_yaml_start_mapping(p); if (n_ancestor == 0 && block) { p = isl_printer_print_str(p, "# YOU ARE HERE"); p = isl_printer_end_line(p); p = isl_printer_start_line(p); } switch (tree->type) { case isl_schedule_node_error: p = isl_printer_print_str(p, "ERROR"); break; case isl_schedule_node_leaf: p = isl_printer_print_str(p, "leaf"); break; case isl_schedule_node_sequence: p = isl_printer_print_str(p, "sequence"); sequence = 1; break; case isl_schedule_node_set: p = isl_printer_print_str(p, "set"); sequence = 1; break; case isl_schedule_node_context: p = isl_printer_print_str(p, "context"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_set(p, tree->context); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_domain: p = isl_printer_print_str(p, "domain"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_set(p, tree->domain); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_expansion: p = isl_printer_print_str(p, "contraction"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_pw_multi_aff(p, tree->contraction); p = isl_printer_print_str(p, "\""); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "expansion"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_map(p, tree->expansion); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_extension: p = isl_printer_print_str(p, "extension"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_map(p, tree->extension); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_filter: p = isl_printer_print_str(p, "filter"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_set(p, tree->filter); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_guard: p = isl_printer_print_str(p, "guard"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_set(p, tree->guard); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_mark: p = isl_printer_print_str(p, "mark"); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_str(p, isl_id_get_name(tree->mark)); p = isl_printer_print_str(p, "\""); break; case isl_schedule_node_band: p = print_tree_band(p, tree->band); break; } p = isl_printer_yaml_next(p); if (!tree->children) { if (n_ancestor > 0 && block) { isl_schedule_tree *leaf; p = isl_printer_print_str(p, "child"); p = isl_printer_yaml_next(p); leaf = isl_schedule_tree_leaf(isl_printer_get_ctx(p)); p = isl_printer_print_schedule_tree_mark(p, leaf, 0, NULL); isl_schedule_tree_free(leaf); p = isl_printer_yaml_next(p); } return isl_printer_yaml_end_mapping(p); } if (sequence) { p = isl_printer_yaml_start_sequence(p); } else { p = isl_printer_print_str(p, "child"); p = isl_printer_yaml_next(p); } n = isl_schedule_tree_list_n_schedule_tree(tree->children); for (i = 0; i < n; ++i) { isl_schedule_tree *t; t = isl_schedule_tree_get_child(tree, i); if (n_ancestor > 0 && child_pos[0] == i) p = isl_printer_print_schedule_tree_mark(p, t, n_ancestor - 1, child_pos + 1); else p = isl_printer_print_schedule_tree_mark(p, t, -1, NULL); isl_schedule_tree_free(t); p = isl_printer_yaml_next(p); } if (sequence) p = isl_printer_yaml_end_sequence(p); p = isl_printer_yaml_end_mapping(p); return p; } /* Print "tree" to "p". */ __isl_give isl_printer *isl_printer_print_schedule_tree( __isl_take isl_printer *p, __isl_keep isl_schedule_tree *tree) { return isl_printer_print_schedule_tree_mark(p, tree, -1, NULL); } void isl_schedule_tree_dump(__isl_keep isl_schedule_tree *tree) { isl_ctx *ctx; isl_printer *printer; if (!tree) return; ctx = isl_schedule_tree_get_ctx(tree); printer = isl_printer_to_file(ctx, stderr); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule_tree(printer, tree); isl_printer_free(printer); } isl-0.16.1/isl_vertices.c0000664000175000017500000011110612645737061012163 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include #include #include #include #include #include #include #include #define SELECTED 1 #define DESELECTED -1 #define UNSELECTED 0 static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, __isl_take isl_vertices *vertices); __isl_give isl_vertices *isl_vertices_copy(__isl_keep isl_vertices *vertices) { if (!vertices) return NULL; vertices->ref++; return vertices; } void isl_vertices_free(__isl_take isl_vertices *vertices) { int i; if (!vertices) return; if (--vertices->ref > 0) return; for (i = 0; i < vertices->n_vertices; ++i) { isl_basic_set_free(vertices->v[i].vertex); isl_basic_set_free(vertices->v[i].dom); } free(vertices->v); for (i = 0; i < vertices->n_chambers; ++i) { free(vertices->c[i].vertices); isl_basic_set_free(vertices->c[i].dom); } free(vertices->c); isl_basic_set_free(vertices->bset); free(vertices); } struct isl_vertex_list { struct isl_vertex v; struct isl_vertex_list *next; }; static void free_vertex_list(struct isl_vertex_list *list) { struct isl_vertex_list *next; for (; list; list = next) { next = list->next; isl_basic_set_free(list->v.vertex); isl_basic_set_free(list->v.dom); free(list); } } static __isl_give isl_vertices *vertices_from_list(__isl_keep isl_basic_set *bset, int n_vertices, struct isl_vertex_list *list) { int i; struct isl_vertex_list *next; isl_vertices *vertices; vertices = isl_calloc_type(bset->ctx, isl_vertices); if (!vertices) goto error; vertices->ref = 1; vertices->bset = isl_basic_set_copy(bset); vertices->v = isl_alloc_array(bset->ctx, struct isl_vertex, n_vertices); if (n_vertices && !vertices->v) goto error; vertices->n_vertices = n_vertices; for (i = 0; list; list = next, i++) { next = list->next; vertices->v[i] = list->v; free(list); } return vertices; error: isl_vertices_free(vertices); free_vertex_list(list); return NULL; } /* Prepend a vertex to the linked list "list" based on the equalities in "tab". */ static int add_vertex(struct isl_vertex_list **list, __isl_keep isl_basic_set *bset, struct isl_tab *tab) { unsigned nvar; struct isl_vertex_list *v = NULL; if (isl_tab_detect_implicit_equalities(tab) < 0) return -1; nvar = isl_basic_set_dim(bset, isl_dim_set); v = isl_calloc_type(tab->mat->ctx, struct isl_vertex_list); if (!v) goto error; v->v.vertex = isl_basic_set_copy(bset); v->v.vertex = isl_basic_set_cow(v->v.vertex); v->v.vertex = isl_basic_set_update_from_tab(v->v.vertex, tab); v->v.vertex = isl_basic_set_simplify(v->v.vertex); v->v.vertex = isl_basic_set_finalize(v->v.vertex); if (!v->v.vertex) goto error; isl_assert(bset->ctx, v->v.vertex->n_eq >= nvar, goto error); v->v.dom = isl_basic_set_copy(v->v.vertex); v->v.dom = isl_basic_set_params(v->v.dom); if (!v->v.dom) goto error; v->next = *list; *list = v; return 0; error: free_vertex_list(v); return -1; } /* Compute the parametric vertices and the chamber decomposition * of an empty parametric polytope. */ static __isl_give isl_vertices *vertices_empty(__isl_keep isl_basic_set *bset) { isl_vertices *vertices; if (!bset) return NULL; vertices = isl_calloc_type(bset->ctx, isl_vertices); if (!vertices) return NULL; vertices->bset = isl_basic_set_copy(bset); vertices->ref = 1; vertices->n_vertices = 0; vertices->n_chambers = 0; return vertices; } /* Compute the parametric vertices and the chamber decomposition * of the parametric polytope defined using the same constraints * as "bset" in the 0D case. * There is exactly one 0D vertex and a single chamber containing * the vertex. */ static __isl_give isl_vertices *vertices_0D(__isl_keep isl_basic_set *bset) { isl_vertices *vertices; if (!bset) return NULL; vertices = isl_calloc_type(bset->ctx, isl_vertices); if (!vertices) return NULL; vertices->ref = 1; vertices->bset = isl_basic_set_copy(bset); vertices->v = isl_calloc_array(bset->ctx, struct isl_vertex, 1); if (!vertices->v) goto error; vertices->n_vertices = 1; vertices->v[0].vertex = isl_basic_set_copy(bset); vertices->v[0].dom = isl_basic_set_params(isl_basic_set_copy(bset)); if (!vertices->v[0].vertex || !vertices->v[0].dom) goto error; vertices->c = isl_calloc_array(bset->ctx, struct isl_chamber, 1); if (!vertices->c) goto error; vertices->n_chambers = 1; vertices->c[0].n_vertices = 1; vertices->c[0].vertices = isl_calloc_array(bset->ctx, int, 1); if (!vertices->c[0].vertices) goto error; vertices->c[0].dom = isl_basic_set_copy(vertices->v[0].dom); if (!vertices->c[0].dom) goto error; return vertices; error: isl_vertices_free(vertices); return NULL; } static int isl_mat_rank(__isl_keep isl_mat *mat) { int row, col; isl_mat *H; H = isl_mat_left_hermite(isl_mat_copy(mat), 0, NULL, NULL); if (!H) return -1; for (col = 0; col < H->n_col; ++col) { for (row = 0; row < H->n_row; ++row) if (!isl_int_is_zero(H->row[row][col])) break; if (row == H->n_row) break; } isl_mat_free(H); return col; } /* Is the row pointed to by "f" linearly independent of the "n" first * rows in "facets"? */ static int is_independent(__isl_keep isl_mat *facets, int n, isl_int *f) { int rank; if (isl_seq_first_non_zero(f, facets->n_col) < 0) return 0; isl_seq_cpy(facets->row[n], f, facets->n_col); facets->n_row = n + 1; rank = isl_mat_rank(facets); if (rank < 0) return -1; return rank == n + 1; } /* Check whether we can select constraint "level", given the current selection * reflected by facets in "tab", the rows of "facets" and the earlier * "selected" elements of "selection". * * If the constraint is (strictly) redundant in the tableau, selecting it would * result in an empty tableau, so it can't be selected. * If the set variable part of the constraint is not linearly indepedent * of the set variable parts of the already selected constraints, * the constraint cannot be selected. * If selecting the constraint results in an empty tableau, the constraint * cannot be selected. * Finally, if selecting the constraint results in some explicitly * deselected constraints turning into equalities, then the corresponding * vertices have already been generated, so the constraint cannot be selected. */ static int can_select(__isl_keep isl_basic_set *bset, int level, struct isl_tab *tab, __isl_keep isl_mat *facets, int selected, int *selection) { int i; int indep; unsigned ovar; struct isl_tab_undo *snap; if (isl_tab_is_redundant(tab, level)) return 0; ovar = isl_space_offset(bset->dim, isl_dim_set); indep = is_independent(facets, selected, bset->ineq[level] + 1 + ovar); if (indep < 0) return -1; if (!indep) return 0; snap = isl_tab_snap(tab); if (isl_tab_select_facet(tab, level) < 0) return -1; if (tab->empty) { if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; } for (i = 0; i < level; ++i) { int sgn; if (selection[i] != DESELECTED) continue; if (isl_tab_is_equality(tab, i)) sgn = 0; else if (isl_tab_is_redundant(tab, i)) sgn = 1; else sgn = isl_tab_sign_of_max(tab, i); if (sgn < -1) return -1; if (sgn <= 0) { if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; } } return 1; } /* Compute the parametric vertices and the chamber decomposition * of a parametric polytope that is not full-dimensional. * * Simply map the parametric polytope to a lower dimensional space * and map the resulting vertices back. */ static __isl_give isl_vertices *lower_dim_vertices( __isl_keep isl_basic_set *bset) { isl_morph *morph; isl_vertices *vertices; bset = isl_basic_set_copy(bset); morph = isl_basic_set_full_compression(bset); bset = isl_morph_basic_set(isl_morph_copy(morph), bset); vertices = isl_basic_set_compute_vertices(bset); isl_basic_set_free(bset); morph = isl_morph_inverse(morph); vertices = isl_morph_vertices(morph, vertices); return vertices; } /* Compute the parametric vertices and the chamber decomposition * of the parametric polytope defined using the same constraints * as "bset". "bset" is assumed to have no existentially quantified * variables. * * The vertices themselves are computed in a fairly simplistic way. * We simply run through all combinations of d constraints, * with d the number of set variables, and check if those d constraints * define a vertex. To avoid the generation of duplicate vertices, * which we may happen if a vertex is defined by more that d constraints, * we make sure we only generate the vertex for the d constraints with * smallest index. * * We set up a tableau and keep track of which facets have been * selected. The tableau is marked strict_redundant so that we can be * sure that any constraint that is marked redundant (and that is not * also marked zero) is not an equality. * If a constraint is marked DESELECTED, it means the constraint was * SELECTED before (in combination with the same selection of earlier * constraints). If such a deselected constraint turns out to be an * equality, then any vertex that may still be found with the current * selection has already been generated when the constraint was selected. * A constraint is marked UNSELECTED when there is no way selecting * the constraint could lead to a vertex (in combination with the current * selection of earlier constraints). * * The set variable coefficients of the selected constraints are stored * in the facets matrix. */ __isl_give isl_vertices *isl_basic_set_compute_vertices( __isl_keep isl_basic_set *bset) { struct isl_tab *tab; int level; int init; unsigned nvar; int *selection = NULL; int selected; struct isl_tab_undo **snap = NULL; isl_mat *facets = NULL; struct isl_vertex_list *list = NULL; int n_vertices = 0; isl_vertices *vertices; if (!bset) return NULL; if (isl_basic_set_plain_is_empty(bset)) return vertices_empty(bset); if (bset->n_eq != 0) return lower_dim_vertices(bset); isl_assert(bset->ctx, isl_basic_set_dim(bset, isl_dim_div) == 0, return NULL); if (isl_basic_set_dim(bset, isl_dim_set) == 0) return vertices_0D(bset); nvar = isl_basic_set_dim(bset, isl_dim_set); bset = isl_basic_set_copy(bset); bset = isl_basic_set_set_rational(bset); if (!bset) return NULL; tab = isl_tab_from_basic_set(bset, 0); if (!tab) goto error; tab->strict_redundant = 1; if (tab->empty) { vertices = vertices_empty(bset); isl_basic_set_free(bset); isl_tab_free(tab); return vertices; } selection = isl_alloc_array(bset->ctx, int, bset->n_ineq); snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, bset->n_ineq); facets = isl_mat_alloc(bset->ctx, nvar, nvar); if ((bset->n_ineq && (!selection || !snap)) || !facets) goto error; level = 0; init = 1; selected = 0; while (level >= 0) { if (level >= bset->n_ineq || (!init && selection[level] != SELECTED)) { --level; init = 0; continue; } if (init) { int ok; snap[level] = isl_tab_snap(tab); ok = can_select(bset, level, tab, facets, selected, selection); if (ok < 0) goto error; if (ok) { selection[level] = SELECTED; selected++; } else selection[level] = UNSELECTED; } else { selection[level] = DESELECTED; selected--; if (isl_tab_rollback(tab, snap[level]) < 0) goto error; } if (selected == nvar) { if (tab->n_dead == nvar) { if (add_vertex(&list, bset, tab) < 0) goto error; n_vertices++; } init = 0; continue; } ++level; init = 1; } isl_mat_free(facets); free(selection); free(snap); isl_tab_free(tab); vertices = vertices_from_list(bset, n_vertices, list); vertices = compute_chambers(bset, vertices); return vertices; error: free_vertex_list(list); isl_mat_free(facets); free(selection); free(snap); isl_tab_free(tab); isl_basic_set_free(bset); return NULL; } struct isl_chamber_list { struct isl_chamber c; struct isl_chamber_list *next; }; static void free_chamber_list(struct isl_chamber_list *list) { struct isl_chamber_list *next; for (; list; list = next) { next = list->next; isl_basic_set_free(list->c.dom); free(list->c.vertices); free(list); } } /* Check whether the basic set "bset" is a superset of the basic set described * by "tab", i.e., check whether all constraints of "bset" are redundant. */ static int bset_covers_tab(__isl_keep isl_basic_set *bset, struct isl_tab *tab) { int i; if (!bset || !tab) return -1; for (i = 0; i < bset->n_ineq; ++i) { enum isl_ineq_type type = isl_tab_ineq_type(tab, bset->ineq[i]); switch (type) { case isl_ineq_error: return -1; case isl_ineq_redundant: continue; default: return 0; } } return 1; } static __isl_give isl_vertices *vertices_add_chambers( __isl_take isl_vertices *vertices, int n_chambers, struct isl_chamber_list *list) { int i; isl_ctx *ctx; struct isl_chamber_list *next; ctx = isl_vertices_get_ctx(vertices); vertices->c = isl_alloc_array(ctx, struct isl_chamber, n_chambers); if (!vertices->c) goto error; vertices->n_chambers = n_chambers; for (i = 0; list; list = next, i++) { next = list->next; vertices->c[i] = list->c; free(list); } return vertices; error: isl_vertices_free(vertices); free_chamber_list(list); return NULL; } /* Can "tab" be intersected with "bset" without resulting in * a lower-dimensional set. */ static int can_intersect(struct isl_tab *tab, __isl_keep isl_basic_set *bset) { int i; struct isl_tab_undo *snap; if (isl_tab_extend_cons(tab, bset->n_ineq) < 0) return -1; snap = isl_tab_snap(tab); for (i = 0; i < bset->n_ineq; ++i) { if (isl_tab_ineq_type(tab, bset->ineq[i]) == isl_ineq_redundant) continue; if (isl_tab_add_ineq(tab, bset->ineq[i]) < 0) return -1; } if (isl_tab_detect_implicit_equalities(tab) < 0) return -1; if (tab->n_dead) { if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; } return 1; } static int add_chamber(struct isl_chamber_list **list, __isl_keep isl_vertices *vertices, struct isl_tab *tab, int *selection) { int n_frozen; int i, j; int n_vertices = 0; struct isl_tab_undo *snap; struct isl_chamber_list *c = NULL; for (i = 0; i < vertices->n_vertices; ++i) if (selection[i]) n_vertices++; snap = isl_tab_snap(tab); for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) tab->con[i].frozen = 0; n_frozen = i; if (isl_tab_detect_redundant(tab) < 0) return -1; c = isl_calloc_type(tab->mat->ctx, struct isl_chamber_list); if (!c) goto error; c->c.vertices = isl_alloc_array(tab->mat->ctx, int, n_vertices); if (n_vertices && !c->c.vertices) goto error; c->c.dom = isl_basic_set_copy(isl_tab_peek_bset(tab)); c->c.dom = isl_basic_set_set_rational(c->c.dom); c->c.dom = isl_basic_set_cow(c->c.dom); c->c.dom = isl_basic_set_update_from_tab(c->c.dom, tab); c->c.dom = isl_basic_set_simplify(c->c.dom); c->c.dom = isl_basic_set_finalize(c->c.dom); if (!c->c.dom) goto error; c->c.n_vertices = n_vertices; for (i = 0, j = 0; i < vertices->n_vertices; ++i) if (selection[i]) { c->c.vertices[j] = i; j++; } c->next = *list; *list = c; for (i = 0; i < n_frozen; ++i) tab->con[i].frozen = 1; if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; error: free_chamber_list(c); return -1; } struct isl_facet_todo { struct isl_tab *tab; /* A tableau representation of the facet */ isl_basic_set *bset; /* A normalized basic set representation */ isl_vec *constraint; /* Constraint pointing to the other side */ struct isl_facet_todo *next; }; static void free_todo(struct isl_facet_todo *todo) { while (todo) { struct isl_facet_todo *next = todo->next; isl_tab_free(todo->tab); isl_basic_set_free(todo->bset); isl_vec_free(todo->constraint); free(todo); todo = next; } } static struct isl_facet_todo *create_todo(struct isl_tab *tab, int con) { int i; int n_frozen; struct isl_tab_undo *snap; struct isl_facet_todo *todo; snap = isl_tab_snap(tab); for (i = 0; i < tab->n_con && tab->con[i].frozen; ++i) tab->con[i].frozen = 0; n_frozen = i; if (isl_tab_detect_redundant(tab) < 0) return NULL; todo = isl_calloc_type(tab->mat->ctx, struct isl_facet_todo); if (!todo) return NULL; todo->constraint = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!todo->constraint) goto error; isl_seq_neg(todo->constraint->el, tab->bmap->ineq[con], 1 + tab->n_var); todo->bset = isl_basic_set_copy(isl_tab_peek_bset(tab)); todo->bset = isl_basic_set_set_rational(todo->bset); todo->bset = isl_basic_set_cow(todo->bset); todo->bset = isl_basic_set_update_from_tab(todo->bset, tab); todo->bset = isl_basic_set_simplify(todo->bset); todo->bset = isl_basic_set_sort_constraints(todo->bset); if (!todo->bset) goto error; ISL_F_SET(todo->bset, ISL_BASIC_SET_NORMALIZED); todo->tab = isl_tab_dup(tab); if (!todo->tab) goto error; for (i = 0; i < n_frozen; ++i) tab->con[i].frozen = 1; if (isl_tab_rollback(tab, snap) < 0) goto error; return todo; error: free_todo(todo); return NULL; } /* Create todo items for all interior facets of the chamber represented * by "tab" and collect them in "next". */ static int init_todo(struct isl_facet_todo **next, struct isl_tab *tab) { int i; struct isl_tab_undo *snap; struct isl_facet_todo *todo; snap = isl_tab_snap(tab); for (i = 0; i < tab->n_con; ++i) { if (tab->con[i].frozen) continue; if (tab->con[i].is_redundant) continue; if (isl_tab_select_facet(tab, i) < 0) return -1; todo = create_todo(tab, i); if (!todo) return -1; todo->next = *next; *next = todo; if (isl_tab_rollback(tab, snap) < 0) return -1; } return 0; } /* Does the linked list contain a todo item that is the opposite of "todo". * If so, return 1 and remove the opposite todo item. */ static int has_opposite(struct isl_facet_todo *todo, struct isl_facet_todo **list) { for (; *list; list = &(*list)->next) { int eq; eq = isl_basic_set_plain_is_equal(todo->bset, (*list)->bset); if (eq < 0) return -1; if (!eq) continue; todo = *list; *list = todo->next; todo->next = NULL; free_todo(todo); return 1; } return 0; } /* Create todo items for all interior facets of the chamber represented * by "tab" and collect them in first->next, taking care to cancel * opposite todo items. */ static int update_todo(struct isl_facet_todo *first, struct isl_tab *tab) { int i; struct isl_tab_undo *snap; struct isl_facet_todo *todo; snap = isl_tab_snap(tab); for (i = 0; i < tab->n_con; ++i) { int drop; if (tab->con[i].frozen) continue; if (tab->con[i].is_redundant) continue; if (isl_tab_select_facet(tab, i) < 0) return -1; todo = create_todo(tab, i); if (!todo) return -1; drop = has_opposite(todo, &first->next); if (drop < 0) return -1; if (drop) free_todo(todo); else { todo->next = first->next; first->next = todo; } if (isl_tab_rollback(tab, snap) < 0) return -1; } return 0; } /* Compute the chamber decomposition of the parametric polytope respresented * by "bset" given the parametric vertices and their activity domains. * * We are only interested in full-dimensional chambers. * Each of these chambers is the intersection of the activity domains of * one or more vertices and the union of all chambers is equal to the * projection of the entire parametric polytope onto the parameter space. * * We first create an initial chamber by intersecting as many activity * domains as possible without ending up with an empty or lower-dimensional * set. As a minor optimization, we only consider those activity domains * that contain some arbitrary point. * * For each of interior facets of the chamber, we construct a todo item, * containing the facet and a constraint containing the other side of the facet, * for constructing the chamber on the other side. * While their are any todo items left, we pick a todo item and * create the required chamber by intersecting all activity domains * that contain the facet and have a full-dimensional intersection with * the other side of the facet. For each of the interior facets, we * again create todo items, taking care to cancel opposite todo items. */ static __isl_give isl_vertices *compute_chambers(__isl_take isl_basic_set *bset, __isl_take isl_vertices *vertices) { int i; isl_ctx *ctx; isl_vec *sample = NULL; struct isl_tab *tab = NULL; struct isl_tab_undo *snap; int *selection = NULL; int n_chambers = 0; struct isl_chamber_list *list = NULL; struct isl_facet_todo *todo = NULL; if (!bset || !vertices) goto error; ctx = isl_vertices_get_ctx(vertices); selection = isl_alloc_array(ctx, int, vertices->n_vertices); if (vertices->n_vertices && !selection) goto error; bset = isl_basic_set_params(bset); tab = isl_tab_from_basic_set(bset, 1); if (!tab) goto error; for (i = 0; i < bset->n_ineq; ++i) if (isl_tab_freeze_constraint(tab, i) < 0) goto error; isl_basic_set_free(bset); snap = isl_tab_snap(tab); sample = isl_tab_get_sample_value(tab); for (i = 0; i < vertices->n_vertices; ++i) { selection[i] = isl_basic_set_contains(vertices->v[i].dom, sample); if (selection[i] < 0) goto error; if (!selection[i]) continue; selection[i] = can_intersect(tab, vertices->v[i].dom); if (selection[i] < 0) goto error; } if (isl_tab_detect_redundant(tab) < 0) goto error; if (add_chamber(&list, vertices, tab, selection) < 0) goto error; n_chambers++; if (init_todo(&todo, tab) < 0) goto error; while (todo) { struct isl_facet_todo *next; if (isl_tab_rollback(tab, snap) < 0) goto error; if (isl_tab_add_ineq(tab, todo->constraint->el) < 0) goto error; if (isl_tab_freeze_constraint(tab, tab->n_con - 1) < 0) goto error; for (i = 0; i < vertices->n_vertices; ++i) { selection[i] = bset_covers_tab(vertices->v[i].dom, todo->tab); if (selection[i] < 0) goto error; if (!selection[i]) continue; selection[i] = can_intersect(tab, vertices->v[i].dom); if (selection[i] < 0) goto error; } if (isl_tab_detect_redundant(tab) < 0) goto error; if (add_chamber(&list, vertices, tab, selection) < 0) goto error; n_chambers++; if (update_todo(todo, tab) < 0) goto error; next = todo->next; todo->next = NULL; free_todo(todo); todo = next; } isl_vec_free(sample); isl_tab_free(tab); free(selection); vertices = vertices_add_chambers(vertices, n_chambers, list); for (i = 0; vertices && i < vertices->n_vertices; ++i) { isl_basic_set_free(vertices->v[i].dom); vertices->v[i].dom = NULL; } return vertices; error: free_chamber_list(list); free_todo(todo); isl_vec_free(sample); isl_tab_free(tab); free(selection); if (!tab) isl_basic_set_free(bset); isl_vertices_free(vertices); return NULL; } isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex) { return vertex ? isl_vertices_get_ctx(vertex->vertices) : NULL; } int isl_vertex_get_id(__isl_keep isl_vertex *vertex) { return vertex ? vertex->id : -1; } __isl_give isl_basic_set *isl_basic_set_set_integral(__isl_take isl_basic_set *bset) { if (!bset) return NULL; if (!ISL_F_ISSET(bset, ISL_BASIC_MAP_RATIONAL)) return bset; bset = isl_basic_set_cow(bset); if (!bset) return NULL; ISL_F_CLR(bset, ISL_BASIC_MAP_RATIONAL); return isl_basic_set_finalize(bset); } /* Return the activity domain of the vertex "vertex". */ __isl_give isl_basic_set *isl_vertex_get_domain(__isl_keep isl_vertex *vertex) { struct isl_vertex *v; if (!vertex) return NULL; v = &vertex->vertices->v[vertex->id]; if (!v->dom) { v->dom = isl_basic_set_copy(v->vertex); v->dom = isl_basic_set_params(v->dom); v->dom = isl_basic_set_set_integral(v->dom); } return isl_basic_set_copy(v->dom); } /* Return a multiple quasi-affine expression describing the vertex "vertex" * in terms of the parameters, */ __isl_give isl_multi_aff *isl_vertex_get_expr(__isl_keep isl_vertex *vertex) { struct isl_vertex *v; isl_basic_set *bset; if (!vertex) return NULL; v = &vertex->vertices->v[vertex->id]; bset = isl_basic_set_copy(v->vertex); return isl_multi_aff_from_basic_set_equalities(bset); } static __isl_give isl_vertex *isl_vertex_alloc(__isl_take isl_vertices *vertices, int id) { isl_ctx *ctx; isl_vertex *vertex; if (!vertices) return NULL; ctx = isl_vertices_get_ctx(vertices); vertex = isl_alloc_type(ctx, isl_vertex); if (!vertex) goto error; vertex->vertices = vertices; vertex->id = id; return vertex; error: isl_vertices_free(vertices); return NULL; } void isl_vertex_free(__isl_take isl_vertex *vertex) { if (!vertex) return; isl_vertices_free(vertex->vertices); free(vertex); } isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell) { return cell ? cell->dom->ctx : NULL; } __isl_give isl_basic_set *isl_cell_get_domain(__isl_keep isl_cell *cell) { return cell ? isl_basic_set_copy(cell->dom) : NULL; } static __isl_give isl_cell *isl_cell_alloc(__isl_take isl_vertices *vertices, __isl_take isl_basic_set *dom, int id) { int i; isl_cell *cell = NULL; if (!vertices || !dom) goto error; cell = isl_calloc_type(dom->ctx, isl_cell); if (!cell) goto error; cell->n_vertices = vertices->c[id].n_vertices; cell->ids = isl_alloc_array(dom->ctx, int, cell->n_vertices); if (cell->n_vertices && !cell->ids) goto error; for (i = 0; i < cell->n_vertices; ++i) cell->ids[i] = vertices->c[id].vertices[i]; cell->vertices = vertices; cell->dom = dom; return cell; error: isl_cell_free(cell); isl_vertices_free(vertices); isl_basic_set_free(dom); return NULL; } void isl_cell_free(__isl_take isl_cell *cell) { if (!cell) return; isl_vertices_free(cell->vertices); free(cell->ids); isl_basic_set_free(cell->dom); free(cell); } /* Create a tableau of the cone obtained by first homogenizing the given * polytope and then making all inequalities strict by setting the * constant term to -1. */ static struct isl_tab *tab_for_shifted_cone(__isl_keep isl_basic_set *bset) { int i; isl_vec *c = NULL; struct isl_tab *tab; if (!bset) return NULL; tab = isl_tab_alloc(bset->ctx, bset->n_ineq + 1, 1 + isl_basic_set_total_dim(bset), 0); if (!tab) return NULL; tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); if (ISL_F_ISSET(bset, ISL_BASIC_MAP_EMPTY)) { if (isl_tab_mark_empty(tab) < 0) goto error; return tab; } c = isl_vec_alloc(bset->ctx, 1 + 1 + isl_basic_set_total_dim(bset)); if (!c) goto error; isl_int_set_si(c->el[0], 0); for (i = 0; i < bset->n_eq; ++i) { isl_seq_cpy(c->el + 1, bset->eq[i], c->size - 1); if (isl_tab_add_eq(tab, c->el) < 0) goto error; } isl_int_set_si(c->el[0], -1); for (i = 0; i < bset->n_ineq; ++i) { isl_seq_cpy(c->el + 1, bset->ineq[i], c->size - 1); if (isl_tab_add_ineq(tab, c->el) < 0) goto error; if (tab->empty) { isl_vec_free(c); return tab; } } isl_seq_clr(c->el + 1, c->size - 1); isl_int_set_si(c->el[1], 1); if (isl_tab_add_ineq(tab, c->el) < 0) goto error; isl_vec_free(c); return tab; error: isl_vec_free(c); isl_tab_free(tab); return NULL; } /* Compute an interior point of "bset" by selecting an interior * point in homogeneous space and projecting the point back down. */ static __isl_give isl_vec *isl_basic_set_interior_point( __isl_keep isl_basic_set *bset) { isl_vec *vec; struct isl_tab *tab; tab = tab_for_shifted_cone(bset); vec = isl_tab_get_sample_value(tab); isl_tab_free(tab); if (!vec) return NULL; isl_seq_cpy(vec->el, vec->el + 1, vec->size - 1); vec->size--; return vec; } /* Call "fn" on all chambers of the parametric polytope with the shared * facets of neighboring chambers only appearing in one of the chambers. * * We pick an interior point from one of the chambers and then make * all constraints that do not satisfy this point strict. */ int isl_vertices_foreach_disjoint_cell(__isl_keep isl_vertices *vertices, int (*fn)(__isl_take isl_cell *cell, void *user), void *user) { int i, j; isl_vec *vec; isl_int v; isl_cell *cell; if (!vertices) return -1; if (vertices->n_chambers == 0) return 0; if (vertices->n_chambers == 1) { isl_basic_set *dom = isl_basic_set_copy(vertices->c[0].dom); dom = isl_basic_set_set_integral(dom); cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, 0); if (!cell) return -1; return fn(cell, user); } vec = isl_basic_set_interior_point(vertices->c[0].dom); if (!vec) return -1; isl_int_init(v); for (i = 0; i < vertices->n_chambers; ++i) { int r; isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom); dom = isl_basic_set_cow(dom); if (!dom) goto error; for (j = 0; i && j < dom->n_ineq; ++j) { isl_seq_inner_product(vec->el, dom->ineq[j], vec->size, &v); if (!isl_int_is_neg(v)) continue; isl_int_sub_ui(dom->ineq[j][0], dom->ineq[j][0], 1); } dom = isl_basic_set_set_integral(dom); cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i); if (!cell) goto error; r = fn(cell, user); if (r < 0) goto error; } isl_int_clear(v); isl_vec_free(vec); return 0; error: isl_int_clear(v); isl_vec_free(vec); return -1; } isl_stat isl_vertices_foreach_cell(__isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_cell *cell, void *user), void *user) { int i; isl_cell *cell; if (!vertices) return isl_stat_error; if (vertices->n_chambers == 0) return isl_stat_ok; for (i = 0; i < vertices->n_chambers; ++i) { isl_stat r; isl_basic_set *dom = isl_basic_set_copy(vertices->c[i].dom); cell = isl_cell_alloc(isl_vertices_copy(vertices), dom, i); if (!cell) return isl_stat_error; r = fn(cell, user); if (r < 0) return isl_stat_error; } return isl_stat_ok; } isl_stat isl_vertices_foreach_vertex(__isl_keep isl_vertices *vertices, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) { int i; isl_vertex *vertex; if (!vertices) return isl_stat_error; if (vertices->n_vertices == 0) return isl_stat_ok; for (i = 0; i < vertices->n_vertices; ++i) { isl_stat r; vertex = isl_vertex_alloc(isl_vertices_copy(vertices), i); if (!vertex) return isl_stat_error; r = fn(vertex, user); if (r < 0) return isl_stat_error; } return isl_stat_ok; } isl_stat isl_cell_foreach_vertex(__isl_keep isl_cell *cell, isl_stat (*fn)(__isl_take isl_vertex *vertex, void *user), void *user) { int i; isl_vertex *vertex; if (!cell) return isl_stat_error; if (cell->n_vertices == 0) return isl_stat_ok; for (i = 0; i < cell->n_vertices; ++i) { isl_stat r; vertex = isl_vertex_alloc(isl_vertices_copy(cell->vertices), cell->ids[i]); if (!vertex) return isl_stat_error; r = fn(vertex, user); if (r < 0) return isl_stat_error; } return isl_stat_ok; } isl_ctx *isl_vertices_get_ctx(__isl_keep isl_vertices *vertices) { return vertices ? vertices->bset->ctx : NULL; } int isl_vertices_get_n_vertices(__isl_keep isl_vertices *vertices) { return vertices ? vertices->n_vertices : -1; } __isl_give isl_vertices *isl_morph_vertices(__isl_take isl_morph *morph, __isl_take isl_vertices *vertices) { int i; isl_morph *param_morph = NULL; if (!morph || !vertices) goto error; isl_assert(vertices->bset->ctx, vertices->ref == 1, goto error); param_morph = isl_morph_copy(morph); param_morph = isl_morph_dom_params(param_morph); param_morph = isl_morph_ran_params(param_morph); for (i = 0; i < vertices->n_vertices; ++i) { vertices->v[i].dom = isl_morph_basic_set( isl_morph_copy(param_morph), vertices->v[i].dom); vertices->v[i].vertex = isl_morph_basic_set( isl_morph_copy(morph), vertices->v[i].vertex); if (!vertices->v[i].vertex) goto error; } for (i = 0; i < vertices->n_chambers; ++i) { vertices->c[i].dom = isl_morph_basic_set( isl_morph_copy(param_morph), vertices->c[i].dom); if (!vertices->c[i].dom) goto error; } isl_morph_free(param_morph); isl_morph_free(morph); return vertices; error: isl_morph_free(param_morph); isl_morph_free(morph); isl_vertices_free(vertices); return NULL; } /* Construct a simplex isl_cell spanned by the vertices with indices in * "simplex_ids" and "other_ids" and call "fn" on this isl_cell. */ static int call_on_simplex(__isl_keep isl_cell *cell, int *simplex_ids, int n_simplex, int *other_ids, int n_other, int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) { int i; isl_ctx *ctx; struct isl_cell *simplex; ctx = isl_cell_get_ctx(cell); simplex = isl_calloc_type(ctx, struct isl_cell); if (!simplex) return -1; simplex->vertices = isl_vertices_copy(cell->vertices); if (!simplex->vertices) goto error; simplex->dom = isl_basic_set_copy(cell->dom); if (!simplex->dom) goto error; simplex->n_vertices = n_simplex + n_other; simplex->ids = isl_alloc_array(ctx, int, simplex->n_vertices); if (!simplex->ids) goto error; for (i = 0; i < n_simplex; ++i) simplex->ids[i] = simplex_ids[i]; for (i = 0; i < n_other; ++i) simplex->ids[n_simplex + i] = other_ids[i]; return fn(simplex, user); error: isl_cell_free(simplex); return -1; } /* Check whether the parametric vertex described by "vertex" * lies on the facet corresponding to constraint "facet" of "bset". * The isl_vec "v" is a temporary vector than can be used by this function. * * We eliminate the variables from the facet constraint using the * equalities defining the vertex and check if the result is identical * to zero. * * It would probably be better to keep track of the constraints defining * a vertex during the vertex construction so that we could simply look * it up here. */ static int vertex_on_facet(__isl_keep isl_basic_set *vertex, __isl_keep isl_basic_set *bset, int facet, __isl_keep isl_vec *v) { int i; isl_int m; isl_seq_cpy(v->el, bset->ineq[facet], v->size); isl_int_init(m); for (i = 0; i < vertex->n_eq; ++i) { int k = isl_seq_last_non_zero(vertex->eq[i], v->size); isl_seq_elim(v->el, vertex->eq[i], k, v->size, &m); } isl_int_clear(m); return isl_seq_first_non_zero(v->el, v->size) == -1; } /* Triangulate the polytope spanned by the vertices with ids * in "simplex_ids" and "other_ids" and call "fn" on each of * the resulting simplices. * If the input polytope is already a simplex, we simply call "fn". * Otherwise, we pick a point from "other_ids" and add it to "simplex_ids". * Then we consider each facet of "bset" that does not contain the point * we just picked, but does contain some of the other points in "other_ids" * and call ourselves recursively on the polytope spanned by the new * "simplex_ids" and those points in "other_ids" that lie on the facet. */ static int triangulate(__isl_keep isl_cell *cell, __isl_keep isl_vec *v, int *simplex_ids, int n_simplex, int *other_ids, int n_other, int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) { int i, j, k; int d, nparam; int *ids; isl_ctx *ctx; isl_basic_set *vertex; isl_basic_set *bset; ctx = isl_cell_get_ctx(cell); d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set); nparam = isl_basic_set_dim(cell->vertices->bset, isl_dim_param); if (n_simplex + n_other == d + 1) return call_on_simplex(cell, simplex_ids, n_simplex, other_ids, n_other, fn, user); simplex_ids[n_simplex] = other_ids[0]; vertex = cell->vertices->v[other_ids[0]].vertex; bset = cell->vertices->bset; ids = isl_alloc_array(ctx, int, n_other - 1); for (i = 0; i < bset->n_ineq; ++i) { if (isl_seq_first_non_zero(bset->ineq[i] + 1 + nparam, d) == -1) continue; if (vertex_on_facet(vertex, bset, i, v)) continue; for (j = 1, k = 0; j < n_other; ++j) { isl_basic_set *ov; ov = cell->vertices->v[other_ids[j]].vertex; if (vertex_on_facet(ov, bset, i, v)) ids[k++] = other_ids[j]; } if (k == 0) continue; if (triangulate(cell, v, simplex_ids, n_simplex + 1, ids, k, fn, user) < 0) goto error; } free(ids); return 0; error: free(ids); return -1; } /* Triangulate the given cell and call "fn" on each of the resulting * simplices. */ int isl_cell_foreach_simplex(__isl_take isl_cell *cell, int (*fn)(__isl_take isl_cell *simplex, void *user), void *user) { int d, total; int r; isl_ctx *ctx; isl_vec *v = NULL; int *simplex_ids = NULL; if (!cell) return -1; d = isl_basic_set_dim(cell->vertices->bset, isl_dim_set); total = isl_basic_set_total_dim(cell->vertices->bset); if (cell->n_vertices == d + 1) return fn(cell, user); ctx = isl_cell_get_ctx(cell); simplex_ids = isl_alloc_array(ctx, int, d + 1); if (!simplex_ids) goto error; v = isl_vec_alloc(ctx, 1 + total); if (!v) goto error; r = triangulate(cell, v, simplex_ids, 0, cell->ids, cell->n_vertices, fn, user); isl_vec_free(v); free(simplex_ids); isl_cell_free(cell); return r; error: free(simplex_ids); isl_vec_free(v); isl_cell_free(cell); return -1; } isl-0.16.1/isl_tab.c0000664000175000017500000027430612645737235011124 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2013 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include "isl_map_private.h" #include "isl_tab.h" #include #include /* * The implementation of tableaus in this file was inspired by Section 8 * of David Detlefs, Greg Nelson and James B. Saxe, "Simplify: a theorem * prover for program checking". */ struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx, unsigned n_row, unsigned n_var, unsigned M) { int i; struct isl_tab *tab; unsigned off = 2 + M; tab = isl_calloc_type(ctx, struct isl_tab); if (!tab) return NULL; tab->mat = isl_mat_alloc(ctx, n_row, off + n_var); if (!tab->mat) goto error; tab->var = isl_alloc_array(ctx, struct isl_tab_var, n_var); if (n_var && !tab->var) goto error; tab->con = isl_alloc_array(ctx, struct isl_tab_var, n_row); if (n_row && !tab->con) goto error; tab->col_var = isl_alloc_array(ctx, int, n_var); if (n_var && !tab->col_var) goto error; tab->row_var = isl_alloc_array(ctx, int, n_row); if (n_row && !tab->row_var) goto error; for (i = 0; i < n_var; ++i) { tab->var[i].index = i; tab->var[i].is_row = 0; tab->var[i].is_nonneg = 0; tab->var[i].is_zero = 0; tab->var[i].is_redundant = 0; tab->var[i].frozen = 0; tab->var[i].negated = 0; tab->col_var[i] = i; } tab->n_row = 0; tab->n_con = 0; tab->n_eq = 0; tab->max_con = n_row; tab->n_col = n_var; tab->n_var = n_var; tab->max_var = n_var; tab->n_param = 0; tab->n_div = 0; tab->n_dead = 0; tab->n_redundant = 0; tab->strict_redundant = 0; tab->need_undo = 0; tab->rational = 0; tab->empty = 0; tab->in_undo = 0; tab->M = M; tab->cone = 0; tab->bottom.type = isl_tab_undo_bottom; tab->bottom.next = NULL; tab->top = &tab->bottom; tab->n_zero = 0; tab->n_unbounded = 0; tab->basis = NULL; return tab; error: isl_tab_free(tab); return NULL; } isl_ctx *isl_tab_get_ctx(struct isl_tab *tab) { return tab ? isl_mat_get_ctx(tab->mat) : NULL; } int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new) { unsigned off; if (!tab) return -1; off = 2 + tab->M; if (tab->max_con < tab->n_con + n_new) { struct isl_tab_var *con; con = isl_realloc_array(tab->mat->ctx, tab->con, struct isl_tab_var, tab->max_con + n_new); if (!con) return -1; tab->con = con; tab->max_con += n_new; } if (tab->mat->n_row < tab->n_row + n_new) { int *row_var; tab->mat = isl_mat_extend(tab->mat, tab->n_row + n_new, off + tab->n_col); if (!tab->mat) return -1; row_var = isl_realloc_array(tab->mat->ctx, tab->row_var, int, tab->mat->n_row); if (!row_var) return -1; tab->row_var = row_var; if (tab->row_sign) { enum isl_tab_row_sign *s; s = isl_realloc_array(tab->mat->ctx, tab->row_sign, enum isl_tab_row_sign, tab->mat->n_row); if (!s) return -1; tab->row_sign = s; } } return 0; } /* Make room for at least n_new extra variables. * Return -1 if anything went wrong. */ int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new) { struct isl_tab_var *var; unsigned off = 2 + tab->M; if (tab->max_var < tab->n_var + n_new) { var = isl_realloc_array(tab->mat->ctx, tab->var, struct isl_tab_var, tab->n_var + n_new); if (!var) return -1; tab->var = var; tab->max_var = tab->n_var + n_new; } if (tab->mat->n_col < off + tab->n_col + n_new) { int *p; tab->mat = isl_mat_extend(tab->mat, tab->mat->n_row, off + tab->n_col + n_new); if (!tab->mat) return -1; p = isl_realloc_array(tab->mat->ctx, tab->col_var, int, tab->n_col + n_new); if (!p) return -1; tab->col_var = p; } return 0; } static void free_undo_record(struct isl_tab_undo *undo) { switch (undo->type) { case isl_tab_undo_saved_basis: free(undo->u.col_var); break; default:; } free(undo); } static void free_undo(struct isl_tab *tab) { struct isl_tab_undo *undo, *next; for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { next = undo->next; free_undo_record(undo); } tab->top = undo; } void isl_tab_free(struct isl_tab *tab) { if (!tab) return; free_undo(tab); isl_mat_free(tab->mat); isl_vec_free(tab->dual); isl_basic_map_free(tab->bmap); free(tab->var); free(tab->con); free(tab->row_var); free(tab->col_var); free(tab->row_sign); isl_mat_free(tab->samples); free(tab->sample_index); isl_mat_free(tab->basis); free(tab); } struct isl_tab *isl_tab_dup(struct isl_tab *tab) { int i; struct isl_tab *dup; unsigned off; if (!tab) return NULL; off = 2 + tab->M; dup = isl_calloc_type(tab->mat->ctx, struct isl_tab); if (!dup) return NULL; dup->mat = isl_mat_dup(tab->mat); if (!dup->mat) goto error; dup->var = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_var); if (tab->max_var && !dup->var) goto error; for (i = 0; i < tab->n_var; ++i) dup->var[i] = tab->var[i]; dup->con = isl_alloc_array(tab->mat->ctx, struct isl_tab_var, tab->max_con); if (tab->max_con && !dup->con) goto error; for (i = 0; i < tab->n_con; ++i) dup->con[i] = tab->con[i]; dup->col_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_col - off); if ((tab->mat->n_col - off) && !dup->col_var) goto error; for (i = 0; i < tab->n_col; ++i) dup->col_var[i] = tab->col_var[i]; dup->row_var = isl_alloc_array(tab->mat->ctx, int, tab->mat->n_row); if (tab->mat->n_row && !dup->row_var) goto error; for (i = 0; i < tab->n_row; ++i) dup->row_var[i] = tab->row_var[i]; if (tab->row_sign) { dup->row_sign = isl_alloc_array(tab->mat->ctx, enum isl_tab_row_sign, tab->mat->n_row); if (tab->mat->n_row && !dup->row_sign) goto error; for (i = 0; i < tab->n_row; ++i) dup->row_sign[i] = tab->row_sign[i]; } if (tab->samples) { dup->samples = isl_mat_dup(tab->samples); if (!dup->samples) goto error; dup->sample_index = isl_alloc_array(tab->mat->ctx, int, tab->samples->n_row); if (tab->samples->n_row && !dup->sample_index) goto error; dup->n_sample = tab->n_sample; dup->n_outside = tab->n_outside; } dup->n_row = tab->n_row; dup->n_con = tab->n_con; dup->n_eq = tab->n_eq; dup->max_con = tab->max_con; dup->n_col = tab->n_col; dup->n_var = tab->n_var; dup->max_var = tab->max_var; dup->n_param = tab->n_param; dup->n_div = tab->n_div; dup->n_dead = tab->n_dead; dup->n_redundant = tab->n_redundant; dup->rational = tab->rational; dup->empty = tab->empty; dup->strict_redundant = 0; dup->need_undo = 0; dup->in_undo = 0; dup->M = tab->M; tab->cone = tab->cone; dup->bottom.type = isl_tab_undo_bottom; dup->bottom.next = NULL; dup->top = &dup->bottom; dup->n_zero = tab->n_zero; dup->n_unbounded = tab->n_unbounded; dup->basis = isl_mat_dup(tab->basis); return dup; error: isl_tab_free(dup); return NULL; } /* Construct the coefficient matrix of the product tableau * of two tableaus. * mat{1,2} is the coefficient matrix of tableau {1,2} * row{1,2} is the number of rows in tableau {1,2} * col{1,2} is the number of columns in tableau {1,2} * off is the offset to the coefficient column (skipping the * denominator, the constant term and the big parameter if any) * r{1,2} is the number of redundant rows in tableau {1,2} * d{1,2} is the number of dead columns in tableau {1,2} * * The order of the rows and columns in the result is as explained * in isl_tab_product. */ static struct isl_mat *tab_mat_product(struct isl_mat *mat1, struct isl_mat *mat2, unsigned row1, unsigned row2, unsigned col1, unsigned col2, unsigned off, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { int i; struct isl_mat *prod; unsigned n; prod = isl_mat_alloc(mat1->ctx, mat1->n_row + mat2->n_row, off + col1 + col2); if (!prod) return NULL; n = 0; for (i = 0; i < r1; ++i) { isl_seq_cpy(prod->row[n + i], mat1->row[i], off + d1); isl_seq_clr(prod->row[n + i] + off + d1, d2); isl_seq_cpy(prod->row[n + i] + off + d1 + d2, mat1->row[i] + off + d1, col1 - d1); isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2); } n += r1; for (i = 0; i < r2; ++i) { isl_seq_cpy(prod->row[n + i], mat2->row[i], off); isl_seq_clr(prod->row[n + i] + off, d1); isl_seq_cpy(prod->row[n + i] + off + d1, mat2->row[i] + off, d2); isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1); isl_seq_cpy(prod->row[n + i] + off + col1 + d1, mat2->row[i] + off + d2, col2 - d2); } n += r2; for (i = 0; i < row1 - r1; ++i) { isl_seq_cpy(prod->row[n + i], mat1->row[r1 + i], off + d1); isl_seq_clr(prod->row[n + i] + off + d1, d2); isl_seq_cpy(prod->row[n + i] + off + d1 + d2, mat1->row[r1 + i] + off + d1, col1 - d1); isl_seq_clr(prod->row[n + i] + off + col1 + d1, col2 - d2); } n += row1 - r1; for (i = 0; i < row2 - r2; ++i) { isl_seq_cpy(prod->row[n + i], mat2->row[r2 + i], off); isl_seq_clr(prod->row[n + i] + off, d1); isl_seq_cpy(prod->row[n + i] + off + d1, mat2->row[r2 + i] + off, d2); isl_seq_clr(prod->row[n + i] + off + d1 + d2, col1 - d1); isl_seq_cpy(prod->row[n + i] + off + col1 + d1, mat2->row[r2 + i] + off + d2, col2 - d2); } return prod; } /* Update the row or column index of a variable that corresponds * to a variable in the first input tableau. */ static void update_index1(struct isl_tab_var *var, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { if (var->index == -1) return; if (var->is_row && var->index >= r1) var->index += r2; if (!var->is_row && var->index >= d1) var->index += d2; } /* Update the row or column index of a variable that corresponds * to a variable in the second input tableau. */ static void update_index2(struct isl_tab_var *var, unsigned row1, unsigned col1, unsigned r1, unsigned r2, unsigned d1, unsigned d2) { if (var->index == -1) return; if (var->is_row) { if (var->index < r2) var->index += r1; else var->index += row1; } else { if (var->index < d2) var->index += d1; else var->index += col1; } } /* Create a tableau that represents the Cartesian product of the sets * represented by tableaus tab1 and tab2. * The order of the rows in the product is * - redundant rows of tab1 * - redundant rows of tab2 * - non-redundant rows of tab1 * - non-redundant rows of tab2 * The order of the columns is * - denominator * - constant term * - coefficient of big parameter, if any * - dead columns of tab1 * - dead columns of tab2 * - live columns of tab1 * - live columns of tab2 * The order of the variables and the constraints is a concatenation * of order in the two input tableaus. */ struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2) { int i; struct isl_tab *prod; unsigned off; unsigned r1, r2, d1, d2; if (!tab1 || !tab2) return NULL; isl_assert(tab1->mat->ctx, tab1->M == tab2->M, return NULL); isl_assert(tab1->mat->ctx, tab1->rational == tab2->rational, return NULL); isl_assert(tab1->mat->ctx, tab1->cone == tab2->cone, return NULL); isl_assert(tab1->mat->ctx, !tab1->row_sign, return NULL); isl_assert(tab1->mat->ctx, !tab2->row_sign, return NULL); isl_assert(tab1->mat->ctx, tab1->n_param == 0, return NULL); isl_assert(tab1->mat->ctx, tab2->n_param == 0, return NULL); isl_assert(tab1->mat->ctx, tab1->n_div == 0, return NULL); isl_assert(tab1->mat->ctx, tab2->n_div == 0, return NULL); off = 2 + tab1->M; r1 = tab1->n_redundant; r2 = tab2->n_redundant; d1 = tab1->n_dead; d2 = tab2->n_dead; prod = isl_calloc_type(tab1->mat->ctx, struct isl_tab); if (!prod) return NULL; prod->mat = tab_mat_product(tab1->mat, tab2->mat, tab1->n_row, tab2->n_row, tab1->n_col, tab2->n_col, off, r1, r2, d1, d2); if (!prod->mat) goto error; prod->var = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, tab1->max_var + tab2->max_var); if ((tab1->max_var + tab2->max_var) && !prod->var) goto error; for (i = 0; i < tab1->n_var; ++i) { prod->var[i] = tab1->var[i]; update_index1(&prod->var[i], r1, r2, d1, d2); } for (i = 0; i < tab2->n_var; ++i) { prod->var[tab1->n_var + i] = tab2->var[i]; update_index2(&prod->var[tab1->n_var + i], tab1->n_row, tab1->n_col, r1, r2, d1, d2); } prod->con = isl_alloc_array(tab1->mat->ctx, struct isl_tab_var, tab1->max_con + tab2->max_con); if ((tab1->max_con + tab2->max_con) && !prod->con) goto error; for (i = 0; i < tab1->n_con; ++i) { prod->con[i] = tab1->con[i]; update_index1(&prod->con[i], r1, r2, d1, d2); } for (i = 0; i < tab2->n_con; ++i) { prod->con[tab1->n_con + i] = tab2->con[i]; update_index2(&prod->con[tab1->n_con + i], tab1->n_row, tab1->n_col, r1, r2, d1, d2); } prod->col_var = isl_alloc_array(tab1->mat->ctx, int, tab1->n_col + tab2->n_col); if ((tab1->n_col + tab2->n_col) && !prod->col_var) goto error; for (i = 0; i < tab1->n_col; ++i) { int pos = i < d1 ? i : i + d2; prod->col_var[pos] = tab1->col_var[i]; } for (i = 0; i < tab2->n_col; ++i) { int pos = i < d2 ? d1 + i : tab1->n_col + i; int t = tab2->col_var[i]; if (t >= 0) t += tab1->n_var; else t -= tab1->n_con; prod->col_var[pos] = t; } prod->row_var = isl_alloc_array(tab1->mat->ctx, int, tab1->mat->n_row + tab2->mat->n_row); if ((tab1->mat->n_row + tab2->mat->n_row) && !prod->row_var) goto error; for (i = 0; i < tab1->n_row; ++i) { int pos = i < r1 ? i : i + r2; prod->row_var[pos] = tab1->row_var[i]; } for (i = 0; i < tab2->n_row; ++i) { int pos = i < r2 ? r1 + i : tab1->n_row + i; int t = tab2->row_var[i]; if (t >= 0) t += tab1->n_var; else t -= tab1->n_con; prod->row_var[pos] = t; } prod->samples = NULL; prod->sample_index = NULL; prod->n_row = tab1->n_row + tab2->n_row; prod->n_con = tab1->n_con + tab2->n_con; prod->n_eq = 0; prod->max_con = tab1->max_con + tab2->max_con; prod->n_col = tab1->n_col + tab2->n_col; prod->n_var = tab1->n_var + tab2->n_var; prod->max_var = tab1->max_var + tab2->max_var; prod->n_param = 0; prod->n_div = 0; prod->n_dead = tab1->n_dead + tab2->n_dead; prod->n_redundant = tab1->n_redundant + tab2->n_redundant; prod->rational = tab1->rational; prod->empty = tab1->empty || tab2->empty; prod->strict_redundant = tab1->strict_redundant || tab2->strict_redundant; prod->need_undo = 0; prod->in_undo = 0; prod->M = tab1->M; prod->cone = tab1->cone; prod->bottom.type = isl_tab_undo_bottom; prod->bottom.next = NULL; prod->top = &prod->bottom; prod->n_zero = 0; prod->n_unbounded = 0; prod->basis = NULL; return prod; error: isl_tab_free(prod); return NULL; } static struct isl_tab_var *var_from_index(struct isl_tab *tab, int i) { if (i >= 0) return &tab->var[i]; else return &tab->con[~i]; } struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i) { return var_from_index(tab, tab->row_var[i]); } static struct isl_tab_var *var_from_col(struct isl_tab *tab, int i) { return var_from_index(tab, tab->col_var[i]); } /* Check if there are any upper bounds on column variable "var", * i.e., non-negative rows where var appears with a negative coefficient. * Return 1 if there are no such bounds. */ static int max_is_manifestly_unbounded(struct isl_tab *tab, struct isl_tab_var *var) { int i; unsigned off = 2 + tab->M; if (var->is_row) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (!isl_int_is_neg(tab->mat->row[i][off + var->index])) continue; if (isl_tab_var_from_row(tab, i)->is_nonneg) return 0; } return 1; } /* Check if there are any lower bounds on column variable "var", * i.e., non-negative rows where var appears with a positive coefficient. * Return 1 if there are no such bounds. */ static int min_is_manifestly_unbounded(struct isl_tab *tab, struct isl_tab_var *var) { int i; unsigned off = 2 + tab->M; if (var->is_row) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (!isl_int_is_pos(tab->mat->row[i][off + var->index])) continue; if (isl_tab_var_from_row(tab, i)->is_nonneg) return 0; } return 1; } static int row_cmp(struct isl_tab *tab, int r1, int r2, int c, isl_int *t) { unsigned off = 2 + tab->M; if (tab->M) { int s; isl_int_mul(*t, tab->mat->row[r1][2], tab->mat->row[r2][off+c]); isl_int_submul(*t, tab->mat->row[r2][2], tab->mat->row[r1][off+c]); s = isl_int_sgn(*t); if (s) return s; } isl_int_mul(*t, tab->mat->row[r1][1], tab->mat->row[r2][off + c]); isl_int_submul(*t, tab->mat->row[r2][1], tab->mat->row[r1][off + c]); return isl_int_sgn(*t); } /* Given the index of a column "c", return the index of a row * that can be used to pivot the column in, with either an increase * (sgn > 0) or a decrease (sgn < 0) of the corresponding variable. * If "var" is not NULL, then the row returned will be different from * the one associated with "var". * * Each row in the tableau is of the form * * x_r = a_r0 + \sum_i a_ri x_i * * Only rows with x_r >= 0 and with the sign of a_ri opposite to "sgn" * impose any limit on the increase or decrease in the value of x_c * and this bound is equal to a_r0 / |a_rc|. We are therefore looking * for the row with the smallest (most stringent) such bound. * Note that the common denominator of each row drops out of the fraction. * To check if row j has a smaller bound than row r, i.e., * a_j0 / |a_jc| < a_r0 / |a_rc| or a_j0 |a_rc| < a_r0 |a_jc|, * we check if -sign(a_jc) (a_j0 a_rc - a_r0 a_jc) < 0, * where -sign(a_jc) is equal to "sgn". */ static int pivot_row(struct isl_tab *tab, struct isl_tab_var *var, int sgn, int c) { int j, r, tsgn; isl_int t; unsigned off = 2 + tab->M; isl_int_init(t); r = -1; for (j = tab->n_redundant; j < tab->n_row; ++j) { if (var && j == var->index) continue; if (!isl_tab_var_from_row(tab, j)->is_nonneg) continue; if (sgn * isl_int_sgn(tab->mat->row[j][off + c]) >= 0) continue; if (r < 0) { r = j; continue; } tsgn = sgn * row_cmp(tab, r, j, c, &t); if (tsgn < 0 || (tsgn == 0 && tab->row_var[j] < tab->row_var[r])) r = j; } isl_int_clear(t); return r; } /* Find a pivot (row and col) that will increase (sgn > 0) or decrease * (sgn < 0) the value of row variable var. * If not NULL, then skip_var is a row variable that should be ignored * while looking for a pivot row. It is usually equal to var. * * As the given row in the tableau is of the form * * x_r = a_r0 + \sum_i a_ri x_i * * we need to find a column such that the sign of a_ri is equal to "sgn" * (such that an increase in x_i will have the desired effect) or a * column with a variable that may attain negative values. * If a_ri is positive, then we need to move x_i in the same direction * to obtain the desired effect. Otherwise, x_i has to move in the * opposite direction. */ static void find_pivot(struct isl_tab *tab, struct isl_tab_var *var, struct isl_tab_var *skip_var, int sgn, int *row, int *col) { int j, r, c; isl_int *tr; *row = *col = -1; isl_assert(tab->mat->ctx, var->is_row, return); tr = tab->mat->row[var->index] + 2 + tab->M; c = -1; for (j = tab->n_dead; j < tab->n_col; ++j) { if (isl_int_is_zero(tr[j])) continue; if (isl_int_sgn(tr[j]) != sgn && var_from_col(tab, j)->is_nonneg) continue; if (c < 0 || tab->col_var[j] < tab->col_var[c]) c = j; } if (c < 0) return; sgn *= isl_int_sgn(tr[c]); r = pivot_row(tab, skip_var, sgn, c); *row = r < 0 ? var->index : r; *col = c; } /* Return 1 if row "row" represents an obviously redundant inequality. * This means * - it represents an inequality or a variable * - that is the sum of a non-negative sample value and a positive * combination of zero or more non-negative constraints. */ int isl_tab_row_is_redundant(struct isl_tab *tab, int row) { int i; unsigned off = 2 + tab->M; if (tab->row_var[row] < 0 && !isl_tab_var_from_row(tab, row)->is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][1])) return 0; if (tab->strict_redundant && isl_int_is_zero(tab->mat->row[row][1])) return 0; if (tab->M && isl_int_is_neg(tab->mat->row[row][2])) return 0; for (i = tab->n_dead; i < tab->n_col; ++i) { if (isl_int_is_zero(tab->mat->row[row][off + i])) continue; if (tab->col_var[i] >= 0) return 0; if (isl_int_is_neg(tab->mat->row[row][off + i])) return 0; if (!var_from_col(tab, i)->is_nonneg) return 0; } return 1; } static void swap_rows(struct isl_tab *tab, int row1, int row2) { int t; enum isl_tab_row_sign s; t = tab->row_var[row1]; tab->row_var[row1] = tab->row_var[row2]; tab->row_var[row2] = t; isl_tab_var_from_row(tab, row1)->index = row1; isl_tab_var_from_row(tab, row2)->index = row2; tab->mat = isl_mat_swap_rows(tab->mat, row1, row2); if (!tab->row_sign) return; s = tab->row_sign[row1]; tab->row_sign[row1] = tab->row_sign[row2]; tab->row_sign[row2] = s; } static int push_union(struct isl_tab *tab, enum isl_tab_undo_type type, union isl_tab_undo_val u) WARN_UNUSED; static int push_union(struct isl_tab *tab, enum isl_tab_undo_type type, union isl_tab_undo_val u) { struct isl_tab_undo *undo; if (!tab) return -1; if (!tab->need_undo) return 0; undo = isl_alloc_type(tab->mat->ctx, struct isl_tab_undo); if (!undo) return -1; undo->type = type; undo->u = u; undo->next = tab->top; tab->top = undo; return 0; } int isl_tab_push_var(struct isl_tab *tab, enum isl_tab_undo_type type, struct isl_tab_var *var) { union isl_tab_undo_val u; if (var->is_row) u.var_index = tab->row_var[var->index]; else u.var_index = tab->col_var[var->index]; return push_union(tab, type, u); } int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type) { union isl_tab_undo_val u = { 0 }; return push_union(tab, type, u); } /* Push a record on the undo stack describing the current basic * variables, so that the this state can be restored during rollback. */ int isl_tab_push_basis(struct isl_tab *tab) { int i; union isl_tab_undo_val u; u.col_var = isl_alloc_array(tab->mat->ctx, int, tab->n_col); if (tab->n_col && !u.col_var) return -1; for (i = 0; i < tab->n_col; ++i) u.col_var[i] = tab->col_var[i]; return push_union(tab, isl_tab_undo_saved_basis, u); } int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback) { union isl_tab_undo_val u; u.callback = callback; return push_union(tab, isl_tab_undo_callback, u); } struct isl_tab *isl_tab_init_samples(struct isl_tab *tab) { if (!tab) return NULL; tab->n_sample = 0; tab->n_outside = 0; tab->samples = isl_mat_alloc(tab->mat->ctx, 1, 1 + tab->n_var); if (!tab->samples) goto error; tab->sample_index = isl_alloc_array(tab->mat->ctx, int, 1); if (!tab->sample_index) goto error; return tab; error: isl_tab_free(tab); return NULL; } int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample) { if (!tab || !sample) goto error; if (tab->n_sample + 1 > tab->samples->n_row) { int *t = isl_realloc_array(tab->mat->ctx, tab->sample_index, int, tab->n_sample + 1); if (!t) goto error; tab->sample_index = t; } tab->samples = isl_mat_extend(tab->samples, tab->n_sample + 1, tab->samples->n_col); if (!tab->samples) goto error; isl_seq_cpy(tab->samples->row[tab->n_sample], sample->el, sample->size); isl_vec_free(sample); tab->sample_index[tab->n_sample] = tab->n_sample; tab->n_sample++; return 0; error: isl_vec_free(sample); return -1; } struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s) { if (s != tab->n_outside) { int t = tab->sample_index[tab->n_outside]; tab->sample_index[tab->n_outside] = tab->sample_index[s]; tab->sample_index[s] = t; isl_mat_swap_rows(tab->samples, tab->n_outside, s); } tab->n_outside++; if (isl_tab_push(tab, isl_tab_undo_drop_sample) < 0) { isl_tab_free(tab); return NULL; } return tab; } /* Record the current number of samples so that we can remove newer * samples during a rollback. */ int isl_tab_save_samples(struct isl_tab *tab) { union isl_tab_undo_val u; if (!tab) return -1; u.n = tab->n_sample; return push_union(tab, isl_tab_undo_saved_samples, u); } /* Mark row with index "row" as being redundant. * If we may need to undo the operation or if the row represents * a variable of the original problem, the row is kept, * but no longer considered when looking for a pivot row. * Otherwise, the row is simply removed. * * The row may be interchanged with some other row. If it * is interchanged with a later row, return 1. Otherwise return 0. * If the rows are checked in order in the calling function, * then a return value of 1 means that the row with the given * row number may now contain a different row that hasn't been checked yet. */ int isl_tab_mark_redundant(struct isl_tab *tab, int row) { struct isl_tab_var *var = isl_tab_var_from_row(tab, row); var->is_redundant = 1; isl_assert(tab->mat->ctx, row >= tab->n_redundant, return -1); if (tab->preserve || tab->need_undo || tab->row_var[row] >= 0) { if (tab->row_var[row] >= 0 && !var->is_nonneg) { var->is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, var) < 0) return -1; } if (row != tab->n_redundant) swap_rows(tab, row, tab->n_redundant); tab->n_redundant++; return isl_tab_push_var(tab, isl_tab_undo_redundant, var); } else { if (row != tab->n_row - 1) swap_rows(tab, row, tab->n_row - 1); isl_tab_var_from_row(tab, tab->n_row - 1)->index = -1; tab->n_row--; return 1; } } /* Mark "tab" as a rational tableau. * If it wasn't marked as a rational tableau already and if we may * need to undo changes, then arrange for the marking to be undone * during the undo. */ int isl_tab_mark_rational(struct isl_tab *tab) { if (!tab) return -1; if (!tab->rational && tab->need_undo) if (isl_tab_push(tab, isl_tab_undo_rational) < 0) return -1; tab->rational = 1; return 0; } int isl_tab_mark_empty(struct isl_tab *tab) { if (!tab) return -1; if (!tab->empty && tab->need_undo) if (isl_tab_push(tab, isl_tab_undo_empty) < 0) return -1; tab->empty = 1; return 0; } int isl_tab_freeze_constraint(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (var->frozen) return 0; if (var->index < 0) return 0; var->frozen = 1; if (tab->need_undo) return isl_tab_push_var(tab, isl_tab_undo_freeze, var); return 0; } /* Update the rows signs after a pivot of "row" and "col", with "row_sgn" * the original sign of the pivot element. * We only keep track of row signs during PILP solving and in this case * we only pivot a row with negative sign (meaning the value is always * non-positive) using a positive pivot element. * * For each row j, the new value of the parametric constant is equal to * * a_j0 - a_jc a_r0/a_rc * * where a_j0 is the original parametric constant, a_rc is the pivot element, * a_r0 is the parametric constant of the pivot row and a_jc is the * pivot column entry of the row j. * Since a_r0 is non-positive and a_rc is positive, the sign of row j * remains the same if a_jc has the same sign as the row j or if * a_jc is zero. In all other cases, we reset the sign to "unknown". */ static void update_row_sign(struct isl_tab *tab, int row, int col, int row_sgn) { int i; struct isl_mat *mat = tab->mat; unsigned off = 2 + tab->M; if (!tab->row_sign) return; if (tab->row_sign[row] == 0) return; isl_assert(mat->ctx, row_sgn > 0, return); isl_assert(mat->ctx, tab->row_sign[row] == isl_tab_row_neg, return); tab->row_sign[row] = isl_tab_row_pos; for (i = 0; i < tab->n_row; ++i) { int s; if (i == row) continue; s = isl_int_sgn(mat->row[i][off + col]); if (!s) continue; if (!tab->row_sign[i]) continue; if (s < 0 && tab->row_sign[i] == isl_tab_row_neg) continue; if (s > 0 && tab->row_sign[i] == isl_tab_row_pos) continue; tab->row_sign[i] = isl_tab_row_unknown; } } /* Given a row number "row" and a column number "col", pivot the tableau * such that the associated variables are interchanged. * The given row in the tableau expresses * * x_r = a_r0 + \sum_i a_ri x_i * * or * * x_c = 1/a_rc x_r - a_r0/a_rc + sum_{i \ne r} -a_ri/a_rc * * Substituting this equality into the other rows * * x_j = a_j0 + \sum_i a_ji x_i * * with a_jc \ne 0, we obtain * * x_j = a_jc/a_rc x_r + a_j0 - a_jc a_r0/a_rc + sum a_ji - a_jc a_ri/a_rc * * The tableau * * n_rc/d_r n_ri/d_r * n_jc/d_j n_ji/d_j * * where i is any other column and j is any other row, * is therefore transformed into * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * * The transformation is performed along the following steps * * d_r/n_rc n_ri/n_rc * n_jc/d_j n_ji/d_j * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/d_j n_ji/d_j * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) n_ji/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) (n_ji |n_rc|)/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * * s(n_rc)d_r/|n_rc| -s(n_rc)n_ri/|n_rc| * s(n_rc)d_r n_jc/(|n_rc| d_j) (n_ji |n_rc| - s(n_rc)n_jc n_ri)/(|n_rc| d_j) * */ int isl_tab_pivot(struct isl_tab *tab, int row, int col) { int i, j; int sgn; int t; isl_ctx *ctx; struct isl_mat *mat = tab->mat; struct isl_tab_var *var; unsigned off = 2 + tab->M; ctx = isl_tab_get_ctx(tab); if (isl_ctx_next_operation(ctx) < 0) return -1; isl_int_swap(mat->row[row][0], mat->row[row][off + col]); sgn = isl_int_sgn(mat->row[row][0]); if (sgn < 0) { isl_int_neg(mat->row[row][0], mat->row[row][0]); isl_int_neg(mat->row[row][off + col], mat->row[row][off + col]); } else for (j = 0; j < off - 1 + tab->n_col; ++j) { if (j == off - 1 + col) continue; isl_int_neg(mat->row[row][1 + j], mat->row[row][1 + j]); } if (!isl_int_is_one(mat->row[row][0])) isl_seq_normalize(mat->ctx, mat->row[row], off + tab->n_col); for (i = 0; i < tab->n_row; ++i) { if (i == row) continue; if (isl_int_is_zero(mat->row[i][off + col])) continue; isl_int_mul(mat->row[i][0], mat->row[i][0], mat->row[row][0]); for (j = 0; j < off - 1 + tab->n_col; ++j) { if (j == off - 1 + col) continue; isl_int_mul(mat->row[i][1 + j], mat->row[i][1 + j], mat->row[row][0]); isl_int_addmul(mat->row[i][1 + j], mat->row[i][off + col], mat->row[row][1 + j]); } isl_int_mul(mat->row[i][off + col], mat->row[i][off + col], mat->row[row][off + col]); if (!isl_int_is_one(mat->row[i][0])) isl_seq_normalize(mat->ctx, mat->row[i], off + tab->n_col); } t = tab->row_var[row]; tab->row_var[row] = tab->col_var[col]; tab->col_var[col] = t; var = isl_tab_var_from_row(tab, row); var->is_row = 1; var->index = row; var = var_from_col(tab, col); var->is_row = 0; var->index = col; update_row_sign(tab, row, col, sgn); if (tab->in_undo) return 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { if (isl_int_is_zero(mat->row[i][off + col])) continue; if (!isl_tab_var_from_row(tab, i)->frozen && isl_tab_row_is_redundant(tab, i)) { int redo = isl_tab_mark_redundant(tab, i); if (redo < 0) return -1; if (redo) --i; } } return 0; } /* If "var" represents a column variable, then pivot is up (sgn > 0) * or down (sgn < 0) to a row. The variable is assumed not to be * unbounded in the specified direction. * If sgn = 0, then the variable is unbounded in both directions, * and we pivot with any row we can find. */ static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) WARN_UNUSED; static int to_row(struct isl_tab *tab, struct isl_tab_var *var, int sign) { int r; unsigned off = 2 + tab->M; if (var->is_row) return 0; if (sign == 0) { for (r = tab->n_redundant; r < tab->n_row; ++r) if (!isl_int_is_zero(tab->mat->row[r][off+var->index])) break; isl_assert(tab->mat->ctx, r < tab->n_row, return -1); } else { r = pivot_row(tab, NULL, sign, var->index); isl_assert(tab->mat->ctx, r >= 0, return -1); } return isl_tab_pivot(tab, r, var->index); } /* Check whether all variables that are marked as non-negative * also have a non-negative sample value. This function is not * called from the current code but is useful during debugging. */ static void check_table(struct isl_tab *tab) __attribute__ ((unused)); static void check_table(struct isl_tab *tab) { int i; if (tab->empty) return; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var; var = isl_tab_var_from_row(tab, i); if (!var->is_nonneg) continue; if (tab->M) { isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][2]), abort()); if (isl_int_is_pos(tab->mat->row[i][2])) continue; } isl_assert(tab->mat->ctx, !isl_int_is_neg(tab->mat->row[i][1]), abort()); } } /* Return the sign of the maximal value of "var". * If the sign is not negative, then on return from this function, * the sample value will also be non-negative. * * If "var" is manifestly unbounded wrt positive values, we are done. * Otherwise, we pivot the variable up to a row if needed * Then we continue pivoting down until either * - no more down pivots can be performed * - the sample value is positive * - the variable is pivoted into a manifestly unbounded column */ static int sign_of_max(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; if (max_is_manifestly_unbounded(tab, var)) return 1; if (to_row(tab, var, 1) < 0) return -2; while (!isl_int_is_pos(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) return isl_int_sgn(tab->mat->row[var->index][1]); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (!var->is_row) /* manifestly unbounded */ return 1; } return 1; } int isl_tab_sign_of_max(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -2; var = &tab->con[con]; isl_assert(tab->mat->ctx, !var->is_redundant, return -2); isl_assert(tab->mat->ctx, !var->is_zero, return -2); return sign_of_max(tab, var); } static int row_is_neg(struct isl_tab *tab, int row) { if (!tab->M) return isl_int_is_neg(tab->mat->row[row][1]); if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; return isl_int_is_neg(tab->mat->row[row][1]); } static int row_sgn(struct isl_tab *tab, int row) { if (!tab->M) return isl_int_sgn(tab->mat->row[row][1]); if (!isl_int_is_zero(tab->mat->row[row][2])) return isl_int_sgn(tab->mat->row[row][2]); else return isl_int_sgn(tab->mat->row[row][1]); } /* Perform pivots until the row variable "var" has a non-negative * sample value or until no more upward pivots can be performed. * Return the sign of the sample value after the pivots have been * performed. */ static int restore_row(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; while (row_is_neg(tab, var->index)) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) break; if (isl_tab_pivot(tab, row, col) < 0) return -2; if (!var->is_row) /* manifestly unbounded */ return 1; } return row_sgn(tab, var->index); } /* Perform pivots until we are sure that the row variable "var" * can attain non-negative values. After return from this * function, "var" is still a row variable, but its sample * value may not be non-negative, even if the function returns 1. */ static int at_least_zero(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; while (isl_int_is_neg(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) break; if (row == var->index) /* manifestly unbounded */ return 1; if (isl_tab_pivot(tab, row, col) < 0) return -1; } return !isl_int_is_neg(tab->mat->row[var->index][1]); } /* Return a negative value if "var" can attain negative values. * Return a non-negative value otherwise. * * If "var" is manifestly unbounded wrt negative values, we are done. * Otherwise, if var is in a column, we can pivot it down to a row. * Then we continue pivoting down until either * - the pivot would result in a manifestly unbounded column * => we don't perform the pivot, but simply return -1 * - no more down pivots can be performed * - the sample value is negative * If the sample value becomes negative and the variable is supposed * to be nonnegative, then we undo the last pivot. * However, if the last pivot has made the pivoting variable * obviously redundant, then it may have moved to another row. * In that case we look for upward pivots until we reach a non-negative * value again. */ static int sign_of_min(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; struct isl_tab_var *pivot_var = NULL; if (min_is_manifestly_unbounded(tab, var)) return -1; if (!var->is_row) { col = var->index; row = pivot_row(tab, NULL, -1, col); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (var->is_redundant) return 0; if (isl_int_is_neg(tab->mat->row[var->index][1])) { if (var->is_nonneg) { if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -2; } else if (restore_row(tab, var) < -1) return -2; } return -1; } } if (var->is_redundant) return 0; while (!isl_int_is_neg(tab->mat->row[var->index][1])) { find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) return -1; if (row == -1) return isl_int_sgn(tab->mat->row[var->index][1]); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -2; if (var->is_redundant) return 0; } if (pivot_var && var->is_nonneg) { /* pivot back to non-negative value */ if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -2; } else if (restore_row(tab, var) < -1) return -2; } return -1; } static int row_at_most_neg_one(struct isl_tab *tab, int row) { if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; } return isl_int_is_neg(tab->mat->row[row][1]) && isl_int_abs_ge(tab->mat->row[row][1], tab->mat->row[row][0]); } /* Return 1 if "var" can attain values <= -1. * Return 0 otherwise. * * If the variable "var" is supposed to be non-negative (is_nonneg is set), * then the sample value of "var" is assumed to be non-negative when the * the function is called. If 1 is returned then the constraint * is not redundant and the sample value is made non-negative again before * the function returns. */ int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; struct isl_tab_var *pivot_var; if (min_is_manifestly_unbounded(tab, var)) return 1; if (!var->is_row) { col = var->index; row = pivot_row(tab, NULL, -1, col); pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (var->is_redundant) return 0; if (row_at_most_neg_one(tab, var->index)) { if (var->is_nonneg) { if (!pivot_var->is_redundant && pivot_var->index == row) { if (isl_tab_pivot(tab, row, col) < 0) return -1; } else if (restore_row(tab, var) < -1) return -1; } return 1; } } if (var->is_redundant) return 0; do { find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) { if (var->is_nonneg && restore_row(tab, var) < -1) return -1; return 1; } if (row == -1) return 0; pivot_var = var_from_col(tab, col); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (var->is_redundant) return 0; } while (!row_at_most_neg_one(tab, var->index)); if (var->is_nonneg) { /* pivot back to non-negative value */ if (!pivot_var->is_redundant && pivot_var->index == row) if (isl_tab_pivot(tab, row, col) < 0) return -1; if (restore_row(tab, var) < -1) return -1; } return 1; } /* Return 1 if "var" can attain values >= 1. * Return 0 otherwise. */ static int at_least_one(struct isl_tab *tab, struct isl_tab_var *var) { int row, col; isl_int *r; if (max_is_manifestly_unbounded(tab, var)) return 1; if (to_row(tab, var, 1) < 0) return -1; r = tab->mat->row[var->index]; while (isl_int_lt(r[1], r[0])) { find_pivot(tab, var, var, 1, &row, &col); if (row == -1) return isl_int_ge(r[1], r[0]); if (row == var->index) /* manifestly unbounded */ return 1; if (isl_tab_pivot(tab, row, col) < 0) return -1; } return 1; } static void swap_cols(struct isl_tab *tab, int col1, int col2) { int t; unsigned off = 2 + tab->M; t = tab->col_var[col1]; tab->col_var[col1] = tab->col_var[col2]; tab->col_var[col2] = t; var_from_col(tab, col1)->index = col1; var_from_col(tab, col2)->index = col2; tab->mat = isl_mat_swap_cols(tab->mat, off + col1, off + col2); } /* Mark column with index "col" as representing a zero variable. * If we may need to undo the operation the column is kept, * but no longer considered. * Otherwise, the column is simply removed. * * The column may be interchanged with some other column. If it * is interchanged with a later column, return 1. Otherwise return 0. * If the columns are checked in order in the calling function, * then a return value of 1 means that the column with the given * column number may now contain a different column that * hasn't been checked yet. */ int isl_tab_kill_col(struct isl_tab *tab, int col) { var_from_col(tab, col)->is_zero = 1; if (tab->need_undo) { if (isl_tab_push_var(tab, isl_tab_undo_zero, var_from_col(tab, col)) < 0) return -1; if (col != tab->n_dead) swap_cols(tab, col, tab->n_dead); tab->n_dead++; return 0; } else { if (col != tab->n_col - 1) swap_cols(tab, col, tab->n_col - 1); var_from_col(tab, tab->n_col - 1)->index = -1; tab->n_col--; return 1; } } static int row_is_manifestly_non_integral(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; if (tab->M && !isl_int_eq(tab->mat->row[row][2], tab->mat->row[row][0])) return 0; if (isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) != -1) return 0; return !isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0]); } /* For integer tableaus, check if any of the coordinates are stuck * at a non-integral value. */ static int tab_is_manifestly_empty(struct isl_tab *tab) { int i; if (tab->empty) return 1; if (tab->rational) return 0; for (i = 0; i < tab->n_var; ++i) { if (!tab->var[i].is_row) continue; if (row_is_manifestly_non_integral(tab, tab->var[i].index)) return 1; } return 0; } /* Row variable "var" is non-negative and cannot attain any values * larger than zero. This means that the coefficients of the unrestricted * column variables are zero and that the coefficients of the non-negative * column variables are zero or negative. * Each of the non-negative variables with a negative coefficient can * then also be written as the negative sum of non-negative variables * and must therefore also be zero. */ static int close_row(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; static int close_row(struct isl_tab *tab, struct isl_tab_var *var) { int j; struct isl_mat *mat = tab->mat; unsigned off = 2 + tab->M; isl_assert(tab->mat->ctx, var->is_nonneg, return -1); var->is_zero = 1; if (tab->need_undo) if (isl_tab_push_var(tab, isl_tab_undo_zero, var) < 0) return -1; for (j = tab->n_dead; j < tab->n_col; ++j) { int recheck; if (isl_int_is_zero(mat->row[var->index][off + j])) continue; isl_assert(tab->mat->ctx, isl_int_is_neg(mat->row[var->index][off + j]), return -1); recheck = isl_tab_kill_col(tab, j); if (recheck < 0) return -1; if (recheck) --j; } if (isl_tab_mark_redundant(tab, var->index) < 0) return -1; if (tab_is_manifestly_empty(tab) && isl_tab_mark_empty(tab) < 0) return -1; return 0; } /* Add a constraint to the tableau and allocate a row for it. * Return the index into the constraint array "con". */ int isl_tab_allocate_con(struct isl_tab *tab) { int r; isl_assert(tab->mat->ctx, tab->n_row < tab->mat->n_row, return -1); isl_assert(tab->mat->ctx, tab->n_con < tab->max_con, return -1); r = tab->n_con; tab->con[r].index = tab->n_row; tab->con[r].is_row = 1; tab->con[r].is_nonneg = 0; tab->con[r].is_zero = 0; tab->con[r].is_redundant = 0; tab->con[r].frozen = 0; tab->con[r].negated = 0; tab->row_var[tab->n_row] = ~r; tab->n_row++; tab->n_con++; if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0) return -1; return r; } /* Move the entries in tab->var up one position, starting at "first", * creating room for an extra entry at position "first". * Since some of the entries of tab->row_var and tab->col_var contain * indices into this array, they have to be updated accordingly. */ static int var_insert_entry(struct isl_tab *tab, int first) { int i; if (tab->n_var >= tab->max_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "not enough room for new variable", return -1); if (first > tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "invalid initial position", return -1); for (i = tab->n_var - 1; i >= first; --i) { tab->var[i + 1] = tab->var[i]; if (tab->var[i + 1].is_row) tab->row_var[tab->var[i + 1].index]++; else tab->col_var[tab->var[i + 1].index]++; } tab->n_var++; return 0; } /* Drop the entry at position "first" in tab->var, moving all * subsequent entries down. * Since some of the entries of tab->row_var and tab->col_var contain * indices into this array, they have to be updated accordingly. */ static int var_drop_entry(struct isl_tab *tab, int first) { int i; if (first >= tab->n_var) isl_die(isl_tab_get_ctx(tab), isl_error_internal, "invalid initial position", return -1); tab->n_var--; for (i = first; i < tab->n_var; ++i) { tab->var[i] = tab->var[i + 1]; if (tab->var[i + 1].is_row) tab->row_var[tab->var[i].index]--; else tab->col_var[tab->var[i].index]--; } return 0; } /* Add a variable to the tableau at position "r" and allocate a column for it. * Return the index into the variable array "var", i.e., "r", * or -1 on error. */ int isl_tab_insert_var(struct isl_tab *tab, int r) { int i; unsigned off = 2 + tab->M; isl_assert(tab->mat->ctx, tab->n_col < tab->mat->n_col, return -1); if (var_insert_entry(tab, r) < 0) return -1; tab->var[r].index = tab->n_col; tab->var[r].is_row = 0; tab->var[r].is_nonneg = 0; tab->var[r].is_zero = 0; tab->var[r].is_redundant = 0; tab->var[r].frozen = 0; tab->var[r].negated = 0; tab->col_var[tab->n_col] = r; for (i = 0; i < tab->n_row; ++i) isl_int_set_si(tab->mat->row[i][off + tab->n_col], 0); tab->n_col++; if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->var[r]) < 0) return -1; return r; } /* Add a variable to the tableau and allocate a column for it. * Return the index into the variable array "var". */ int isl_tab_allocate_var(struct isl_tab *tab) { if (!tab) return -1; return isl_tab_insert_var(tab, tab->n_var); } /* Add a row to the tableau. The row is given as an affine combination * of the original variables and needs to be expressed in terms of the * column variables. * * We add each term in turn. * If r = n/d_r is the current sum and we need to add k x, then * if x is a column variable, we increase the numerator of * this column by k d_r * if x = f/d_x is a row variable, then the new representation of r is * * n k f d_x/g n + d_r/g k f m/d_r n + m/d_g k f * --- + --- = ------------------- = ------------------- * d_r d_r d_r d_x/g m * * with g the gcd of d_r and d_x and m the lcm of d_r and d_x. * * If tab->M is set, then, internally, each variable x is represented * as x' - M. We then also need no subtract k d_r from the coefficient of M. */ int isl_tab_add_row(struct isl_tab *tab, isl_int *line) { int i; int r; isl_int *row; isl_int a, b; unsigned off = 2 + tab->M; r = isl_tab_allocate_con(tab); if (r < 0) return -1; isl_int_init(a); isl_int_init(b); row = tab->mat->row[tab->con[r].index]; isl_int_set_si(row[0], 1); isl_int_set(row[1], line[0]); isl_seq_clr(row + 2, tab->M + tab->n_col); for (i = 0; i < tab->n_var; ++i) { if (tab->var[i].is_zero) continue; if (tab->var[i].is_row) { isl_int_lcm(a, row[0], tab->mat->row[tab->var[i].index][0]); isl_int_swap(a, row[0]); isl_int_divexact(a, row[0], a); isl_int_divexact(b, row[0], tab->mat->row[tab->var[i].index][0]); isl_int_mul(b, b, line[1 + i]); isl_seq_combine(row + 1, a, row + 1, b, tab->mat->row[tab->var[i].index] + 1, 1 + tab->M + tab->n_col); } else isl_int_addmul(row[off + tab->var[i].index], line[1 + i], row[0]); if (tab->M && i >= tab->n_param && i < tab->n_var - tab->n_div) isl_int_submul(row[2], line[1 + i], row[0]); } isl_seq_normalize(tab->mat->ctx, row, off + tab->n_col); isl_int_clear(a); isl_int_clear(b); if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_unknown; return r; } static int drop_row(struct isl_tab *tab, int row) { isl_assert(tab->mat->ctx, ~tab->row_var[row] == tab->n_con - 1, return -1); if (row != tab->n_row - 1) swap_rows(tab, row, tab->n_row - 1); tab->n_row--; tab->n_con--; return 0; } /* Drop the variable in column "col" along with the column. * The column is removed first because it may need to be moved * into the last position and this process requires * the contents of the col_var array in a state * before the removal of the variable. */ static int drop_col(struct isl_tab *tab, int col) { int var; var = tab->col_var[col]; if (col != tab->n_col - 1) swap_cols(tab, col, tab->n_col - 1); tab->n_col--; if (var_drop_entry(tab, var) < 0) return -1; return 0; } /* Add inequality "ineq" and check if it conflicts with the * previously added constraints or if it is obviously redundant. */ int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq) { int r; int sgn; isl_int cst; if (!tab) return -1; if (tab->bmap) { struct isl_basic_map *bmap = tab->bmap; isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, return -1); isl_assert(tab->mat->ctx, tab->n_con == bmap->n_eq + bmap->n_ineq, return -1); tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; if (!tab->bmap) return -1; } if (tab->cone) { isl_int_init(cst); isl_int_set_si(cst, 0); isl_int_swap(ineq[0], cst); } r = isl_tab_add_row(tab, ineq); if (tab->cone) { isl_int_swap(ineq[0], cst); isl_int_clear(cst); } if (r < 0) return -1; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) return -1; if (isl_tab_row_is_redundant(tab, tab->con[r].index)) { if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) return -1; return 0; } sgn = restore_row(tab, &tab->con[r]); if (sgn < -1) return -1; if (sgn < 0) return isl_tab_mark_empty(tab); if (tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index)) if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) return -1; return 0; } /* Pivot a non-negative variable down until it reaches the value zero * and then pivot the variable into a column position. */ static int to_col(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; static int to_col(struct isl_tab *tab, struct isl_tab_var *var) { int i; int row, col; unsigned off = 2 + tab->M; if (!var->is_row) return 0; while (isl_int_is_pos(tab->mat->row[var->index][1])) { find_pivot(tab, var, NULL, -1, &row, &col); isl_assert(tab->mat->ctx, row != -1, return -1); if (isl_tab_pivot(tab, row, col) < 0) return -1; if (!var->is_row) return 0; } for (i = tab->n_dead; i < tab->n_col; ++i) if (!isl_int_is_zero(tab->mat->row[var->index][off + i])) break; isl_assert(tab->mat->ctx, i < tab->n_col, return -1); if (isl_tab_pivot(tab, var->index, i) < 0) return -1; return 0; } /* We assume Gaussian elimination has been performed on the equalities. * The equalities can therefore never conflict. * Adding the equalities is currently only really useful for a later call * to isl_tab_ineq_type. */ static struct isl_tab *add_eq(struct isl_tab *tab, isl_int *eq) { int i; int r; if (!tab) return NULL; r = isl_tab_add_row(tab, eq); if (r < 0) goto error; r = tab->con[r].index; i = isl_seq_first_non_zero(tab->mat->row[r] + 2 + tab->M + tab->n_dead, tab->n_col - tab->n_dead); isl_assert(tab->mat->ctx, i >= 0, goto error); i += tab->n_dead; if (isl_tab_pivot(tab, r, i) < 0) goto error; if (isl_tab_kill_col(tab, i) < 0) goto error; tab->n_eq++; return tab; error: isl_tab_free(tab); return NULL; } static int row_is_manifestly_zero(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; if (!isl_int_is_zero(tab->mat->row[row][1])) return 0; if (tab->M && !isl_int_is_zero(tab->mat->row[row][2])) return 0; return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Add an equality that is known to be valid for the given tableau. */ int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq) { struct isl_tab_var *var; int r; if (!tab) return -1; r = isl_tab_add_row(tab, eq); if (r < 0) return -1; var = &tab->con[r]; r = var->index; if (row_is_manifestly_zero(tab, r)) { var->is_zero = 1; if (isl_tab_mark_redundant(tab, r) < 0) return -1; return 0; } if (isl_int_is_neg(tab->mat->row[r][1])) { isl_seq_neg(tab->mat->row[r] + 1, tab->mat->row[r] + 1, 1 + tab->n_col); var->negated = 1; } var->is_nonneg = 1; if (to_col(tab, var) < 0) return -1; var->is_nonneg = 0; if (isl_tab_kill_col(tab, var->index) < 0) return -1; return 0; } static int add_zero_row(struct isl_tab *tab) { int r; isl_int *row; r = isl_tab_allocate_con(tab); if (r < 0) return -1; row = tab->mat->row[tab->con[r].index]; isl_seq_clr(row + 1, 1 + tab->M + tab->n_col); isl_int_set_si(row[0], 1); return r; } /* Add equality "eq" and check if it conflicts with the * previously added constraints or if it is obviously redundant. */ int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq) { struct isl_tab_undo *snap = NULL; struct isl_tab_var *var; int r; int row; int sgn; isl_int cst; if (!tab) return -1; isl_assert(tab->mat->ctx, !tab->M, return -1); if (tab->need_undo) snap = isl_tab_snap(tab); if (tab->cone) { isl_int_init(cst); isl_int_set_si(cst, 0); isl_int_swap(eq[0], cst); } r = isl_tab_add_row(tab, eq); if (tab->cone) { isl_int_swap(eq[0], cst); isl_int_clear(cst); } if (r < 0) return -1; var = &tab->con[r]; row = var->index; if (row_is_manifestly_zero(tab, row)) { if (snap) return isl_tab_rollback(tab, snap); return drop_row(tab, row); } if (tab->bmap) { tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; isl_seq_neg(eq, eq, 1 + tab->n_var); tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); isl_seq_neg(eq, eq, 1 + tab->n_var); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; if (!tab->bmap) return -1; if (add_zero_row(tab) < 0) return -1; } sgn = isl_int_sgn(tab->mat->row[row][1]); if (sgn > 0) { isl_seq_neg(tab->mat->row[row] + 1, tab->mat->row[row] + 1, 1 + tab->n_col); var->negated = 1; sgn = -1; } if (sgn < 0) { sgn = sign_of_max(tab, var); if (sgn < -1) return -1; if (sgn < 0) { if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } } var->is_nonneg = 1; if (to_col(tab, var) < 0) return -1; var->is_nonneg = 0; if (isl_tab_kill_col(tab, var->index) < 0) return -1; return 0; } /* Construct and return an inequality that expresses an upper bound * on the given div. * In particular, if the div is given by * * d = floor(e/m) * * then the inequality expresses * * m d <= e */ static struct isl_vec *ineq_for_div(struct isl_basic_map *bmap, unsigned div) { unsigned total; unsigned div_pos; struct isl_vec *ineq; if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); div_pos = 1 + total - bmap->n_div + div; ineq = isl_vec_alloc(bmap->ctx, 1 + total); if (!ineq) return NULL; isl_seq_cpy(ineq->el, bmap->div[div] + 1, 1 + total); isl_int_neg(ineq->el[div_pos], bmap->div[div][0]); return ineq; } /* For a div d = floor(f/m), add the constraints * * f - m d >= 0 * -(f-(m-1)) + m d >= 0 * * Note that the second constraint is the negation of * * f - m d >= m * * If add_ineq is not NULL, then this function is used * instead of isl_tab_add_ineq to effectively add the inequalities. */ static int add_div_constraints(struct isl_tab *tab, unsigned div, int (*add_ineq)(void *user, isl_int *), void *user) { unsigned total; unsigned div_pos; struct isl_vec *ineq; total = isl_basic_map_total_dim(tab->bmap); div_pos = 1 + total - tab->bmap->n_div + div; ineq = ineq_for_div(tab->bmap, div); if (!ineq) goto error; if (add_ineq) { if (add_ineq(user, ineq->el) < 0) goto error; } else { if (isl_tab_add_ineq(tab, ineq->el) < 0) goto error; } isl_seq_neg(ineq->el, tab->bmap->div[div] + 1, 1 + total); isl_int_set(ineq->el[div_pos], tab->bmap->div[div][0]); isl_int_add(ineq->el[0], ineq->el[0], ineq->el[div_pos]); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); if (add_ineq) { if (add_ineq(user, ineq->el) < 0) goto error; } else { if (isl_tab_add_ineq(tab, ineq->el) < 0) goto error; } isl_vec_free(ineq); return 0; error: isl_vec_free(ineq); return -1; } /* Check whether the div described by "div" is obviously non-negative. * If we are using a big parameter, then we will encode the div * as div' = M + div, which is always non-negative. * Otherwise, we check whether div is a non-negative affine combination * of non-negative variables. */ static int div_is_nonneg(struct isl_tab *tab, __isl_keep isl_vec *div) { int i; if (tab->M) return 1; if (isl_int_is_neg(div->el[1])) return 0; for (i = 0; i < tab->n_var; ++i) { if (isl_int_is_neg(div->el[2 + i])) return 0; if (isl_int_is_zero(div->el[2 + i])) continue; if (!tab->var[i].is_nonneg) return 0; } return 1; } /* Add an extra div, prescribed by "div" to the tableau and * the associated bmap (which is assumed to be non-NULL). * * If add_ineq is not NULL, then this function is used instead * of isl_tab_add_ineq to add the div constraints. * This complication is needed because the code in isl_tab_pip * wants to perform some extra processing when an inequality * is added to the tableau. */ int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div, int (*add_ineq)(void *user, isl_int *), void *user) { int r; int k; int nonneg; if (!tab || !div) return -1; isl_assert(tab->mat->ctx, tab->bmap, return -1); nonneg = div_is_nonneg(tab, div); if (isl_tab_extend_cons(tab, 3) < 0) return -1; if (isl_tab_extend_vars(tab, 1) < 0) return -1; r = isl_tab_allocate_var(tab); if (r < 0) return -1; if (nonneg) tab->var[r].is_nonneg = 1; tab->bmap = isl_basic_map_extend_space(tab->bmap, isl_basic_map_get_space(tab->bmap), 1, 0, 2); k = isl_basic_map_alloc_div(tab->bmap); if (k < 0) return -1; isl_seq_cpy(tab->bmap->div[k], div->el, div->size); if (isl_tab_push(tab, isl_tab_undo_bmap_div) < 0) return -1; if (add_div_constraints(tab, k, add_ineq, user) < 0) return -1; return r; } /* If "track" is set, then we want to keep track of all constraints in tab * in its bmap field. This field is initialized from a copy of "bmap", * so we need to make sure that all constraints in "bmap" also appear * in the constructed tab. */ __isl_give struct isl_tab *isl_tab_from_basic_map( __isl_keep isl_basic_map *bmap, int track) { int i; struct isl_tab *tab; if (!bmap) return NULL; tab = isl_tab_alloc(bmap->ctx, isl_basic_map_total_dim(bmap) + bmap->n_ineq + 1, isl_basic_map_total_dim(bmap), 0); if (!tab) return NULL; tab->preserve = track; tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { if (isl_tab_mark_empty(tab) < 0) goto error; goto done; } for (i = 0; i < bmap->n_eq; ++i) { tab = add_eq(tab, bmap->eq[i]); if (!tab) return tab; } for (i = 0; i < bmap->n_ineq; ++i) { if (isl_tab_add_ineq(tab, bmap->ineq[i]) < 0) goto error; if (tab->empty) goto done; } done: if (track && isl_tab_track_bmap(tab, isl_basic_map_copy(bmap)) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } __isl_give struct isl_tab *isl_tab_from_basic_set( __isl_keep isl_basic_set *bset, int track) { return isl_tab_from_basic_map(bset, track); } /* Construct a tableau corresponding to the recession cone of "bset". */ struct isl_tab *isl_tab_from_recession_cone(__isl_keep isl_basic_set *bset, int parametric) { isl_int cst; int i; struct isl_tab *tab; unsigned offset = 0; if (!bset) return NULL; if (parametric) offset = isl_basic_set_dim(bset, isl_dim_param); tab = isl_tab_alloc(bset->ctx, bset->n_eq + bset->n_ineq, isl_basic_set_total_dim(bset) - offset, 0); if (!tab) return NULL; tab->rational = ISL_F_ISSET(bset, ISL_BASIC_SET_RATIONAL); tab->cone = 1; isl_int_init(cst); isl_int_set_si(cst, 0); for (i = 0; i < bset->n_eq; ++i) { isl_int_swap(bset->eq[i][offset], cst); if (offset > 0) { if (isl_tab_add_eq(tab, bset->eq[i] + offset) < 0) goto error; } else tab = add_eq(tab, bset->eq[i]); isl_int_swap(bset->eq[i][offset], cst); if (!tab) goto done; } for (i = 0; i < bset->n_ineq; ++i) { int r; isl_int_swap(bset->ineq[i][offset], cst); r = isl_tab_add_row(tab, bset->ineq[i] + offset); isl_int_swap(bset->ineq[i][offset], cst); if (r < 0) goto error; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) goto error; } done: isl_int_clear(cst); return tab; error: isl_int_clear(cst); isl_tab_free(tab); return NULL; } /* Assuming "tab" is the tableau of a cone, check if the cone is * bounded, i.e., if it is empty or only contains the origin. */ int isl_tab_cone_is_bounded(struct isl_tab *tab) { int i; if (!tab) return -1; if (tab->empty) return 1; if (tab->n_dead == tab->n_col) return 1; for (;;) { for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var; int sgn; var = isl_tab_var_from_row(tab, i); if (!var->is_nonneg) continue; sgn = sign_of_max(tab, var); if (sgn < -1) return -1; if (sgn != 0) return 0; if (close_row(tab, var) < 0) return -1; break; } if (tab->n_dead == tab->n_col) return 1; if (i == tab->n_row) return 0; } } int isl_tab_sample_is_integer(struct isl_tab *tab) { int i; if (!tab) return -1; for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) continue; row = tab->var[i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0])) return 0; } return 1; } static struct isl_vec *extract_integer_sample(struct isl_tab *tab) { int i; struct isl_vec *vec; vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!vec) return NULL; isl_int_set_si(vec->block.data[0], 1); for (i = 0; i < tab->n_var; ++i) { if (!tab->var[i].is_row) isl_int_set_si(vec->block.data[1 + i], 0); else { int row = tab->var[i].index; isl_int_divexact(vec->block.data[1 + i], tab->mat->row[row][1], tab->mat->row[row][0]); } } return vec; } struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab) { int i; struct isl_vec *vec; isl_int m; if (!tab) return NULL; vec = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!vec) return NULL; isl_int_init(m); isl_int_set_si(vec->block.data[0], 1); for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) { isl_int_set_si(vec->block.data[1 + i], 0); continue; } row = tab->var[i].index; isl_int_gcd(m, vec->block.data[0], tab->mat->row[row][0]); isl_int_divexact(m, tab->mat->row[row][0], m); isl_seq_scale(vec->block.data, vec->block.data, m, 1 + i); isl_int_divexact(m, vec->block.data[0], tab->mat->row[row][0]); isl_int_mul(vec->block.data[1 + i], m, tab->mat->row[row][1]); } vec = isl_vec_normalize(vec); isl_int_clear(m); return vec; } /* Update "bmap" based on the results of the tableau "tab". * In particular, implicit equalities are made explicit, redundant constraints * are removed and if the sample value happens to be integer, it is stored * in "bmap" (unless "bmap" already had an integer sample). * * The tableau is assumed to have been created from "bmap" using * isl_tab_from_basic_map. */ struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap, struct isl_tab *tab) { int i; unsigned n_eq; if (!bmap) return NULL; if (!tab) return bmap; n_eq = tab->n_eq; if (tab->empty) bmap = isl_basic_map_set_to_empty(bmap); else for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_tab_is_equality(tab, n_eq + i)) isl_basic_map_inequality_to_equality(bmap, i); else if (isl_tab_is_redundant(tab, n_eq + i)) isl_basic_map_drop_inequality(bmap, i); } if (bmap->n_eq != n_eq) isl_basic_map_gauss(bmap, NULL); if (!tab->rational && !bmap->sample && isl_tab_sample_is_integer(tab)) bmap->sample = extract_integer_sample(tab); return bmap; } struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset, struct isl_tab *tab) { return (struct isl_basic_set *)isl_basic_map_update_from_tab( (struct isl_basic_map *)bset, tab); } /* Given a non-negative variable "var", add a new non-negative variable * that is the opposite of "var", ensuring that var can only attain the * value zero. * If var = n/d is a row variable, then the new variable = -n/d. * If var is a column variables, then the new variable = -var. * If the new variable cannot attain non-negative values, then * the resulting tableau is empty. * Otherwise, we know the value will be zero and we close the row. */ static int cut_to_hyperplane(struct isl_tab *tab, struct isl_tab_var *var) { unsigned r; isl_int *row; int sgn; unsigned off = 2 + tab->M; if (var->is_zero) return 0; isl_assert(tab->mat->ctx, !var->is_redundant, return -1); isl_assert(tab->mat->ctx, var->is_nonneg, return -1); if (isl_tab_extend_cons(tab, 1) < 0) return -1; r = tab->n_con; tab->con[r].index = tab->n_row; tab->con[r].is_row = 1; tab->con[r].is_nonneg = 0; tab->con[r].is_zero = 0; tab->con[r].is_redundant = 0; tab->con[r].frozen = 0; tab->con[r].negated = 0; tab->row_var[tab->n_row] = ~r; row = tab->mat->row[tab->n_row]; if (var->is_row) { isl_int_set(row[0], tab->mat->row[var->index][0]); isl_seq_neg(row + 1, tab->mat->row[var->index] + 1, 1 + tab->n_col); } else { isl_int_set_si(row[0], 1); isl_seq_clr(row + 1, 1 + tab->n_col); isl_int_set_si(row[off + var->index], -1); } tab->n_row++; tab->n_con++; if (isl_tab_push_var(tab, isl_tab_undo_allocate, &tab->con[r]) < 0) return -1; sgn = sign_of_max(tab, &tab->con[r]); if (sgn < -1) return -1; if (sgn < 0) { if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) return -1; /* sgn == 0 */ if (close_row(tab, &tab->con[r]) < 0) return -1; return 0; } /* Given a tableau "tab" and an inequality constraint "con" of the tableau, * relax the inequality by one. That is, the inequality r >= 0 is replaced * by r' = r + 1 >= 0. * If r is a row variable, we simply increase the constant term by one * (taking into account the denominator). * If r is a column variable, then we need to modify each row that * refers to r = r' - 1 by substituting this equality, effectively * subtracting the coefficient of the column from the constant. * We should only do this if the minimum is manifestly unbounded, * however. Otherwise, we may end up with negative sample values * for non-negative variables. * So, if r is a column variable with a minimum that is not * manifestly unbounded, then we need to move it to a row. * However, the sample value of this row may be negative, * even after the relaxation, so we need to restore it. * We therefore prefer to pivot a column up to a row, if possible. */ int isl_tab_relax(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (var->is_row && (var->index < 0 || var->index < tab->n_redundant)) isl_die(tab->mat->ctx, isl_error_invalid, "cannot relax redundant constraint", return -1); if (!var->is_row && (var->index < 0 || var->index < tab->n_dead)) isl_die(tab->mat->ctx, isl_error_invalid, "cannot relax dead constraint", return -1); if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; if (!var->is_row && !min_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, -1) < 0) return -1; if (var->is_row) { isl_int_add(tab->mat->row[var->index][1], tab->mat->row[var->index][1], tab->mat->row[var->index][0]); if (restore_row(tab, var) < 0) return -1; } else { int i; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_sub(tab->mat->row[i][1], tab->mat->row[i][1], tab->mat->row[i][off + var->index]); } } if (isl_tab_push_var(tab, isl_tab_undo_relax, var) < 0) return -1; return 0; } /* Replace the variable v at position "pos" in the tableau "tab" * by v' = v + shift. * * If the variable is in a column, then we first check if we can * simply plug in v = v' - shift. The effect on a row with * coefficient f/d for variable v is that the constant term c/d * is replaced by (c - f * shift)/d. If shift is positive and * f is negative for each row that needs to remain non-negative, * then this is clearly safe. In other words, if the minimum of v * is manifestly unbounded, then we can keep v in a column position. * Otherwise, we can pivot it down to a row. * Similarly, if shift is negative, we need to check if the maximum * of is manifestly unbounded. * * If the variable is in a row (from the start or after pivoting), * then the constant term c/d is replaced by (c + d * shift)/d. */ int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift) { struct isl_tab_var *var; if (!tab) return -1; if (isl_int_is_zero(shift)) return 0; var = &tab->var[pos]; if (!var->is_row) { if (isl_int_is_neg(shift)) { if (!max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; } else { if (!min_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, -1) < 0) return -1; } } if (var->is_row) { isl_int_addmul(tab->mat->row[var->index][1], shift, tab->mat->row[var->index][0]); } else { int i; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_submul(tab->mat->row[i][1], shift, tab->mat->row[i][off + var->index]); } } return 0; } /* Remove the sign constraint from constraint "con". * * If the constraint variable was originally marked non-negative, * then we make sure we mark it non-negative again during rollback. */ int isl_tab_unrestrict(struct isl_tab *tab, int con) { struct isl_tab_var *var; if (!tab) return -1; var = &tab->con[con]; if (!var->is_nonneg) return 0; var->is_nonneg = 0; if (isl_tab_push_var(tab, isl_tab_undo_unrestrict, var) < 0) return -1; return 0; } int isl_tab_select_facet(struct isl_tab *tab, int con) { if (!tab) return -1; return cut_to_hyperplane(tab, &tab->con[con]); } static int may_be_equality(struct isl_tab *tab, int row) { return tab->rational ? isl_int_is_zero(tab->mat->row[row][1]) : isl_int_lt(tab->mat->row[row][1], tab->mat->row[row][0]); } /* Check for (near) equalities among the constraints. * A constraint is an equality if it is non-negative and if * its maximal value is either * - zero (in case of rational tableaus), or * - strictly less than 1 (in case of integer tableaus) * * We first mark all non-redundant and non-dead variables that * are not frozen and not obviously not an equality. * Then we iterate over all marked variables if they can attain * any values larger than zero or at least one. * If the maximal value is zero, we mark any column variables * that appear in the row as being zero and mark the row as being redundant. * Otherwise, if the maximal value is strictly less than one (and the * tableau is integer), then we restrict the value to being zero * by adding an opposite non-negative variable. */ int isl_tab_detect_implicit_equalities(struct isl_tab *tab) { int i; unsigned n_marked; if (!tab) return -1; if (tab->empty) return 0; if (tab->n_dead == tab->n_col) return 0; n_marked = 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var = isl_tab_var_from_row(tab, i); var->marked = !var->frozen && var->is_nonneg && may_be_equality(tab, i); if (var->marked) n_marked++; } for (i = tab->n_dead; i < tab->n_col; ++i) { struct isl_tab_var *var = var_from_col(tab, i); var->marked = !var->frozen && var->is_nonneg; if (var->marked) n_marked++; } while (n_marked) { struct isl_tab_var *var; int sgn; for (i = tab->n_redundant; i < tab->n_row; ++i) { var = isl_tab_var_from_row(tab, i); if (var->marked) break; } if (i == tab->n_row) { for (i = tab->n_dead; i < tab->n_col; ++i) { var = var_from_col(tab, i); if (var->marked) break; } if (i == tab->n_col) break; } var->marked = 0; n_marked--; sgn = sign_of_max(tab, var); if (sgn < 0) return -1; if (sgn == 0) { if (close_row(tab, var) < 0) return -1; } else if (!tab->rational && !at_least_one(tab, var)) { if (cut_to_hyperplane(tab, var) < 0) return -1; return isl_tab_detect_implicit_equalities(tab); } for (i = tab->n_redundant; i < tab->n_row; ++i) { var = isl_tab_var_from_row(tab, i); if (!var->marked) continue; if (may_be_equality(tab, i)) continue; var->marked = 0; n_marked--; } } return 0; } /* Update the element of row_var or col_var that corresponds to * constraint tab->con[i] to a move from position "old" to position "i". */ static int update_con_after_move(struct isl_tab *tab, int i, int old) { int *p; int index; index = tab->con[i].index; if (index == -1) return 0; p = tab->con[i].is_row ? tab->row_var : tab->col_var; if (p[index] != ~old) isl_die(tab->mat->ctx, isl_error_internal, "broken internal state", return -1); p[index] = ~i; return 0; } /* Rotate the "n" constraints starting at "first" to the right, * putting the last constraint in the position of the first constraint. */ static int rotate_constraints(struct isl_tab *tab, int first, int n) { int i, last; struct isl_tab_var var; if (n <= 1) return 0; last = first + n - 1; var = tab->con[last]; for (i = last; i > first; --i) { tab->con[i] = tab->con[i - 1]; if (update_con_after_move(tab, i, i - 1) < 0) return -1; } tab->con[first] = var; if (update_con_after_move(tab, first, last) < 0) return -1; return 0; } /* Make the equalities that are implicit in "bmap" but that have been * detected in the corresponding "tab" explicit in "bmap" and update * "tab" to reflect the new order of the constraints. * * In particular, if inequality i is an implicit equality then * isl_basic_map_inequality_to_equality will move the inequality * in front of the other equality and it will move the last inequality * in the position of inequality i. * In the tableau, the inequalities of "bmap" are stored after the equalities * and so the original order * * E E E E E A A A I B B B B L * * is changed into * * I E E E E E A A A L B B B B * * where I is the implicit equality, the E are equalities, * the A inequalities before I, the B inequalities after I and * L the last inequality. * We therefore need to rotate to the right two sets of constraints, * those up to and including I and those after I. * * If "tab" contains any constraints that are not in "bmap" then they * appear after those in "bmap" and they should be left untouched. * * Note that this function leaves "bmap" in a temporary state * as it does not call isl_basic_map_gauss. Calling this function * is the responsibility of the caller. */ __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab, __isl_take isl_basic_map *bmap) { int i; if (!tab || !bmap) return isl_basic_map_free(bmap); if (tab->empty) return bmap; for (i = bmap->n_ineq - 1; i >= 0; --i) { if (!isl_tab_is_equality(tab, bmap->n_eq + i)) continue; isl_basic_map_inequality_to_equality(bmap, i); if (rotate_constraints(tab, 0, tab->n_eq + i + 1) < 0) return isl_basic_map_free(bmap); if (rotate_constraints(tab, tab->n_eq + i + 1, bmap->n_ineq - i) < 0) return isl_basic_map_free(bmap); tab->n_eq++; } return bmap; } static int con_is_redundant(struct isl_tab *tab, struct isl_tab_var *var) { if (!tab) return -1; if (tab->rational) { int sgn = sign_of_min(tab, var); if (sgn < -1) return -1; return sgn >= 0; } else { int irred = isl_tab_min_at_most_neg_one(tab, var); if (irred < 0) return -1; return !irred; } } /* Check for (near) redundant constraints. * A constraint is redundant if it is non-negative and if * its minimal value (temporarily ignoring the non-negativity) is either * - zero (in case of rational tableaus), or * - strictly larger than -1 (in case of integer tableaus) * * We first mark all non-redundant and non-dead variables that * are not frozen and not obviously negatively unbounded. * Then we iterate over all marked variables if they can attain * any values smaller than zero or at most negative one. * If not, we mark the row as being redundant (assuming it hasn't * been detected as being obviously redundant in the mean time). */ int isl_tab_detect_redundant(struct isl_tab *tab) { int i; unsigned n_marked; if (!tab) return -1; if (tab->empty) return 0; if (tab->n_redundant == tab->n_row) return 0; n_marked = 0; for (i = tab->n_redundant; i < tab->n_row; ++i) { struct isl_tab_var *var = isl_tab_var_from_row(tab, i); var->marked = !var->frozen && var->is_nonneg; if (var->marked) n_marked++; } for (i = tab->n_dead; i < tab->n_col; ++i) { struct isl_tab_var *var = var_from_col(tab, i); var->marked = !var->frozen && var->is_nonneg && !min_is_manifestly_unbounded(tab, var); if (var->marked) n_marked++; } while (n_marked) { struct isl_tab_var *var; int red; for (i = tab->n_redundant; i < tab->n_row; ++i) { var = isl_tab_var_from_row(tab, i); if (var->marked) break; } if (i == tab->n_row) { for (i = tab->n_dead; i < tab->n_col; ++i) { var = var_from_col(tab, i); if (var->marked) break; } if (i == tab->n_col) break; } var->marked = 0; n_marked--; red = con_is_redundant(tab, var); if (red < 0) return -1; if (red && !var->is_redundant) if (isl_tab_mark_redundant(tab, var->index) < 0) return -1; for (i = tab->n_dead; i < tab->n_col; ++i) { var = var_from_col(tab, i); if (!var->marked) continue; if (!min_is_manifestly_unbounded(tab, var)) continue; var->marked = 0; n_marked--; } } return 0; } int isl_tab_is_equality(struct isl_tab *tab, int con) { int row; unsigned off; if (!tab) return -1; if (tab->con[con].is_zero) return 1; if (tab->con[con].is_redundant) return 0; if (!tab->con[con].is_row) return tab->con[con].index < tab->n_dead; row = tab->con[con].index; off = 2 + tab->M; return isl_int_is_zero(tab->mat->row[row][1]) && (!tab->M || isl_int_is_zero(tab->mat->row[row][2])) && isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Return the minimal value of the affine expression "f" with denominator * "denom" in *opt, *opt_denom, assuming the tableau is not empty and * the expression cannot attain arbitrarily small values. * If opt_denom is NULL, then *opt is rounded up to the nearest integer. * The return value reflects the nature of the result (empty, unbounded, * minimal value returned in *opt). */ enum isl_lp_result isl_tab_min(struct isl_tab *tab, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, unsigned flags) { int r; enum isl_lp_result res = isl_lp_ok; struct isl_tab_var *var; struct isl_tab_undo *snap; if (!tab) return isl_lp_error; if (tab->empty) return isl_lp_empty; snap = isl_tab_snap(tab); r = isl_tab_add_row(tab, f); if (r < 0) return isl_lp_error; var = &tab->con[r]; for (;;) { int row, col; find_pivot(tab, var, var, -1, &row, &col); if (row == var->index) { res = isl_lp_unbounded; break; } if (row == -1) break; if (isl_tab_pivot(tab, row, col) < 0) return isl_lp_error; } isl_int_mul(tab->mat->row[var->index][0], tab->mat->row[var->index][0], denom); if (ISL_FL_ISSET(flags, ISL_TAB_SAVE_DUAL)) { int i; isl_vec_free(tab->dual); tab->dual = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_con); if (!tab->dual) return isl_lp_error; isl_int_set(tab->dual->el[0], tab->mat->row[var->index][0]); for (i = 0; i < tab->n_con; ++i) { int pos; if (tab->con[i].is_row) { isl_int_set_si(tab->dual->el[1 + i], 0); continue; } pos = 2 + tab->M + tab->con[i].index; if (tab->con[i].negated) isl_int_neg(tab->dual->el[1 + i], tab->mat->row[var->index][pos]); else isl_int_set(tab->dual->el[1 + i], tab->mat->row[var->index][pos]); } } if (opt && res == isl_lp_ok) { if (opt_denom) { isl_int_set(*opt, tab->mat->row[var->index][1]); isl_int_set(*opt_denom, tab->mat->row[var->index][0]); } else isl_int_cdiv_q(*opt, tab->mat->row[var->index][1], tab->mat->row[var->index][0]); } if (isl_tab_rollback(tab, snap) < 0) return isl_lp_error; return res; } /* Is the constraint at position "con" marked as being redundant? * If it is marked as representing an equality, then it is not * considered to be redundant. * Note that isl_tab_mark_redundant marks both the isl_tab_var as * redundant and moves the corresponding row into the first * tab->n_redundant positions (or removes the row, assigning it index -1), * so the final test is actually redundant itself. */ int isl_tab_is_redundant(struct isl_tab *tab, int con) { if (!tab) return -1; if (con < 0 || con >= tab->n_con) isl_die(isl_tab_get_ctx(tab), isl_error_invalid, "position out of bounds", return -1); if (tab->con[con].is_zero) return 0; if (tab->con[con].is_redundant) return 1; return tab->con[con].is_row && tab->con[con].index < tab->n_redundant; } /* Take a snapshot of the tableau that can be restored by s call to * isl_tab_rollback. */ struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab) { if (!tab) return NULL; tab->need_undo = 1; return tab->top; } /* Undo the operation performed by isl_tab_relax. */ static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) WARN_UNUSED; static int unrelax(struct isl_tab *tab, struct isl_tab_var *var) { unsigned off = 2 + tab->M; if (!var->is_row && !max_is_manifestly_unbounded(tab, var)) if (to_row(tab, var, 1) < 0) return -1; if (var->is_row) { isl_int_sub(tab->mat->row[var->index][1], tab->mat->row[var->index][1], tab->mat->row[var->index][0]); if (var->is_nonneg) { int sgn = restore_row(tab, var); isl_assert(tab->mat->ctx, sgn >= 0, return -1); } } else { int i; for (i = 0; i < tab->n_row; ++i) { if (isl_int_is_zero(tab->mat->row[i][off + var->index])) continue; isl_int_add(tab->mat->row[i][1], tab->mat->row[i][1], tab->mat->row[i][off + var->index]); } } return 0; } /* Undo the operation performed by isl_tab_unrestrict. * * In particular, mark the variable as being non-negative and make * sure the sample value respects this constraint. */ static int ununrestrict(struct isl_tab *tab, struct isl_tab_var *var) { var->is_nonneg = 1; if (var->is_row && restore_row(tab, var) < -1) return -1; return 0; } static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED; static int perform_undo_var(struct isl_tab *tab, struct isl_tab_undo *undo) { struct isl_tab_var *var = var_from_index(tab, undo->u.var_index); switch (undo->type) { case isl_tab_undo_nonneg: var->is_nonneg = 0; break; case isl_tab_undo_redundant: var->is_redundant = 0; tab->n_redundant--; restore_row(tab, isl_tab_var_from_row(tab, tab->n_redundant)); break; case isl_tab_undo_freeze: var->frozen = 0; break; case isl_tab_undo_zero: var->is_zero = 0; if (!var->is_row) tab->n_dead--; break; case isl_tab_undo_allocate: if (undo->u.var_index >= 0) { isl_assert(tab->mat->ctx, !var->is_row, return -1); return drop_col(tab, var->index); } if (!var->is_row) { if (!max_is_manifestly_unbounded(tab, var)) { if (to_row(tab, var, 1) < 0) return -1; } else if (!min_is_manifestly_unbounded(tab, var)) { if (to_row(tab, var, -1) < 0) return -1; } else if (to_row(tab, var, 0) < 0) return -1; } return drop_row(tab, var->index); case isl_tab_undo_relax: return unrelax(tab, var); case isl_tab_undo_unrestrict: return ununrestrict(tab, var); default: isl_die(tab->mat->ctx, isl_error_internal, "perform_undo_var called on invalid undo record", return -1); } return 0; } /* Restore the tableau to the state where the basic variables * are those in "col_var". * We first construct a list of variables that are currently in * the basis, but shouldn't. Then we iterate over all variables * that should be in the basis and for each one that is currently * not in the basis, we exchange it with one of the elements of the * list constructed before. * We can always find an appropriate variable to pivot with because * the current basis is mapped to the old basis by a non-singular * matrix and so we can never end up with a zero row. */ static int restore_basis(struct isl_tab *tab, int *col_var) { int i, j; int n_extra = 0; int *extra = NULL; /* current columns that contain bad stuff */ unsigned off = 2 + tab->M; extra = isl_alloc_array(tab->mat->ctx, int, tab->n_col); if (tab->n_col && !extra) goto error; for (i = 0; i < tab->n_col; ++i) { for (j = 0; j < tab->n_col; ++j) if (tab->col_var[i] == col_var[j]) break; if (j < tab->n_col) continue; extra[n_extra++] = i; } for (i = 0; i < tab->n_col && n_extra > 0; ++i) { struct isl_tab_var *var; int row; for (j = 0; j < tab->n_col; ++j) if (col_var[i] == tab->col_var[j]) break; if (j < tab->n_col) continue; var = var_from_index(tab, col_var[i]); row = var->index; for (j = 0; j < n_extra; ++j) if (!isl_int_is_zero(tab->mat->row[row][off+extra[j]])) break; isl_assert(tab->mat->ctx, j < n_extra, goto error); if (isl_tab_pivot(tab, row, extra[j]) < 0) goto error; extra[j] = extra[--n_extra]; } free(extra); return 0; error: free(extra); return -1; } /* Remove all samples with index n or greater, i.e., those samples * that were added since we saved this number of samples in * isl_tab_save_samples. */ static void drop_samples_since(struct isl_tab *tab, int n) { int i; for (i = tab->n_sample - 1; i >= 0 && tab->n_sample > n; --i) { if (tab->sample_index[i] < n) continue; if (i != tab->n_sample - 1) { int t = tab->sample_index[tab->n_sample-1]; tab->sample_index[tab->n_sample-1] = tab->sample_index[i]; tab->sample_index[i] = t; isl_mat_swap_rows(tab->samples, tab->n_sample-1, i); } tab->n_sample--; } } static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) WARN_UNUSED; static int perform_undo(struct isl_tab *tab, struct isl_tab_undo *undo) { switch (undo->type) { case isl_tab_undo_rational: tab->rational = 0; break; case isl_tab_undo_empty: tab->empty = 0; break; case isl_tab_undo_nonneg: case isl_tab_undo_redundant: case isl_tab_undo_freeze: case isl_tab_undo_zero: case isl_tab_undo_allocate: case isl_tab_undo_relax: case isl_tab_undo_unrestrict: return perform_undo_var(tab, undo); case isl_tab_undo_bmap_eq: return isl_basic_map_free_equality(tab->bmap, 1); case isl_tab_undo_bmap_ineq: return isl_basic_map_free_inequality(tab->bmap, 1); case isl_tab_undo_bmap_div: if (isl_basic_map_free_div(tab->bmap, 1) < 0) return -1; if (tab->samples) tab->samples->n_col--; break; case isl_tab_undo_saved_basis: if (restore_basis(tab, undo->u.col_var) < 0) return -1; break; case isl_tab_undo_drop_sample: tab->n_outside--; break; case isl_tab_undo_saved_samples: drop_samples_since(tab, undo->u.n); break; case isl_tab_undo_callback: return undo->u.callback->run(undo->u.callback); default: isl_assert(tab->mat->ctx, 0, return -1); } return 0; } /* Return the tableau to the state it was in when the snapshot "snap" * was taken. */ int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap) { struct isl_tab_undo *undo, *next; if (!tab) return -1; tab->in_undo = 1; for (undo = tab->top; undo && undo != &tab->bottom; undo = next) { next = undo->next; if (undo == snap) break; if (perform_undo(tab, undo) < 0) { tab->top = undo; free_undo(tab); tab->in_undo = 0; return -1; } free_undo_record(undo); } tab->in_undo = 0; tab->top = undo; if (!undo) return -1; return 0; } /* The given row "row" represents an inequality violated by all * points in the tableau. Check for some special cases of such * separating constraints. * In particular, if the row has been reduced to the constant -1, * then we know the inequality is adjacent (but opposite) to * an equality in the tableau. * If the row has been reduced to r = c*(-1 -r'), with r' an inequality * of the tableau and c a positive constant, then the inequality * is adjacent (but opposite) to the inequality r'. */ static enum isl_ineq_type separation_type(struct isl_tab *tab, unsigned row) { int pos; unsigned off = 2 + tab->M; if (tab->rational) return isl_ineq_separate; if (!isl_int_is_one(tab->mat->row[row][0])) return isl_ineq_separate; pos = isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead); if (pos == -1) { if (isl_int_is_negone(tab->mat->row[row][1])) return isl_ineq_adj_eq; else return isl_ineq_separate; } if (!isl_int_eq(tab->mat->row[row][1], tab->mat->row[row][off + tab->n_dead + pos])) return isl_ineq_separate; pos = isl_seq_first_non_zero( tab->mat->row[row] + off + tab->n_dead + pos + 1, tab->n_col - tab->n_dead - pos - 1); return pos == -1 ? isl_ineq_adj_ineq : isl_ineq_separate; } /* Check the effect of inequality "ineq" on the tableau "tab". * The result may be * isl_ineq_redundant: satisfied by all points in the tableau * isl_ineq_separate: satisfied by no point in the tableau * isl_ineq_cut: satisfied by some by not all points * isl_ineq_adj_eq: adjacent to an equality * isl_ineq_adj_ineq: adjacent to an inequality. */ enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq) { enum isl_ineq_type type = isl_ineq_error; struct isl_tab_undo *snap = NULL; int con; int row; if (!tab) return isl_ineq_error; if (isl_tab_extend_cons(tab, 1) < 0) return isl_ineq_error; snap = isl_tab_snap(tab); con = isl_tab_add_row(tab, ineq); if (con < 0) goto error; row = tab->con[con].index; if (isl_tab_row_is_redundant(tab, row)) type = isl_ineq_redundant; else if (isl_int_is_neg(tab->mat->row[row][1]) && (tab->rational || isl_int_abs_ge(tab->mat->row[row][1], tab->mat->row[row][0]))) { int nonneg = at_least_zero(tab, &tab->con[con]); if (nonneg < 0) goto error; if (nonneg) type = isl_ineq_cut; else type = separation_type(tab, row); } else { int red = con_is_redundant(tab, &tab->con[con]); if (red < 0) goto error; if (!red) type = isl_ineq_cut; else type = isl_ineq_redundant; } if (isl_tab_rollback(tab, snap)) return isl_ineq_error; return type; error: return isl_ineq_error; } int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap) { bmap = isl_basic_map_cow(bmap); if (!tab || !bmap) goto error; if (tab->empty) { bmap = isl_basic_map_set_to_empty(bmap); if (!bmap) goto error; tab->bmap = bmap; return 0; } isl_assert(tab->mat->ctx, tab->n_eq == bmap->n_eq, goto error); isl_assert(tab->mat->ctx, tab->n_con == bmap->n_eq + bmap->n_ineq, goto error); tab->bmap = bmap; return 0; error: isl_basic_map_free(bmap); return -1; } int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset) { return isl_tab_track_bmap(tab, (isl_basic_map *)bset); } __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab) { if (!tab) return NULL; return (isl_basic_set *)tab->bmap; } static void isl_tab_print_internal(__isl_keep struct isl_tab *tab, FILE *out, int indent) { unsigned r, c; int i; if (!tab) { fprintf(out, "%*snull tab\n", indent, ""); return; } fprintf(out, "%*sn_redundant: %d, n_dead: %d", indent, "", tab->n_redundant, tab->n_dead); if (tab->rational) fprintf(out, ", rational"); if (tab->empty) fprintf(out, ", empty"); fprintf(out, "\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_var; ++i) { if (i) fprintf(out, (i == tab->n_param || i == tab->n_var - tab->n_div) ? "; " : ", "); fprintf(out, "%c%d%s", tab->var[i].is_row ? 'r' : 'c', tab->var[i].index, tab->var[i].is_zero ? " [=0]" : tab->var[i].is_redundant ? " [R]" : ""); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_con; ++i) { if (i) fprintf(out, ", "); fprintf(out, "%c%d%s", tab->con[i].is_row ? 'r' : 'c', tab->con[i].index, tab->con[i].is_zero ? " [=0]" : tab->con[i].is_redundant ? " [R]" : ""); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_row; ++i) { const char *sign = ""; if (i) fprintf(out, ", "); if (tab->row_sign) { if (tab->row_sign[i] == isl_tab_row_unknown) sign = "?"; else if (tab->row_sign[i] == isl_tab_row_neg) sign = "-"; else if (tab->row_sign[i] == isl_tab_row_pos) sign = "+"; else sign = "+-"; } fprintf(out, "r%d: %d%s%s", i, tab->row_var[i], isl_tab_var_from_row(tab, i)->is_nonneg ? " [>=0]" : "", sign); } fprintf(out, "]\n"); fprintf(out, "%*s[", indent, ""); for (i = 0; i < tab->n_col; ++i) { if (i) fprintf(out, ", "); fprintf(out, "c%d: %d%s", i, tab->col_var[i], var_from_col(tab, i)->is_nonneg ? " [>=0]" : ""); } fprintf(out, "]\n"); r = tab->mat->n_row; tab->mat->n_row = tab->n_row; c = tab->mat->n_col; tab->mat->n_col = 2 + tab->M + tab->n_col; isl_mat_print_internal(tab->mat, out, indent); tab->mat->n_row = r; tab->mat->n_col = c; if (tab->bmap) isl_basic_map_print_internal(tab->bmap, out, indent); } void isl_tab_dump(__isl_keep struct isl_tab *tab) { isl_tab_print_internal(tab, stderr, 0); } isl-0.16.1/isl_hash_private.h0000664000175000017500000000022112645737060013013 00000000000000#ifndef ISL_HASH_PRIVATE #define ISL_HASH_PRIVATE #include extern struct isl_hash_table_entry *isl_hash_table_entry_none; #endif isl-0.16.1/isl_tab.h0000664000175000017500000002536012645737061011120 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_TAB_H #define ISL_TAB_H #include #include #include #include #include struct isl_tab_var { int index; unsigned is_row : 1; unsigned is_nonneg : 1; unsigned is_zero : 1; unsigned is_redundant : 1; unsigned marked : 1; unsigned frozen : 1; unsigned negated : 1; }; enum isl_tab_undo_type { isl_tab_undo_bottom, isl_tab_undo_rational, isl_tab_undo_empty, isl_tab_undo_nonneg, isl_tab_undo_redundant, isl_tab_undo_freeze, isl_tab_undo_zero, isl_tab_undo_allocate, isl_tab_undo_relax, isl_tab_undo_unrestrict, isl_tab_undo_bmap_ineq, isl_tab_undo_bmap_eq, isl_tab_undo_bmap_div, isl_tab_undo_saved_basis, isl_tab_undo_drop_sample, isl_tab_undo_saved_samples, isl_tab_undo_callback, }; struct isl_tab_callback { int (*run)(struct isl_tab_callback *cb); }; union isl_tab_undo_val { int var_index; int *col_var; int n; struct isl_tab_callback *callback; }; struct isl_tab_undo { enum isl_tab_undo_type type; union isl_tab_undo_val u; struct isl_tab_undo *next; }; /* The tableau maintains equality relations. * Each column and each row is associated to a variable or a constraint. * The "value" of an inequality constraint is the value of the corresponding * slack variable. * The "row_var" and "col_var" arrays map column and row indices * to indices in the "var" and "con" arrays. The elements of these * arrays maintain extra information about the variables and the constraints. * Each row expresses the corresponding row variable as an affine expression * of the column variables. * The first two columns in the matrix contain the common denominator of * the row and the numerator of the constant term. * If "M" is set, then the third column represents the "big parameter". * The third (M = 0) or fourth (M = 1) column * in the matrix is called column 0 with respect to the col_var array. * The sample value of the tableau is the value that assigns zero * to all the column variables and the constant term of each affine * expression to the corresponding row variable. * The operations on the tableau maintain the property that the sample * value satisfies the non-negativity constraints (usually on the slack * variables). * * The big parameter represents an arbitrarily big (and divisible) * positive number. If present, then the sign of a row is determined * lexicographically, with the sign of the big parameter coefficient * considered first. The big parameter is only used while * solving PILP problems. * * The first n_dead column variables have their values fixed to zero. * The corresponding tab_vars are flagged "is_zero". * Some of the rows that have have zero coefficients in all but * the dead columns are also flagged "is_zero". * * The first n_redundant rows correspond to inequality constraints * that are always satisfied for any value satisfying the non-redundant * rows. The corresponding tab_vars are flagged "is_redundant". * A row variable that is flagged "is_zero" is also flagged "is_redundant" * since the constraint has been reduced to 0 = 0 and is therefore always * satisfied. * * There are "n_var" variables in total. The first "n_param" of these * are called parameters and the last "n_div" of these are called divs. * The basic tableau operations makes no distinction between different * kinds of variables. These special variables are only used while * solving PILP problems. * * Dead columns and redundant rows are detected on the fly. * However, the basic operations do not ensure that all dead columns * or all redundant rows are detected. * isl_tab_detect_implicit_equalities and isl_tab_detect_redundant can be used * to perform and exhaustive search for dead columns and redundant rows. * * The samples matrix contains "n_sample" integer points that have at some * point been elements satisfying the tableau. The first "n_outside" * of them no longer satisfy the tableau. They are kept because they * can be reinstated during rollback when the constraint that cut them * out is removed. These samples are only maintained for the context * tableau while solving PILP problems. * * If "preserve" is set, then we want to keep all constraints in the * tableau, even if they turn out to be redundant. */ enum isl_tab_row_sign { isl_tab_row_unknown = 0, isl_tab_row_pos, isl_tab_row_neg, isl_tab_row_any, }; struct isl_tab { struct isl_mat *mat; unsigned n_row; unsigned n_col; unsigned n_dead; unsigned n_redundant; unsigned n_var; unsigned n_param; unsigned n_div; unsigned max_var; unsigned n_con; unsigned n_eq; unsigned max_con; struct isl_tab_var *var; struct isl_tab_var *con; int *row_var; /* v >= 0 -> var v; v < 0 -> con ~v */ int *col_var; /* v >= 0 -> var v; v < 0 -> con ~v */ enum isl_tab_row_sign *row_sign; struct isl_tab_undo bottom; struct isl_tab_undo *top; struct isl_vec *dual; struct isl_basic_map *bmap; unsigned n_sample; unsigned n_outside; int *sample_index; struct isl_mat *samples; int n_zero; int n_unbounded; struct isl_mat *basis; int (*conflict)(int con, void *user); void *conflict_user; unsigned strict_redundant : 1; unsigned need_undo : 1; unsigned preserve : 1; unsigned rational : 1; unsigned empty : 1; unsigned in_undo : 1; unsigned M : 1; unsigned cone : 1; }; struct isl_tab *isl_tab_alloc(struct isl_ctx *ctx, unsigned n_row, unsigned n_var, unsigned M); void isl_tab_free(struct isl_tab *tab); isl_ctx *isl_tab_get_ctx(struct isl_tab *tab); __isl_give struct isl_tab *isl_tab_from_basic_map( __isl_keep isl_basic_map *bmap, int track); __isl_give struct isl_tab *isl_tab_from_basic_set( __isl_keep isl_basic_set *bset, int track); struct isl_tab *isl_tab_from_recession_cone(struct isl_basic_set *bset, int parametric); int isl_tab_cone_is_bounded(struct isl_tab *tab); struct isl_basic_map *isl_basic_map_update_from_tab(struct isl_basic_map *bmap, struct isl_tab *tab); struct isl_basic_set *isl_basic_set_update_from_tab(struct isl_basic_set *bset, struct isl_tab *tab); int isl_tab_detect_implicit_equalities(struct isl_tab *tab) WARN_UNUSED; __isl_give isl_basic_map *isl_tab_make_equalities_explicit(struct isl_tab *tab, __isl_take isl_basic_map *bmap); int isl_tab_detect_redundant(struct isl_tab *tab) WARN_UNUSED; #define ISL_TAB_SAVE_DUAL (1 << 0) enum isl_lp_result isl_tab_min(struct isl_tab *tab, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, unsigned flags) WARN_UNUSED; int isl_tab_add_ineq(struct isl_tab *tab, isl_int *ineq) WARN_UNUSED; int isl_tab_add_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED; int isl_tab_add_valid_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED; int isl_tab_freeze_constraint(struct isl_tab *tab, int con) WARN_UNUSED; int isl_tab_track_bmap(struct isl_tab *tab, __isl_take isl_basic_map *bmap) WARN_UNUSED; int isl_tab_track_bset(struct isl_tab *tab, __isl_take isl_basic_set *bset) WARN_UNUSED; __isl_keep isl_basic_set *isl_tab_peek_bset(struct isl_tab *tab); int isl_tab_is_equality(struct isl_tab *tab, int con); int isl_tab_is_redundant(struct isl_tab *tab, int con); int isl_tab_sample_is_integer(struct isl_tab *tab); struct isl_vec *isl_tab_get_sample_value(struct isl_tab *tab); enum isl_ineq_type { isl_ineq_error = -1, isl_ineq_redundant, isl_ineq_separate, isl_ineq_cut, isl_ineq_adj_eq, isl_ineq_adj_ineq, }; enum isl_ineq_type isl_tab_ineq_type(struct isl_tab *tab, isl_int *ineq); struct isl_tab_undo *isl_tab_snap(struct isl_tab *tab); int isl_tab_rollback(struct isl_tab *tab, struct isl_tab_undo *snap) WARN_UNUSED; int isl_tab_relax(struct isl_tab *tab, int con) WARN_UNUSED; int isl_tab_select_facet(struct isl_tab *tab, int con) WARN_UNUSED; int isl_tab_unrestrict(struct isl_tab *tab, int con) WARN_UNUSED; void isl_tab_dump(__isl_keep struct isl_tab *tab); struct isl_map *isl_tab_basic_map_partial_lexopt( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty, int max); __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max); /* An isl_region represents a sequence of consecutive variables. * pos is the location (starting at 0) of the first variable in the sequence. */ struct isl_region { int pos; int len; }; __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin( __isl_take isl_basic_set *bset, int n_op, int n_region, struct isl_region *region, int (*conflict)(int con, void *user), void *user); __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin( __isl_take isl_basic_set *bset); /* private */ struct isl_tab_var *isl_tab_var_from_row(struct isl_tab *tab, int i); int isl_tab_mark_redundant(struct isl_tab *tab, int row) WARN_UNUSED; int isl_tab_mark_rational(struct isl_tab *tab) WARN_UNUSED; int isl_tab_mark_empty(struct isl_tab *tab) WARN_UNUSED; struct isl_tab *isl_tab_dup(struct isl_tab *tab); struct isl_tab *isl_tab_product(struct isl_tab *tab1, struct isl_tab *tab2); int isl_tab_extend_cons(struct isl_tab *tab, unsigned n_new) WARN_UNUSED; int isl_tab_allocate_con(struct isl_tab *tab) WARN_UNUSED; int isl_tab_extend_vars(struct isl_tab *tab, unsigned n_new) WARN_UNUSED; int isl_tab_allocate_var(struct isl_tab *tab) WARN_UNUSED; int isl_tab_insert_var(struct isl_tab *tab, int pos) WARN_UNUSED; int isl_tab_pivot(struct isl_tab *tab, int row, int col) WARN_UNUSED; int isl_tab_add_row(struct isl_tab *tab, isl_int *line) WARN_UNUSED; int isl_tab_row_is_redundant(struct isl_tab *tab, int row); int isl_tab_min_at_most_neg_one(struct isl_tab *tab, struct isl_tab_var *var); int isl_tab_sign_of_max(struct isl_tab *tab, int con); int isl_tab_kill_col(struct isl_tab *tab, int col) WARN_UNUSED; int isl_tab_push(struct isl_tab *tab, enum isl_tab_undo_type type) WARN_UNUSED; int isl_tab_push_var(struct isl_tab *tab, enum isl_tab_undo_type type, struct isl_tab_var *var) WARN_UNUSED; int isl_tab_push_basis(struct isl_tab *tab) WARN_UNUSED; struct isl_tab *isl_tab_init_samples(struct isl_tab *tab) WARN_UNUSED; int isl_tab_add_sample(struct isl_tab *tab, __isl_take isl_vec *sample) WARN_UNUSED; struct isl_tab *isl_tab_drop_sample(struct isl_tab *tab, int s); int isl_tab_save_samples(struct isl_tab *tab) WARN_UNUSED; struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, struct isl_tab *tab_cone) WARN_UNUSED; int isl_tab_push_callback(struct isl_tab *tab, struct isl_tab_callback *callback) WARN_UNUSED; int isl_tab_add_div(struct isl_tab *tab, __isl_keep isl_vec *div, int (*add_ineq)(void *user, isl_int *), void *user); int isl_tab_shift_var(struct isl_tab *tab, int pos, isl_int shift) WARN_UNUSED; #endif isl-0.16.1/isl_bound.h0000664000175000017500000000047612645737060011461 00000000000000#ifndef ISL_BOUND_H #define ISL_BOUND_H #include struct isl_bound { /* input */ int check_tight; int wrapping; enum isl_fold type; isl_space *dim; isl_basic_set *bset; isl_qpolynomial_fold *fold; /* output */ isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *pwf_tight; }; #endif isl-0.16.1/print_templ.c0000664000175000017500000000134212645737414012027 00000000000000#include #define xCAT(A,B) A ## B #define CAT(A,B) xCAT(A,B) #undef TYPE #define TYPE CAT(isl_,BASE) #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) void FN(TYPE,dump)(__isl_keep TYPE *obj) { isl_printer *p; if (!obj) return; p = isl_printer_to_file(FN(TYPE,get_ctx)(obj), stderr); p = isl_printer_set_dump(p, 1); p = FN(isl_printer_print,BASE)(p, obj); p = isl_printer_end_line(p); isl_printer_free(p); } __isl_give char *FN(TYPE,to_str)(__isl_keep TYPE *obj) { isl_printer *p; char *s; if (!obj) return NULL; p = isl_printer_to_str(FN(TYPE,get_ctx)(obj)); p = FN(isl_printer_print,BASE)(p, obj); s = isl_printer_get_str(p); isl_printer_free(p); return s; } isl-0.16.1/isl_obj.c0000664000175000017500000002016612645737061011116 00000000000000/* * Copyright 2010 INRIA Saclay * Copyright 2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include #include #include static void *isl_obj_val_copy(void *v) { return isl_val_copy((isl_val *)v); } static void isl_obj_val_free(void *v) { isl_val_free((isl_val *)v); } static __isl_give isl_printer *isl_obj_val_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_val(p, (isl_val *)v); } static void *isl_obj_val_add(void *v1, void *v2) { return isl_val_add((isl_val *) v1, (isl_val *) v2); } struct isl_obj_vtable isl_obj_val_vtable = { isl_obj_val_copy, isl_obj_val_add, isl_obj_val_print, isl_obj_val_free }; static void *isl_obj_map_copy(void *v) { return isl_map_copy((struct isl_map *)v); } static void isl_obj_map_free(void *v) { isl_map_free((struct isl_map *)v); } static __isl_give isl_printer *isl_obj_map_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_map(p, (struct isl_map *)v); } static void *isl_obj_map_add(void *v1, void *v2) { return isl_map_union((struct isl_map *)v1, (struct isl_map *)v2); } struct isl_obj_vtable isl_obj_map_vtable = { isl_obj_map_copy, isl_obj_map_add, isl_obj_map_print, isl_obj_map_free }; static void *isl_obj_union_map_copy(void *v) { return isl_union_map_copy((isl_union_map *)v); } static void isl_obj_union_map_free(void *v) { isl_union_map_free((isl_union_map *)v); } static __isl_give isl_printer *isl_obj_union_map_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_union_map(p, (isl_union_map *)v); } static void *isl_obj_union_map_add(void *v1, void *v2) { return isl_union_map_union((isl_union_map *)v1, (isl_union_map *)v2); } struct isl_obj_vtable isl_obj_union_map_vtable = { isl_obj_union_map_copy, isl_obj_union_map_add, isl_obj_union_map_print, isl_obj_union_map_free }; static void *isl_obj_set_copy(void *v) { return isl_set_copy((struct isl_set *)v); } static void isl_obj_set_free(void *v) { isl_set_free((struct isl_set *)v); } static __isl_give isl_printer *isl_obj_set_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_set(p, (struct isl_set *)v); } static void *isl_obj_set_add(void *v1, void *v2) { return isl_set_union((struct isl_set *)v1, (struct isl_set *)v2); } struct isl_obj_vtable isl_obj_set_vtable = { isl_obj_set_copy, isl_obj_set_add, isl_obj_set_print, isl_obj_set_free }; static void *isl_obj_union_set_copy(void *v) { return isl_union_set_copy((isl_union_set *)v); } static void isl_obj_union_set_free(void *v) { isl_union_set_free((isl_union_set *)v); } static __isl_give isl_printer *isl_obj_union_set_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_union_set(p, (isl_union_set *)v); } static void *isl_obj_union_set_add(void *v1, void *v2) { return isl_union_set_union((isl_union_set *)v1, (isl_union_set *)v2); } struct isl_obj_vtable isl_obj_union_set_vtable = { isl_obj_union_set_copy, isl_obj_union_set_add, isl_obj_union_set_print, isl_obj_union_set_free }; static void *isl_obj_pw_multi_aff_copy(void *v) { return isl_pw_multi_aff_copy((isl_pw_multi_aff *) v); } static void isl_obj_pw_multi_aff_free(void *v) { isl_pw_multi_aff_free((isl_pw_multi_aff *) v); } static __isl_give isl_printer *isl_obj_pw_multi_aff_print( __isl_take isl_printer *p, void *v) { return isl_printer_print_pw_multi_aff(p, (isl_pw_multi_aff *) v); } static void *isl_obj_pw_multi_aff_add(void *v1, void *v2) { return isl_pw_multi_aff_add((isl_pw_multi_aff *) v1, (isl_pw_multi_aff *) v2); } struct isl_obj_vtable isl_obj_pw_multi_aff_vtable = { isl_obj_pw_multi_aff_copy, isl_obj_pw_multi_aff_add, isl_obj_pw_multi_aff_print, isl_obj_pw_multi_aff_free }; static void *isl_obj_none_copy(void *v) { return v; } static void isl_obj_none_free(void *v) { } static __isl_give isl_printer *isl_obj_none_print(__isl_take isl_printer *p, void *v) { return p; } static void *isl_obj_none_add(void *v1, void *v2) { return NULL; } struct isl_obj_vtable isl_obj_none_vtable = { isl_obj_none_copy, isl_obj_none_add, isl_obj_none_print, isl_obj_none_free }; static void *isl_obj_pw_qp_copy(void *v) { return isl_pw_qpolynomial_copy((struct isl_pw_qpolynomial *)v); } static void isl_obj_pw_qp_free(void *v) { isl_pw_qpolynomial_free((struct isl_pw_qpolynomial *)v); } static __isl_give isl_printer *isl_obj_pw_qp_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_pw_qpolynomial(p, (struct isl_pw_qpolynomial *)v); } static void *isl_obj_pw_qp_add(void *v1, void *v2) { return isl_pw_qpolynomial_add((struct isl_pw_qpolynomial *)v1, (struct isl_pw_qpolynomial *)v2); } struct isl_obj_vtable isl_obj_pw_qpolynomial_vtable = { isl_obj_pw_qp_copy, isl_obj_pw_qp_add, isl_obj_pw_qp_print, isl_obj_pw_qp_free }; static void *isl_obj_union_pw_qp_copy(void *v) { return isl_union_pw_qpolynomial_copy((struct isl_union_pw_qpolynomial *)v); } static void isl_obj_union_pw_qp_free(void *v) { isl_union_pw_qpolynomial_free((struct isl_union_pw_qpolynomial *)v); } static __isl_give isl_printer *isl_obj_union_pw_qp_print( __isl_take isl_printer *p, void *v) { return isl_printer_print_union_pw_qpolynomial(p, (struct isl_union_pw_qpolynomial *)v); } static void *isl_obj_union_pw_qp_add(void *v1, void *v2) { return isl_union_pw_qpolynomial_add( (struct isl_union_pw_qpolynomial *)v1, (struct isl_union_pw_qpolynomial *)v2); } struct isl_obj_vtable isl_obj_union_pw_qpolynomial_vtable = { isl_obj_union_pw_qp_copy, isl_obj_union_pw_qp_add, isl_obj_union_pw_qp_print, isl_obj_union_pw_qp_free }; static void *isl_obj_pw_qpf_copy(void *v) { return isl_pw_qpolynomial_fold_copy((struct isl_pw_qpolynomial_fold *)v); } static void isl_obj_pw_qpf_free(void *v) { isl_pw_qpolynomial_fold_free((struct isl_pw_qpolynomial_fold *)v); } static __isl_give isl_printer *isl_obj_pw_qpf_print(__isl_take isl_printer *p, void *v) { return isl_printer_print_pw_qpolynomial_fold(p, (struct isl_pw_qpolynomial_fold *)v); } static void *isl_obj_pw_qpf_add(void *v1, void *v2) { return isl_pw_qpolynomial_fold_fold((struct isl_pw_qpolynomial_fold *)v1, (struct isl_pw_qpolynomial_fold *)v2); } struct isl_obj_vtable isl_obj_pw_qpolynomial_fold_vtable = { isl_obj_pw_qpf_copy, isl_obj_pw_qpf_add, isl_obj_pw_qpf_print, isl_obj_pw_qpf_free }; static void *isl_obj_union_pw_qpf_copy(void *v) { return isl_union_pw_qpolynomial_fold_copy((struct isl_union_pw_qpolynomial_fold *)v); } static void isl_obj_union_pw_qpf_free(void *v) { isl_union_pw_qpolynomial_fold_free((struct isl_union_pw_qpolynomial_fold *)v); } static __isl_give isl_printer *isl_obj_union_pw_qpf_print( __isl_take isl_printer *p, void *v) { return isl_printer_print_union_pw_qpolynomial_fold(p, (struct isl_union_pw_qpolynomial_fold *)v); } static void *isl_obj_union_pw_qpf_add(void *v1, void *v2) { return isl_union_pw_qpolynomial_fold_fold( (struct isl_union_pw_qpolynomial_fold *)v1, (struct isl_union_pw_qpolynomial_fold *)v2); } struct isl_obj_vtable isl_obj_union_pw_qpolynomial_fold_vtable = { isl_obj_union_pw_qpf_copy, isl_obj_union_pw_qpf_add, isl_obj_union_pw_qpf_print, isl_obj_union_pw_qpf_free }; static void *isl_obj_schedule_copy(void *v) { return isl_schedule_copy((isl_schedule *) v); } static void isl_obj_schedule_free(void *v) { isl_schedule_free((isl_schedule *) v); } static __isl_give isl_printer *isl_obj_schedule_print( __isl_take isl_printer *p, void *v) { return isl_printer_print_schedule(p, (isl_schedule *) v); } struct isl_obj_vtable isl_obj_schedule_vtable = { isl_obj_schedule_copy, NULL, isl_obj_schedule_print, isl_obj_schedule_free }; isl-0.16.1/isl_int_gmp.h0000664000175000017500000000635012645737060012004 00000000000000#ifndef ISL_INT_GMP_H #define ISL_INT_GMP_H #include /* isl_int is the basic integer type, implemented with GMP's mpz_t. In the * future, different types such as long long or cln::cl_I will be supported. */ typedef mpz_t isl_int; #define isl_int_init(i) mpz_init(i) #define isl_int_clear(i) mpz_clear(i) #define isl_int_set(r,i) mpz_set(r,i) #define isl_int_set_si(r,i) mpz_set_si(r,i) #define isl_int_set_ui(r,i) mpz_set_ui(r,i) #define isl_int_fits_slong(r) mpz_fits_slong_p(r) #define isl_int_get_si(r) mpz_get_si(r) #define isl_int_fits_ulong(r) mpz_fits_ulong_p(r) #define isl_int_get_ui(r) mpz_get_ui(r) #define isl_int_get_d(r) mpz_get_d(r) #define isl_int_get_str(r) mpz_get_str(0, 10, r) #define isl_int_abs(r,i) mpz_abs(r,i) #define isl_int_neg(r,i) mpz_neg(r,i) #define isl_int_swap(i,j) mpz_swap(i,j) #define isl_int_swap_or_set(i,j) mpz_swap(i,j) #define isl_int_add_ui(r,i,j) mpz_add_ui(r,i,j) #define isl_int_sub_ui(r,i,j) mpz_sub_ui(r,i,j) #define isl_int_add(r,i,j) mpz_add(r,i,j) #define isl_int_sub(r,i,j) mpz_sub(r,i,j) #define isl_int_mul(r,i,j) mpz_mul(r,i,j) #define isl_int_mul_2exp(r,i,j) mpz_mul_2exp(r,i,j) #define isl_int_mul_si(r,i,j) mpz_mul_si(r,i,j) #define isl_int_mul_ui(r,i,j) mpz_mul_ui(r,i,j) #define isl_int_pow_ui(r,i,j) mpz_pow_ui(r,i,j) #define isl_int_addmul(r,i,j) mpz_addmul(r,i,j) #define isl_int_addmul_ui(r,i,j) mpz_addmul_ui(r,i,j) #define isl_int_submul(r,i,j) mpz_submul(r,i,j) #define isl_int_submul_ui(r,i,j) mpz_submul_ui(r,i,j) #define isl_int_gcd(r,i,j) mpz_gcd(r,i,j) #define isl_int_lcm(r,i,j) mpz_lcm(r,i,j) #define isl_int_divexact(r,i,j) mpz_divexact(r,i,j) #define isl_int_divexact_ui(r,i,j) mpz_divexact_ui(r,i,j) #define isl_int_tdiv_q(r,i,j) mpz_tdiv_q(r,i,j) #define isl_int_cdiv_q(r,i,j) mpz_cdiv_q(r,i,j) #define isl_int_fdiv_q(r,i,j) mpz_fdiv_q(r,i,j) #define isl_int_fdiv_r(r,i,j) mpz_fdiv_r(r,i,j) #define isl_int_fdiv_q_ui(r,i,j) mpz_fdiv_q_ui(r,i,j) #define isl_int_read(r,s) mpz_set_str(r,s,10) #define isl_int_sgn(i) mpz_sgn(i) #define isl_int_cmp(i,j) mpz_cmp(i,j) #define isl_int_cmp_si(i,si) mpz_cmp_si(i,si) #define isl_int_eq(i,j) (mpz_cmp(i,j) == 0) #define isl_int_ne(i,j) (mpz_cmp(i,j) != 0) #define isl_int_lt(i,j) (mpz_cmp(i,j) < 0) #define isl_int_le(i,j) (mpz_cmp(i,j) <= 0) #define isl_int_gt(i,j) (mpz_cmp(i,j) > 0) #define isl_int_ge(i,j) (mpz_cmp(i,j) >= 0) #define isl_int_abs_cmp(i,j) mpz_cmpabs(i,j) #define isl_int_abs_eq(i,j) (mpz_cmpabs(i,j) == 0) #define isl_int_abs_ne(i,j) (mpz_cmpabs(i,j) != 0) #define isl_int_abs_lt(i,j) (mpz_cmpabs(i,j) < 0) #define isl_int_abs_gt(i,j) (mpz_cmpabs(i,j) > 0) #define isl_int_abs_ge(i,j) (mpz_cmpabs(i,j) >= 0) #define isl_int_is_divisible_by(i,j) mpz_divisible_p(i,j) uint32_t isl_gmp_hash(mpz_t v, uint32_t hash); #define isl_int_hash(v,h) isl_gmp_hash(v,h) #ifndef mp_get_memory_functions void mp_get_memory_functions( void *(**alloc_func_ptr) (size_t), void *(**realloc_func_ptr) (void *, size_t, size_t), void (**free_func_ptr) (void *, size_t)); #endif typedef void (*isl_int_print_mp_free_t)(void *, size_t); #define isl_int_free_str(s) \ do { \ isl_int_print_mp_free_t mp_free; \ mp_get_memory_functions(NULL, NULL, &mp_free); \ (*mp_free)(s, strlen(s) + 1); \ } while (0) #endif /* ISL_INT_GMP_H */ isl-0.16.1/isl_seq.h0000664000175000017500000000446612645737061011146 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_SEQ_H #define ISL_SEQ_H #include #include #include #if defined(__cplusplus) extern "C" { #endif /* Some common operations on sequences of isl_int's */ void isl_seq_clr(isl_int *p, unsigned len); void isl_seq_set(isl_int *p, isl_int v, unsigned len); void isl_seq_set_si(isl_int *p, int v, unsigned len); void isl_seq_neg(isl_int *dst, isl_int *src, unsigned len); void isl_seq_cpy(isl_int *dst, isl_int *src, unsigned len); void isl_seq_addmul(isl_int *dst, isl_int f, isl_int *src, unsigned len); void isl_seq_submul(isl_int *dst, isl_int f, isl_int *src, unsigned len); void isl_seq_swp_or_cpy(isl_int *dst, isl_int *src, unsigned len); void isl_seq_scale(isl_int *dst, isl_int *src, isl_int f, unsigned len); void isl_seq_scale_down(isl_int *dst, isl_int *src, isl_int f, unsigned len); void isl_seq_cdiv_q(isl_int *dst, isl_int *src, isl_int m, unsigned len); void isl_seq_fdiv_q(isl_int *dst, isl_int *src, isl_int m, unsigned len); void isl_seq_fdiv_r(isl_int *dst, isl_int *src, isl_int m, unsigned len); void isl_seq_combine(isl_int *dst, isl_int m1, isl_int *src1, isl_int m2, isl_int *src2, unsigned len); void isl_seq_elim(isl_int *dst, isl_int *src, unsigned pos, unsigned len, isl_int *m); void isl_seq_abs_max(isl_int *p, unsigned len, isl_int *max); void isl_seq_gcd(isl_int *p, unsigned len, isl_int *gcd); void isl_seq_lcm(isl_int *p, unsigned len, isl_int *lcm); void isl_seq_normalize(struct isl_ctx *ctx, isl_int *p, unsigned len); void isl_seq_inner_product(isl_int *p1, isl_int *p2, unsigned len, isl_int *prod); int isl_seq_first_non_zero(isl_int *p, unsigned len); int isl_seq_last_non_zero(isl_int *p, unsigned len); int isl_seq_abs_min_non_zero(isl_int *p, unsigned len); int isl_seq_eq(isl_int *p1, isl_int *p2, unsigned len); int isl_seq_cmp(isl_int *p1, isl_int *p2, unsigned len); int isl_seq_is_neg(isl_int *p1, isl_int *p2, unsigned len); uint32_t isl_seq_get_hash(isl_int *p, unsigned len); uint32_t isl_seq_get_hash_bits(isl_int *p, unsigned len, unsigned bits); #if defined(__cplusplus) } #endif #endif isl-0.16.1/isl_output_private.h0000664000175000017500000000153112645737235013441 00000000000000#include #include /* Internal data structure for isl_print_space. * * latex is set if that is the output format. * print_dim (if not NULL) is called on each dimension. * user is set by the caller of print_space and may be used inside print_dim. * * space is the global space that is being printed. This field is set by * print_space. * type is the tuple of the global space that is currently being printed. * This field is set by print_space. */ struct isl_print_space_data { int latex; __isl_give isl_printer *(*print_dim)(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos); void *user; isl_space *space; enum isl_dim_type type; }; __isl_give isl_printer *isl_print_space(__isl_keep isl_space *space, __isl_take isl_printer *p, int rational, struct isl_print_space_data *data); isl-0.16.1/isl_map_simplify.c0000664000175000017500000034547012645745401013042 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2012-2013 Ecole Normale Superieure * Copyright 2014-2015 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include "isl_equalities.h" #include #include #include "isl_tab.h" #include #include #include static void swap_equality(struct isl_basic_map *bmap, int a, int b) { isl_int *t = bmap->eq[a]; bmap->eq[a] = bmap->eq[b]; bmap->eq[b] = t; } static void swap_inequality(struct isl_basic_map *bmap, int a, int b) { if (a != b) { isl_int *t = bmap->ineq[a]; bmap->ineq[a] = bmap->ineq[b]; bmap->ineq[b] = t; } } static void constraint_drop_vars(isl_int *c, unsigned n, unsigned rem) { isl_seq_cpy(c, c + n, rem); isl_seq_clr(c + rem, n); } /* Drop n dimensions starting at first. * * In principle, this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_set *isl_basic_set_drop_dims( struct isl_basic_set *bset, unsigned first, unsigned n) { int i; if (!bset) goto error; isl_assert(bset->ctx, first + n <= bset->dim->n_out, goto error); if (n == 0 && !isl_space_get_tuple_name(bset->dim, isl_dim_set)) return bset; bset = isl_basic_set_cow(bset); if (!bset) return NULL; for (i = 0; i < bset->n_eq; ++i) constraint_drop_vars(bset->eq[i]+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); for (i = 0; i < bset->n_ineq; ++i) constraint_drop_vars(bset->ineq[i]+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); for (i = 0; i < bset->n_div; ++i) constraint_drop_vars(bset->div[i]+1+1+bset->dim->nparam+first, n, (bset->dim->n_out-first-n)+bset->extra); bset->dim = isl_space_drop_outputs(bset->dim, first, n); if (!bset->dim) goto error; ISL_F_CLR(bset, ISL_BASIC_SET_NORMALIZED); bset = isl_basic_set_simplify(bset); return isl_basic_set_finalize(bset); error: isl_basic_set_free(bset); return NULL; } struct isl_set *isl_set_drop_dims( struct isl_set *set, unsigned first, unsigned n) { int i; if (!set) goto error; isl_assert(set->ctx, first + n <= set->dim->n_out, goto error); if (n == 0 && !isl_space_get_tuple_name(set->dim, isl_dim_set)) return set; set = isl_set_cow(set); if (!set) goto error; set->dim = isl_space_drop_outputs(set->dim, first, n); if (!set->dim) goto error; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_drop_dims(set->p[i], first, n); if (!set->p[i]) goto error; } ISL_F_CLR(set, ISL_SET_NORMALIZED); return set; error: isl_set_free(set); return NULL; } /* Move "n" divs starting at "first" to the end of the list of divs. */ static struct isl_basic_map *move_divs_last(struct isl_basic_map *bmap, unsigned first, unsigned n) { isl_int **div; int i; if (first + n == bmap->n_div) return bmap; div = isl_alloc_array(bmap->ctx, isl_int *, n); if (!div) goto error; for (i = 0; i < n; ++i) div[i] = bmap->div[first + i]; for (i = 0; i < bmap->n_div - first - n; ++i) bmap->div[first + i] = bmap->div[first + n + i]; for (i = 0; i < n; ++i) bmap->div[bmap->n_div - n + i] = div[i]; free(div); return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Drop "n" dimensions of type "type" starting at "first". * * In principle, this frees up some extra variables as the number * of columns remains constant, but we would have to extend * the div array too as the number of rows in this array is assumed * to be equal to extra. */ struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; unsigned offset; unsigned left; if (!bmap) goto error; dim = isl_basic_map_dim(bmap, type); isl_assert(bmap->ctx, first + n <= dim, goto error); if (n == 0 && !isl_space_is_named_or_nested(bmap->dim, type)) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; offset = isl_basic_map_offset(bmap, type) + first; left = isl_basic_map_total_dim(bmap) - (offset - 1) - n; for (i = 0; i < bmap->n_eq; ++i) constraint_drop_vars(bmap->eq[i]+offset, n, left); for (i = 0; i < bmap->n_ineq; ++i) constraint_drop_vars(bmap->ineq[i]+offset, n, left); for (i = 0; i < bmap->n_div; ++i) constraint_drop_vars(bmap->div[i]+1+offset, n, left); if (type == isl_dim_div) { bmap = move_divs_last(bmap, first, n); if (!bmap) goto error; isl_basic_map_free_div(bmap, n); } else bmap->dim = isl_space_drop_dims(bmap->dim, type, first, n); if (!bmap->dim) goto error; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_basic_set *)isl_basic_map_drop((isl_basic_map *)bset, type, first, n); } struct isl_basic_map *isl_basic_map_drop_inputs( struct isl_basic_map *bmap, unsigned first, unsigned n) { return isl_basic_map_drop(bmap, isl_dim_in, first, n); } struct isl_map *isl_map_drop(struct isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!map) goto error; isl_assert(map->ctx, first + n <= isl_map_dim(map, type), goto error); if (n == 0 && !isl_space_get_tuple_name(map->dim, type)) return map; map = isl_map_cow(map); if (!map) goto error; map->dim = isl_space_drop_dims(map->dim, type, first, n); if (!map->dim) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop(map->p[i], type, first, n); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_drop(struct isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return (isl_set *)isl_map_drop((isl_map *)set, type, first, n); } struct isl_map *isl_map_drop_inputs( struct isl_map *map, unsigned first, unsigned n) { return isl_map_drop(map, isl_dim_in, first, n); } /* * We don't cow, as the div is assumed to be redundant. */ static struct isl_basic_map *isl_basic_map_drop_div( struct isl_basic_map *bmap, unsigned div) { int i; unsigned pos; if (!bmap) goto error; pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div; isl_assert(bmap->ctx, div < bmap->n_div, goto error); for (i = 0; i < bmap->n_eq; ++i) constraint_drop_vars(bmap->eq[i]+pos, 1, bmap->extra-div-1); for (i = 0; i < bmap->n_ineq; ++i) { if (!isl_int_is_zero(bmap->ineq[i][pos])) { isl_basic_map_drop_inequality(bmap, i); --i; continue; } constraint_drop_vars(bmap->ineq[i]+pos, 1, bmap->extra-div-1); } for (i = 0; i < bmap->n_div; ++i) constraint_drop_vars(bmap->div[i]+1+pos, 1, bmap->extra-div-1); if (div != bmap->n_div - 1) { int j; isl_int *t = bmap->div[div]; for (j = div; j < bmap->n_div - 1; ++j) bmap->div[j] = bmap->div[j+1]; bmap->div[bmap->n_div - 1] = t; } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); isl_basic_map_free_div(bmap, 1); return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_map *isl_basic_map_normalize_constraints( struct isl_basic_map *bmap) { int i; isl_int gcd; unsigned total = isl_basic_map_total_dim(bmap); if (!bmap) return NULL; isl_int_init(gcd); for (i = bmap->n_eq - 1; i >= 0; --i) { isl_seq_gcd(bmap->eq[i]+1, total, &gcd); if (isl_int_is_zero(gcd)) { if (!isl_int_is_zero(bmap->eq[i][0])) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_basic_map_drop_equality(bmap, i); continue; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) isl_int_gcd(gcd, gcd, bmap->eq[i][0]); if (isl_int_is_one(gcd)) continue; if (!isl_int_is_divisible_by(bmap->eq[i][0], gcd)) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_seq_scale_down(bmap->eq[i], bmap->eq[i], gcd, 1+total); } for (i = bmap->n_ineq - 1; i >= 0; --i) { isl_seq_gcd(bmap->ineq[i]+1, total, &gcd); if (isl_int_is_zero(gcd)) { if (isl_int_is_neg(bmap->ineq[i][0])) { bmap = isl_basic_map_set_to_empty(bmap); break; } isl_basic_map_drop_inequality(bmap, i); continue; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) isl_int_gcd(gcd, gcd, bmap->ineq[i][0]); if (isl_int_is_one(gcd)) continue; isl_int_fdiv_q(bmap->ineq[i][0], bmap->ineq[i][0], gcd); isl_seq_scale_down(bmap->ineq[i]+1, bmap->ineq[i]+1, gcd, total); } isl_int_clear(gcd); return bmap; } struct isl_basic_set *isl_basic_set_normalize_constraints( struct isl_basic_set *bset) { return (struct isl_basic_set *)isl_basic_map_normalize_constraints( (struct isl_basic_map *)bset); } /* Assuming the variable at position "pos" has an integer coefficient * in integer division "div", extract it from this integer division. * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 * corresponds to the constant term. * * That is, the integer division is of the form * * floor((... + c * d * x_pos + ...)/d) * * Replace it by * * floor((... + 0 * x_pos + ...)/d) + c * x_pos */ static __isl_give isl_basic_map *remove_var_from_div( __isl_take isl_basic_map *bmap, int div, int pos) { isl_int shift; isl_int_init(shift); isl_int_divexact(shift, bmap->div[div][1 + pos], bmap->div[div][0]); isl_int_neg(shift, shift); bmap = isl_basic_map_shift_div(bmap, div, pos, shift); isl_int_clear(shift); return bmap; } /* Check if integer division "div" has any integral coefficient * (or constant term). If so, extract them from the integer division. */ static __isl_give isl_basic_map *remove_independent_vars_from_div( __isl_take isl_basic_map *bmap, int div) { int i; unsigned total = 1 + isl_basic_map_total_dim(bmap); for (i = 0; i < total; ++i) { if (isl_int_is_zero(bmap->div[div][1 + i])) continue; if (!isl_int_is_divisible_by(bmap->div[div][1 + i], bmap->div[div][0])) continue; bmap = remove_var_from_div(bmap, div, i); if (!bmap) break; } return bmap; } /* Check if any known integer division has any integral coefficient * (or constant term). If so, extract them from the integer division. */ static __isl_give isl_basic_map *remove_independent_vars_from_divs( __isl_take isl_basic_map *bmap) { int i; if (!bmap) return NULL; if (bmap->n_div == 0) return bmap; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; bmap = remove_independent_vars_from_div(bmap, i); if (!bmap) break; } return bmap; } /* Remove any common factor in numerator and denominator of the div expression, * not taking into account the constant term. * That is, if the div is of the form * * floor((a + m f(x))/(m d)) * * then replace it by * * floor((floor(a/m) + f(x))/d) * * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d * and can therefore not influence the result of the floor. */ static void normalize_div_expression(__isl_keep isl_basic_map *bmap, int div) { unsigned total = isl_basic_map_total_dim(bmap); isl_ctx *ctx = bmap->ctx; if (isl_int_is_zero(bmap->div[div][0])) return; isl_seq_gcd(bmap->div[div] + 2, total, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, bmap->div[div][0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_int_fdiv_q(bmap->div[div][1], bmap->div[div][1], ctx->normalize_gcd); isl_int_divexact(bmap->div[div][0], bmap->div[div][0], ctx->normalize_gcd); isl_seq_scale_down(bmap->div[div] + 2, bmap->div[div] + 2, ctx->normalize_gcd, total); } /* Remove any common factor in numerator and denominator of a div expression, * not taking into account the constant term. * That is, look for any div of the form * * floor((a + m f(x))/(m d)) * * and replace it by * * floor((floor(a/m) + f(x))/d) * * The difference {a/m}/d in the argument satisfies 0 <= {a/m}/d < 1/d * and can therefore not influence the result of the floor. */ static __isl_give isl_basic_map *normalize_div_expressions( __isl_take isl_basic_map *bmap) { int i; if (!bmap) return NULL; if (bmap->n_div == 0) return bmap; for (i = 0; i < bmap->n_div; ++i) normalize_div_expression(bmap, i); return bmap; } /* Assumes divs have been ordered if keep_divs is set. */ static void eliminate_var_using_equality(struct isl_basic_map *bmap, unsigned pos, isl_int *eq, int keep_divs, int *progress) { unsigned total; unsigned space_total; int k; int last_div; total = isl_basic_map_total_dim(bmap); space_total = isl_space_dim(bmap->dim, isl_dim_all); last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div); for (k = 0; k < bmap->n_eq; ++k) { if (bmap->eq[k] == eq) continue; if (isl_int_is_zero(bmap->eq[k][1+pos])) continue; if (progress) *progress = 1; isl_seq_elim(bmap->eq[k], eq, 1+pos, 1+total, NULL); isl_seq_normalize(bmap->ctx, bmap->eq[k], 1 + total); } for (k = 0; k < bmap->n_ineq; ++k) { if (isl_int_is_zero(bmap->ineq[k][1+pos])) continue; if (progress) *progress = 1; isl_seq_elim(bmap->ineq[k], eq, 1+pos, 1+total, NULL); isl_seq_normalize(bmap->ctx, bmap->ineq[k], 1 + total); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } for (k = 0; k < bmap->n_div; ++k) { if (isl_int_is_zero(bmap->div[k][0])) continue; if (isl_int_is_zero(bmap->div[k][1+1+pos])) continue; if (progress) *progress = 1; /* We need to be careful about circular definitions, * so for now we just remove the definition of div k * if the equality contains any divs. * If keep_divs is set, then the divs have been ordered * and we can keep the definition as long as the result * is still ordered. */ if (last_div == -1 || (keep_divs && last_div < k)) { isl_seq_elim(bmap->div[k]+1, eq, 1+pos, 1+total, &bmap->div[k][0]); normalize_div_expression(bmap, k); } else isl_seq_clr(bmap->div[k], 1 + total); ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } } /* Assumes divs have been ordered if keep_divs is set. */ static __isl_give isl_basic_map *eliminate_div(__isl_take isl_basic_map *bmap, isl_int *eq, unsigned div, int keep_divs) { unsigned pos = isl_space_dim(bmap->dim, isl_dim_all) + div; eliminate_var_using_equality(bmap, pos, eq, keep_divs, NULL); bmap = isl_basic_map_drop_div(bmap, div); return bmap; } /* Check if elimination of div "div" using equality "eq" would not * result in a div depending on a later div. */ static int ok_to_eliminate_div(struct isl_basic_map *bmap, isl_int *eq, unsigned div) { int k; int last_div; unsigned space_total = isl_space_dim(bmap->dim, isl_dim_all); unsigned pos = space_total + div; last_div = isl_seq_last_non_zero(eq + 1 + space_total, bmap->n_div); if (last_div < 0 || last_div <= div) return 1; for (k = 0; k <= last_div; ++k) { if (isl_int_is_zero(bmap->div[k][0])) return 1; if (!isl_int_is_zero(bmap->div[k][1 + 1 + pos])) return 0; } return 1; } /* Elimininate divs based on equalities */ static struct isl_basic_map *eliminate_divs_eq( struct isl_basic_map *bmap, int *progress) { int d; int i; int modified = 0; unsigned off; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; off = 1 + isl_space_dim(bmap->dim, isl_dim_all); for (d = bmap->n_div - 1; d >= 0 ; --d) { for (i = 0; i < bmap->n_eq; ++i) { if (!isl_int_is_one(bmap->eq[i][off + d]) && !isl_int_is_negone(bmap->eq[i][off + d])) continue; if (!ok_to_eliminate_div(bmap, bmap->eq[i], d)) continue; modified = 1; *progress = 1; bmap = eliminate_div(bmap, bmap->eq[i], d, 1); if (isl_basic_map_drop_equality(bmap, i) < 0) return isl_basic_map_free(bmap); break; } } if (modified) return eliminate_divs_eq(bmap, progress); return bmap; } /* Elimininate divs based on inequalities */ static struct isl_basic_map *eliminate_divs_ineq( struct isl_basic_map *bmap, int *progress) { int d; int i; unsigned off; struct isl_ctx *ctx; if (!bmap) return NULL; ctx = bmap->ctx; off = 1 + isl_space_dim(bmap->dim, isl_dim_all); for (d = bmap->n_div - 1; d >= 0 ; --d) { for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][off + d])) break; if (i < bmap->n_eq) continue; for (i = 0; i < bmap->n_ineq; ++i) if (isl_int_abs_gt(bmap->ineq[i][off + d], ctx->one)) break; if (i < bmap->n_ineq) continue; *progress = 1; bmap = isl_basic_map_eliminate_vars(bmap, (off-1)+d, 1); if (!bmap || ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) break; bmap = isl_basic_map_drop_div(bmap, d); if (!bmap) break; } return bmap; } struct isl_basic_map *isl_basic_map_gauss( struct isl_basic_map *bmap, int *progress) { int k; int done; int last_var; unsigned total_var; unsigned total; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); total_var = total - bmap->n_div; last_var = total - 1; for (done = 0; done < bmap->n_eq; ++done) { for (; last_var >= 0; --last_var) { for (k = done; k < bmap->n_eq; ++k) if (!isl_int_is_zero(bmap->eq[k][1+last_var])) break; if (k < bmap->n_eq) break; } if (last_var < 0) break; if (k != done) swap_equality(bmap, k, done); if (isl_int_is_neg(bmap->eq[done][1+last_var])) isl_seq_neg(bmap->eq[done], bmap->eq[done], 1+total); eliminate_var_using_equality(bmap, last_var, bmap->eq[done], 1, progress); if (last_var >= total_var && isl_int_is_zero(bmap->div[last_var - total_var][0])) { unsigned div = last_var - total_var; isl_seq_neg(bmap->div[div]+1, bmap->eq[done], 1+total); isl_int_set_si(bmap->div[div][1+1+last_var], 0); isl_int_set(bmap->div[div][0], bmap->eq[done][1+last_var]); if (progress) *progress = 1; ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); } } if (done == bmap->n_eq) return bmap; for (k = done; k < bmap->n_eq; ++k) { if (isl_int_is_zero(bmap->eq[k][0])) continue; return isl_basic_map_set_to_empty(bmap); } isl_basic_map_free_equality(bmap, bmap->n_eq-done); return bmap; } struct isl_basic_set *isl_basic_set_gauss( struct isl_basic_set *bset, int *progress) { return (struct isl_basic_set*)isl_basic_map_gauss( (struct isl_basic_map *)bset, progress); } static unsigned int round_up(unsigned int v) { int old_v = v; while (v) { old_v = v; v ^= v & -v; } return old_v << 1; } /* Hash table of inequalities in a basic map. * "index" is an array of addresses of inequalities in the basic map, some * of which are NULL. The inequalities are hashed on the coefficients * except the constant term. * "size" is the number of elements in the array and is always a power of two * "bits" is the number of bits need to represent an index into the array. * "total" is the total dimension of the basic map. */ struct isl_constraint_index { unsigned int size; int bits; isl_int ***index; unsigned total; }; /* Fill in the "ci" data structure for holding the inequalities of "bmap". */ static isl_stat create_constraint_index(struct isl_constraint_index *ci, __isl_keep isl_basic_map *bmap) { isl_ctx *ctx; ci->index = NULL; if (!bmap) return isl_stat_error; ci->total = isl_basic_set_total_dim(bmap); if (bmap->n_ineq == 0) return isl_stat_ok; ci->size = round_up(4 * (bmap->n_ineq + 1) / 3 - 1); ci->bits = ffs(ci->size) - 1; ctx = isl_basic_map_get_ctx(bmap); ci->index = isl_calloc_array(ctx, isl_int **, ci->size); if (!ci->index) return isl_stat_error; return isl_stat_ok; } /* Free the memory allocated by create_constraint_index. */ static void constraint_index_free(struct isl_constraint_index *ci) { free(ci->index); } /* Return the position in ci->index that contains the address of * an inequality that is equal to *ineq up to the constant term, * provided this address is not identical to "ineq". * If there is no such inequality, then return the position where * such an inequality should be inserted. */ static int hash_index_ineq(struct isl_constraint_index *ci, isl_int **ineq) { int h; uint32_t hash = isl_seq_get_hash_bits((*ineq) + 1, ci->total, ci->bits); for (h = hash; ci->index[h]; h = (h+1) % ci->size) if (ineq != ci->index[h] && isl_seq_eq((*ineq) + 1, ci->index[h][0]+1, ci->total)) break; return h; } /* Return the position in ci->index that contains the address of * an inequality that is equal to the k'th inequality of "bmap" * up to the constant term, provided it does not point to the very * same inequality. * If there is no such inequality, then return the position where * such an inequality should be inserted. */ static int hash_index(struct isl_constraint_index *ci, __isl_keep isl_basic_map *bmap, int k) { return hash_index_ineq(ci, &bmap->ineq[k]); } static int set_hash_index(struct isl_constraint_index *ci, struct isl_basic_set *bset, int k) { return hash_index(ci, bset, k); } /* Fill in the "ci" data structure with the inequalities of "bset". */ static isl_stat setup_constraint_index(struct isl_constraint_index *ci, __isl_keep isl_basic_set *bset) { int k, h; if (create_constraint_index(ci, bset) < 0) return isl_stat_error; for (k = 0; k < bset->n_ineq; ++k) { h = set_hash_index(ci, bset, k); ci->index[h] = &bset->ineq[k]; } return isl_stat_ok; } /* Is the inequality ineq (obviously) redundant with respect * to the constraints in "ci"? * * Look for an inequality in "ci" with the same coefficients and then * check if the contant term of "ineq" is greater than or equal * to the constant term of that inequality. If so, "ineq" is clearly * redundant. * * Note that hash_index_ineq ignores a stored constraint if it has * the same address as the passed inequality. It is ok to pass * the address of a local variable here since it will never be * the same as the address of a constraint in "ci". */ static isl_bool constraint_index_is_redundant(struct isl_constraint_index *ci, isl_int *ineq) { int h; h = hash_index_ineq(ci, &ineq); if (!ci->index[h]) return isl_bool_false; return isl_int_ge(ineq[0], (*ci->index[h])[0]); } /* If we can eliminate more than one div, then we need to make * sure we do it from last div to first div, in order not to * change the position of the other divs that still need to * be removed. */ static struct isl_basic_map *remove_duplicate_divs( struct isl_basic_map *bmap, int *progress) { unsigned int size; int *index; int *elim_for; int k, l, h; int bits; struct isl_blk eq; unsigned total_var; unsigned total; struct isl_ctx *ctx; bmap = isl_basic_map_order_divs(bmap); if (!bmap || bmap->n_div <= 1) return bmap; total_var = isl_space_dim(bmap->dim, isl_dim_all); total = total_var + bmap->n_div; ctx = bmap->ctx; for (k = bmap->n_div - 1; k >= 0; --k) if (!isl_int_is_zero(bmap->div[k][0])) break; if (k <= 0) return bmap; size = round_up(4 * bmap->n_div / 3 - 1); if (size == 0) return bmap; elim_for = isl_calloc_array(ctx, int, bmap->n_div); bits = ffs(size) - 1; index = isl_calloc_array(ctx, int, size); if (!elim_for || !index) goto out; eq = isl_blk_alloc(ctx, 1+total); if (isl_blk_is_error(eq)) goto out; isl_seq_clr(eq.data, 1+total); index[isl_seq_get_hash_bits(bmap->div[k], 2+total, bits)] = k + 1; for (--k; k >= 0; --k) { uint32_t hash; if (isl_int_is_zero(bmap->div[k][0])) continue; hash = isl_seq_get_hash_bits(bmap->div[k], 2+total, bits); for (h = hash; index[h]; h = (h+1) % size) if (isl_seq_eq(bmap->div[k], bmap->div[index[h]-1], 2+total)) break; if (index[h]) { *progress = 1; l = index[h] - 1; elim_for[l] = k + 1; } index[h] = k+1; } for (l = bmap->n_div - 1; l >= 0; --l) { if (!elim_for[l]) continue; k = elim_for[l] - 1; isl_int_set_si(eq.data[1+total_var+k], -1); isl_int_set_si(eq.data[1+total_var+l], 1); bmap = eliminate_div(bmap, eq.data, l, 1); if (!bmap) break; isl_int_set_si(eq.data[1+total_var+k], 0); isl_int_set_si(eq.data[1+total_var+l], 0); } isl_blk_free(ctx, eq); out: free(index); free(elim_for); return bmap; } static int n_pure_div_eq(struct isl_basic_map *bmap) { int i, j; unsigned total; total = isl_space_dim(bmap->dim, isl_dim_all); for (i = 0, j = bmap->n_div-1; i < bmap->n_eq; ++i) { while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j])) --j; if (j < 0) break; if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, j) != -1) return 0; } return i; } /* Normalize divs that appear in equalities. * * In particular, we assume that bmap contains some equalities * of the form * * a x = m * e_i * * and we want to replace the set of e_i by a minimal set and * such that the new e_i have a canonical representation in terms * of the vector x. * If any of the equalities involves more than one divs, then * we currently simply bail out. * * Let us first additionally assume that all equalities involve * a div. The equalities then express modulo constraints on the * remaining variables and we can use "parameter compression" * to find a minimal set of constraints. The result is a transformation * * x = T(x') = x_0 + G x' * * with G a lower-triangular matrix with all elements below the diagonal * non-negative and smaller than the diagonal element on the same row. * We first normalize x_0 by making the same property hold in the affine * T matrix. * The rows i of G with a 1 on the diagonal do not impose any modulo * constraint and simply express x_i = x'_i. * For each of the remaining rows i, we introduce a div and a corresponding * equality. In particular * * g_ii e_j = x_i - g_i(x') * * where each x'_k is replaced either by x_k (if g_kk = 1) or the * corresponding div (if g_kk != 1). * * If there are any equalities not involving any div, then we * first apply a variable compression on the variables x: * * x = C x'' x'' = C_2 x * * and perform the above parameter compression on A C instead of on A. * The resulting compression is then of the form * * x'' = T(x') = x_0 + G x' * * and in constructing the new divs and the corresponding equalities, * we have to replace each x'', i.e., the x'_k with (g_kk = 1), * by the corresponding row from C_2. */ static struct isl_basic_map *normalize_divs( struct isl_basic_map *bmap, int *progress) { int i, j, k; int total; int div_eq; struct isl_mat *B; struct isl_vec *d; struct isl_mat *T = NULL; struct isl_mat *C = NULL; struct isl_mat *C2 = NULL; isl_int v; int *pos; int dropped, needed; if (!bmap) return NULL; if (bmap->n_div == 0) return bmap; if (bmap->n_eq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS)) return bmap; total = isl_space_dim(bmap->dim, isl_dim_all); div_eq = n_pure_div_eq(bmap); if (div_eq == 0) return bmap; if (div_eq < bmap->n_eq) { B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, div_eq, bmap->n_eq - div_eq, 0, 1 + total); C = isl_mat_variable_compression(B, &C2); if (!C || !C2) goto error; if (C->n_col == 0) { bmap = isl_basic_map_set_to_empty(bmap); isl_mat_free(C); isl_mat_free(C2); goto done; } } d = isl_vec_alloc(bmap->ctx, div_eq); if (!d) goto error; for (i = 0, j = bmap->n_div-1; i < div_eq; ++i) { while (j >= 0 && isl_int_is_zero(bmap->eq[i][1 + total + j])) --j; isl_int_set(d->block.data[i], bmap->eq[i][1 + total + j]); } B = isl_mat_sub_alloc6(bmap->ctx, bmap->eq, 0, div_eq, 0, 1 + total); if (C) { B = isl_mat_product(B, C); C = NULL; } T = isl_mat_parameter_compression(B, d); if (!T) goto error; if (T->n_col == 0) { bmap = isl_basic_map_set_to_empty(bmap); isl_mat_free(C2); isl_mat_free(T); goto done; } isl_int_init(v); for (i = 0; i < T->n_row - 1; ++i) { isl_int_fdiv_q(v, T->row[1 + i][0], T->row[1 + i][1 + i]); if (isl_int_is_zero(v)) continue; isl_mat_col_submul(T, 0, v, 1 + i); } isl_int_clear(v); pos = isl_alloc_array(bmap->ctx, int, T->n_row); if (!pos) goto error; /* We have to be careful because dropping equalities may reorder them */ dropped = 0; for (j = bmap->n_div - 1; j >= 0; --j) { for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][1 + total + j])) break; if (i < bmap->n_eq) { bmap = isl_basic_map_drop_div(bmap, j); isl_basic_map_drop_equality(bmap, i); ++dropped; } } pos[0] = 0; needed = 0; for (i = 1; i < T->n_row; ++i) { if (isl_int_is_one(T->row[i][i])) pos[i] = i; else needed++; } if (needed > dropped) { bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), needed, needed, 0); if (!bmap) goto error; } for (i = 1; i < T->n_row; ++i) { if (isl_int_is_one(T->row[i][i])) continue; k = isl_basic_map_alloc_div(bmap); pos[i] = 1 + total + k; isl_seq_clr(bmap->div[k] + 1, 1 + total + bmap->n_div); isl_int_set(bmap->div[k][0], T->row[i][i]); if (C2) isl_seq_cpy(bmap->div[k] + 1, C2->row[i], 1 + total); else isl_int_set_si(bmap->div[k][1 + i], 1); for (j = 0; j < i; ++j) { if (isl_int_is_zero(T->row[i][j])) continue; if (pos[j] < T->n_row && C2) isl_seq_submul(bmap->div[k] + 1, T->row[i][j], C2->row[pos[j]], 1 + total); else isl_int_neg(bmap->div[k][1 + pos[j]], T->row[i][j]); } j = isl_basic_map_alloc_equality(bmap); isl_seq_neg(bmap->eq[j], bmap->div[k]+1, 1+total+bmap->n_div); isl_int_set(bmap->eq[j][pos[i]], bmap->div[k][0]); } free(pos); isl_mat_free(C2); isl_mat_free(T); if (progress) *progress = 1; done: ISL_F_SET(bmap, ISL_BASIC_MAP_NORMALIZED_DIVS); return bmap; error: isl_mat_free(C); isl_mat_free(C2); isl_mat_free(T); return bmap; } static struct isl_basic_map *set_div_from_lower_bound( struct isl_basic_map *bmap, int div, int ineq) { unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all); isl_seq_neg(bmap->div[div] + 1, bmap->ineq[ineq], total + bmap->n_div); isl_int_set(bmap->div[div][0], bmap->ineq[ineq][total + div]); isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); isl_int_set_si(bmap->div[div][1 + total + div], 0); return bmap; } /* Check whether it is ok to define a div based on an inequality. * To avoid the introduction of circular definitions of divs, we * do not allow such a definition if the resulting expression would refer to * any other undefined divs or if any known div is defined in * terms of the unknown div. */ static int ok_to_set_div_from_bound(struct isl_basic_map *bmap, int div, int ineq) { int j; unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all); /* Not defined in terms of unknown divs */ for (j = 0; j < bmap->n_div; ++j) { if (div == j) continue; if (isl_int_is_zero(bmap->ineq[ineq][total + j])) continue; if (isl_int_is_zero(bmap->div[j][0])) return 0; } /* No other div defined in terms of this one => avoid loops */ for (j = 0; j < bmap->n_div; ++j) { if (div == j) continue; if (isl_int_is_zero(bmap->div[j][0])) continue; if (!isl_int_is_zero(bmap->div[j][1 + total + div])) return 0; } return 1; } /* Would an expression for div "div" based on inequality "ineq" of "bmap" * be a better expression than the current one? * * If we do not have any expression yet, then any expression would be better. * Otherwise we check if the last variable involved in the inequality * (disregarding the div that it would define) is in an earlier position * than the last variable involved in the current div expression. */ static int better_div_constraint(__isl_keep isl_basic_map *bmap, int div, int ineq) { unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all); int last_div; int last_ineq; if (isl_int_is_zero(bmap->div[div][0])) return 1; if (isl_seq_last_non_zero(bmap->ineq[ineq] + total + div + 1, bmap->n_div - (div + 1)) >= 0) return 0; last_ineq = isl_seq_last_non_zero(bmap->ineq[ineq], total + div); last_div = isl_seq_last_non_zero(bmap->div[div] + 1, total + bmap->n_div); return last_ineq < last_div; } /* Given two constraints "k" and "l" that are opposite to each other, * except for the constant term, check if we can use them * to obtain an expression for one of the hitherto unknown divs or * a "better" expression for a div for which we already have an expression. * "sum" is the sum of the constant terms of the constraints. * If this sum is strictly smaller than the coefficient of one * of the divs, then this pair can be used define the div. * To avoid the introduction of circular definitions of divs, we * do not use the pair if the resulting expression would refer to * any other undefined divs or if any known div is defined in * terms of the unknown div. */ static struct isl_basic_map *check_for_div_constraints( struct isl_basic_map *bmap, int k, int l, isl_int sum, int *progress) { int i; unsigned total = 1 + isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->ineq[k][total + i])) continue; if (isl_int_abs_ge(sum, bmap->ineq[k][total + i])) continue; if (!better_div_constraint(bmap, i, k)) continue; if (!ok_to_set_div_from_bound(bmap, i, k)) break; if (isl_int_is_pos(bmap->ineq[k][total + i])) bmap = set_div_from_lower_bound(bmap, i, k); else bmap = set_div_from_lower_bound(bmap, i, l); if (progress) *progress = 1; break; } return bmap; } __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints( __isl_take isl_basic_map *bmap, int *progress, int detect_divs) { struct isl_constraint_index ci; int k, l, h; unsigned total = isl_basic_map_total_dim(bmap); isl_int sum; if (!bmap || bmap->n_ineq <= 1) return bmap; if (create_constraint_index(&ci, bmap) < 0) return bmap; h = isl_seq_get_hash_bits(bmap->ineq[0] + 1, total, ci.bits); ci.index[h] = &bmap->ineq[0]; for (k = 1; k < bmap->n_ineq; ++k) { h = hash_index(&ci, bmap, k); if (!ci.index[h]) { ci.index[h] = &bmap->ineq[k]; continue; } if (progress) *progress = 1; l = ci.index[h] - &bmap->ineq[0]; if (isl_int_lt(bmap->ineq[k][0], bmap->ineq[l][0])) swap_inequality(bmap, k, l); isl_basic_map_drop_inequality(bmap, k); --k; } isl_int_init(sum); for (k = 0; k < bmap->n_ineq-1; ++k) { isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total); h = hash_index(&ci, bmap, k); isl_seq_neg(bmap->ineq[k]+1, bmap->ineq[k]+1, total); if (!ci.index[h]) continue; l = ci.index[h] - &bmap->ineq[0]; isl_int_add(sum, bmap->ineq[k][0], bmap->ineq[l][0]); if (isl_int_is_pos(sum)) { if (detect_divs) bmap = check_for_div_constraints(bmap, k, l, sum, progress); continue; } if (isl_int_is_zero(sum)) { /* We need to break out of the loop after these * changes since the contents of the hash * will no longer be valid. * Plus, we probably we want to regauss first. */ if (progress) *progress = 1; isl_basic_map_drop_inequality(bmap, l); isl_basic_map_inequality_to_equality(bmap, k); } else bmap = isl_basic_map_set_to_empty(bmap); break; } isl_int_clear(sum); constraint_index_free(&ci); return bmap; } /* Detect all pairs of inequalities that form an equality. * * isl_basic_map_remove_duplicate_constraints detects at most one such pair. * Call it repeatedly while it is making progress. */ __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs( __isl_take isl_basic_map *bmap, int *progress) { int duplicate; do { duplicate = 0; bmap = isl_basic_map_remove_duplicate_constraints(bmap, &duplicate, 0); if (progress && duplicate) *progress = 1; } while (duplicate); return bmap; } /* Eliminate knowns divs from constraints where they appear with * a (positive or negative) unit coefficient. * * That is, replace * * floor(e/m) + f >= 0 * * by * * e + m f >= 0 * * and * * -floor(e/m) + f >= 0 * * by * * -e + m f + m - 1 >= 0 * * The first conversion is valid because floor(e/m) >= -f is equivalent * to e/m >= -f because -f is an integral expression. * The second conversion follows from the fact that * * -floor(e/m) = ceil(-e/m) = floor((-e + m - 1)/m) * * * Note that one of the div constraints may have been eliminated * due to being redundant with respect to the constraint that is * being modified by this function. The modified constraint may * no longer imply this div constraint, so we add it back to make * sure we do not lose any information. * * We skip integral divs, i.e., those with denominator 1, as we would * risk eliminating the div from the div constraints. We do not need * to handle those divs here anyway since the div constraints will turn * out to form an equality and this equality can then be use to eliminate * the div from all constraints. */ static __isl_give isl_basic_map *eliminate_unit_divs( __isl_take isl_basic_map *bmap, int *progress) { int i, j; isl_ctx *ctx; unsigned total; if (!bmap) return NULL; ctx = isl_basic_map_get_ctx(bmap); total = 1 + isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_int_is_one(bmap->div[i][0])) continue; for (j = 0; j < bmap->n_ineq; ++j) { int s; if (!isl_int_is_one(bmap->ineq[j][total + i]) && !isl_int_is_negone(bmap->ineq[j][total + i])) continue; *progress = 1; s = isl_int_sgn(bmap->ineq[j][total + i]); isl_int_set_si(bmap->ineq[j][total + i], 0); if (s < 0) isl_seq_combine(bmap->ineq[j], ctx->negone, bmap->div[i] + 1, bmap->div[i][0], bmap->ineq[j], total + bmap->n_div); else isl_seq_combine(bmap->ineq[j], ctx->one, bmap->div[i] + 1, bmap->div[i][0], bmap->ineq[j], total + bmap->n_div); if (s < 0) { isl_int_add(bmap->ineq[j][0], bmap->ineq[j][0], bmap->div[i][0]); isl_int_sub_ui(bmap->ineq[j][0], bmap->ineq[j][0], 1); } bmap = isl_basic_map_extend_constraints(bmap, 0, 1); if (isl_basic_map_add_div_constraint(bmap, i, s) < 0) return isl_basic_map_free(bmap); } } return bmap; } struct isl_basic_map *isl_basic_map_simplify(struct isl_basic_map *bmap) { int progress = 1; if (!bmap) return NULL; while (progress) { progress = 0; if (!bmap) break; if (isl_basic_map_plain_is_empty(bmap)) break; bmap = isl_basic_map_normalize_constraints(bmap); bmap = remove_independent_vars_from_divs(bmap); bmap = normalize_div_expressions(bmap); bmap = remove_duplicate_divs(bmap, &progress); bmap = eliminate_unit_divs(bmap, &progress); bmap = eliminate_divs_eq(bmap, &progress); bmap = eliminate_divs_ineq(bmap, &progress); bmap = isl_basic_map_gauss(bmap, &progress); /* requires equalities in normal form */ bmap = normalize_divs(bmap, &progress); bmap = isl_basic_map_remove_duplicate_constraints(bmap, &progress, 1); if (bmap && progress) ISL_F_CLR(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); } return bmap; } struct isl_basic_set *isl_basic_set_simplify(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_simplify((struct isl_basic_map *)bset); } int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap, isl_int *constraint, unsigned div) { unsigned pos; if (!bmap) return -1; pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div; if (isl_int_eq(constraint[pos], bmap->div[div][0])) { int neg; isl_int_sub(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); isl_int_add_ui(bmap->div[div][1], bmap->div[div][1], 1); neg = isl_seq_is_neg(constraint, bmap->div[div]+1, pos); isl_int_sub_ui(bmap->div[div][1], bmap->div[div][1], 1); isl_int_add(bmap->div[div][1], bmap->div[div][1], bmap->div[div][0]); if (!neg) return 0; if (isl_seq_first_non_zero(constraint+pos+1, bmap->n_div-div-1) != -1) return 0; } else if (isl_int_abs_eq(constraint[pos], bmap->div[div][0])) { if (!isl_seq_eq(constraint, bmap->div[div]+1, pos)) return 0; if (isl_seq_first_non_zero(constraint+pos+1, bmap->n_div-div-1) != -1) return 0; } else return 0; return 1; } int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset, isl_int *constraint, unsigned div) { return isl_basic_map_is_div_constraint(bset, constraint, div); } /* If the only constraints a div d=floor(f/m) * appears in are its two defining constraints * * f - m d >=0 * -(f - (m - 1)) + m d >= 0 * * then it can safely be removed. */ static int div_is_redundant(struct isl_basic_map *bmap, int div) { int i; unsigned pos = 1 + isl_space_dim(bmap->dim, isl_dim_all) + div; for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][pos])) return 0; for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_zero(bmap->ineq[i][pos])) continue; if (!isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], div)) return 0; } for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (!isl_int_is_zero(bmap->div[i][1+pos])) return 0; } return 1; } /* * Remove divs that don't occur in any of the constraints or other divs. * These can arise when dropping constraints from a basic map or * when the divs of a basic map have been temporarily aligned * with the divs of another basic map. */ static struct isl_basic_map *remove_redundant_divs(struct isl_basic_map *bmap) { int i; if (!bmap) return NULL; for (i = bmap->n_div-1; i >= 0; --i) { if (!div_is_redundant(bmap, i)) continue; bmap = isl_basic_map_drop_div(bmap, i); } return bmap; } /* Mark "bmap" as final, without checking for obviously redundant * integer divisions. This function should be used when "bmap" * is known not to involve any such integer divisions. */ __isl_give isl_basic_map *isl_basic_map_mark_final( __isl_take isl_basic_map *bmap) { if (!bmap) return NULL; ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); return bmap; } /* Mark "bmap" as final, after removing obviously redundant integer divisions. */ struct isl_basic_map *isl_basic_map_finalize(struct isl_basic_map *bmap) { bmap = remove_redundant_divs(bmap); bmap = isl_basic_map_mark_final(bmap); return bmap; } struct isl_basic_set *isl_basic_set_finalize(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_finalize((struct isl_basic_map *)bset); } struct isl_set *isl_set_finalize(struct isl_set *set) { int i; if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_finalize(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } struct isl_map *isl_map_finalize(struct isl_map *map) { int i; if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_finalize(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } /* Remove definition of any div that is defined in terms of the given variable. * The div itself is not removed. Functions such as * eliminate_divs_ineq depend on the other divs remaining in place. */ static struct isl_basic_map *remove_dependent_vars(struct isl_basic_map *bmap, int pos) { int i; if (!bmap) return NULL; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_int_is_zero(bmap->div[i][1+1+pos])) continue; isl_int_set_si(bmap->div[i][0], 0); } return bmap; } /* Eliminate the specified variables from the constraints using * Fourier-Motzkin. The variables themselves are not removed. */ struct isl_basic_map *isl_basic_map_eliminate_vars( struct isl_basic_map *bmap, unsigned pos, unsigned n) { int d; int i, j, k; unsigned total; int need_gauss = 0; if (n == 0) return bmap; if (!bmap) return NULL; total = isl_basic_map_total_dim(bmap); bmap = isl_basic_map_cow(bmap); for (d = pos + n - 1; d >= 0 && d >= pos; --d) bmap = remove_dependent_vars(bmap, d); if (!bmap) return NULL; for (d = pos + n - 1; d >= 0 && d >= total - bmap->n_div && d >= pos; --d) isl_seq_clr(bmap->div[d-(total-bmap->n_div)], 2+total); for (d = pos + n - 1; d >= 0 && d >= pos; --d) { int n_lower, n_upper; if (!bmap) return NULL; for (i = 0; i < bmap->n_eq; ++i) { if (isl_int_is_zero(bmap->eq[i][1+d])) continue; eliminate_var_using_equality(bmap, d, bmap->eq[i], 0, NULL); isl_basic_map_drop_equality(bmap, i); need_gauss = 1; break; } if (i < bmap->n_eq) continue; n_lower = 0; n_upper = 0; for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_pos(bmap->ineq[i][1+d])) n_lower++; else if (isl_int_is_neg(bmap->ineq[i][1+d])) n_upper++; } bmap = isl_basic_map_extend_constraints(bmap, 0, n_lower * n_upper); if (!bmap) goto error; for (i = bmap->n_ineq - 1; i >= 0; --i) { int last; if (isl_int_is_zero(bmap->ineq[i][1+d])) continue; last = -1; for (j = 0; j < i; ++j) { if (isl_int_is_zero(bmap->ineq[j][1+d])) continue; last = j; if (isl_int_sgn(bmap->ineq[i][1+d]) == isl_int_sgn(bmap->ineq[j][1+d])) continue; k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], bmap->ineq[i], 1+total); isl_seq_elim(bmap->ineq[k], bmap->ineq[j], 1+d, 1+total, NULL); } isl_basic_map_drop_inequality(bmap, i); i = last + 1; } if (n_lower > 0 && n_upper > 0) { bmap = isl_basic_map_normalize_constraints(bmap); bmap = isl_basic_map_remove_duplicate_constraints(bmap, NULL, 0); bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_remove_redundancies(bmap); need_gauss = 0; if (!bmap) goto error; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) break; } } ISL_F_CLR(bmap, ISL_BASIC_MAP_NORMALIZED); if (need_gauss) bmap = isl_basic_map_gauss(bmap, NULL); return bmap; error: isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_eliminate_vars( struct isl_basic_set *bset, unsigned pos, unsigned n) { return (struct isl_basic_set *)isl_basic_map_eliminate_vars( (struct isl_basic_map *)bset, pos, n); } /* Eliminate the specified n dimensions starting at first from the * constraints, without removing the dimensions from the space. * If the set is rational, the dimensions are eliminated using Fourier-Motzkin. * Otherwise, they are projected out and the original space is restored. */ __isl_give isl_basic_map *isl_basic_map_eliminate( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { isl_space *space; if (!bmap) return NULL; if (n == 0) return bmap; if (first + n > isl_basic_map_dim(bmap, type) || first + n < first) isl_die(bmap->ctx, isl_error_invalid, "index out of bounds", goto error); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) { first += isl_basic_map_offset(bmap, type) - 1; bmap = isl_basic_map_eliminate_vars(bmap, first, n); return isl_basic_map_finalize(bmap); } space = isl_basic_map_get_space(bmap); bmap = isl_basic_map_project_out(bmap, type, first, n); bmap = isl_basic_map_insert_dims(bmap, type, first, n); bmap = isl_basic_map_reset_space(bmap, space); return bmap; error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_eliminate( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_eliminate(bset, type, first, n); } /* Remove all constraints from "bmap" that reference any unknown local * variables (directly or indirectly). * * Dropping all constraints on a local variable will make it redundant, * so it will get removed implicitly by * isl_basic_map_drop_constraints_involving_dims. Some other local * variables may also end up becoming redundant if they only appear * in constraints together with the unknown local variable. * Therefore, start over after calling * isl_basic_map_drop_constraints_involving_dims. */ __isl_give isl_basic_map *isl_basic_map_drop_constraint_involving_unknown_divs( __isl_take isl_basic_map *bmap) { isl_bool known; int i, n_div, o_div; known = isl_basic_map_divs_known(bmap); if (known < 0) return isl_basic_map_free(bmap); if (known) return bmap; n_div = isl_basic_map_dim(bmap, isl_dim_div); o_div = isl_basic_map_offset(bmap, isl_dim_div) - 1; for (i = 0; i < n_div; ++i) { known = isl_basic_map_div_is_known(bmap, i); if (known < 0) return isl_basic_map_free(bmap); if (known) continue; bmap = remove_dependent_vars(bmap, o_div + i); bmap = isl_basic_map_drop_constraints_involving_dims(bmap, isl_dim_div, i, 1); if (!bmap) return NULL; n_div = isl_basic_map_dim(bmap, isl_dim_div); i = -1; } return bmap; } /* Remove all constraints from "map" that reference any unknown local * variables (directly or indirectly). * * Since constraints may get dropped from the basic maps, * they may no longer be disjoint from each other. */ __isl_give isl_map *isl_map_drop_constraint_involving_unknown_divs( __isl_take isl_map *map) { int i; isl_bool known; known = isl_map_divs_known(map); if (known < 0) return isl_map_free(map); if (known) return map; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop_constraint_involving_unknown_divs( map->p[i]); if (!map->p[i]) return isl_map_free(map); } if (map->n > 1) ISL_F_CLR(map, ISL_MAP_DISJOINT); return map; } /* Don't assume equalities are in order, because align_divs * may have changed the order of the divs. */ static void compute_elimination_index(struct isl_basic_map *bmap, int *elim) { int d, i; unsigned total; total = isl_space_dim(bmap->dim, isl_dim_all); for (d = 0; d < total; ++d) elim[d] = -1; for (i = 0; i < bmap->n_eq; ++i) { for (d = total - 1; d >= 0; --d) { if (isl_int_is_zero(bmap->eq[i][1+d])) continue; elim[d] = i; break; } } } static void set_compute_elimination_index(struct isl_basic_set *bset, int *elim) { compute_elimination_index((struct isl_basic_map *)bset, elim); } static int reduced_using_equalities(isl_int *dst, isl_int *src, struct isl_basic_map *bmap, int *elim) { int d; int copied = 0; unsigned total; total = isl_space_dim(bmap->dim, isl_dim_all); for (d = total - 1; d >= 0; --d) { if (isl_int_is_zero(src[1+d])) continue; if (elim[d] == -1) continue; if (!copied) { isl_seq_cpy(dst, src, 1 + total); copied = 1; } isl_seq_elim(dst, bmap->eq[elim[d]], 1 + d, 1 + total, NULL); } return copied; } static int set_reduced_using_equalities(isl_int *dst, isl_int *src, struct isl_basic_set *bset, int *elim) { return reduced_using_equalities(dst, src, (struct isl_basic_map *)bset, elim); } static struct isl_basic_set *isl_basic_set_reduce_using_equalities( struct isl_basic_set *bset, struct isl_basic_set *context) { int i; int *elim; if (!bset || !context) goto error; if (context->n_eq == 0) { isl_basic_set_free(context); return bset; } bset = isl_basic_set_cow(bset); if (!bset) goto error; elim = isl_alloc_array(bset->ctx, int, isl_basic_set_n_dim(bset)); if (!elim) goto error; set_compute_elimination_index(context, elim); for (i = 0; i < bset->n_eq; ++i) set_reduced_using_equalities(bset->eq[i], bset->eq[i], context, elim); for (i = 0; i < bset->n_ineq; ++i) set_reduced_using_equalities(bset->ineq[i], bset->ineq[i], context, elim); isl_basic_set_free(context); free(elim); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); return bset; error: isl_basic_set_free(bset); isl_basic_set_free(context); return NULL; } /* For each inequality in "ineq" that is a shifted (more relaxed) * copy of an inequality in "context", mark the corresponding entry * in "row" with -1. * If an inequality only has a non-negative constant term, then * mark it as well. */ static isl_stat mark_shifted_constraints(__isl_keep isl_mat *ineq, __isl_keep isl_basic_set *context, int *row) { struct isl_constraint_index ci; int n_ineq; unsigned total; int k; if (!ineq || !context) return isl_stat_error; if (context->n_ineq == 0) return isl_stat_ok; if (setup_constraint_index(&ci, context) < 0) return isl_stat_error; n_ineq = isl_mat_rows(ineq); total = isl_mat_cols(ineq) - 1; for (k = 0; k < n_ineq; ++k) { int l; isl_bool redundant; l = isl_seq_first_non_zero(ineq->row[k] + 1, total); if (l < 0 && isl_int_is_nonneg(ineq->row[k][0])) { row[k] = -1; continue; } redundant = constraint_index_is_redundant(&ci, ineq->row[k]); if (redundant < 0) goto error; if (!redundant) continue; row[k] = -1; } constraint_index_free(&ci); return isl_stat_ok; error: constraint_index_free(&ci); return isl_stat_error; } static struct isl_basic_set *remove_shifted_constraints( struct isl_basic_set *bset, struct isl_basic_set *context) { struct isl_constraint_index ci; int k; if (!bset || !context) return bset; if (context->n_ineq == 0) return bset; if (setup_constraint_index(&ci, context) < 0) return bset; for (k = 0; k < bset->n_ineq; ++k) { isl_bool redundant; redundant = constraint_index_is_redundant(&ci, bset->ineq[k]); if (redundant < 0) goto error; if (!redundant) continue; bset = isl_basic_set_cow(bset); if (!bset) goto error; isl_basic_set_drop_inequality(bset, k); --k; } constraint_index_free(&ci); return bset; error: constraint_index_free(&ci); return bset; } /* Remove constraints from "bmap" that are identical to constraints * in "context" or that are more relaxed (greater constant term). * * We perform the test for shifted copies on the pure constraints * in remove_shifted_constraints. */ static __isl_give isl_basic_map *isl_basic_map_remove_shifted_constraints( __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) { isl_basic_set *bset, *bset_context; if (!bmap || !context) goto error; if (bmap->n_ineq == 0 || context->n_ineq == 0) { isl_basic_map_free(context); return bmap; } context = isl_basic_map_align_divs(context, bmap); bmap = isl_basic_map_align_divs(bmap, context); bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); bset_context = isl_basic_map_underlying_set(context); bset = remove_shifted_constraints(bset, bset_context); isl_basic_set_free(bset_context); bmap = isl_basic_map_overlying_set(bset, bmap); return bmap; error: isl_basic_map_free(bmap); isl_basic_map_free(context); return NULL; } /* Does the (linear part of a) constraint "c" involve any of the "len" * "relevant" dimensions? */ static int is_related(isl_int *c, int len, int *relevant) { int i; for (i = 0; i < len; ++i) { if (!relevant[i]) continue; if (!isl_int_is_zero(c[i])) return 1; } return 0; } /* Drop constraints from "bset" that do not involve any of * the dimensions marked "relevant". */ static __isl_give isl_basic_set *drop_unrelated_constraints( __isl_take isl_basic_set *bset, int *relevant) { int i, dim; dim = isl_basic_set_dim(bset, isl_dim_set); for (i = 0; i < dim; ++i) if (!relevant[i]) break; if (i >= dim) return bset; for (i = bset->n_eq - 1; i >= 0; --i) if (!is_related(bset->eq[i] + 1, dim, relevant)) isl_basic_set_drop_equality(bset, i); for (i = bset->n_ineq - 1; i >= 0; --i) if (!is_related(bset->ineq[i] + 1, dim, relevant)) isl_basic_set_drop_inequality(bset, i); return bset; } /* Update the groups in "group" based on the (linear part of a) constraint "c". * * In particular, for any variable involved in the constraint, * find the actual group id from before and replace the group * of the corresponding variable by the minimal group of all * the variables involved in the constraint considered so far * (if this minimum is smaller) or replace the minimum by this group * (if the minimum is larger). * * At the end, all the variables in "c" will (indirectly) point * to the minimal of the groups that they referred to originally. */ static void update_groups(int dim, int *group, isl_int *c) { int j; int min = dim; for (j = 0; j < dim; ++j) { if (isl_int_is_zero(c[j])) continue; while (group[j] >= 0 && group[group[j]] != group[j]) group[j] = group[group[j]]; if (group[j] == min) continue; if (group[j] < min) { if (min >= 0 && min < dim) group[min] = group[j]; min = group[j]; } else group[group[j]] = min; } } /* Allocate an array of groups of variables, one for each variable * in "context", initialized to zero. */ static int *alloc_groups(__isl_keep isl_basic_set *context) { isl_ctx *ctx; int dim; dim = isl_basic_set_dim(context, isl_dim_set); ctx = isl_basic_set_get_ctx(context); return isl_calloc_array(ctx, int, dim); } /* Drop constraints from "context" that only involve variables that are * not related to any of the variables marked with a "-1" in "group". * * We construct groups of variables that collect variables that * (indirectly) appear in some common constraint of "context". * Each group is identified by the first variable in the group, * except for the special group of variables that was already identified * in the input as -1 (or are related to those variables). * If group[i] is equal to i (or -1), then the group of i is i (or -1), * otherwise the group of i is the group of group[i]. * * We first initialize groups for the remaining variables. * Then we iterate over the constraints of "context" and update the * group of the variables in the constraint by the smallest group. * Finally, we resolve indirect references to groups by running over * the variables. * * After computing the groups, we drop constraints that do not involve * any variables in the -1 group. */ static __isl_give isl_basic_set *group_and_drop_irrelevant_constraints( __isl_take isl_basic_set *context, __isl_take int *group) { int dim; int i; int last; dim = isl_basic_set_dim(context, isl_dim_set); last = -1; for (i = 0; i < dim; ++i) if (group[i] >= 0) last = group[i] = i; if (last < 0) { free(group); return context; } for (i = 0; i < context->n_eq; ++i) update_groups(dim, group, context->eq[i] + 1); for (i = 0; i < context->n_ineq; ++i) update_groups(dim, group, context->ineq[i] + 1); for (i = 0; i < dim; ++i) if (group[i] >= 0) group[i] = group[group[i]]; for (i = 0; i < dim; ++i) group[i] = group[i] == -1; context = drop_unrelated_constraints(context, group); free(group); return context; } /* Drop constraints from "context" that are irrelevant for computing * the gist of "bset". * * In particular, drop constraints in variables that are not related * to any of the variables involved in the constraints of "bset" * in the sense that there is no sequence of constraints that connects them. * * We first mark all variables that appear in "bset" as belonging * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. */ static __isl_give isl_basic_set *drop_irrelevant_constraints( __isl_take isl_basic_set *context, __isl_keep isl_basic_set *bset) { int *group; int dim; int i, j; if (!context || !bset) return isl_basic_set_free(context); group = alloc_groups(context); if (!group) return isl_basic_set_free(context); dim = isl_basic_set_dim(bset, isl_dim_set); for (i = 0; i < dim; ++i) { for (j = 0; j < bset->n_eq; ++j) if (!isl_int_is_zero(bset->eq[j][1 + i])) break; if (j < bset->n_eq) { group[i] = -1; continue; } for (j = 0; j < bset->n_ineq; ++j) if (!isl_int_is_zero(bset->ineq[j][1 + i])) break; if (j < bset->n_ineq) group[i] = -1; } return group_and_drop_irrelevant_constraints(context, group); } /* Drop constraints from "context" that are irrelevant for computing * the gist of the inequalities "ineq". * Inequalities in "ineq" for which the corresponding element of row * is set to -1 have already been marked for removal and should be ignored. * * In particular, drop constraints in variables that are not related * to any of the variables involved in "ineq" * in the sense that there is no sequence of constraints that connects them. * * We first mark all variables that appear in "bset" as belonging * to a "-1" group and then continue with group_and_drop_irrelevant_constraints. */ static __isl_give isl_basic_set *drop_irrelevant_constraints_marked( __isl_take isl_basic_set *context, __isl_keep isl_mat *ineq, int *row) { int *group; int dim; int i, j, n; if (!context || !ineq) return isl_basic_set_free(context); group = alloc_groups(context); if (!group) return isl_basic_set_free(context); dim = isl_basic_set_dim(context, isl_dim_set); n = isl_mat_rows(ineq); for (i = 0; i < dim; ++i) { for (j = 0; j < n; ++j) { if (row[j] < 0) continue; if (!isl_int_is_zero(ineq->row[j][1 + i])) break; } if (j < n) group[i] = -1; } return group_and_drop_irrelevant_constraints(context, group); } /* Do all "n" entries of "row" contain a negative value? */ static int all_neg(int *row, int n) { int i; for (i = 0; i < n; ++i) if (row[i] >= 0) return 0; return 1; } /* Update the inequalities in "bset" based on the information in "row" * and "tab". * * In particular, the array "row" contains either -1, meaning that * the corresponding inequality of "bset" is redundant, or the index * of an inequality in "tab". * * If the row entry is -1, then drop the inequality. * Otherwise, if the constraint is marked redundant in the tableau, * then drop the inequality. Similarly, if it is marked as an equality * in the tableau, then turn the inequality into an equality and * perform Gaussian elimination. */ static __isl_give isl_basic_set *update_ineq(__isl_take isl_basic_set *bset, __isl_keep int *row, struct isl_tab *tab) { int i; unsigned n_ineq; unsigned n_eq; int found_equality = 0; if (!bset) return NULL; if (tab && tab->empty) return isl_basic_set_set_to_empty(bset); n_ineq = bset->n_ineq; for (i = n_ineq - 1; i >= 0; --i) { if (row[i] < 0) { if (isl_basic_set_drop_inequality(bset, i) < 0) return isl_basic_set_free(bset); continue; } if (!tab) continue; n_eq = tab->n_eq; if (isl_tab_is_equality(tab, n_eq + row[i])) { isl_basic_map_inequality_to_equality(bset, i); found_equality = 1; } else if (isl_tab_is_redundant(tab, n_eq + row[i])) { if (isl_basic_set_drop_inequality(bset, i) < 0) return isl_basic_set_free(bset); } } if (found_equality) bset = isl_basic_set_gauss(bset, NULL); bset = isl_basic_set_finalize(bset); return bset; } /* Update the inequalities in "bset" based on the information in "row" * and "tab" and free all arguments (other than "bset"). */ static __isl_give isl_basic_set *update_ineq_free( __isl_take isl_basic_set *bset, __isl_take isl_mat *ineq, __isl_take isl_basic_set *context, __isl_take int *row, struct isl_tab *tab) { isl_mat_free(ineq); isl_basic_set_free(context); bset = update_ineq(bset, row, tab); free(row); isl_tab_free(tab); return bset; } /* Remove all information from bset that is redundant in the context * of context. * "ineq" contains the (possibly transformed) inequalities of "bset", * in the same order. * The (explicit) equalities of "bset" are assumed to have been taken * into account by the transformation such that only the inequalities * are relevant. * "context" is assumed not to be empty. * * "row" keeps track of the constraint index of a "bset" inequality in "tab". * A value of -1 means that the inequality is obviously redundant and may * not even appear in "tab". * * We first mark the inequalities of "bset" * that are obviously redundant with respect to some inequality in "context". * Then we remove those constraints from "context" that have become * irrelevant for computing the gist of "bset". * Note that this removal of constraints cannot be replaced by * a factorization because factors in "bset" may still be connected * to each other through constraints in "context". * * If there are any inequalities left, we construct a tableau for * the context and then add the inequalities of "bset". * Before adding these inequalities, we freeze all constraints such that * they won't be considered redundant in terms of the constraints of "bset". * Then we detect all redundant constraints (among the * constraints that weren't frozen), first by checking for redundancy in the * the tableau and then by checking if replacing a constraint by its negation * would lead to an empty set. This last step is fairly expensive * and could be optimized by more reuse of the tableau. * Finally, we update bset according to the results. */ static __isl_give isl_basic_set *uset_gist_full(__isl_take isl_basic_set *bset, __isl_take isl_mat *ineq, __isl_take isl_basic_set *context) { int i, r; int *row = NULL; isl_ctx *ctx; isl_basic_set *combined = NULL; struct isl_tab *tab = NULL; unsigned n_eq, context_ineq; unsigned total; if (!bset || !ineq || !context) goto error; if (bset->n_ineq == 0 || isl_basic_set_is_universe(context)) { isl_basic_set_free(context); isl_mat_free(ineq); return bset; } ctx = isl_basic_set_get_ctx(context); row = isl_calloc_array(ctx, int, bset->n_ineq); if (!row) goto error; if (mark_shifted_constraints(ineq, context, row) < 0) goto error; if (all_neg(row, bset->n_ineq)) return update_ineq_free(bset, ineq, context, row, NULL); context = drop_irrelevant_constraints_marked(context, ineq, row); if (!context) goto error; if (isl_basic_set_is_universe(context)) return update_ineq_free(bset, ineq, context, row, NULL); n_eq = context->n_eq; context_ineq = context->n_ineq; combined = isl_basic_set_cow(isl_basic_set_copy(context)); combined = isl_basic_set_extend_constraints(combined, 0, bset->n_ineq); tab = isl_tab_from_basic_set(combined, 0); for (i = 0; i < context_ineq; ++i) if (isl_tab_freeze_constraint(tab, n_eq + i) < 0) goto error; if (isl_tab_extend_cons(tab, bset->n_ineq) < 0) goto error; r = context_ineq; for (i = 0; i < bset->n_ineq; ++i) { if (row[i] < 0) continue; combined = isl_basic_set_add_ineq(combined, ineq->row[i]); if (isl_tab_add_ineq(tab, ineq->row[i]) < 0) goto error; row[i] = r++; } if (isl_tab_detect_implicit_equalities(tab) < 0) goto error; if (isl_tab_detect_redundant(tab) < 0) goto error; total = isl_basic_set_total_dim(bset); for (i = bset->n_ineq - 1; i >= 0; --i) { isl_basic_set *test; int is_empty; if (row[i] < 0) continue; r = row[i]; if (tab->con[n_eq + r].is_redundant) continue; test = isl_basic_set_dup(combined); if (isl_inequality_negate(test, r) < 0) test = isl_basic_set_free(test); test = isl_basic_set_update_from_tab(test, tab); is_empty = isl_basic_set_is_empty(test); isl_basic_set_free(test); if (is_empty < 0) goto error; if (is_empty) tab->con[n_eq + r].is_redundant = 1; } bset = update_ineq_free(bset, ineq, context, row, tab); if (bset) { ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); } isl_basic_set_free(combined); return bset; error: free(row); isl_mat_free(ineq); isl_tab_free(tab); isl_basic_set_free(combined); isl_basic_set_free(context); isl_basic_set_free(bset); return NULL; } /* Extract the inequalities of "bset" as an isl_mat. */ static __isl_give isl_mat *extract_ineq(__isl_keep isl_basic_set *bset) { unsigned total; isl_ctx *ctx; isl_mat *ineq; if (!bset) return NULL; ctx = isl_basic_set_get_ctx(bset); total = isl_basic_set_total_dim(bset); ineq = isl_mat_sub_alloc6(ctx, bset->ineq, 0, bset->n_ineq, 0, 1 + total); return ineq; } /* Remove all information from "bset" that is redundant in the context * of "context", for the case where both "bset" and "context" are * full-dimensional. */ static __isl_give isl_basic_set *uset_gist_uncompressed( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) { isl_mat *ineq; ineq = extract_ineq(bset); return uset_gist_full(bset, ineq, context); } /* Remove all information from "bset" that is redundant in the context * of "context", for the case where the combined equalities of * "bset" and "context" allow for a compression that can be obtained * by preapplication of "T". * * "bset" itself is not transformed by "T". Instead, the inequalities * are extracted from "bset" and those are transformed by "T". * uset_gist_full then determines which of the transformed inequalities * are redundant with respect to the transformed "context" and removes * the corresponding inequalities from "bset". * * After preapplying "T" to the inequalities, any common factor is * removed from the coefficients. If this results in a tightening * of the constant term, then the same tightening is applied to * the corresponding untransformed inequality in "bset". * That is, if after plugging in T, a constraint f(x) >= 0 is of the form * * g f'(x) + r >= 0 * * with 0 <= r < g, then it is equivalent to * * f'(x) >= 0 * * This means that f(x) >= 0 is equivalent to f(x) - r >= 0 in the affine * subspace compressed by T since the latter would be transformed to * * g f'(x) >= 0 */ static __isl_give isl_basic_set *uset_gist_compressed( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *context, __isl_take isl_mat *T) { isl_ctx *ctx; isl_mat *ineq; int i, n_row, n_col; isl_int rem; ineq = extract_ineq(bset); ineq = isl_mat_product(ineq, isl_mat_copy(T)); context = isl_basic_set_preimage(context, T); if (!ineq || !context) goto error; if (isl_basic_set_plain_is_empty(context)) { isl_mat_free(ineq); isl_basic_set_free(context); return isl_basic_set_set_to_empty(bset); } ctx = isl_mat_get_ctx(ineq); n_row = isl_mat_rows(ineq); n_col = isl_mat_cols(ineq); isl_int_init(rem); for (i = 0; i < n_row; ++i) { isl_seq_gcd(ineq->row[i] + 1, n_col - 1, &ctx->normalize_gcd); if (isl_int_is_zero(ctx->normalize_gcd)) continue; if (isl_int_is_one(ctx->normalize_gcd)) continue; isl_seq_scale_down(ineq->row[i] + 1, ineq->row[i] + 1, ctx->normalize_gcd, n_col - 1); isl_int_fdiv_r(rem, ineq->row[i][0], ctx->normalize_gcd); isl_int_fdiv_q(ineq->row[i][0], ineq->row[i][0], ctx->normalize_gcd); if (isl_int_is_zero(rem)) continue; bset = isl_basic_set_cow(bset); if (!bset) break; isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], rem); } isl_int_clear(rem); return uset_gist_full(bset, ineq, context); error: isl_mat_free(ineq); isl_basic_set_free(context); isl_basic_set_free(bset); return NULL; } /* Project "bset" onto the variables that are involved in "template". */ static __isl_give isl_basic_set *project_onto_involved( __isl_take isl_basic_set *bset, __isl_keep isl_basic_set *template) { int i, n; if (!bset || !template) return isl_basic_set_free(bset); n = isl_basic_set_dim(template, isl_dim_set); for (i = 0; i < n; ++i) { isl_bool involved; involved = isl_basic_set_involves_dims(template, isl_dim_set, i, 1); if (involved < 0) return isl_basic_set_free(bset); if (involved) continue; bset = isl_basic_set_eliminate_vars(bset, i, 1); } return bset; } /* Remove all information from bset that is redundant in the context * of context. In particular, equalities that are linear combinations * of those in context are removed. Then the inequalities that are * redundant in the context of the equalities and inequalities of * context are removed. * * First of all, we drop those constraints from "context" * that are irrelevant for computing the gist of "bset". * Alternatively, we could factorize the intersection of "context" and "bset". * * We first compute the intersection of the integer affine hulls * of "bset" and "context", * compute the gist inside this intersection and then reduce * the constraints with respect to the equalities of the context * that only involve variables already involved in the input. * * If two constraints are mutually redundant, then uset_gist_full * will remove the second of those constraints. We therefore first * sort the constraints so that constraints not involving existentially * quantified variables are given precedence over those that do. * We have to perform this sorting before the variable compression, * because that may effect the order of the variables. */ static __isl_give isl_basic_set *uset_gist(__isl_take isl_basic_set *bset, __isl_take isl_basic_set *context) { isl_mat *eq; isl_mat *T; isl_basic_set *aff; isl_basic_set *aff_context; unsigned total; if (!bset || !context) goto error; context = drop_irrelevant_constraints(context, bset); bset = isl_basic_set_detect_equalities(bset); aff = isl_basic_set_copy(bset); aff = isl_basic_set_plain_affine_hull(aff); context = isl_basic_set_detect_equalities(context); aff_context = isl_basic_set_copy(context); aff_context = isl_basic_set_plain_affine_hull(aff_context); aff = isl_basic_set_intersect(aff, aff_context); if (!aff) goto error; if (isl_basic_set_plain_is_empty(aff)) { isl_basic_set_free(bset); isl_basic_set_free(context); return aff; } bset = isl_basic_set_sort_constraints(bset); if (aff->n_eq == 0) { isl_basic_set_free(aff); return uset_gist_uncompressed(bset, context); } total = isl_basic_set_total_dim(bset); eq = isl_mat_sub_alloc6(bset->ctx, aff->eq, 0, aff->n_eq, 0, 1 + total); eq = isl_mat_cow(eq); T = isl_mat_variable_compression(eq, NULL); isl_basic_set_free(aff); if (T && T->n_col == 0) { isl_mat_free(T); isl_basic_set_free(context); return isl_basic_set_set_to_empty(bset); } aff_context = isl_basic_set_affine_hull(isl_basic_set_copy(context)); aff_context = project_onto_involved(aff_context, bset); bset = uset_gist_compressed(bset, context, T); bset = isl_basic_set_reduce_using_equalities(bset, aff_context); if (bset) { ISL_F_SET(bset, ISL_BASIC_SET_NO_IMPLICIT); ISL_F_SET(bset, ISL_BASIC_SET_NO_REDUNDANT); } return bset; error: isl_basic_set_free(bset); isl_basic_set_free(context); return NULL; } /* Return a basic map that has the same intersection with "context" as "bmap" * and that is as "simple" as possible. * * The core computation is performed on the pure constraints. * When we add back the meaning of the integer divisions, we need * to (re)introduce the div constraints. If we happen to have * discovered that some of these integer divisions are equal to * some affine combination of other variables, then these div * constraints may end up getting simplified in terms of the equalities, * resulting in extra inequalities on the other variables that * may have been removed already or that may not even have been * part of the input. We try and remove those constraints of * this form that are most obviously redundant with respect to * the context. We also remove those div constraints that are * redundant with respect to the other constraints in the result. */ struct isl_basic_map *isl_basic_map_gist(struct isl_basic_map *bmap, struct isl_basic_map *context) { isl_basic_set *bset, *eq; isl_basic_map *eq_bmap; unsigned total, n_div, extra, n_eq, n_ineq; if (!bmap || !context) goto error; if (isl_basic_map_is_universe(bmap)) { isl_basic_map_free(context); return bmap; } if (isl_basic_map_plain_is_empty(context)) { isl_space *space = isl_basic_map_get_space(bmap); isl_basic_map_free(bmap); isl_basic_map_free(context); return isl_basic_map_universe(space); } if (isl_basic_map_plain_is_empty(bmap)) { isl_basic_map_free(context); return bmap; } bmap = isl_basic_map_remove_redundancies(bmap); context = isl_basic_map_remove_redundancies(context); if (!context) goto error; context = isl_basic_map_align_divs(context, bmap); n_div = isl_basic_map_dim(context, isl_dim_div); total = isl_basic_map_dim(bmap, isl_dim_all); extra = n_div - isl_basic_map_dim(bmap, isl_dim_div); bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap)); bset = isl_basic_set_add_dims(bset, isl_dim_set, extra); bset = uset_gist(bset, isl_basic_map_underlying_set(isl_basic_map_copy(context))); bset = isl_basic_set_project_out(bset, isl_dim_set, total, extra); if (!bset || bset->n_eq == 0 || n_div == 0 || isl_basic_set_plain_is_empty(bset)) { isl_basic_map_free(context); return isl_basic_map_overlying_set(bset, bmap); } n_eq = bset->n_eq; n_ineq = bset->n_ineq; eq = isl_basic_set_copy(bset); eq = isl_basic_set_cow(eq); if (isl_basic_set_free_inequality(eq, n_ineq) < 0) eq = isl_basic_set_free(eq); if (isl_basic_set_free_equality(bset, n_eq) < 0) bset = isl_basic_set_free(bset); eq_bmap = isl_basic_map_overlying_set(eq, isl_basic_map_copy(bmap)); eq_bmap = isl_basic_map_remove_shifted_constraints(eq_bmap, context); bmap = isl_basic_map_overlying_set(bset, bmap); bmap = isl_basic_map_intersect(bmap, eq_bmap); bmap = isl_basic_map_remove_redundancies(bmap); return bmap; error: isl_basic_map_free(bmap); isl_basic_map_free(context); return NULL; } /* * Assumes context has no implicit divs. */ __isl_give isl_map *isl_map_gist_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *context) { int i; if (!map || !context) goto error; if (isl_basic_map_plain_is_empty(context)) { isl_space *space = isl_map_get_space(map); isl_map_free(map); isl_basic_map_free(context); return isl_map_universe(space); } context = isl_basic_map_remove_redundancies(context); map = isl_map_cow(map); if (!map || !context) goto error; isl_assert(map->ctx, isl_space_is_equal(map->dim, context->dim), goto error); map = isl_map_compute_divs(map); if (!map) goto error; for (i = map->n - 1; i >= 0; --i) { map->p[i] = isl_basic_map_gist(map->p[i], isl_basic_map_copy(context)); if (!map->p[i]) goto error; if (isl_basic_map_plain_is_empty(map->p[i])) { isl_basic_map_free(map->p[i]); if (i != map->n - 1) map->p[i] = map->p[map->n - 1]; map->n--; } } isl_basic_map_free(context); ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); isl_basic_map_free(context); return NULL; } /* Drop all inequalities from "bmap" that also appear in "context". * "context" is assumed to have only known local variables and * the initial local variables of "bmap" are assumed to be the same * as those of "context". * The constraints of both "bmap" and "context" are assumed * to have been sorted using isl_basic_map_sort_constraints. * * Run through the inequality constraints of "bmap" and "context" * in sorted order. * If a constraint of "bmap" involves variables not in "context", * then it cannot appear in "context". * If a matching constraint is found, it is removed from "bmap". */ static __isl_give isl_basic_map *drop_inequalities( __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) { int i1, i2; unsigned total, extra; if (!bmap || !context) return isl_basic_map_free(bmap); total = isl_basic_map_total_dim(context); extra = isl_basic_map_total_dim(bmap) - total; i1 = bmap->n_ineq - 1; i2 = context->n_ineq - 1; while (bmap && i1 >= 0 && i2 >= 0) { int cmp; if (isl_seq_first_non_zero(bmap->ineq[i1] + 1 + total, extra) != -1) { --i1; continue; } cmp = isl_basic_map_constraint_cmp(context, bmap->ineq[i1], context->ineq[i2]); if (cmp < 0) { --i2; continue; } if (cmp > 0) { --i1; continue; } if (isl_int_eq(bmap->ineq[i1][0], context->ineq[i2][0])) { bmap = isl_basic_map_cow(bmap); if (isl_basic_map_drop_inequality(bmap, i1) < 0) bmap = isl_basic_map_free(bmap); } --i1; --i2; } return bmap; } /* Drop all equalities from "bmap" that also appear in "context". * "context" is assumed to have only known local variables and * the initial local variables of "bmap" are assumed to be the same * as those of "context". * * Run through the equality constraints of "bmap" and "context" * in sorted order. * If a constraint of "bmap" involves variables not in "context", * then it cannot appear in "context". * If a matching constraint is found, it is removed from "bmap". */ static __isl_give isl_basic_map *drop_equalities( __isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *context) { int i1, i2; unsigned total, extra; if (!bmap || !context) return isl_basic_map_free(bmap); total = isl_basic_map_total_dim(context); extra = isl_basic_map_total_dim(bmap) - total; i1 = bmap->n_eq - 1; i2 = context->n_eq - 1; while (bmap && i1 >= 0 && i2 >= 0) { int last1, last2; if (isl_seq_first_non_zero(bmap->eq[i1] + 1 + total, extra) != -1) break; last1 = isl_seq_last_non_zero(bmap->eq[i1] + 1, total); last2 = isl_seq_last_non_zero(context->eq[i2] + 1, total); if (last1 > last2) { --i2; continue; } if (last1 < last2) { --i1; continue; } if (isl_seq_eq(bmap->eq[i1], context->eq[i2], 1 + total)) { bmap = isl_basic_map_cow(bmap); if (isl_basic_map_drop_equality(bmap, i1) < 0) bmap = isl_basic_map_free(bmap); } --i1; --i2; } return bmap; } /* Remove the constraints in "context" from "bmap". * "context" is assumed to have explicit representations * for all local variables. * * First align the divs of "bmap" to those of "context" and * sort the constraints. Then drop all constraints from "bmap" * that appear in "context". */ __isl_give isl_basic_map *isl_basic_map_plain_gist( __isl_take isl_basic_map *bmap, __isl_take isl_basic_map *context) { isl_bool done, known; done = isl_basic_map_is_universe(context); if (done == isl_bool_false) done = isl_basic_map_is_universe(bmap); if (done == isl_bool_false) done = isl_basic_map_plain_is_empty(context); if (done == isl_bool_false) done = isl_basic_map_plain_is_empty(bmap); if (done < 0) goto error; if (done) { isl_basic_map_free(context); return bmap; } known = isl_basic_map_divs_known(context); if (known < 0) goto error; if (!known) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "context has unknown divs", goto error); bmap = isl_basic_map_align_divs(bmap, context); bmap = isl_basic_map_gauss(bmap, NULL); bmap = isl_basic_map_sort_constraints(bmap); context = isl_basic_map_sort_constraints(context); bmap = drop_inequalities(bmap, context); bmap = drop_equalities(bmap, context); isl_basic_map_free(context); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); isl_basic_map_free(context); return NULL; } /* Replace "map" by the disjunct at position "pos" and free "context". */ static __isl_give isl_map *replace_by_disjunct(__isl_take isl_map *map, int pos, __isl_take isl_basic_map *context) { isl_basic_map *bmap; bmap = isl_basic_map_copy(map->p[pos]); isl_map_free(map); isl_basic_map_free(context); return isl_map_from_basic_map(bmap); } /* Remove the constraints in "context" from "map". * If any of the disjuncts in the result turns out to be the universe, * the return this universe. * "context" is assumed to have explicit representations * for all local variables. */ __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *context) { int i; isl_bool univ, known; univ = isl_basic_map_is_universe(context); if (univ < 0) goto error; if (univ) { isl_basic_map_free(context); return map; } known = isl_basic_map_divs_known(context); if (known < 0) goto error; if (!known) isl_die(isl_map_get_ctx(map), isl_error_invalid, "context has unknown divs", goto error); map = isl_map_cow(map); if (!map) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_plain_gist(map->p[i], isl_basic_map_copy(context)); univ = isl_basic_map_is_universe(map->p[i]); if (univ < 0) goto error; if (univ && map->n > 1) return replace_by_disjunct(map, i, context); } isl_basic_map_free(context); ISL_F_CLR(map, ISL_MAP_NORMALIZED); if (map->n > 1) ISL_F_CLR(map, ISL_MAP_DISJOINT); return map; error: isl_map_free(map); isl_basic_map_free(context); return NULL; } /* Return a map that has the same intersection with "context" as "map" * and that is as "simple" as possible. * * If "map" is already the universe, then we cannot make it any simpler. * Similarly, if "context" is the universe, then we cannot exploit it * to simplify "map" * If "map" and "context" are identical to each other, then we can * return the corresponding universe. * * If none of these cases apply, we have to work a bit harder. * During this computation, we make use of a single disjunct context, * so if the original context consists of more than one disjunct * then we need to approximate the context by a single disjunct set. * Simply taking the simple hull may drop constraints that are * only implicitly available in each disjunct. We therefore also * look for constraints among those defining "map" that are valid * for the context. These can then be used to simplify away * the corresponding constraints in "map". */ static __isl_give isl_map *map_gist(__isl_take isl_map *map, __isl_take isl_map *context) { int equal; int is_universe; isl_basic_map *hull; is_universe = isl_map_plain_is_universe(map); if (is_universe >= 0 && !is_universe) is_universe = isl_map_plain_is_universe(context); if (is_universe < 0) goto error; if (is_universe) { isl_map_free(context); return map; } equal = isl_map_plain_is_equal(map, context); if (equal < 0) goto error; if (equal) { isl_map *res = isl_map_universe(isl_map_get_space(map)); isl_map_free(map); isl_map_free(context); return res; } context = isl_map_compute_divs(context); if (!context) goto error; if (isl_map_n_basic_map(context) == 1) { hull = isl_map_simple_hull(context); } else { isl_ctx *ctx; isl_map_list *list; ctx = isl_map_get_ctx(map); list = isl_map_list_alloc(ctx, 2); list = isl_map_list_add(list, isl_map_copy(context)); list = isl_map_list_add(list, isl_map_copy(map)); hull = isl_map_unshifted_simple_hull_from_map_list(context, list); } return isl_map_gist_basic_map(map, hull); error: isl_map_free(map); isl_map_free(context); return NULL; } __isl_give isl_map *isl_map_gist(__isl_take isl_map *map, __isl_take isl_map *context) { return isl_map_align_params_map_map_and(map, context, &map_gist); } struct isl_basic_set *isl_basic_set_gist(struct isl_basic_set *bset, struct isl_basic_set *context) { return (struct isl_basic_set *)isl_basic_map_gist( (struct isl_basic_map *)bset, (struct isl_basic_map *)context); } __isl_give isl_set *isl_set_gist_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *context) { return (struct isl_set *)isl_map_gist_basic_map((struct isl_map *)set, (struct isl_basic_map *)context); } __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *context) { isl_space *space = isl_set_get_space(set); isl_basic_set *dom_context = isl_basic_set_universe(space); dom_context = isl_basic_set_intersect_params(dom_context, context); return isl_set_gist_basic_set(set, dom_context); } __isl_give isl_set *isl_set_gist(__isl_take isl_set *set, __isl_take isl_set *context) { return (struct isl_set *)isl_map_gist((struct isl_map *)set, (struct isl_map *)context); } /* Compute the gist of "bmap" with respect to the constraints "context" * on the domain. */ __isl_give isl_basic_map *isl_basic_map_gist_domain( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *context) { isl_space *space = isl_basic_map_get_space(bmap); isl_basic_map *bmap_context = isl_basic_map_universe(space); bmap_context = isl_basic_map_intersect_domain(bmap_context, context); return isl_basic_map_gist(bmap, bmap_context); } __isl_give isl_map *isl_map_gist_domain(__isl_take isl_map *map, __isl_take isl_set *context) { isl_map *map_context = isl_map_universe(isl_map_get_space(map)); map_context = isl_map_intersect_domain(map_context, context); return isl_map_gist(map, map_context); } __isl_give isl_map *isl_map_gist_range(__isl_take isl_map *map, __isl_take isl_set *context) { isl_map *map_context = isl_map_universe(isl_map_get_space(map)); map_context = isl_map_intersect_range(map_context, context); return isl_map_gist(map, map_context); } __isl_give isl_map *isl_map_gist_params(__isl_take isl_map *map, __isl_take isl_set *context) { isl_map *map_context = isl_map_universe(isl_map_get_space(map)); map_context = isl_map_intersect_params(map_context, context); return isl_map_gist(map, map_context); } __isl_give isl_set *isl_set_gist_params(__isl_take isl_set *set, __isl_take isl_set *context) { return isl_map_gist_params(set, context); } /* Quick check to see if two basic maps are disjoint. * In particular, we reduce the equalities and inequalities of * one basic map in the context of the equalities of the other * basic map and check if we get a contradiction. */ isl_bool isl_basic_map_plain_is_disjoint(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { struct isl_vec *v = NULL; int *elim = NULL; unsigned total; int i; if (!bmap1 || !bmap2) return isl_bool_error; isl_assert(bmap1->ctx, isl_space_is_equal(bmap1->dim, bmap2->dim), return isl_bool_error); if (bmap1->n_div || bmap2->n_div) return isl_bool_false; if (!bmap1->n_eq && !bmap2->n_eq) return isl_bool_false; total = isl_space_dim(bmap1->dim, isl_dim_all); if (total == 0) return isl_bool_false; v = isl_vec_alloc(bmap1->ctx, 1 + total); if (!v) goto error; elim = isl_alloc_array(bmap1->ctx, int, total); if (!elim) goto error; compute_elimination_index(bmap1, elim); for (i = 0; i < bmap2->n_eq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap2->eq[i], bmap1, elim); if (reduced && !isl_int_is_zero(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } for (i = 0; i < bmap2->n_ineq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap2->ineq[i], bmap1, elim); if (reduced && isl_int_is_neg(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } compute_elimination_index(bmap2, elim); for (i = 0; i < bmap1->n_ineq; ++i) { int reduced; reduced = reduced_using_equalities(v->block.data, bmap1->ineq[i], bmap2, elim); if (reduced && isl_int_is_neg(v->block.data[0]) && isl_seq_first_non_zero(v->block.data + 1, total) == -1) goto disjoint; } isl_vec_free(v); free(elim); return isl_bool_false; disjoint: isl_vec_free(v); free(elim); return isl_bool_true; error: isl_vec_free(v); free(elim); return isl_bool_error; } int isl_basic_set_plain_is_disjoint(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_plain_is_disjoint((struct isl_basic_map *)bset1, (struct isl_basic_map *)bset2); } /* Are "map1" and "map2" obviously disjoint? * * If one of them is empty or if they live in different spaces (ignoring * parameters), then they are clearly disjoint. * * If they have different parameters, then we skip any further tests. * * If they are obviously equal, but not obviously empty, then we will * not be able to detect if they are disjoint. * * Otherwise we check if each basic map in "map1" is obviously disjoint * from each basic map in "map2". */ isl_bool isl_map_plain_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { int i, j; isl_bool disjoint; isl_bool intersect; isl_bool match; if (!map1 || !map2) return isl_bool_error; disjoint = isl_map_plain_is_empty(map1); if (disjoint < 0 || disjoint) return disjoint; disjoint = isl_map_plain_is_empty(map2); if (disjoint < 0 || disjoint) return disjoint; match = isl_space_tuple_is_equal(map1->dim, isl_dim_in, map2->dim, isl_dim_in); if (match < 0 || !match) return match < 0 ? isl_bool_error : isl_bool_true; match = isl_space_tuple_is_equal(map1->dim, isl_dim_out, map2->dim, isl_dim_out); if (match < 0 || !match) return match < 0 ? isl_bool_error : isl_bool_true; match = isl_space_match(map1->dim, isl_dim_param, map2->dim, isl_dim_param); if (match < 0 || !match) return match < 0 ? isl_bool_error : isl_bool_false; intersect = isl_map_plain_is_equal(map1, map2); if (intersect < 0 || intersect) return intersect < 0 ? isl_bool_error : isl_bool_false; for (i = 0; i < map1->n; ++i) { for (j = 0; j < map2->n; ++j) { isl_bool d = isl_basic_map_plain_is_disjoint(map1->p[i], map2->p[j]); if (d != isl_bool_true) return d; } } return isl_bool_true; } /* Are "map1" and "map2" disjoint? * * They are disjoint if they are "obviously disjoint" or if one of them * is empty. Otherwise, they are not disjoint if one of them is universal. * If none of these cases apply, we compute the intersection and see if * the result is empty. */ isl_bool isl_map_is_disjoint(__isl_keep isl_map *map1, __isl_keep isl_map *map2) { isl_bool disjoint; isl_bool intersect; isl_map *test; disjoint = isl_map_plain_is_disjoint(map1, map2); if (disjoint < 0 || disjoint) return disjoint; disjoint = isl_map_is_empty(map1); if (disjoint < 0 || disjoint) return disjoint; disjoint = isl_map_is_empty(map2); if (disjoint < 0 || disjoint) return disjoint; intersect = isl_map_plain_is_universe(map1); if (intersect < 0 || intersect) return intersect < 0 ? isl_bool_error : isl_bool_false; intersect = isl_map_plain_is_universe(map2); if (intersect < 0 || intersect) return intersect < 0 ? isl_bool_error : isl_bool_false; test = isl_map_intersect(isl_map_copy(map1), isl_map_copy(map2)); disjoint = isl_map_is_empty(test); isl_map_free(test); return disjoint; } /* Are "bmap1" and "bmap2" disjoint? * * They are disjoint if they are "obviously disjoint" or if one of them * is empty. Otherwise, they are not disjoint if one of them is universal. * If none of these cases apply, we compute the intersection and see if * the result is empty. */ isl_bool isl_basic_map_is_disjoint(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { isl_bool disjoint; isl_bool intersect; isl_basic_map *test; disjoint = isl_basic_map_plain_is_disjoint(bmap1, bmap2); if (disjoint < 0 || disjoint) return disjoint; disjoint = isl_basic_map_is_empty(bmap1); if (disjoint < 0 || disjoint) return disjoint; disjoint = isl_basic_map_is_empty(bmap2); if (disjoint < 0 || disjoint) return disjoint; intersect = isl_basic_map_is_universe(bmap1); if (intersect < 0 || intersect) return intersect < 0 ? isl_bool_error : isl_bool_false; intersect = isl_basic_map_is_universe(bmap2); if (intersect < 0 || intersect) return intersect < 0 ? isl_bool_error : isl_bool_false; test = isl_basic_map_intersect(isl_basic_map_copy(bmap1), isl_basic_map_copy(bmap2)); disjoint = isl_basic_map_is_empty(test); isl_basic_map_free(test); return disjoint; } /* Are "bset1" and "bset2" disjoint? */ isl_bool isl_basic_set_is_disjoint(__isl_keep isl_basic_set *bset1, __isl_keep isl_basic_set *bset2) { return isl_basic_map_is_disjoint(bset1, bset2); } isl_bool isl_set_plain_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_plain_is_disjoint((struct isl_map *)set1, (struct isl_map *)set2); } /* Are "set1" and "set2" disjoint? */ isl_bool isl_set_is_disjoint(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { return isl_map_is_disjoint(set1, set2); } /* Is "v" equal to 0, 1 or -1? */ static int is_zero_or_one(isl_int v) { return isl_int_is_zero(v) || isl_int_is_one(v) || isl_int_is_negone(v); } /* Check if we can combine a given div with lower bound l and upper * bound u with some other div and if so return that other div. * Otherwise return -1. * * We first check that * - the bounds are opposites of each other (except for the constant * term) * - the bounds do not reference any other div * - no div is defined in terms of this div * * Let m be the size of the range allowed on the div by the bounds. * That is, the bounds are of the form * * e <= a <= e + m - 1 * * with e some expression in the other variables. * We look for another div b such that no third div is defined in terms * of this second div b and such that in any constraint that contains * a (except for the given lower and upper bound), also contains b * with a coefficient that is m times that of b. * That is, all constraints (execpt for the lower and upper bound) * are of the form * * e + f (a + m b) >= 0 * * Furthermore, in the constraints that only contain b, the coefficient * of b should be equal to 1 or -1. * If so, we return b so that "a + m b" can be replaced by * a single div "c = a + m b". */ static int div_find_coalesce(struct isl_basic_map *bmap, int *pairs, unsigned div, unsigned l, unsigned u) { int i, j; unsigned dim; int coalesce = -1; if (bmap->n_div <= 1) return -1; dim = isl_space_dim(bmap->dim, isl_dim_all); if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim, div) != -1) return -1; if (isl_seq_first_non_zero(bmap->ineq[l] + 1 + dim + div + 1, bmap->n_div - div - 1) != -1) return -1; if (!isl_seq_is_neg(bmap->ineq[l] + 1, bmap->ineq[u] + 1, dim + bmap->n_div)) return -1; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (!isl_int_is_zero(bmap->div[i][1 + 1 + dim + div])) return -1; } isl_int_add(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); if (isl_int_is_neg(bmap->ineq[l][0])) { isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_set_to_empty(bmap); isl_basic_map_free(bmap); return -1; } isl_int_add_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); for (i = 0; i < bmap->n_div; ++i) { if (i == div) continue; if (!pairs[i]) continue; for (j = 0; j < bmap->n_div; ++j) { if (isl_int_is_zero(bmap->div[j][0])) continue; if (!isl_int_is_zero(bmap->div[j][1 + 1 + dim + i])) break; } if (j < bmap->n_div) continue; for (j = 0; j < bmap->n_ineq; ++j) { int valid; if (j == l || j == u) continue; if (isl_int_is_zero(bmap->ineq[j][1 + dim + div])) { if (is_zero_or_one(bmap->ineq[j][1 + dim + i])) continue; break; } if (isl_int_is_zero(bmap->ineq[j][1 + dim + i])) break; isl_int_mul(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + div], bmap->ineq[l][0]); valid = isl_int_eq(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + i]); isl_int_divexact(bmap->ineq[j][1 + dim + div], bmap->ineq[j][1 + dim + div], bmap->ineq[l][0]); if (!valid) break; } if (j < bmap->n_ineq) continue; coalesce = i; break; } isl_int_sub_ui(bmap->ineq[l][0], bmap->ineq[l][0], 1); isl_int_sub(bmap->ineq[l][0], bmap->ineq[l][0], bmap->ineq[u][0]); return coalesce; } /* Given a lower and an upper bound on div i, construct an inequality * that when nonnegative ensures that this pair of bounds always allows * for an integer value of the given div. * The lower bound is inequality l, while the upper bound is inequality u. * The constructed inequality is stored in ineq. * g, fl, fu are temporary scalars. * * Let the upper bound be * * -n_u a + e_u >= 0 * * and the lower bound * * n_l a + e_l >= 0 * * Let n_u = f_u g and n_l = f_l g, with g = gcd(n_u, n_l). * We have * * - f_u e_l <= f_u f_l g a <= f_l e_u * * Since all variables are integer valued, this is equivalent to * * - f_u e_l - (f_u - 1) <= f_u f_l g a <= f_l e_u + (f_l - 1) * * If this interval is at least f_u f_l g, then it contains at least * one integer value for a. * That is, the test constraint is * * f_l e_u + f_u e_l + f_l - 1 + f_u - 1 + 1 >= f_u f_l g */ static void construct_test_ineq(struct isl_basic_map *bmap, int i, int l, int u, isl_int *ineq, isl_int *g, isl_int *fl, isl_int *fu) { unsigned dim; dim = isl_space_dim(bmap->dim, isl_dim_all); isl_int_gcd(*g, bmap->ineq[l][1 + dim + i], bmap->ineq[u][1 + dim + i]); isl_int_divexact(*fl, bmap->ineq[l][1 + dim + i], *g); isl_int_divexact(*fu, bmap->ineq[u][1 + dim + i], *g); isl_int_neg(*fu, *fu); isl_seq_combine(ineq, *fl, bmap->ineq[u], *fu, bmap->ineq[l], 1 + dim + bmap->n_div); isl_int_add(ineq[0], ineq[0], *fl); isl_int_add(ineq[0], ineq[0], *fu); isl_int_sub_ui(ineq[0], ineq[0], 1); isl_int_mul(*g, *g, *fl); isl_int_mul(*g, *g, *fu); isl_int_sub(ineq[0], ineq[0], *g); } /* Remove more kinds of divs that are not strictly needed. * In particular, if all pairs of lower and upper bounds on a div * are such that they allow at least one integer value of the div, * the we can eliminate the div using Fourier-Motzkin without * introducing any spurious solutions. */ static struct isl_basic_map *drop_more_redundant_divs( struct isl_basic_map *bmap, int *pairs, int n) { struct isl_tab *tab = NULL; struct isl_vec *vec = NULL; unsigned dim; int remove = -1; isl_int g, fl, fu; isl_int_init(g); isl_int_init(fl); isl_int_init(fu); if (!bmap) goto error; dim = isl_space_dim(bmap->dim, isl_dim_all); vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div); if (!vec) goto error; tab = isl_tab_from_basic_map(bmap, 0); while (n > 0) { int i, l, u; int best = -1; enum isl_lp_result res; for (i = 0; i < bmap->n_div; ++i) { if (!pairs[i]) continue; if (best >= 0 && pairs[best] <= pairs[i]) continue; best = i; } i = best; for (l = 0; l < bmap->n_ineq; ++l) { if (!isl_int_is_pos(bmap->ineq[l][1 + dim + i])) continue; for (u = 0; u < bmap->n_ineq; ++u) { if (!isl_int_is_neg(bmap->ineq[u][1 + dim + i])) continue; construct_test_ineq(bmap, i, l, u, vec->el, &g, &fl, &fu); res = isl_tab_min(tab, vec->el, bmap->ctx->one, &g, NULL, 0); if (res == isl_lp_error) goto error; if (res == isl_lp_empty) { bmap = isl_basic_map_set_to_empty(bmap); break; } if (res != isl_lp_ok || isl_int_is_neg(g)) break; } if (u < bmap->n_ineq) break; } if (l == bmap->n_ineq) { remove = i; break; } pairs[i] = 0; --n; } isl_tab_free(tab); isl_vec_free(vec); isl_int_clear(g); isl_int_clear(fl); isl_int_clear(fu); free(pairs); if (remove < 0) return bmap; bmap = isl_basic_map_remove_dims(bmap, isl_dim_div, remove, 1); return isl_basic_map_drop_redundant_divs(bmap); error: free(pairs); isl_basic_map_free(bmap); isl_tab_free(tab); isl_vec_free(vec); isl_int_clear(g); isl_int_clear(fl); isl_int_clear(fu); return NULL; } /* Given a pair of divs div1 and div2 such that, except for the lower bound l * and the upper bound u, div1 always occurs together with div2 in the form * (div1 + m div2), where m is the constant range on the variable div1 * allowed by l and u, replace the pair div1 and div2 by a single * div that is equal to div1 + m div2. * * The new div will appear in the location that contains div2. * We need to modify all constraints that contain * div2 = (div - div1) / m * The coefficient of div2 is known to be equal to 1 or -1. * (If a constraint does not contain div2, it will also not contain div1.) * If the constraint also contains div1, then we know they appear * as f (div1 + m div2) and we can simply replace (div1 + m div2) by div, * i.e., the coefficient of div is f. * * Otherwise, we first need to introduce div1 into the constraint. * Let the l be * * div1 + f >=0 * * and u * * -div1 + f' >= 0 * * A lower bound on div2 * * div2 + t >= 0 * * can be replaced by * * m div2 + div1 + m t + f >= 0 * * An upper bound * * -div2 + t >= 0 * * can be replaced by * * -(m div2 + div1) + m t + f' >= 0 * * These constraint are those that we would obtain from eliminating * div1 using Fourier-Motzkin. * * After all constraints have been modified, we drop the lower and upper * bound and then drop div1. */ static struct isl_basic_map *coalesce_divs(struct isl_basic_map *bmap, unsigned div1, unsigned div2, unsigned l, unsigned u) { isl_ctx *ctx; isl_int m; unsigned dim, total; int i; ctx = isl_basic_map_get_ctx(bmap); dim = isl_space_dim(bmap->dim, isl_dim_all); total = 1 + dim + bmap->n_div; isl_int_init(m); isl_int_add(m, bmap->ineq[l][0], bmap->ineq[u][0]); isl_int_add_ui(m, m, 1); for (i = 0; i < bmap->n_ineq; ++i) { if (i == l || i == u) continue; if (isl_int_is_zero(bmap->ineq[i][1 + dim + div2])) continue; if (isl_int_is_zero(bmap->ineq[i][1 + dim + div1])) if (isl_int_is_pos(bmap->ineq[i][1 + dim + div2])) isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i], ctx->one, bmap->ineq[l], total); else isl_seq_combine(bmap->ineq[i], m, bmap->ineq[i], ctx->one, bmap->ineq[u], total); isl_int_set(bmap->ineq[i][1 + dim + div2], bmap->ineq[i][1 + dim + div1]); isl_int_set_si(bmap->ineq[i][1 + dim + div1], 0); } isl_int_clear(m); if (l > u) { isl_basic_map_drop_inequality(bmap, l); isl_basic_map_drop_inequality(bmap, u); } else { isl_basic_map_drop_inequality(bmap, u); isl_basic_map_drop_inequality(bmap, l); } bmap = isl_basic_map_drop_div(bmap, div1); return bmap; } /* First check if we can coalesce any pair of divs and * then continue with dropping more redundant divs. * * We loop over all pairs of lower and upper bounds on a div * with coefficient 1 and -1, respectively, check if there * is any other div "c" with which we can coalesce the div * and if so, perform the coalescing. */ static struct isl_basic_map *coalesce_or_drop_more_redundant_divs( struct isl_basic_map *bmap, int *pairs, int n) { int i, l, u; unsigned dim; dim = isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { if (!pairs[i]) continue; for (l = 0; l < bmap->n_ineq; ++l) { if (!isl_int_is_one(bmap->ineq[l][1 + dim + i])) continue; for (u = 0; u < bmap->n_ineq; ++u) { int c; if (!isl_int_is_negone(bmap->ineq[u][1+dim+i])) continue; c = div_find_coalesce(bmap, pairs, i, l, u); if (c < 0) continue; free(pairs); bmap = coalesce_divs(bmap, i, c, l, u); return isl_basic_map_drop_redundant_divs(bmap); } } } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; return drop_more_redundant_divs(bmap, pairs, n); } /* Remove divs that are not strictly needed. * In particular, if a div only occurs positively (or negatively) * in constraints, then it can simply be dropped. * Also, if a div occurs in only two constraints and if moreover * those two constraints are opposite to each other, except for the constant * term and if the sum of the constant terms is such that for any value * of the other values, there is always at least one integer value of the * div, i.e., if one plus this sum is greater than or equal to * the (absolute value) of the coefficent of the div in the constraints, * then we can also simply drop the div. * * We skip divs that appear in equalities or in the definition of other divs. * Divs that appear in the definition of other divs usually occur in at least * 4 constraints, but the constraints may have been simplified. * * If any divs are left after these simple checks then we move on * to more complicated cases in drop_more_redundant_divs. */ struct isl_basic_map *isl_basic_map_drop_redundant_divs( struct isl_basic_map *bmap) { int i, j; unsigned off; int *pairs = NULL; int n = 0; if (!bmap) goto error; if (bmap->n_div == 0) return bmap; off = isl_space_dim(bmap->dim, isl_dim_all); pairs = isl_calloc_array(bmap->ctx, int, bmap->n_div); if (!pairs) goto error; for (i = 0; i < bmap->n_div; ++i) { int pos, neg; int last_pos, last_neg; int redundant; int defined; defined = !isl_int_is_zero(bmap->div[i][0]); for (j = i; j < bmap->n_div; ++j) if (!isl_int_is_zero(bmap->div[j][1 + 1 + off + i])) break; if (j < bmap->n_div) continue; for (j = 0; j < bmap->n_eq; ++j) if (!isl_int_is_zero(bmap->eq[j][1 + off + i])) break; if (j < bmap->n_eq) continue; ++n; pos = neg = 0; for (j = 0; j < bmap->n_ineq; ++j) { if (isl_int_is_pos(bmap->ineq[j][1 + off + i])) { last_pos = j; ++pos; } if (isl_int_is_neg(bmap->ineq[j][1 + off + i])) { last_neg = j; ++neg; } } pairs[i] = pos * neg; if (pairs[i] == 0) { for (j = bmap->n_ineq - 1; j >= 0; --j) if (!isl_int_is_zero(bmap->ineq[j][1+off+i])) isl_basic_map_drop_inequality(bmap, j); bmap = isl_basic_map_drop_div(bmap, i); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (pairs[i] != 1) continue; if (!isl_seq_is_neg(bmap->ineq[last_pos] + 1, bmap->ineq[last_neg] + 1, off + bmap->n_div)) continue; isl_int_add(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); isl_int_add_ui(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], 1); redundant = isl_int_ge(bmap->ineq[last_pos][0], bmap->ineq[last_pos][1+off+i]); isl_int_sub_ui(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], 1); isl_int_sub(bmap->ineq[last_pos][0], bmap->ineq[last_pos][0], bmap->ineq[last_neg][0]); if (!redundant) { if (defined || !ok_to_set_div_from_bound(bmap, i, last_pos)) { pairs[i] = 0; --n; continue; } bmap = set_div_from_lower_bound(bmap, i, last_pos); bmap = isl_basic_map_simplify(bmap); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (last_pos > last_neg) { isl_basic_map_drop_inequality(bmap, last_pos); isl_basic_map_drop_inequality(bmap, last_neg); } else { isl_basic_map_drop_inequality(bmap, last_neg); isl_basic_map_drop_inequality(bmap, last_pos); } bmap = isl_basic_map_drop_div(bmap, i); free(pairs); return isl_basic_map_drop_redundant_divs(bmap); } if (n > 0) return coalesce_or_drop_more_redundant_divs(bmap, pairs, n); free(pairs); return bmap; error: free(pairs); isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_drop_redundant_divs( struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_drop_redundant_divs((struct isl_basic_map *)bset); } struct isl_map *isl_map_drop_redundant_divs(struct isl_map *map) { int i; if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop_redundant_divs(map->p[i]); if (!map->p[i]) goto error; } ISL_F_CLR(map, ISL_MAP_NORMALIZED); return map; error: isl_map_free(map); return NULL; } struct isl_set *isl_set_drop_redundant_divs(struct isl_set *set) { return (struct isl_set *) isl_map_drop_redundant_divs((struct isl_map *)set); } /* Does "bmap" satisfy any equality that involves more than 2 variables * and/or has coefficients different from -1 and 1? */ static int has_multiple_var_equality(__isl_keep isl_basic_map *bmap) { int i; unsigned total; total = isl_basic_map_dim(bmap, isl_dim_all); for (i = 0; i < bmap->n_eq; ++i) { int j, k; j = isl_seq_first_non_zero(bmap->eq[i] + 1, total); if (j < 0) continue; if (!isl_int_is_one(bmap->eq[i][1 + j]) && !isl_int_is_negone(bmap->eq[i][1 + j])) return 1; j += 1; k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j); if (k < 0) continue; j += k; if (!isl_int_is_one(bmap->eq[i][1 + j]) && !isl_int_is_negone(bmap->eq[i][1 + j])) return 1; j += 1; k = isl_seq_first_non_zero(bmap->eq[i] + 1 + j, total - j); if (k >= 0) return 1; } return 0; } /* Remove any common factor g from the constraint coefficients in "v". * The constant term is stored in the first position and is replaced * by floor(c/g). If any common factor is removed and if this results * in a tightening of the constraint, then set *tightened. */ static __isl_give isl_vec *normalize_constraint(__isl_take isl_vec *v, int *tightened) { isl_ctx *ctx; if (!v) return NULL; ctx = isl_vec_get_ctx(v); isl_seq_gcd(v->el + 1, v->size - 1, &ctx->normalize_gcd); if (isl_int_is_zero(ctx->normalize_gcd)) return v; if (isl_int_is_one(ctx->normalize_gcd)) return v; v = isl_vec_cow(v); if (!v) return NULL; if (tightened && !isl_int_is_divisible_by(v->el[0], ctx->normalize_gcd)) *tightened = 1; isl_int_fdiv_q(v->el[0], v->el[0], ctx->normalize_gcd); isl_seq_scale_down(v->el + 1, v->el + 1, ctx->normalize_gcd, v->size - 1); return v; } /* If "bmap" is an integer set that satisfies any equality involving * more than 2 variables and/or has coefficients different from -1 and 1, * then use variable compression to reduce the coefficients by removing * any (hidden) common factor. * In particular, apply the variable compression to each constraint, * factor out any common factor in the non-constant coefficients and * then apply the inverse of the compression. * At the end, we mark the basic map as having reduced constants. * If this flag is still set on the next invocation of this function, * then we skip the computation. * * Removing a common factor may result in a tightening of some of * the constraints. If this happens, then we may end up with two * opposite inequalities that can be replaced by an equality. * We therefore call isl_basic_map_detect_inequality_pairs, * which checks for such pairs of inequalities as well as eliminate_divs_eq * and isl_basic_map_gauss if such a pair was found. */ __isl_give isl_basic_map *isl_basic_map_reduce_coefficients( __isl_take isl_basic_map *bmap) { unsigned total; isl_ctx *ctx; isl_vec *v; isl_mat *eq, *T, *T2; int i; int tightened; if (!bmap) return NULL; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS)) return bmap; if (isl_basic_map_is_rational(bmap)) return bmap; if (bmap->n_eq == 0) return bmap; if (!has_multiple_var_equality(bmap)) return bmap; total = isl_basic_map_dim(bmap, isl_dim_all); ctx = isl_basic_map_get_ctx(bmap); v = isl_vec_alloc(ctx, 1 + total); if (!v) return isl_basic_map_free(bmap); eq = isl_mat_sub_alloc6(ctx, bmap->eq, 0, bmap->n_eq, 0, 1 + total); T = isl_mat_variable_compression(eq, &T2); if (!T || !T2) goto error; if (T->n_col == 0) { isl_mat_free(T); isl_mat_free(T2); isl_vec_free(v); return isl_basic_map_set_to_empty(bmap); } tightened = 0; for (i = 0; i < bmap->n_ineq; ++i) { isl_seq_cpy(v->el, bmap->ineq[i], 1 + total); v = isl_vec_mat_product(v, isl_mat_copy(T)); v = normalize_constraint(v, &tightened); v = isl_vec_mat_product(v, isl_mat_copy(T2)); if (!v) goto error; isl_seq_cpy(bmap->ineq[i], v->el, 1 + total); } isl_mat_free(T); isl_mat_free(T2); isl_vec_free(v); ISL_F_SET(bmap, ISL_BASIC_MAP_REDUCED_COEFFICIENTS); if (tightened) { int progress = 0; bmap = isl_basic_map_detect_inequality_pairs(bmap, &progress); if (progress) { bmap = eliminate_divs_eq(bmap, &progress); bmap = isl_basic_map_gauss(bmap, NULL); } } return bmap; error: isl_mat_free(T); isl_mat_free(T2); isl_vec_free(v); return isl_basic_map_free(bmap); } /* Shift the integer division at position "div" of "bmap" * by "shift" times the variable at position "pos". * "pos" is as determined by isl_basic_map_offset, i.e., pos == 0 * corresponds to the constant term. * * That is, if the integer division has the form * * floor(f(x)/d) * * then replace it by * * floor((f(x) + shift * d * x_pos)/d) - shift * x_pos */ __isl_give isl_basic_map *isl_basic_map_shift_div( __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift) { int i; unsigned total; if (!bmap) return NULL; total = isl_basic_map_dim(bmap, isl_dim_all); total -= isl_basic_map_dim(bmap, isl_dim_div); isl_int_addmul(bmap->div[div][1 + pos], shift, bmap->div[div][0]); for (i = 0; i < bmap->n_eq; ++i) { if (isl_int_is_zero(bmap->eq[i][1 + total + div])) continue; isl_int_submul(bmap->eq[i][pos], shift, bmap->eq[i][1 + total + div]); } for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_zero(bmap->ineq[i][1 + total + div])) continue; isl_int_submul(bmap->ineq[i][pos], shift, bmap->ineq[i][1 + total + div]); } for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_int_is_zero(bmap->div[i][1 + 1 + total + div])) continue; isl_int_submul(bmap->div[i][1 + pos], shift, bmap->div[i][1 + 1 + total + div]); } return bmap; } isl-0.16.1/isl_version.c0000664000175000017500000000034312645737061012024 00000000000000#include "isl_config.h" #include "gitversion.h" const char *isl_version(void) { return GIT_HEAD_ID #ifdef USE_GMP_FOR_MP "-GMP" #endif #ifdef USE_IMATH_FOR_MP "-IMath" #ifdef USE_SMALL_INT_OPT "-32" #endif #endif "\n"; } isl-0.16.1/isl_test.c0000664000175000017500000057031212645745266011334 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array)) static char *srcdir; static char *get_filename(isl_ctx *ctx, const char *name, const char *suffix) { char *filename; int length; char *pattern = "%s/test_inputs/%s.%s"; length = strlen(pattern) - 6 + strlen(srcdir) + strlen(name) + strlen(suffix) + 1; filename = isl_alloc_array(ctx, char, length); if (!filename) return NULL; sprintf(filename, pattern, srcdir, name, suffix); return filename; } void test_parse_map(isl_ctx *ctx, const char *str) { isl_map *map; map = isl_map_read_from_str(ctx, str); assert(map); isl_map_free(map); } int test_parse_map_equal(isl_ctx *ctx, const char *str, const char *str2) { isl_map *map, *map2; int equal; map = isl_map_read_from_str(ctx, str); map2 = isl_map_read_from_str(ctx, str2); equal = isl_map_is_equal(map, map2); isl_map_free(map); isl_map_free(map2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "maps not equal", return -1); return 0; } void test_parse_pwqp(isl_ctx *ctx, const char *str) { isl_pw_qpolynomial *pwqp; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); assert(pwqp); isl_pw_qpolynomial_free(pwqp); } static void test_parse_pwaff(isl_ctx *ctx, const char *str) { isl_pw_aff *pwaff; pwaff = isl_pw_aff_read_from_str(ctx, str); assert(pwaff); isl_pw_aff_free(pwaff); } /* Check that we can read an isl_multi_val from "str" without errors. */ static int test_parse_multi_val(isl_ctx *ctx, const char *str) { isl_multi_val *mv; mv = isl_multi_val_read_from_str(ctx, str); isl_multi_val_free(mv); return mv ? 0 : -1; } /* Pairs of binary relation representations that should represent * the same binary relations. */ struct { const char *map1; const char *map2; } parse_map_equal_tests[] = { { "{ [x,y] : [([x/2]+y)/3] >= 1 }", "{ [x, y] : 2y >= 6 - x }" }, { "{ [x,y] : x <= min(y, 2*y+3) }", "{ [x,y] : x <= y, 2*y + 3 }" }, { "{ [x,y] : x >= min(y, 2*y+3) }", "{ [x, y] : (y <= x and y >= -3) or (2y <= -3 + x and y <= -4) }" }, { "[n] -> { [c1] : c1>=0 and c1<=floord(n-4,3) }", "[n] -> { [c1] : c1 >= 0 and 3c1 <= -4 + n }" }, { "{ [i,j] -> [i] : i < j; [i,j] -> [j] : j <= i }", "{ [i,j] -> [min(i,j)] }" }, { "{ [i,j] : i != j }", "{ [i,j] : i < j or i > j }" }, { "{ [i,j] : (i+1)*2 >= j }", "{ [i, j] : j <= 2 + 2i }" }, { "{ [i] -> [i > 0 ? 4 : 5] }", "{ [i] -> [5] : i <= 0; [i] -> [4] : i >= 1 }" }, { "[N=2,M] -> { [i=[(M+N)/4]] }", "[N, M] -> { [i] : N = 2 and 4i <= 2 + M and 4i >= -1 + M }" }, { "{ [x] : x >= 0 }", "{ [x] : x-0 >= 0 }" }, { "{ [i] : ((i > 10)) }", "{ [i] : i >= 11 }" }, { "{ [i] -> [0] }", "{ [i] -> [0 * i] }" }, { "{ [a] -> [b] : (not false) }", "{ [a] -> [b] : true }" }, { "{ [i] : i/2 <= 5 }", "{ [i] : i <= 10 }" }, { "{Sym=[n] [i] : i <= n }", "[n] -> { [i] : i <= n }" }, { "{ [*] }", "{ [a] }" }, { "{ [i] : 2*floor(i/2) = i }", "{ [i] : exists a : i = 2 a }" }, { "{ [a] -> [b] : a = 5 implies b = 5 }", "{ [a] -> [b] : a != 5 or b = 5 }" }, { "{ [a] -> [a - 1 : a > 0] }", "{ [a] -> [a - 1] : a > 0 }" }, { "{ [a] -> [a - 1 : a > 0; a : a <= 0] }", "{ [a] -> [a - 1] : a > 0; [a] -> [a] : a <= 0 }" }, { "{ [a] -> [(a) * 2 : a >= 0; 0 : a < 0] }", "{ [a] -> [2a] : a >= 0; [a] -> [0] : a < 0 }" }, { "{ [a] -> [(a * 2) : a >= 0; 0 : a < 0] }", "{ [a] -> [2a] : a >= 0; [a] -> [0] : a < 0 }" }, { "{ [a] -> [(a * 2 : a >= 0); 0 : a < 0] }", "{ [a] -> [2a] : a >= 0; [a] -> [0] : a < 0 }" }, { "{ [a] -> [(a * 2 : a >= 0; 0 : a < 0)] }", "{ [a] -> [2a] : a >= 0; [a] -> [0] : a < 0 }" }, { "{ [a,b] -> [i,j] : a,b << i,j }", "{ [a,b] -> [i,j] : a < i or (a = i and b < j) }" }, { "{ [a,b] -> [i,j] : a,b <<= i,j }", "{ [a,b] -> [i,j] : a < i or (a = i and b <= j) }" }, { "{ [a,b] -> [i,j] : a,b >> i,j }", "{ [a,b] -> [i,j] : a > i or (a = i and b > j) }" }, { "{ [a,b] -> [i,j] : a,b >>= i,j }", "{ [a,b] -> [i,j] : a > i or (a = i and b >= j) }" }, { "{ [n] -> [i] : exists (a, b, c: 8b <= i - 32a and " "8b >= -7 + i - 32 a and b >= 0 and b <= 3 and " "8c < n - 32a and i < n and c >= 0 and " "c <= 3 and c >= -4a) }", "{ [n] -> [i] : 0 <= i < n }" }, { "{ [x] -> [] : exists (a, b: 0 <= a <= 1 and 0 <= b <= 3 and " "2b <= x - 8a and 2b >= -1 + x - 8a) }", "{ [x] -> [] : 0 <= x <= 15 }" }, }; int test_parse(struct isl_ctx *ctx) { int i; isl_map *map, *map2; const char *str, *str2; if (test_parse_multi_val(ctx, "{ A[B[2] -> C[5, 7]] }") < 0) return -1; if (test_parse_multi_val(ctx, "[n] -> { [2] }") < 0) return -1; if (test_parse_multi_val(ctx, "{ A[4, infty, NaN, -1/2, 2/3] }") < 0) return -1; str = "{ [i] -> [-i] }"; map = isl_map_read_from_str(ctx, str); assert(map); isl_map_free(map); str = "{ A[i] -> L[([i/3])] }"; map = isl_map_read_from_str(ctx, str); assert(map); isl_map_free(map); test_parse_map(ctx, "{[[s] -> A[i]] -> [[s+1] -> A[i]]}"); test_parse_map(ctx, "{ [p1, y1, y2] -> [2, y1, y2] : " "p1 = 1 && (y1 <= y2 || y2 = 0) }"); for (i = 0; i < ARRAY_SIZE(parse_map_equal_tests); ++i) { str = parse_map_equal_tests[i].map1; str2 = parse_map_equal_tests[i].map2; if (test_parse_map_equal(ctx, str, str2) < 0) return -1; } str = "{[new,old] -> [new+1-2*[(new+1)/2],old+1-2*[(old+1)/2]]}"; map = isl_map_read_from_str(ctx, str); str = "{ [new, old] -> [o0, o1] : " "exists (e0 = [(-1 - new + o0)/2], e1 = [(-1 - old + o1)/2]: " "2e0 = -1 - new + o0 and 2e1 = -1 - old + o1 and o0 >= 0 and " "o0 <= 1 and o1 >= 0 and o1 <= 1) }"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{[new,old] -> [new+1-2*[(new+1)/2],old+1-2*[(old+1)/2]]}"; map = isl_map_read_from_str(ctx, str); str = "{[new,old] -> [(new+1)%2,(old+1)%2]}"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); test_parse_pwqp(ctx, "{ [i] -> i + [ (i + [i/3])/2 ] }"); test_parse_map(ctx, "{ S1[i] -> [([i/10]),i%10] : 0 <= i <= 45 }"); test_parse_pwaff(ctx, "{ [i] -> [i + 1] : i > 0; [a] -> [a] : a < 0 }"); test_parse_pwqp(ctx, "{ [x] -> ([(x)/2] * [(x)/3]) }"); return 0; } static int test_read(isl_ctx *ctx) { char *filename; FILE *input; isl_basic_set *bset1, *bset2; const char *str = "{[y]: Exists ( alpha : 2alpha = y)}"; int equal; filename = get_filename(ctx, "set", "omega"); assert(filename); input = fopen(filename, "r"); assert(input); bset1 = isl_basic_set_read_from_file(ctx, input); bset2 = isl_basic_set_read_from_str(ctx, str); equal = isl_basic_set_is_equal(bset1, bset2); isl_basic_set_free(bset1); isl_basic_set_free(bset2); free(filename); fclose(input); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "read sets not equal", return -1); return 0; } static int test_bounded(isl_ctx *ctx) { isl_set *set; int bounded; set = isl_set_read_from_str(ctx, "[n] -> {[i] : 0 <= i <= n }"); bounded = isl_set_is_bounded(set); isl_set_free(set); if (bounded < 0) return -1; if (!bounded) isl_die(ctx, isl_error_unknown, "set not considered bounded", return -1); set = isl_set_read_from_str(ctx, "{[n, i] : 0 <= i <= n }"); bounded = isl_set_is_bounded(set); assert(!bounded); isl_set_free(set); if (bounded < 0) return -1; if (bounded) isl_die(ctx, isl_error_unknown, "set considered bounded", return -1); set = isl_set_read_from_str(ctx, "[n] -> {[i] : i <= n }"); bounded = isl_set_is_bounded(set); isl_set_free(set); if (bounded < 0) return -1; if (bounded) isl_die(ctx, isl_error_unknown, "set considered bounded", return -1); return 0; } /* Construct the basic set { [i] : 5 <= i <= N } */ static int test_construction(isl_ctx *ctx) { isl_int v; isl_space *dim; isl_local_space *ls; isl_basic_set *bset; isl_constraint *c; isl_int_init(v); dim = isl_space_set_alloc(ctx, 1, 1); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_inequality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_param, 0, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_inequality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -5); isl_constraint_set_constant(c, v); bset = isl_basic_set_add_constraint(bset, c); isl_local_space_free(ls); isl_basic_set_free(bset); isl_int_clear(v); return 0; } static int test_dim(isl_ctx *ctx) { const char *str; isl_map *map1, *map2; int equal; map1 = isl_map_read_from_str(ctx, "[n] -> { [i] -> [j] : exists (a = [i/10] : i - 10a <= n ) }"); map1 = isl_map_add_dims(map1, isl_dim_in, 1); map2 = isl_map_read_from_str(ctx, "[n] -> { [i,k] -> [j] : exists (a = [i/10] : i - 10a <= n ) }"); equal = isl_map_is_equal(map1, map2); isl_map_free(map2); map1 = isl_map_project_out(map1, isl_dim_in, 0, 1); map2 = isl_map_read_from_str(ctx, "[n] -> { [i] -> [j] : n >= 0 }"); if (equal >= 0 && equal) equal = isl_map_is_equal(map1, map2); isl_map_free(map1); isl_map_free(map2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "[n] -> { [i] -> [] : exists a : 0 <= i <= n and i = 2 a }"; map1 = isl_map_read_from_str(ctx, str); str = "{ [i] -> [j] : exists a : 0 <= i <= j and i = 2 a }"; map2 = isl_map_read_from_str(ctx, str); map1 = isl_map_move_dims(map1, isl_dim_out, 0, isl_dim_param, 0, 1); equal = isl_map_is_equal(map1, map2); isl_map_free(map1); isl_map_free(map2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } struct { __isl_give isl_val *(*op)(__isl_take isl_val *v); const char *arg; const char *res; } val_un_tests[] = { { &isl_val_neg, "0", "0" }, { &isl_val_abs, "0", "0" }, { &isl_val_2exp, "0", "1" }, { &isl_val_floor, "0", "0" }, { &isl_val_ceil, "0", "0" }, { &isl_val_neg, "1", "-1" }, { &isl_val_neg, "-1", "1" }, { &isl_val_neg, "1/2", "-1/2" }, { &isl_val_neg, "-1/2", "1/2" }, { &isl_val_neg, "infty", "-infty" }, { &isl_val_neg, "-infty", "infty" }, { &isl_val_neg, "NaN", "NaN" }, { &isl_val_abs, "1", "1" }, { &isl_val_abs, "-1", "1" }, { &isl_val_abs, "1/2", "1/2" }, { &isl_val_abs, "-1/2", "1/2" }, { &isl_val_abs, "infty", "infty" }, { &isl_val_abs, "-infty", "infty" }, { &isl_val_abs, "NaN", "NaN" }, { &isl_val_floor, "1", "1" }, { &isl_val_floor, "-1", "-1" }, { &isl_val_floor, "1/2", "0" }, { &isl_val_floor, "-1/2", "-1" }, { &isl_val_floor, "infty", "infty" }, { &isl_val_floor, "-infty", "-infty" }, { &isl_val_floor, "NaN", "NaN" }, { &isl_val_ceil, "1", "1" }, { &isl_val_ceil, "-1", "-1" }, { &isl_val_ceil, "1/2", "1" }, { &isl_val_ceil, "-1/2", "0" }, { &isl_val_ceil, "infty", "infty" }, { &isl_val_ceil, "-infty", "-infty" }, { &isl_val_ceil, "NaN", "NaN" }, { &isl_val_2exp, "-3", "1/8" }, { &isl_val_2exp, "-1", "1/2" }, { &isl_val_2exp, "1", "2" }, { &isl_val_2exp, "2", "4" }, { &isl_val_2exp, "3", "8" }, { &isl_val_inv, "1", "1" }, { &isl_val_inv, "2", "1/2" }, { &isl_val_inv, "1/2", "2" }, { &isl_val_inv, "-2", "-1/2" }, { &isl_val_inv, "-1/2", "-2" }, { &isl_val_inv, "0", "NaN" }, { &isl_val_inv, "NaN", "NaN" }, { &isl_val_inv, "infty", "0" }, { &isl_val_inv, "-infty", "0" }, }; /* Perform some basic tests of unary operations on isl_val objects. */ static int test_un_val(isl_ctx *ctx) { int i; isl_val *v, *res; __isl_give isl_val *(*fn)(__isl_take isl_val *v); int ok; for (i = 0; i < ARRAY_SIZE(val_un_tests); ++i) { v = isl_val_read_from_str(ctx, val_un_tests[i].arg); res = isl_val_read_from_str(ctx, val_un_tests[i].res); fn = val_un_tests[i].op; v = fn(v); if (isl_val_is_nan(res)) ok = isl_val_is_nan(v); else ok = isl_val_eq(v, res); isl_val_free(v); isl_val_free(res); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } return 0; } struct { __isl_give isl_val *(*fn)(__isl_take isl_val *v1, __isl_take isl_val *v2); } val_bin_op[] = { ['+'] = { &isl_val_add }, ['-'] = { &isl_val_sub }, ['*'] = { &isl_val_mul }, ['/'] = { &isl_val_div }, ['g'] = { &isl_val_gcd }, ['m'] = { &isl_val_min }, ['M'] = { &isl_val_max }, }; struct { const char *arg1; unsigned char op; const char *arg2; const char *res; } val_bin_tests[] = { { "0", '+', "0", "0" }, { "1", '+', "0", "1" }, { "1", '+', "1", "2" }, { "1", '-', "1", "0" }, { "1", '*', "1", "1" }, { "1", '/', "1", "1" }, { "2", '*', "3", "6" }, { "2", '*', "1/2", "1" }, { "2", '*', "1/3", "2/3" }, { "2/3", '*', "3/5", "2/5" }, { "2/3", '*', "7/5", "14/15" }, { "2", '/', "1/2", "4" }, { "-2", '/', "-1/2", "4" }, { "-2", '/', "1/2", "-4" }, { "2", '/', "-1/2", "-4" }, { "2", '/', "2", "1" }, { "2", '/', "3", "2/3" }, { "2/3", '/', "5/3", "2/5" }, { "2/3", '/', "5/7", "14/15" }, { "0", '/', "0", "NaN" }, { "42", '/', "0", "NaN" }, { "-42", '/', "0", "NaN" }, { "infty", '/', "0", "NaN" }, { "-infty", '/', "0", "NaN" }, { "NaN", '/', "0", "NaN" }, { "0", '/', "NaN", "NaN" }, { "42", '/', "NaN", "NaN" }, { "-42", '/', "NaN", "NaN" }, { "infty", '/', "NaN", "NaN" }, { "-infty", '/', "NaN", "NaN" }, { "NaN", '/', "NaN", "NaN" }, { "0", '/', "infty", "0" }, { "42", '/', "infty", "0" }, { "-42", '/', "infty", "0" }, { "infty", '/', "infty", "NaN" }, { "-infty", '/', "infty", "NaN" }, { "NaN", '/', "infty", "NaN" }, { "0", '/', "-infty", "0" }, { "42", '/', "-infty", "0" }, { "-42", '/', "-infty", "0" }, { "infty", '/', "-infty", "NaN" }, { "-infty", '/', "-infty", "NaN" }, { "NaN", '/', "-infty", "NaN" }, { "1", '-', "1/3", "2/3" }, { "1/3", '+', "1/2", "5/6" }, { "1/2", '+', "1/2", "1" }, { "3/4", '-', "1/4", "1/2" }, { "1/2", '-', "1/3", "1/6" }, { "infty", '+', "42", "infty" }, { "infty", '+', "infty", "infty" }, { "42", '+', "infty", "infty" }, { "infty", '-', "infty", "NaN" }, { "infty", '*', "infty", "infty" }, { "infty", '*', "-infty", "-infty" }, { "-infty", '*', "infty", "-infty" }, { "-infty", '*', "-infty", "infty" }, { "0", '*', "infty", "NaN" }, { "1", '*', "infty", "infty" }, { "infty", '*', "0", "NaN" }, { "infty", '*', "42", "infty" }, { "42", '-', "infty", "-infty" }, { "infty", '+', "-infty", "NaN" }, { "4", 'g', "6", "2" }, { "5", 'g', "6", "1" }, { "42", 'm', "3", "3" }, { "42", 'M', "3", "42" }, { "3", 'm', "42", "3" }, { "3", 'M', "42", "42" }, { "42", 'm', "infty", "42" }, { "42", 'M', "infty", "infty" }, { "42", 'm', "-infty", "-infty" }, { "42", 'M', "-infty", "42" }, { "42", 'm', "NaN", "NaN" }, { "42", 'M', "NaN", "NaN" }, { "infty", 'm', "-infty", "-infty" }, { "infty", 'M', "-infty", "infty" }, }; /* Perform some basic tests of binary operations on isl_val objects. */ static int test_bin_val(isl_ctx *ctx) { int i; isl_val *v1, *v2, *res; __isl_give isl_val *(*fn)(__isl_take isl_val *v1, __isl_take isl_val *v2); int ok; for (i = 0; i < ARRAY_SIZE(val_bin_tests); ++i) { v1 = isl_val_read_from_str(ctx, val_bin_tests[i].arg1); v2 = isl_val_read_from_str(ctx, val_bin_tests[i].arg2); res = isl_val_read_from_str(ctx, val_bin_tests[i].res); fn = val_bin_op[val_bin_tests[i].op].fn; v1 = fn(v1, v2); if (isl_val_is_nan(res)) ok = isl_val_is_nan(v1); else ok = isl_val_eq(v1, res); isl_val_free(v1); isl_val_free(res); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } return 0; } /* Perform some basic tests on isl_val objects. */ static int test_val(isl_ctx *ctx) { if (test_un_val(ctx) < 0) return -1; if (test_bin_val(ctx) < 0) return -1; return 0; } static int test_div(isl_ctx *ctx) { unsigned n; const char *str; int empty; isl_int v; isl_space *dim; isl_set *set; isl_local_space *ls; struct isl_basic_set *bset; struct isl_constraint *c; isl_int_init(v); /* test 1 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_constant(c, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_constant(c, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 2); assert(bset && bset->n_div == 1); isl_local_space_free(ls); isl_basic_set_free(bset); /* test 2 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_constant(c, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_constant(c, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 2); assert(bset && bset->n_div == 1); isl_local_space_free(ls); isl_basic_set_free(bset); /* test 3 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_constant(c, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -3); isl_constraint_set_constant(c, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 4); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 2); assert(bset && bset->n_div == 1); isl_local_space_free(ls); isl_basic_set_free(bset); /* test 4 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 2); isl_constraint_set_constant(c, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_constant(c, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 6); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 2); assert(isl_basic_set_is_empty(bset)); isl_local_space_free(ls); isl_basic_set_free(bset); /* test 5 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 2, 1); assert(bset && bset->n_div == 0); isl_basic_set_free(bset); isl_local_space_free(ls); /* test 6 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 6); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 2, 1); assert(bset && bset->n_div == 1); isl_basic_set_free(bset); isl_local_space_free(ls); /* test 7 */ /* This test is a bit tricky. We set up an equality * a + 3b + 3c = 6 e0 * Normalization of divs creates _two_ divs * a = 3 e0 * c - b - e0 = 2 e1 * Afterwards e0 is removed again because it has coefficient -1 * and we end up with the original equality and div again. * Perhaps we can avoid the introduction of this temporary div. */ dim = isl_space_set_alloc(ctx, 0, 4); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); isl_int_set_si(v, 6); isl_constraint_set_coefficient(c, isl_dim_set, 3, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 3, 1); /* Test disabled for now */ /* assert(bset && bset->n_div == 1); */ isl_local_space_free(ls); isl_basic_set_free(bset); /* test 8 */ dim = isl_space_set_alloc(ctx, 0, 5); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); isl_int_set_si(v, -3); isl_constraint_set_coefficient(c, isl_dim_set, 3, v); isl_int_set_si(v, 6); isl_constraint_set_coefficient(c, isl_dim_set, 4, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); isl_int_set_si(v, 1); isl_constraint_set_constant(c, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 4, 1); /* Test disabled for now */ /* assert(bset && bset->n_div == 1); */ isl_local_space_free(ls); isl_basic_set_free(bset); /* test 9 */ dim = isl_space_set_alloc(ctx, 0, 4); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 1, v); isl_int_set_si(v, -2); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, -1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, 3); isl_constraint_set_coefficient(c, isl_dim_set, 3, v); isl_int_set_si(v, 2); isl_constraint_set_constant(c, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 2, 2); bset = isl_basic_set_fix_si(bset, isl_dim_set, 0, 2); assert(!isl_basic_set_is_empty(bset)); isl_local_space_free(ls); isl_basic_set_free(bset); /* test 10 */ dim = isl_space_set_alloc(ctx, 0, 3); bset = isl_basic_set_universe(isl_space_copy(dim)); ls = isl_local_space_from_space(dim); c = isl_constraint_alloc_equality(isl_local_space_copy(ls)); isl_int_set_si(v, 1); isl_constraint_set_coefficient(c, isl_dim_set, 0, v); isl_int_set_si(v, -2); isl_constraint_set_coefficient(c, isl_dim_set, 2, v); bset = isl_basic_set_add_constraint(bset, c); bset = isl_basic_set_project_out(bset, isl_dim_set, 2, 1); bset = isl_basic_set_fix_si(bset, isl_dim_set, 0, 2); isl_local_space_free(ls); isl_basic_set_free(bset); isl_int_clear(v); str = "{ [i] : exists (e0, e1: 3e1 >= 1 + 2e0 and " "8e1 <= -1 + 5i - 5e0 and 2e1 >= 1 + 2i - 5e0) }"; set = isl_set_read_from_str(ctx, str); set = isl_set_compute_divs(set); isl_set_free(set); if (!set) return -1; str = "{ [i,j] : 2*[i/2] + 3 * [j/4] <= 10 and 2 i = j }"; bset = isl_basic_set_read_from_str(ctx, str); n = isl_basic_set_dim(bset, isl_dim_div); isl_basic_set_free(bset); if (!bset) return -1; if (n != 0) isl_die(ctx, isl_error_unknown, "expecting no existentials", return -1); str = "{ [i,j,k] : 3 + i + 2j >= 0 and 2 * [(i+2j)/4] <= k }"; set = isl_set_read_from_str(ctx, str); set = isl_set_remove_divs_involving_dims(set, isl_dim_set, 0, 2); set = isl_set_fix_si(set, isl_dim_set, 2, -3); empty = isl_set_is_empty(set); isl_set_free(set); if (empty < 0) return -1; if (!empty) isl_die(ctx, isl_error_unknown, "result not as accurate as expected", return -1); return 0; } void test_application_case(struct isl_ctx *ctx, const char *name) { char *filename; FILE *input; struct isl_basic_set *bset1, *bset2; struct isl_basic_map *bmap; filename = get_filename(ctx, name, "omega"); assert(filename); input = fopen(filename, "r"); assert(input); bset1 = isl_basic_set_read_from_file(ctx, input); bmap = isl_basic_map_read_from_file(ctx, input); bset1 = isl_basic_set_apply(bset1, bmap); bset2 = isl_basic_set_read_from_file(ctx, input); assert(isl_basic_set_is_equal(bset1, bset2) == 1); isl_basic_set_free(bset1); isl_basic_set_free(bset2); free(filename); fclose(input); } static int test_application(isl_ctx *ctx) { test_application_case(ctx, "application"); test_application_case(ctx, "application2"); return 0; } void test_affine_hull_case(struct isl_ctx *ctx, const char *name) { char *filename; FILE *input; struct isl_basic_set *bset1, *bset2; filename = get_filename(ctx, name, "polylib"); assert(filename); input = fopen(filename, "r"); assert(input); bset1 = isl_basic_set_read_from_file(ctx, input); bset2 = isl_basic_set_read_from_file(ctx, input); bset1 = isl_basic_set_affine_hull(bset1); assert(isl_basic_set_is_equal(bset1, bset2) == 1); isl_basic_set_free(bset1); isl_basic_set_free(bset2); free(filename); fclose(input); } int test_affine_hull(struct isl_ctx *ctx) { const char *str; isl_set *set; isl_basic_set *bset, *bset2; int n; int subset; test_affine_hull_case(ctx, "affine2"); test_affine_hull_case(ctx, "affine"); test_affine_hull_case(ctx, "affine3"); str = "[m] -> { [i0] : exists (e0, e1: e1 <= 1 + i0 and " "m >= 3 and 4i0 <= 2 + m and e1 >= i0 and " "e1 >= 0 and e1 <= 2 and e1 >= 1 + 2e0 and " "2e1 <= 1 + m + 4e0 and 2e1 >= 2 - m + 4i0 - 4e0) }"; set = isl_set_read_from_str(ctx, str); bset = isl_set_affine_hull(set); n = isl_basic_set_dim(bset, isl_dim_div); isl_basic_set_free(bset); if (n != 0) isl_die(ctx, isl_error_unknown, "not expecting any divs", return -1); /* Check that isl_map_affine_hull is not confused by * the reordering of divs in isl_map_align_divs. */ str = "{ [a, b, c, 0] : exists (e0 = [(b)/32], e1 = [(c)/32]: " "32e0 = b and 32e1 = c); " "[a, 0, c, 0] : exists (e0 = [(c)/32]: 32e0 = c) }"; set = isl_set_read_from_str(ctx, str); bset = isl_set_affine_hull(set); isl_basic_set_free(bset); if (!bset) return -1; str = "{ [a] : exists e0, e1, e2: 32e1 = 31 + 31a + 31e0 and " "32e2 = 31 + 31e0 }"; set = isl_set_read_from_str(ctx, str); bset = isl_set_affine_hull(set); str = "{ [a] : exists e : a = 32 e }"; bset2 = isl_basic_set_read_from_str(ctx, str); subset = isl_basic_set_is_subset(bset, bset2); isl_basic_set_free(bset); isl_basic_set_free(bset2); if (subset < 0) return -1; if (!subset) isl_die(ctx, isl_error_unknown, "not as accurate as expected", return -1); return 0; } /* Pairs of maps and the corresponding expected results of * isl_map_plain_unshifted_simple_hull. */ struct { const char *map; const char *hull; } plain_unshifted_simple_hull_tests[] = { { "{ [i] -> [j] : i >= 1 and j >= 1 or i >= 2 and j <= 10 }", "{ [i] -> [j] : i >= 1 }" }, { "{ [n] -> [i,j,k] : (i mod 3 = 2 and j mod 4 = 2) or " "(j mod 4 = 2 and k mod 6 = n) }", "{ [n] -> [i,j,k] : j mod 4 = 2 }" }, }; /* Basic tests for isl_map_plain_unshifted_simple_hull. */ static int test_plain_unshifted_simple_hull(isl_ctx *ctx) { int i; isl_map *map; isl_basic_map *hull, *expected; isl_bool equal; for (i = 0; i < ARRAY_SIZE(plain_unshifted_simple_hull_tests); ++i) { const char *str; str = plain_unshifted_simple_hull_tests[i].map; map = isl_map_read_from_str(ctx, str); str = plain_unshifted_simple_hull_tests[i].hull; expected = isl_basic_map_read_from_str(ctx, str); hull = isl_map_plain_unshifted_simple_hull(map); equal = isl_basic_map_is_equal(hull, expected); isl_basic_map_free(hull); isl_basic_map_free(expected); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected hull", return -1); } return 0; } static int test_simple_hull(struct isl_ctx *ctx) { const char *str; isl_set *set; isl_basic_set *bset; isl_bool is_empty; str = "{ [x, y] : 3y <= 2x and y >= -2 + 2x and 2y >= 2 - x;" "[y, x] : 3y <= 2x and y >= -2 + 2x and 2y >= 2 - x }"; set = isl_set_read_from_str(ctx, str); bset = isl_set_simple_hull(set); is_empty = isl_basic_set_is_empty(bset); isl_basic_set_free(bset); if (is_empty == isl_bool_error) return -1; if (is_empty == isl_bool_false) isl_die(ctx, isl_error_unknown, "Empty set should be detected", return -1); if (test_plain_unshifted_simple_hull(ctx) < 0) return -1; return 0; } void test_convex_hull_case(struct isl_ctx *ctx, const char *name) { char *filename; FILE *input; struct isl_basic_set *bset1, *bset2; struct isl_set *set; filename = get_filename(ctx, name, "polylib"); assert(filename); input = fopen(filename, "r"); assert(input); bset1 = isl_basic_set_read_from_file(ctx, input); bset2 = isl_basic_set_read_from_file(ctx, input); set = isl_basic_set_union(bset1, bset2); bset1 = isl_set_convex_hull(set); bset2 = isl_basic_set_read_from_file(ctx, input); assert(isl_basic_set_is_equal(bset1, bset2) == 1); isl_basic_set_free(bset1); isl_basic_set_free(bset2); free(filename); fclose(input); } struct { const char *set; const char *hull; } convex_hull_tests[] = { { "{ [i0, i1, i2] : (i2 = 1 and i0 = 0 and i1 >= 0) or " "(i0 = 1 and i1 = 0 and i2 = 1) or " "(i0 = 0 and i1 = 0 and i2 = 0) }", "{ [i0, i1, i2] : i0 >= 0 and i2 >= i0 and i2 <= 1 and i1 >= 0 }" }, { "[n] -> { [i0, i1, i0] : i0 <= -4 + n; " "[i0, i0, i2] : n = 6 and i0 >= 0 and i2 <= 7 - i0 and " "i2 <= 5 and i2 >= 4; " "[3, i1, 3] : n = 5 and i1 <= 2 and i1 >= 0 }", "[n] -> { [i0, i1, i2] : i2 <= -1 + n and 2i2 <= -6 + 3n - i0 and " "i2 <= 5 + i0 and i2 >= i0 }" }, { "{ [x, y] : 3y <= 2x and y >= -2 + 2x and 2y >= 2 - x }", "{ [x, y] : 1 = 0 }" }, }; static int test_convex_hull_algo(isl_ctx *ctx, int convex) { int i; int orig_convex = ctx->opt->convex; ctx->opt->convex = convex; test_convex_hull_case(ctx, "convex0"); test_convex_hull_case(ctx, "convex1"); test_convex_hull_case(ctx, "convex2"); test_convex_hull_case(ctx, "convex3"); test_convex_hull_case(ctx, "convex4"); test_convex_hull_case(ctx, "convex5"); test_convex_hull_case(ctx, "convex6"); test_convex_hull_case(ctx, "convex7"); test_convex_hull_case(ctx, "convex8"); test_convex_hull_case(ctx, "convex9"); test_convex_hull_case(ctx, "convex10"); test_convex_hull_case(ctx, "convex11"); test_convex_hull_case(ctx, "convex12"); test_convex_hull_case(ctx, "convex13"); test_convex_hull_case(ctx, "convex14"); test_convex_hull_case(ctx, "convex15"); for (i = 0; i < ARRAY_SIZE(convex_hull_tests); ++i) { isl_set *set1, *set2; int equal; set1 = isl_set_read_from_str(ctx, convex_hull_tests[i].set); set2 = isl_set_read_from_str(ctx, convex_hull_tests[i].hull); set1 = isl_set_from_basic_set(isl_set_convex_hull(set1)); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected convex hull", return -1); } ctx->opt->convex = orig_convex; return 0; } static int test_convex_hull(isl_ctx *ctx) { if (test_convex_hull_algo(ctx, ISL_CONVEX_HULL_FM) < 0) return -1; if (test_convex_hull_algo(ctx, ISL_CONVEX_HULL_WRAP) < 0) return -1; return 0; } void test_gist_case(struct isl_ctx *ctx, const char *name) { char *filename; FILE *input; struct isl_basic_set *bset1, *bset2; filename = get_filename(ctx, name, "polylib"); assert(filename); input = fopen(filename, "r"); assert(input); bset1 = isl_basic_set_read_from_file(ctx, input); bset2 = isl_basic_set_read_from_file(ctx, input); bset1 = isl_basic_set_gist(bset1, bset2); bset2 = isl_basic_set_read_from_file(ctx, input); assert(isl_basic_set_is_equal(bset1, bset2) == 1); isl_basic_set_free(bset1); isl_basic_set_free(bset2); free(filename); fclose(input); } /* Inputs to isl_map_plain_gist_basic_map, along with the expected output. */ struct { const char *map; const char *context; const char *gist; } plain_gist_tests[] = { { "{ [i] -> [j] : i >= 1 and j >= 1 or i >= 2 and j <= 10 }", "{ [i] -> [j] : i >= 1 }", "{ [i] -> [j] : j >= 1 or i >= 2 and j <= 10 }" }, { "{ [n] -> [i,j,k] : (i mod 3 = 2 and j mod 4 = 2) or " "(j mod 4 = 2 and k mod 6 = n) }", "{ [n] -> [i,j,k] : j mod 4 = 2 }", "{ [n] -> [i,j,k] : (i mod 3 = 2) or (k mod 6 = n) }" }, { "{ [i] -> [j] : i > j and (exists a,b : i <= 2a + 5b <= 2) }", "{ [i] -> [j] : i > j }", "{ [i] -> [j] : exists a,b : i <= 2a + 5b <= 2 }" }, }; /* Basic tests for isl_map_plain_gist_basic_map. */ static int test_plain_gist(isl_ctx *ctx) { int i; for (i = 0; i < ARRAY_SIZE(plain_gist_tests); ++i) { const char *str; int equal; isl_map *map, *gist; isl_basic_map *context; map = isl_map_read_from_str(ctx, plain_gist_tests[i].map); str = plain_gist_tests[i].context; context = isl_basic_map_read_from_str(ctx, str); map = isl_map_plain_gist_basic_map(map, context); gist = isl_map_read_from_str(ctx, plain_gist_tests[i].gist); equal = isl_map_is_equal(map, gist); isl_map_free(map); isl_map_free(gist); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect gist result", return -1); } return 0; } struct { const char *set; const char *context; const char *gist; } gist_tests[] = { { "{ [a, b, c] : a <= 15 and a >= 1 }", "{ [a, b, c] : exists (e0 = floor((-1 + a)/16): a >= 1 and " "c <= 30 and 32e0 >= -62 + 2a + 2b - c and b >= 0) }", "{ [a, b, c] : a <= 15 }" }, { "{ : }", "{ : 1 = 0 }", "{ : }" }, { "{ : 1 = 0 }", "{ : 1 = 0 }", "{ : }" }, { "[M] -> { [x] : exists (e0 = floor((-2 + x)/3): 3e0 = -2 + x) }", "[M] -> { [3M] }" , "[M] -> { [x] : 1 = 0 }" }, { "{ [m, n, a, b] : a <= 2147 + n }", "{ [m, n, a, b] : (m >= 1 and n >= 1 and a <= 2148 - m and " "b <= 2148 - n and b >= 0 and b >= 2149 - n - a) or " "(n >= 1 and a >= 0 and b <= 2148 - n - a and " "b >= 0) }", "{ [m, n, ku, kl] }" }, { "{ [a, a, b] : a >= 10 }", "{ [a, b, c] : c >= a and c <= b and c >= 2 }", "{ [a, a, b] : a >= 10 }" }, { "{ [i, j] : i >= 0 and i + j >= 0 }", "{ [i, j] : i <= 0 }", "{ [0, j] : j >= 0 }" }, /* Check that no constraints on i6 are introduced in the gist */ { "[t1] -> { [i4, i6] : exists (e0 = floor((1530 - 4t1 - 5i4)/20): " "20e0 <= 1530 - 4t1 - 5i4 and 20e0 >= 1511 - 4t1 - 5i4 and " "5e0 <= 381 - t1 and i4 <= 1) }", "[t1] -> { [i4, i6] : exists (e0 = floor((-t1 + i6)/5): " "5e0 = -t1 + i6 and i6 <= 6 and i6 >= 3) }", "[t1] -> { [i4, i6] : exists (e0 = floor((1530 - 4t1 - 5i4)/20): " "i4 <= 1 and 5e0 <= 381 - t1 and 20e0 <= 1530 - 4t1 - 5i4 and " "20e0 >= 1511 - 4t1 - 5i4) }" }, /* Check that no constraints on i6 are introduced in the gist */ { "[t1, t2] -> { [i4, i5, i6] : exists (e0 = floor((1 + i4)/2), " "e1 = floor((1530 - 4t1 - 5i4)/20), " "e2 = floor((-4t1 - 5i4 + 10*floor((1 + i4)/2))/20), " "e3 = floor((-1 + i4)/2): t2 = 0 and 2e3 = -1 + i4 and " "20e2 >= -19 - 4t1 - 5i4 + 10e0 and 5e2 <= 1 - t1 and " "2e0 <= 1 + i4 and 2e0 >= i4 and " "20e1 <= 1530 - 4t1 - 5i4 and " "20e1 >= 1511 - 4t1 - 5i4 and i4 <= 1 and " "5e1 <= 381 - t1 and 20e2 <= -4t1 - 5i4 + 10e0) }", "[t1, t2] -> { [i4, i5, i6] : exists (e0 = floor((-17 + i4)/2), " "e1 = floor((-t1 + i6)/5): 5e1 = -t1 + i6 and " "2e0 <= -17 + i4 and 2e0 >= -18 + i4 and " "10e0 <= -91 + 5i4 + 4i6 and " "10e0 >= -105 + 5i4 + 4i6) }", "[t1, t2] -> { [i4, i5, i6] : exists (e0 = floor((381 - t1)/5), " "e1 = floor((-1 + i4)/2): t2 = 0 and 2e1 = -1 + i4 and " "i4 <= 1 and 5e0 <= 381 - t1 and 20e0 >= 1511 - 4t1 - 5i4) }" }, { "{ [0, 0, q, p] : -5 <= q <= 5 and p >= 0 }", "{ [a, b, q, p] : b >= 1 + a }", "{ [a, b, q, p] : false }" }, }; static int test_gist(struct isl_ctx *ctx) { int i; const char *str; isl_basic_set *bset1, *bset2; isl_map *map1, *map2; int equal; for (i = 0; i < ARRAY_SIZE(gist_tests); ++i) { int equal_input; isl_set *set1, *set2, *copy; set1 = isl_set_read_from_str(ctx, gist_tests[i].set); set2 = isl_set_read_from_str(ctx, gist_tests[i].context); copy = isl_set_copy(set1); set1 = isl_set_gist(set1, set2); set2 = isl_set_read_from_str(ctx, gist_tests[i].gist); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); set1 = isl_set_read_from_str(ctx, gist_tests[i].set); equal_input = isl_set_is_equal(set1, copy); isl_set_free(set1); isl_set_free(copy); if (equal < 0 || equal_input < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect gist result", return -1); if (!equal_input) isl_die(ctx, isl_error_unknown, "gist modified input", return -1); } test_gist_case(ctx, "gist1"); str = "[p0, p2, p3, p5, p6, p10] -> { [] : " "exists (e0 = [(15 + p0 + 15p6 + 15p10)/16], e1 = [(p5)/8], " "e2 = [(p6)/128], e3 = [(8p2 - p5)/128], " "e4 = [(128p3 - p6)/4096]: 8e1 = p5 and 128e2 = p6 and " "128e3 = 8p2 - p5 and 4096e4 = 128p3 - p6 and p2 >= 0 and " "16e0 >= 16 + 16p6 + 15p10 and p2 <= 15 and p3 >= 0 and " "p3 <= 31 and p6 >= 128p3 and p5 >= 8p2 and p10 >= 0 and " "16e0 <= 15 + p0 + 15p6 + 15p10 and 16e0 >= p0 + 15p6 + 15p10 and " "p10 <= 15 and p10 <= -1 + p0 - p6) }"; bset1 = isl_basic_set_read_from_str(ctx, str); str = "[p0, p2, p3, p5, p6, p10] -> { [] : exists (e0 = [(p5)/8], " "e1 = [(p6)/128], e2 = [(8p2 - p5)/128], " "e3 = [(128p3 - p6)/4096]: 8e0 = p5 and 128e1 = p6 and " "128e2 = 8p2 - p5 and 4096e3 = 128p3 - p6 and p5 >= -7 and " "p2 >= 0 and 8p2 <= -1 + p0 and p2 <= 15 and p3 >= 0 and " "p3 <= 31 and 128p3 <= -1 + p0 and p6 >= -127 and " "p5 <= -1 + p0 and p6 <= -1 + p0 and p6 >= 128p3 and " "p0 >= 1 and p5 >= 8p2 and p10 >= 0 and p10 <= 15 ) }"; bset2 = isl_basic_set_read_from_str(ctx, str); bset1 = isl_basic_set_gist(bset1, bset2); assert(bset1 && bset1->n_div == 0); isl_basic_set_free(bset1); /* Check that the integer divisions of the second disjunct * do not spread to the first disjunct. */ str = "[t1] -> { S_0[] -> A[o0] : (exists (e0 = [(-t1 + o0)/16]: " "16e0 = -t1 + o0 and o0 >= 0 and o0 <= 15 and t1 >= 0)) or " "(exists (e0 = [(-1 + t1)/16], " "e1 = [(-16 + t1 - 16e0)/4294967296]: " "4294967296e1 = -16 + t1 - o0 - 16e0 and " "16e0 <= -1 + t1 and 16e0 >= -16 + t1 and o0 >= 0 and " "o0 <= 4294967295 and t1 <= -1)) }"; map1 = isl_map_read_from_str(ctx, str); str = "[t1] -> { S_0[] -> A[o0] : t1 >= 0 and t1 <= 4294967295 }"; map2 = isl_map_read_from_str(ctx, str); map1 = isl_map_gist(map1, map2); if (!map1) return -1; if (map1->n != 1) isl_die(ctx, isl_error_unknown, "expecting single disjunct", isl_map_free(map1); return -1); if (isl_basic_map_dim(map1->p[0], isl_dim_div) != 1) isl_die(ctx, isl_error_unknown, "expecting single div", isl_map_free(map1); return -1); isl_map_free(map1); if (test_plain_gist(ctx) < 0) return -1; return 0; } int test_coalesce_set(isl_ctx *ctx, const char *str, int check_one) { isl_set *set, *set2; int equal; int one; set = isl_set_read_from_str(ctx, str); set = isl_set_coalesce(set); set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set, set2); one = set && set->n == 1; isl_set_free(set); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "coalesced set not equal to input", return -1); if (check_one && !one) isl_die(ctx, isl_error_unknown, "coalesced set should not be a union", return -1); return 0; } /* Inputs for coalescing tests with unbounded wrapping. * "str" is a string representation of the input set. * "single_disjunct" is set if we expect the result to consist of * a single disjunct. */ struct { int single_disjunct; const char *str; } coalesce_unbounded_tests[] = { { 1, "{ [x,y,z] : y + 2 >= 0 and x - y + 1 >= 0 and " "-x - y + 1 >= 0 and -3 <= z <= 3;" "[x,y,z] : -x+z + 20 >= 0 and -x-z + 20 >= 0 and " "x-z + 20 >= 0 and x+z + 20 >= 0 and " "-10 <= y <= 0}" }, { 1, "{ [x,y] : 0 <= x,y <= 10; [5,y]: 4 <= y <= 11 }" }, { 1, "{ [x,0,0] : -5 <= x <= 5; [0,y,1] : -5 <= y <= 5 }" }, { 1, "{ [x,y] : 0 <= x <= 10 and 0 >= y >= -1 and x+y >= 0; [0,1] }" }, { 1, "{ [x,y] : (0 <= x,y <= 4) or (2 <= x,y <= 5 and x + y <= 9) }" }, }; /* Test the functionality of isl_set_coalesce with the bounded wrapping * option turned off. */ int test_coalesce_unbounded_wrapping(isl_ctx *ctx) { int i; int r = 0; int bounded; bounded = isl_options_get_coalesce_bounded_wrapping(ctx); isl_options_set_coalesce_bounded_wrapping(ctx, 0); for (i = 0; i < ARRAY_SIZE(coalesce_unbounded_tests); ++i) { const char *str = coalesce_unbounded_tests[i].str; int check_one = coalesce_unbounded_tests[i].single_disjunct; if (test_coalesce_set(ctx, str, check_one) >= 0) continue; r = -1; break; } isl_options_set_coalesce_bounded_wrapping(ctx, bounded); return r; } /* Inputs for coalescing tests. * "str" is a string representation of the input set. * "single_disjunct" is set if we expect the result to consist of * a single disjunct. */ struct { int single_disjunct; const char *str; } coalesce_tests[] = { { 1, "{[x,y]: x >= 0 & x <= 10 & y >= 0 & y <= 10 or " "y >= x & x >= 2 & 5 >= y }" }, { 1, "{[x,y]: y >= 0 & 2x + y <= 30 & y <= 10 & x >= 0 or " "x + y >= 10 & y <= x & x + y <= 20 & y >= 0}" }, { 0, "{[x,y]: y >= 0 & 2x + y <= 30 & y <= 10 & x >= 0 or " "x + y >= 10 & y <= x & x + y <= 19 & y >= 0}" }, { 1, "{[x,y]: y >= 0 & x <= 5 & y <= x or " "y >= 0 & x >= 6 & x <= 10 & y <= x}" }, { 0, "{[x,y]: y >= 0 & x <= 5 & y <= x or " "y >= 0 & x >= 7 & x <= 10 & y <= x}" }, { 0, "{[x,y]: y >= 0 & x <= 5 & y <= x or " "y >= 0 & x >= 6 & x <= 10 & y + 1 <= x}" }, { 1, "{[x,y]: y >= 0 & x <= 5 & y <= x or y >= 0 & x = 6 & y <= 6}" }, { 0, "{[x,y]: y >= 0 & x <= 5 & y <= x or y >= 0 & x = 7 & y <= 6}" }, { 1, "{[x,y]: y >= 0 & x <= 5 & y <= x or y >= 0 & x = 6 & y <= 5}" }, { 0, "{[x,y]: y >= 0 & x <= 5 & y <= x or y >= 0 & x = 6 & y <= 7}" }, { 1, "[n] -> { [i] : i = 1 and n >= 2 or 2 <= i and i <= n }" }, { 0, "{[x,y] : x >= 0 and y >= 0 or 0 <= y and y <= 5 and x = -1}" }, { 1, "[n] -> { [i] : 1 <= i and i <= n - 1 or 2 <= i and i <= n }" }, { 0, "[n] -> { [[i0] -> [o0]] : exists (e0 = [(i0)/4], e1 = [(o0)/4], " "e2 = [(n)/2], e3 = [(-2 + i0)/4], e4 = [(-2 + o0)/4], " "e5 = [(-2n + i0)/4]: 2e2 = n and 4e3 = -2 + i0 and " "4e4 = -2 + o0 and i0 >= 8 + 2n and o0 >= 2 + i0 and " "o0 <= 56 + 2n and o0 <= -12 + 4n and i0 <= 57 + 2n and " "i0 <= -11 + 4n and o0 >= 6 + 2n and 4e0 <= i0 and " "4e0 >= -3 + i0 and 4e1 <= o0 and 4e1 >= -3 + o0 and " "4e5 <= -2n + i0 and 4e5 >= -3 - 2n + i0);" "[[i0] -> [o0]] : exists (e0 = [(i0)/4], e1 = [(o0)/4], " "e2 = [(n)/2], e3 = [(-2 + i0)/4], e4 = [(-2 + o0)/4], " "e5 = [(-2n + i0)/4]: 2e2 = n and 4e3 = -2 + i0 and " "4e4 = -2 + o0 and 2e0 >= 3 + n and e0 <= -4 + n and " "2e0 <= 27 + n and e1 <= -4 + n and 2e1 <= 27 + n and " "2e1 >= 2 + n and e1 >= 1 + e0 and i0 >= 7 + 2n and " "i0 <= -11 + 4n and i0 <= 57 + 2n and 4e0 <= -2 + i0 and " "4e0 >= -3 + i0 and o0 >= 6 + 2n and o0 <= -11 + 4n and " "o0 <= 57 + 2n and 4e1 <= -2 + o0 and 4e1 >= -3 + o0 and " "4e5 <= -2n + i0 and 4e5 >= -3 - 2n + i0 ) }" }, { 0, "[n, m] -> { [o0, o2, o3] : (o3 = 1 and o0 >= 1 + m and " "o0 <= n + m and o2 <= m and o0 >= 2 + n and o2 >= 3) or " "(o0 >= 2 + n and o0 >= 1 + m and o0 <= n + m and n >= 1 and " "o3 <= -1 + o2 and o3 >= 1 - m + o2 and o3 >= 2 and o3 <= n) }" }, { 0, "[M, N] -> { [[i0, i1, i2, i3, i4, i5, i6] -> " "[o0, o1, o2, o3, o4, o5, o6]] : " "(o6 <= -4 + 2M - 2N + i0 + i1 - i2 + i6 - o0 - o1 + o2 and " "o3 <= -2 + i3 and o6 >= 2 + i0 + i3 + i6 - o0 - o3 and " "o6 >= 2 - M + N + i3 + i4 + i6 - o3 - o4 and o0 <= -1 + i0 and " "o4 >= 4 - 3M + 3N - i0 - i1 + i2 + 2i3 + i4 + o0 + o1 - o2 - 2o3 " "and o6 <= -3 + 2M - 2N + i3 + i4 - i5 + i6 - o3 - o4 + o5 and " "2o6 <= -5 + 5M - 5N + 2i0 + i1 - i2 - i5 + 2i6 - 2o0 - o1 + o2 + o5 " "and o6 >= 2i0 + i1 + i6 - 2o0 - o1 and " "3o6 <= -5 + 4M - 4N + 2i0 + i1 - i2 + 2i3 + i4 - i5 + 3i6 " "- 2o0 - o1 + o2 - 2o3 - o4 + o5) or " "(N >= 2 and o3 <= -1 + i3 and o0 <= -1 + i0 and " "o6 >= i3 + i6 - o3 and M >= 0 and " "2o6 >= 1 + i0 + i3 + 2i6 - o0 - o3 and " "o6 >= 1 - M + i0 + i6 - o0 and N >= 2M and o6 >= i0 + i6 - o0) }" }, { 0, "[M, N] -> { [o0] : (o0 = 0 and M >= 1 and N >= 2) or " "(o0 = 0 and M >= 1 and N >= 2M and N >= 2 + M) or " "(o0 = 0 and M >= 2 and N >= 3) or " "(M = 0 and o0 = 0 and N >= 3) }" }, { 0, "{ [i0, i1, i2, i3] : (i1 = 10i0 and i0 >= 1 and 10i0 <= 100 and " "i3 <= 9 + 10 i2 and i3 >= 1 + 10i2 and i3 >= 0) or " "(i1 <= 9 + 10i0 and i1 >= 1 + 10i0 and i2 >= 0 and " "i0 >= 0 and i1 <= 100 and i3 <= 9 + 10i2 and i3 >= 1 + 10i2) }" }, { 0, "[M] -> { [i1] : (i1 >= 2 and i1 <= M) or (i1 = M and M >= 1) }" }, { 0, "{[x,y] : x,y >= 0; [x,y] : 10 <= x <= 20 and y >= -1 }" }, { 1, "{ [x, y] : (x >= 1 and y >= 1 and x <= 2 and y <= 2) or " "(y = 3 and x = 1) }" }, { 1, "[M] -> { [i0, i1, i2, i3, i4] : (i1 >= 3 and i4 >= 2 + i2 and " "i2 >= 2 and i0 >= 2 and i3 >= 1 + i2 and i0 <= M and " "i1 <= M and i3 <= M and i4 <= M) or " "(i1 >= 2 and i4 >= 1 + i2 and i2 >= 2 and i0 >= 2 and " "i3 >= 1 + i2 and i0 <= M and i1 <= -1 + M and i3 <= M and " "i4 <= -1 + M) }" }, { 1, "{ [x, y] : (x >= 0 and y >= 0 and x <= 10 and y <= 10) or " "(x >= 1 and y >= 1 and x <= 11 and y <= 11) }" }, { 0, "{[x,0] : x >= 0; [x,1] : x <= 20}" }, { 1, "{ [x, 1 - x] : 0 <= x <= 1; [0,0] }" }, { 1, "{ [0,0]; [i,i] : 1 <= i <= 10 }" }, { 0, "{ [0,0]; [i,j] : 1 <= i,j <= 10 }" }, { 1, "{ [0,0]; [i,2i] : 1 <= i <= 10 }" }, { 0, "{ [0,0]; [i,2i] : 2 <= i <= 10 }" }, { 0, "{ [1,0]; [i,2i] : 1 <= i <= 10 }" }, { 0, "{ [0,1]; [i,2i] : 1 <= i <= 10 }" }, { 0, "{ [a, b] : exists e : 2e = a and " "a >= 0 and (a <= 3 or (b <= 0 and b >= -4 + a)) }" }, { 0, "{ [i, j, i', j'] : i <= 2 and j <= 2 and " "j' >= -1 + 2i + j - 2i' and i' <= -1 + i and " "j >= 1 and j' <= i + j - i' and i >= 1; " "[1, 1, 1, 1] }" }, { 1, "{ [i,j] : exists a,b : i = 2a and j = 3b; " "[i,j] : exists a : j = 3a }" }, { 1, "{ [a, b, c] : (c <= 7 - b and b <= 1 and b >= 0 and " "c >= 3 + b and b <= 3 + 8a and b >= -26 + 8a and " "a >= 3) or " "(b <= 1 and c <= 7 and b >= 0 and c >= 4 + b and " "b <= 3 + 8a and b >= -26 + 8a and a >= 3) }" }, { 1, "{ [a, 0, c] : c >= 1 and c <= 29 and c >= -1 + 8a and " "c <= 6 + 8a and a >= 3; " "[a, -1, c] : c >= 1 and c <= 30 and c >= 8a and " "c <= 7 + 8a and a >= 3 and a <= 4 }" }, { 1, "{ [x,y] : 0 <= x <= 2 and y >= 0 and x + 2y <= 4; " "[x,0] : 3 <= x <= 4 }" }, { 1, "{ [x,y] : 0 <= x <= 3 and y >= 0 and x + 3y <= 6; " "[x,0] : 4 <= x <= 5 }" }, { 0, "{ [x,y] : 0 <= x <= 2 and y >= 0 and x + 2y <= 4; " "[x,0] : 3 <= x <= 5 }" }, { 0, "{ [x,y] : 0 <= x <= 2 and y >= 0 and x + y <= 4; " "[x,0] : 3 <= x <= 4 }" }, { 1, "{ [i0, i1] : i0 <= 122 and i0 >= 1 and 128i1 >= -249 + i0 and " "i1 <= 0; " "[i0, 0] : i0 >= 123 and i0 <= 124 }" }, { 1, "{ [0,0]; [1,1] }" }, { 1, "[n] -> { [k] : 16k <= -1 + n and k >= 1; [0] : n >= 2 }" }, { 1, "{ [k, ii, k - ii] : ii >= -6 + k and ii <= 6 and ii >= 1 and " "ii <= k;" "[k, 0, k] : k <= 6 and k >= 1 }" }, { 1, "{ [i,j] : i = 4 j and 0 <= i <= 100;" "[i,j] : 1 <= i <= 100 and i >= 4j + 1 and i <= 4j + 2 }" }, { 1, "{ [x,y] : x % 2 = 0 and y % 2 = 0; [x,x] : x % 2 = 0 }" }, { 1, "[n] -> { [1] : n >= 0;" "[x] : exists (e0 = floor((x)/2): x >= 2 and " "2e0 >= -1 + x and 2e0 <= x and 2e0 <= n) }" }, { 1, "[n] -> { [x, y] : exists (e0 = floor((x)/2), e1 = floor((y)/3): " "3e1 = y and x >= 2 and 2e0 >= -1 + x and " "2e0 <= x and 2e0 <= n);" "[1, y] : exists (e0 = floor((y)/3): 3e0 = y and " "n >= 0) }" }, { 1, "[t1] -> { [i0] : (exists (e0 = floor((63t1)/64): " "128e0 >= -134 + 127t1 and t1 >= 2 and " "64e0 <= 63t1 and 64e0 >= -63 + 63t1)) or " "t1 = 1 }" }, { 1, "{ [i, i] : exists (e0 = floor((1 + 2i)/3): 3e0 <= 2i and " "3e0 >= -1 + 2i and i <= 9 and i >= 1);" "[0, 0] }" }, { 1, "{ [t1] : exists (e0 = floor((-11 + t1)/2): 2e0 = -11 + t1 and " "t1 >= 13 and t1 <= 16);" "[t1] : t1 <= 15 and t1 >= 12 }" }, { 1, "{ [x,y] : x = 3y and 0 <= y <= 2; [-3,-1] }" }, { 1, "{ [x,y] : 2x = 3y and 0 <= y <= 4; [-3,-2] }" }, { 0, "{ [x,y] : 2x = 3y and 0 <= y <= 4; [-2,-2] }" }, { 0, "{ [x,y] : 2x = 3y and 0 <= y <= 4; [-3,-1] }" }, { 1, "{ [i] : exists j : i = 4 j and 0 <= i <= 100;" "[i] : exists j : 1 <= i <= 100 and i >= 4j + 1 and " "i <= 4j + 2 }" }, { 1, "{ [c0] : (exists (e0 : c0 - 1 <= 3e0 <= c0)) or " "(exists (e0 : 3e0 = -2 + c0)) }" }, { 0, "[n, b0, t0] -> " "{ [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12] : " "(exists (e0 = floor((-32b0 + i4)/1048576), " "e1 = floor((i8)/32): 1048576e0 = -32b0 + i4 and 32e1 = i8 and " "n <= 2147483647 and b0 <= 32767 and b0 >= 0 and " "32b0 <= -2 + n and t0 <= 31 and t0 >= 0 and i0 >= 8 + n and " "3i4 <= -96 + 3t0 + i0 and 3i4 >= -95 - n + 3t0 + i0 and " "i8 >= -157 + i0 - 4i4 and i8 >= 0 and " "i8 <= -33 + i0 - 4i4 and 3i8 <= -91 + 4n - i0)) or " "(exists (e0 = floor((-32b0 + i4)/1048576), " "e1 = floor((i8)/32): 1048576e0 = -32b0 + i4 and 32e1 = i8 and " "n <= 2147483647 and b0 <= 32767 and b0 >= 0 and " "32b0 <= -2 + n and t0 <= 31 and t0 >= 0 and i0 <= 7 + n and " "4i4 <= -3 + i0 and 3i4 <= -96 + 3t0 + i0 and " "3i4 >= -95 - n + 3t0 + i0 and i8 >= -157 + i0 - 4i4 and " "i8 >= 0 and i8 <= -4 + i0 - 3i4 and i8 <= -41 + i0));" "[i0, i1, i2, i3, 0, i5, i6, i7, i8, i9, i10, i11, i12] : " "(exists (e0 = floor((i8)/32): b0 = 0 and 32e0 = i8 and " "n <= 2147483647 and t0 <= 31 and t0 >= 0 and i0 >= 11 and " "i0 >= 96 - 3t0 and i0 <= 95 + n - 3t0 and i0 <= 7 + n and " "i8 >= -40 + i0 and i8 <= -10 + i0)) }" }, { 0, "{ [i0, i1, i2] : " "(exists (e0, e1 = floor((i0)/32), e2 = floor((i1)/32): " "32e1 = i0 and 32e2 = i1 and i1 >= -31 + i0 and " "i1 <= 31 + i0 and i2 >= -30 + i0 and i2 >= -30 + i1 and " "32e0 >= -30 + i0 and 32e0 >= -30 + i1 and " "32e0 >= -31 + i2 and 32e0 <= 30 + i2 and 32e0 <= 31 + i1 and " "32e0 <= 31 + i0)) or " "i0 >= 0 }" }, { 1, "{ [a, b, c] : 2b = 1 + a and 2c = 2 + a; [0, 0, 0] }" }, { 1, "{ [a, a, b, c] : 32*floor((a)/32) = a and 2*floor((b)/2) = b and " "2*floor((c)/2) = c and 0 <= a <= 192;" "[224, 224, b, c] : 2*floor((b)/2) = b and 2*floor((c)/2) = c }" }, }; /* A specialized coalescing test case that would result * in a segmentation fault or a failed assertion in earlier versions of isl. */ static int test_coalesce_special(struct isl_ctx *ctx) { const char *str; isl_map *map1, *map2; str = "[y] -> { [S_L220_OUT[] -> T7[]] -> " "[[S_L309_IN[] -> T11[]] -> ce_imag2[1, o1]] : " "(y = 201 and o1 <= 239 and o1 >= 212) or " "(exists (e0 = [(y)/3]: 3e0 = y and y <= 198 and y >= 3 and " "o1 <= 239 and o1 >= 212)) or " "(exists (e0 = [(y)/3]: 3e0 = y and y <= 201 and y >= 3 and " "o1 <= 241 and o1 >= 240));" "[S_L220_OUT[] -> T7[]] -> " "[[S_L309_IN[] -> T11[]] -> ce_imag2[0, o1]] : " "(y = 2 and o1 <= 241 and o1 >= 212) or " "(exists (e0 = [(-2 + y)/3]: 3e0 = -2 + y and y <= 200 and " "y >= 5 and o1 <= 241 and o1 >= 212)) }"; map1 = isl_map_read_from_str(ctx, str); map1 = isl_map_align_divs(map1); map1 = isl_map_coalesce(map1); str = "[y] -> { [S_L220_OUT[] -> T7[]] -> " "[[S_L309_IN[] -> T11[]] -> ce_imag2[o0, o1]] : " "exists (e0 = [(-1 - y + o0)/3]: 3e0 = -1 - y + o0 and " "y <= 201 and o0 <= 2 and o1 >= 212 and o1 <= 241 and " "o0 >= 3 - y and o0 <= -2 + y and o0 >= 0) }"; map2 = isl_map_read_from_str(ctx, str); map2 = isl_map_union(map2, map1); map2 = isl_map_align_divs(map2); map2 = isl_map_coalesce(map2); isl_map_free(map2); if (!map2) return -1; return 0; } /* Test the functionality of isl_set_coalesce. * That is, check that the output is always equal to the input * and in some cases that the result consists of a single disjunct. */ static int test_coalesce(struct isl_ctx *ctx) { int i; for (i = 0; i < ARRAY_SIZE(coalesce_tests); ++i) { const char *str = coalesce_tests[i].str; int check_one = coalesce_tests[i].single_disjunct; if (test_coalesce_set(ctx, str, check_one) < 0) return -1; } if (test_coalesce_unbounded_wrapping(ctx) < 0) return -1; if (test_coalesce_special(ctx) < 0) return -1; return 0; } /* Construct a representation of the graph on the right of Figure 1 * in "Computing the Transitive Closure of a Union of * Affine Integer Tuple Relations". */ static __isl_give isl_map *cocoa_fig_1_right_graph(isl_ctx *ctx) { isl_set *dom; isl_map *up, *right; dom = isl_set_read_from_str(ctx, "{ [x,y] : x >= 0 and -2 x + 3 y >= 0 and x <= 3 and " "2 x - 3 y + 3 >= 0 }"); right = isl_map_read_from_str(ctx, "{ [x,y] -> [x2,y2] : x2 = x + 1 and y2 = y }"); up = isl_map_read_from_str(ctx, "{ [x,y] -> [x2,y2] : x2 = x and y2 = y + 1 }"); right = isl_map_intersect_domain(right, isl_set_copy(dom)); right = isl_map_intersect_range(right, isl_set_copy(dom)); up = isl_map_intersect_domain(up, isl_set_copy(dom)); up = isl_map_intersect_range(up, dom); return isl_map_union(up, right); } /* Construct a representation of the power of the graph * on the right of Figure 1 in "Computing the Transitive Closure of * a Union of Affine Integer Tuple Relations". */ static __isl_give isl_map *cocoa_fig_1_right_power(isl_ctx *ctx) { return isl_map_read_from_str(ctx, "{ [1] -> [[0,0] -> [0,1]]; [2] -> [[0,0] -> [1,1]]; " " [1] -> [[0,1] -> [1,1]]; [1] -> [[2,2] -> [3,2]]; " " [2] -> [[2,2] -> [3,3]]; [1] -> [[3,2] -> [3,3]] }"); } /* Construct a representation of the transitive closure of the graph * on the right of Figure 1 in "Computing the Transitive Closure of * a Union of Affine Integer Tuple Relations". */ static __isl_give isl_map *cocoa_fig_1_right_tc(isl_ctx *ctx) { return isl_set_unwrap(isl_map_range(cocoa_fig_1_right_power(ctx))); } static int test_closure(isl_ctx *ctx) { const char *str; isl_map *map, *map2; int exact, equal; /* COCOA example 1 */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 1 and j2 = j + 1 and " "1 <= i and i < n and 1 <= j and j < n or " "i2 = i + 1 and j2 = j - 1 and " "1 <= i and i < n and 2 <= j and j <= n }"); map = isl_map_power(map, &exact); assert(exact); isl_map_free(map); /* COCOA example 1 */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 1 and j2 = j + 1 and " "1 <= i and i < n and 1 <= j and j < n or " "i2 = i + 1 and j2 = j - 1 and " "1 <= i and i < n and 2 <= j and j <= n }"); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : exists (k1,k2,k : " "1 <= i and i < n and 1 <= j and j <= n and " "2 <= i2 and i2 <= n and 1 <= j2 and j2 <= n and " "i2 = i + k1 + k2 and j2 = j + k1 - k2 and " "k1 >= 0 and k2 >= 0 and k1 + k2 = k and k >= 1 )}"); assert(isl_map_is_equal(map, map2)); isl_map_free(map2); isl_map_free(map); map = isl_map_read_from_str(ctx, "[n] -> { [x] -> [y] : y = x + 1 and 0 <= x and x <= n and " " 0 <= y and y <= n }"); map = isl_map_transitive_closure(map, &exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [x] -> [y] : y > x and 0 <= x and x <= n and " " 0 <= y and y <= n }"); assert(isl_map_is_equal(map, map2)); isl_map_free(map2); isl_map_free(map); /* COCOA example 2 */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 2 and j2 = j + 2 and " "1 <= i and i < n - 1 and 1 <= j and j < n - 1 or " "i2 = i + 2 and j2 = j - 2 and " "1 <= i and i < n - 1 and 3 <= j and j <= n }"); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : exists (k1,k2,k : " "1 <= i and i < n - 1 and 1 <= j and j <= n and " "3 <= i2 and i2 <= n and 1 <= j2 and j2 <= n and " "i2 = i + 2 k1 + 2 k2 and j2 = j + 2 k1 - 2 k2 and " "k1 >= 0 and k2 >= 0 and k1 + k2 = k and k >= 1) }"); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); /* COCOA Fig.2 left */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 2 and j2 = j and " "i <= 2 j - 3 and i <= n - 2 and j <= 2 i - 1 and " "j <= n or " "i2 = i and j2 = j + 2 and i <= 2 j - 1 and i <= n and " "j <= 2 i - 3 and j <= n - 2 or " "i2 = i + 1 and j2 = j + 1 and i <= 2 j - 1 and " "i <= n - 1 and j <= 2 i - 1 and j <= n - 1 }"); map = isl_map_transitive_closure(map, &exact); assert(exact); isl_map_free(map); /* COCOA Fig.2 right */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 3 and j2 = j and " "i <= 2 j - 4 and i <= n - 3 and j <= 2 i - 1 and " "j <= n or " "i2 = i and j2 = j + 3 and i <= 2 j - 1 and i <= n and " "j <= 2 i - 4 and j <= n - 3 or " "i2 = i + 1 and j2 = j + 1 and i <= 2 j - 1 and " "i <= n - 1 and j <= 2 i - 1 and j <= n - 1 }"); map = isl_map_power(map, &exact); assert(exact); isl_map_free(map); /* COCOA Fig.2 right */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i + 3 and j2 = j and " "i <= 2 j - 4 and i <= n - 3 and j <= 2 i - 1 and " "j <= n or " "i2 = i and j2 = j + 3 and i <= 2 j - 1 and i <= n and " "j <= 2 i - 4 and j <= n - 3 or " "i2 = i + 1 and j2 = j + 1 and i <= 2 j - 1 and " "i <= n - 1 and j <= 2 i - 1 and j <= n - 1 }"); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : exists (k1,k2,k3,k : " "i <= 2 j - 1 and i <= n and j <= 2 i - 1 and " "j <= n and 3 + i + 2 j <= 3 n and " "3 + 2 i + j <= 3n and i2 <= 2 j2 -1 and i2 <= n and " "i2 <= 3 j2 - 4 and j2 <= 2 i2 -1 and j2 <= n and " "13 + 4 j2 <= 11 i2 and i2 = i + 3 k1 + k3 and " "j2 = j + 3 k2 + k3 and k1 >= 0 and k2 >= 0 and " "k3 >= 0 and k1 + k2 + k3 = k and k > 0) }"); assert(isl_map_is_equal(map, map2)); isl_map_free(map2); isl_map_free(map); map = cocoa_fig_1_right_graph(ctx); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = cocoa_fig_1_right_tc(ctx); assert(isl_map_is_equal(map, map2)); isl_map_free(map2); isl_map_free(map); map = cocoa_fig_1_right_graph(ctx); map = isl_map_power(map, &exact); map2 = cocoa_fig_1_right_power(ctx); equal = isl_map_is_equal(map, map2); isl_map_free(map2); isl_map_free(map); if (equal < 0) return -1; if (!exact) isl_die(ctx, isl_error_unknown, "power not exact", return -1); if (!equal) isl_die(ctx, isl_error_unknown, "unexpected power", return -1); /* COCOA Theorem 1 counter example */ map = isl_map_read_from_str(ctx, "{ [i,j] -> [i2,j2] : i = 0 and 0 <= j and j <= 1 and " "i2 = 1 and j2 = j or " "i = 0 and j = 0 and i2 = 0 and j2 = 1 }"); map = isl_map_transitive_closure(map, &exact); assert(exact); isl_map_free(map); map = isl_map_read_from_str(ctx, "[m,n] -> { [i,j] -> [i2,j2] : i2 = i and j2 = j + 2 and " "1 <= i,i2 <= n and 1 <= j,j2 <= m or " "i2 = i + 1 and 3 <= j2 - j <= 4 and " "1 <= i,i2 <= n and 1 <= j,j2 <= m }"); map = isl_map_transitive_closure(map, &exact); assert(exact); isl_map_free(map); /* Kelly et al 1996, fig 12 */ map = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : i2 = i and j2 = j + 1 and " "1 <= i,j,j+1 <= n or " "j = n and j2 = 1 and i2 = i + 1 and " "1 <= i,i+1 <= n }"); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [i,j] -> [i2,j2] : 1 <= j < j2 <= n and " "1 <= i <= n and i = i2 or " "1 <= i < i2 <= n and 1 <= j <= n and " "1 <= j2 <= n }"); assert(isl_map_is_equal(map, map2)); isl_map_free(map2); isl_map_free(map); /* Omega's closure4 */ map = isl_map_read_from_str(ctx, "[m,n] -> { [x,y] -> [x2,y2] : x2 = x and y2 = y + 1 and " "1 <= x,y <= 10 or " "x2 = x + 1 and y2 = y and " "1 <= x <= 20 && 5 <= y <= 15 }"); map = isl_map_transitive_closure(map, &exact); assert(exact); isl_map_free(map); map = isl_map_read_from_str(ctx, "[n] -> { [x] -> [y]: 1 <= n <= y - x <= 10 }"); map = isl_map_transitive_closure(map, &exact); assert(!exact); map2 = isl_map_read_from_str(ctx, "[n] -> { [x] -> [y] : 1 <= n <= 10 and y >= n + x }"); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "[n, m] -> { [i0, i1, i2, i3] -> [o0, o1, o2, o3] : " "i3 = 1 and o0 = i0 and o1 = -1 + i1 and o2 = -1 + i2 and " "o3 = -2 + i2 and i1 <= -1 + i0 and i1 >= 1 - m + i0 and " "i1 >= 2 and i1 <= n and i2 >= 3 and i2 <= 1 + n and i2 <= m }"; map = isl_map_read_from_str(ctx, str); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{[0] -> [1]; [2] -> [3]}"; map = isl_map_read_from_str(ctx, str); map = isl_map_transitive_closure(map, &exact); assert(exact); map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "[n] -> { [[i0, i1, 1, 0, i0] -> [i5, 1]] -> " "[[i0, -1 + i1, 2, 0, i0] -> [-1 + i5, 2]] : " "exists (e0 = [(3 - n)/3]: i5 >= 2 and i1 >= 2 and " "3i0 <= -1 + n and i1 <= -1 + n and i5 <= -1 + n and " "3e0 >= 1 - n and 3e0 <= 2 - n and 3i0 >= -2 + n); " "[[i0, i1, 2, 0, i0] -> [i5, 1]] -> " "[[i0, i1, 1, 0, i0] -> [-1 + i5, 2]] : " "exists (e0 = [(3 - n)/3]: i5 >= 2 and i1 >= 1 and " "3i0 <= -1 + n and i1 <= -1 + n and i5 <= -1 + n and " "3e0 >= 1 - n and 3e0 <= 2 - n and 3i0 >= -2 + n); " "[[i0, i1, 1, 0, i0] -> [i5, 2]] -> " "[[i0, -1 + i1, 2, 0, i0] -> [i5, 1]] : " "exists (e0 = [(3 - n)/3]: i1 >= 2 and i5 >= 1 and " "3i0 <= -1 + n and i1 <= -1 + n and i5 <= -1 + n and " "3e0 >= 1 - n and 3e0 <= 2 - n and 3i0 >= -2 + n); " "[[i0, i1, 2, 0, i0] -> [i5, 2]] -> " "[[i0, i1, 1, 0, i0] -> [i5, 1]] : " "exists (e0 = [(3 - n)/3]: i5 >= 1 and i1 >= 1 and " "3i0 <= -1 + n and i1 <= -1 + n and i5 <= -1 + n and " "3e0 >= 1 - n and 3e0 <= 2 - n and 3i0 >= -2 + n) }"; map = isl_map_read_from_str(ctx, str); map = isl_map_transitive_closure(map, NULL); assert(map); isl_map_free(map); return 0; } static int test_lex(struct isl_ctx *ctx) { isl_space *dim; isl_map *map; int empty; dim = isl_space_set_alloc(ctx, 0, 0); map = isl_map_lex_le(dim); empty = isl_map_is_empty(map); isl_map_free(map); if (empty < 0) return -1; if (empty) isl_die(ctx, isl_error_unknown, "expecting non-empty result", return -1); return 0; } static int test_lexmin(struct isl_ctx *ctx) { int equal; const char *str; isl_basic_map *bmap; isl_map *map, *map2; isl_set *set; isl_set *set2; isl_pw_multi_aff *pma; str = "[p0, p1] -> { [] -> [] : " "exists (e0 = [(2p1)/3], e1, e2, e3 = [(3 - p1 + 3e0)/3], " "e4 = [(p1)/3], e5 = [(p1 + 3e4)/3]: " "3e0 >= -2 + 2p1 and 3e0 >= p1 and 3e3 >= 1 - p1 + 3e0 and " "3e0 <= 2p1 and 3e3 >= -2 + p1 and 3e3 <= -1 + p1 and p1 >= 3 and " "3e5 >= -2 + 2p1 and 3e5 >= p1 and 3e5 <= -1 + p1 + 3e4 and " "3e4 <= p1 and 3e4 >= -2 + p1 and e3 <= -1 + e0 and " "3e4 >= 6 - p1 + 3e1 and 3e1 >= p1 and 3e5 >= -2 + p1 + 3e4 and " "2e4 >= 3 - p1 + 2e1 and e4 <= e1 and 3e3 <= 2 - p1 + 3e0 and " "e5 >= 1 + e1 and 3e4 >= 6 - 2p1 + 3e1 and " "p0 >= 2 and p1 >= p0 and 3e2 >= p1 and 3e4 >= 6 - p1 + 3e2 and " "e2 <= e1 and e3 >= 1 and e4 <= e2) }"; map = isl_map_read_from_str(ctx, str); map = isl_map_lexmin(map); isl_map_free(map); str = "[C] -> { [obj,a,b,c] : obj <= 38 a + 7 b + 10 c and " "a + b <= 1 and c <= 10 b and c <= C and a,b,c,C >= 0 }"; set = isl_set_read_from_str(ctx, str); set = isl_set_lexmax(set); str = "[C] -> { [obj,a,b,c] : C = 8 }"; set2 = isl_set_read_from_str(ctx, str); set = isl_set_intersect(set, set2); assert(!isl_set_is_empty(set)); isl_set_free(set); str = "{ [x] -> [y] : x <= y <= 10; [x] -> [5] : -8 <= x <= 8 }"; map = isl_map_read_from_str(ctx, str); map = isl_map_lexmin(map); str = "{ [x] -> [5] : 6 <= x <= 8; " "[x] -> [x] : x <= 5 or (9 <= x <= 10) }"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{ [x] -> [y] : 4y = x or 4y = -1 + x or 4y = -2 + x }"; map = isl_map_read_from_str(ctx, str); map2 = isl_map_copy(map); map = isl_map_lexmin(map); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{ [x] -> [y] : x = 4y; [x] -> [y] : x = 2y }"; map = isl_map_read_from_str(ctx, str); map = isl_map_lexmin(map); str = "{ [x] -> [y] : (4y = x and x >= 0) or " "(exists (e0 = [(x)/4], e1 = [(-2 + x)/4]: 2y = x and " "4e1 = -2 + x and 4e0 <= -1 + x and 4e0 >= -3 + x)) or " "(exists (e0 = [(x)/4]: 2y = x and 4e0 = x and x <= -4)) }"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{ [i] -> [i', j] : j = i - 8i' and i' >= 0 and i' <= 7 and " " 8i' <= i and 8i' >= -7 + i }"; bmap = isl_basic_map_read_from_str(ctx, str); pma = isl_basic_map_lexmin_pw_multi_aff(isl_basic_map_copy(bmap)); map2 = isl_map_from_pw_multi_aff(pma); map = isl_map_from_basic_map(bmap); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "{ T[a] -> S[b, c] : a = 4b-2c and c >= b }"; map = isl_map_read_from_str(ctx, str); map = isl_map_lexmin(map); str = "{ T[a] -> S[b, c] : 2b = a and 2c = a }"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); /* Check that empty pieces are properly combined. */ str = "[K, N] -> { [x, y] -> [a, b] : K+2<=N<=K+4 and x>=4 and " "2N-6<=x=N and a>=x+1 }"; map = isl_map_read_from_str(ctx, str); map = isl_map_lexmin(map); str = "[K, N] -> { [x, y] -> [1 + x, N] : x >= -6 + 2N and " "x <= -5 + 2N and x >= -1 + 3K - N and x <= -2 + K + N and " "x >= 4 }"; map2 = isl_map_read_from_str(ctx, str); assert(isl_map_is_equal(map, map2)); isl_map_free(map); isl_map_free(map2); str = "[i] -> { [i', j] : j = i - 8i' and i' >= 0 and i' <= 7 and " " 8i' <= i and 8i' >= -7 + i }"; set = isl_set_read_from_str(ctx, str); pma = isl_set_lexmin_pw_multi_aff(isl_set_copy(set)); set2 = isl_set_from_pw_multi_aff(pma); equal = isl_set_is_equal(set, set2); isl_set_free(set); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected difference between set and " "piecewise affine expression", return -1); return 0; } /* Check that isl_set_min_val and isl_set_max_val compute the correct * result on non-convex inputs. */ static int test_min(struct isl_ctx *ctx) { isl_set *set; isl_aff *aff; isl_val *val; int min_ok, max_ok; set = isl_set_read_from_str(ctx, "{ [-1]; [1] }"); aff = isl_aff_read_from_str(ctx, "{ [x] -> [x] }"); val = isl_set_min_val(set, aff); min_ok = isl_val_is_negone(val); isl_val_free(val); val = isl_set_max_val(set, aff); max_ok = isl_val_is_one(val); isl_val_free(val); isl_aff_free(aff); isl_set_free(set); if (min_ok < 0 || max_ok < 0) return -1; if (!min_ok) isl_die(ctx, isl_error_unknown, "unexpected minimum", return -1); if (!max_ok) isl_die(ctx, isl_error_unknown, "unexpected maximum", return -1); return 0; } struct must_may { isl_map *must; isl_map *may; }; static isl_stat collect_must_may(__isl_take isl_map *dep, int must, void *dep_user, void *user) { struct must_may *mm = (struct must_may *)user; if (must) mm->must = isl_map_union(mm->must, dep); else mm->may = isl_map_union(mm->may, dep); return isl_stat_ok; } static int common_space(void *first, void *second) { int depth = *(int *)first; return 2 * depth; } static int map_is_equal(__isl_keep isl_map *map, const char *str) { isl_map *map2; int equal; if (!map) return -1; map2 = isl_map_read_from_str(map->ctx, str); equal = isl_map_is_equal(map, map2); isl_map_free(map2); return equal; } static int map_check_equal(__isl_keep isl_map *map, const char *str) { int equal; equal = map_is_equal(map, str); if (equal < 0) return -1; if (!equal) isl_die(isl_map_get_ctx(map), isl_error_unknown, "result not as expected", return -1); return 0; } static int test_dep(struct isl_ctx *ctx) { const char *str; isl_space *dim; isl_map *map; isl_access_info *ai; isl_flow *flow; int depth; struct must_may mm; depth = 3; str = "{ [2,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 2); str = "{ [0,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 1, &depth); str = "{ [1,i,0] -> [5] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 1, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 3, 3); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0] -> [2,i,0] : (0 <= i <= 4) or (6 <= i <= 10); " " [1,10,0] -> [2,5,0] }"; assert(map_is_equal(mm.must, str)); str = "{ [i,j,k] -> [l,m,n] : 1 = 0 }"; assert(map_is_equal(mm.may, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); str = "{ [2,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 2); str = "{ [0,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 1, &depth); str = "{ [1,i,0] -> [5] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 3, 3); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0] -> [2,i,0] : (0 <= i <= 4) or (6 <= i <= 10) }"; assert(map_is_equal(mm.must, str)); str = "{ [0,5,0] -> [2,5,0]; [1,i,0] -> [2,5,0] : 0 <= i <= 10 }"; assert(map_is_equal(mm.may, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); str = "{ [2,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 2); str = "{ [0,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); str = "{ [1,i,0] -> [5] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 3, 3); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0] -> [2,i,0] : 0 <= i <= 10; " " [1,i,0] -> [2,5,0] : 0 <= i <= 10 }"; assert(map_is_equal(mm.may, str)); str = "{ [i,j,k] -> [l,m,n] : 1 = 0 }"; assert(map_is_equal(mm.must, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); str = "{ [0,i,2] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 2); str = "{ [0,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); str = "{ [0,i,1] -> [5] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 3, 3); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0] -> [0,i,2] : 0 <= i <= 10; " " [0,i,1] -> [0,5,2] : 0 <= i <= 5 }"; assert(map_is_equal(mm.may, str)); str = "{ [i,j,k] -> [l,m,n] : 1 = 0 }"; assert(map_is_equal(mm.must, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); str = "{ [0,i,1] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 2); str = "{ [0,i,0] -> [i] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); str = "{ [0,i,2] -> [5] : 0 <= i <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 0, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 3, 3); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0] -> [0,i,1] : 0 <= i <= 10; " " [0,i,2] -> [0,5,1] : 0 <= i <= 4 }"; assert(map_is_equal(mm.may, str)); str = "{ [i,j,k] -> [l,m,n] : 1 = 0 }"; assert(map_is_equal(mm.must, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); depth = 5; str = "{ [1,i,0,0,0] -> [i,j] : 0 <= i <= 10 and 0 <= j <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_alloc(map, &depth, &common_space, 1); str = "{ [0,i,0,j,0] -> [i,j] : 0 <= i <= 10 and 0 <= j <= 10 }"; map = isl_map_read_from_str(ctx, str); ai = isl_access_info_add_source(ai, map, 1, &depth); flow = isl_access_info_compute_flow(ai); dim = isl_space_alloc(ctx, 0, 5, 5); mm.must = isl_map_empty(isl_space_copy(dim)); mm.may = isl_map_empty(dim); isl_flow_foreach(flow, collect_must_may, &mm); str = "{ [0,i,0,j,0] -> [1,i,0,0,0] : 0 <= i,j <= 10 }"; assert(map_is_equal(mm.must, str)); str = "{ [0,0,0,0,0] -> [0,0,0,0,0] : 1 = 0 }"; assert(map_is_equal(mm.may, str)); isl_map_free(mm.must); isl_map_free(mm.may); isl_flow_free(flow); return 0; } /* Check that the dependence analysis proceeds without errors. * Earlier versions of isl would break down during the analysis * due to the use of the wrong spaces. */ static int test_flow(isl_ctx *ctx) { const char *str; isl_union_map *access, *schedule; isl_union_map *must_dep, *may_dep; int r; str = "{ S0[j] -> i[]; S1[j,i] -> i[]; S2[] -> i[]; S3[] -> i[] }"; access = isl_union_map_read_from_str(ctx, str); str = "{ S0[j] -> [0,j,0,0] : 0 <= j < 10; " "S1[j,i] -> [0,j,1,i] : 0 <= j < i < 10; " "S2[] -> [1,0,0,0]; " "S3[] -> [-1,0,0,0] }"; schedule = isl_union_map_read_from_str(ctx, str); r = isl_union_map_compute_flow(access, isl_union_map_copy(access), isl_union_map_copy(access), schedule, &must_dep, &may_dep, NULL, NULL); isl_union_map_free(may_dep); isl_union_map_free(must_dep); return r; } struct { const char *map; int sv; } sv_tests[] = { { "[N] -> { [i] -> [f] : 0 <= i <= N and 0 <= i - 10 f <= 9 }", 1 }, { "[N] -> { [i] -> [f] : 0 <= i <= N and 0 <= i - 10 f <= 10 }", 0 }, { "{ [i] -> [3*floor(i/2) + 5*floor(i/3)] }", 1 }, { "{ S1[i] -> [i] : 0 <= i <= 9; S2[i] -> [i] : 0 <= i <= 9 }", 1 }, { "{ [i] -> S1[i] : 0 <= i <= 9; [i] -> S2[i] : 0 <= i <= 9 }", 0 }, { "{ A[i] -> [i]; B[i] -> [i]; B[i] -> [i + 1] }", 0 }, { "{ A[i] -> [i]; B[i] -> [i] : i < 0; B[i] -> [i + 1] : i > 0 }", 1 }, { "{ A[i] -> [i]; B[i] -> A[i] : i < 0; B[i] -> [i + 1] : i > 0 }", 1 }, { "{ A[i] -> [i]; B[i] -> [j] : i - 1 <= j <= i }", 0 }, }; int test_sv(isl_ctx *ctx) { isl_union_map *umap; int i; int sv; for (i = 0; i < ARRAY_SIZE(sv_tests); ++i) { umap = isl_union_map_read_from_str(ctx, sv_tests[i].map); sv = isl_union_map_is_single_valued(umap); isl_union_map_free(umap); if (sv < 0) return -1; if (sv_tests[i].sv && !sv) isl_die(ctx, isl_error_internal, "map not detected as single valued", return -1); if (!sv_tests[i].sv && sv) isl_die(ctx, isl_error_internal, "map detected as single valued", return -1); } return 0; } struct { const char *str; int bijective; } bijective_tests[] = { { "[N,M]->{[i,j] -> [i]}", 0 }, { "[N,M]->{[i,j] -> [i] : j=i}", 1 }, { "[N,M]->{[i,j] -> [i] : j=0}", 1 }, { "[N,M]->{[i,j] -> [i] : j=N}", 1 }, { "[N,M]->{[i,j] -> [j,i]}", 1 }, { "[N,M]->{[i,j] -> [i+j]}", 0 }, { "[N,M]->{[i,j] -> []}", 0 }, { "[N,M]->{[i,j] -> [i,j,N]}", 1 }, { "[N,M]->{[i,j] -> [2i]}", 0 }, { "[N,M]->{[i,j] -> [i,i]}", 0 }, { "[N,M]->{[i,j] -> [2i,i]}", 0 }, { "[N,M]->{[i,j] -> [2i,j]}", 1 }, { "[N,M]->{[i,j] -> [x,y] : 2x=i & y =j}", 1 }, }; static int test_bijective(struct isl_ctx *ctx) { isl_map *map; int i; int bijective; for (i = 0; i < ARRAY_SIZE(bijective_tests); ++i) { map = isl_map_read_from_str(ctx, bijective_tests[i].str); bijective = isl_map_is_bijective(map); isl_map_free(map); if (bijective < 0) return -1; if (bijective_tests[i].bijective && !bijective) isl_die(ctx, isl_error_internal, "map not detected as bijective", return -1); if (!bijective_tests[i].bijective && bijective) isl_die(ctx, isl_error_internal, "map detected as bijective", return -1); } return 0; } /* Inputs for isl_pw_qpolynomial_gist tests. * "pwqp" is the input, "set" is the context and "gist" is the expected result. */ struct { const char *pwqp; const char *set; const char *gist; } pwqp_gist_tests[] = { { "{ [i] -> i }", "{ [k] : exists a : k = 2a }", "{ [i] -> i }" }, { "{ [i] -> i + [ (i + [i/3])/2 ] }", "{ [10] }", "{ [i] -> 16 }" }, { "{ [i] -> ([(i)/2]) }", "{ [k] : exists a : k = 2a+1 }", "{ [i] -> -1/2 + 1/2 * i }" }, { "{ [i] -> i^2 : i != 0 }", "{ [i] : i != 0 }", "{ [i] -> i^2 }" }, }; static int test_pwqp(struct isl_ctx *ctx) { int i; const char *str; isl_set *set; isl_pw_qpolynomial *pwqp1, *pwqp2; int equal; str = "{ [i,j,k] -> 1 + 9 * [i/5] + 7 * [j/11] + 4 * [k/13] }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_move_dims(pwqp1, isl_dim_param, 0, isl_dim_in, 1, 1); str = "[j] -> { [i,k] -> 1 + 9 * [i/5] + 7 * [j/11] + 4 * [k/13] }"; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_sub(pwqp1, pwqp2); assert(isl_pw_qpolynomial_is_zero(pwqp1)); isl_pw_qpolynomial_free(pwqp1); for (i = 0; i < ARRAY_SIZE(pwqp_gist_tests); ++i) { str = pwqp_gist_tests[i].pwqp; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); str = pwqp_gist_tests[i].set; set = isl_set_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_gist(pwqp1, set); str = pwqp_gist_tests[i].gist; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_sub(pwqp1, pwqp2); equal = isl_pw_qpolynomial_is_zero(pwqp1); isl_pw_qpolynomial_free(pwqp1); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } str = "{ [i] -> ([([i/2] + [i/2])/5]) }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); str = "{ [i] -> ([(2 * [i/2])/5]) }"; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_sub(pwqp1, pwqp2); assert(isl_pw_qpolynomial_is_zero(pwqp1)); isl_pw_qpolynomial_free(pwqp1); str = "{ [x] -> ([x/2] + [(x+1)/2]) }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); str = "{ [x] -> x }"; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_sub(pwqp1, pwqp2); assert(isl_pw_qpolynomial_is_zero(pwqp1)); isl_pw_qpolynomial_free(pwqp1); str = "{ [i] -> ([i/2]) : i >= 0; [i] -> ([i/3]) : i < 0 }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_coalesce(pwqp1); pwqp1 = isl_pw_qpolynomial_sub(pwqp1, pwqp2); assert(isl_pw_qpolynomial_is_zero(pwqp1)); isl_pw_qpolynomial_free(pwqp1); str = "{ [a,b,a] -> (([(2*[a/3]+b)/5]) * ([(2*[a/3]+b)/5])) }"; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); str = "{ [a,b,c] -> (([(2*[a/3]+b)/5]) * ([(2*[c/3]+b)/5])) }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); set = isl_set_read_from_str(ctx, "{ [a,b,a] }"); pwqp1 = isl_pw_qpolynomial_intersect_domain(pwqp1, set); equal = isl_pw_qpolynomial_plain_is_equal(pwqp1, pwqp2); isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "{ [a,b,c] -> (([(2*[a/3]+1)/5]) * ([(2*[c/3]+1)/5])) : b = 1 }"; pwqp2 = isl_pw_qpolynomial_read_from_str(ctx, str); str = "{ [a,b,c] -> (([(2*[a/3]+b)/5]) * ([(2*[c/3]+b)/5])) }"; pwqp1 = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp1 = isl_pw_qpolynomial_fix_val(pwqp1, isl_dim_set, 1, isl_val_one(ctx)); equal = isl_pw_qpolynomial_plain_is_equal(pwqp1, pwqp2); isl_pw_qpolynomial_free(pwqp1); isl_pw_qpolynomial_free(pwqp2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } static int test_split_periods(isl_ctx *ctx) { const char *str; isl_pw_qpolynomial *pwqp; str = "{ [U,V] -> 1/3 * U + 2/3 * V - [(U + 2V)/3] + [U/2] : " "U + 2V + 3 >= 0 and - U -2V >= 0 and - U + 10 >= 0 and " "U >= 0; [U,V] -> U^2 : U >= 100 }"; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); pwqp = isl_pw_qpolynomial_split_periods(pwqp, 2); isl_pw_qpolynomial_free(pwqp); if (!pwqp) return -1; return 0; } static int test_union(isl_ctx *ctx) { const char *str; isl_union_set *uset1, *uset2; isl_union_map *umap1, *umap2; int equal; str = "{ [i] : 0 <= i <= 1 }"; uset1 = isl_union_set_read_from_str(ctx, str); str = "{ [1] -> [0] }"; umap1 = isl_union_map_read_from_str(ctx, str); umap2 = isl_union_set_lex_gt_union_set(isl_union_set_copy(uset1), uset1); equal = isl_union_map_is_equal(umap1, umap2); isl_union_map_free(umap1); isl_union_map_free(umap2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "union maps not equal", return -1); str = "{ A[i] -> B[i]; B[i] -> C[i]; A[0] -> C[1] }"; umap1 = isl_union_map_read_from_str(ctx, str); str = "{ A[i]; B[i] }"; uset1 = isl_union_set_read_from_str(ctx, str); uset2 = isl_union_map_domain(umap1); equal = isl_union_set_is_equal(uset1, uset2); isl_union_set_free(uset1); isl_union_set_free(uset2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "union sets not equal", return -1); return 0; } /* Check that computing a bound of a non-zero polynomial over an unbounded * domain does not produce a rational value. * In particular, check that the upper bound is infinity. */ static int test_bound_unbounded_domain(isl_ctx *ctx) { const char *str; isl_pw_qpolynomial *pwqp; isl_pw_qpolynomial_fold *pwf, *pwf2; isl_bool equal; str = "{ [m,n] -> -m * n }"; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); pwf = isl_pw_qpolynomial_bound(pwqp, isl_fold_max, NULL); str = "{ infty }"; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); pwf2 = isl_pw_qpolynomial_bound(pwqp, isl_fold_max, NULL); equal = isl_pw_qpolynomial_fold_plain_is_equal(pwf, pwf2); isl_pw_qpolynomial_fold_free(pwf); isl_pw_qpolynomial_fold_free(pwf2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "expecting infinite polynomial bound", return -1); return 0; } static int test_bound(isl_ctx *ctx) { const char *str; unsigned dim; isl_pw_qpolynomial *pwqp; isl_pw_qpolynomial_fold *pwf; if (test_bound_unbounded_domain(ctx) < 0) return -1; str = "{ [[a, b, c, d] -> [e]] -> 0 }"; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); pwf = isl_pw_qpolynomial_bound(pwqp, isl_fold_max, NULL); dim = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_in); isl_pw_qpolynomial_fold_free(pwf); if (dim != 4) isl_die(ctx, isl_error_unknown, "unexpected input dimension", return -1); str = "{ [[x]->[x]] -> 1 : exists a : x = 2 a }"; pwqp = isl_pw_qpolynomial_read_from_str(ctx, str); pwf = isl_pw_qpolynomial_bound(pwqp, isl_fold_max, NULL); dim = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_in); isl_pw_qpolynomial_fold_free(pwf); if (dim != 1) isl_die(ctx, isl_error_unknown, "unexpected input dimension", return -1); return 0; } static int test_lift(isl_ctx *ctx) { const char *str; isl_basic_map *bmap; isl_basic_set *bset; str = "{ [i0] : exists e0 : i0 = 4e0 }"; bset = isl_basic_set_read_from_str(ctx, str); bset = isl_basic_set_lift(bset); bmap = isl_basic_map_from_range(bset); bset = isl_basic_map_domain(bmap); isl_basic_set_free(bset); return 0; } struct { const char *set1; const char *set2; int subset; } subset_tests[] = { { "{ [112, 0] }", "{ [i0, i1] : exists (e0 = [(i0 - i1)/16], e1: " "16e0 <= i0 - i1 and 16e0 >= -15 + i0 - i1 and " "16e1 <= i1 and 16e0 >= -i1 and 16e1 >= -i0 + i1) }", 1 }, { "{ [65] }", "{ [i] : exists (e0 = [(255i)/256], e1 = [(127i + 65e0)/191], " "e2 = [(3i + 61e1)/65], e3 = [(52i + 12e2)/61], " "e4 = [(2i + e3)/3], e5 = [(4i + e3)/4], e6 = [(8i + e3)/12]: " "3e4 = 2i + e3 and 4e5 = 4i + e3 and 12e6 = 8i + e3 and " "i <= 255 and 64e3 >= -45 + 67i and i >= 0 and " "256e0 <= 255i and 256e0 >= -255 + 255i and " "191e1 <= 127i + 65e0 and 191e1 >= -190 + 127i + 65e0 and " "65e2 <= 3i + 61e1 and 65e2 >= -64 + 3i + 61e1 and " "61e3 <= 52i + 12e2 and 61e3 >= -60 + 52i + 12e2) }", 1 }, { "{ [i] : 0 <= i <= 10 }", "{ rat: [i] : 0 <= i <= 10 }", 1 }, { "{ rat: [i] : 0 <= i <= 10 }", "{ [i] : 0 <= i <= 10 }", 0 }, { "{ rat: [0] }", "{ [i] : 0 <= i <= 10 }", 1 }, { "{ rat: [(1)/2] }", "{ [i] : 0 <= i <= 10 }", 0 }, { "{ [t, i] : (exists (e0 = [(2 + t)/4]: 4e0 <= 2 + t and " "4e0 >= -1 + t and i >= 57 and i <= 62 and " "4e0 <= 62 + t - i and 4e0 >= -61 + t + i and " "t >= 0 and t <= 511 and 4e0 <= -57 + t + i and " "4e0 >= 58 + t - i and i >= 58 + t and i >= 62 - t)) }", "{ [i0, i1] : (exists (e0 = [(4 + i0)/4]: 4e0 <= 62 + i0 - i1 and " "4e0 >= 1 + i0 and i0 >= 0 and i0 <= 511 and " "4e0 <= -57 + i0 + i1)) or " "(exists (e0 = [(2 + i0)/4]: 4e0 <= i0 and " "4e0 >= 58 + i0 - i1 and i0 >= 2 and i0 <= 511 and " "4e0 >= -61 + i0 + i1)) or " "(i1 <= 66 - i0 and i0 >= 2 and i1 >= 59 + i0) }", 1 }, }; static int test_subset(isl_ctx *ctx) { int i; isl_set *set1, *set2; int subset; for (i = 0; i < ARRAY_SIZE(subset_tests); ++i) { set1 = isl_set_read_from_str(ctx, subset_tests[i].set1); set2 = isl_set_read_from_str(ctx, subset_tests[i].set2); subset = isl_set_is_subset(set1, set2); isl_set_free(set1); isl_set_free(set2); if (subset < 0) return -1; if (subset != subset_tests[i].subset) isl_die(ctx, isl_error_unknown, "incorrect subset result", return -1); } return 0; } struct { const char *minuend; const char *subtrahend; const char *difference; } subtract_domain_tests[] = { { "{ A[i] -> B[i] }", "{ A[i] }", "{ }" }, { "{ A[i] -> B[i] }", "{ B[i] }", "{ A[i] -> B[i] }" }, { "{ A[i] -> B[i] }", "{ A[i] : i > 0 }", "{ A[i] -> B[i] : i <= 0 }" }, }; static int test_subtract(isl_ctx *ctx) { int i; isl_union_map *umap1, *umap2; isl_union_pw_multi_aff *upma1, *upma2; isl_union_set *uset; int equal; for (i = 0; i < ARRAY_SIZE(subtract_domain_tests); ++i) { umap1 = isl_union_map_read_from_str(ctx, subtract_domain_tests[i].minuend); uset = isl_union_set_read_from_str(ctx, subtract_domain_tests[i].subtrahend); umap2 = isl_union_map_read_from_str(ctx, subtract_domain_tests[i].difference); umap1 = isl_union_map_subtract_domain(umap1, uset); equal = isl_union_map_is_equal(umap1, umap2); isl_union_map_free(umap1); isl_union_map_free(umap2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect subtract domain result", return -1); } for (i = 0; i < ARRAY_SIZE(subtract_domain_tests); ++i) { upma1 = isl_union_pw_multi_aff_read_from_str(ctx, subtract_domain_tests[i].minuend); uset = isl_union_set_read_from_str(ctx, subtract_domain_tests[i].subtrahend); upma2 = isl_union_pw_multi_aff_read_from_str(ctx, subtract_domain_tests[i].difference); upma1 = isl_union_pw_multi_aff_subtract_domain(upma1, uset); equal = isl_union_pw_multi_aff_plain_is_equal(upma1, upma2); isl_union_pw_multi_aff_free(upma1); isl_union_pw_multi_aff_free(upma2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect subtract domain result", return -1); } return 0; } /* Check that intersecting the empty basic set with another basic set * does not increase the number of constraints. In particular, * the empty basic set should maintain its canonical representation. */ static int test_intersect(isl_ctx *ctx) { int n1, n2; isl_basic_set *bset1, *bset2; bset1 = isl_basic_set_read_from_str(ctx, "{ [a,b,c] : 1 = 0 }"); bset2 = isl_basic_set_read_from_str(ctx, "{ [1,2,3] }"); n1 = isl_basic_set_n_constraint(bset1); bset1 = isl_basic_set_intersect(bset1, bset2); n2 = isl_basic_set_n_constraint(bset1); isl_basic_set_free(bset1); if (!bset1) return -1; if (n1 != n2) isl_die(ctx, isl_error_unknown, "number of constraints of empty set changed", return -1); return 0; } int test_factorize(isl_ctx *ctx) { const char *str; isl_basic_set *bset; isl_factorizer *f; str = "{ [i0, i1, i2, i3, i4, i5, i6, i7] : 3i5 <= 2 - 2i0 and " "i0 >= -2 and i6 >= 1 + i3 and i7 >= 0 and 3i5 >= -2i0 and " "2i4 <= i2 and i6 >= 1 + 2i0 + 3i1 and i4 <= -1 and " "i6 >= 1 + 2i0 + 3i5 and i6 <= 2 + 2i0 + 3i5 and " "3i5 <= 2 - 2i0 - i2 + 3i4 and i6 <= 2 + 2i0 + 3i1 and " "i0 <= -1 and i7 <= i2 + i3 - 3i4 - i6 and " "3i5 >= -2i0 - i2 + 3i4 }"; bset = isl_basic_set_read_from_str(ctx, str); f = isl_basic_set_factorizer(bset); isl_basic_set_free(bset); isl_factorizer_free(f); if (!f) isl_die(ctx, isl_error_unknown, "failed to construct factorizer", return -1); str = "{ [i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12] : " "i12 <= 2 + i0 - i11 and 2i8 >= -i4 and i11 >= i1 and " "3i5 <= -i2 and 2i11 >= -i4 - 2i7 and i11 <= 3 + i0 + 3i9 and " "i11 <= -i4 - 2i7 and i12 >= -i10 and i2 >= -2 and " "i11 >= i1 + 3i10 and i11 >= 1 + i0 + 3i9 and " "i11 <= 1 - i4 - 2i8 and 6i6 <= 6 - i2 and 3i6 >= 1 - i2 and " "i11 <= 2 + i1 and i12 <= i4 + i11 and i12 >= i0 - i11 and " "3i5 >= -2 - i2 and i12 >= -1 + i4 + i11 and 3i3 <= 3 - i2 and " "9i6 <= 11 - i2 + 6i5 and 3i3 >= 1 - i2 and " "9i6 <= 5 - i2 + 6i3 and i12 <= -1 and i2 <= 0 }"; bset = isl_basic_set_read_from_str(ctx, str); f = isl_basic_set_factorizer(bset); isl_basic_set_free(bset); isl_factorizer_free(f); if (!f) isl_die(ctx, isl_error_unknown, "failed to construct factorizer", return -1); return 0; } static isl_stat check_injective(__isl_take isl_map *map, void *user) { int *injective = user; *injective = isl_map_is_injective(map); isl_map_free(map); if (*injective < 0 || !*injective) return isl_stat_error; return isl_stat_ok; } int test_one_schedule(isl_ctx *ctx, const char *d, const char *w, const char *r, const char *s, int tilable, int parallel) { int i; isl_union_set *D; isl_union_map *W, *R, *S; isl_union_map *empty; isl_union_map *dep_raw, *dep_war, *dep_waw, *dep; isl_union_map *validity, *proximity, *coincidence; isl_union_map *schedule; isl_union_map *test; isl_union_set *delta; isl_union_set *domain; isl_set *delta_set; isl_set *slice; isl_set *origin; isl_schedule_constraints *sc; isl_schedule *sched; int is_nonneg, is_parallel, is_tilable, is_injection, is_complete; D = isl_union_set_read_from_str(ctx, d); W = isl_union_map_read_from_str(ctx, w); R = isl_union_map_read_from_str(ctx, r); S = isl_union_map_read_from_str(ctx, s); W = isl_union_map_intersect_domain(W, isl_union_set_copy(D)); R = isl_union_map_intersect_domain(R, isl_union_set_copy(D)); empty = isl_union_map_empty(isl_union_map_get_space(S)); isl_union_map_compute_flow(isl_union_map_copy(R), isl_union_map_copy(W), empty, isl_union_map_copy(S), &dep_raw, NULL, NULL, NULL); isl_union_map_compute_flow(isl_union_map_copy(W), isl_union_map_copy(W), isl_union_map_copy(R), isl_union_map_copy(S), &dep_waw, &dep_war, NULL, NULL); dep = isl_union_map_union(dep_waw, dep_war); dep = isl_union_map_union(dep, dep_raw); validity = isl_union_map_copy(dep); coincidence = isl_union_map_copy(dep); proximity = isl_union_map_copy(dep); sc = isl_schedule_constraints_on_domain(isl_union_set_copy(D)); sc = isl_schedule_constraints_set_validity(sc, validity); sc = isl_schedule_constraints_set_coincidence(sc, coincidence); sc = isl_schedule_constraints_set_proximity(sc, proximity); sched = isl_schedule_constraints_compute_schedule(sc); schedule = isl_schedule_get_map(sched); isl_schedule_free(sched); isl_union_map_free(W); isl_union_map_free(R); isl_union_map_free(S); is_injection = 1; isl_union_map_foreach_map(schedule, &check_injective, &is_injection); domain = isl_union_map_domain(isl_union_map_copy(schedule)); is_complete = isl_union_set_is_subset(D, domain); isl_union_set_free(D); isl_union_set_free(domain); test = isl_union_map_reverse(isl_union_map_copy(schedule)); test = isl_union_map_apply_range(test, dep); test = isl_union_map_apply_range(test, schedule); delta = isl_union_map_deltas(test); if (isl_union_set_n_set(delta) == 0) { is_tilable = 1; is_parallel = 1; is_nonneg = 1; isl_union_set_free(delta); } else { delta_set = isl_set_from_union_set(delta); slice = isl_set_universe(isl_set_get_space(delta_set)); for (i = 0; i < tilable; ++i) slice = isl_set_lower_bound_si(slice, isl_dim_set, i, 0); is_tilable = isl_set_is_subset(delta_set, slice); isl_set_free(slice); slice = isl_set_universe(isl_set_get_space(delta_set)); for (i = 0; i < parallel; ++i) slice = isl_set_fix_si(slice, isl_dim_set, i, 0); is_parallel = isl_set_is_subset(delta_set, slice); isl_set_free(slice); origin = isl_set_universe(isl_set_get_space(delta_set)); for (i = 0; i < isl_set_dim(origin, isl_dim_set); ++i) origin = isl_set_fix_si(origin, isl_dim_set, i, 0); delta_set = isl_set_union(delta_set, isl_set_copy(origin)); delta_set = isl_set_lexmin(delta_set); is_nonneg = isl_set_is_equal(delta_set, origin); isl_set_free(origin); isl_set_free(delta_set); } if (is_nonneg < 0 || is_parallel < 0 || is_tilable < 0 || is_injection < 0 || is_complete < 0) return -1; if (!is_complete) isl_die(ctx, isl_error_unknown, "generated schedule incomplete", return -1); if (!is_injection) isl_die(ctx, isl_error_unknown, "generated schedule not injective on each statement", return -1); if (!is_nonneg) isl_die(ctx, isl_error_unknown, "negative dependences in generated schedule", return -1); if (!is_tilable) isl_die(ctx, isl_error_unknown, "generated schedule not as tilable as expected", return -1); if (!is_parallel) isl_die(ctx, isl_error_unknown, "generated schedule not as parallel as expected", return -1); return 0; } /* Compute a schedule for the given instance set, validity constraints, * proximity constraints and context and return a corresponding union map * representation. */ static __isl_give isl_union_map *compute_schedule_with_context(isl_ctx *ctx, const char *domain, const char *validity, const char *proximity, const char *context) { isl_set *con; isl_union_set *dom; isl_union_map *dep; isl_union_map *prox; isl_schedule_constraints *sc; isl_schedule *schedule; isl_union_map *sched; con = isl_set_read_from_str(ctx, context); dom = isl_union_set_read_from_str(ctx, domain); dep = isl_union_map_read_from_str(ctx, validity); prox = isl_union_map_read_from_str(ctx, proximity); sc = isl_schedule_constraints_on_domain(dom); sc = isl_schedule_constraints_set_context(sc, con); sc = isl_schedule_constraints_set_validity(sc, dep); sc = isl_schedule_constraints_set_proximity(sc, prox); schedule = isl_schedule_constraints_compute_schedule(sc); sched = isl_schedule_get_map(schedule); isl_schedule_free(schedule); return sched; } /* Compute a schedule for the given instance set, validity constraints and * proximity constraints and return a corresponding union map representation. */ static __isl_give isl_union_map *compute_schedule(isl_ctx *ctx, const char *domain, const char *validity, const char *proximity) { return compute_schedule_with_context(ctx, domain, validity, proximity, "{ : }"); } /* Check that a schedule can be constructed on the given domain * with the given validity and proximity constraints. */ static int test_has_schedule(isl_ctx *ctx, const char *domain, const char *validity, const char *proximity) { isl_union_map *sched; sched = compute_schedule(ctx, domain, validity, proximity); if (!sched) return -1; isl_union_map_free(sched); return 0; } int test_special_schedule(isl_ctx *ctx, const char *domain, const char *validity, const char *proximity, const char *expected_sched) { isl_union_map *sched1, *sched2; int equal; sched1 = compute_schedule(ctx, domain, validity, proximity); sched2 = isl_union_map_read_from_str(ctx, expected_sched); equal = isl_union_map_is_equal(sched1, sched2); isl_union_map_free(sched1); isl_union_map_free(sched2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected schedule", return -1); return 0; } /* Check that the schedule map is properly padded, even after being * reconstructed from the band forest. */ static int test_padded_schedule(isl_ctx *ctx) { const char *str; isl_union_set *D; isl_union_map *validity, *proximity; isl_schedule_constraints *sc; isl_schedule *sched; isl_union_map *map1, *map2; isl_band_list *list; int equal; str = "[N] -> { S0[i] : 0 <= i <= N; S1[i, j] : 0 <= i, j <= N }"; D = isl_union_set_read_from_str(ctx, str); validity = isl_union_map_empty(isl_union_set_get_space(D)); proximity = isl_union_map_copy(validity); sc = isl_schedule_constraints_on_domain(D); sc = isl_schedule_constraints_set_validity(sc, validity); sc = isl_schedule_constraints_set_proximity(sc, proximity); sched = isl_schedule_constraints_compute_schedule(sc); map1 = isl_schedule_get_map(sched); list = isl_schedule_get_band_forest(sched); isl_band_list_free(list); map2 = isl_schedule_get_map(sched); isl_schedule_free(sched); equal = isl_union_map_is_equal(map1, map2); isl_union_map_free(map1); isl_union_map_free(map2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "reconstructed schedule map not the same as original", return -1); return 0; } /* Check that conditional validity constraints are also taken into * account across bands. * In particular, try to make sure that live ranges D[1,0]->C[2,1] and * D[2,0]->C[3,0] are not local in the outer band of the generated schedule * and then check that the adjacent order constraint C[2,1]->D[2,0] * is enforced by the rest of the schedule. */ static int test_special_conditional_schedule_constraints(isl_ctx *ctx) { const char *str; isl_union_set *domain; isl_union_map *validity, *proximity, *condition; isl_union_map *sink, *source, *dep; isl_schedule_constraints *sc; isl_schedule *schedule; isl_union_access_info *access; isl_union_flow *flow; int empty; str = "[n] -> { C[k, i] : k <= -1 + n and i >= 0 and i <= -1 + k; " "A[k] : k >= 1 and k <= -1 + n; " "B[k, i] : k <= -1 + n and i >= 0 and i <= -1 + k; " "D[k, i] : k <= -1 + n and i >= 0 and i <= -1 + k }"; domain = isl_union_set_read_from_str(ctx, str); sc = isl_schedule_constraints_on_domain(domain); str = "[n] -> { D[k, i] -> C[1 + k, k - i] : " "k <= -2 + n and i >= 1 and i <= -1 + k; " "D[k, i] -> C[1 + k, i] : " "k <= -2 + n and i >= 1 and i <= -1 + k; " "D[k, 0] -> C[1 + k, k] : k >= 1 and k <= -2 + n; " "D[k, 0] -> C[1 + k, 0] : k >= 1 and k <= -2 + n }"; validity = isl_union_map_read_from_str(ctx, str); sc = isl_schedule_constraints_set_validity(sc, validity); str = "[n] -> { C[k, i] -> D[k, i] : " "0 <= i <= -1 + k and k <= -1 + n }"; proximity = isl_union_map_read_from_str(ctx, str); sc = isl_schedule_constraints_set_proximity(sc, proximity); str = "[n] -> { [D[k, i] -> a[]] -> [C[1 + k, k - i] -> b[]] : " "i <= -1 + k and i >= 1 and k <= -2 + n; " "[B[k, i] -> c[]] -> [B[k, 1 + i] -> c[]] : " "k <= -1 + n and i >= 0 and i <= -2 + k }"; condition = isl_union_map_read_from_str(ctx, str); str = "[n] -> { [B[k, i] -> e[]] -> [D[k, i] -> a[]] : " "i >= 0 and i <= -1 + k and k <= -1 + n; " "[C[k, i] -> b[]] -> [D[k', -1 + k - i] -> a[]] : " "i >= 0 and i <= -1 + k and k <= -1 + n and " "k' <= -1 + n and k' >= k - i and k' >= 1 + k; " "[C[k, i] -> b[]] -> [D[k, -1 + k - i] -> a[]] : " "i >= 0 and i <= -1 + k and k <= -1 + n; " "[B[k, i] -> c[]] -> [A[k'] -> d[]] : " "k <= -1 + n and i >= 0 and i <= -1 + k and " "k' >= 1 and k' <= -1 + n and k' >= 1 + k }"; validity = isl_union_map_read_from_str(ctx, str); sc = isl_schedule_constraints_set_conditional_validity(sc, condition, validity); schedule = isl_schedule_constraints_compute_schedule(sc); str = "{ D[2,0] -> [] }"; sink = isl_union_map_read_from_str(ctx, str); access = isl_union_access_info_from_sink(sink); str = "{ C[2,1] -> [] }"; source = isl_union_map_read_from_str(ctx, str); access = isl_union_access_info_set_must_source(access, source); access = isl_union_access_info_set_schedule(access, schedule); flow = isl_union_access_info_compute_flow(access); dep = isl_union_flow_get_must_dependence(flow); isl_union_flow_free(flow); empty = isl_union_map_is_empty(dep); isl_union_map_free(dep); if (empty < 0) return -1; if (empty) isl_die(ctx, isl_error_unknown, "conditional validity not respected", return -1); return 0; } /* Input for testing of schedule construction based on * conditional constraints. * * domain is the iteration domain * flow are the flow dependences, which determine the validity and * proximity constraints * condition are the conditions on the conditional validity constraints * conditional_validity are the conditional validity constraints * outer_band_n is the expected number of members in the outer band */ struct { const char *domain; const char *flow; const char *condition; const char *conditional_validity; int outer_band_n; } live_range_tests[] = { /* Contrived example that illustrates that we need to keep * track of tagged condition dependences and * tagged conditional validity dependences * in isl_sched_edge separately. * In particular, the conditional validity constraints on A * cannot be satisfied, * but they can be ignored because there are no corresponding * condition constraints. However, we do have an additional * conditional validity constraint that maps to the same * dependence relation * as the condition constraint on B. If we did not make a distinction * between tagged condition and tagged conditional validity * dependences, then we * could end up treating this shared dependence as an condition * constraint on A, forcing a localization of the conditions, * which is impossible. */ { "{ S[i] : 0 <= 1 < 100; T[i] : 0 <= 1 < 100 }", "{ S[i] -> S[i+1] : 0 <= i < 99 }", "{ [S[i] -> B[]] -> [S[i+1] -> B[]] : 0 <= i < 99 }", "{ [S[i] -> A[]] -> [T[i'] -> A[]] : 0 <= i', i < 100 and i != i';" "[T[i] -> A[]] -> [S[i'] -> A[]] : 0 <= i', i < 100 and i != i';" "[S[i] -> A[]] -> [S[i+1] -> A[]] : 0 <= i < 99 }", 1 }, /* TACO 2013 Fig. 7 */ { "[n] -> { S1[i,j] : 0 <= i,j < n; S2[i,j] : 0 <= i,j < n }", "[n] -> { S1[i,j] -> S2[i,j] : 0 <= i,j < n;" "S2[i,j] -> S2[i,j+1] : 0 <= i < n and 0 <= j < n - 1 }", "[n] -> { [S1[i,j] -> t[]] -> [S2[i,j] -> t[]] : 0 <= i,j < n;" "[S2[i,j] -> x1[]] -> [S2[i,j+1] -> x1[]] : " "0 <= i < n and 0 <= j < n - 1 }", "[n] -> { [S2[i,j] -> t[]] -> [S1[i,j'] -> t[]] : " "0 <= i < n and 0 <= j < j' < n;" "[S2[i,j] -> t[]] -> [S1[i',j'] -> t[]] : " "0 <= i < i' < n and 0 <= j,j' < n;" "[S2[i,j] -> x1[]] -> [S2[i,j'] -> x1[]] : " "0 <= i,j,j' < n and j < j' }", 2 }, /* TACO 2013 Fig. 7, without tags */ { "[n] -> { S1[i,j] : 0 <= i,j < n; S2[i,j] : 0 <= i,j < n }", "[n] -> { S1[i,j] -> S2[i,j] : 0 <= i,j < n;" "S2[i,j] -> S2[i,j+1] : 0 <= i < n and 0 <= j < n - 1 }", "[n] -> { S1[i,j] -> S2[i,j] : 0 <= i,j < n;" "S2[i,j] -> S2[i,j+1] : 0 <= i < n and 0 <= j < n - 1 }", "[n] -> { S2[i,j] -> S1[i,j'] : 0 <= i < n and 0 <= j < j' < n;" "S2[i,j] -> S1[i',j'] : 0 <= i < i' < n and 0 <= j,j' < n;" "S2[i,j] -> S2[i,j'] : 0 <= i,j,j' < n and j < j' }", 1 }, /* TACO 2013 Fig. 12 */ { "{ S1[i,0] : 0 <= i <= 1; S2[i,j] : 0 <= i <= 1 and 1 <= j <= 2;" "S3[i,3] : 0 <= i <= 1 }", "{ S1[i,0] -> S2[i,1] : 0 <= i <= 1;" "S2[i,1] -> S2[i,2] : 0 <= i <= 1;" "S2[i,2] -> S3[i,3] : 0 <= i <= 1 }", "{ [S1[i,0]->t[]] -> [S2[i,1]->t[]] : 0 <= i <= 1;" "[S2[i,1]->t[]] -> [S2[i,2]->t[]] : 0 <= i <= 1;" "[S2[i,2]->t[]] -> [S3[i,3]->t[]] : 0 <= i <= 1 }", "{ [S2[i,1]->t[]] -> [S2[i,2]->t[]] : 0 <= i <= 1;" "[S2[0,j]->t[]] -> [S2[1,j']->t[]] : 1 <= j,j' <= 2;" "[S2[0,j]->t[]] -> [S1[1,0]->t[]] : 1 <= j <= 2;" "[S3[0,3]->t[]] -> [S2[1,j]->t[]] : 1 <= j <= 2;" "[S3[0,3]->t[]] -> [S1[1,0]->t[]] }", 1 } }; /* Test schedule construction based on conditional constraints. * In particular, check the number of members in the outer band node * as an indication of whether tiling is possible or not. */ static int test_conditional_schedule_constraints(isl_ctx *ctx) { int i; isl_union_set *domain; isl_union_map *condition; isl_union_map *flow; isl_union_map *validity; isl_schedule_constraints *sc; isl_schedule *schedule; isl_schedule_node *node; int n_member; if (test_special_conditional_schedule_constraints(ctx) < 0) return -1; for (i = 0; i < ARRAY_SIZE(live_range_tests); ++i) { domain = isl_union_set_read_from_str(ctx, live_range_tests[i].domain); flow = isl_union_map_read_from_str(ctx, live_range_tests[i].flow); condition = isl_union_map_read_from_str(ctx, live_range_tests[i].condition); validity = isl_union_map_read_from_str(ctx, live_range_tests[i].conditional_validity); sc = isl_schedule_constraints_on_domain(domain); sc = isl_schedule_constraints_set_validity(sc, isl_union_map_copy(flow)); sc = isl_schedule_constraints_set_proximity(sc, flow); sc = isl_schedule_constraints_set_conditional_validity(sc, condition, validity); schedule = isl_schedule_constraints_compute_schedule(sc); node = isl_schedule_get_root(schedule); while (node && isl_schedule_node_get_type(node) != isl_schedule_node_band) node = isl_schedule_node_first_child(node); n_member = isl_schedule_node_band_n_member(node); isl_schedule_node_free(node); isl_schedule_free(schedule); if (!schedule) return -1; if (n_member != live_range_tests[i].outer_band_n) isl_die(ctx, isl_error_unknown, "unexpected number of members in outer band", return -1); } return 0; } /* Check that the schedule computed for the given instance set and * dependence relation strongly satisfies the dependences. * In particular, check that no instance is scheduled before * or together with an instance on which it depends. * Earlier versions of isl would produce a schedule that * only weakly satisfies the dependences. */ static int test_strongly_satisfying_schedule(isl_ctx *ctx) { const char *domain, *dep; isl_union_map *D, *schedule; isl_map *map, *ge; int empty; domain = "{ B[i0, i1] : 0 <= i0 <= 1 and 0 <= i1 <= 11; " "A[i0] : 0 <= i0 <= 1 }"; dep = "{ B[i0, i1] -> B[i0, 1 + i1] : 0 <= i0 <= 1 and 0 <= i1 <= 10; " "B[0, 11] -> A[1]; A[i0] -> B[i0, 0] : 0 <= i0 <= 1 }"; schedule = compute_schedule(ctx, domain, dep, dep); D = isl_union_map_read_from_str(ctx, dep); D = isl_union_map_apply_domain(D, isl_union_map_copy(schedule)); D = isl_union_map_apply_range(D, schedule); map = isl_map_from_union_map(D); ge = isl_map_lex_ge(isl_space_domain(isl_map_get_space(map))); map = isl_map_intersect(map, ge); empty = isl_map_is_empty(map); isl_map_free(map); if (empty < 0) return -1; if (!empty) isl_die(ctx, isl_error_unknown, "dependences not strongly satisfied", return -1); return 0; } /* Compute a schedule for input where the instance set constraints * conflict with the context constraints. * Earlier versions of isl did not properly handle this situation. */ static int test_conflicting_context_schedule(isl_ctx *ctx) { isl_union_map *schedule; const char *domain, *context; domain = "[n] -> { A[] : n >= 0 }"; context = "[n] -> { : n < 0 }"; schedule = compute_schedule_with_context(ctx, domain, "{}", "{}", context); isl_union_map_free(schedule); if (!schedule) return -1; return 0; } /* Check that the dependence carrying step is not confused by * a bound on the coefficient size. * In particular, force the scheduler to move to a dependence carrying * step by demanding outer coincidence and bound the size of * the coefficients. Earlier versions of isl would take this * bound into account while carrying dependences, breaking * fundamental assumptions. */ static int test_bounded_coefficients_schedule(isl_ctx *ctx) { const char *domain, *dep; isl_union_set *I; isl_union_map *D; isl_schedule_constraints *sc; isl_schedule *schedule; domain = "{ C[i0, i1] : 2 <= i0 <= 3999 and 0 <= i1 <= -1 + i0 }"; dep = "{ C[i0, i1] -> C[i0, 1 + i1] : i0 <= 3999 and i1 >= 0 and " "i1 <= -2 + i0; " "C[i0, -1 + i0] -> C[1 + i0, 0] : i0 <= 3998 and i0 >= 1 }"; I = isl_union_set_read_from_str(ctx, domain); D = isl_union_map_read_from_str(ctx, dep); sc = isl_schedule_constraints_on_domain(I); sc = isl_schedule_constraints_set_validity(sc, isl_union_map_copy(D)); sc = isl_schedule_constraints_set_coincidence(sc, D); isl_options_set_schedule_outer_coincidence(ctx, 1); isl_options_set_schedule_max_coefficient(ctx, 20); schedule = isl_schedule_constraints_compute_schedule(sc); isl_options_set_schedule_max_coefficient(ctx, -1); isl_options_set_schedule_outer_coincidence(ctx, 0); isl_schedule_free(schedule); if (!schedule) return -1; return 0; } int test_schedule(isl_ctx *ctx) { const char *D, *W, *R, *V, *P, *S; /* Handle resulting schedule with zero bands. */ if (test_one_schedule(ctx, "{[]}", "{}", "{}", "{[] -> []}", 0, 0) < 0) return -1; /* Jacobi */ D = "[T,N] -> { S1[t,i] : 1 <= t <= T and 2 <= i <= N - 1 }"; W = "{ S1[t,i] -> a[t,i] }"; R = "{ S1[t,i] -> a[t-1,i]; S1[t,i] -> a[t-1,i-1]; " "S1[t,i] -> a[t-1,i+1] }"; S = "{ S1[t,i] -> [t,i] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 0) < 0) return -1; /* Fig. 5 of CC2008 */ D = "[N] -> { S_0[i, j] : i >= 0 and i <= -1 + N and j >= 2 and " "j <= -1 + N }"; W = "[N] -> { S_0[i, j] -> a[i, j] : i >= 0 and i <= -1 + N and " "j >= 2 and j <= -1 + N }"; R = "[N] -> { S_0[i, j] -> a[j, i] : i >= 0 and i <= -1 + N and " "j >= 2 and j <= -1 + N; " "S_0[i, j] -> a[i, -1 + j] : i >= 0 and i <= -1 + N and " "j >= 2 and j <= -1 + N }"; S = "[N] -> { S_0[i, j] -> [0, i, 0, j, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 0) < 0) return -1; D = "{ S1[i] : 0 <= i <= 10; S2[i] : 0 <= i <= 9 }"; W = "{ S1[i] -> a[i] }"; R = "{ S2[i] -> a[i+1] }"; S = "{ S1[i] -> [0,i]; S2[i] -> [1,i] }"; if (test_one_schedule(ctx, D, W, R, S, 1, 1) < 0) return -1; D = "{ S1[i] : 0 <= i < 10; S2[i] : 0 <= i < 10 }"; W = "{ S1[i] -> a[i] }"; R = "{ S2[i] -> a[9-i] }"; S = "{ S1[i] -> [0,i]; S2[i] -> [1,i] }"; if (test_one_schedule(ctx, D, W, R, S, 1, 1) < 0) return -1; D = "[N] -> { S1[i] : 0 <= i < N; S2[i] : 0 <= i < N }"; W = "{ S1[i] -> a[i] }"; R = "[N] -> { S2[i] -> a[N-1-i] }"; S = "{ S1[i] -> [0,i]; S2[i] -> [1,i] }"; if (test_one_schedule(ctx, D, W, R, S, 1, 1) < 0) return -1; D = "{ S1[i] : 0 < i < 10; S2[i] : 0 <= i < 10 }"; W = "{ S1[i] -> a[i]; S2[i] -> b[i] }"; R = "{ S2[i] -> a[i]; S1[i] -> b[i-1] }"; S = "{ S1[i] -> [i,0]; S2[i] -> [i,1] }"; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; D = "[N] -> { S1[i] : 1 <= i <= N; S2[i,j] : 1 <= i,j <= N }"; W = "{ S1[i] -> a[0,i]; S2[i,j] -> a[i,j] }"; R = "{ S2[i,j] -> a[i-1,j] }"; S = "{ S1[i] -> [0,i,0]; S2[i,j] -> [1,i,j] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 1) < 0) return -1; D = "[N] -> { S1[i] : 1 <= i <= N; S2[i,j] : 1 <= i,j <= N }"; W = "{ S1[i] -> a[i,0]; S2[i,j] -> a[i,j] }"; R = "{ S2[i,j] -> a[i,j-1] }"; S = "{ S1[i] -> [0,i,0]; S2[i,j] -> [1,i,j] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 1) < 0) return -1; D = "[N] -> { S_0[]; S_1[i] : i >= 0 and i <= -1 + N; S_2[] }"; W = "[N] -> { S_0[] -> a[0]; S_2[] -> b[0]; " "S_1[i] -> a[1 + i] : i >= 0 and i <= -1 + N }"; R = "[N] -> { S_2[] -> a[N]; S_1[i] -> a[i] : i >= 0 and i <= -1 + N }"; S = "[N] -> { S_1[i] -> [1, i, 0]; S_2[] -> [2, 0, 1]; " "S_0[] -> [0, 0, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 1, 0) < 0) return -1; ctx->opt->schedule_parametric = 0; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; ctx->opt->schedule_parametric = 1; D = "[N] -> { S1[i] : 1 <= i <= N; S2[i] : 1 <= i <= N; " "S3[i,j] : 1 <= i,j <= N; S4[i] : 1 <= i <= N }"; W = "{ S1[i] -> a[i,0]; S2[i] -> a[0,i]; S3[i,j] -> a[i,j] }"; R = "[N] -> { S3[i,j] -> a[i-1,j]; S3[i,j] -> a[i,j-1]; " "S4[i] -> a[i,N] }"; S = "{ S1[i] -> [0,i,0]; S2[i] -> [1,i,0]; S3[i,j] -> [2,i,j]; " "S4[i] -> [4,i,0] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 0) < 0) return -1; D = "[N] -> { S_0[i, j] : i >= 1 and i <= N and j >= 1 and j <= N }"; W = "[N] -> { S_0[i, j] -> s[0] : i >= 1 and i <= N and j >= 1 and " "j <= N }"; R = "[N] -> { S_0[i, j] -> s[0] : i >= 1 and i <= N and j >= 1 and " "j <= N; " "S_0[i, j] -> a[i, j] : i >= 1 and i <= N and j >= 1 and " "j <= N }"; S = "[N] -> { S_0[i, j] -> [0, i, 0, j, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; D = "[N] -> { S_0[t] : t >= 0 and t <= -1 + N; " " S_2[t] : t >= 0 and t <= -1 + N; " " S_1[t, i] : t >= 0 and t <= -1 + N and i >= 0 and " "i <= -1 + N }"; W = "[N] -> { S_0[t] -> a[t, 0] : t >= 0 and t <= -1 + N; " " S_2[t] -> b[t] : t >= 0 and t <= -1 + N; " " S_1[t, i] -> a[t, 1 + i] : t >= 0 and t <= -1 + N and " "i >= 0 and i <= -1 + N }"; R = "[N] -> { S_1[t, i] -> a[t, i] : t >= 0 and t <= -1 + N and " "i >= 0 and i <= -1 + N; " " S_2[t] -> a[t, N] : t >= 0 and t <= -1 + N }"; S = "[N] -> { S_2[t] -> [0, t, 2]; S_1[t, i] -> [0, t, 1, i, 0]; " " S_0[t] -> [0, t, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 2, 1) < 0) return -1; ctx->opt->schedule_parametric = 0; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; ctx->opt->schedule_parametric = 1; D = "[N] -> { S1[i,j] : 0 <= i,j < N; S2[i,j] : 0 <= i,j < N }"; S = "{ S1[i,j] -> [0,i,j]; S2[i,j] -> [1,i,j] }"; if (test_one_schedule(ctx, D, "{}", "{}", S, 2, 2) < 0) return -1; D = "[M, N] -> { S_1[i] : i >= 0 and i <= -1 + M; " "S_0[i, j] : i >= 0 and i <= -1 + M and j >= 0 and j <= -1 + N }"; W = "[M, N] -> { S_0[i, j] -> a[j] : i >= 0 and i <= -1 + M and " "j >= 0 and j <= -1 + N; " "S_1[i] -> b[0] : i >= 0 and i <= -1 + M }"; R = "[M, N] -> { S_0[i, j] -> a[0] : i >= 0 and i <= -1 + M and " "j >= 0 and j <= -1 + N; " "S_1[i] -> b[0] : i >= 0 and i <= -1 + M }"; S = "[M, N] -> { S_1[i] -> [1, i, 0]; S_0[i, j] -> [0, i, 0, j, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; D = "{ S_0[i] : i >= 0 }"; W = "{ S_0[i] -> a[i] : i >= 0 }"; R = "{ S_0[i] -> a[0] : i >= 0 }"; S = "{ S_0[i] -> [0, i, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; D = "{ S_0[i] : i >= 0; S_1[i] : i >= 0 }"; W = "{ S_0[i] -> a[i] : i >= 0; S_1[i] -> b[i] : i >= 0 }"; R = "{ S_0[i] -> b[0] : i >= 0; S_1[i] -> a[i] : i >= 0 }"; S = "{ S_1[i] -> [0, i, 1]; S_0[i] -> [0, i, 0] }"; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; D = "[n] -> { S_0[j, k] : j <= -1 + n and j >= 0 and " "k <= -1 + n and k >= 0 }"; W = "[n] -> { S_0[j, k] -> B[j] : j <= -1 + n and j >= 0 and " "k <= -1 + n and k >= 0 }"; R = "[n] -> { S_0[j, k] -> B[j] : j <= -1 + n and j >= 0 and " "k <= -1 + n and k >= 0; " "S_0[j, k] -> B[k] : j <= -1 + n and j >= 0 and " "k <= -1 + n and k >= 0; " "S_0[j, k] -> A[k] : j <= -1 + n and j >= 0 and " "k <= -1 + n and k >= 0 }"; S = "[n] -> { S_0[j, k] -> [2, j, k] }"; ctx->opt->schedule_outer_coincidence = 1; if (test_one_schedule(ctx, D, W, R, S, 0, 0) < 0) return -1; ctx->opt->schedule_outer_coincidence = 0; D = "{Stmt_for_body24[i0, i1, i2, i3]:" "i0 >= 0 and i0 <= 1 and i1 >= 0 and i1 <= 6 and i2 >= 2 and " "i2 <= 6 - i1 and i3 >= 0 and i3 <= -1 + i2;" "Stmt_for_body24[i0, i1, 1, 0]:" "i0 >= 0 and i0 <= 1 and i1 >= 0 and i1 <= 5;" "Stmt_for_body7[i0, i1, i2]:" "i0 >= 0 and i0 <= 1 and i1 >= 0 and i1 <= 7 and i2 >= 0 and " "i2 <= 7 }"; V = "{Stmt_for_body24[0, i1, i2, i3] -> " "Stmt_for_body24[1, i1, i2, i3]:" "i3 >= 0 and i3 <= -1 + i2 and i1 >= 0 and i2 <= 6 - i1 and " "i2 >= 1;" "Stmt_for_body24[0, i1, i2, i3] -> " "Stmt_for_body7[1, 1 + i1 + i3, 1 + i1 + i2]:" "i3 <= -1 + i2 and i2 <= 6 - i1 and i2 >= 1 and i1 >= 0 and " "i3 >= 0;" "Stmt_for_body24[0, i1, i2, i3] ->" "Stmt_for_body7[1, i1, 1 + i1 + i3]:" "i3 >= 0 and i2 <= 6 - i1 and i1 >= 0 and i3 <= -1 + i2;" "Stmt_for_body7[0, i1, i2] -> Stmt_for_body7[1, i1, i2]:" "(i2 >= 1 + i1 and i2 <= 6 and i1 >= 0 and i1 <= 4) or " "(i2 >= 3 and i2 <= 7 and i1 >= 1 and i2 >= 1 + i1) or " "(i2 >= 0 and i2 <= i1 and i2 >= -7 + i1 and i1 <= 7);" "Stmt_for_body7[0, i1, 1 + i1] -> Stmt_for_body7[1, i1, 1 + i1]:" "i1 <= 6 and i1 >= 0;" "Stmt_for_body7[0, 0, 7] -> Stmt_for_body7[1, 0, 7];" "Stmt_for_body7[i0, i1, i2] -> " "Stmt_for_body24[i0, o1, -1 + i2 - o1, -1 + i1 - o1]:" "i0 >= 0 and i0 <= 1 and o1 >= 0 and i2 >= 1 + i1 and " "o1 <= -2 + i2 and i2 <= 7 and o1 <= -1 + i1;" "Stmt_for_body7[i0, i1, i2] -> " "Stmt_for_body24[i0, i1, o2, -1 - i1 + i2]:" "i0 >= 0 and i0 <= 1 and i1 >= 0 and o2 >= -i1 + i2 and " "o2 >= 1 and o2 <= 6 - i1 and i2 >= 1 + i1 }"; P = V; S = "{ Stmt_for_body24[i0, i1, i2, i3] -> " "[i0, 5i0 + i1, 6i0 + i1 + i2, 1 + 6i0 + i1 + i2 + i3, 1];" "Stmt_for_body7[i0, i1, i2] -> [0, 5i0, 6i0 + i1, 6i0 + i2, 0] }"; if (test_special_schedule(ctx, D, V, P, S) < 0) return -1; D = "{ S_0[i, j] : i >= 1 and i <= 10 and j >= 1 and j <= 8 }"; V = "{ S_0[i, j] -> S_0[i, 1 + j] : i >= 1 and i <= 10 and " "j >= 1 and j <= 7;" "S_0[i, j] -> S_0[1 + i, j] : i >= 1 and i <= 9 and " "j >= 1 and j <= 8 }"; P = "{ }"; S = "{ S_0[i, j] -> [i + j, j] }"; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_FEAUTRIER; if (test_special_schedule(ctx, D, V, P, S) < 0) return -1; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_ISL; /* Fig. 1 from Feautrier's "Some Efficient Solutions..." pt. 2, 1992 */ D = "[N] -> { S_0[i, j] : i >= 0 and i <= -1 + N and " "j >= 0 and j <= -1 + i }"; V = "[N] -> { S_0[i, j] -> S_0[i, 1 + j] : j <= -2 + i and " "i <= -1 + N and j >= 0;" "S_0[i, -1 + i] -> S_0[1 + i, 0] : i >= 1 and " "i <= -2 + N }"; P = "{ }"; S = "{ S_0[i, j] -> [i, j] }"; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_FEAUTRIER; if (test_special_schedule(ctx, D, V, P, S) < 0) return -1; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_ISL; /* Test both algorithms on a case with only proximity dependences. */ D = "{ S[i,j] : 0 <= i <= 10 }"; V = "{ }"; P = "{ S[i,j] -> S[i+1,j] : 0 <= i,j <= 10 }"; S = "{ S[i, j] -> [j, i] }"; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_FEAUTRIER; if (test_special_schedule(ctx, D, V, P, S) < 0) return -1; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_ISL; if (test_special_schedule(ctx, D, V, P, S) < 0) return -1; D = "{ A[a]; B[] }"; V = "{}"; P = "{ A[a] -> B[] }"; if (test_has_schedule(ctx, D, V, P) < 0) return -1; if (test_padded_schedule(ctx) < 0) return -1; /* Check that check for progress is not confused by rational * solution. */ D = "[N] -> { S0[i, j] : i >= 0 and i <= N and j >= 0 and j <= N }"; V = "[N] -> { S0[i0, -1 + N] -> S0[2 + i0, 0] : i0 >= 0 and " "i0 <= -2 + N; " "S0[i0, i1] -> S0[i0, 1 + i1] : i0 >= 0 and " "i0 <= N and i1 >= 0 and i1 <= -1 + N }"; P = "{}"; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_FEAUTRIER; if (test_has_schedule(ctx, D, V, P) < 0) return -1; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_ISL; /* Check that we allow schedule rows that are only non-trivial * on some full-dimensional domains. */ D = "{ S1[j] : 0 <= j <= 1; S0[]; S2[k] : 0 <= k <= 1 }"; V = "{ S0[] -> S1[j] : 0 <= j <= 1; S2[0] -> S0[];" "S1[j] -> S2[1] : 0 <= j <= 1 }"; P = "{}"; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_FEAUTRIER; if (test_has_schedule(ctx, D, V, P) < 0) return -1; ctx->opt->schedule_algorithm = ISL_SCHEDULE_ALGORITHM_ISL; if (test_conditional_schedule_constraints(ctx) < 0) return -1; if (test_strongly_satisfying_schedule(ctx) < 0) return -1; if (test_conflicting_context_schedule(ctx) < 0) return -1; if (test_bounded_coefficients_schedule(ctx) < 0) return -1; return 0; } int test_plain_injective(isl_ctx *ctx, const char *str, int injective) { isl_union_map *umap; int test; umap = isl_union_map_read_from_str(ctx, str); test = isl_union_map_plain_is_injective(umap); isl_union_map_free(umap); if (test < 0) return -1; if (test == injective) return 0; if (injective) isl_die(ctx, isl_error_unknown, "map not detected as injective", return -1); else isl_die(ctx, isl_error_unknown, "map detected as injective", return -1); } int test_injective(isl_ctx *ctx) { const char *str; if (test_plain_injective(ctx, "{S[i,j] -> A[0]; T[i,j] -> B[1]}", 0)) return -1; if (test_plain_injective(ctx, "{S[] -> A[0]; T[] -> B[0]}", 1)) return -1; if (test_plain_injective(ctx, "{S[] -> A[0]; T[] -> A[1]}", 1)) return -1; if (test_plain_injective(ctx, "{S[] -> A[0]; T[] -> A[0]}", 0)) return -1; if (test_plain_injective(ctx, "{S[i] -> A[i,0]; T[i] -> A[i,1]}", 1)) return -1; if (test_plain_injective(ctx, "{S[i] -> A[i]; T[i] -> A[i]}", 0)) return -1; if (test_plain_injective(ctx, "{S[] -> A[0,0]; T[] -> A[0,1]}", 1)) return -1; if (test_plain_injective(ctx, "{S[] -> A[0,0]; T[] -> A[1,0]}", 1)) return -1; str = "{S[] -> A[0,0]; T[] -> A[0,1]; U[] -> A[1,0]}"; if (test_plain_injective(ctx, str, 1)) return -1; str = "{S[] -> A[0,0]; T[] -> A[0,1]; U[] -> A[0,0]}"; if (test_plain_injective(ctx, str, 0)) return -1; return 0; } static int aff_plain_is_equal(__isl_keep isl_aff *aff, const char *str) { isl_aff *aff2; int equal; if (!aff) return -1; aff2 = isl_aff_read_from_str(isl_aff_get_ctx(aff), str); equal = isl_aff_plain_is_equal(aff, aff2); isl_aff_free(aff2); return equal; } static int aff_check_plain_equal(__isl_keep isl_aff *aff, const char *str) { int equal; equal = aff_plain_is_equal(aff, str); if (equal < 0) return -1; if (!equal) isl_die(isl_aff_get_ctx(aff), isl_error_unknown, "result not as expected", return -1); return 0; } struct { __isl_give isl_aff *(*fn)(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); } aff_bin_op[] = { ['+'] = { &isl_aff_add }, ['-'] = { &isl_aff_sub }, ['*'] = { &isl_aff_mul }, ['/'] = { &isl_aff_div }, }; struct { const char *arg1; unsigned char op; const char *arg2; const char *res; } aff_bin_tests[] = { { "{ [i] -> [i] }", '+', "{ [i] -> [i] }", "{ [i] -> [2i] }" }, { "{ [i] -> [i] }", '-', "{ [i] -> [i] }", "{ [i] -> [0] }" }, { "{ [i] -> [i] }", '*', "{ [i] -> [2] }", "{ [i] -> [2i] }" }, { "{ [i] -> [2] }", '*', "{ [i] -> [i] }", "{ [i] -> [2i] }" }, { "{ [i] -> [i] }", '/', "{ [i] -> [2] }", "{ [i] -> [i/2] }" }, { "{ [i] -> [2i] }", '/', "{ [i] -> [2] }", "{ [i] -> [i] }" }, { "{ [i] -> [i] }", '+', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [i] }", '-', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [i] }", '*', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [2] }", '*', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [i] }", '/', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [2] }", '/', "{ [i] -> [NaN] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '+', "{ [i] -> [i] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '-', "{ [i] -> [i] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '*', "{ [i] -> [2] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '*', "{ [i] -> [i] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '/', "{ [i] -> [2] }", "{ [i] -> [NaN] }" }, { "{ [i] -> [NaN] }", '/', "{ [i] -> [i] }", "{ [i] -> [NaN] }" }, }; /* Perform some basic tests of binary operations on isl_aff objects. */ static int test_bin_aff(isl_ctx *ctx) { int i; isl_aff *aff1, *aff2, *res; __isl_give isl_aff *(*fn)(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2); int ok; for (i = 0; i < ARRAY_SIZE(aff_bin_tests); ++i) { aff1 = isl_aff_read_from_str(ctx, aff_bin_tests[i].arg1); aff2 = isl_aff_read_from_str(ctx, aff_bin_tests[i].arg2); res = isl_aff_read_from_str(ctx, aff_bin_tests[i].res); fn = aff_bin_op[aff_bin_tests[i].op].fn; aff1 = fn(aff1, aff2); if (isl_aff_is_nan(res)) ok = isl_aff_is_nan(aff1); else ok = isl_aff_plain_is_equal(aff1, res); isl_aff_free(aff1); isl_aff_free(res); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } return 0; } struct { __isl_give isl_union_pw_multi_aff *(*fn)( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); const char *arg1; const char *arg2; const char *res; } upma_bin_tests[] = { { &isl_union_pw_multi_aff_add, "{ A[] -> [0]; B[0] -> [1] }", "{ B[x] -> [2] : x >= 0 }", "{ B[0] -> [3] }" }, { &isl_union_pw_multi_aff_union_add, "{ A[] -> [0]; B[0] -> [1] }", "{ B[x] -> [2] : x >= 0 }", "{ A[] -> [0]; B[0] -> [3]; B[x] -> [2] : x >= 1 }" }, { &isl_union_pw_multi_aff_pullback_union_pw_multi_aff, "{ A[] -> B[0]; C[x] -> B[1] : x < 10; C[y] -> B[2] : y >= 10 }", "{ D[i] -> A[] : i < 0; D[i] -> C[i + 5] : i >= 0 }", "{ D[i] -> B[0] : i < 0; D[i] -> B[1] : 0 <= i < 5; " "D[i] -> B[2] : i >= 5 }" }, { &isl_union_pw_multi_aff_union_add, "{ B[x] -> A[1] : x <= 0 }", "{ B[x] -> C[2] : x > 0 }", "{ B[x] -> A[1] : x <= 0; B[x] -> C[2] : x > 0 }" }, { &isl_union_pw_multi_aff_union_add, "{ B[x] -> A[1] : x <= 0 }", "{ B[x] -> A[2] : x >= 0 }", "{ B[x] -> A[1] : x < 0; B[x] -> A[2] : x > 0; B[0] -> A[3] }" }, }; /* Perform some basic tests of binary operations on * isl_union_pw_multi_aff objects. */ static int test_bin_upma(isl_ctx *ctx) { int i; isl_union_pw_multi_aff *upma1, *upma2, *res; int ok; for (i = 0; i < ARRAY_SIZE(upma_bin_tests); ++i) { upma1 = isl_union_pw_multi_aff_read_from_str(ctx, upma_bin_tests[i].arg1); upma2 = isl_union_pw_multi_aff_read_from_str(ctx, upma_bin_tests[i].arg2); res = isl_union_pw_multi_aff_read_from_str(ctx, upma_bin_tests[i].res); upma1 = upma_bin_tests[i].fn(upma1, upma2); ok = isl_union_pw_multi_aff_plain_is_equal(upma1, res); isl_union_pw_multi_aff_free(upma1); isl_union_pw_multi_aff_free(res); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } return 0; } struct { __isl_give isl_union_pw_multi_aff *(*fn)( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2); const char *arg1; const char *arg2; } upma_bin_fail_tests[] = { { &isl_union_pw_multi_aff_union_add, "{ B[x] -> A[1] : x <= 0 }", "{ B[x] -> C[2] : x >= 0 }" }, }; /* Perform some basic tests of binary operations on * isl_union_pw_multi_aff objects that are expected to fail. */ static int test_bin_upma_fail(isl_ctx *ctx) { int i, n; isl_union_pw_multi_aff *upma1, *upma2; int on_error; on_error = isl_options_get_on_error(ctx); isl_options_set_on_error(ctx, ISL_ON_ERROR_CONTINUE); n = ARRAY_SIZE(upma_bin_fail_tests); for (i = 0; i < n; ++i) { upma1 = isl_union_pw_multi_aff_read_from_str(ctx, upma_bin_fail_tests[i].arg1); upma2 = isl_union_pw_multi_aff_read_from_str(ctx, upma_bin_fail_tests[i].arg2); upma1 = upma_bin_fail_tests[i].fn(upma1, upma2); isl_union_pw_multi_aff_free(upma1); if (upma1) break; } isl_options_set_on_error(ctx, on_error); if (i < n) isl_die(ctx, isl_error_unknown, "operation not expected to succeed", return -1); return 0; } int test_aff(isl_ctx *ctx) { const char *str; isl_set *set; isl_space *space; isl_local_space *ls; isl_aff *aff; int zero, equal; if (test_bin_aff(ctx) < 0) return -1; if (test_bin_upma(ctx) < 0) return -1; if (test_bin_upma_fail(ctx) < 0) return -1; space = isl_space_set_alloc(ctx, 0, 1); ls = isl_local_space_from_space(space); aff = isl_aff_zero_on_domain(ls); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1); aff = isl_aff_scale_down_ui(aff, 3); aff = isl_aff_floor(aff); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1); aff = isl_aff_scale_down_ui(aff, 2); aff = isl_aff_floor(aff); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1); str = "{ [10] }"; set = isl_set_read_from_str(ctx, str); aff = isl_aff_gist(aff, set); aff = isl_aff_add_constant_si(aff, -16); zero = isl_aff_plain_is_zero(aff); isl_aff_free(aff); if (zero < 0) return -1; if (!zero) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); aff = isl_aff_read_from_str(ctx, "{ [-1] }"); aff = isl_aff_scale_down_ui(aff, 64); aff = isl_aff_floor(aff); equal = aff_check_plain_equal(aff, "{ [-1] }"); isl_aff_free(aff); if (equal < 0) return -1; return 0; } int test_dim_max(isl_ctx *ctx) { int equal; const char *str; isl_set *set1, *set2; isl_set *set; isl_map *map; isl_pw_aff *pwaff; str = "[N] -> { [i] : 0 <= i <= min(N,10) }"; set = isl_set_read_from_str(ctx, str); pwaff = isl_set_dim_max(set, 0); set1 = isl_set_from_pw_aff(pwaff); str = "[N] -> { [10] : N >= 10; [N] : N <= 9 and N >= 0 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "[N] -> { [i] : 0 <= i <= max(2N,N+6) }"; set = isl_set_read_from_str(ctx, str); pwaff = isl_set_dim_max(set, 0); set1 = isl_set_from_pw_aff(pwaff); str = "[N] -> { [6 + N] : -6 <= N <= 5; [2N] : N >= 6 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "[N] -> { [i] : 0 <= i <= 2N or 0 <= i <= N+6 }"; set = isl_set_read_from_str(ctx, str); pwaff = isl_set_dim_max(set, 0); set1 = isl_set_from_pw_aff(pwaff); str = "[N] -> { [6 + N] : -6 <= N <= 5; [2N] : N >= 6 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "[N,M] -> { [i,j] -> [([i/16]), i%16, ([j/16]), j%16] : " "0 <= i < N and 0 <= j < M }"; map = isl_map_read_from_str(ctx, str); set = isl_map_range(map); pwaff = isl_set_dim_max(isl_set_copy(set), 0); set1 = isl_set_from_pw_aff(pwaff); str = "[N,M] -> { [([(N-1)/16])] : M,N > 0 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); pwaff = isl_set_dim_max(isl_set_copy(set), 3); set1 = isl_set_from_pw_aff(pwaff); str = "[N,M] -> { [t] : t = min(M-1,15) and M,N > 0 }"; set2 = isl_set_read_from_str(ctx, str); if (equal >= 0 && equal) equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); isl_set_free(set); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); /* Check that solutions are properly merged. */ str = "[n] -> { [a, b, c] : c >= -4a - 2b and " "c <= -1 + n - 4a - 2b and c >= -2b and " "4a >= -4 + n and c >= 0 }"; set = isl_set_read_from_str(ctx, str); pwaff = isl_set_dim_min(set, 2); set1 = isl_set_from_pw_aff(pwaff); str = "[n] -> { [(0)] : n >= 1 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); /* Check that empty solution lie in the right space. */ str = "[n] -> { [t,a] : 1 = 0 }"; set = isl_set_read_from_str(ctx, str); pwaff = isl_set_dim_max(set, 0); set1 = isl_set_from_pw_aff(pwaff); str = "[n] -> { [t] : 1 = 0 }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } /* Is "pma" obviously equal to the isl_pw_multi_aff represented by "str"? */ static int pw_multi_aff_plain_is_equal(__isl_keep isl_pw_multi_aff *pma, const char *str) { isl_ctx *ctx; isl_pw_multi_aff *pma2; int equal; if (!pma) return -1; ctx = isl_pw_multi_aff_get_ctx(pma); pma2 = isl_pw_multi_aff_read_from_str(ctx, str); equal = isl_pw_multi_aff_plain_is_equal(pma, pma2); isl_pw_multi_aff_free(pma2); return equal; } /* Check that "pma" is obviously equal to the isl_pw_multi_aff * represented by "str". */ static int pw_multi_aff_check_plain_equal(__isl_keep isl_pw_multi_aff *pma, const char *str) { int equal; equal = pw_multi_aff_plain_is_equal(pma, str); if (equal < 0) return -1; if (!equal) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_unknown, "result not as expected", return -1); return 0; } /* Basic test for isl_pw_multi_aff_product. * * Check that multiple pieces are properly handled. */ static int test_product_pma(isl_ctx *ctx) { int equal; const char *str; isl_pw_multi_aff *pma1, *pma2; str = "{ A[i] -> B[1] : i < 0; A[i] -> B[2] : i >= 0 }"; pma1 = isl_pw_multi_aff_read_from_str(ctx, str); str = "{ C[] -> D[] }"; pma2 = isl_pw_multi_aff_read_from_str(ctx, str); pma1 = isl_pw_multi_aff_product(pma1, pma2); str = "{ [A[i] -> C[]] -> [B[(1)] -> D[]] : i < 0;" "[A[i] -> C[]] -> [B[(2)] -> D[]] : i >= 0 }"; equal = pw_multi_aff_check_plain_equal(pma1, str); isl_pw_multi_aff_free(pma1); if (equal < 0) return -1; return 0; } int test_product(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_set *uset1, *uset2; int ok; str = "{ A[i] }"; set = isl_set_read_from_str(ctx, str); set = isl_set_product(set, isl_set_copy(set)); ok = isl_set_is_wrapping(set); isl_set_free(set); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); str = "{ [] }"; uset1 = isl_union_set_read_from_str(ctx, str); uset1 = isl_union_set_product(uset1, isl_union_set_copy(uset1)); str = "{ [[] -> []] }"; uset2 = isl_union_set_read_from_str(ctx, str); ok = isl_union_set_is_equal(uset1, uset2); isl_union_set_free(uset1); isl_union_set_free(uset2); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); if (test_product_pma(ctx) < 0) return -1; return 0; } /* Check that two sets are not considered disjoint just because * they have a different set of (named) parameters. */ static int test_disjoint(isl_ctx *ctx) { const char *str; isl_set *set, *set2; int disjoint; str = "[n] -> { [[]->[]] }"; set = isl_set_read_from_str(ctx, str); str = "{ [[]->[]] }"; set2 = isl_set_read_from_str(ctx, str); disjoint = isl_set_is_disjoint(set, set2); isl_set_free(set); isl_set_free(set2); if (disjoint < 0) return -1; if (disjoint) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } int test_equal(isl_ctx *ctx) { const char *str; isl_set *set, *set2; int equal; str = "{ S_6[i] }"; set = isl_set_read_from_str(ctx, str); str = "{ S_7[i] }"; set2 = isl_set_read_from_str(ctx, str); equal = isl_set_is_equal(set, set2); isl_set_free(set); isl_set_free(set2); if (equal < 0) return -1; if (equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } static int test_plain_fixed(isl_ctx *ctx, __isl_take isl_map *map, enum isl_dim_type type, unsigned pos, int fixed) { int test; test = isl_map_plain_is_fixed(map, type, pos, NULL); isl_map_free(map); if (test < 0) return -1; if (test == fixed) return 0; if (fixed) isl_die(ctx, isl_error_unknown, "map not detected as fixed", return -1); else isl_die(ctx, isl_error_unknown, "map detected as fixed", return -1); } int test_fixed(isl_ctx *ctx) { const char *str; isl_map *map; str = "{ [i] -> [i] }"; map = isl_map_read_from_str(ctx, str); if (test_plain_fixed(ctx, map, isl_dim_out, 0, 0)) return -1; str = "{ [i] -> [1] }"; map = isl_map_read_from_str(ctx, str); if (test_plain_fixed(ctx, map, isl_dim_out, 0, 1)) return -1; str = "{ S_1[p1] -> [o0] : o0 = -2 and p1 >= 1 and p1 <= 7 }"; map = isl_map_read_from_str(ctx, str); if (test_plain_fixed(ctx, map, isl_dim_out, 0, 1)) return -1; map = isl_map_read_from_str(ctx, str); map = isl_map_neg(map); if (test_plain_fixed(ctx, map, isl_dim_out, 0, 1)) return -1; return 0; } struct isl_vertices_test_data { const char *set; int n; const char *vertex[2]; } vertices_tests[] = { { "{ A[t, i] : t = 12 and i >= 4 and i <= 12 }", 2, { "{ A[12, 4] }", "{ A[12, 12] }" } }, { "{ A[t, i] : t = 14 and i = 1 }", 1, { "{ A[14, 1] }" } }, }; /* Check that "vertex" corresponds to one of the vertices in data->vertex. */ static isl_stat find_vertex(__isl_take isl_vertex *vertex, void *user) { struct isl_vertices_test_data *data = user; isl_ctx *ctx; isl_multi_aff *ma; isl_basic_set *bset; isl_pw_multi_aff *pma; int i; isl_bool equal; ctx = isl_vertex_get_ctx(vertex); bset = isl_vertex_get_domain(vertex); ma = isl_vertex_get_expr(vertex); pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(bset), ma); for (i = 0; i < data->n; ++i) { isl_pw_multi_aff *pma_i; pma_i = isl_pw_multi_aff_read_from_str(ctx, data->vertex[i]); equal = isl_pw_multi_aff_plain_is_equal(pma, pma_i); isl_pw_multi_aff_free(pma_i); if (equal < 0 || equal) break; } isl_pw_multi_aff_free(pma); isl_vertex_free(vertex); if (equal < 0) return isl_stat_error; return equal ? isl_stat_ok : isl_stat_error; } int test_vertices(isl_ctx *ctx) { int i; for (i = 0; i < ARRAY_SIZE(vertices_tests); ++i) { isl_basic_set *bset; isl_vertices *vertices; int ok = 1; int n; bset = isl_basic_set_read_from_str(ctx, vertices_tests[i].set); vertices = isl_basic_set_compute_vertices(bset); n = isl_vertices_get_n_vertices(vertices); if (vertices_tests[i].n != n) ok = 0; if (isl_vertices_foreach_vertex(vertices, &find_vertex, &vertices_tests[i]) < 0) ok = 0; isl_vertices_free(vertices); isl_basic_set_free(bset); if (!vertices) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "unexpected vertices", return -1); } return 0; } int test_union_pw(isl_ctx *ctx) { int equal; const char *str; isl_union_set *uset; isl_union_pw_qpolynomial *upwqp1, *upwqp2; str = "{ [x] -> x^2 }"; upwqp1 = isl_union_pw_qpolynomial_read_from_str(ctx, str); upwqp2 = isl_union_pw_qpolynomial_copy(upwqp1); uset = isl_union_pw_qpolynomial_domain(upwqp1); upwqp1 = isl_union_pw_qpolynomial_copy(upwqp2); upwqp1 = isl_union_pw_qpolynomial_intersect_domain(upwqp1, uset); equal = isl_union_pw_qpolynomial_plain_is_equal(upwqp1, upwqp2); isl_union_pw_qpolynomial_free(upwqp1); isl_union_pw_qpolynomial_free(upwqp2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } /* Test that isl_union_pw_qpolynomial_eval picks up the function * defined over the correct domain space. */ static int test_eval(isl_ctx *ctx) { const char *str; isl_point *pnt; isl_set *set; isl_union_pw_qpolynomial *upwqp; isl_val *v; int cmp; str = "{ A[x] -> x^2; B[x] -> -x^2 }"; upwqp = isl_union_pw_qpolynomial_read_from_str(ctx, str); str = "{ A[6] }"; set = isl_set_read_from_str(ctx, str); pnt = isl_set_sample_point(set); v = isl_union_pw_qpolynomial_eval(upwqp, pnt); cmp = isl_val_cmp_si(v, 36); isl_val_free(v); if (!v) return -1; if (cmp != 0) isl_die(ctx, isl_error_unknown, "unexpected value", return -1); return 0; } int test_output(isl_ctx *ctx) { char *s; const char *str; isl_pw_aff *pa; isl_printer *p; int equal; str = "[x] -> { [1] : x % 4 <= 2; [2] : x = 3 }"; pa = isl_pw_aff_read_from_str(ctx, str); p = isl_printer_to_str(ctx); p = isl_printer_set_output_format(p, ISL_FORMAT_C); p = isl_printer_print_pw_aff(p, pa); s = isl_printer_get_str(p); isl_printer_free(p); isl_pw_aff_free(pa); if (!s) equal = -1; else equal = !strcmp(s, "4 * floord(x, 4) + 2 >= x ? 1 : 2"); free(s); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); return 0; } int test_sample(isl_ctx *ctx) { const char *str; isl_basic_set *bset1, *bset2; int empty, subset; str = "{ [a, b, c, d, e, f, g, h, i, j, k] : " "3i >= 1073741823b - c - 1073741823e + f and c >= 0 and " "3i >= -1 + 3221225466b + c + d - 3221225466e - f and " "2e >= a - b and 3e <= 2a and 3k <= -a and f <= -1 + a and " "3i <= 4 - a + 4b + 2c - e - 2f and 3k <= -a + c - f and " "3h >= -2 + a and 3g >= -3 - a and 3k >= -2 - a and " "3i >= -2 - a - 2c + 3e + 2f and 3h <= a + c - f and " "3h >= a + 2147483646b + 2c - 2147483646e - 2f and " "3g <= -1 - a and 3i <= 1 + c + d - f and a <= 1073741823 and " "f >= 1 - a + 1073741822b + c + d - 1073741822e and " "3i >= 1 + 2b - 2c + e + 2f + 3g and " "1073741822f <= 1073741822 - a + 1073741821b + 1073741822c +" "d - 1073741821e and " "3j <= 3 - a + 3b and 3g <= -2 - 2b + c + d - e - f and " "3j >= 1 - a + b + 2e and " "3f >= -3 + a + 3221225462b + 3c + d - 3221225465e and " "3i <= 4 - a + 4b - e and " "f <= 1073741822 + 1073741822b - 1073741822e and 3h <= a and " "f >= 0 and 2e <= 4 - a + 5b - d and 2e <= a - b + d and " "c <= -1 + a and 3i >= -2 - a + 3e and " "1073741822e <= 1073741823 - a + 1073741822b + c and " "3g >= -4 + 3221225464b + 3c + d - 3221225467e - 3f and " "3i >= -1 + 3221225466b + 3c + d - 3221225466e - 3f and " "1073741823e >= 1 + 1073741823b - d and " "3i >= 1073741823b + c - 1073741823e - f and " "3i >= 1 + 2b + e + 3g }"; bset1 = isl_basic_set_read_from_str(ctx, str); bset2 = isl_basic_set_sample(isl_basic_set_copy(bset1)); empty = isl_basic_set_is_empty(bset2); subset = isl_basic_set_is_subset(bset2, bset1); isl_basic_set_free(bset1); isl_basic_set_free(bset2); if (empty < 0 || subset < 0) return -1; if (empty) isl_die(ctx, isl_error_unknown, "point not found", return -1); if (!subset) isl_die(ctx, isl_error_unknown, "bad point found", return -1); return 0; } int test_fixed_power(isl_ctx *ctx) { const char *str; isl_map *map; isl_int exp; int equal; isl_int_init(exp); str = "{ [i] -> [i + 1] }"; map = isl_map_read_from_str(ctx, str); isl_int_set_si(exp, 23); map = isl_map_fixed_power(map, exp); equal = map_check_equal(map, "{ [i] -> [i + 23] }"); isl_int_clear(exp); isl_map_free(map); if (equal < 0) return -1; return 0; } int test_slice(isl_ctx *ctx) { const char *str; isl_map *map; int equal; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_equate(map, isl_dim_in, 0, isl_dim_out, 0); equal = map_check_equal(map, "{ [i] -> [i] }"); isl_map_free(map); if (equal < 0) return -1; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_equate(map, isl_dim_in, 0, isl_dim_in, 0); equal = map_check_equal(map, "{ [i] -> [j] }"); isl_map_free(map); if (equal < 0) return -1; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_oppose(map, isl_dim_in, 0, isl_dim_out, 0); equal = map_check_equal(map, "{ [i] -> [-i] }"); isl_map_free(map); if (equal < 0) return -1; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_oppose(map, isl_dim_in, 0, isl_dim_in, 0); equal = map_check_equal(map, "{ [0] -> [j] }"); isl_map_free(map); if (equal < 0) return -1; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_out, 0); equal = map_check_equal(map, "{ [i] -> [j] : i > j }"); isl_map_free(map); if (equal < 0) return -1; str = "{ [i] -> [j] }"; map = isl_map_read_from_str(ctx, str); map = isl_map_order_gt(map, isl_dim_in, 0, isl_dim_in, 0); equal = map_check_equal(map, "{ [i] -> [j] : false }"); isl_map_free(map); if (equal < 0) return -1; return 0; } int test_eliminate(isl_ctx *ctx) { const char *str; isl_map *map; int equal; str = "{ [i] -> [j] : i = 2j }"; map = isl_map_read_from_str(ctx, str); map = isl_map_eliminate(map, isl_dim_out, 0, 1); equal = map_check_equal(map, "{ [i] -> [j] : exists a : i = 2a }"); isl_map_free(map); if (equal < 0) return -1; return 0; } /* Check that isl_set_dim_residue_class detects that the values of j * in the set below are all odd and that it does not detect any spurious * strides. */ static int test_residue_class(isl_ctx *ctx) { const char *str; isl_set *set; isl_int m, r; int res; str = "{ [i,j] : j = 4 i + 1 and 0 <= i <= 100; " "[i,j] : j = 4 i + 3 and 500 <= i <= 600 }"; set = isl_set_read_from_str(ctx, str); isl_int_init(m); isl_int_init(r); res = isl_set_dim_residue_class(set, 1, &m, &r); if (res >= 0 && (isl_int_cmp_si(m, 2) != 0 || isl_int_cmp_si(r, 1) != 0)) isl_die(ctx, isl_error_unknown, "incorrect residue class", res = -1); isl_int_clear(r); isl_int_clear(m); isl_set_free(set); return res; } int test_align_parameters(isl_ctx *ctx) { const char *str; isl_space *space; isl_multi_aff *ma1, *ma2; int equal; str = "{ A[B[] -> C[]] -> D[E[] -> F[]] }"; ma1 = isl_multi_aff_read_from_str(ctx, str); space = isl_space_params_alloc(ctx, 1); space = isl_space_set_dim_name(space, isl_dim_param, 0, "N"); ma1 = isl_multi_aff_align_params(ma1, space); str = "[N] -> { A[B[] -> C[]] -> D[E[] -> F[]] }"; ma2 = isl_multi_aff_read_from_str(ctx, str); equal = isl_multi_aff_plain_is_equal(ma1, ma2); isl_multi_aff_free(ma1); isl_multi_aff_free(ma2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "result not as expected", return -1); return 0; } static int test_list(isl_ctx *ctx) { isl_id *a, *b, *c, *d, *id; isl_id_list *list; int ok; a = isl_id_alloc(ctx, "a", NULL); b = isl_id_alloc(ctx, "b", NULL); c = isl_id_alloc(ctx, "c", NULL); d = isl_id_alloc(ctx, "d", NULL); list = isl_id_list_alloc(ctx, 4); list = isl_id_list_add(list, a); list = isl_id_list_add(list, b); list = isl_id_list_add(list, c); list = isl_id_list_add(list, d); list = isl_id_list_drop(list, 1, 1); if (isl_id_list_n_id(list) != 3) { isl_id_list_free(list); isl_die(ctx, isl_error_unknown, "unexpected number of elements in list", return -1); } id = isl_id_list_get_id(list, 0); ok = id == a; isl_id_free(id); id = isl_id_list_get_id(list, 1); ok = ok && id == c; isl_id_free(id); id = isl_id_list_get_id(list, 2); ok = ok && id == d; isl_id_free(id); isl_id_list_free(list); if (!ok) isl_die(ctx, isl_error_unknown, "unexpected elements in list", return -1); return 0; } const char *set_conversion_tests[] = { "[N] -> { [i] : N - 1 <= 2 i <= N }", "[N] -> { [i] : exists a : i = 4 a and N - 1 <= i <= N }", "[N] -> { [i,j] : exists a : i = 4 a and N - 1 <= i, 2j <= N }", "[N] -> { [[i]->[j]] : exists a : i = 4 a and N - 1 <= i, 2j <= N }", "[N] -> { [3*floor(N/2) + 5*floor(N/3)] }", "[a, b] -> { [c, d] : (4*floor((-a + c)/4) = -a + c and " "32*floor((-b + d)/32) = -b + d and 5 <= c <= 8 and " "-3 + c <= d <= 28 + c) }", }; /* Check that converting from isl_set to isl_pw_multi_aff and back * to isl_set produces the original isl_set. */ static int test_set_conversion(isl_ctx *ctx) { int i; const char *str; isl_set *set1, *set2; isl_pw_multi_aff *pma; int equal; for (i = 0; i < ARRAY_SIZE(set_conversion_tests); ++i) { str = set_conversion_tests[i]; set1 = isl_set_read_from_str(ctx, str); pma = isl_pw_multi_aff_from_set(isl_set_copy(set1)); set2 = isl_set_from_pw_multi_aff(pma); equal = isl_set_is_equal(set1, set2); isl_set_free(set1); isl_set_free(set2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "bad conversion", return -1); } return 0; } const char *conversion_tests[] = { "{ [a, b, c, d] -> s0[a, b, e, f] : " "exists (e0 = [(a - 2c)/3], e1 = [(-4 + b - 5d)/9], " "e2 = [(-d + f)/9]: 3e0 = a - 2c and 9e1 = -4 + b - 5d and " "9e2 = -d + f and f >= 0 and f <= 8 and 9e >= -5 - 2a and " "9e <= -2 - 2a) }", "{ [a, b] -> [c] : exists (e0 = floor((-a - b + c)/5): " "5e0 = -a - b + c and c >= -a and c <= 4 - a) }", "{ [a, b] -> [c] : exists d : 18 * d = -3 - a + 2c and 1 <= c <= 3 }", }; /* Check that converting from isl_map to isl_pw_multi_aff and back * to isl_map produces the original isl_map. */ static int test_map_conversion(isl_ctx *ctx) { int i; isl_map *map1, *map2; isl_pw_multi_aff *pma; int equal; for (i = 0; i < ARRAY_SIZE(conversion_tests); ++i) { map1 = isl_map_read_from_str(ctx, conversion_tests[i]); pma = isl_pw_multi_aff_from_map(isl_map_copy(map1)); map2 = isl_map_from_pw_multi_aff(pma); equal = isl_map_is_equal(map1, map2); isl_map_free(map1); isl_map_free(map2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "bad conversion", return -1); } return 0; } static int test_conversion(isl_ctx *ctx) { if (test_set_conversion(ctx) < 0) return -1; if (test_map_conversion(ctx) < 0) return -1; return 0; } /* Check that isl_basic_map_curry does not modify input. */ static int test_curry(isl_ctx *ctx) { const char *str; isl_basic_map *bmap1, *bmap2; int equal; str = "{ [A[] -> B[]] -> C[] }"; bmap1 = isl_basic_map_read_from_str(ctx, str); bmap2 = isl_basic_map_curry(isl_basic_map_copy(bmap1)); equal = isl_basic_map_is_equal(bmap1, bmap2); isl_basic_map_free(bmap1); isl_basic_map_free(bmap2); if (equal < 0) return -1; if (equal) isl_die(ctx, isl_error_unknown, "curried map should not be equal to original", return -1); return 0; } struct { const char *set; const char *ma; const char *res; } preimage_tests[] = { { "{ B[i,j] : 0 <= i < 10 and 0 <= j < 100 }", "{ A[j,i] -> B[i,j] }", "{ A[j,i] : 0 <= i < 10 and 0 <= j < 100 }" }, { "{ rat: B[i,j] : 0 <= i, j and 3 i + 5 j <= 100 }", "{ A[a,b] -> B[a/2,b/6] }", "{ rat: A[a,b] : 0 <= a, b and 9 a + 5 b <= 600 }" }, { "{ B[i,j] : 0 <= i, j and 3 i + 5 j <= 100 }", "{ A[a,b] -> B[a/2,b/6] }", "{ A[a,b] : 0 <= a, b and 9 a + 5 b <= 600 and " "exists i,j : a = 2 i and b = 6 j }" }, { "[n] -> { S[i] : 0 <= i <= 100 }", "[n] -> { S[n] }", "[n] -> { : 0 <= n <= 100 }" }, { "{ B[i] : 0 <= i < 100 and exists a : i = 4 a }", "{ A[a] -> B[2a] }", "{ A[a] : 0 <= a < 50 and exists b : a = 2 b }" }, { "{ B[i] : 0 <= i < 100 and exists a : i = 4 a }", "{ A[a] -> B[([a/2])] }", "{ A[a] : 0 <= a < 200 and exists b : [a/2] = 4 b }" }, { "{ B[i,j,k] : 0 <= i,j,k <= 100 }", "{ A[a] -> B[a,a,a/3] }", "{ A[a] : 0 <= a <= 100 and exists b : a = 3 b }" }, { "{ B[i,j] : j = [(i)/2] } ", "{ A[i,j] -> B[i/3,j] }", "{ A[i,j] : j = [(i)/6] and exists a : i = 3 a }" }, }; static int test_preimage_basic_set(isl_ctx *ctx) { int i; isl_basic_set *bset1, *bset2; isl_multi_aff *ma; int equal; for (i = 0; i < ARRAY_SIZE(preimage_tests); ++i) { bset1 = isl_basic_set_read_from_str(ctx, preimage_tests[i].set); ma = isl_multi_aff_read_from_str(ctx, preimage_tests[i].ma); bset2 = isl_basic_set_read_from_str(ctx, preimage_tests[i].res); bset1 = isl_basic_set_preimage_multi_aff(bset1, ma); equal = isl_basic_set_is_equal(bset1, bset2); isl_basic_set_free(bset1); isl_basic_set_free(bset2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "bad preimage", return -1); } return 0; } struct { const char *map; const char *ma; const char *res; } preimage_domain_tests[] = { { "{ B[i,j] -> C[2i + 3j] : 0 <= i < 10 and 0 <= j < 100 }", "{ A[j,i] -> B[i,j] }", "{ A[j,i] -> C[2i + 3j] : 0 <= i < 10 and 0 <= j < 100 }" }, { "{ B[i] -> C[i]; D[i] -> E[i] }", "{ A[i] -> B[i + 1] }", "{ A[i] -> C[i + 1] }" }, { "{ B[i] -> C[i]; B[i] -> E[i] }", "{ A[i] -> B[i + 1] }", "{ A[i] -> C[i + 1]; A[i] -> E[i + 1] }" }, { "{ B[i] -> C[([i/2])] }", "{ A[i] -> B[2i] }", "{ A[i] -> C[i] }" }, { "{ B[i,j] -> C[([i/2]), ([(i+j)/3])] }", "{ A[i] -> B[([i/5]), ([i/7])] }", "{ A[i] -> C[([([i/5])/2]), ([(([i/5])+([i/7]))/3])] }" }, { "[N] -> { B[i] -> C[([N/2]), i, ([N/3])] }", "[N] -> { A[] -> B[([N/5])] }", "[N] -> { A[] -> C[([N/2]), ([N/5]), ([N/3])] }" }, { "{ B[i] -> C[i] : exists a : i = 5 a }", "{ A[i] -> B[2i] }", "{ A[i] -> C[2i] : exists a : 2i = 5 a }" }, { "{ B[i] -> C[i] : exists a : i = 2 a; " "B[i] -> D[i] : exists a : i = 2 a + 1 }", "{ A[i] -> B[2i] }", "{ A[i] -> C[2i] }" }, }; static int test_preimage_union_map(isl_ctx *ctx) { int i; isl_union_map *umap1, *umap2; isl_multi_aff *ma; int equal; for (i = 0; i < ARRAY_SIZE(preimage_domain_tests); ++i) { umap1 = isl_union_map_read_from_str(ctx, preimage_domain_tests[i].map); ma = isl_multi_aff_read_from_str(ctx, preimage_domain_tests[i].ma); umap2 = isl_union_map_read_from_str(ctx, preimage_domain_tests[i].res); umap1 = isl_union_map_preimage_domain_multi_aff(umap1, ma); equal = isl_union_map_is_equal(umap1, umap2); isl_union_map_free(umap1); isl_union_map_free(umap2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "bad preimage", return -1); } return 0; } static int test_preimage(isl_ctx *ctx) { if (test_preimage_basic_set(ctx) < 0) return -1; if (test_preimage_union_map(ctx) < 0) return -1; return 0; } struct { const char *ma1; const char *ma; const char *res; } pullback_tests[] = { { "{ B[i,j] -> C[i + 2j] }" , "{ A[a,b] -> B[b,a] }", "{ A[a,b] -> C[b + 2a] }" }, { "{ B[i] -> C[2i] }", "{ A[a] -> B[(a)/2] }", "{ A[a] -> C[a] }" }, { "{ B[i] -> C[(i)/2] }", "{ A[a] -> B[2a] }", "{ A[a] -> C[a] }" }, { "{ B[i] -> C[(i)/2] }", "{ A[a] -> B[(a)/3] }", "{ A[a] -> C[(a)/6] }" }, { "{ B[i] -> C[2i] }", "{ A[a] -> B[5a] }", "{ A[a] -> C[10a] }" }, { "{ B[i] -> C[2i] }", "{ A[a] -> B[(a)/3] }", "{ A[a] -> C[(2a)/3] }" }, { "{ B[i,j] -> C[i + j] }", "{ A[a] -> B[a,a] }", "{ A[a] -> C[2a] }"}, { "{ B[a] -> C[a,a] }", "{ A[i,j] -> B[i + j] }", "{ A[i,j] -> C[i + j, i + j] }"}, { "{ B[i] -> C[([i/2])] }", "{ B[5] }", "{ C[2] }" }, { "[n] -> { B[i,j] -> C[([i/2]) + 2j] }", "[n] -> { B[n,[n/3]] }", "[n] -> { C[([n/2]) + 2*[n/3]] }", }, { "{ [i, j] -> [floor((i)/4) + floor((2*i+j)/5)] }", "{ [i, j] -> [floor((i)/3), j] }", "{ [i, j] -> [(floor((i)/12) + floor((j + 2*floor((i)/3))/5))] }" }, }; static int test_pullback(isl_ctx *ctx) { int i; isl_multi_aff *ma1, *ma2; isl_multi_aff *ma; int equal; for (i = 0; i < ARRAY_SIZE(pullback_tests); ++i) { ma1 = isl_multi_aff_read_from_str(ctx, pullback_tests[i].ma1); ma = isl_multi_aff_read_from_str(ctx, pullback_tests[i].ma); ma2 = isl_multi_aff_read_from_str(ctx, pullback_tests[i].res); ma1 = isl_multi_aff_pullback_multi_aff(ma1, ma); equal = isl_multi_aff_plain_is_equal(ma1, ma2); isl_multi_aff_free(ma1); isl_multi_aff_free(ma2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "bad pullback", return -1); } return 0; } /* Check that negation is printed correctly and that equal expressions * are correctly identified. */ static int test_ast(isl_ctx *ctx) { isl_ast_expr *expr, *expr1, *expr2, *expr3; char *str; int ok, equal; expr1 = isl_ast_expr_from_id(isl_id_alloc(ctx, "A", NULL)); expr2 = isl_ast_expr_from_id(isl_id_alloc(ctx, "B", NULL)); expr = isl_ast_expr_add(expr1, expr2); expr2 = isl_ast_expr_copy(expr); expr = isl_ast_expr_neg(expr); expr2 = isl_ast_expr_neg(expr2); equal = isl_ast_expr_is_equal(expr, expr2); str = isl_ast_expr_to_str(expr); ok = str ? !strcmp(str, "-(A + B)") : -1; free(str); isl_ast_expr_free(expr); isl_ast_expr_free(expr2); if (ok < 0 || equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "equal expressions not considered equal", return -1); if (!ok) isl_die(ctx, isl_error_unknown, "isl_ast_expr printed incorrectly", return -1); expr1 = isl_ast_expr_from_id(isl_id_alloc(ctx, "A", NULL)); expr2 = isl_ast_expr_from_id(isl_id_alloc(ctx, "B", NULL)); expr = isl_ast_expr_add(expr1, expr2); expr3 = isl_ast_expr_from_id(isl_id_alloc(ctx, "C", NULL)); expr = isl_ast_expr_sub(expr3, expr); str = isl_ast_expr_to_str(expr); ok = str ? !strcmp(str, "C - (A + B)") : -1; free(str); isl_ast_expr_free(expr); if (ok < 0) return -1; if (!ok) isl_die(ctx, isl_error_unknown, "isl_ast_expr printed incorrectly", return -1); return 0; } /* Check that isl_ast_build_expr_from_set returns a valid expression * for an empty set. Note that isl_ast_build_expr_from_set getting * called on an empty set probably indicates a bug in the caller. */ static int test_ast_build(isl_ctx *ctx) { isl_set *set; isl_ast_build *build; isl_ast_expr *expr; set = isl_set_universe(isl_space_params_alloc(ctx, 0)); build = isl_ast_build_from_context(set); set = isl_set_empty(isl_space_params_alloc(ctx, 0)); expr = isl_ast_build_expr_from_set(build, set); isl_ast_expr_free(expr); isl_ast_build_free(build); if (!expr) return -1; return 0; } /* Internal data structure for before_for and after_for callbacks. * * depth is the current depth * before is the number of times before_for has been called * after is the number of times after_for has been called */ struct isl_test_codegen_data { int depth; int before; int after; }; /* This function is called before each for loop in the AST generated * from test_ast_gen1. * * Increment the number of calls and the depth. * Check that the space returned by isl_ast_build_get_schedule_space * matches the target space of the schedule returned by * isl_ast_build_get_schedule. * Return an isl_id that is checked by the corresponding call * to after_for. */ static __isl_give isl_id *before_for(__isl_keep isl_ast_build *build, void *user) { struct isl_test_codegen_data *data = user; isl_ctx *ctx; isl_space *space; isl_union_map *schedule; isl_union_set *uset; isl_set *set; int empty; char name[] = "d0"; ctx = isl_ast_build_get_ctx(build); if (data->before >= 3) isl_die(ctx, isl_error_unknown, "unexpected number of for nodes", return NULL); if (data->depth >= 2) isl_die(ctx, isl_error_unknown, "unexpected depth", return NULL); snprintf(name, sizeof(name), "d%d", data->depth); data->before++; data->depth++; schedule = isl_ast_build_get_schedule(build); uset = isl_union_map_range(schedule); if (!uset) return NULL; if (isl_union_set_n_set(uset) != 1) { isl_union_set_free(uset); isl_die(ctx, isl_error_unknown, "expecting single range space", return NULL); } space = isl_ast_build_get_schedule_space(build); set = isl_union_set_extract_set(uset, space); isl_union_set_free(uset); empty = isl_set_is_empty(set); isl_set_free(set); if (empty < 0) return NULL; if (empty) isl_die(ctx, isl_error_unknown, "spaces don't match", return NULL); return isl_id_alloc(ctx, name, NULL); } /* This function is called after each for loop in the AST generated * from test_ast_gen1. * * Increment the number of calls and decrement the depth. * Check that the annotation attached to the node matches * the isl_id returned by the corresponding call to before_for. */ static __isl_give isl_ast_node *after_for(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user) { struct isl_test_codegen_data *data = user; isl_id *id; const char *name; int valid; data->after++; data->depth--; if (data->after > data->before) isl_die(isl_ast_node_get_ctx(node), isl_error_unknown, "mismatch in number of for nodes", return isl_ast_node_free(node)); id = isl_ast_node_get_annotation(node); if (!id) isl_die(isl_ast_node_get_ctx(node), isl_error_unknown, "missing annotation", return isl_ast_node_free(node)); name = isl_id_get_name(id); valid = name && atoi(name + 1) == data->depth; isl_id_free(id); if (!valid) isl_die(isl_ast_node_get_ctx(node), isl_error_unknown, "wrong annotation", return isl_ast_node_free(node)); return node; } /* Check that the before_each_for and after_each_for callbacks * are called for each for loop in the generated code, * that they are called in the right order and that the isl_id * returned from the before_each_for callback is attached to * the isl_ast_node passed to the corresponding after_each_for call. */ static int test_ast_gen1(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_map *schedule; isl_ast_build *build; isl_ast_node *tree; struct isl_test_codegen_data data; str = "[N] -> { : N >= 10 }"; set = isl_set_read_from_str(ctx, str); str = "[N] -> { A[i,j] -> S[8,i,3,j] : 0 <= i,j <= N; " "B[i,j] -> S[8,j,9,i] : 0 <= i,j <= N }"; schedule = isl_union_map_read_from_str(ctx, str); data.before = 0; data.after = 0; data.depth = 0; build = isl_ast_build_from_context(set); build = isl_ast_build_set_before_each_for(build, &before_for, &data); build = isl_ast_build_set_after_each_for(build, &after_for, &data); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return -1; isl_ast_node_free(tree); if (data.before != 3 || data.after != 3) isl_die(ctx, isl_error_unknown, "unexpected number of for nodes", return -1); return 0; } /* Check that the AST generator handles domains that are integrally disjoint * but not rationally disjoint. */ static int test_ast_gen2(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_map *schedule; isl_union_map *options; isl_ast_build *build; isl_ast_node *tree; str = "{ A[i,j] -> [i,j] : 0 <= i,j <= 1 }"; schedule = isl_union_map_read_from_str(ctx, str); set = isl_set_universe(isl_space_params_alloc(ctx, 0)); build = isl_ast_build_from_context(set); str = "{ [i,j] -> atomic[1] : i + j = 1; [i,j] -> unroll[1] : i = j }"; options = isl_union_map_read_from_str(ctx, str); build = isl_ast_build_set_options(build, options); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return -1; isl_ast_node_free(tree); return 0; } /* Increment *user on each call. */ static __isl_give isl_ast_node *count_domains(__isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user) { int *n = user; (*n)++; return node; } /* Test that unrolling tries to minimize the number of instances. * In particular, for the schedule given below, make sure it generates * 3 nodes (rather than 101). */ static int test_ast_gen3(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_map *schedule; isl_union_map *options; isl_ast_build *build; isl_ast_node *tree; int n_domain = 0; str = "[n] -> { A[i] -> [i] : 0 <= i <= 100 and n <= i <= n + 2 }"; schedule = isl_union_map_read_from_str(ctx, str); set = isl_set_universe(isl_space_params_alloc(ctx, 0)); str = "{ [i] -> unroll[0] }"; options = isl_union_map_read_from_str(ctx, str); build = isl_ast_build_from_context(set); build = isl_ast_build_set_options(build, options); build = isl_ast_build_set_at_each_domain(build, &count_domains, &n_domain); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return -1; isl_ast_node_free(tree); if (n_domain != 3) isl_die(ctx, isl_error_unknown, "unexpected number of for nodes", return -1); return 0; } /* Check that if the ast_build_exploit_nested_bounds options is set, * we do not get an outer if node in the generated AST, * while we do get such an outer if node if the options is not set. */ static int test_ast_gen4(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_map *schedule; isl_ast_build *build; isl_ast_node *tree; enum isl_ast_node_type type; int enb; enb = isl_options_get_ast_build_exploit_nested_bounds(ctx); str = "[N,M] -> { A[i,j] -> [i,j] : 0 <= i <= N and 0 <= j <= M }"; isl_options_set_ast_build_exploit_nested_bounds(ctx, 1); schedule = isl_union_map_read_from_str(ctx, str); set = isl_set_universe(isl_space_params_alloc(ctx, 0)); build = isl_ast_build_from_context(set); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return -1; type = isl_ast_node_get_type(tree); isl_ast_node_free(tree); if (type == isl_ast_node_if) isl_die(ctx, isl_error_unknown, "not expecting if node", return -1); isl_options_set_ast_build_exploit_nested_bounds(ctx, 0); schedule = isl_union_map_read_from_str(ctx, str); set = isl_set_universe(isl_space_params_alloc(ctx, 0)); build = isl_ast_build_from_context(set); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return -1; type = isl_ast_node_get_type(tree); isl_ast_node_free(tree); if (type != isl_ast_node_if) isl_die(ctx, isl_error_unknown, "expecting if node", return -1); isl_options_set_ast_build_exploit_nested_bounds(ctx, enb); return 0; } /* This function is called for each leaf in the AST generated * from test_ast_gen5. * * We finalize the AST generation by extending the outer schedule * with a zero-dimensional schedule. If this results in any for loops, * then this means that we did not pass along enough information * about the outer schedule to the inner AST generation. */ static __isl_give isl_ast_node *create_leaf(__isl_take isl_ast_build *build, void *user) { isl_union_map *schedule, *extra; isl_ast_node *tree; schedule = isl_ast_build_get_schedule(build); extra = isl_union_map_copy(schedule); extra = isl_union_map_from_domain(isl_union_map_domain(extra)); schedule = isl_union_map_range_product(schedule, extra); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); if (!tree) return NULL; if (isl_ast_node_get_type(tree) == isl_ast_node_for) isl_die(isl_ast_node_get_ctx(tree), isl_error_unknown, "code should not contain any for loop", return isl_ast_node_free(tree)); return tree; } /* Check that we do not lose any information when going back and * forth between internal and external schedule. * * In particular, we create an AST where we unroll the only * non-constant dimension in the schedule. We therefore do * not expect any for loops in the AST. However, older versions * of isl would not pass along enough information about the outer * schedule when performing an inner code generation from a create_leaf * callback, resulting in the inner code generation producing a for loop. */ static int test_ast_gen5(isl_ctx *ctx) { const char *str; isl_set *set; isl_union_map *schedule, *options; isl_ast_build *build; isl_ast_node *tree; str = "{ A[] -> [1, 1, 2]; B[i] -> [1, i, 0] : i >= 1 and i <= 2 }"; schedule = isl_union_map_read_from_str(ctx, str); str = "{ [a, b, c] -> unroll[1] : exists (e0 = [(a)/4]: " "4e0 >= -1 + a - b and 4e0 <= -2 + a + b) }"; options = isl_union_map_read_from_str(ctx, str); set = isl_set_universe(isl_space_params_alloc(ctx, 0)); build = isl_ast_build_from_context(set); build = isl_ast_build_set_options(build, options); build = isl_ast_build_set_create_leaf(build, &create_leaf, NULL); tree = isl_ast_build_node_from_schedule_map(build, schedule); isl_ast_build_free(build); isl_ast_node_free(tree); if (!tree) return -1; return 0; } static int test_ast_gen(isl_ctx *ctx) { if (test_ast_gen1(ctx) < 0) return -1; if (test_ast_gen2(ctx) < 0) return -1; if (test_ast_gen3(ctx) < 0) return -1; if (test_ast_gen4(ctx) < 0) return -1; if (test_ast_gen5(ctx) < 0) return -1; return 0; } /* Check if dropping output dimensions from an isl_pw_multi_aff * works properly. */ static int test_pw_multi_aff(isl_ctx *ctx) { const char *str; isl_pw_multi_aff *pma1, *pma2; int equal; str = "{ [i,j] -> [i+j, 4i-j] }"; pma1 = isl_pw_multi_aff_read_from_str(ctx, str); str = "{ [i,j] -> [4i-j] }"; pma2 = isl_pw_multi_aff_read_from_str(ctx, str); pma1 = isl_pw_multi_aff_drop_dims(pma1, isl_dim_out, 0, 1); equal = isl_pw_multi_aff_plain_is_equal(pma1, pma2); isl_pw_multi_aff_free(pma1); isl_pw_multi_aff_free(pma2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "expressions not equal", return -1); return 0; } /* Check that we can properly parse multi piecewise affine expressions * where the piecewise affine expressions have different domains. */ static int test_multi_pw_aff(isl_ctx *ctx) { const char *str; isl_set *dom, *dom2; isl_multi_pw_aff *mpa1, *mpa2; isl_pw_aff *pa; int equal; int equal_domain; mpa1 = isl_multi_pw_aff_read_from_str(ctx, "{ [i] -> [i] }"); dom = isl_set_read_from_str(ctx, "{ [i] : i > 0 }"); mpa1 = isl_multi_pw_aff_intersect_domain(mpa1, dom); mpa2 = isl_multi_pw_aff_read_from_str(ctx, "{ [i] -> [2i] }"); mpa2 = isl_multi_pw_aff_flat_range_product(mpa1, mpa2); str = "{ [i] -> [(i : i > 0), 2i] }"; mpa1 = isl_multi_pw_aff_read_from_str(ctx, str); equal = isl_multi_pw_aff_plain_is_equal(mpa1, mpa2); pa = isl_multi_pw_aff_get_pw_aff(mpa1, 0); dom = isl_pw_aff_domain(pa); pa = isl_multi_pw_aff_get_pw_aff(mpa1, 1); dom2 = isl_pw_aff_domain(pa); equal_domain = isl_set_is_equal(dom, dom2); isl_set_free(dom); isl_set_free(dom2); isl_multi_pw_aff_free(mpa1); isl_multi_pw_aff_free(mpa2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "expressions not equal", return -1); if (equal_domain < 0) return -1; if (equal_domain) isl_die(ctx, isl_error_unknown, "domains unexpectedly equal", return -1); return 0; } /* This is a regression test for a bug where isl_basic_map_simplify * would end up in an infinite loop. In particular, we construct * an empty basic set that is not obviously empty. * isl_basic_set_is_empty marks the basic set as empty. * After projecting out i3, the variable can be dropped completely, * but isl_basic_map_simplify refrains from doing so if the basic set * is empty and would end up in an infinite loop if it didn't test * explicitly for empty basic maps in the outer loop. */ static int test_simplify(isl_ctx *ctx) { const char *str; isl_basic_set *bset; int empty; str = "{ [i0, i1, i2, i3] : i0 >= -2 and 6i2 <= 4 + i0 + 5i1 and " "i2 <= 22 and 75i2 <= 111 + 13i0 + 60i1 and " "25i2 >= 38 + 6i0 + 20i1 and i0 <= -1 and i2 >= 20 and " "i3 >= i2 }"; bset = isl_basic_set_read_from_str(ctx, str); empty = isl_basic_set_is_empty(bset); bset = isl_basic_set_project_out(bset, isl_dim_set, 3, 1); isl_basic_set_free(bset); if (!bset) return -1; if (!empty) isl_die(ctx, isl_error_unknown, "basic set should be empty", return -1); return 0; } /* This is a regression test for a bug where isl_tab_basic_map_partial_lexopt * with gbr context would fail to disable the use of the shifted tableau * when transferring equalities for the input to the context, resulting * in invalid sample values. */ static int test_partial_lexmin(isl_ctx *ctx) { const char *str; isl_basic_set *bset; isl_basic_map *bmap; isl_map *map; str = "{ [1, b, c, 1 - c] -> [e] : 2e <= -c and 2e >= -3 + c }"; bmap = isl_basic_map_read_from_str(ctx, str); str = "{ [a, b, c, d] : c <= 1 and 2d >= 6 - 4b - c }"; bset = isl_basic_set_read_from_str(ctx, str); map = isl_basic_map_partial_lexmin(bmap, bset, NULL); isl_map_free(map); if (!map) return -1; return 0; } /* Check that the variable compression performed on the existentially * quantified variables inside isl_basic_set_compute_divs is not confused * by the implicit equalities among the parameters. */ static int test_compute_divs(isl_ctx *ctx) { const char *str; isl_basic_set *bset; isl_set *set; str = "[a, b, c, d, e] -> { [] : exists (e0: 2d = b and a <= 124 and " "b <= 2046 and b >= 0 and b <= 60 + 64a and 2e >= b + 2c and " "2e >= b and 2e <= 1 + b and 2e <= 1 + b + 2c and " "32768e0 >= -124 + a and 2097152e0 <= 60 + 64a - b) }"; bset = isl_basic_set_read_from_str(ctx, str); set = isl_basic_set_compute_divs(bset); isl_set_free(set); if (!set) return -1; return 0; } /* Check that the reaching domain elements and the prefix schedule * at a leaf node are the same before and after grouping. */ static int test_schedule_tree_group_1(isl_ctx *ctx) { int equal; const char *str; isl_id *id; isl_union_set *uset; isl_multi_union_pw_aff *mupa; isl_union_pw_multi_aff *upma1, *upma2; isl_union_set *domain1, *domain2; isl_union_map *umap1, *umap2; isl_schedule_node *node; str = "{ S1[i,j] : 0 <= i,j < 10; S2[i,j] : 0 <= i,j < 10 }"; uset = isl_union_set_read_from_str(ctx, str); node = isl_schedule_node_from_domain(uset); node = isl_schedule_node_child(node, 0); str = "[{ S1[i,j] -> [i]; S2[i,j] -> [9 - i] }]"; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); node = isl_schedule_node_insert_partial_schedule(node, mupa); node = isl_schedule_node_child(node, 0); str = "[{ S1[i,j] -> [j]; S2[i,j] -> [j] }]"; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); node = isl_schedule_node_insert_partial_schedule(node, mupa); node = isl_schedule_node_child(node, 0); umap1 = isl_schedule_node_get_prefix_schedule_union_map(node); upma1 = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node); domain1 = isl_schedule_node_get_domain(node); id = isl_id_alloc(ctx, "group", NULL); node = isl_schedule_node_parent(node); node = isl_schedule_node_group(node, id); node = isl_schedule_node_child(node, 0); umap2 = isl_schedule_node_get_prefix_schedule_union_map(node); upma2 = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node); domain2 = isl_schedule_node_get_domain(node); equal = isl_union_pw_multi_aff_plain_is_equal(upma1, upma2); if (equal >= 0 && equal) equal = isl_union_set_is_equal(domain1, domain2); if (equal >= 0 && equal) equal = isl_union_map_is_equal(umap1, umap2); isl_union_map_free(umap1); isl_union_map_free(umap2); isl_union_set_free(domain1); isl_union_set_free(domain2); isl_union_pw_multi_aff_free(upma1); isl_union_pw_multi_aff_free(upma2); isl_schedule_node_free(node); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "expressions not equal", return -1); return 0; } /* Check that we can have nested groupings and that the union map * schedule representation is the same before and after the grouping. * Note that after the grouping, the union map representation contains * the domain constraints from the ranges of the expansion nodes, * while they are missing from the union map representation of * the tree without expansion nodes. * * Also check that the global expansion is as expected. */ static int test_schedule_tree_group_2(isl_ctx *ctx) { int equal, equal_expansion; const char *str; isl_id *id; isl_union_set *uset; isl_union_map *umap1, *umap2; isl_union_map *expansion1, *expansion2; isl_union_set_list *filters; isl_multi_union_pw_aff *mupa; isl_schedule *schedule; isl_schedule_node *node; str = "{ S1[i,j] : 0 <= i,j < 10; S2[i,j] : 0 <= i,j < 10; " "S3[i,j] : 0 <= i,j < 10 }"; uset = isl_union_set_read_from_str(ctx, str); node = isl_schedule_node_from_domain(uset); node = isl_schedule_node_child(node, 0); str = "[{ S1[i,j] -> [i]; S2[i,j] -> [i]; S3[i,j] -> [i] }]"; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); node = isl_schedule_node_insert_partial_schedule(node, mupa); node = isl_schedule_node_child(node, 0); str = "{ S1[i,j] }"; uset = isl_union_set_read_from_str(ctx, str); filters = isl_union_set_list_from_union_set(uset); str = "{ S2[i,j]; S3[i,j] }"; uset = isl_union_set_read_from_str(ctx, str); filters = isl_union_set_list_add(filters, uset); node = isl_schedule_node_insert_sequence(node, filters); node = isl_schedule_node_child(node, 1); node = isl_schedule_node_child(node, 0); str = "{ S2[i,j] }"; uset = isl_union_set_read_from_str(ctx, str); filters = isl_union_set_list_from_union_set(uset); str = "{ S3[i,j] }"; uset = isl_union_set_read_from_str(ctx, str); filters = isl_union_set_list_add(filters, uset); node = isl_schedule_node_insert_sequence(node, filters); schedule = isl_schedule_node_get_schedule(node); umap1 = isl_schedule_get_map(schedule); uset = isl_schedule_get_domain(schedule); umap1 = isl_union_map_intersect_domain(umap1, uset); isl_schedule_free(schedule); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); id = isl_id_alloc(ctx, "group1", NULL); node = isl_schedule_node_group(node, id); node = isl_schedule_node_child(node, 1); node = isl_schedule_node_child(node, 0); id = isl_id_alloc(ctx, "group2", NULL); node = isl_schedule_node_group(node, id); schedule = isl_schedule_node_get_schedule(node); umap2 = isl_schedule_get_map(schedule); isl_schedule_free(schedule); node = isl_schedule_node_root(node); node = isl_schedule_node_child(node, 0); expansion1 = isl_schedule_node_get_subtree_expansion(node); isl_schedule_node_free(node); str = "{ group1[i] -> S1[i,j] : 0 <= i,j < 10; " "group1[i] -> S2[i,j] : 0 <= i,j < 10; " "group1[i] -> S3[i,j] : 0 <= i,j < 10 }"; expansion2 = isl_union_map_read_from_str(ctx, str); equal = isl_union_map_is_equal(umap1, umap2); equal_expansion = isl_union_map_is_equal(expansion1, expansion2); isl_union_map_free(umap1); isl_union_map_free(umap2); isl_union_map_free(expansion1); isl_union_map_free(expansion2); if (equal < 0 || equal_expansion < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "expressions not equal", return -1); if (!equal_expansion) isl_die(ctx, isl_error_unknown, "unexpected expansion", return -1); return 0; } /* Some tests for the isl_schedule_node_group function. */ static int test_schedule_tree_group(isl_ctx *ctx) { if (test_schedule_tree_group_1(ctx) < 0) return -1; if (test_schedule_tree_group_2(ctx) < 0) return -1; return 0; } struct { const char *set; const char *dual; } coef_tests[] = { { "{ rat: [i] : 0 <= i <= 10 }", "{ rat: coefficients[[cst] -> [a]] : cst >= 0 and 10a + cst >= 0 }" }, { "{ rat: [i] : FALSE }", "{ rat: coefficients[[cst] -> [a]] }" }, { "{ rat: [i] : }", "{ rat: coefficients[[cst] -> [0]] : cst >= 0 }" }, }; struct { const char *set; const char *dual; } sol_tests[] = { { "{ rat: coefficients[[cst] -> [a]] : cst >= 0 and 10a + cst >= 0 }", "{ rat: [i] : 0 <= i <= 10 }" }, { "{ rat: coefficients[[cst] -> [a]] : FALSE }", "{ rat: [i] }" }, { "{ rat: coefficients[[cst] -> [a]] }", "{ rat: [i] : FALSE }" }, }; /* Test the basic functionality of isl_basic_set_coefficients and * isl_basic_set_solutions. */ static int test_dual(isl_ctx *ctx) { int i; for (i = 0; i < ARRAY_SIZE(coef_tests); ++i) { int equal; isl_basic_set *bset1, *bset2; bset1 = isl_basic_set_read_from_str(ctx, coef_tests[i].set); bset2 = isl_basic_set_read_from_str(ctx, coef_tests[i].dual); bset1 = isl_basic_set_coefficients(bset1); equal = isl_basic_set_is_equal(bset1, bset2); isl_basic_set_free(bset1); isl_basic_set_free(bset2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect dual", return -1); } for (i = 0; i < ARRAY_SIZE(sol_tests); ++i) { int equal; isl_basic_set *bset1, *bset2; bset1 = isl_basic_set_read_from_str(ctx, sol_tests[i].set); bset2 = isl_basic_set_read_from_str(ctx, sol_tests[i].dual); bset1 = isl_basic_set_solutions(bset1); equal = isl_basic_set_is_equal(bset1, bset2); isl_basic_set_free(bset1); isl_basic_set_free(bset2); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "incorrect dual", return -1); } return 0; } struct { int scale_tile; int shift_point; const char *domain; const char *schedule; const char *sizes; const char *tile; const char *point; } tile_tests[] = { { 0, 0, "[n] -> { S[i,j] : 0 <= i,j < n }", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", "{ [32,32] }", "[{ S[i,j] -> [floor(i/32)] }, { S[i,j] -> [floor(j/32)] }]", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", }, { 1, 0, "[n] -> { S[i,j] : 0 <= i,j < n }", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", "{ [32,32] }", "[{ S[i,j] -> [32*floor(i/32)] }, { S[i,j] -> [32*floor(j/32)] }]", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", }, { 0, 1, "[n] -> { S[i,j] : 0 <= i,j < n }", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", "{ [32,32] }", "[{ S[i,j] -> [floor(i/32)] }, { S[i,j] -> [floor(j/32)] }]", "[{ S[i,j] -> [i%32] }, { S[i,j] -> [j%32] }]", }, { 1, 1, "[n] -> { S[i,j] : 0 <= i,j < n }", "[{ S[i,j] -> [i] }, { S[i,j] -> [j] }]", "{ [32,32] }", "[{ S[i,j] -> [32*floor(i/32)] }, { S[i,j] -> [32*floor(j/32)] }]", "[{ S[i,j] -> [i%32] }, { S[i,j] -> [j%32] }]", }, }; /* Basic tiling tests. Create a schedule tree with a domain and a band node, * tile the band and then check if the tile and point bands have the * expected partial schedule. */ static int test_tile(isl_ctx *ctx) { int i; int scale; int shift; scale = isl_options_get_tile_scale_tile_loops(ctx); shift = isl_options_get_tile_shift_point_loops(ctx); for (i = 0; i < ARRAY_SIZE(tile_tests); ++i) { int opt; int equal; const char *str; isl_union_set *domain; isl_multi_union_pw_aff *mupa, *mupa2; isl_schedule_node *node; isl_multi_val *sizes; opt = tile_tests[i].scale_tile; isl_options_set_tile_scale_tile_loops(ctx, opt); opt = tile_tests[i].shift_point; isl_options_set_tile_shift_point_loops(ctx, opt); str = tile_tests[i].domain; domain = isl_union_set_read_from_str(ctx, str); node = isl_schedule_node_from_domain(domain); node = isl_schedule_node_child(node, 0); str = tile_tests[i].schedule; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); node = isl_schedule_node_insert_partial_schedule(node, mupa); str = tile_tests[i].sizes; sizes = isl_multi_val_read_from_str(ctx, str); node = isl_schedule_node_band_tile(node, sizes); str = tile_tests[i].tile; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); mupa2 = isl_schedule_node_band_get_partial_schedule(node); equal = isl_multi_union_pw_aff_plain_is_equal(mupa, mupa2); isl_multi_union_pw_aff_free(mupa); isl_multi_union_pw_aff_free(mupa2); node = isl_schedule_node_child(node, 0); str = tile_tests[i].point; mupa = isl_multi_union_pw_aff_read_from_str(ctx, str); mupa2 = isl_schedule_node_band_get_partial_schedule(node); if (equal >= 0 && equal) equal = isl_multi_union_pw_aff_plain_is_equal(mupa, mupa2); isl_multi_union_pw_aff_free(mupa); isl_multi_union_pw_aff_free(mupa2); isl_schedule_node_free(node); if (equal < 0) return -1; if (!equal) isl_die(ctx, isl_error_unknown, "unexpected result", return -1); } isl_options_set_tile_scale_tile_loops(ctx, scale); isl_options_set_tile_shift_point_loops(ctx, shift); return 0; } /* Check that the domain hash of a space is equal to the hash * of the domain of the space. */ static int test_domain_hash(isl_ctx *ctx) { isl_map *map; isl_space *space; uint32_t hash1, hash2; map = isl_map_read_from_str(ctx, "[n] -> { A[B[x] -> C[]] -> D[] }"); space = isl_map_get_space(map); isl_map_free(map); hash1 = isl_space_get_domain_hash(space); space = isl_space_domain(space); hash2 = isl_space_get_hash(space); isl_space_free(space); if (!space) return -1; if (hash1 != hash2) isl_die(ctx, isl_error_unknown, "domain hash not equal to hash of domain", return -1); return 0; } struct { const char *name; int (*fn)(isl_ctx *ctx); } tests [] = { { "domain hash", &test_domain_hash }, { "dual", &test_dual }, { "dependence analysis", &test_flow }, { "val", &test_val }, { "compute divs", &test_compute_divs }, { "partial lexmin", &test_partial_lexmin }, { "simplify", &test_simplify }, { "curry", &test_curry }, { "piecewise multi affine expressions", &test_pw_multi_aff }, { "multi piecewise affine expressions", &test_multi_pw_aff }, { "conversion", &test_conversion }, { "list", &test_list }, { "align parameters", &test_align_parameters }, { "preimage", &test_preimage }, { "pullback", &test_pullback }, { "AST", &test_ast }, { "AST build", &test_ast_build }, { "AST generation", &test_ast_gen }, { "eliminate", &test_eliminate }, { "residue class", &test_residue_class }, { "div", &test_div }, { "slice", &test_slice }, { "fixed power", &test_fixed_power }, { "sample", &test_sample }, { "output", &test_output }, { "vertices", &test_vertices }, { "fixed", &test_fixed }, { "equal", &test_equal }, { "disjoint", &test_disjoint }, { "product", &test_product }, { "dim_max", &test_dim_max }, { "affine", &test_aff }, { "injective", &test_injective }, { "schedule", &test_schedule }, { "schedule tree grouping", &test_schedule_tree_group }, { "tile", &test_tile }, { "union_pw", &test_union_pw }, { "eval", &test_eval }, { "parse", &test_parse }, { "single-valued", &test_sv }, { "affine hull", &test_affine_hull }, { "simple_hull", &test_simple_hull }, { "coalesce", &test_coalesce }, { "factorize", &test_factorize }, { "subset", &test_subset }, { "subtract", &test_subtract }, { "intersect", &test_intersect }, { "lexmin", &test_lexmin }, { "min", &test_min }, { "gist", &test_gist }, { "piecewise quasi-polynomials", &test_pwqp }, { "lift", &test_lift }, { "bound", &test_bound }, { "union", &test_union }, { "split periods", &test_split_periods }, { "lexicographic order", &test_lex }, { "bijectivity", &test_bijective }, { "dataflow analysis", &test_dep }, { "reading", &test_read }, { "bounded", &test_bounded }, { "construction", &test_construction }, { "dimension manipulation", &test_dim }, { "map application", &test_application }, { "convex hull", &test_convex_hull }, { "transitive closure", &test_closure }, }; int main(int argc, char **argv) { int i; struct isl_ctx *ctx; struct isl_options *options; srcdir = getenv("srcdir"); assert(srcdir); options = isl_options_new_with_defaults(); assert(options); argc = isl_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&isl_options_args, options); for (i = 0; i < ARRAY_SIZE(tests); ++i) { printf("%s\n", tests[i].name); if (tests[i].fn(ctx) < 0) goto error; } isl_ctx_free(ctx); return 0; error: isl_ctx_free(ctx); return -1; } isl-0.16.1/isl_coalesce.c0000664000175000017500000023604312645737450012127 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include "isl_map_private.h" #include #include #include "isl_tab.h" #include #include #include #include #define STATUS_ERROR -1 #define STATUS_REDUNDANT 1 #define STATUS_VALID 2 #define STATUS_SEPARATE 3 #define STATUS_CUT 4 #define STATUS_ADJ_EQ 5 #define STATUS_ADJ_INEQ 6 static int status_in(isl_int *ineq, struct isl_tab *tab) { enum isl_ineq_type type = isl_tab_ineq_type(tab, ineq); switch (type) { default: case isl_ineq_error: return STATUS_ERROR; case isl_ineq_redundant: return STATUS_VALID; case isl_ineq_separate: return STATUS_SEPARATE; case isl_ineq_cut: return STATUS_CUT; case isl_ineq_adj_eq: return STATUS_ADJ_EQ; case isl_ineq_adj_ineq: return STATUS_ADJ_INEQ; } } /* Compute the position of the equalities of basic map "bmap_i" * with respect to the basic map represented by "tab_j". * The resulting array has twice as many entries as the number * of equalities corresponding to the two inequalties to which * each equality corresponds. */ static int *eq_status_in(__isl_keep isl_basic_map *bmap_i, struct isl_tab *tab_j) { int k, l; int *eq = isl_calloc_array(bmap_i->ctx, int, 2 * bmap_i->n_eq); unsigned dim; if (!eq) return NULL; dim = isl_basic_map_total_dim(bmap_i); for (k = 0; k < bmap_i->n_eq; ++k) { for (l = 0; l < 2; ++l) { isl_seq_neg(bmap_i->eq[k], bmap_i->eq[k], 1+dim); eq[2 * k + l] = status_in(bmap_i->eq[k], tab_j); if (eq[2 * k + l] == STATUS_ERROR) goto error; } if (eq[2 * k] == STATUS_SEPARATE || eq[2 * k + 1] == STATUS_SEPARATE) break; } return eq; error: free(eq); return NULL; } /* Compute the position of the inequalities of basic map "bmap_i" * (also represented by "tab_i", if not NULL) with respect to the basic map * represented by "tab_j". */ static int *ineq_status_in(__isl_keep isl_basic_map *bmap_i, struct isl_tab *tab_i, struct isl_tab *tab_j) { int k; unsigned n_eq = bmap_i->n_eq; int *ineq = isl_calloc_array(bmap_i->ctx, int, bmap_i->n_ineq); if (!ineq) return NULL; for (k = 0; k < bmap_i->n_ineq; ++k) { if (tab_i && isl_tab_is_redundant(tab_i, n_eq + k)) { ineq[k] = STATUS_REDUNDANT; continue; } ineq[k] = status_in(bmap_i->ineq[k], tab_j); if (ineq[k] == STATUS_ERROR) goto error; if (ineq[k] == STATUS_SEPARATE) break; } return ineq; error: free(ineq); return NULL; } static int any(int *con, unsigned len, int status) { int i; for (i = 0; i < len ; ++i) if (con[i] == status) return 1; return 0; } static int count(int *con, unsigned len, int status) { int i; int c = 0; for (i = 0; i < len ; ++i) if (con[i] == status) c++; return c; } static int all(int *con, unsigned len, int status) { int i; for (i = 0; i < len ; ++i) { if (con[i] == STATUS_REDUNDANT) continue; if (con[i] != status) return 0; } return 1; } /* Internal information associated to a basic map in a map * that is to be coalesced by isl_map_coalesce. * * "bmap" is the basic map itself (or NULL if "removed" is set) * "tab" is the corresponding tableau (or NULL if "removed" is set) * "hull_hash" identifies the affine space in which "bmap" lives. * "removed" is set if this basic map has been removed from the map * "simplify" is set if this basic map may have some unknown integer * divisions that were not present in the input basic maps. The basic * map should then be simplified such that we may be able to find * a definition among the constraints. * * "eq" and "ineq" are only set if we are currently trying to coalesce * this basic map with another basic map, in which case they represent * the position of the inequalities of this basic map with respect to * the other basic map. The number of elements in the "eq" array * is twice the number of equalities in the "bmap", corresponding * to the two inequalities that make up each equality. */ struct isl_coalesce_info { isl_basic_map *bmap; struct isl_tab *tab; uint32_t hull_hash; int removed; int simplify; int *eq; int *ineq; }; /* Compute the hash of the (apparent) affine hull of info->bmap (with * the existentially quantified variables removed) and store it * in info->hash. */ static int coalesce_info_set_hull_hash(struct isl_coalesce_info *info) { isl_basic_map *hull; unsigned n_div; hull = isl_basic_map_copy(info->bmap); hull = isl_basic_map_plain_affine_hull(hull); n_div = isl_basic_map_dim(hull, isl_dim_div); hull = isl_basic_map_drop_constraints_involving_dims(hull, isl_dim_div, 0, n_div); info->hull_hash = isl_basic_map_get_hash(hull); isl_basic_map_free(hull); return hull ? 0 : -1; } /* Free all the allocated memory in an array * of "n" isl_coalesce_info elements. */ static void clear_coalesce_info(int n, struct isl_coalesce_info *info) { int i; if (!info) return; for (i = 0; i < n; ++i) { isl_basic_map_free(info[i].bmap); isl_tab_free(info[i].tab); } free(info); } /* Drop the basic map represented by "info". * That is, clear the memory associated to the entry and * mark it as having been removed. */ static void drop(struct isl_coalesce_info *info) { info->bmap = isl_basic_map_free(info->bmap); isl_tab_free(info->tab); info->tab = NULL; info->removed = 1; } /* Exchange the information in "info1" with that in "info2". */ static void exchange(struct isl_coalesce_info *info1, struct isl_coalesce_info *info2) { struct isl_coalesce_info info; info = *info1; *info1 = *info2; *info2 = info; } /* This type represents the kind of change that has been performed * while trying to coalesce two basic maps. * * isl_change_none: nothing was changed * isl_change_drop_first: the first basic map was removed * isl_change_drop_second: the second basic map was removed * isl_change_fuse: the two basic maps were replaced by a new basic map. */ enum isl_change { isl_change_error = -1, isl_change_none = 0, isl_change_drop_first, isl_change_drop_second, isl_change_fuse, }; /* Update "change" based on an interchange of the first and the second * basic map. That is, interchange isl_change_drop_first and * isl_change_drop_second. */ static enum isl_change invert_change(enum isl_change change) { switch (change) { case isl_change_error: return isl_change_error; case isl_change_none: return isl_change_none; case isl_change_drop_first: return isl_change_drop_second; case isl_change_drop_second: return isl_change_drop_first; case isl_change_fuse: return isl_change_fuse; } return isl_change_error; } /* Add the valid constraints of the basic map represented by "info" * to "bmap". "len" is the size of the constraints. * If only one of the pair of inequalities that make up an equality * is valid, then add that inequality. */ static __isl_give isl_basic_map *add_valid_constraints( __isl_take isl_basic_map *bmap, struct isl_coalesce_info *info, unsigned len) { int k, l; if (!bmap) return NULL; for (k = 0; k < info->bmap->n_eq; ++k) { if (info->eq[2 * k] == STATUS_VALID && info->eq[2 * k + 1] == STATUS_VALID) { l = isl_basic_map_alloc_equality(bmap); if (l < 0) return isl_basic_map_free(bmap); isl_seq_cpy(bmap->eq[l], info->bmap->eq[k], len); } else if (info->eq[2 * k] == STATUS_VALID) { l = isl_basic_map_alloc_inequality(bmap); if (l < 0) return isl_basic_map_free(bmap); isl_seq_neg(bmap->ineq[l], info->bmap->eq[k], len); } else if (info->eq[2 * k + 1] == STATUS_VALID) { l = isl_basic_map_alloc_inequality(bmap); if (l < 0) return isl_basic_map_free(bmap); isl_seq_cpy(bmap->ineq[l], info->bmap->eq[k], len); } } for (k = 0; k < info->bmap->n_ineq; ++k) { if (info->ineq[k] != STATUS_VALID) continue; l = isl_basic_map_alloc_inequality(bmap); if (l < 0) return isl_basic_map_free(bmap); isl_seq_cpy(bmap->ineq[l], info->bmap->ineq[k], len); } return bmap; } /* Is "bmap" defined by a number of (non-redundant) constraints that * is greater than the number of constraints of basic maps i and j combined? * Equalities are counted as two inequalities. */ static int number_of_constraints_increases(int i, int j, struct isl_coalesce_info *info, __isl_keep isl_basic_map *bmap, struct isl_tab *tab) { int k, n_old, n_new; n_old = 2 * info[i].bmap->n_eq + info[i].bmap->n_ineq; n_old += 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; n_new = 2 * bmap->n_eq; for (k = 0; k < bmap->n_ineq; ++k) if (!isl_tab_is_redundant(tab, bmap->n_eq + k)) ++n_new; return n_new > n_old; } /* Replace the pair of basic maps i and j by the basic map bounded * by the valid constraints in both basic maps and the constraints * in extra (if not NULL). * Place the fused basic map in the position that is the smallest of i and j. * * If "detect_equalities" is set, then look for equalities encoded * as pairs of inequalities. * If "check_number" is set, then the original basic maps are only * replaced if the total number of constraints does not increase. * While the number of integer divisions in the two basic maps * is assumed to be the same, the actual definitions may be different. * We only copy the definition from one of the basic map if it is * the same as that of the other basic map. Otherwise, we mark * the integer division as unknown and schedule for the basic map * to be simplified in an attempt to recover the integer division definition. */ static enum isl_change fuse(int i, int j, struct isl_coalesce_info *info, __isl_keep isl_mat *extra, int detect_equalities, int check_number) { int k, l; struct isl_basic_map *fused = NULL; struct isl_tab *fused_tab = NULL; unsigned total = isl_basic_map_total_dim(info[i].bmap); unsigned extra_rows = extra ? extra->n_row : 0; unsigned n_eq, n_ineq; if (j < i) return fuse(j, i, info, extra, detect_equalities, check_number); n_eq = info[i].bmap->n_eq + info[j].bmap->n_eq; n_ineq = info[i].bmap->n_ineq + info[j].bmap->n_ineq; fused = isl_basic_map_alloc_space(isl_space_copy(info[i].bmap->dim), info[i].bmap->n_div, n_eq, n_eq + n_ineq + extra_rows); fused = add_valid_constraints(fused, &info[i], 1 + total); fused = add_valid_constraints(fused, &info[j], 1 + total); if (!fused) goto error; for (k = 0; k < info[i].bmap->n_div; ++k) { int l = isl_basic_map_alloc_div(fused); if (l < 0) goto error; if (isl_seq_eq(info[i].bmap->div[k], info[j].bmap->div[k], 1 + 1 + total)) { isl_seq_cpy(fused->div[l], info[i].bmap->div[k], 1 + 1 + total); } else { isl_int_set_si(fused->div[l][0], 0); info[i].simplify = 1; } } for (k = 0; k < extra_rows; ++k) { l = isl_basic_map_alloc_inequality(fused); if (l < 0) goto error; isl_seq_cpy(fused->ineq[l], extra->row[k], 1 + total); } if (detect_equalities) fused = isl_basic_map_detect_inequality_pairs(fused, NULL); fused = isl_basic_map_gauss(fused, NULL); ISL_F_SET(fused, ISL_BASIC_MAP_FINAL); if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) && ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL)) ISL_F_SET(fused, ISL_BASIC_MAP_RATIONAL); fused_tab = isl_tab_from_basic_map(fused, 0); if (isl_tab_detect_redundant(fused_tab) < 0) goto error; if (check_number && number_of_constraints_increases(i, j, info, fused, fused_tab)) { isl_tab_free(fused_tab); isl_basic_map_free(fused); return isl_change_none; } info[i].simplify |= info[j].simplify; isl_basic_map_free(info[i].bmap); info[i].bmap = fused; isl_tab_free(info[i].tab); info[i].tab = fused_tab; drop(&info[j]); return isl_change_fuse; error: isl_tab_free(fused_tab); isl_basic_map_free(fused); return isl_change_error; } /* Given a pair of basic maps i and j such that all constraints are either * "valid" or "cut", check if the facets corresponding to the "cut" * constraints of i lie entirely within basic map j. * If so, replace the pair by the basic map consisting of the valid * constraints in both basic maps. * Checking whether the facet lies entirely within basic map j * is performed by checking whether the constraints of basic map j * are valid for the facet. These tests are performed on a rational * tableau to avoid the theoretical possibility that a constraint * that was considered to be a cut constraint for the entire basic map i * happens to be considered to be a valid constraint for the facet, * even though it cuts off the same rational points. * * To see that we are not introducing any extra points, call the * two basic maps A and B and the resulting map U and let x * be an element of U \setminus ( A \cup B ). * A line connecting x with an element of A \cup B meets a facet F * of either A or B. Assume it is a facet of B and let c_1 be * the corresponding facet constraint. We have c_1(x) < 0 and * so c_1 is a cut constraint. This implies that there is some * (possibly rational) point x' satisfying the constraints of A * and the opposite of c_1 as otherwise c_1 would have been marked * valid for A. The line connecting x and x' meets a facet of A * in a (possibly rational) point that also violates c_1, but this * is impossible since all cut constraints of B are valid for all * cut facets of A. * In case F is a facet of A rather than B, then we can apply the * above reasoning to find a facet of B separating x from A \cup B first. */ static enum isl_change check_facets(int i, int j, struct isl_coalesce_info *info) { int k, l; struct isl_tab_undo *snap, *snap2; unsigned n_eq = info[i].bmap->n_eq; snap = isl_tab_snap(info[i].tab); if (isl_tab_mark_rational(info[i].tab) < 0) return isl_change_error; snap2 = isl_tab_snap(info[i].tab); for (k = 0; k < info[i].bmap->n_ineq; ++k) { if (info[i].ineq[k] != STATUS_CUT) continue; if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0) return isl_change_error; for (l = 0; l < info[j].bmap->n_ineq; ++l) { int stat; if (info[j].ineq[l] != STATUS_CUT) continue; stat = status_in(info[j].bmap->ineq[l], info[i].tab); if (stat < 0) return isl_change_error; if (stat != STATUS_VALID) break; } if (isl_tab_rollback(info[i].tab, snap2) < 0) return isl_change_error; if (l < info[j].bmap->n_ineq) break; } if (k < info[i].bmap->n_ineq) { if (isl_tab_rollback(info[i].tab, snap) < 0) return isl_change_error; return isl_change_none; } return fuse(i, j, info, NULL, 0, 0); } /* Check if info->bmap contains the basic map represented * by the tableau "tab". * For each equality, we check both the constraint itself * (as an inequality) and its negation. Make sure the * equality is returned to its original state before returning. */ static int contains(struct isl_coalesce_info *info, struct isl_tab *tab) { int k; unsigned dim; isl_basic_map *bmap = info->bmap; dim = isl_basic_map_total_dim(bmap); for (k = 0; k < bmap->n_eq; ++k) { int stat; isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim); stat = status_in(bmap->eq[k], tab); isl_seq_neg(bmap->eq[k], bmap->eq[k], 1 + dim); if (stat < 0) return -1; if (stat != STATUS_VALID) return 0; stat = status_in(bmap->eq[k], tab); if (stat < 0) return -1; if (stat != STATUS_VALID) return 0; } for (k = 0; k < bmap->n_ineq; ++k) { int stat; if (info->ineq[k] == STATUS_REDUNDANT) continue; stat = status_in(bmap->ineq[k], tab); if (stat < 0) return -1; if (stat != STATUS_VALID) return 0; } return 1; } /* Basic map "i" has an inequality (say "k") that is adjacent * to some inequality of basic map "j". All the other inequalities * are valid for "j". * Check if basic map "j" forms an extension of basic map "i". * * Note that this function is only called if some of the equalities or * inequalities of basic map "j" do cut basic map "i". The function is * correct even if there are no such cut constraints, but in that case * the additional checks performed by this function are overkill. * * In particular, we replace constraint k, say f >= 0, by constraint * f <= -1, add the inequalities of "j" that are valid for "i" * and check if the result is a subset of basic map "j". * If so, then we know that this result is exactly equal to basic map "j" * since all its constraints are valid for basic map "j". * By combining the valid constraints of "i" (all equalities and all * inequalities except "k") and the valid constraints of "j" we therefore * obtain a basic map that is equal to their union. * In this case, there is no need to perform a rollback of the tableau * since it is going to be destroyed in fuse(). * * * |\__ |\__ * | \__ | \__ * | \_ => | \__ * |_______| _ |_________\ * * * |\ |\ * | \ | \ * | \ | \ * | | | \ * | ||\ => | \ * | || \ | \ * | || | | | * |__||_/ |_____/ */ static enum isl_change is_adj_ineq_extension(int i, int j, struct isl_coalesce_info *info) { int k; struct isl_tab_undo *snap; unsigned n_eq = info[i].bmap->n_eq; unsigned total = isl_basic_map_total_dim(info[i].bmap); int r; int super; if (isl_tab_extend_cons(info[i].tab, 1 + info[j].bmap->n_ineq) < 0) return isl_change_error; for (k = 0; k < info[i].bmap->n_ineq; ++k) if (info[i].ineq[k] == STATUS_ADJ_INEQ) break; if (k >= info[i].bmap->n_ineq) isl_die(isl_basic_map_get_ctx(info[i].bmap), isl_error_internal, "info[i].ineq should have exactly one STATUS_ADJ_INEQ", return isl_change_error); snap = isl_tab_snap(info[i].tab); if (isl_tab_unrestrict(info[i].tab, n_eq + k) < 0) return isl_change_error; isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total); isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); r = isl_tab_add_ineq(info[i].tab, info[i].bmap->ineq[k]); isl_seq_neg(info[i].bmap->ineq[k], info[i].bmap->ineq[k], 1 + total); isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); if (r < 0) return isl_change_error; for (k = 0; k < info[j].bmap->n_ineq; ++k) { if (info[j].ineq[k] != STATUS_VALID) continue; if (isl_tab_add_ineq(info[i].tab, info[j].bmap->ineq[k]) < 0) return isl_change_error; } super = contains(&info[j], info[i].tab); if (super < 0) return isl_change_error; if (super) return fuse(i, j, info, NULL, 0, 0); if (isl_tab_rollback(info[i].tab, snap) < 0) return isl_change_error; return isl_change_none; } /* Both basic maps have at least one inequality with and adjacent * (but opposite) inequality in the other basic map. * Check that there are no cut constraints and that there is only * a single pair of adjacent inequalities. * If so, we can replace the pair by a single basic map described * by all but the pair of adjacent inequalities. * Any additional points introduced lie strictly between the two * adjacent hyperplanes and can therefore be integral. * * ____ _____ * / ||\ / \ * / || \ / \ * \ || \ => \ \ * \ || / \ / * \___||_/ \_____/ * * The test for a single pair of adjancent inequalities is important * for avoiding the combination of two basic maps like the following * * /| * / | * /__| * _____ * | | * | | * |___| * * If there are some cut constraints on one side, then we may * still be able to fuse the two basic maps, but we need to perform * some additional checks in is_adj_ineq_extension. */ static enum isl_change check_adj_ineq(int i, int j, struct isl_coalesce_info *info) { int count_i, count_j; int cut_i, cut_j; count_i = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ); count_j = count(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ); if (count_i != 1 && count_j != 1) return isl_change_none; cut_i = any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) || any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT); cut_j = any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT) || any(info[j].ineq, info[j].bmap->n_ineq, STATUS_CUT); if (!cut_i && !cut_j && count_i == 1 && count_j == 1) return fuse(i, j, info, NULL, 0, 0); if (count_i == 1 && !cut_i) return is_adj_ineq_extension(i, j, info); if (count_j == 1 && !cut_j) return is_adj_ineq_extension(j, i, info); return isl_change_none; } /* Basic map "i" has an inequality "k" that is adjacent to some equality * of basic map "j". All the other inequalities are valid for "j". * Check if basic map "j" forms an extension of basic map "i". * * In particular, we relax constraint "k", compute the corresponding * facet and check whether it is included in the other basic map. * If so, we know that relaxing the constraint extends the basic * map with exactly the other basic map (we already know that this * other basic map is included in the extension, because there * were no "cut" inequalities in "i") and we can replace the * two basic maps by this extension. * Each integer division that does not have exactly the same * definition in "i" and "j" is marked unknown and the basic map * is scheduled to be simplified in an attempt to recover * the integer division definition. * Place this extension in the position that is the smallest of i and j. * ____ _____ * / || / | * / || / | * \ || => \ | * \ || \ | * \___|| \____| */ static enum isl_change is_adj_eq_extension(int i, int j, int k, struct isl_coalesce_info *info) { int change = isl_change_none; int super; struct isl_tab_undo *snap, *snap2; unsigned n_eq = info[i].bmap->n_eq; if (isl_tab_is_equality(info[i].tab, n_eq + k)) return isl_change_none; snap = isl_tab_snap(info[i].tab); if (isl_tab_relax(info[i].tab, n_eq + k) < 0) return isl_change_error; snap2 = isl_tab_snap(info[i].tab); if (isl_tab_select_facet(info[i].tab, n_eq + k) < 0) return isl_change_error; super = contains(&info[j], info[i].tab); if (super < 0) return isl_change_error; if (super) { int l; unsigned total; if (isl_tab_rollback(info[i].tab, snap2) < 0) return isl_change_error; info[i].bmap = isl_basic_map_cow(info[i].bmap); if (!info[i].bmap) return isl_change_error; total = isl_basic_map_total_dim(info[i].bmap); for (l = 0; l < info[i].bmap->n_div; ++l) if (!isl_seq_eq(info[i].bmap->div[l], info[j].bmap->div[l], 1 + 1 + total)) { isl_int_set_si(info[i].bmap->div[l][0], 0); info[i].simplify = 1; } isl_int_add_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_FINAL); drop(&info[j]); if (j < i) exchange(&info[i], &info[j]); change = isl_change_fuse; } else if (isl_tab_rollback(info[i].tab, snap) < 0) return isl_change_error; return change; } /* Data structure that keeps track of the wrapping constraints * and of information to bound the coefficients of those constraints. * * bound is set if we want to apply a bound on the coefficients * mat contains the wrapping constraints * max is the bound on the coefficients (if bound is set) */ struct isl_wraps { int bound; isl_mat *mat; isl_int max; }; /* Update wraps->max to be greater than or equal to the coefficients * in the equalities and inequalities of info->bmap that can be removed * if we end up applying wrapping. */ static void wraps_update_max(struct isl_wraps *wraps, struct isl_coalesce_info *info) { int k; isl_int max_k; unsigned total = isl_basic_map_total_dim(info->bmap); isl_int_init(max_k); for (k = 0; k < info->bmap->n_eq; ++k) { if (info->eq[2 * k] == STATUS_VALID && info->eq[2 * k + 1] == STATUS_VALID) continue; isl_seq_abs_max(info->bmap->eq[k] + 1, total, &max_k); if (isl_int_abs_gt(max_k, wraps->max)) isl_int_set(wraps->max, max_k); } for (k = 0; k < info->bmap->n_ineq; ++k) { if (info->ineq[k] == STATUS_VALID || info->ineq[k] == STATUS_REDUNDANT) continue; isl_seq_abs_max(info->bmap->ineq[k] + 1, total, &max_k); if (isl_int_abs_gt(max_k, wraps->max)) isl_int_set(wraps->max, max_k); } isl_int_clear(max_k); } /* Initialize the isl_wraps data structure. * If we want to bound the coefficients of the wrapping constraints, * we set wraps->max to the largest coefficient * in the equalities and inequalities that can be removed if we end up * applying wrapping. */ static void wraps_init(struct isl_wraps *wraps, __isl_take isl_mat *mat, struct isl_coalesce_info *info, int i, int j) { isl_ctx *ctx; wraps->bound = 0; wraps->mat = mat; if (!mat) return; ctx = isl_mat_get_ctx(mat); wraps->bound = isl_options_get_coalesce_bounded_wrapping(ctx); if (!wraps->bound) return; isl_int_init(wraps->max); isl_int_set_si(wraps->max, 0); wraps_update_max(wraps, &info[i]); wraps_update_max(wraps, &info[j]); } /* Free the contents of the isl_wraps data structure. */ static void wraps_free(struct isl_wraps *wraps) { isl_mat_free(wraps->mat); if (wraps->bound) isl_int_clear(wraps->max); } /* Is the wrapping constraint in row "row" allowed? * * If wraps->bound is set, we check that none of the coefficients * is greater than wraps->max. */ static int allow_wrap(struct isl_wraps *wraps, int row) { int i; if (!wraps->bound) return 1; for (i = 1; i < wraps->mat->n_col; ++i) if (isl_int_abs_gt(wraps->mat->row[row][i], wraps->max)) return 0; return 1; } /* Wrap "ineq" (or its opposite if "negate" is set) around "bound" * to include "set" and add the result in position "w" of "wraps". * "len" is the total number of coefficients in "bound" and "ineq". * Return 1 on success, 0 on failure and -1 on error. * Wrapping can fail if the result of wrapping is equal to "bound" * or if we want to bound the sizes of the coefficients and * the wrapped constraint does not satisfy this bound. */ static int add_wrap(struct isl_wraps *wraps, int w, isl_int *bound, isl_int *ineq, unsigned len, __isl_keep isl_set *set, int negate) { isl_seq_cpy(wraps->mat->row[w], bound, len); if (negate) { isl_seq_neg(wraps->mat->row[w + 1], ineq, len); ineq = wraps->mat->row[w + 1]; } if (!isl_set_wrap_facet(set, wraps->mat->row[w], ineq)) return -1; if (isl_seq_eq(wraps->mat->row[w], bound, len)) return 0; if (!allow_wrap(wraps, w)) return 0; return 1; } /* For each constraint in info->bmap that is not redundant (as determined * by info->tab) and that is not a valid constraint for the other basic map, * wrap the constraint around "bound" such that it includes the whole * set "set" and append the resulting constraint to "wraps". * Note that the constraints that are valid for the other basic map * will be added to the combined basic map by default, so there is * no need to wrap them. * The caller wrap_in_facets even relies on this function not wrapping * any constraints that are already valid. * "wraps" is assumed to have been pre-allocated to the appropriate size. * wraps->n_row is the number of actual wrapped constraints that have * been added. * If any of the wrapping problems results in a constraint that is * identical to "bound", then this means that "set" is unbounded in such * way that no wrapping is possible. If this happens then wraps->n_row * is reset to zero. * Similarly, if we want to bound the coefficients of the wrapping * constraints and a newly added wrapping constraint does not * satisfy the bound, then wraps->n_row is also reset to zero. */ static int add_wraps(struct isl_wraps *wraps, struct isl_coalesce_info *info, isl_int *bound, __isl_keep isl_set *set) { int l, m; int w; int added; isl_basic_map *bmap = info->bmap; unsigned len = 1 + isl_basic_map_total_dim(bmap); w = wraps->mat->n_row; for (l = 0; l < bmap->n_ineq; ++l) { if (info->ineq[l] == STATUS_VALID || info->ineq[l] == STATUS_REDUNDANT) continue; if (isl_seq_is_neg(bound, bmap->ineq[l], len)) continue; if (isl_seq_eq(bound, bmap->ineq[l], len)) continue; if (isl_tab_is_redundant(info->tab, bmap->n_eq + l)) continue; added = add_wrap(wraps, w, bound, bmap->ineq[l], len, set, 0); if (added < 0) return -1; if (!added) goto unbounded; ++w; } for (l = 0; l < bmap->n_eq; ++l) { if (isl_seq_is_neg(bound, bmap->eq[l], len)) continue; if (isl_seq_eq(bound, bmap->eq[l], len)) continue; for (m = 0; m < 2; ++m) { if (info->eq[2 * l + m] == STATUS_VALID) continue; added = add_wrap(wraps, w, bound, bmap->eq[l], len, set, !m); if (added < 0) return -1; if (!added) goto unbounded; ++w; } } wraps->mat->n_row = w; return 0; unbounded: wraps->mat->n_row = 0; return 0; } /* Check if the constraints in "wraps" from "first" until the last * are all valid for the basic set represented by "tab". * If not, wraps->n_row is set to zero. */ static int check_wraps(__isl_keep isl_mat *wraps, int first, struct isl_tab *tab) { int i; for (i = first; i < wraps->n_row; ++i) { enum isl_ineq_type type; type = isl_tab_ineq_type(tab, wraps->row[i]); if (type == isl_ineq_error) return -1; if (type == isl_ineq_redundant) continue; wraps->n_row = 0; return 0; } return 0; } /* Return a set that corresponds to the non-redundant constraints * (as recorded in tab) of bmap. * * It's important to remove the redundant constraints as some * of the other constraints may have been modified after the * constraints were marked redundant. * In particular, a constraint may have been relaxed. * Redundant constraints are ignored when a constraint is relaxed * and should therefore continue to be ignored ever after. * Otherwise, the relaxation might be thwarted by some of * these constraints. * * Update the underlying set to ensure that the dimension doesn't change. * Otherwise the integer divisions could get dropped if the tab * turns out to be empty. */ static __isl_give isl_set *set_from_updated_bmap(__isl_keep isl_basic_map *bmap, struct isl_tab *tab) { isl_basic_set *bset; bmap = isl_basic_map_copy(bmap); bset = isl_basic_map_underlying_set(bmap); bset = isl_basic_set_cow(bset); bset = isl_basic_set_update_from_tab(bset, tab); return isl_set_from_basic_set(bset); } /* Wrap the constraints of info->bmap that bound the facet defined * by inequality "k" around (the opposite of) this inequality to * include "set". "bound" may be used to store the negated inequality. * Since the wrapped constraints are not guaranteed to contain the whole * of info->bmap, we check them in check_wraps. * If any of the wrapped constraints turn out to be invalid, then * check_wraps will reset wrap->n_row to zero. */ static int add_wraps_around_facet(struct isl_wraps *wraps, struct isl_coalesce_info *info, int k, isl_int *bound, __isl_keep isl_set *set) { struct isl_tab_undo *snap; int n; unsigned total = isl_basic_map_total_dim(info->bmap); snap = isl_tab_snap(info->tab); if (isl_tab_select_facet(info->tab, info->bmap->n_eq + k) < 0) return -1; if (isl_tab_detect_redundant(info->tab) < 0) return -1; isl_seq_neg(bound, info->bmap->ineq[k], 1 + total); n = wraps->mat->n_row; if (add_wraps(wraps, info, bound, set) < 0) return -1; if (isl_tab_rollback(info->tab, snap) < 0) return -1; if (check_wraps(wraps->mat, n, info->tab) < 0) return -1; return 0; } /* Given a basic set i with a constraint k that is adjacent to * basic set j, check if we can wrap * both the facet corresponding to k (if "wrap_facet" is set) and basic map j * (always) around their ridges to include the other set. * If so, replace the pair of basic sets by their union. * * All constraints of i (except k) are assumed to be valid or * cut constraints for j. * Wrapping the cut constraints to include basic map j may result * in constraints that are no longer valid of basic map i * we have to check that the resulting wrapping constraints are valid for i. * If "wrap_facet" is not set, then all constraints of i (except k) * are assumed to be valid for j. * ____ _____ * / | / \ * / || / | * \ || => \ | * \ || \ | * \___|| \____| * */ static enum isl_change can_wrap_in_facet(int i, int j, int k, struct isl_coalesce_info *info, int wrap_facet) { enum isl_change change = isl_change_none; struct isl_wraps wraps; isl_ctx *ctx; isl_mat *mat; struct isl_set *set_i = NULL; struct isl_set *set_j = NULL; struct isl_vec *bound = NULL; unsigned total = isl_basic_map_total_dim(info[i].bmap); set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); set_j = set_from_updated_bmap(info[j].bmap, info[j].tab); ctx = isl_basic_map_get_ctx(info[i].bmap); mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + info[i].bmap->n_ineq + info[j].bmap->n_ineq, 1 + total); wraps_init(&wraps, mat, info, i, j); bound = isl_vec_alloc(ctx, 1 + total); if (!set_i || !set_j || !wraps.mat || !bound) goto error; isl_seq_cpy(bound->el, info[i].bmap->ineq[k], 1 + total); isl_int_add_ui(bound->el[0], bound->el[0], 1); isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); wraps.mat->n_row = 1; if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; if (wrap_facet) { if (add_wraps_around_facet(&wraps, &info[i], k, bound->el, set_j) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; } change = fuse(i, j, info, wraps.mat, 0, 0); unbounded: wraps_free(&wraps); isl_set_free(set_i); isl_set_free(set_j); isl_vec_free(bound); return change; error: wraps_free(&wraps); isl_vec_free(bound); isl_set_free(set_i); isl_set_free(set_j); return isl_change_error; } /* Given a pair of basic maps i and j such that j sticks out * of i at n cut constraints, each time by at most one, * try to compute wrapping constraints and replace the two * basic maps by a single basic map. * The other constraints of i are assumed to be valid for j. * * For each cut constraint t(x) >= 0 of i, we add the relaxed version * t(x) + 1 >= 0, along with wrapping constraints for all constraints * of basic map j that bound the part of basic map j that sticks out * of the cut constraint. * In particular, we first intersect basic map j with t(x) + 1 = 0. * If the result is empty, then t(x) >= 0 was actually a valid constraint * (with respect to the integer points), so we add t(x) >= 0 instead. * Otherwise, we wrap the constraints of basic map j that are not * redundant in this intersection and that are not already valid * for basic map i over basic map i. * Note that it is sufficient to wrap the constraints to include * basic map i, because we will only wrap the constraints that do * not include basic map i already. The wrapped constraint will * therefore be more relaxed compared to the original constraint. * Since the original constraint is valid for basic map j, so is * the wrapped constraint. * * If any wrapping fails, i.e., if we cannot wrap to touch * the union, then we give up. * Otherwise, the pair of basic maps is replaced by their union. */ static enum isl_change wrap_in_facets(int i, int j, int *cuts, int n, struct isl_coalesce_info *info) { enum isl_change change = isl_change_none; struct isl_wraps wraps; isl_ctx *ctx; isl_mat *mat; isl_set *set_i = NULL; unsigned total = isl_basic_map_total_dim(info[i].bmap); int max_wrap; int k, w; struct isl_tab_undo *snap; if (isl_tab_extend_cons(info[j].tab, 1) < 0) goto error; max_wrap = 1 + 2 * info[j].bmap->n_eq + info[j].bmap->n_ineq; max_wrap *= n; set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); ctx = isl_basic_map_get_ctx(info[i].bmap); mat = isl_mat_alloc(ctx, max_wrap, 1 + total); wraps_init(&wraps, mat, info, i, j); if (!set_i || !wraps.mat) goto error; snap = isl_tab_snap(info[j].tab); wraps.mat->n_row = 0; for (k = 0; k < n; ++k) { w = wraps.mat->n_row++; isl_seq_cpy(wraps.mat->row[w], info[i].bmap->ineq[cuts[k]], 1 + total); isl_int_add_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1); if (isl_tab_add_eq(info[j].tab, wraps.mat->row[w]) < 0) goto error; if (isl_tab_detect_redundant(info[j].tab) < 0) goto error; if (info[j].tab->empty) isl_int_sub_ui(wraps.mat->row[w][0], wraps.mat->row[w][0], 1); else if (add_wraps(&wraps, &info[j], wraps.mat->row[w], set_i) < 0) goto error; if (isl_tab_rollback(info[j].tab, snap) < 0) goto error; if (!wraps.mat->n_row) break; } if (k == n) change = fuse(i, j, info, wraps.mat, 0, 1); wraps_free(&wraps); isl_set_free(set_i); return change; error: wraps_free(&wraps); isl_set_free(set_i); return isl_change_error; } /* Given two basic sets i and j such that i has no cut equalities, * check if relaxing all the cut inequalities of i by one turns * them into valid constraint for j and check if we can wrap in * the bits that are sticking out. * If so, replace the pair by their union. * * We first check if all relaxed cut inequalities of i are valid for j * and then try to wrap in the intersections of the relaxed cut inequalities * with j. * * During this wrapping, we consider the points of j that lie at a distance * of exactly 1 from i. In particular, we ignore the points that lie in * between this lower-dimensional space and the basic map i. * We can therefore only apply this to integer maps. * ____ _____ * / ___|_ / \ * / | | / | * \ | | => \ | * \|____| \ | * \___| \____/ * * _____ ______ * | ____|_ | \ * | | | | | * | | | => | | * |_| | | | * |_____| \______| * * _______ * | | * | |\ | * | | \ | * | | \ | * | | \| * | | \ * | |_____\ * | | * |_______| * * Wrapping can fail if the result of wrapping one of the facets * around its edges does not produce any new facet constraint. * In particular, this happens when we try to wrap in unbounded sets. * * _______________________________________________________________________ * | * | ___ * | | | * |_| |_________________________________________________________________ * |___| * * The following is not an acceptable result of coalescing the above two * sets as it includes extra integer points. * _______________________________________________________________________ * | * | * | * | * \______________________________________________________________________ */ static enum isl_change can_wrap_in_set(int i, int j, struct isl_coalesce_info *info) { enum isl_change change = isl_change_none; int k, m; int n; int *cuts = NULL; isl_ctx *ctx; if (ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_RATIONAL) || ISL_F_ISSET(info[j].bmap, ISL_BASIC_MAP_RATIONAL)) return isl_change_none; n = count(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT); if (n == 0) return isl_change_none; ctx = isl_basic_map_get_ctx(info[i].bmap); cuts = isl_alloc_array(ctx, int, n); if (!cuts) return isl_change_error; for (k = 0, m = 0; m < n; ++k) { enum isl_ineq_type type; if (info[i].ineq[k] != STATUS_CUT) continue; isl_int_add_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); type = isl_tab_ineq_type(info[j].tab, info[i].bmap->ineq[k]); isl_int_sub_ui(info[i].bmap->ineq[k][0], info[i].bmap->ineq[k][0], 1); if (type == isl_ineq_error) goto error; if (type != isl_ineq_redundant) break; cuts[m] = k; ++m; } if (m == n) change = wrap_in_facets(i, j, cuts, n, info); free(cuts); return change; error: free(cuts); return isl_change_error; } /* Check if either i or j has only cut inequalities that can * be used to wrap in (a facet of) the other basic set. * if so, replace the pair by their union. */ static enum isl_change check_wrap(int i, int j, struct isl_coalesce_info *info) { enum isl_change change = isl_change_none; if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT)) change = can_wrap_in_set(i, j, info); if (change != isl_change_none) return change; if (!any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT)) change = can_wrap_in_set(j, i, info); return change; } /* At least one of the basic maps has an equality that is adjacent * to inequality. Make sure that only one of the basic maps has * such an equality and that the other basic map has exactly one * inequality adjacent to an equality. * We call the basic map that has the inequality "i" and the basic * map that has the equality "j". * If "i" has any "cut" (in)equality, then relaxing the inequality * by one would not result in a basic map that contains the other * basic map. However, it may still be possible to wrap in the other * basic map. */ static enum isl_change check_adj_eq(int i, int j, struct isl_coalesce_info *info) { enum isl_change change = isl_change_none; int k; int any_cut; if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) && any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return isl_change_none; if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ)) return check_adj_eq(j, i, info); /* j has an equality adjacent to an inequality in i */ if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT)) return isl_change_none; any_cut = any(info[i].ineq, info[i].bmap->n_ineq, STATUS_CUT); if (count(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) != 1 || any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ) || any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) || any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) /* ADJ EQ TOO MANY */ return isl_change_none; for (k = 0; k < info[i].bmap->n_ineq; ++k) if (info[i].ineq[k] == STATUS_ADJ_EQ) break; if (!any_cut) { change = is_adj_eq_extension(i, j, k, info); if (change != isl_change_none) return change; } change = can_wrap_in_facet(i, j, k, info, any_cut); return change; } /* The two basic maps lie on adjacent hyperplanes. In particular, * basic map "i" has an equality that lies parallel to basic map "j". * Check if we can wrap the facets around the parallel hyperplanes * to include the other set. * * We perform basically the same operations as can_wrap_in_facet, * except that we don't need to select a facet of one of the sets. * _ * \\ \\ * \\ => \\ * \ \| * * If there is more than one equality of "i" adjacent to an equality of "j", * then the result will satisfy one or more equalities that are a linear * combination of these equalities. These will be encoded as pairs * of inequalities in the wrapping constraints and need to be made * explicit. */ static enum isl_change check_eq_adj_eq(int i, int j, struct isl_coalesce_info *info) { int k; enum isl_change change = isl_change_none; int detect_equalities = 0; struct isl_wraps wraps; isl_ctx *ctx; isl_mat *mat; struct isl_set *set_i = NULL; struct isl_set *set_j = NULL; struct isl_vec *bound = NULL; unsigned total = isl_basic_map_total_dim(info[i].bmap); if (count(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ) != 1) detect_equalities = 1; for (k = 0; k < 2 * info[i].bmap->n_eq ; ++k) if (info[i].eq[k] == STATUS_ADJ_EQ) break; set_i = set_from_updated_bmap(info[i].bmap, info[i].tab); set_j = set_from_updated_bmap(info[j].bmap, info[j].tab); ctx = isl_basic_map_get_ctx(info[i].bmap); mat = isl_mat_alloc(ctx, 2 * (info[i].bmap->n_eq + info[j].bmap->n_eq) + info[i].bmap->n_ineq + info[j].bmap->n_ineq, 1 + total); wraps_init(&wraps, mat, info, i, j); bound = isl_vec_alloc(ctx, 1 + total); if (!set_i || !set_j || !wraps.mat || !bound) goto error; if (k % 2 == 0) isl_seq_neg(bound->el, info[i].bmap->eq[k / 2], 1 + total); else isl_seq_cpy(bound->el, info[i].bmap->eq[k / 2], 1 + total); isl_int_add_ui(bound->el[0], bound->el[0], 1); isl_seq_cpy(wraps.mat->row[0], bound->el, 1 + total); wraps.mat->n_row = 1; if (add_wraps(&wraps, &info[j], bound->el, set_i) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; isl_int_sub_ui(bound->el[0], bound->el[0], 1); isl_seq_neg(bound->el, bound->el, 1 + total); isl_seq_cpy(wraps.mat->row[wraps.mat->n_row], bound->el, 1 + total); wraps.mat->n_row++; if (add_wraps(&wraps, &info[i], bound->el, set_j) < 0) goto error; if (!wraps.mat->n_row) goto unbounded; change = fuse(i, j, info, wraps.mat, detect_equalities, 0); if (0) { error: change = isl_change_error; } unbounded: wraps_free(&wraps); isl_set_free(set_i); isl_set_free(set_j); isl_vec_free(bound); return change; } /* Check if the union of the given pair of basic maps * can be represented by a single basic map. * If so, replace the pair by the single basic map and return * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. * Otherwise, return isl_change_none. * The two basic maps are assumed to live in the same local space. * * We first check the effect of each constraint of one basic map * on the other basic map. * The constraint may be * redundant the constraint is redundant in its own * basic map and should be ignore and removed * in the end * valid all (integer) points of the other basic map * satisfy the constraint * separate no (integer) point of the other basic map * satisfies the constraint * cut some but not all points of the other basic map * satisfy the constraint * adj_eq the given constraint is adjacent (on the outside) * to an equality of the other basic map * adj_ineq the given constraint is adjacent (on the outside) * to an inequality of the other basic map * * We consider seven cases in which we can replace the pair by a single * basic map. We ignore all "redundant" constraints. * * 1. all constraints of one basic map are valid * => the other basic map is a subset and can be removed * * 2. all constraints of both basic maps are either "valid" or "cut" * and the facets corresponding to the "cut" constraints * of one of the basic maps lies entirely inside the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 3. there is a single pair of adjacent inequalities * (all other constraints are "valid") * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 4. one basic map has a single adjacent inequality, while the other * constraints are "valid". The other basic map has some * "cut" constraints, but replacing the adjacent inequality by * its opposite and adding the valid constraints of the other * basic map results in a subset of the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps * * 5. there is a single adjacent pair of an inequality and an equality, * the other constraints of the basic map containing the inequality are * "valid". Moreover, if the inequality the basic map is relaxed * and then turned into an equality, then resulting facet lies * entirely inside the other basic map * => the pair can be replaced by the basic map containing * the inequality, with the inequality relaxed. * * 6. there is a single adjacent pair of an inequality and an equality, * the other constraints of the basic map containing the inequality are * "valid". Moreover, the facets corresponding to both * the inequality and the equality can be wrapped around their * ridges to include the other basic map * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps together * with all wrapping constraints * * 7. one of the basic maps extends beyond the other by at most one. * Moreover, the facets corresponding to the cut constraints and * the pieces of the other basic map at offset one from these cut * constraints can be wrapped around their ridges to include * the union of the two basic maps * => the pair can be replaced by a basic map consisting * of the valid constraints in both basic maps together * with all wrapping constraints * * 8. the two basic maps live in adjacent hyperplanes. In principle * such sets can always be combined through wrapping, but we impose * that there is only one such pair, to avoid overeager coalescing. * * Throughout the computation, we maintain a collection of tableaus * corresponding to the basic maps. When the basic maps are dropped * or combined, the tableaus are modified accordingly. */ static enum isl_change coalesce_local_pair(int i, int j, struct isl_coalesce_info *info) { enum isl_change change = isl_change_none; info[i].eq = info[i].ineq = NULL; info[j].eq = info[j].ineq = NULL; info[i].eq = eq_status_in(info[i].bmap, info[j].tab); if (info[i].bmap->n_eq && !info[i].eq) goto error; if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ERROR)) goto error; if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_SEPARATE)) goto done; info[j].eq = eq_status_in(info[j].bmap, info[i].tab); if (info[j].bmap->n_eq && !info[j].eq) goto error; if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ERROR)) goto error; if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_SEPARATE)) goto done; info[i].ineq = ineq_status_in(info[i].bmap, info[i].tab, info[j].tab); if (info[i].bmap->n_ineq && !info[i].ineq) goto error; if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ERROR)) goto error; if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_SEPARATE)) goto done; info[j].ineq = ineq_status_in(info[j].bmap, info[j].tab, info[i].tab); if (info[j].bmap->n_ineq && !info[j].ineq) goto error; if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ERROR)) goto error; if (any(info[j].ineq, info[j].bmap->n_ineq, STATUS_SEPARATE)) goto done; if (all(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_VALID) && all(info[i].ineq, info[i].bmap->n_ineq, STATUS_VALID)) { drop(&info[j]); change = isl_change_drop_second; } else if (all(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_VALID) && all(info[j].ineq, info[j].bmap->n_ineq, STATUS_VALID)) { drop(&info[i]); change = isl_change_drop_first; } else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_EQ)) { change = check_eq_adj_eq(i, j, info); } else if (any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_EQ)) { change = check_eq_adj_eq(j, i, info); } else if (any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_ADJ_INEQ) || any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_ADJ_INEQ)) { change = check_adj_eq(i, j, info); } else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_EQ) || any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_EQ)) { /* Can't happen */ /* BAD ADJ INEQ */ } else if (any(info[i].ineq, info[i].bmap->n_ineq, STATUS_ADJ_INEQ) || any(info[j].ineq, info[j].bmap->n_ineq, STATUS_ADJ_INEQ)) { change = check_adj_ineq(i, j, info); } else { if (!any(info[i].eq, 2 * info[i].bmap->n_eq, STATUS_CUT) && !any(info[j].eq, 2 * info[j].bmap->n_eq, STATUS_CUT)) change = check_facets(i, j, info); if (change == isl_change_none) change = check_wrap(i, j, info); } done: free(info[i].eq); free(info[j].eq); free(info[i].ineq); free(info[j].ineq); return change; error: free(info[i].eq); free(info[j].eq); free(info[i].ineq); free(info[j].ineq); return isl_change_error; } /* Shift the integer division at position "div" of the basic map * represented by "info" by "shift". * * That is, if the integer division has the form * * floor(f(x)/d) * * then replace it by * * floor((f(x) + shift * d)/d) - shift */ static int shift_div(struct isl_coalesce_info *info, int div, isl_int shift) { unsigned total; info->bmap = isl_basic_map_shift_div(info->bmap, div, 0, shift); if (!info->bmap) return -1; total = isl_basic_map_dim(info->bmap, isl_dim_all); total -= isl_basic_map_dim(info->bmap, isl_dim_div); if (isl_tab_shift_var(info->tab, total + div, shift) < 0) return -1; return 0; } /* Check if some of the divs in the basic map represented by "info1" * are shifts of the corresponding divs in the basic map represented * by "info2". If so, align them with those of "info2". * Only do this if "info1" and "info2" have the same number * of integer divisions. * * An integer division is considered to be a shift of another integer * division if one is equal to the other plus a constant. * * In particular, for each pair of integer divisions, if both are known, * have identical coefficients (apart from the constant term) and * if the difference between the constant terms (taking into account * the denominator) is an integer, then move the difference outside. * That is, if one integer division is of the form * * floor((f(x) + c_1)/d) * * while the other is of the form * * floor((f(x) + c_2)/d) * * and n = (c_2 - c_1)/d is an integer, then replace the first * integer division by * * floor((f(x) + c_1 + n * d)/d) - n = floor((f(x) + c_2)/d) - n */ static int harmonize_divs(struct isl_coalesce_info *info1, struct isl_coalesce_info *info2) { int i; int total; if (!info1->bmap || !info2->bmap) return -1; if (info1->bmap->n_div != info2->bmap->n_div) return 0; if (info1->bmap->n_div == 0) return 0; total = isl_basic_map_total_dim(info1->bmap); for (i = 0; i < info1->bmap->n_div; ++i) { isl_int d; int r = 0; if (isl_int_is_zero(info1->bmap->div[i][0]) || isl_int_is_zero(info2->bmap->div[i][0])) continue; if (isl_int_ne(info1->bmap->div[i][0], info2->bmap->div[i][0])) continue; if (isl_int_eq(info1->bmap->div[i][1], info2->bmap->div[i][1])) continue; if (!isl_seq_eq(info1->bmap->div[i] + 2, info2->bmap->div[i] + 2, total)) continue; isl_int_init(d); isl_int_sub(d, info2->bmap->div[i][1], info1->bmap->div[i][1]); if (isl_int_is_divisible_by(d, info1->bmap->div[i][0])) { isl_int_divexact(d, d, info1->bmap->div[i][0]); r = shift_div(info1, i, d); } isl_int_clear(d); if (r < 0) return -1; } return 0; } /* Do the two basic maps live in the same local space, i.e., * do they have the same (known) divs? * If either basic map has any unknown divs, then we can only assume * that they do not live in the same local space. */ static int same_divs(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2) { int i; int known; int total; if (!bmap1 || !bmap2) return -1; if (bmap1->n_div != bmap2->n_div) return 0; if (bmap1->n_div == 0) return 1; known = isl_basic_map_divs_known(bmap1); if (known < 0 || !known) return known; known = isl_basic_map_divs_known(bmap2); if (known < 0 || !known) return known; total = isl_basic_map_total_dim(bmap1); for (i = 0; i < bmap1->n_div; ++i) if (!isl_seq_eq(bmap1->div[i], bmap2->div[i], 2 + total)) return 0; return 1; } /* Does "bmap" contain the basic map represented by the tableau "tab" * after expanding the divs of "bmap" to match those of "tab"? * The expansion is performed using the divs "div" and expansion "exp" * computed by the caller. * Then we check if all constraints of the expanded "bmap" are valid for "tab". */ static int contains_with_expanded_divs(__isl_keep isl_basic_map *bmap, struct isl_tab *tab, __isl_keep isl_mat *div, int *exp) { int superset = 0; int *eq_i = NULL; int *ineq_i = NULL; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_set_expand_divs(bmap, isl_mat_copy(div), exp); if (!bmap) goto error; eq_i = eq_status_in(bmap, tab); if (bmap->n_eq && !eq_i) goto error; if (any(eq_i, 2 * bmap->n_eq, STATUS_ERROR)) goto error; if (any(eq_i, 2 * bmap->n_eq, STATUS_SEPARATE)) goto done; ineq_i = ineq_status_in(bmap, NULL, tab); if (bmap->n_ineq && !ineq_i) goto error; if (any(ineq_i, bmap->n_ineq, STATUS_ERROR)) goto error; if (any(ineq_i, bmap->n_ineq, STATUS_SEPARATE)) goto done; if (all(eq_i, 2 * bmap->n_eq, STATUS_VALID) && all(ineq_i, bmap->n_ineq, STATUS_VALID)) superset = 1; done: isl_basic_map_free(bmap); free(eq_i); free(ineq_i); return superset; error: isl_basic_map_free(bmap); free(eq_i); free(ineq_i); return -1; } /* Does "bmap_i" contain the basic map represented by "info_j" * after aligning the divs of "bmap_i" to those of "info_j". * Note that this can only succeed if the number of divs of "bmap_i" * is smaller than (or equal to) the number of divs of "info_j". * * We first check if the divs of "bmap_i" are all known and form a subset * of those of "bmap_j". If so, we pass control over to * contains_with_expanded_divs. */ static int contains_after_aligning_divs(__isl_keep isl_basic_map *bmap_i, struct isl_coalesce_info *info_j) { int known; isl_mat *div_i, *div_j, *div; int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; int subset; known = isl_basic_map_divs_known(bmap_i); if (known < 0 || !known) return known; ctx = isl_basic_map_get_ctx(bmap_i); div_i = isl_basic_map_get_divs(bmap_i); div_j = isl_basic_map_get_divs(info_j->bmap); if (!div_i || !div_j) goto error; exp1 = isl_alloc_array(ctx, int, div_i->n_row); exp2 = isl_alloc_array(ctx, int, div_j->n_row); if ((div_i->n_row && !exp1) || (div_j->n_row && !exp2)) goto error; div = isl_merge_divs(div_i, div_j, exp1, exp2); if (!div) goto error; if (div->n_row == div_j->n_row) subset = contains_with_expanded_divs(bmap_i, info_j->tab, div, exp1); else subset = 0; isl_mat_free(div); isl_mat_free(div_i); isl_mat_free(div_j); free(exp2); free(exp1); return subset; error: isl_mat_free(div_i); isl_mat_free(div_j); free(exp1); free(exp2); return -1; } /* Check if the basic map "j" is a subset of basic map "i", * if "i" has fewer divs that "j". * If so, remove basic map "j". * * If the two basic maps have the same number of divs, then * they must necessarily be different. Otherwise, we would have * called coalesce_local_pair. We therefore don't try anything * in this case. */ static int coalesced_subset(int i, int j, struct isl_coalesce_info *info) { int superset; if (info[i].bmap->n_div >= info[j].bmap->n_div) return 0; superset = contains_after_aligning_divs(info[i].bmap, &info[j]); if (superset < 0) return -1; if (superset) drop(&info[j]); return superset; } /* Check if basic map "j" is a subset of basic map "i" after * exploiting the extra equalities of "j" to simplify the divs of "i". * If so, remove basic map "j". * * If "j" does not have any equalities or if they are the same * as those of "i", then we cannot exploit them to simplify the divs. * Similarly, if there are no divs in "i", then they cannot be simplified. * If, on the other hand, the affine hulls of "i" and "j" do not intersect, * then "j" cannot be a subset of "i". * * Otherwise, we intersect "i" with the affine hull of "j" and then * check if "j" is a subset of the result after aligning the divs. * If so, then "j" is definitely a subset of "i" and can be removed. * Note that if after intersection with the affine hull of "j". * "i" still has more divs than "j", then there is no way we can * align the divs of "i" to those of "j". */ static int coalesced_subset_with_equalities(int i, int j, struct isl_coalesce_info *info) { isl_basic_map *hull_i, *hull_j, *bmap_i; int equal, empty, subset; if (info[j].bmap->n_eq == 0) return 0; if (info[i].bmap->n_div == 0) return 0; hull_i = isl_basic_map_copy(info[i].bmap); hull_i = isl_basic_map_plain_affine_hull(hull_i); hull_j = isl_basic_map_copy(info[j].bmap); hull_j = isl_basic_map_plain_affine_hull(hull_j); hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i)); equal = isl_basic_map_plain_is_equal(hull_i, hull_j); empty = isl_basic_map_plain_is_empty(hull_j); isl_basic_map_free(hull_i); if (equal < 0 || equal || empty < 0 || empty) { isl_basic_map_free(hull_j); return equal < 0 || empty < 0 ? -1 : 0; } bmap_i = isl_basic_map_copy(info[i].bmap); bmap_i = isl_basic_map_intersect(bmap_i, hull_j); if (!bmap_i) return -1; if (bmap_i->n_div > info[j].bmap->n_div) { isl_basic_map_free(bmap_i); return 0; } subset = contains_after_aligning_divs(bmap_i, &info[j]); isl_basic_map_free(bmap_i); if (subset < 0) return -1; if (subset) drop(&info[j]); return subset; } /* Check if one of the basic maps is a subset of the other and, if so, * drop the subset. * Note that we only perform any test if the number of divs is different * in the two basic maps. In case the number of divs is the same, * we have already established that the divs are different * in the two basic maps. * In particular, if the number of divs of basic map i is smaller than * the number of divs of basic map j, then we check if j is a subset of i * and vice versa. */ static enum isl_change check_coalesce_subset(int i, int j, struct isl_coalesce_info *info) { int changed; changed = coalesced_subset(i, j, info); if (changed < 0 || changed) return changed < 0 ? isl_change_error : isl_change_drop_second; changed = coalesced_subset(j, i, info); if (changed < 0 || changed) return changed < 0 ? isl_change_error : isl_change_drop_first; changed = coalesced_subset_with_equalities(i, j, info); if (changed < 0 || changed) return changed < 0 ? isl_change_error : isl_change_drop_second; changed = coalesced_subset_with_equalities(j, i, info); if (changed < 0 || changed) return changed < 0 ? isl_change_error : isl_change_drop_first; return isl_change_none; } /* Does "bmap" involve any divs that themselves refer to divs? */ static int has_nested_div(__isl_keep isl_basic_map *bmap) { int i; unsigned total; unsigned n_div; total = isl_basic_map_dim(bmap, isl_dim_all); n_div = isl_basic_map_dim(bmap, isl_dim_div); total -= n_div; for (i = 0; i < n_div; ++i) if (isl_seq_first_non_zero(bmap->div[i] + 2 + total, n_div) != -1) return 1; return 0; } /* Return a list of affine expressions, one for each integer division * in "bmap_i". For each integer division that also appears in "bmap_j", * the affine expression is set to NaN. The number of NaNs in the list * is equal to the number of integer divisions in "bmap_j". * For the other integer divisions of "bmap_i", the corresponding * element in the list is a purely affine expression equal to the integer * division in "hull". * If no such list can be constructed, then the number of elements * in the returned list is smaller than the number of integer divisions * in "bmap_i". */ static __isl_give isl_aff_list *set_up_substitutions( __isl_keep isl_basic_map *bmap_i, __isl_keep isl_basic_map *bmap_j, __isl_take isl_basic_map *hull) { unsigned n_div_i, n_div_j, total; isl_ctx *ctx; isl_local_space *ls; isl_basic_set *wrap_hull; isl_aff *aff_nan; isl_aff_list *list; int i, j; if (!hull) return NULL; ctx = isl_basic_map_get_ctx(hull); n_div_i = isl_basic_map_dim(bmap_i, isl_dim_div); n_div_j = isl_basic_map_dim(bmap_j, isl_dim_div); total = isl_basic_map_total_dim(bmap_i) - n_div_i; ls = isl_basic_map_get_local_space(bmap_i); ls = isl_local_space_wrap(ls); wrap_hull = isl_basic_map_wrap(hull); aff_nan = isl_aff_nan_on_domain(isl_local_space_copy(ls)); list = isl_aff_list_alloc(ctx, n_div_i); j = 0; for (i = 0; i < n_div_i; ++i) { isl_aff *aff; if (j < n_div_j && isl_seq_eq(bmap_i->div[i], bmap_j->div[j], 2 + total)) { ++j; list = isl_aff_list_add(list, isl_aff_copy(aff_nan)); continue; } if (n_div_i - i <= n_div_j - j) break; aff = isl_local_space_get_div(ls, i); aff = isl_aff_substitute_equalities(aff, isl_basic_set_copy(wrap_hull)); aff = isl_aff_floor(aff); if (!aff) goto error; if (isl_aff_dim(aff, isl_dim_div) != 0) { isl_aff_free(aff); break; } list = isl_aff_list_add(list, aff); } isl_aff_free(aff_nan); isl_local_space_free(ls); isl_basic_set_free(wrap_hull); return list; error: isl_aff_free(aff_nan); isl_local_space_free(ls); isl_basic_set_free(wrap_hull); isl_aff_list_free(list); return NULL; } /* Add variables to info->bmap and info->tab corresponding to the elements * in "list" that are not set to NaN. * "extra_var" is the number of these elements. * "dim" is the offset in the variables of "tab" where we should * start considering the elements in "list". * When this function returns, the total number of variables in "tab" * is equal to "dim" plus the number of elements in "list". */ static int add_sub_vars(struct isl_coalesce_info *info, __isl_keep isl_aff_list *list, int dim, int extra_var) { int i, j, n; isl_space *space; space = isl_basic_map_get_space(info->bmap); info->bmap = isl_basic_map_cow(info->bmap); info->bmap = isl_basic_map_extend_space(info->bmap, space, extra_var, 0, 0); if (!info->bmap) return -1; n = isl_aff_list_n_aff(list); for (i = 0; i < n; ++i) { int is_nan; isl_aff *aff; aff = isl_aff_list_get_aff(list, i); is_nan = isl_aff_is_nan(aff); isl_aff_free(aff); if (is_nan < 0) return -1; if (is_nan) continue; if (isl_tab_insert_var(info->tab, dim + i) < 0) return -1; if (isl_basic_map_alloc_div(info->bmap) < 0) return -1; for (j = n - 1; j > i; --j) isl_basic_map_swap_div(info->bmap, j - 1, j); } return 0; } /* For each element in "list" that is not set to NaN, fix the corresponding * variable in "tab" to the purely affine expression defined by the element. * "dim" is the offset in the variables of "tab" where we should * start considering the elements in "list". */ static int add_sub_equalities(struct isl_tab *tab, __isl_keep isl_aff_list *list, int dim) { int i, n; isl_ctx *ctx; isl_vec *sub; isl_aff *aff; n = isl_aff_list_n_aff(list); ctx = isl_tab_get_ctx(tab); sub = isl_vec_alloc(ctx, 1 + dim + n); if (!sub) return -1; isl_seq_clr(sub->el + 1 + dim, n); for (i = 0; i < n; ++i) { aff = isl_aff_list_get_aff(list, i); if (!aff) goto error; if (isl_aff_is_nan(aff)) { isl_aff_free(aff); continue; } isl_seq_cpy(sub->el, aff->v->el + 1, 1 + dim); isl_int_neg(sub->el[1 + dim + i], aff->v->el[0]); if (isl_tab_add_eq(tab, sub->el) < 0) goto error; isl_int_set_si(sub->el[1 + dim + i], 0); isl_aff_free(aff); } isl_vec_free(sub); return 0; error: isl_aff_free(aff); isl_vec_free(sub); return -1; } /* Add variables to info->tab and info->bmap corresponding to the elements * in "list" that are not set to NaN. The value of the added variable * in info->tab is fixed to the purely affine expression defined by the element. * "dim" is the offset in the variables of info->tab where we should * start considering the elements in "list". * When this function returns, the total number of variables in info->tab * is equal to "dim" plus the number of elements in "list". */ static int add_subs(struct isl_coalesce_info *info, __isl_keep isl_aff_list *list, int dim) { int extra_var; int n; if (!list) return -1; n = isl_aff_list_n_aff(list); extra_var = n - (info->tab->n_var - dim); if (isl_tab_extend_vars(info->tab, extra_var) < 0) return -1; if (isl_tab_extend_cons(info->tab, 2 * extra_var) < 0) return -1; if (add_sub_vars(info, list, dim, extra_var) < 0) return -1; return add_sub_equalities(info->tab, list, dim); } /* Coalesce basic map "j" into basic map "i" after adding the extra integer * divisions in "i" but not in "j" to basic map "j", with values * specified by "list". The total number of elements in "list" * is equal to the number of integer divisions in "i", while the number * of NaN elements in the list is equal to the number of integer divisions * in "j". * * If no coalescing can be performed, then we need to revert basic map "j" * to its original state. We do the same if basic map "i" gets dropped * during the coalescing, even though this should not happen in practice * since we have already checked for "j" being a subset of "i" * before we reach this stage. */ static enum isl_change coalesce_with_subs(int i, int j, struct isl_coalesce_info *info, __isl_keep isl_aff_list *list) { isl_basic_map *bmap_j; struct isl_tab_undo *snap; unsigned dim; enum isl_change change; bmap_j = isl_basic_map_copy(info[j].bmap); snap = isl_tab_snap(info[j].tab); dim = isl_basic_map_dim(bmap_j, isl_dim_all); dim -= isl_basic_map_dim(bmap_j, isl_dim_div); if (add_subs(&info[j], list, dim) < 0) goto error; change = coalesce_local_pair(i, j, info); if (change != isl_change_none && change != isl_change_drop_first) { isl_basic_map_free(bmap_j); } else { isl_basic_map_free(info[j].bmap); info[j].bmap = bmap_j; if (isl_tab_rollback(info[j].tab, snap) < 0) return isl_change_error; } return change; error: isl_basic_map_free(bmap_j); return isl_change_error; } /* Check if we can coalesce basic map "j" into basic map "i" after copying * those extra integer divisions in "i" that can be simplified away * using the extra equalities in "j". * All divs are assumed to be known and not contain any nested divs. * * We first check if there are any extra equalities in "j" that we * can exploit. Then we check if every integer division in "i" * either already appears in "j" or can be simplified using the * extra equalities to a purely affine expression. * If these tests succeed, then we try to coalesce the two basic maps * by introducing extra dimensions in "j" corresponding to * the extra integer divsisions "i" fixed to the corresponding * purely affine expression. */ static enum isl_change check_coalesce_into_eq(int i, int j, struct isl_coalesce_info *info) { unsigned n_div_i, n_div_j; isl_basic_map *hull_i, *hull_j; int equal, empty; isl_aff_list *list; enum isl_change change; n_div_i = isl_basic_map_dim(info[i].bmap, isl_dim_div); n_div_j = isl_basic_map_dim(info[j].bmap, isl_dim_div); if (n_div_i <= n_div_j) return isl_change_none; if (info[j].bmap->n_eq == 0) return isl_change_none; hull_i = isl_basic_map_copy(info[i].bmap); hull_i = isl_basic_map_plain_affine_hull(hull_i); hull_j = isl_basic_map_copy(info[j].bmap); hull_j = isl_basic_map_plain_affine_hull(hull_j); hull_j = isl_basic_map_intersect(hull_j, isl_basic_map_copy(hull_i)); equal = isl_basic_map_plain_is_equal(hull_i, hull_j); empty = isl_basic_map_plain_is_empty(hull_j); isl_basic_map_free(hull_i); if (equal < 0 || empty < 0) goto error; if (equal || empty) { isl_basic_map_free(hull_j); return isl_change_none; } list = set_up_substitutions(info[i].bmap, info[j].bmap, hull_j); if (!list) return isl_change_error; if (isl_aff_list_n_aff(list) < n_div_i) change = isl_change_none; else change = coalesce_with_subs(i, j, info, list); isl_aff_list_free(list); return change; error: isl_basic_map_free(hull_j); return isl_change_error; } /* Check if we can coalesce basic maps "i" and "j" after copying * those extra integer divisions in one of the basic maps that can * be simplified away using the extra equalities in the other basic map. * We require all divs to be known in both basic maps. * Furthermore, to simplify the comparison of div expressions, * we do not allow any nested integer divisions. */ static enum isl_change check_coalesce_eq(int i, int j, struct isl_coalesce_info *info) { int known, nested; enum isl_change change; known = isl_basic_map_divs_known(info[i].bmap); if (known < 0 || !known) return known < 0 ? isl_change_error : isl_change_none; known = isl_basic_map_divs_known(info[j].bmap); if (known < 0 || !known) return known < 0 ? isl_change_error : isl_change_none; nested = has_nested_div(info[i].bmap); if (nested < 0 || nested) return nested < 0 ? isl_change_error : isl_change_none; nested = has_nested_div(info[j].bmap); if (nested < 0 || nested) return nested < 0 ? isl_change_error : isl_change_none; change = check_coalesce_into_eq(i, j, info); if (change != isl_change_none) return change; change = check_coalesce_into_eq(j, i, info); if (change != isl_change_none) return invert_change(change); return isl_change_none; } /* Check if the union of the given pair of basic maps * can be represented by a single basic map. * If so, replace the pair by the single basic map and return * isl_change_drop_first, isl_change_drop_second or isl_change_fuse. * Otherwise, return isl_change_none. * * We first check if the two basic maps live in the same local space, * after aligning the divs that differ by only an integer constant. * If so, we do the complete check. Otherwise, we check if they have * the same number of integer divisions and can be coalesced, if one is * an obvious subset of the other or if the extra integer divisions * of one basic map can be simplified away using the extra equalities * of the other basic map. */ static enum isl_change coalesce_pair(int i, int j, struct isl_coalesce_info *info) { int same; enum isl_change change; if (harmonize_divs(&info[i], &info[j]) < 0) return isl_change_error; same = same_divs(info[i].bmap, info[j].bmap); if (same < 0) return isl_change_error; if (same) return coalesce_local_pair(i, j, info); if (info[i].bmap->n_div == info[j].bmap->n_div) { change = coalesce_local_pair(i, j, info); if (change != isl_change_none) return change; } change = check_coalesce_subset(i, j, info); if (change != isl_change_none) return change; return check_coalesce_eq(i, j, info); } /* Return the maximum of "a" and "b". */ static int isl_max(int a, int b) { return a > b ? a : b; } /* Pairwise coalesce the basic maps in the range [start1, end1[ of "info" * with those in the range [start2, end2[, skipping basic maps * that have been removed (either before or within this function). * * For each basic map i in the first range, we check if it can be coalesced * with respect to any previously considered basic map j in the second range. * If i gets dropped (because it was a subset of some j), then * we can move on to the next basic map. * If j gets dropped, we need to continue checking against the other * previously considered basic maps. * If the two basic maps got fused, then we recheck the fused basic map * against the previously considered basic maps, starting at i + 1 * (even if start2 is greater than i + 1). */ static int coalesce_range(isl_ctx *ctx, struct isl_coalesce_info *info, int start1, int end1, int start2, int end2) { int i, j; for (i = end1 - 1; i >= start1; --i) { if (info[i].removed) continue; for (j = isl_max(i + 1, start2); j < end2; ++j) { enum isl_change changed; if (info[j].removed) continue; if (info[i].removed) isl_die(ctx, isl_error_internal, "basic map unexpectedly removed", return -1); changed = coalesce_pair(i, j, info); switch (changed) { case isl_change_error: return -1; case isl_change_none: case isl_change_drop_second: continue; case isl_change_drop_first: j = end2; break; case isl_change_fuse: j = i; break; } } } return 0; } /* Pairwise coalesce the basic maps described by the "n" elements of "info". * * We consider groups of basic maps that live in the same apparent * affine hull and we first coalesce within such a group before we * coalesce the elements in the group with elements of previously * considered groups. If a fuse happens during the second phase, * then we also reconsider the elements within the group. */ static int coalesce(isl_ctx *ctx, int n, struct isl_coalesce_info *info) { int start, end; for (end = n; end > 0; end = start) { start = end - 1; while (start >= 1 && info[start - 1].hull_hash == info[start].hull_hash) start--; if (coalesce_range(ctx, info, start, end, start, end) < 0) return -1; if (coalesce_range(ctx, info, start, end, end, n) < 0) return -1; } return 0; } /* Update the basic maps in "map" based on the information in "info". * In particular, remove the basic maps that have been marked removed and * update the others based on the information in the corresponding tableau. * Since we detected implicit equalities without calling * isl_basic_map_gauss, we need to do it now. * Also call isl_basic_map_simplify if we may have lost the definition * of one or more integer divisions. */ static __isl_give isl_map *update_basic_maps(__isl_take isl_map *map, int n, struct isl_coalesce_info *info) { int i; if (!map) return NULL; for (i = n - 1; i >= 0; --i) { if (info[i].removed) { isl_basic_map_free(map->p[i]); if (i != map->n - 1) map->p[i] = map->p[map->n - 1]; map->n--; continue; } info[i].bmap = isl_basic_map_update_from_tab(info[i].bmap, info[i].tab); info[i].bmap = isl_basic_map_gauss(info[i].bmap, NULL); if (info[i].simplify) info[i].bmap = isl_basic_map_simplify(info[i].bmap); info[i].bmap = isl_basic_map_finalize(info[i].bmap); if (!info[i].bmap) return isl_map_free(map); ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT); ISL_F_SET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT); isl_basic_map_free(map->p[i]); map->p[i] = info[i].bmap; info[i].bmap = NULL; } return map; } /* For each pair of basic maps in the map, check if the union of the two * can be represented by a single basic map. * If so, replace the pair by the single basic map and start over. * * We factor out any (hidden) common factor from the constraint * coefficients to improve the detection of adjacent constraints. * * Since we are constructing the tableaus of the basic maps anyway, * we exploit them to detect implicit equalities and redundant constraints. * This also helps the coalescing as it can ignore the redundant constraints. * In order to avoid confusion, we make all implicit equalities explicit * in the basic maps. We don't call isl_basic_map_gauss, though, * as that may affect the number of constraints. * This means that we have to call isl_basic_map_gauss at the end * of the computation (in update_basic_maps) to ensure that * the basic maps are not left in an unexpected state. * For each basic map, we also compute the hash of the apparent affine hull * for use in coalesce. */ struct isl_map *isl_map_coalesce(struct isl_map *map) { int i; unsigned n; isl_ctx *ctx; struct isl_coalesce_info *info = NULL; map = isl_map_remove_empty_parts(map); if (!map) return NULL; if (map->n <= 1) return map; ctx = isl_map_get_ctx(map); map = isl_map_sort_divs(map); map = isl_map_cow(map); if (!map) return NULL; n = map->n; info = isl_calloc_array(map->ctx, struct isl_coalesce_info, n); if (!info) goto error; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_reduce_coefficients(map->p[i]); if (!map->p[i]) goto error; info[i].bmap = isl_basic_map_copy(map->p[i]); info[i].tab = isl_tab_from_basic_map(info[i].bmap, 0); if (!info[i].tab) goto error; if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_IMPLICIT)) if (isl_tab_detect_implicit_equalities(info[i].tab) < 0) goto error; info[i].bmap = isl_tab_make_equalities_explicit(info[i].tab, info[i].bmap); if (!info[i].bmap) goto error; if (!ISL_F_ISSET(info[i].bmap, ISL_BASIC_MAP_NO_REDUNDANT)) if (isl_tab_detect_redundant(info[i].tab) < 0) goto error; if (coalesce_info_set_hull_hash(&info[i]) < 0) goto error; } for (i = map->n - 1; i >= 0; --i) if (info[i].tab->empty) drop(&info[i]); if (coalesce(ctx, n, info) < 0) goto error; map = update_basic_maps(map, n, info); clear_coalesce_info(n, info); return map; error: clear_coalesce_info(n, info); isl_map_free(map); return NULL; } /* For each pair of basic sets in the set, check if the union of the two * can be represented by a single basic set. * If so, replace the pair by the single basic set and start over. */ struct isl_set *isl_set_coalesce(struct isl_set *set) { return (struct isl_set *)isl_map_coalesce((struct isl_map *)set); } isl-0.16.1/isl_band.c0000664000175000017500000004361212645737060011250 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #undef BASE #define BASE band #include isl_ctx *isl_band_get_ctx(__isl_keep isl_band *band) { return band ? isl_union_pw_multi_aff_get_ctx(band->pma) : NULL; } __isl_give isl_band *isl_band_alloc(isl_ctx *ctx) { isl_band *band; band = isl_calloc_type(ctx, isl_band); if (!band) return NULL; band->ref = 1; return band; } /* Create a duplicate of the given band. The duplicate refers * to the same schedule and parent as the input, but does not * increment their reference counts. */ __isl_give isl_band *isl_band_dup(__isl_keep isl_band *band) { int i; isl_ctx *ctx; isl_band *dup; if (!band) return NULL; ctx = isl_band_get_ctx(band); dup = isl_band_alloc(ctx); if (!dup) return NULL; dup->n = band->n; dup->coincident = isl_alloc_array(ctx, int, band->n); if (band->n && !dup->coincident) goto error; for (i = 0; i < band->n; ++i) dup->coincident[i] = band->coincident[i]; dup->pma = isl_union_pw_multi_aff_copy(band->pma); dup->schedule = band->schedule; dup->parent = band->parent; if (!dup->pma) goto error; return dup; error: isl_band_free(dup); return NULL; } /* We not only increment the reference count of the band, * but also that of the schedule that contains this band. * This ensures that the schedule won't disappear while there * is still a reference to the band outside of the schedule. * There is no need to increment the reference count of the parent * band as the parent band is part of the same schedule. */ __isl_give isl_band *isl_band_copy(__isl_keep isl_band *band) { if (!band) return NULL; band->ref++; band->schedule->ref++; return band; } /* If this is not the last reference to the band (the one from within the * schedule), then we also need to decrement the reference count of the * containing schedule as it was incremented in isl_band_copy. */ __isl_null isl_band *isl_band_free(__isl_take isl_band *band) { if (!band) return NULL; if (--band->ref > 0) { isl_schedule_free(band->schedule); return NULL; } isl_union_pw_multi_aff_free(band->pma); isl_band_list_free(band->children); free(band->coincident); free(band); return NULL; } int isl_band_has_children(__isl_keep isl_band *band) { if (!band) return -1; return band->children != NULL; } __isl_give isl_band_list *isl_band_get_children( __isl_keep isl_band *band) { if (!band) return NULL; if (!band->children) isl_die(isl_band_get_ctx(band), isl_error_invalid, "band has no children", return NULL); return isl_band_list_dup(band->children); } int isl_band_n_member(__isl_keep isl_band *band) { return band ? band->n : 0; } /* Is the given scheduling dimension coincident within the band and * with respect to the coincidence constraints. */ int isl_band_member_is_coincident(__isl_keep isl_band *band, int pos) { if (!band) return -1; if (pos < 0 || pos >= band->n) isl_die(isl_band_get_ctx(band), isl_error_invalid, "invalid member position", return -1); return band->coincident[pos]; } /* Return the schedule that leads up to this band. */ __isl_give isl_union_map *isl_band_get_prefix_schedule( __isl_keep isl_band *band) { isl_union_set *domain; isl_union_pw_multi_aff *prefix; isl_band *a; if (!band) return NULL; prefix = isl_union_pw_multi_aff_copy(band->pma); domain = isl_union_pw_multi_aff_domain(prefix); prefix = isl_union_pw_multi_aff_from_domain(domain); for (a = band->parent; a; a = a->parent) { isl_union_pw_multi_aff *partial; partial = isl_union_pw_multi_aff_copy(a->pma); prefix = isl_union_pw_multi_aff_flat_range_product(partial, prefix); } return isl_union_map_from_union_pw_multi_aff(prefix); } /* Return the schedule of the band in isolation. */ __isl_give isl_union_pw_multi_aff * isl_band_get_partial_schedule_union_pw_multi_aff(__isl_keep isl_band *band) { return band ? isl_union_pw_multi_aff_copy(band->pma) : NULL; } /* Return the schedule of the band in isolation. */ __isl_give isl_union_map *isl_band_get_partial_schedule( __isl_keep isl_band *band) { isl_union_pw_multi_aff *sched; sched = isl_band_get_partial_schedule_union_pw_multi_aff(band); return isl_union_map_from_union_pw_multi_aff(sched); } __isl_give isl_union_pw_multi_aff * isl_band_get_suffix_schedule_union_pw_multi_aff(__isl_keep isl_band *band); /* Return the schedule for the given band list. * For each band in the list, the schedule is composed of the partial * and suffix schedules of that band. */ __isl_give isl_union_pw_multi_aff * isl_band_list_get_suffix_schedule_union_pw_multi_aff( __isl_keep isl_band_list *list) { isl_ctx *ctx; int i, n; isl_space *space; isl_union_pw_multi_aff *suffix; if (!list) return NULL; ctx = isl_band_list_get_ctx(list); space = isl_space_alloc(ctx, 0, 0, 0); suffix = isl_union_pw_multi_aff_empty(space); n = isl_band_list_n_band(list); for (i = 0; i < n; ++i) { isl_band *el; isl_union_pw_multi_aff *partial; isl_union_pw_multi_aff *suffix_i; el = isl_band_list_get_band(list, i); partial = isl_band_get_partial_schedule_union_pw_multi_aff(el); suffix_i = isl_band_get_suffix_schedule_union_pw_multi_aff(el); suffix_i = isl_union_pw_multi_aff_flat_range_product( partial, suffix_i); suffix = isl_union_pw_multi_aff_union_add(suffix, suffix_i); isl_band_free(el); } return suffix; } /* Return the schedule for the given band list. * For each band in the list, the schedule is composed of the partial * and suffix schedules of that band. */ __isl_give isl_union_map *isl_band_list_get_suffix_schedule( __isl_keep isl_band_list *list) { isl_union_pw_multi_aff *suffix; suffix = isl_band_list_get_suffix_schedule_union_pw_multi_aff(list); return isl_union_map_from_union_pw_multi_aff(suffix); } /* Return the schedule for the forest underneath the given band. */ __isl_give isl_union_pw_multi_aff * isl_band_get_suffix_schedule_union_pw_multi_aff(__isl_keep isl_band *band) { isl_union_pw_multi_aff *suffix; if (!band) return NULL; if (!isl_band_has_children(band)) { isl_union_set *domain; suffix = isl_union_pw_multi_aff_copy(band->pma); domain = isl_union_pw_multi_aff_domain(suffix); suffix = isl_union_pw_multi_aff_from_domain(domain); } else { isl_band_list *list; list = isl_band_get_children(band); suffix = isl_band_list_get_suffix_schedule_union_pw_multi_aff(list); isl_band_list_free(list); } return suffix; } /* Return the schedule for the forest underneath the given band. */ __isl_give isl_union_map *isl_band_get_suffix_schedule( __isl_keep isl_band *band) { isl_union_pw_multi_aff *suffix; suffix = isl_band_get_suffix_schedule_union_pw_multi_aff(band); return isl_union_map_from_union_pw_multi_aff(suffix); } /* Call "fn" on each band (recursively) in the list * in depth-first post-order. */ int isl_band_list_foreach_band(__isl_keep isl_band_list *list, int (*fn)(__isl_keep isl_band *band, void *user), void *user) { int i, n; if (!list) return -1; n = isl_band_list_n_band(list); for (i = 0; i < n; ++i) { isl_band *band; int r = 0; band = isl_band_list_get_band(list, i); if (isl_band_has_children(band)) { isl_band_list *children; children = isl_band_get_children(band); r = isl_band_list_foreach_band(children, fn, user); isl_band_list_free(children); } if (!band) r = -1; if (r == 0) r = fn(band, user); isl_band_free(band); if (r) return r; } return 0; } /* Internal data used during the construction of the schedule * for the tile loops. * * sizes contains the tile sizes * scale is set if the tile loops should be scaled * tiled collects the result for a single statement * res collects the result for all statements */ struct isl_band_tile_data { isl_multi_val *sizes; isl_union_pw_multi_aff *res; isl_pw_multi_aff *tiled; int scale; }; /* Given part of the schedule of a band, construct the corresponding * schedule for the tile loops based on the tile sizes in data->sizes * and add the result to data->tiled. * * If data->scale is set, then dimension i of the schedule will be * of the form * * m_i * floor(s_i(x) / m_i) * * where s_i(x) refers to the original schedule and m_i is the tile size. * If data->scale is not set, then dimension i of the schedule will be * of the form * * floor(s_i(x) / m_i) * */ static isl_stat multi_aff_tile(__isl_take isl_set *set, __isl_take isl_multi_aff *ma, void *user) { struct isl_band_tile_data *data = user; isl_pw_multi_aff *pma; int i, n; isl_val *v; n = isl_multi_aff_dim(ma, isl_dim_out); for (i = 0; i < n; ++i) { isl_aff *aff; aff = isl_multi_aff_get_aff(ma, i); v = isl_multi_val_get_val(data->sizes, i); aff = isl_aff_scale_down_val(aff, isl_val_copy(v)); aff = isl_aff_floor(aff); if (data->scale) aff = isl_aff_scale_val(aff, isl_val_copy(v)); isl_val_free(v); ma = isl_multi_aff_set_aff(ma, i, aff); } pma = isl_pw_multi_aff_alloc(set, ma); data->tiled = isl_pw_multi_aff_union_add(data->tiled, pma); return isl_stat_ok; } /* Given part of the schedule of a band, construct the corresponding * schedule for the tile loops based on the tile sizes in data->sizes * and add the result to data->res. */ static isl_stat pw_multi_aff_tile(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_band_tile_data *data = user; data->tiled = isl_pw_multi_aff_empty(isl_pw_multi_aff_get_space(pma)); if (isl_pw_multi_aff_foreach_piece(pma, &multi_aff_tile, data) < 0) goto error; isl_pw_multi_aff_free(pma); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, data->tiled); return isl_stat_ok; error: isl_pw_multi_aff_free(pma); isl_pw_multi_aff_free(data->tiled); return isl_stat_error; } /* Given the schedule of a band, construct the corresponding * schedule for the tile loops based on the given tile sizes * and return the result. */ static isl_union_pw_multi_aff *isl_union_pw_multi_aff_tile( __isl_take isl_union_pw_multi_aff *sched, __isl_keep isl_multi_val *sizes) { isl_ctx *ctx; isl_space *space; struct isl_band_tile_data data = { sizes }; ctx = isl_multi_val_get_ctx(sizes); space = isl_union_pw_multi_aff_get_space(sched); data.res = isl_union_pw_multi_aff_empty(space); data.scale = isl_options_get_tile_scale_tile_loops(ctx); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(sched, &pw_multi_aff_tile, &data) < 0) goto error; isl_union_pw_multi_aff_free(sched); return data.res; error: isl_union_pw_multi_aff_free(sched); isl_union_pw_multi_aff_free(data.res); return NULL; } /* Extract the range space from "pma" and store it in *user. * All entries are expected to have the same range space, so we can * stop after extracting the range space from the first entry. */ static isl_stat extract_range_space(__isl_take isl_pw_multi_aff *pma, void *user) { isl_space **space = user; *space = isl_space_range(isl_pw_multi_aff_get_space(pma)); isl_pw_multi_aff_free(pma); return isl_stat_error; } /* Extract the range space of "band". All entries in band->pma should * have the same range space. Furthermore, band->pma should have at least * one entry. */ static __isl_give isl_space *band_get_range_space(__isl_keep isl_band *band) { isl_space *space; if (!band) return NULL; space = NULL; isl_union_pw_multi_aff_foreach_pw_multi_aff(band->pma, &extract_range_space, &space); return space; } /* Construct and return an isl_multi_val in the given space, with as entries * the first elements of "v", padded with ones if the size of "v" is smaller * than the dimension of "space". */ static __isl_give isl_multi_val *multi_val_from_vec(__isl_take isl_space *space, __isl_take isl_vec *v) { isl_ctx *ctx; isl_multi_val *mv; int i, n, size; if (!space || !v) goto error; ctx = isl_space_get_ctx(space); mv = isl_multi_val_zero(space); n = isl_multi_val_dim(mv, isl_dim_set); size = isl_vec_size(v); if (n < size) size = n; for (i = 0; i < size; ++i) { isl_val *val = isl_vec_get_element_val(v, i); mv = isl_multi_val_set_val(mv, i, val); } for (i = size; i < n; ++i) mv = isl_multi_val_set_val(mv, i, isl_val_one(ctx)); isl_vec_free(v); return mv; error: isl_space_free(space); isl_vec_free(v); return NULL; } /* Tile the given band using the specified tile sizes. * The given band is modified to refer to the tile loops and * a child band is created to refer to the point loops. * The children of this point loop band are the children * of the original band. * * If the scale tile loops option is set, then the tile loops * are scaled by the tile sizes. If the shift point loops option is set, * then the point loops are shifted to start at zero. * In particular, these options affect the tile and point loop schedules * as follows * * scale shift original tile point * * 0 0 i floor(i/s) i * 1 0 i s * floor(i/s) i * 0 1 i floor(i/s) i - s * floor(i/s) * 1 1 i s * floor(i/s) i - s * floor(i/s) */ int isl_band_tile(__isl_keep isl_band *band, __isl_take isl_vec *sizes) { isl_ctx *ctx; isl_band *child; isl_band_list *list = NULL; isl_union_pw_multi_aff *sched = NULL, *child_sched = NULL; isl_space *space; isl_multi_val *mv_sizes; if (!band || !sizes) goto error; ctx = isl_vec_get_ctx(sizes); child = isl_band_dup(band); list = isl_band_list_alloc(ctx, 1); list = isl_band_list_add(list, child); if (!list) goto error; space = band_get_range_space(band); mv_sizes = multi_val_from_vec(space, isl_vec_copy(sizes)); sched = isl_union_pw_multi_aff_copy(band->pma); sched = isl_union_pw_multi_aff_tile(sched, mv_sizes); child_sched = isl_union_pw_multi_aff_copy(child->pma); if (isl_options_get_tile_shift_point_loops(ctx)) { isl_union_pw_multi_aff *scaled; scaled = isl_union_pw_multi_aff_copy(sched); if (!isl_options_get_tile_scale_tile_loops(ctx)) scaled = isl_union_pw_multi_aff_scale_multi_val(scaled, isl_multi_val_copy(mv_sizes)); child_sched = isl_union_pw_multi_aff_sub(child_sched, scaled); } isl_multi_val_free(mv_sizes); if (!sched || !child_sched) goto error; child->children = band->children; band->children = list; child->parent = band; isl_union_pw_multi_aff_free(band->pma); band->pma = sched; isl_union_pw_multi_aff_free(child->pma); child->pma = child_sched; isl_vec_free(sizes); return 0; error: isl_union_pw_multi_aff_free(sched); isl_union_pw_multi_aff_free(child_sched); isl_band_list_free(list); isl_vec_free(sizes); return -1; } /* Internal data structure used inside isl_union_pw_multi_aff_drop. * * "pos" is the position of the first dimension to drop. * "n" is the number of dimensions to drop. * "res" accumulates the result. */ struct isl_union_pw_multi_aff_drop_data { int pos; int n; isl_union_pw_multi_aff *res; }; /* Drop the data->n output dimensions starting at data->pos from "pma" * and add the result to data->res. */ static isl_stat pw_multi_aff_drop(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_pw_multi_aff_drop_data *data = user; pma = isl_pw_multi_aff_drop_dims(pma, isl_dim_out, data->pos, data->n); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Drop the "n" output dimensions starting at "pos" from "sched". */ static isl_union_pw_multi_aff *isl_union_pw_multi_aff_drop( __isl_take isl_union_pw_multi_aff *sched, int pos, int n) { isl_space *space; struct isl_union_pw_multi_aff_drop_data data = { pos, n }; space = isl_union_pw_multi_aff_get_space(sched); data.res = isl_union_pw_multi_aff_empty(space); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(sched, &pw_multi_aff_drop, &data) < 0) data.res = isl_union_pw_multi_aff_free(data.res); isl_union_pw_multi_aff_free(sched); return data.res; } /* Drop the "n" dimensions starting at "pos" from "band". */ static int isl_band_drop(__isl_keep isl_band *band, int pos, int n) { int i; isl_union_pw_multi_aff *sched; if (!band) return -1; if (n == 0) return 0; sched = isl_union_pw_multi_aff_copy(band->pma); sched = isl_union_pw_multi_aff_drop(sched, pos, n); if (!sched) return -1; isl_union_pw_multi_aff_free(band->pma); band->pma = sched; for (i = pos + n; i < band->n; ++i) band->coincident[i - n] = band->coincident[i]; band->n -= n; return 0; } /* Split the given band into two nested bands, one with the first "pos" * dimensions of "band" and one with the remaining band->n - pos dimensions. */ int isl_band_split(__isl_keep isl_band *band, int pos) { isl_ctx *ctx; isl_band *child; isl_band_list *list; if (!band) return -1; ctx = isl_band_get_ctx(band); if (pos < 0 || pos > band->n) isl_die(ctx, isl_error_invalid, "position out of bounds", return -1); child = isl_band_dup(band); if (isl_band_drop(child, 0, pos) < 0) child = isl_band_free(child); list = isl_band_list_alloc(ctx, 1); list = isl_band_list_add(list, child); if (!list) return -1; if (isl_band_drop(band, pos, band->n - pos) < 0) { isl_band_list_free(list); return -1; } child->children = band->children; band->children = list; child->parent = band; return 0; } __isl_give isl_printer *isl_printer_print_band(__isl_take isl_printer *p, __isl_keep isl_band *band) { isl_union_map *prefix, *partial, *suffix; prefix = isl_band_get_prefix_schedule(band); partial = isl_band_get_partial_schedule(band); suffix = isl_band_get_suffix_schedule(band); p = isl_printer_print_str(p, "("); p = isl_printer_print_union_map(p, prefix); p = isl_printer_print_str(p, ","); p = isl_printer_print_union_map(p, partial); p = isl_printer_print_str(p, ","); p = isl_printer_print_union_map(p, suffix); p = isl_printer_print_str(p, ")"); isl_union_map_free(prefix); isl_union_map_free(partial); isl_union_map_free(suffix); return p; } isl-0.16.1/isl_multi_floor.c0000664000175000017500000000111212645737061012665 00000000000000/* * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include /* Given f, return floor(f). */ __isl_give MULTI(BASE) *FN(MULTI(BASE),floor)(__isl_take MULTI(BASE) *multi) { int i; multi = FN(MULTI(BASE),cow)(multi); if (!multi) return NULL; for (i = 0; i < multi->n; ++i) { multi->p[i] = FN(EL,floor)(multi->p[i]); if (!multi->p[i]) return FN(MULTI(BASE),free)(multi); } return multi; } isl-0.16.1/isl_list_templ.c0000664000175000017500000002760512645737060012524 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2011 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #define xCAT(A,B) A ## B #define CAT(A,B) xCAT(A,B) #undef EL #define EL CAT(isl_,BASE) #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xLIST(EL) EL ## _list #define LIST(EL) xLIST(EL) #define xS(TYPE,NAME) struct TYPE ## _ ## NAME #define S(TYPE,NAME) xS(TYPE,NAME) isl_ctx *FN(LIST(EL),get_ctx)(__isl_keep LIST(EL) *list) { return list ? list->ctx : NULL; } __isl_give LIST(EL) *FN(LIST(EL),alloc)(isl_ctx *ctx, int n) { LIST(EL) *list; if (n < 0) isl_die(ctx, isl_error_invalid, "cannot create list of negative length", return NULL); list = isl_alloc(ctx, LIST(EL), sizeof(LIST(EL)) + (n - 1) * sizeof(struct EL *)); if (!list) return NULL; list->ctx = ctx; isl_ctx_ref(ctx); list->ref = 1; list->size = n; list->n = 0; return list; } __isl_give LIST(EL) *FN(LIST(EL),copy)(__isl_keep LIST(EL) *list) { if (!list) return NULL; list->ref++; return list; } __isl_give LIST(EL) *FN(LIST(EL),dup)(__isl_keep LIST(EL) *list) { int i; LIST(EL) *dup; if (!list) return NULL; dup = FN(LIST(EL),alloc)(FN(LIST(EL),get_ctx)(list), list->n); if (!dup) return NULL; for (i = 0; i < list->n; ++i) dup = FN(LIST(EL),add)(dup, FN(EL,copy)(list->p[i])); return dup; } __isl_give LIST(EL) *FN(LIST(EL),cow)(__isl_take LIST(EL) *list) { if (!list) return NULL; if (list->ref == 1) return list; list->ref--; return FN(LIST(EL),dup)(list); } /* Make sure "list" has room for at least "n" more pieces. * Always return a list with a single reference. * * If there is only one reference to list, we extend it in place. * Otherwise, we create a new LIST(EL) and copy the elements. */ static __isl_give LIST(EL) *FN(LIST(EL),grow)(__isl_take LIST(EL) *list, int n) { isl_ctx *ctx; int i, new_size; LIST(EL) *res; if (!list) return NULL; if (list->ref == 1 && list->n + n <= list->size) return list; ctx = FN(LIST(EL),get_ctx)(list); new_size = ((list->n + n + 1) * 3) / 2; if (list->ref == 1) { res = isl_realloc(ctx, list, LIST(EL), sizeof(LIST(EL)) + (new_size - 1) * sizeof(EL *)); if (!res) return FN(LIST(EL),free)(list); res->size = new_size; return res; } if (list->n + n <= list->size && list->size < new_size) new_size = list->size; res = FN(LIST(EL),alloc)(ctx, new_size); if (!res) return FN(LIST(EL),free)(list); for (i = 0; i < list->n; ++i) res = FN(LIST(EL),add)(res, FN(EL,copy)(list->p[i])); FN(LIST(EL),free)(list); return res; } __isl_give LIST(EL) *FN(LIST(EL),add)(__isl_take LIST(EL) *list, __isl_take struct EL *el) { list = FN(LIST(EL),grow)(list, 1); if (!list || !el) goto error; list->p[list->n] = el; list->n++; return list; error: FN(EL,free)(el); FN(LIST(EL),free)(list); return NULL; } /* Remove the "n" elements starting at "first" from "list". */ __isl_give LIST(EL) *FN(LIST(EL),drop)(__isl_take LIST(EL) *list, unsigned first, unsigned n) { int i; if (!list) return NULL; if (first + n > list->n || first + n < first) isl_die(list->ctx, isl_error_invalid, "index out of bounds", return FN(LIST(EL),free)(list)); if (n == 0) return list; list = FN(LIST(EL),cow)(list); if (!list) return NULL; for (i = 0; i < n; ++i) FN(EL,free)(list->p[first + i]); for (i = first; i + n < list->n; ++i) list->p[i] = list->p[i + n]; list->n -= n; return list; } /* Insert "el" at position "pos" in "list". * * If there is only one reference to "list" and if it already has space * for one extra element, we insert it directly into "list". * Otherwise, we create a new list consisting of "el" and copied * elements from "list". */ __isl_give LIST(EL) *FN(LIST(EL),insert)(__isl_take LIST(EL) *list, unsigned pos, __isl_take struct EL *el) { int i; isl_ctx *ctx; LIST(EL) *res; if (!list || !el) goto error; ctx = FN(LIST(EL),get_ctx)(list); if (pos > list->n) isl_die(ctx, isl_error_invalid, "index out of bounds", goto error); if (list->ref == 1 && list->size > list->n) { for (i = list->n - 1; i >= pos; --i) list->p[i + 1] = list->p[i]; list->n++; list->p[pos] = el; return list; } res = FN(LIST(EL),alloc)(ctx, list->n + 1); for (i = 0; i < pos; ++i) res = FN(LIST(EL),add)(res, FN(EL,copy)(list->p[i])); res = FN(LIST(EL),add)(res, el); for (i = pos; i < list->n; ++i) res = FN(LIST(EL),add)(res, FN(EL,copy)(list->p[i])); FN(LIST(EL),free)(list); return res; error: FN(EL,free)(el); FN(LIST(EL),free)(list); return NULL; } __isl_null LIST(EL) *FN(LIST(EL),free)(__isl_take LIST(EL) *list) { int i; if (!list) return NULL; if (--list->ref > 0) return NULL; isl_ctx_deref(list->ctx); for (i = 0; i < list->n; ++i) FN(EL,free)(list->p[i]); free(list); return NULL; } int FN(FN(LIST(EL),n),BASE)(__isl_keep LIST(EL) *list) { return list ? list->n : 0; } __isl_give EL *FN(FN(LIST(EL),get),BASE)(__isl_keep LIST(EL) *list, int index) { if (!list) return NULL; if (index < 0 || index >= list->n) isl_die(list->ctx, isl_error_invalid, "index out of bounds", return NULL); return FN(EL,copy)(list->p[index]); } /* Replace the element at position "index" in "list" by "el". */ __isl_give LIST(EL) *FN(FN(LIST(EL),set),BASE)(__isl_take LIST(EL) *list, int index, __isl_take EL *el) { if (!list || !el) goto error; if (index < 0 || index >= list->n) isl_die(list->ctx, isl_error_invalid, "index out of bounds", goto error); if (list->p[index] == el) { FN(EL,free)(el); return list; } list = FN(LIST(EL),cow)(list); if (!list) goto error; FN(EL,free)(list->p[index]); list->p[index] = el; return list; error: FN(EL,free)(el); FN(LIST(EL),free)(list); return NULL; } isl_stat FN(LIST(EL),foreach)(__isl_keep LIST(EL) *list, isl_stat (*fn)(__isl_take EL *el, void *user), void *user) { int i; if (!list) return isl_stat_error; for (i = 0; i < list->n; ++i) { EL *el = FN(EL,copy(list->p[i])); if (!el) return isl_stat_error; if (fn(el, user) < 0) return isl_stat_error; } return isl_stat_ok; } /* Internal data structure for isl_*_list_sort. * * "cmp" is the original comparison function. * "user" is a user provided pointer that should be passed to "cmp". */ S(LIST(EL),sort_data) { int (*cmp)(__isl_keep EL *a, __isl_keep EL *b, void *user); void *user; }; /* Compare two entries of an isl_*_list based on the user provided * comparison function on pairs of isl_* objects. */ static int FN(LIST(EL),cmp)(const void *a, const void *b, void *user) { S(LIST(EL),sort_data) *data = user; EL * const *el1 = a; EL * const *el2 = b; return data->cmp(*el1, *el2, data->user); } /* Sort the elements of "list" in ascending order according to * comparison function "cmp". */ __isl_give LIST(EL) *FN(LIST(EL),sort)(__isl_take LIST(EL) *list, int (*cmp)(__isl_keep EL *a, __isl_keep EL *b, void *user), void *user) { S(LIST(EL),sort_data) data = { cmp, user }; if (!list) return NULL; if (list->n <= 1) return list; list = FN(LIST(EL),cow)(list); if (!list) return NULL; if (isl_sort(list->p, list->n, sizeof(list->p[0]), &FN(LIST(EL),cmp), &data) < 0) return FN(LIST(EL),free)(list); return list; } /* Internal data structure for isl_*_list_foreach_scc. * * "list" is the original list. * "follows" is the user provided callback that defines the edges of the graph. */ S(LIST(EL),foreach_scc_data) { LIST(EL) *list; isl_bool (*follows)(__isl_keep EL *a, __isl_keep EL *b, void *user); void *follows_user; }; /* Does element i of data->list follow element j? * * Use the user provided callback to find out. */ static isl_bool FN(LIST(EL),follows)(int i, int j, void *user) { S(LIST(EL),foreach_scc_data) *data = user; return data->follows(data->list->p[i], data->list->p[j], data->follows_user); } /* Call "fn" on the sublist of "list" that consists of the elements * with indices specified by the "n" elements of "pos". */ static isl_stat FN(LIST(EL),call_on_scc)(__isl_keep LIST(EL) *list, int *pos, int n, isl_stat (*fn)(__isl_take LIST(EL) *scc, void *user), void *user) { int i; isl_ctx *ctx; LIST(EL) *slice; ctx = FN(LIST(EL),get_ctx)(list); slice = FN(LIST(EL),alloc)(ctx, n); for (i = 0; i < n; ++i) { EL *el; el = FN(EL,copy)(list->p[pos[i]]); slice = FN(LIST(EL),add)(slice, el); } return fn(slice, user); } /* Call "fn" on each of the strongly connected components (SCCs) of * the graph with as vertices the elements of "list" and * a directed edge from node b to node a iff follows(a, b) * returns 1. follows should return -1 on error. * * If SCC a contains a node i that follows a node j in another SCC b * (i.e., follows(i, j, user) returns 1), then fn will be called on SCC a * after being called on SCC b. * * We simply call isl_tarjan_graph_init, extract the SCCs from the result and * call fn on each of them. */ isl_stat FN(LIST(EL),foreach_scc)(__isl_keep LIST(EL) *list, isl_bool (*follows)(__isl_keep EL *a, __isl_keep EL *b, void *user), void *follows_user, isl_stat (*fn)(__isl_take LIST(EL) *scc, void *user), void *fn_user) { S(LIST(EL),foreach_scc_data) data = { list, follows, follows_user }; int i, n; isl_ctx *ctx; struct isl_tarjan_graph *g; if (!list) return isl_stat_error; if (list->n == 0) return isl_stat_ok; if (list->n == 1) return fn(FN(LIST(EL),copy)(list), fn_user); ctx = FN(LIST(EL),get_ctx)(list); n = list->n; g = isl_tarjan_graph_init(ctx, n, &FN(LIST(EL),follows), &data); if (!g) return isl_stat_error; i = 0; do { int first; if (g->order[i] == -1) isl_die(ctx, isl_error_internal, "cannot happen", break); first = i; while (g->order[i] != -1) { ++i; --n; } if (first == 0 && n == 0) { isl_tarjan_graph_free(g); return fn(FN(LIST(EL),copy)(list), fn_user); } if (FN(LIST(EL),call_on_scc)(list, g->order + first, i - first, fn, fn_user) < 0) break; ++i; } while (n); isl_tarjan_graph_free(g); return n > 0 ? isl_stat_error : isl_stat_ok; } __isl_give LIST(EL) *FN(FN(LIST(EL),from),BASE)(__isl_take EL *el) { isl_ctx *ctx; LIST(EL) *list; if (!el) return NULL; ctx = FN(EL,get_ctx)(el); list = FN(LIST(EL),alloc)(ctx, 1); if (!list) goto error; list = FN(LIST(EL),add)(list, el); return list; error: FN(EL,free)(el); return NULL; } __isl_give LIST(EL) *FN(LIST(EL),concat)(__isl_take LIST(EL) *list1, __isl_take LIST(EL) *list2) { int i; isl_ctx *ctx; LIST(EL) *res; if (!list1 || !list2) goto error; ctx = FN(LIST(EL),get_ctx)(list1); res = FN(LIST(EL),alloc)(ctx, list1->n + list2->n); for (i = 0; i < list1->n; ++i) res = FN(LIST(EL),add)(res, FN(EL,copy)(list1->p[i])); for (i = 0; i < list2->n; ++i) res = FN(LIST(EL),add)(res, FN(EL,copy)(list2->p[i])); FN(LIST(EL),free)(list1); FN(LIST(EL),free)(list2); return res; error: FN(LIST(EL),free)(list1); FN(LIST(EL),free)(list2); return NULL; } __isl_give isl_printer *CAT(isl_printer_print_,LIST(BASE))( __isl_take isl_printer *p, __isl_keep LIST(EL) *list) { int i; if (!p || !list) goto error; p = isl_printer_print_str(p, "("); for (i = 0; i < list->n; ++i) { if (i) p = isl_printer_print_str(p, ","); p = CAT(isl_printer_print_,BASE)(p, list->p[i]); } p = isl_printer_print_str(p, ")"); return p; error: isl_printer_free(p); return NULL; } void FN(LIST(EL),dump)(__isl_keep LIST(EL) *list) { isl_printer *printer; if (!list) return; printer = isl_printer_to_file(FN(LIST(EL),get_ctx)(list), stderr); printer = CAT(isl_printer_print_,LIST(BASE))(printer, list); printer = isl_printer_end_line(printer); isl_printer_free(printer); } isl-0.16.1/bound_test.sh.in0000775000175000017500000000130712645737060012436 00000000000000#!/bin/sh EXEEXT=@EXEEXT@ BOUND_TESTS="\ basicLinear2.pwqp \ basicLinear.pwqp \ basicTestParameterPosNeg.pwqp \ basicTest.pwqp \ devos.pwqp \ equality1.pwqp \ equality2.pwqp \ equality3.pwqp \ equality4.pwqp \ equality5.pwqp \ faddeev.pwqp \ linearExample.pwqp \ neg.pwqp \ philippe3vars3pars.pwqp \ philippe3vars.pwqp \ philippeNeg.pwqp \ philippePolynomialCoeff1P.pwqp \ philippePolynomialCoeff.pwqp \ philippe.pwqp \ product.pwqp \ split.pwqp \ test3Deg3Var.pwqp \ toplas.pwqp \ unexpanded.pwqp" for i in $BOUND_TESTS; do echo $i; ./isl_bound$EXEEXT -T --bound=bernstein < $srcdir/test_inputs/$i || exit ./isl_bound$EXEEXT -T --bound=range < $srcdir/test_inputs/$i || exit done isl-0.16.1/isl_id_private.h0000664000175000017500000000150312645737060012470 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_ID_PRIVATE_H #define ISL_ID_PRIVATE_H #include /* Represent a name and/or user pointer. * * If "free_user" is set, then it will be called on "user" when * the last instance of the isl_id is freed. */ struct isl_id { int ref; isl_ctx *ctx; const char *name; void *user; uint32_t hash; __isl_give void (*free_user)(void *user); }; #undef EL #define EL isl_id #include uint32_t isl_hash_id(uint32_t hash, __isl_keep isl_id *id); int isl_id_cmp(__isl_keep isl_id *id1, __isl_keep isl_id *id2); extern isl_id isl_id_none; #endif isl-0.16.1/isl_schedule_node.c0000664000175000017500000043364012645737477013165 00000000000000/* * Copyright 2013-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include /* Create a new schedule node in the given schedule, point at the given * tree with given ancestors and child positions. * "child_pos" may be NULL if there are no ancestors. */ __isl_give isl_schedule_node *isl_schedule_node_alloc( __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_tree_list *ancestors, int *child_pos) { isl_ctx *ctx; isl_schedule_node *node; int i, n; if (!schedule || !tree || !ancestors) goto error; n = isl_schedule_tree_list_n_schedule_tree(ancestors); if (n > 0 && !child_pos) goto error; ctx = isl_schedule_get_ctx(schedule); node = isl_calloc_type(ctx, isl_schedule_node); if (!node) goto error; node->ref = 1; node->schedule = schedule; node->tree = tree; node->ancestors = ancestors; node->child_pos = isl_alloc_array(ctx, int, n); if (n && !node->child_pos) return isl_schedule_node_free(node); for (i = 0; i < n; ++i) node->child_pos[i] = child_pos[i]; return node; error: isl_schedule_free(schedule); isl_schedule_tree_free(tree); isl_schedule_tree_list_free(ancestors); return NULL; } /* Return a pointer to the root of a schedule tree with as single * node a domain node with the given domain. */ __isl_give isl_schedule_node *isl_schedule_node_from_domain( __isl_take isl_union_set *domain) { isl_schedule *schedule; isl_schedule_node *node; schedule = isl_schedule_from_domain(domain); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); return node; } /* Return a pointer to the root of a schedule tree with as single * node a extension node with the given extension. */ __isl_give isl_schedule_node *isl_schedule_node_from_extension( __isl_take isl_union_map *extension) { isl_ctx *ctx; isl_schedule *schedule; isl_schedule_tree *tree; isl_schedule_node *node; if (!extension) return NULL; ctx = isl_union_map_get_ctx(extension); tree = isl_schedule_tree_from_extension(extension); schedule = isl_schedule_from_schedule_tree(ctx, tree); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); return node; } /* Return the isl_ctx to which "node" belongs. */ isl_ctx *isl_schedule_node_get_ctx(__isl_keep isl_schedule_node *node) { return node ? isl_schedule_get_ctx(node->schedule) : NULL; } /* Return a pointer to the leaf of the schedule into which "node" points. * * Even though these leaves are not reference counted, we still * indicate that this function does not return a copy. */ __isl_keep isl_schedule_tree *isl_schedule_node_peek_leaf( __isl_keep isl_schedule_node *node) { return node ? isl_schedule_peek_leaf(node->schedule) : NULL; } /* Return a pointer to the leaf of the schedule into which "node" points. * * Even though these leaves are not reference counted, we still * return a "copy" of the leaf here such that it can still be "freed" * by the user. */ __isl_give isl_schedule_tree *isl_schedule_node_get_leaf( __isl_keep isl_schedule_node *node) { return isl_schedule_tree_copy(isl_schedule_node_peek_leaf(node)); } /* Return the type of the node or isl_schedule_node_error on error. */ enum isl_schedule_node_type isl_schedule_node_get_type( __isl_keep isl_schedule_node *node) { return node ? isl_schedule_tree_get_type(node->tree) : isl_schedule_node_error; } /* Return the type of the parent of "node" or isl_schedule_node_error on error. */ enum isl_schedule_node_type isl_schedule_node_get_parent_type( __isl_keep isl_schedule_node *node) { int pos; int has_parent; isl_schedule_tree *parent; enum isl_schedule_node_type type; if (!node) return isl_schedule_node_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return isl_schedule_node_error; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return isl_schedule_node_error); pos = isl_schedule_tree_list_n_schedule_tree(node->ancestors) - 1; parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, pos); type = isl_schedule_tree_get_type(parent); isl_schedule_tree_free(parent); return type; } /* Return a copy of the subtree that this node points to. */ __isl_give isl_schedule_tree *isl_schedule_node_get_tree( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_copy(node->tree); } /* Return a copy of the schedule into which "node" points. */ __isl_give isl_schedule *isl_schedule_node_get_schedule( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_copy(node->schedule); } /* Return a fresh copy of "node". */ __isl_take isl_schedule_node *isl_schedule_node_dup( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_node_alloc(isl_schedule_copy(node->schedule), isl_schedule_tree_copy(node->tree), isl_schedule_tree_list_copy(node->ancestors), node->child_pos); } /* Return an isl_schedule_node that is equal to "node" and that has only * a single reference. */ __isl_give isl_schedule_node *isl_schedule_node_cow( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (node->ref == 1) return node; node->ref--; return isl_schedule_node_dup(node); } /* Return a new reference to "node". */ __isl_give isl_schedule_node *isl_schedule_node_copy( __isl_keep isl_schedule_node *node) { if (!node) return NULL; node->ref++; return node; } /* Free "node" and return NULL. * * Since the node may point to a leaf of its schedule, which * point to a field inside the schedule, we need to make sure * we free the tree before freeing the schedule. */ __isl_null isl_schedule_node *isl_schedule_node_free( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (--node->ref > 0) return NULL; isl_schedule_tree_list_free(node->ancestors); free(node->child_pos); isl_schedule_tree_free(node->tree); isl_schedule_free(node->schedule); free(node); return NULL; } /* Do "node1" and "node2" point to the same position in the same * schedule? */ isl_bool isl_schedule_node_is_equal(__isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2) { int i, n1, n2; if (!node1 || !node2) return isl_bool_error; if (node1 == node2) return isl_bool_true; if (node1->schedule != node2->schedule) return isl_bool_false; n1 = isl_schedule_node_get_tree_depth(node1); n2 = isl_schedule_node_get_tree_depth(node2); if (n1 != n2) return isl_bool_false; for (i = 0; i < n1; ++i) if (node1->child_pos[i] != node2->child_pos[i]) return isl_bool_false; return isl_bool_true; } /* Return the number of outer schedule dimensions of "node" * in its schedule tree. * * Return -1 on error. */ int isl_schedule_node_get_schedule_depth(__isl_keep isl_schedule_node *node) { int i, n; int depth = 0; if (!node) return -1; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *tree; tree = isl_schedule_tree_list_get_schedule_tree( node->ancestors, i); if (!tree) return -1; if (tree->type == isl_schedule_node_band) depth += isl_schedule_tree_band_n_member(tree); isl_schedule_tree_free(tree); } return depth; } /* Internal data structure for * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff * * "initialized" is set if the filter field has been initialized. * If "universe_domain" is not set, then the collected filter is intersected * with the the domain of the root domain node. * "universe_filter" is set if we are only collecting the universes of filters * "collect_prefix" is set if we are collecting prefixes. * "filter" collects all outer filters and is NULL until "initialized" is set. * "prefix" collects all outer band partial schedules (if "collect_prefix" * is set). If it is used, then it is initialized by the caller * of collect_filter_prefix to a zero-dimensional function. */ struct isl_schedule_node_get_filter_prefix_data { int initialized; int universe_domain; int universe_filter; int collect_prefix; isl_union_set *filter; isl_multi_union_pw_aff *prefix; }; static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data); /* Update the filter and prefix information in "data" based on the first "n" * elements in "list" and the expansion tree root "tree". * * We first collect the information from the elements in "list", * initializing the filter based on the domain of the expansion. * Then we map the results to the expanded space and combined them * with the results already in "data". */ static int collect_filter_prefix_expansion(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { struct isl_schedule_node_get_filter_prefix_data contracted; isl_union_pw_multi_aff *c; isl_union_map *exp, *universe; isl_union_set *filter; c = isl_schedule_tree_expansion_get_contraction(tree); exp = isl_schedule_tree_expansion_get_expansion(tree); contracted.initialized = 1; contracted.universe_domain = data->universe_domain; contracted.universe_filter = data->universe_filter; contracted.collect_prefix = data->collect_prefix; universe = isl_union_map_universe(isl_union_map_copy(exp)); filter = isl_union_map_domain(universe); if (data->collect_prefix) { isl_space *space = isl_union_set_get_space(filter); space = isl_space_set_from_params(space); contracted.prefix = isl_multi_union_pw_aff_zero(space); } contracted.filter = filter; if (collect_filter_prefix(list, n, &contracted) < 0) contracted.filter = isl_union_set_free(contracted.filter); if (data->collect_prefix) { isl_multi_union_pw_aff *prefix; prefix = contracted.prefix; prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix, isl_union_pw_multi_aff_copy(c)); data->prefix = isl_multi_union_pw_aff_flat_range_product( prefix, data->prefix); } filter = contracted.filter; if (data->universe_domain) filter = isl_union_set_preimage_union_pw_multi_aff(filter, isl_union_pw_multi_aff_copy(c)); else filter = isl_union_set_apply(filter, isl_union_map_copy(exp)); if (!data->initialized) data->filter = filter; else data->filter = isl_union_set_intersect(filter, data->filter); data->initialized = 1; isl_union_pw_multi_aff_free(c); isl_union_map_free(exp); isl_schedule_tree_free(tree); return 0; } /* Update the filter information in "data" based on the first "n" * elements in "list" and the extension tree root "tree", in case * data->universe_domain is set and data->collect_prefix is not. * * We collect the universe domain of the elements in "list" and * add it to the universe range of the extension (intersected * with the already collected filter, if any). */ static int collect_universe_domain_extension(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { struct isl_schedule_node_get_filter_prefix_data data_outer; isl_union_map *extension; isl_union_set *filter; data_outer.initialized = 0; data_outer.universe_domain = 1; data_outer.universe_filter = data->universe_filter; data_outer.collect_prefix = 0; data_outer.filter = NULL; data_outer.prefix = NULL; if (collect_filter_prefix(list, n, &data_outer) < 0) data_outer.filter = isl_union_set_free(data_outer.filter); extension = isl_schedule_tree_extension_get_extension(tree); extension = isl_union_map_universe(extension); filter = isl_union_map_range(extension); if (data_outer.initialized) filter = isl_union_set_union(filter, data_outer.filter); if (data->initialized) filter = isl_union_set_intersect(filter, data->filter); data->filter = filter; isl_schedule_tree_free(tree); return 0; } /* Update "data" based on the tree node "tree" in case "data" has * not been initialized yet. * * Return 0 on success and -1 on error. * * If "tree" is a filter, then we set data->filter to this filter * (or its universe). * If "tree" is a domain, then this means we have reached the root * of the schedule tree without being able to extract any information. * We therefore initialize data->filter to the universe of the domain, * or the domain itself if data->universe_domain is not set. * If "tree" is a band with at least one member, then we set data->filter * to the universe of the schedule domain and replace the zero-dimensional * data->prefix by the band schedule (if data->collect_prefix is set). */ static int collect_filter_prefix_init(__isl_keep isl_schedule_tree *tree, struct isl_schedule_node_get_filter_prefix_data *data) { enum isl_schedule_node_type type; isl_multi_union_pw_aff *mupa; isl_union_set *filter; type = isl_schedule_tree_get_type(tree); switch (type) { case isl_schedule_node_error: return -1; case isl_schedule_node_expansion: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "should be handled by caller", return -1); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot handle extension nodes", return -1); case isl_schedule_node_context: case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: return 0; case isl_schedule_node_domain: filter = isl_schedule_tree_domain_get_domain(tree); if (data->universe_domain) filter = isl_union_set_universe(filter); data->filter = filter; break; case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) return 0; mupa = isl_schedule_tree_band_get_partial_schedule(tree); if (data->collect_prefix) { isl_multi_union_pw_aff_free(data->prefix); mupa = isl_multi_union_pw_aff_reset_tuple_id(mupa, isl_dim_set); data->prefix = isl_multi_union_pw_aff_copy(mupa); } filter = isl_multi_union_pw_aff_domain(mupa); filter = isl_union_set_universe(filter); data->filter = filter; break; case isl_schedule_node_filter: filter = isl_schedule_tree_filter_get_filter(tree); if (data->universe_filter) filter = isl_union_set_universe(filter); data->filter = filter; break; } if ((data->collect_prefix && !data->prefix) || !data->filter) return -1; data->initialized = 1; return 0; } /* Update "data" based on the tree node "tree" in case "data" has * already been initialized. * * Return 0 on success and -1 on error. * * If "tree" is a domain and data->universe_domain is not set, then * intersect data->filter with the domain. * If "tree" is a filter, then we intersect data->filter with this filter * (or its universe). * If "tree" is a band with at least one member and data->collect_prefix * is set, then we extend data->prefix with the band schedule. * If "tree" is an extension, then we make sure that we are not collecting * information on any extended domain elements. */ static int collect_filter_prefix_update(__isl_keep isl_schedule_tree *tree, struct isl_schedule_node_get_filter_prefix_data *data) { enum isl_schedule_node_type type; isl_multi_union_pw_aff *mupa; isl_union_set *filter; isl_union_map *extension; int empty; type = isl_schedule_tree_get_type(tree); switch (type) { case isl_schedule_node_error: return -1; case isl_schedule_node_expansion: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "should be handled by caller", return -1); case isl_schedule_node_extension: extension = isl_schedule_tree_extension_get_extension(tree); extension = isl_union_map_intersect_range(extension, isl_union_set_copy(data->filter)); empty = isl_union_map_is_empty(extension); isl_union_map_free(extension); if (empty < 0) return -1; if (empty) break; isl_die(isl_schedule_tree_get_ctx(tree), isl_error_invalid, "cannot handle extension nodes", return -1); case isl_schedule_node_context: case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; case isl_schedule_node_domain: if (data->universe_domain) break; filter = isl_schedule_tree_domain_get_domain(tree); data->filter = isl_union_set_intersect(data->filter, filter); break; case isl_schedule_node_band: if (isl_schedule_tree_band_n_member(tree) == 0) break; if (!data->collect_prefix) break; mupa = isl_schedule_tree_band_get_partial_schedule(tree); data->prefix = isl_multi_union_pw_aff_flat_range_product(mupa, data->prefix); if (!data->prefix) return -1; break; case isl_schedule_node_filter: filter = isl_schedule_tree_filter_get_filter(tree); if (data->universe_filter) filter = isl_union_set_universe(filter); data->filter = isl_union_set_intersect(data->filter, filter); if (!data->filter) return -1; break; } return 0; } /* Collect filter and/or prefix information from the first "n" * elements in "list" (which represent the ancestors of a node). * Store the results in "data". * * Extension nodes are only supported if they do not affect the outcome, * i.e., if we are collecting information on non-extended domain elements, * or if we are collecting the universe domain (without prefix). * * Return 0 on success and -1 on error. * * We traverse the list from innermost ancestor (last element) * to outermost ancestor (first element), calling collect_filter_prefix_init * on each node as long as we have not been able to extract any information * yet and collect_filter_prefix_update afterwards. * If we come across an expansion node, then we interrupt the traversal * and call collect_filter_prefix_expansion to restart the traversal * over the remaining ancestors and to combine the results with those * that have already been collected. * If we come across an extension node and we are only computing * the universe domain, then we interrupt the traversal and call * collect_universe_domain_extension to restart the traversal * over the remaining ancestors and to combine the results with those * that have already been collected. * On successful return, data->initialized will be set since the outermost * ancestor is a domain node, which always results in an initialization. */ static int collect_filter_prefix(__isl_keep isl_schedule_tree_list *list, int n, struct isl_schedule_node_get_filter_prefix_data *data) { int i; if (!list) return -1; for (i = n - 1; i >= 0; --i) { isl_schedule_tree *tree; enum isl_schedule_node_type type; int r; tree = isl_schedule_tree_list_get_schedule_tree(list, i); if (!tree) return -1; type = isl_schedule_tree_get_type(tree); if (type == isl_schedule_node_expansion) return collect_filter_prefix_expansion(tree, list, i, data); if (type == isl_schedule_node_extension && data->universe_domain && !data->collect_prefix) return collect_universe_domain_extension(tree, list, i, data); if (!data->initialized) r = collect_filter_prefix_init(tree, data); else r = collect_filter_prefix_update(tree, data); isl_schedule_tree_free(tree); if (r < 0) return -1; } return 0; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_multi_union_pw_aff. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * We collect all the filters and partial schedules in collect_filter_prefix * and intersect the domain of the combined schedule with the combined filter. */ __isl_give isl_multi_union_pw_aff * isl_schedule_node_get_prefix_schedule_multi_union_pw_aff( __isl_keep isl_schedule_node *node) { int n; isl_space *space; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); space = isl_space_set_from_params(space); if (node->tree == node->schedule->root) return isl_multi_union_pw_aff_zero(space); data.initialized = 0; data.universe_domain = 1; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); data.prefix = isl_multi_union_pw_aff_intersect_domain(data.prefix, data.filter); return data.prefix; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_union_pw_multi_aff. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * We collect all the filters and partial schedules in collect_filter_prefix. * The partial schedules are collected as an isl_multi_union_pw_aff. * If this isl_multi_union_pw_aff is zero-dimensional, then it does not * contain any domain information, so we construct the isl_union_pw_multi_aff * result as a zero-dimensional function on the collected filter. * Otherwise, we convert the isl_multi_union_pw_aff to * an isl_multi_union_pw_aff and intersect the domain with the filter. */ __isl_give isl_union_pw_multi_aff * isl_schedule_node_get_prefix_schedule_union_pw_multi_aff( __isl_keep isl_schedule_node *node) { int n; isl_space *space; isl_union_pw_multi_aff *prefix; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); if (node->tree == node->schedule->root) return isl_union_pw_multi_aff_empty(space); space = isl_space_set_from_params(space); data.initialized = 0; data.universe_domain = 1; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); if (data.prefix && isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) { isl_multi_union_pw_aff_free(data.prefix); prefix = isl_union_pw_multi_aff_from_domain(data.filter); } else { prefix = isl_union_pw_multi_aff_from_multi_union_pw_aff(data.prefix); prefix = isl_union_pw_multi_aff_intersect_domain(prefix, data.filter); } return prefix; } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" interesected with all outer filters * as an isl_union_map. */ __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_union_pw_multi_aff *upma; upma = isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node); return isl_union_map_from_union_pw_multi_aff(upma); } /* Return the concatenation of the partial schedules of all outer band * nodes of "node" intersected with all outer domain constraints. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * Essentially, this function intersects the domain of the output * of isl_schedule_node_get_prefix_schedule_union_map with the output * of isl_schedule_node_get_domain, except that it only traverses * the ancestors of "node" once. */ __isl_give isl_union_map *isl_schedule_node_get_prefix_schedule_relation( __isl_keep isl_schedule_node *node) { int n; isl_space *space; isl_union_map *prefix; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; space = isl_schedule_get_space(node->schedule); if (node->tree == node->schedule->root) return isl_union_map_empty(space); space = isl_space_set_from_params(space); data.initialized = 0; data.universe_domain = 0; data.universe_filter = 0; data.collect_prefix = 1; data.filter = NULL; data.prefix = isl_multi_union_pw_aff_zero(space); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.prefix = isl_multi_union_pw_aff_free(data.prefix); if (data.prefix && isl_multi_union_pw_aff_dim(data.prefix, isl_dim_set) == 0) { isl_multi_union_pw_aff_free(data.prefix); prefix = isl_union_map_from_domain(data.filter); } else { prefix = isl_union_map_from_multi_union_pw_aff(data.prefix); prefix = isl_union_map_intersect_domain(prefix, data.filter); } return prefix; } /* Return the domain elements that reach "node". * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * None of the ancestors of "node" may be an extension node, unless * there is also a filter ancestor that filters out all the extended * domain elements. * * Otherwise, we collect all filters reaching the node, * intersected with the root domain in collect_filter_prefix. */ __isl_give isl_union_set *isl_schedule_node_get_domain( __isl_keep isl_schedule_node *node) { int n; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; if (node->tree == node->schedule->root) { isl_space *space; space = isl_schedule_get_space(node->schedule); return isl_union_set_empty(space); } data.initialized = 0; data.universe_domain = 0; data.universe_filter = 0; data.collect_prefix = 0; data.filter = NULL; data.prefix = NULL; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.filter = isl_union_set_free(data.filter); return data.filter; } /* Return the union of universe sets of the domain elements that reach "node". * * If "node" is pointing at the root of the schedule tree, then * there are no domain elements reaching the current node, so * we return an empty result. * * Otherwise, we collect the universes of all filters reaching the node * in collect_filter_prefix. */ __isl_give isl_union_set *isl_schedule_node_get_universe_domain( __isl_keep isl_schedule_node *node) { int n; struct isl_schedule_node_get_filter_prefix_data data; if (!node) return NULL; if (node->tree == node->schedule->root) { isl_space *space; space = isl_schedule_get_space(node->schedule); return isl_union_set_empty(space); } data.initialized = 0; data.universe_domain = 1; data.universe_filter = 1; data.collect_prefix = 0; data.filter = NULL; data.prefix = NULL; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (collect_filter_prefix(node->ancestors, n, &data) < 0) data.filter = isl_union_set_free(data.filter); return data.filter; } /* Return the subtree schedule of "node". * * Since isl_schedule_tree_get_subtree_schedule_union_map does not handle * trees that do not contain any schedule information, we first * move down to the first relevant descendant and handle leaves ourselves. * * If the subtree rooted at "node" contains any expansion nodes, then * the returned subtree schedule is formulated in terms of the expanded * domains. * The subtree is not allowed to contain any extension nodes. */ __isl_give isl_union_map *isl_schedule_node_get_subtree_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_schedule_tree *tree, *leaf; isl_union_map *umap; tree = isl_schedule_node_get_tree(node); leaf = isl_schedule_node_peek_leaf(node); tree = isl_schedule_tree_first_schedule_descendant(tree, leaf); if (!tree) return NULL; if (tree == leaf) { isl_union_set *domain; domain = isl_schedule_node_get_universe_domain(node); isl_schedule_tree_free(tree); return isl_union_map_from_domain(domain); } umap = isl_schedule_tree_get_subtree_schedule_union_map(tree); isl_schedule_tree_free(tree); return umap; } /* Return the number of ancestors of "node" in its schedule tree. */ int isl_schedule_node_get_tree_depth(__isl_keep isl_schedule_node *node) { if (!node) return -1; return isl_schedule_tree_list_n_schedule_tree(node->ancestors); } /* Does "node" have a parent? * * That is, does it point to any node of the schedule other than the root? */ isl_bool isl_schedule_node_has_parent(__isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; if (!node->ancestors) return isl_bool_error; return isl_schedule_tree_list_n_schedule_tree(node->ancestors) != 0; } /* Return the position of "node" among the children of its parent. */ int isl_schedule_node_get_child_position(__isl_keep isl_schedule_node *node) { int n; int has_parent; if (!node) return -1; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return -1; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return -1); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); return node->child_pos[n - 1]; } /* Does the parent (if any) of "node" have any children with a smaller child * position than this one? */ isl_bool isl_schedule_node_has_previous_sibling( __isl_keep isl_schedule_node *node) { int n; isl_bool has_parent; if (!node) return isl_bool_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0 || !has_parent) return has_parent; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); return node->child_pos[n - 1] > 0; } /* Does the parent (if any) of "node" have any children with a greater child * position than this one? */ isl_bool isl_schedule_node_has_next_sibling(__isl_keep isl_schedule_node *node) { int n, n_child; isl_bool has_parent; isl_schedule_tree *tree; if (!node) return isl_bool_error; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0 || !has_parent) return has_parent; n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!tree) return isl_bool_error; n_child = isl_schedule_tree_list_n_schedule_tree(tree->children); isl_schedule_tree_free(tree); return node->child_pos[n - 1] + 1 < n_child; } /* Does "node" have any children? * * Any node other than the leaf nodes is considered to have at least * one child, even if the corresponding isl_schedule_tree does not * have any children. */ isl_bool isl_schedule_node_has_children(__isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return !isl_schedule_tree_is_leaf(node->tree); } /* Return the number of children of "node"? * * Any node other than the leaf nodes is considered to have at least * one child, even if the corresponding isl_schedule_tree does not * have any children. That is, the number of children of "node" is * only zero if its tree is the explicit empty tree. Otherwise, * if the isl_schedule_tree has any children, then it is equal * to the number of children of "node". If it has zero children, * then "node" still has a leaf node as child. */ int isl_schedule_node_n_children(__isl_keep isl_schedule_node *node) { int n; if (!node) return -1; if (isl_schedule_tree_is_leaf(node->tree)) return 0; n = isl_schedule_tree_n_children(node->tree); if (n == 0) return 1; return n; } /* Move the "node" pointer to the ancestor of the given generation * of the node it currently points to, where generation 0 is the node * itself and generation 1 is its parent. */ __isl_give isl_schedule_node *isl_schedule_node_ancestor( __isl_take isl_schedule_node *node, int generation) { int n; isl_schedule_tree *tree; if (!node) return NULL; if (generation == 0) return node; n = isl_schedule_node_get_tree_depth(node); if (n < 0) return isl_schedule_node_free(node); if (generation < 0 || generation > n) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "generation out of bounds", return isl_schedule_node_free(node)); node = isl_schedule_node_cow(node); if (!node) return NULL; tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - generation); isl_schedule_tree_free(node->tree); node->tree = tree; node->ancestors = isl_schedule_tree_list_drop(node->ancestors, n - generation, generation); if (!node->ancestors || !node->tree) return isl_schedule_node_free(node); return node; } /* Move the "node" pointer to the parent of the node it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_parent( __isl_take isl_schedule_node *node) { if (!node) return NULL; if (!isl_schedule_node_has_parent(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no parent", return isl_schedule_node_free(node)); return isl_schedule_node_ancestor(node, 1); } /* Move the "node" pointer to the root of its schedule tree. */ __isl_give isl_schedule_node *isl_schedule_node_root( __isl_take isl_schedule_node *node) { int n; if (!node) return NULL; n = isl_schedule_node_get_tree_depth(node); if (n < 0) return isl_schedule_node_free(node); return isl_schedule_node_ancestor(node, n); } /* Move the "node" pointer to the child at position "pos" of the node * it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_child( __isl_take isl_schedule_node *node, int pos) { int n; isl_ctx *ctx; isl_schedule_tree *tree; int *child_pos; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_children(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no children", return isl_schedule_node_free(node)); ctx = isl_schedule_node_get_ctx(node); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); child_pos = isl_realloc_array(ctx, node->child_pos, int, n + 1); if (!child_pos) return isl_schedule_node_free(node); node->child_pos = child_pos; node->child_pos[n] = pos; node->ancestors = isl_schedule_tree_list_add(node->ancestors, isl_schedule_tree_copy(node->tree)); tree = node->tree; if (isl_schedule_tree_has_children(tree)) tree = isl_schedule_tree_get_child(tree, pos); else tree = isl_schedule_node_get_leaf(node); isl_schedule_tree_free(node->tree); node->tree = tree; if (!node->tree || !node->ancestors) return isl_schedule_node_free(node); return node; } /* Move the "node" pointer to the first child of the node * it currently points to. */ __isl_give isl_schedule_node *isl_schedule_node_first_child( __isl_take isl_schedule_node *node) { return isl_schedule_node_child(node, 0); } /* Move the "node" pointer to the child of this node's parent in * the previous child position. */ __isl_give isl_schedule_node *isl_schedule_node_previous_sibling( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *parent, *tree; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_previous_sibling(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no previous sibling", return isl_schedule_node_free(node)); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!parent) return isl_schedule_node_free(node); node->child_pos[n - 1]--; tree = isl_schedule_tree_list_get_schedule_tree(parent->children, node->child_pos[n - 1]); isl_schedule_tree_free(parent); if (!tree) return isl_schedule_node_free(node); isl_schedule_tree_free(node->tree); node->tree = tree; return node; } /* Move the "node" pointer to the child of this node's parent in * the next child position. */ __isl_give isl_schedule_node *isl_schedule_node_next_sibling( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *parent, *tree; node = isl_schedule_node_cow(node); if (!node) return NULL; if (!isl_schedule_node_has_next_sibling(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "node has no next sibling", return isl_schedule_node_free(node)); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); parent = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n - 1); if (!parent) return isl_schedule_node_free(node); node->child_pos[n - 1]++; tree = isl_schedule_tree_list_get_schedule_tree(parent->children, node->child_pos[n - 1]); isl_schedule_tree_free(parent); if (!tree) return isl_schedule_node_free(node); isl_schedule_tree_free(node->tree); node->tree = tree; return node; } /* Return a copy to the child at position "pos" of "node". */ __isl_give isl_schedule_node *isl_schedule_node_get_child( __isl_keep isl_schedule_node *node, int pos) { return isl_schedule_node_child(isl_schedule_node_copy(node), pos); } /* Traverse the descendant of "node" in depth-first order, including * "node" itself. Call "enter" whenever a node is entered and "leave" * whenever a node is left. The callback "enter" is responsible * for moving to the deepest initial subtree of its argument that * should be traversed. */ static __isl_give isl_schedule_node *traverse( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*enter)( __isl_take isl_schedule_node *node, void *user), __isl_give isl_schedule_node *(*leave)( __isl_take isl_schedule_node *node, void *user), void *user) { int depth; if (!node) return NULL; depth = isl_schedule_node_get_tree_depth(node); do { node = enter(node, user); node = leave(node, user); while (node && isl_schedule_node_get_tree_depth(node) > depth && !isl_schedule_node_has_next_sibling(node)) { node = isl_schedule_node_parent(node); node = leave(node, user); } if (node && isl_schedule_node_get_tree_depth(node) > depth) node = isl_schedule_node_next_sibling(node); } while (node && isl_schedule_node_get_tree_depth(node) > depth); return node; } /* Internal data structure for isl_schedule_node_foreach_descendant_top_down. * * "fn" is the user-specified callback function. * "user" is the user-specified argument for the callback. */ struct isl_schedule_node_preorder_data { isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user); void *user; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * for use in a preorder visit. * * If the user callback returns a negative value, then we abort * the traversal. If this callback returns zero, then we skip * the subtree rooted at the current node. Otherwise, we move * down to the first child and repeat the process until a leaf * is reached. */ static __isl_give isl_schedule_node *preorder_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_schedule_node_preorder_data *data = user; if (!node) return NULL; do { isl_bool r; r = data->fn(node, data->user); if (r < 0) return isl_schedule_node_free(node); if (r == isl_bool_false) return node; } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node * for use in a preorder visit. * Since we already visited the node when we entered it, * we do not need to do anything here. */ static __isl_give isl_schedule_node *preorder_leave( __isl_take isl_schedule_node *node, void *user) { return node; } /* Traverse the descendants of "node" (including the node itself) * in depth first preorder. * * If "fn" returns -1 on any of the nodes, then the traversal is aborted. * If "fn" returns 0 on any of the nodes, then the subtree rooted * at that node is skipped. * * Return 0 on success and -1 on failure. */ isl_stat isl_schedule_node_foreach_descendant_top_down( __isl_keep isl_schedule_node *node, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user) { struct isl_schedule_node_preorder_data data = { fn, user }; node = isl_schedule_node_copy(node); node = traverse(node, &preorder_enter, &preorder_leave, &data); isl_schedule_node_free(node); return node ? isl_stat_ok : isl_stat_error; } /* Internal data structure for isl_schedule_node_map_descendant_bottom_up. * * "fn" is the user-specified callback function. * "user" is the user-specified argument for the callback. */ struct isl_schedule_node_postorder_data { __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node, void *user); void *user; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * for use in a postorder visit. * * Since we are performing a postorder visit, we only need * to move to the deepest initial leaf here. */ static __isl_give isl_schedule_node *postorder_enter( __isl_take isl_schedule_node *node, void *user) { while (node && isl_schedule_node_has_children(node)) node = isl_schedule_node_first_child(node); return node; } /* Callback for "traverse" to leave a node * for use in a postorder visit. * * Since we are performing a postorder visit, we need * to call the user callback here. */ static __isl_give isl_schedule_node *postorder_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_schedule_node_postorder_data *data = user; return data->fn(node, data->user); } /* Traverse the descendants of "node" (including the node itself) * in depth first postorder, allowing the user to modify the visited node. * The traversal continues from the node returned by the callback function. * It is the responsibility of the user to ensure that this does not * lead to an infinite loop. It is safest to always return a pointer * to the same position (same ancestors and child positions) as the input node. */ __isl_give isl_schedule_node *isl_schedule_node_map_descendant_bottom_up( __isl_take isl_schedule_node *node, __isl_give isl_schedule_node *(*fn)(__isl_take isl_schedule_node *node, void *user), void *user) { struct isl_schedule_node_postorder_data data = { fn, user }; return traverse(node, &postorder_enter, &postorder_leave, &data); } /* Traverse the ancestors of "node" from the root down to and including * the parent of "node", calling "fn" on each of them. * * If "fn" returns -1 on any of the nodes, then the traversal is aborted. * * Return 0 on success and -1 on failure. */ isl_stat isl_schedule_node_foreach_ancestor_top_down( __isl_keep isl_schedule_node *node, isl_stat (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user) { int i, n; if (!node) return isl_stat_error; n = isl_schedule_node_get_tree_depth(node); for (i = 0; i < n; ++i) { isl_schedule_node *ancestor; isl_stat r; ancestor = isl_schedule_node_copy(node); ancestor = isl_schedule_node_ancestor(ancestor, n - i); r = fn(ancestor, user); isl_schedule_node_free(ancestor); if (r < 0) return isl_stat_error; } return isl_stat_ok; } /* Is any node in the subtree rooted at "node" anchored? * That is, do any of these nodes reference the outer band nodes? */ isl_bool isl_schedule_node_is_subtree_anchored( __isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return isl_schedule_tree_is_subtree_anchored(node->tree); } /* Return the number of members in the given band node. */ unsigned isl_schedule_node_band_n_member(__isl_keep isl_schedule_node *node) { return node ? isl_schedule_tree_band_n_member(node->tree) : 0; } /* Is the band member at position "pos" of the band node "node" * marked coincident? */ isl_bool isl_schedule_node_band_member_get_coincident( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_bool_error; return isl_schedule_tree_band_member_get_coincident(node->tree, pos); } /* Mark the band member at position "pos" the band node "node" * as being coincident or not according to "coincident". */ __isl_give isl_schedule_node *isl_schedule_node_band_member_set_coincident( __isl_take isl_schedule_node *node, int pos, int coincident) { int c; isl_schedule_tree *tree; if (!node) return NULL; c = isl_schedule_node_band_member_get_coincident(node, pos); if (c == coincident) return node; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_coincident(tree, pos, coincident); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Is the band node "node" marked permutable? */ isl_bool isl_schedule_node_band_get_permutable( __isl_keep isl_schedule_node *node) { if (!node) return isl_bool_error; return isl_schedule_tree_band_get_permutable(node->tree); } /* Mark the band node "node" permutable or not according to "permutable"? */ __isl_give isl_schedule_node *isl_schedule_node_band_set_permutable( __isl_take isl_schedule_node *node, int permutable) { isl_schedule_tree *tree; if (!node) return NULL; if (isl_schedule_node_band_get_permutable(node) == permutable) return node; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_set_permutable(tree, permutable); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Return the schedule space of the band node. */ __isl_give isl_space *isl_schedule_node_band_get_space( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_space(node->tree); } /* Return the schedule of the band node in isolation. */ __isl_give isl_multi_union_pw_aff *isl_schedule_node_band_get_partial_schedule( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_partial_schedule(node->tree); } /* Return the schedule of the band node in isolation in the form of * an isl_union_map. * * If the band does not have any members, then we construct a universe map * with the universe of the domain elements reaching the node as domain. * Otherwise, we extract an isl_multi_union_pw_aff representation and * convert that to an isl_union_map. */ __isl_give isl_union_map *isl_schedule_node_band_get_partial_schedule_union_map( __isl_keep isl_schedule_node *node) { isl_multi_union_pw_aff *mupa; if (!node) return NULL; if (isl_schedule_node_get_type(node) != isl_schedule_node_band) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a band node", return NULL); if (isl_schedule_node_band_n_member(node) == 0) { isl_union_set *domain; domain = isl_schedule_node_get_universe_domain(node); return isl_union_map_from_domain(domain); } mupa = isl_schedule_node_band_get_partial_schedule(node); return isl_union_map_from_multi_union_pw_aff(mupa); } /* Return the loop AST generation type for the band member of band node "node" * at position "pos". */ enum isl_ast_loop_type isl_schedule_node_band_member_get_ast_loop_type( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_ast_loop_error; return isl_schedule_tree_band_member_get_ast_loop_type(node->tree, pos); } /* Set the loop AST generation type for the band member of band node "node" * at position "pos" to "type". */ __isl_give isl_schedule_node *isl_schedule_node_band_member_set_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type) { isl_schedule_tree *tree; if (!node) return NULL; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_ast_loop_type(tree, pos, type); return isl_schedule_node_graft_tree(node, tree); } /* Return the loop AST generation type for the band member of band node "node" * at position "pos" for the isolated part. */ enum isl_ast_loop_type isl_schedule_node_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_node *node, int pos) { if (!node) return isl_ast_loop_error; return isl_schedule_tree_band_member_get_isolate_ast_loop_type( node->tree, pos); } /* Set the loop AST generation type for the band member of band node "node" * at position "pos" for the isolated part to "type". */ __isl_give isl_schedule_node * isl_schedule_node_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_node *node, int pos, enum isl_ast_loop_type type) { isl_schedule_tree *tree; if (!node) return NULL; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_member_set_isolate_ast_loop_type(tree, pos, type); return isl_schedule_node_graft_tree(node, tree); } /* Return the AST build options associated to band node "node". */ __isl_give isl_union_set *isl_schedule_node_band_get_ast_build_options( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_band_get_ast_build_options(node->tree); } /* Replace the AST build options associated to band node "node" by "options". */ __isl_give isl_schedule_node *isl_schedule_node_band_set_ast_build_options( __isl_take isl_schedule_node *node, __isl_take isl_union_set *options) { isl_schedule_tree *tree; if (!node || !options) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_band_set_ast_build_options(tree, options); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_set_free(options); return NULL; } /* Make sure that that spaces of "node" and "mv" are the same. * Return -1 on error, reporting the error to the user. */ static int check_space_multi_val(__isl_keep isl_schedule_node *node, __isl_keep isl_multi_val *mv) { isl_space *node_space, *mv_space; int equal; node_space = isl_schedule_node_band_get_space(node); mv_space = isl_multi_val_get_space(mv); equal = isl_space_tuple_is_equal(node_space, isl_dim_set, mv_space, isl_dim_set); isl_space_free(mv_space); isl_space_free(node_space); if (equal < 0) return -1; if (!equal) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "spaces don't match", return -1); return 0; } /* Multiply the partial schedule of the band node "node" * with the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_scale( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; int anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot scale band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_scale(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Divide the partial schedule of the band node "node" * by the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_scale_down( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; int anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot scale down band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_scale_down(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Reduce the partial schedule of the band node "node" * modulo the factors in "mv". */ __isl_give isl_schedule_node *isl_schedule_node_band_mod( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *mv) { isl_schedule_tree *tree; isl_bool anchored; if (!node || !mv) goto error; if (check_space_multi_val(node, mv) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot perform mod on band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_mod(tree, mv); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(mv); isl_schedule_node_free(node); return NULL; } /* Make sure that that spaces of "node" and "mupa" are the same. * Return isl_stat_error on error, reporting the error to the user. */ static isl_stat check_space_multi_union_pw_aff( __isl_keep isl_schedule_node *node, __isl_keep isl_multi_union_pw_aff *mupa) { isl_space *node_space, *mupa_space; isl_bool equal; node_space = isl_schedule_node_band_get_space(node); mupa_space = isl_multi_union_pw_aff_get_space(mupa); equal = isl_space_tuple_is_equal(node_space, isl_dim_set, mupa_space, isl_dim_set); isl_space_free(mupa_space); isl_space_free(node_space); if (equal < 0) return isl_stat_error; if (!equal) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "spaces don't match", return isl_stat_error); return isl_stat_ok; } /* Shift the partial schedule of the band node "node" by "shift". */ __isl_give isl_schedule_node *isl_schedule_node_band_shift( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *shift) { isl_schedule_tree *tree; int anchored; if (!node || !shift) goto error; if (check_space_multi_union_pw_aff(node, shift) < 0) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot shift band node with anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_shift(tree, shift); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_union_pw_aff_free(shift); isl_schedule_node_free(node); return NULL; } /* Tile "node" with tile sizes "sizes". * * The current node is replaced by two nested nodes corresponding * to the tile dimensions and the point dimensions. * * Return a pointer to the outer (tile) node. * * If any of the descendants of "node" depend on the set of outer band nodes, * then we refuse to tile the node. * * If the scale tile loops option is set, then the tile loops * are scaled by the tile sizes. If the shift point loops option is set, * then the point loops are shifted to start at zero. * In particular, these options affect the tile and point loop schedules * as follows * * scale shift original tile point * * 0 0 i floor(i/s) i * 1 0 i s * floor(i/s) i * 0 1 i floor(i/s) i - s * floor(i/s) * 1 1 i s * floor(i/s) i - s * floor(i/s) */ __isl_give isl_schedule_node *isl_schedule_node_band_tile( __isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes) { isl_schedule_tree *tree; int anchored; if (!node || !sizes) goto error; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot tile band node with anchored subtree", goto error); if (check_space_multi_val(node, sizes) < 0) goto error; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_tile(tree, sizes); return isl_schedule_node_graft_tree(node, tree); error: isl_multi_val_free(sizes); isl_schedule_node_free(node); return NULL; } /* Move the band node "node" down to all the leaves in the subtree * rooted at "node". * Return a pointer to the node in the resulting tree that is in the same * position as the node pointed to by "node" in the original tree. * * If the node only has a leaf child, then nothing needs to be done. * Otherwise, the child of the node is removed and the result is * appended to all the leaves in the subtree rooted at the original child. * The original node is then replaced by the result of this operation. * * If any of the nodes in the subtree rooted at "node" depend on * the set of outer band nodes then we refuse to sink the band node. */ __isl_give isl_schedule_node *isl_schedule_node_band_sink( __isl_take isl_schedule_node *node) { enum isl_schedule_node_type type; isl_schedule_tree *tree, *child; int anchored; if (!node) return NULL; type = isl_schedule_node_get_type(node); if (type != isl_schedule_node_band) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a band node", isl_schedule_node_free(node)); anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot sink band node in anchored subtree", isl_schedule_node_free(node)); if (isl_schedule_tree_n_children(node->tree) == 0) return node; tree = isl_schedule_node_get_tree(node); child = isl_schedule_tree_get_child(tree, 0); tree = isl_schedule_tree_reset_children(tree); tree = isl_schedule_tree_append_to_leaves(child, tree); return isl_schedule_node_graft_tree(node, tree); } /* Split "node" into two nested band nodes, one with the first "pos" * dimensions and one with the remaining dimensions. * The schedules of the two band nodes live in anonymous spaces. */ __isl_give isl_schedule_node *isl_schedule_node_band_split( __isl_take isl_schedule_node *node, int pos) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_split(tree, pos); return isl_schedule_node_graft_tree(node, tree); } /* Return the context of the context node "node". */ __isl_give isl_set *isl_schedule_node_context_get_context( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_context_get_context(node->tree); } /* Return the domain of the domain node "node". */ __isl_give isl_union_set *isl_schedule_node_domain_get_domain( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_domain_get_domain(node->tree); } /* Return the expansion map of expansion node "node". */ __isl_give isl_union_map *isl_schedule_node_expansion_get_expansion( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_expansion_get_expansion(node->tree); } /* Return the contraction of expansion node "node". */ __isl_give isl_union_pw_multi_aff *isl_schedule_node_expansion_get_contraction( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_expansion_get_contraction(node->tree); } /* Replace the contraction and the expansion of the expansion node "node" * by "contraction" and "expansion". */ __isl_give isl_schedule_node * isl_schedule_node_expansion_set_contraction_and_expansion( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_schedule_tree *tree; if (!node || !contraction || !expansion) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree, contraction, expansion); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_pw_multi_aff_free(contraction); isl_union_map_free(expansion); return NULL; } /* Return the extension of the extension node "node". */ __isl_give isl_union_map *isl_schedule_node_extension_get_extension( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_extension_get_extension(node->tree); } /* Replace the extension of extension node "node" by "extension". */ __isl_give isl_schedule_node *isl_schedule_node_extension_set_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { isl_schedule_tree *tree; if (!node || !extension) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_extension_set_extension(tree, extension); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_map_free(extension); return NULL; } /* Return the filter of the filter node "node". */ __isl_give isl_union_set *isl_schedule_node_filter_get_filter( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_filter_get_filter(node->tree); } /* Replace the filter of filter node "node" by "filter". */ __isl_give isl_schedule_node *isl_schedule_node_filter_set_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_schedule_tree *tree; if (!node || !filter) goto error; tree = isl_schedule_tree_copy(node->tree); tree = isl_schedule_tree_filter_set_filter(tree, filter); return isl_schedule_node_graft_tree(node, tree); error: isl_schedule_node_free(node); isl_union_set_free(filter); return NULL; } /* Intersect the filter of filter node "node" with "filter". * * If the filter of the node is already a subset of "filter", * then leave the node unchanged. */ __isl_give isl_schedule_node *isl_schedule_node_filter_intersect_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_union_set *node_filter = NULL; isl_bool subset; if (!node || !filter) goto error; node_filter = isl_schedule_node_filter_get_filter(node); subset = isl_union_set_is_subset(node_filter, filter); if (subset < 0) goto error; if (subset) { isl_union_set_free(node_filter); isl_union_set_free(filter); return node; } node_filter = isl_union_set_intersect(node_filter, filter); node = isl_schedule_node_filter_set_filter(node, node_filter); return node; error: isl_schedule_node_free(node); isl_union_set_free(node_filter); isl_union_set_free(filter); return NULL; } /* Return the guard of the guard node "node". */ __isl_give isl_set *isl_schedule_node_guard_get_guard( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_guard_get_guard(node->tree); } /* Return the mark identifier of the mark node "node". */ __isl_give isl_id *isl_schedule_node_mark_get_id( __isl_keep isl_schedule_node *node) { if (!node) return NULL; return isl_schedule_tree_mark_get_id(node->tree); } /* Replace the child at position "pos" of the sequence node "node" * by the children of sequence root node of "tree". */ __isl_give isl_schedule_node *isl_schedule_node_sequence_splice( __isl_take isl_schedule_node *node, int pos, __isl_take isl_schedule_tree *tree) { isl_schedule_tree *node_tree; if (!node || !tree) goto error; if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", goto error); if (isl_schedule_tree_get_type(tree) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", goto error); node_tree = isl_schedule_node_get_tree(node); node_tree = isl_schedule_tree_sequence_splice(node_tree, pos, tree); node = isl_schedule_node_graft_tree(node, node_tree); return node; error: isl_schedule_node_free(node); isl_schedule_tree_free(tree); return NULL; } /* Given a sequence node "node", with a child at position "pos" that * is also a sequence node, attach the children of that node directly * as children of "node" at that position, replacing the original child. * * The filters of these children are intersected with the filter * of the child at position "pos". */ __isl_give isl_schedule_node *isl_schedule_node_sequence_splice_child( __isl_take isl_schedule_node *node, int pos) { int i, n; isl_union_set *filter; isl_schedule_node *child; isl_schedule_tree *tree; if (!node) return NULL; if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", isl_schedule_node_free(node)); node = isl_schedule_node_child(node, pos); node = isl_schedule_node_child(node, 0); if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a sequence node", isl_schedule_node_free(node)); child = isl_schedule_node_copy(node); node = isl_schedule_node_parent(node); filter = isl_schedule_node_filter_get_filter(node); n = isl_schedule_node_n_children(child); for (i = 0; i < n; ++i) { child = isl_schedule_node_child(child, i); child = isl_schedule_node_filter_intersect_filter(child, isl_union_set_copy(filter)); child = isl_schedule_node_parent(child); } isl_union_set_free(filter); tree = isl_schedule_node_get_tree(child); isl_schedule_node_free(child); node = isl_schedule_node_parent(node); node = isl_schedule_node_sequence_splice(node, pos, tree); return node; } /* Update the ancestors of "node" to point to the tree that "node" * now points to. * That is, replace the child in the original parent that corresponds * to the current tree position by node->tree and continue updating * the ancestors in the same way until the root is reached. * * If "fn" is not NULL, then it is called on each ancestor as we move up * the tree so that it can modify the ancestor before it is added * to the list of ancestors of the modified node. * The additional "pos" argument records the position * of the "tree" argument in the original schedule tree. * * If "node" originally points to a leaf of the schedule tree, then make sure * that in the end it points to a leaf in the updated schedule tree. */ static __isl_give isl_schedule_node *update_ancestors( __isl_take isl_schedule_node *node, __isl_give isl_schedule_tree *(*fn)(__isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, void *user), void *user) { int i, n; int is_leaf; isl_ctx *ctx; isl_schedule_tree *tree; isl_schedule_node *pos = NULL; if (fn) pos = isl_schedule_node_copy(node); node = isl_schedule_node_cow(node); if (!node) return isl_schedule_node_free(pos); ctx = isl_schedule_node_get_ctx(node); n = isl_schedule_tree_list_n_schedule_tree(node->ancestors); tree = isl_schedule_tree_copy(node->tree); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *parent; parent = isl_schedule_tree_list_get_schedule_tree( node->ancestors, i); parent = isl_schedule_tree_replace_child(parent, node->child_pos[i], tree); if (fn) { pos = isl_schedule_node_parent(pos); parent = fn(parent, pos, user); } node->ancestors = isl_schedule_tree_list_set_schedule_tree( node->ancestors, i, isl_schedule_tree_copy(parent)); tree = parent; } if (fn) isl_schedule_node_free(pos); is_leaf = isl_schedule_tree_is_leaf(node->tree); node->schedule = isl_schedule_set_root(node->schedule, tree); if (is_leaf) { isl_schedule_tree_free(node->tree); node->tree = isl_schedule_node_get_leaf(node); } if (!node->schedule || !node->ancestors) return isl_schedule_node_free(node); return node; } /* Replace the subtree that "pos" points to by "tree", updating * the ancestors to maintain a consistent state. */ __isl_give isl_schedule_node *isl_schedule_node_graft_tree( __isl_take isl_schedule_node *pos, __isl_take isl_schedule_tree *tree) { if (!tree || !pos) goto error; if (pos->tree == tree) { isl_schedule_tree_free(tree); return pos; } pos = isl_schedule_node_cow(pos); if (!pos) goto error; isl_schedule_tree_free(pos->tree); pos->tree = tree; return update_ancestors(pos, NULL, NULL); error: isl_schedule_node_free(pos); isl_schedule_tree_free(tree); return NULL; } /* Make sure we can insert a node between "node" and its parent. * Return -1 on error, reporting the reason why we cannot insert a node. */ static int check_insert(__isl_keep isl_schedule_node *node) { int has_parent; enum isl_schedule_node_type type; has_parent = isl_schedule_node_has_parent(node); if (has_parent < 0) return -1; if (!has_parent) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert node outside of root", return -1); type = isl_schedule_node_get_parent_type(node); if (type == isl_schedule_node_error) return -1; if (type == isl_schedule_node_set || type == isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert node between set or sequence node " "and its filter children", return -1); return 0; } /* Insert a band node with partial schedule "mupa" between "node" and * its parent. * Return a pointer to the new band node. * * If any of the nodes in the subtree rooted at "node" depend on * the set of outer band nodes then we refuse to insert the band node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_partial_schedule( __isl_take isl_schedule_node *node, __isl_take isl_multi_union_pw_aff *mupa) { int anchored; isl_schedule_band *band; isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert band node in anchored subtree", goto error); tree = isl_schedule_node_get_tree(node); band = isl_schedule_band_from_multi_union_pw_aff(mupa); tree = isl_schedule_tree_insert_band(tree, band); node = isl_schedule_node_graft_tree(node, tree); return node; error: isl_schedule_node_free(node); isl_multi_union_pw_aff_free(mupa); return NULL; } /* Insert a context node with context "context" between "node" and its parent. * Return a pointer to the new context node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_context( __isl_take isl_schedule_node *node, __isl_take isl_set *context) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_context(tree, context); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert an expansion node with the given "contraction" and "expansion" * between "node" and its parent. * Return a pointer to the new expansion node. * * Typically the domain and range spaces of the expansion are different. * This means that only one of them can refer to the current domain space * in a consistent tree. It is up to the caller to ensure that the tree * returns to a consistent state. */ __isl_give isl_schedule_node *isl_schedule_node_insert_expansion( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_expansion(tree, contraction, expansion); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert an extension node with extension "extension" between "node" and * its parent. * Return a pointer to the new extension node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_extension(tree, extension); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a filter node with filter "filter" between "node" and its parent. * Return a pointer to the new filter node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_filter( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_filter(tree, filter); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a guard node with guard "guard" between "node" and its parent. * Return a pointer to the new guard node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_guard( __isl_take isl_schedule_node *node, __isl_take isl_set *guard) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_guard(tree, guard); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Insert a mark node with mark identifier "mark" between "node" and * its parent. * Return a pointer to the new mark node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_mark( __isl_take isl_schedule_node *node, __isl_take isl_id *mark) { isl_schedule_tree *tree; if (check_insert(node) < 0) node = isl_schedule_node_free(node); tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_insert_mark(tree, mark); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Attach the current subtree of "node" to a sequence of filter tree nodes * with filters described by "filters", attach this sequence * of filter tree nodes as children to a new tree of type "type" and * replace the original subtree of "node" by this new tree. * Each copy of the original subtree is simplified with respect * to the corresponding filter. */ static __isl_give isl_schedule_node *isl_schedule_node_insert_children( __isl_take isl_schedule_node *node, enum isl_schedule_node_type type, __isl_take isl_union_set_list *filters) { int i, n; isl_ctx *ctx; isl_schedule_tree *tree; isl_schedule_tree_list *list; if (check_insert(node) < 0) node = isl_schedule_node_free(node); if (!node || !filters) goto error; ctx = isl_schedule_node_get_ctx(node); n = isl_union_set_list_n_union_set(filters); list = isl_schedule_tree_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_schedule_node *node_i; isl_schedule_tree *tree; isl_union_set *filter; filter = isl_union_set_list_get_union_set(filters, i); node_i = isl_schedule_node_copy(node); node_i = isl_schedule_node_gist(node_i, isl_union_set_copy(filter)); tree = isl_schedule_node_get_tree(node_i); isl_schedule_node_free(node_i); tree = isl_schedule_tree_insert_filter(tree, filter); list = isl_schedule_tree_list_add(list, tree); } tree = isl_schedule_tree_from_children(type, list); node = isl_schedule_node_graft_tree(node, tree); isl_union_set_list_free(filters); return node; error: isl_union_set_list_free(filters); isl_schedule_node_free(node); return NULL; } /* Insert a sequence node with child filters "filters" between "node" and * its parent. That is, the tree that "node" points to is attached * to each of the child nodes of the filter nodes. * Return a pointer to the new sequence node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_sequence( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters) { return isl_schedule_node_insert_children(node, isl_schedule_node_sequence, filters); } /* Insert a set node with child filters "filters" between "node" and * its parent. That is, the tree that "node" points to is attached * to each of the child nodes of the filter nodes. * Return a pointer to the new set node. */ __isl_give isl_schedule_node *isl_schedule_node_insert_set( __isl_take isl_schedule_node *node, __isl_take isl_union_set_list *filters) { return isl_schedule_node_insert_children(node, isl_schedule_node_set, filters); } /* Remove "node" from its schedule tree and return a pointer * to the leaf at the same position in the updated schedule tree. * * It is not allowed to remove the root of a schedule tree or * a child of a set or sequence node. */ __isl_give isl_schedule_node *isl_schedule_node_cut( __isl_take isl_schedule_node *node) { isl_schedule_tree *leaf; enum isl_schedule_node_type parent_type; if (!node) return NULL; if (!isl_schedule_node_has_parent(node)) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot cut root", return isl_schedule_node_free(node)); parent_type = isl_schedule_node_get_parent_type(node); if (parent_type == isl_schedule_node_set || parent_type == isl_schedule_node_sequence) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot cut child of set or sequence", return isl_schedule_node_free(node)); leaf = isl_schedule_node_get_leaf(node); return isl_schedule_node_graft_tree(node, leaf); } /* Remove a single node from the schedule tree, attaching the child * of "node" directly to its parent. * Return a pointer to this former child or to the leaf the position * of the original node if there was no child. * It is not allowed to remove the root of a schedule tree, * a set or sequence node, a child of a set or sequence node or * a band node with an anchored subtree. */ __isl_give isl_schedule_node *isl_schedule_node_delete( __isl_take isl_schedule_node *node) { int n; isl_schedule_tree *tree; enum isl_schedule_node_type type; if (!node) return NULL; if (isl_schedule_node_get_tree_depth(node) == 0) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete root node", return isl_schedule_node_free(node)); n = isl_schedule_node_n_children(node); if (n != 1) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "can only delete node with a single child", return isl_schedule_node_free(node)); type = isl_schedule_node_get_parent_type(node); if (type == isl_schedule_node_sequence || type == isl_schedule_node_set) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete child of set or sequence", return isl_schedule_node_free(node)); if (isl_schedule_node_get_type(node) == isl_schedule_node_band) { int anchored; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot delete band node with anchored subtree", return isl_schedule_node_free(node)); } tree = isl_schedule_node_get_tree(node); if (!tree || isl_schedule_tree_has_children(tree)) { tree = isl_schedule_tree_child(tree, 0); } else { isl_schedule_tree_free(tree); tree = isl_schedule_node_get_leaf(node); } node = isl_schedule_node_graft_tree(node, tree); return node; } /* Internal data structure for the group_ancestor callback. * * If "finished" is set, then we no longer need to modify * any further ancestors. * * "contraction" and "expansion" represent the expansion * that reflects the grouping. * * "domain" contains the domain elements that reach the position * where the grouping is performed. That is, it is the range * of the resulting expansion. * "domain_universe" is the universe of "domain". * "group" is the set of group elements, i.e., the domain * of the resulting expansion. * "group_universe" is the universe of "group". * * "sched" is the schedule for the group elements, in pratice * an identity mapping on "group_universe". * "dim" is the dimension of "sched". */ struct isl_schedule_group_data { int finished; isl_union_map *expansion; isl_union_pw_multi_aff *contraction; isl_union_set *domain; isl_union_set *domain_universe; isl_union_set *group; isl_union_set *group_universe; int dim; isl_multi_aff *sched; }; /* Is domain covered by data->domain within data->domain_universe? */ static int locally_covered_by_domain(__isl_keep isl_union_set *domain, struct isl_schedule_group_data *data) { int is_subset; isl_union_set *test; test = isl_union_set_copy(domain); test = isl_union_set_intersect(test, isl_union_set_copy(data->domain_universe)); is_subset = isl_union_set_is_subset(test, data->domain); isl_union_set_free(test); return is_subset; } /* Update the band tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * Add the part of the identity schedule on the group instances data->sched * that corresponds to this band node to the band schedule. * If the domain elements that reach the node and that are part * of data->domain_universe are all elements of data->domain (and therefore * replaced by the group instances) then this data->domain_universe * is removed from the domain of the band schedule. */ static __isl_give isl_schedule_tree *group_band( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; isl_multi_aff *ma; isl_multi_union_pw_aff *mupa, *partial; int is_covered; int depth, n, has_id; domain = isl_schedule_node_get_domain(pos); is_covered = locally_covered_by_domain(domain, data); if (is_covered >= 0 && is_covered) { domain = isl_union_set_universe(domain); domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain_universe)); tree = isl_schedule_tree_band_intersect_domain(tree, domain); } else isl_union_set_free(domain); if (is_covered < 0) return isl_schedule_tree_free(tree); depth = isl_schedule_node_get_schedule_depth(pos); n = isl_schedule_tree_band_n_member(tree); ma = isl_multi_aff_copy(data->sched); ma = isl_multi_aff_drop_dims(ma, isl_dim_out, 0, depth); ma = isl_multi_aff_drop_dims(ma, isl_dim_out, n, data->dim - depth - n); mupa = isl_multi_union_pw_aff_from_multi_aff(ma); partial = isl_schedule_tree_band_get_partial_schedule(tree); has_id = isl_multi_union_pw_aff_has_tuple_id(partial, isl_dim_set); if (has_id < 0) { partial = isl_multi_union_pw_aff_free(partial); } else if (has_id) { isl_id *id; id = isl_multi_union_pw_aff_get_tuple_id(partial, isl_dim_set); mupa = isl_multi_union_pw_aff_set_tuple_id(mupa, isl_dim_set, id); } partial = isl_multi_union_pw_aff_union_add(partial, mupa); tree = isl_schedule_tree_band_set_partial_schedule(tree, partial); return tree; } /* Drop the parameters in "uset" that are not also in "space". * "n" is the number of parameters in "space". */ static __isl_give isl_union_set *union_set_drop_extra_params( __isl_take isl_union_set *uset, __isl_keep isl_space *space, int n) { int n2; uset = isl_union_set_align_params(uset, isl_space_copy(space)); n2 = isl_union_set_dim(uset, isl_dim_param); uset = isl_union_set_project_out(uset, isl_dim_param, n, n2 - n); return uset; } /* Update the context tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * We do not actually need to update "tree" since a context node only * refers to the schedule space. However, we may need to update "data" * to not refer to any parameters introduced by the context node. */ static __isl_give isl_schedule_tree *group_context( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_space *space; isl_union_set *domain; int n1, n2; int involves; if (isl_schedule_node_get_tree_depth(pos) == 1) return tree; domain = isl_schedule_node_get_universe_domain(pos); space = isl_union_set_get_space(domain); isl_union_set_free(domain); n1 = isl_space_dim(space, isl_dim_param); data->expansion = isl_union_map_align_params(data->expansion, space); n2 = isl_union_map_dim(data->expansion, isl_dim_param); if (!data->expansion) return isl_schedule_tree_free(tree); if (n1 == n2) return tree; involves = isl_union_map_involves_dims(data->expansion, isl_dim_param, n1, n2 - n1); if (involves < 0) return isl_schedule_tree_free(tree); if (involves) isl_die(isl_schedule_node_get_ctx(pos), isl_error_invalid, "grouping cannot only refer to global parameters", return isl_schedule_tree_free(tree)); data->expansion = isl_union_map_project_out(data->expansion, isl_dim_param, n1, n2 - n1); space = isl_union_map_get_space(data->expansion); data->contraction = isl_union_pw_multi_aff_align_params( data->contraction, isl_space_copy(space)); n2 = isl_union_pw_multi_aff_dim(data->contraction, isl_dim_param); data->contraction = isl_union_pw_multi_aff_drop_dims(data->contraction, isl_dim_param, n1, n2 - n1); data->domain = union_set_drop_extra_params(data->domain, space, n1); data->domain_universe = union_set_drop_extra_params(data->domain_universe, space, n1); data->group = union_set_drop_extra_params(data->group, space, n1); data->group_universe = union_set_drop_extra_params(data->group_universe, space, n1); data->sched = isl_multi_aff_align_params(data->sched, isl_space_copy(space)); n2 = isl_multi_aff_dim(data->sched, isl_dim_param); data->sched = isl_multi_aff_drop_dims(data->sched, isl_dim_param, n1, n2 - n1); isl_space_free(space); return tree; } /* Update the domain tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * We first double-check that all grouped domain elements are actually * part of the root domain and then replace those elements by the group * instances. */ static __isl_give isl_schedule_tree *group_domain( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; int is_subset; domain = isl_schedule_tree_domain_get_domain(tree); is_subset = isl_union_set_is_subset(data->domain, domain); isl_union_set_free(domain); if (is_subset < 0) return isl_schedule_tree_free(tree); if (!is_subset) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "grouped domain should be part of outer domain", return isl_schedule_tree_free(tree)); domain = isl_schedule_tree_domain_get_domain(tree); domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain)); domain = isl_union_set_union(domain, isl_union_set_copy(data->group)); tree = isl_schedule_tree_domain_set_domain(tree, domain); return tree; } /* Update the expansion tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * Let G_1 -> D_1 be the expansion of "tree" and G_2 -> D_2 the newly * introduced expansion in a descendant of "tree". * We first double-check that D_2 is a subset of D_1. * Then we remove D_2 from the range of G_1 -> D_1 and add the mapping * G_1 -> D_1 . D_2 -> G_2. * Simmilarly, we restrict the domain of the contraction to the universe * of the range of the updated expansion and add G_2 -> D_2 . D_1 -> G_1, * attempting to remove the domain constraints of this additional part. */ static __isl_give isl_schedule_tree *group_expansion( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, struct isl_schedule_group_data *data) { isl_union_set *domain; isl_union_map *expansion, *umap; isl_union_pw_multi_aff *contraction, *upma; int is_subset; expansion = isl_schedule_tree_expansion_get_expansion(tree); domain = isl_union_map_range(expansion); is_subset = isl_union_set_is_subset(data->domain, domain); isl_union_set_free(domain); if (is_subset < 0) return isl_schedule_tree_free(tree); if (!is_subset) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_internal, "grouped domain should be part " "of outer expansion domain", return isl_schedule_tree_free(tree)); expansion = isl_schedule_tree_expansion_get_expansion(tree); umap = isl_union_map_from_union_pw_multi_aff( isl_union_pw_multi_aff_copy(data->contraction)); umap = isl_union_map_apply_range(expansion, umap); expansion = isl_schedule_tree_expansion_get_expansion(tree); expansion = isl_union_map_subtract_range(expansion, isl_union_set_copy(data->domain)); expansion = isl_union_map_union(expansion, umap); umap = isl_union_map_universe(isl_union_map_copy(expansion)); domain = isl_union_map_range(umap); contraction = isl_schedule_tree_expansion_get_contraction(tree); umap = isl_union_map_from_union_pw_multi_aff(contraction); umap = isl_union_map_apply_range(isl_union_map_copy(data->expansion), umap); upma = isl_union_pw_multi_aff_from_union_map(umap); contraction = isl_schedule_tree_expansion_get_contraction(tree); contraction = isl_union_pw_multi_aff_intersect_domain(contraction, domain); domain = isl_union_pw_multi_aff_domain( isl_union_pw_multi_aff_copy(upma)); upma = isl_union_pw_multi_aff_gist(upma, domain); contraction = isl_union_pw_multi_aff_union_add(contraction, upma); tree = isl_schedule_tree_expansion_set_contraction_and_expansion(tree, contraction, expansion); return tree; } /* Update the tree root "tree" to refer to the group instances * in data->group rather than the original domain elements in data->domain. * "pos" is the position in the original schedule tree where the modified * "tree" will be attached. * * If we have come across a domain or expansion node before (data->finished * is set), then we no longer need perform any modifications. * * If "tree" is a filter, then we add data->group_universe to the filter. * We also remove data->domain_universe from the filter if all the domain * elements in this universe that reach the filter node are part of * the elements that are being grouped by data->expansion. * If "tree" is a band, domain or expansion, then it is handled * in a separate function. */ static __isl_give isl_schedule_tree *group_ancestor( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_node *pos, void *user) { struct isl_schedule_group_data *data = user; isl_union_set *domain; int is_covered; if (!tree || !pos) return isl_schedule_tree_free(tree); if (data->finished) return tree; switch (isl_schedule_tree_get_type(tree)) { case isl_schedule_node_error: return isl_schedule_tree_free(tree); case isl_schedule_node_extension: isl_die(isl_schedule_tree_get_ctx(tree), isl_error_unsupported, "grouping not allowed in extended tree", return isl_schedule_tree_free(tree)); case isl_schedule_node_band: tree = group_band(tree, pos, data); break; case isl_schedule_node_context: tree = group_context(tree, pos, data); break; case isl_schedule_node_domain: tree = group_domain(tree, pos, data); data->finished = 1; break; case isl_schedule_node_filter: domain = isl_schedule_node_get_domain(pos); is_covered = locally_covered_by_domain(domain, data); isl_union_set_free(domain); if (is_covered < 0) return isl_schedule_tree_free(tree); domain = isl_schedule_tree_filter_get_filter(tree); if (is_covered) domain = isl_union_set_subtract(domain, isl_union_set_copy(data->domain_universe)); domain = isl_union_set_union(domain, isl_union_set_copy(data->group_universe)); tree = isl_schedule_tree_filter_set_filter(tree, domain); break; case isl_schedule_node_expansion: tree = group_expansion(tree, pos, data); data->finished = 1; break; case isl_schedule_node_leaf: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return tree; } /* Group the domain elements that reach "node" into instances * of a single statement with identifier "group_id". * In particular, group the domain elements according to their * prefix schedule. * * That is, introduce an expansion node with as contraction * the prefix schedule (with the target space replaced by "group_id") * and as expansion the inverse of this contraction (with its range * intersected with the domain elements that reach "node"). * The outer nodes are then modified to refer to the group instances * instead of the original domain elements. * * No instance of "group_id" is allowed to reach "node" prior * to the grouping. * No ancestor of "node" is allowed to be an extension node. * * Return a pointer to original node in tree, i.e., the child * of the newly introduced expansion node. */ __isl_give isl_schedule_node *isl_schedule_node_group( __isl_take isl_schedule_node *node, __isl_take isl_id *group_id) { struct isl_schedule_group_data data = { 0 }; isl_space *space; isl_union_set *domain; isl_union_pw_multi_aff *contraction; isl_union_map *expansion; int disjoint; if (!node || !group_id) goto error; if (check_insert(node) < 0) goto error; domain = isl_schedule_node_get_domain(node); data.domain = isl_union_set_copy(domain); data.domain_universe = isl_union_set_copy(domain); data.domain_universe = isl_union_set_universe(data.domain_universe); data.dim = isl_schedule_node_get_schedule_depth(node); if (data.dim == 0) { isl_ctx *ctx; isl_set *set; isl_union_set *group; isl_union_map *univ; ctx = isl_schedule_node_get_ctx(node); space = isl_space_set_alloc(ctx, 0, 0); space = isl_space_set_tuple_id(space, isl_dim_set, group_id); set = isl_set_universe(isl_space_copy(space)); group = isl_union_set_from_set(set); expansion = isl_union_map_from_domain_and_range(domain, group); univ = isl_union_map_universe(isl_union_map_copy(expansion)); contraction = isl_union_pw_multi_aff_from_union_map(univ); expansion = isl_union_map_reverse(expansion); } else { isl_multi_union_pw_aff *prefix; isl_union_set *univ; prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node); prefix = isl_multi_union_pw_aff_set_tuple_id(prefix, isl_dim_set, group_id); space = isl_multi_union_pw_aff_get_space(prefix); contraction = isl_union_pw_multi_aff_from_multi_union_pw_aff( prefix); univ = isl_union_set_universe(isl_union_set_copy(domain)); contraction = isl_union_pw_multi_aff_intersect_domain(contraction, univ); expansion = isl_union_map_from_union_pw_multi_aff( isl_union_pw_multi_aff_copy(contraction)); expansion = isl_union_map_reverse(expansion); expansion = isl_union_map_intersect_range(expansion, domain); } space = isl_space_map_from_set(space); data.sched = isl_multi_aff_identity(space); data.group = isl_union_map_domain(isl_union_map_copy(expansion)); data.group = isl_union_set_coalesce(data.group); data.group_universe = isl_union_set_copy(data.group); data.group_universe = isl_union_set_universe(data.group_universe); data.expansion = isl_union_map_copy(expansion); data.contraction = isl_union_pw_multi_aff_copy(contraction); node = isl_schedule_node_insert_expansion(node, contraction, expansion); disjoint = isl_union_set_is_disjoint(data.domain_universe, data.group_universe); node = update_ancestors(node, &group_ancestor, &data); isl_union_set_free(data.domain); isl_union_set_free(data.domain_universe); isl_union_set_free(data.group); isl_union_set_free(data.group_universe); isl_multi_aff_free(data.sched); isl_union_map_free(data.expansion); isl_union_pw_multi_aff_free(data.contraction); node = isl_schedule_node_child(node, 0); if (!node || disjoint < 0) return isl_schedule_node_free(node); if (!disjoint) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "group instances already reach node", isl_schedule_node_free(node)); return node; error: isl_schedule_node_free(node); isl_id_free(group_id); return NULL; } /* Compute the gist of the given band node with respect to "context". */ __isl_give isl_schedule_node *isl_schedule_node_band_gist( __isl_take isl_schedule_node *node, __isl_take isl_union_set *context) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_band_gist(tree, context); return isl_schedule_node_graft_tree(node, tree); } /* Internal data structure for isl_schedule_node_gist. * "n_expansion" is the number of outer expansion nodes * with respect to the current position * "filters" contains an element for each outer filter, expansion or * extension node with respect to the current position, each representing * the intersection of the previous element and the filter on the filter node * or the expansion/extension of the previous element. * The first element in the original context passed to isl_schedule_node_gist. */ struct isl_node_gist_data { int n_expansion; isl_union_set_list *filters; }; /* Enter the expansion node "node" during a isl_schedule_node_gist traversal. * * In particular, add an extra element to data->filters containing * the expansion of the previous element and replace the expansion * and contraction on "node" by the gist with respect to these filters. * Also keep track of the fact that we have entered another expansion. */ static __isl_give isl_schedule_node *gist_enter_expansion( __isl_take isl_schedule_node *node, struct isl_node_gist_data *data) { int n; isl_union_set *inner; isl_union_map *expansion; isl_union_pw_multi_aff *contraction; data->n_expansion++; n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); expansion = isl_schedule_node_expansion_get_expansion(node); inner = isl_union_set_apply(inner, expansion); contraction = isl_schedule_node_expansion_get_contraction(node); contraction = isl_union_pw_multi_aff_gist(contraction, isl_union_set_copy(inner)); data->filters = isl_union_set_list_add(data->filters, inner); inner = isl_union_set_list_get_union_set(data->filters, n - 1); expansion = isl_schedule_node_expansion_get_expansion(node); expansion = isl_union_map_gist_domain(expansion, inner); node = isl_schedule_node_expansion_set_contraction_and_expansion(node, contraction, expansion); return node; } /* Enter the extension node "node" during a isl_schedule_node_gist traversal. * * In particular, add an extra element to data->filters containing * the union of the previous element with the additional domain elements * introduced by the extension. */ static __isl_give isl_schedule_node *gist_enter_extension( __isl_take isl_schedule_node *node, struct isl_node_gist_data *data) { int n; isl_union_set *inner, *extra; isl_union_map *extension; n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); extension = isl_schedule_node_extension_get_extension(node); extra = isl_union_map_range(extension); inner = isl_union_set_union(inner, extra); data->filters = isl_union_set_list_add(data->filters, inner); return node; } /* Can we finish gisting at this node? * That is, is the filter on the current filter node a subset of * the original context passed to isl_schedule_node_gist? * If we have gone through any expansions, then we cannot perform * this test since the current domain elements are incomparable * to the domain elements in the original context. */ static int gist_done(__isl_keep isl_schedule_node *node, struct isl_node_gist_data *data) { isl_union_set *filter, *outer; int subset; if (data->n_expansion != 0) return 0; filter = isl_schedule_node_filter_get_filter(node); outer = isl_union_set_list_get_union_set(data->filters, 0); subset = isl_union_set_is_subset(filter, outer); isl_union_set_free(outer); isl_union_set_free(filter); return subset; } /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_gist. * * The "filters" list is extended by one element each time * we come across a filter node by the result of intersecting * the last element in the list with the filter on the filter node. * * If the filter on the current filter node is a subset of * the original context passed to isl_schedule_node_gist, * then there is no need to go into its subtree since it cannot * be further simplified by the context. The "filters" list is * still extended for consistency, but the actual value of the * added element is immaterial since it will not be used. * * Otherwise, the filter on the current filter node is replaced by * the gist of the original filter with respect to the intersection * of the original context with the intermediate filters. * * If the new element in the "filters" list is empty, then no elements * can reach the descendants of the current filter node. The subtree * underneath the filter node is therefore removed. * * Each expansion node we come across is handled by * gist_enter_expansion. * * Each extension node we come across is handled by * gist_enter_extension. */ static __isl_give isl_schedule_node *gist_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_node_gist_data *data = user; do { isl_union_set *filter, *inner; int done, empty; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_expansion: node = gist_enter_expansion(node, data); continue; case isl_schedule_node_extension: node = gist_enter_extension(node, data); continue; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: continue; case isl_schedule_node_filter: break; } done = gist_done(node, data); filter = isl_schedule_node_filter_get_filter(node); if (done < 0 || done) { data->filters = isl_union_set_list_add(data->filters, filter); if (done < 0) return isl_schedule_node_free(node); return node; } n = isl_union_set_list_n_union_set(data->filters); inner = isl_union_set_list_get_union_set(data->filters, n - 1); filter = isl_union_set_gist(filter, isl_union_set_copy(inner)); node = isl_schedule_node_filter_set_filter(node, isl_union_set_copy(filter)); filter = isl_union_set_intersect(filter, inner); empty = isl_union_set_is_empty(filter); data->filters = isl_union_set_list_add(data->filters, filter); if (empty < 0) return isl_schedule_node_free(node); if (!empty) continue; node = isl_schedule_node_child(node, 0); node = isl_schedule_node_cut(node); node = isl_schedule_node_parent(node); return node; } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for isl_schedule_node_gist. * * In particular, if the current node is a filter node, then we remove * the element on the "filters" list that was added when we entered * the node. There is no need to compute any gist here, since we * already did that when we entered the node. * * If the current node is an expansion, then we decrement * the number of outer expansions and remove the element * in data->filters that was added by gist_enter_expansion. * * If the current node is an extension, then remove the element * in data->filters that was added by gist_enter_extension. * * If the current node is a band node, then we compute the gist of * the band node with respect to the intersection of the original context * and the intermediate filters. * * If the current node is a sequence or set node, then some of * the filter children may have become empty and so they are removed. * If only one child is left, then the set or sequence node along with * the single remaining child filter is removed. The filter can be * removed because the filters on a sequence or set node are supposed * to partition the incoming domain instances. * In principle, it should then be impossible for there to be zero * remaining children, but should this happen, we replace the entire * subtree with an empty filter. */ static __isl_give isl_schedule_node *gist_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_node_gist_data *data = user; isl_schedule_tree *tree; int i, n; isl_union_set *filter; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_expansion: data->n_expansion--; case isl_schedule_node_extension: case isl_schedule_node_filter: n = isl_union_set_list_n_union_set(data->filters); data->filters = isl_union_set_list_drop(data->filters, n - 1, 1); break; case isl_schedule_node_band: n = isl_union_set_list_n_union_set(data->filters); filter = isl_union_set_list_get_union_set(data->filters, n - 1); node = isl_schedule_node_band_gist(node, filter); break; case isl_schedule_node_set: case isl_schedule_node_sequence: tree = isl_schedule_node_get_tree(node); n = isl_schedule_tree_n_children(tree); for (i = n - 1; i >= 0; --i) { isl_schedule_tree *child; isl_union_set *filter; int empty; child = isl_schedule_tree_get_child(tree, i); filter = isl_schedule_tree_filter_get_filter(child); empty = isl_union_set_is_empty(filter); isl_union_set_free(filter); isl_schedule_tree_free(child); if (empty < 0) tree = isl_schedule_tree_free(tree); else if (empty) tree = isl_schedule_tree_drop_child(tree, i); } n = isl_schedule_tree_n_children(tree); node = isl_schedule_node_graft_tree(node, tree); if (n == 1) { node = isl_schedule_node_delete(node); node = isl_schedule_node_delete(node); } else if (n == 0) { isl_space *space; filter = isl_union_set_list_get_union_set(data->filters, 0); space = isl_union_set_get_space(filter); isl_union_set_free(filter); filter = isl_union_set_empty(space); node = isl_schedule_node_cut(node); node = isl_schedule_node_insert_filter(node, filter); } break; case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: break; } return node; } /* Compute the gist of the subtree at "node" with respect to * the reaching domain elements in "context". * In particular, compute the gist of all band and filter nodes * in the subtree with respect to "context". Children of set or sequence * nodes that end up with an empty filter are removed completely. * * We keep track of the intersection of "context" with all outer filters * of the current node within the subtree in the final element of "filters". * Initially, this list contains the single element "context" and it is * extended or shortened each time we enter or leave a filter node. */ __isl_give isl_schedule_node *isl_schedule_node_gist( __isl_take isl_schedule_node *node, __isl_take isl_union_set *context) { struct isl_node_gist_data data; data.n_expansion = 0; data.filters = isl_union_set_list_from_union_set(context); node = traverse(node, &gist_enter, &gist_leave, &data); isl_union_set_list_free(data.filters); return node; } /* Intersect the domain of domain node "node" with "domain". * * If the domain of "node" is already a subset of "domain", * then nothing needs to be changed. * * Otherwise, we replace the domain of the domain node by the intersection * and simplify the subtree rooted at "node" with respect to this intersection. */ __isl_give isl_schedule_node *isl_schedule_node_domain_intersect_domain( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain) { isl_schedule_tree *tree; isl_union_set *uset; int is_subset; if (!node || !domain) goto error; uset = isl_schedule_tree_domain_get_domain(node->tree); is_subset = isl_union_set_is_subset(uset, domain); isl_union_set_free(uset); if (is_subset < 0) goto error; if (is_subset) { isl_union_set_free(domain); return node; } tree = isl_schedule_tree_copy(node->tree); uset = isl_schedule_tree_domain_get_domain(tree); uset = isl_union_set_intersect(uset, domain); tree = isl_schedule_tree_domain_set_domain(tree, isl_union_set_copy(uset)); node = isl_schedule_node_graft_tree(node, tree); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_gist(node, uset); node = isl_schedule_node_parent(node); return node; error: isl_schedule_node_free(node); isl_union_set_free(domain); return NULL; } /* Replace the domain of domain node "node" with the gist * of the original domain with respect to the parameter domain "context". */ __isl_give isl_schedule_node *isl_schedule_node_domain_gist_params( __isl_take isl_schedule_node *node, __isl_take isl_set *context) { isl_union_set *domain; isl_schedule_tree *tree; if (!node || !context) goto error; tree = isl_schedule_tree_copy(node->tree); domain = isl_schedule_tree_domain_get_domain(node->tree); domain = isl_union_set_gist_params(domain, context); tree = isl_schedule_tree_domain_set_domain(tree, domain); node = isl_schedule_node_graft_tree(node, tree); return node; error: isl_schedule_node_free(node); isl_set_free(context); return NULL; } /* Internal data structure for isl_schedule_node_get_subtree_expansion. * "expansions" contains a list of accumulated expansions * for each outer expansion, set or sequence node. The first element * in the list is an identity mapping on the reaching domain elements. * "res" collects the results. */ struct isl_subtree_expansion_data { isl_union_map_list *expansions; isl_union_map *res; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_get_subtree_expansion. * * Whenever we come across an expansion node, the last element * of data->expansions is combined with the expansion * on the expansion node. * * Whenever we come across a filter node that is the child * of a set or sequence node, data->expansions is extended * with a new element that restricts the previous element * to the elements selected by the filter. * The previous element can then be reused while backtracking. */ static __isl_give isl_schedule_node *subtree_expansion_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_expansion_data *data = user; do { enum isl_schedule_node_type type; isl_union_set *filter; isl_union_map *inner, *expansion; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; filter = isl_schedule_node_filter_get_filter(node); n = isl_union_map_list_n_union_map(data->expansions); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); inner = isl_union_map_intersect_range(inner, filter); data->expansions = isl_union_map_list_add(data->expansions, inner); break; case isl_schedule_node_expansion: n = isl_union_map_list_n_union_map(data->expansions); expansion = isl_schedule_node_expansion_get_expansion(node); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); inner = isl_union_map_apply_range(inner, expansion); data->expansions = isl_union_map_list_set_union_map(data->expansions, n - 1, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for * isl_schedule_node_get_subtree_expansion. * * If we come across a filter node that is the child * of a set or sequence node, then we remove the element * of data->expansions that was added in subtree_expansion_enter. * * If we reach a leaf node, then the accumulated expansion is * added to data->res. */ static __isl_give isl_schedule_node *subtree_expansion_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_expansion_data *data = user; int n; isl_union_map *inner; enum isl_schedule_node_type type; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; n = isl_union_map_list_n_union_map(data->expansions); data->expansions = isl_union_map_list_drop(data->expansions, n - 1, 1); break; case isl_schedule_node_leaf: n = isl_union_map_list_n_union_map(data->expansions); inner = isl_union_map_list_get_union_map(data->expansions, n - 1); data->res = isl_union_map_union(data->res, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return node; } /* Return a mapping from the domain elements that reach "node" * to the corresponding domain elements in the leaves of the subtree * rooted at "node" obtained by composing the intermediate expansions. * * We start out with an identity mapping between the domain elements * that reach "node" and compose it with all the expansions * on a path from "node" to a leaf while traversing the subtree. * Within the children of an a sequence or set node, the * accumulated expansion is restricted to the elements selected * by the filter child. */ __isl_give isl_union_map *isl_schedule_node_get_subtree_expansion( __isl_keep isl_schedule_node *node) { struct isl_subtree_expansion_data data; isl_space *space; isl_union_set *domain; isl_union_map *expansion; if (!node) return NULL; domain = isl_schedule_node_get_universe_domain(node); space = isl_union_set_get_space(domain); expansion = isl_union_set_identity(domain); data.res = isl_union_map_empty(space); data.expansions = isl_union_map_list_from_union_map(expansion); node = isl_schedule_node_copy(node); node = traverse(node, &subtree_expansion_enter, &subtree_expansion_leave, &data); if (!node) data.res = isl_union_map_free(data.res); isl_schedule_node_free(node); isl_union_map_list_free(data.expansions); return data.res; } /* Internal data structure for isl_schedule_node_get_subtree_contraction. * "contractions" contains a list of accumulated contractions * for each outer expansion, set or sequence node. The first element * in the list is an identity mapping on the reaching domain elements. * "res" collects the results. */ struct isl_subtree_contraction_data { isl_union_pw_multi_aff_list *contractions; isl_union_pw_multi_aff *res; }; /* Callback for "traverse" to enter a node and to move * to the deepest initial subtree that should be traversed * by isl_schedule_node_get_subtree_contraction. * * Whenever we come across an expansion node, the last element * of data->contractions is combined with the contraction * on the expansion node. * * Whenever we come across a filter node that is the child * of a set or sequence node, data->contractions is extended * with a new element that restricts the previous element * to the elements selected by the filter. * The previous element can then be reused while backtracking. */ static __isl_give isl_schedule_node *subtree_contraction_enter( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_contraction_data *data = user; do { enum isl_schedule_node_type type; isl_union_set *filter; isl_union_pw_multi_aff *inner, *contraction; int n; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; filter = isl_schedule_node_filter_get_filter(node); n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); inner = isl_union_pw_multi_aff_intersect_domain(inner, filter); data->contractions = isl_union_pw_multi_aff_list_add(data->contractions, inner); break; case isl_schedule_node_expansion: n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); contraction = isl_schedule_node_expansion_get_contraction(node); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); inner = isl_union_pw_multi_aff_pullback_union_pw_multi_aff( inner, contraction); data->contractions = isl_union_pw_multi_aff_list_set_union_pw_multi_aff( data->contractions, n - 1, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_leaf: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } } while (isl_schedule_node_has_children(node) && (node = isl_schedule_node_first_child(node)) != NULL); return node; } /* Callback for "traverse" to leave a node for * isl_schedule_node_get_subtree_contraction. * * If we come across a filter node that is the child * of a set or sequence node, then we remove the element * of data->contractions that was added in subtree_contraction_enter. * * If we reach a leaf node, then the accumulated contraction is * added to data->res. */ static __isl_give isl_schedule_node *subtree_contraction_leave( __isl_take isl_schedule_node *node, void *user) { struct isl_subtree_contraction_data *data = user; int n; isl_union_pw_multi_aff *inner; enum isl_schedule_node_type type; switch (isl_schedule_node_get_type(node)) { case isl_schedule_node_error: return isl_schedule_node_free(node); case isl_schedule_node_filter: type = isl_schedule_node_get_parent_type(node); if (type != isl_schedule_node_set && type != isl_schedule_node_sequence) break; n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); data->contractions = isl_union_pw_multi_aff_list_drop(data->contractions, n - 1, 1); break; case isl_schedule_node_leaf: n = isl_union_pw_multi_aff_list_n_union_pw_multi_aff( data->contractions); inner = isl_union_pw_multi_aff_list_get_union_pw_multi_aff( data->contractions, n - 1); data->res = isl_union_pw_multi_aff_union_add(data->res, inner); break; case isl_schedule_node_band: case isl_schedule_node_context: case isl_schedule_node_domain: case isl_schedule_node_expansion: case isl_schedule_node_extension: case isl_schedule_node_guard: case isl_schedule_node_mark: case isl_schedule_node_sequence: case isl_schedule_node_set: break; } return node; } /* Return a mapping from the domain elements in the leaves of the subtree * rooted at "node" to the corresponding domain elements that reach "node" * obtained by composing the intermediate contractions. * * We start out with an identity mapping between the domain elements * that reach "node" and compose it with all the contractions * on a path from "node" to a leaf while traversing the subtree. * Within the children of an a sequence or set node, the * accumulated contraction is restricted to the elements selected * by the filter child. */ __isl_give isl_union_pw_multi_aff *isl_schedule_node_get_subtree_contraction( __isl_keep isl_schedule_node *node) { struct isl_subtree_contraction_data data; isl_space *space; isl_union_set *domain; isl_union_pw_multi_aff *contraction; if (!node) return NULL; domain = isl_schedule_node_get_universe_domain(node); space = isl_union_set_get_space(domain); contraction = isl_union_set_identity_union_pw_multi_aff(domain); data.res = isl_union_pw_multi_aff_empty(space); data.contractions = isl_union_pw_multi_aff_list_from_union_pw_multi_aff(contraction); node = isl_schedule_node_copy(node); node = traverse(node, &subtree_contraction_enter, &subtree_contraction_leave, &data); if (!node) data.res = isl_union_pw_multi_aff_free(data.res); isl_schedule_node_free(node); isl_union_pw_multi_aff_list_free(data.contractions); return data.res; } /* Do the nearest "n" ancestors of "node" have the types given in "types" * (starting at the parent of "node")? */ static int has_ancestors(__isl_keep isl_schedule_node *node, int n, enum isl_schedule_node_type *types) { int i, n_ancestor; if (!node) return -1; n_ancestor = isl_schedule_tree_list_n_schedule_tree(node->ancestors); if (n_ancestor < n) return 0; for (i = 0; i < n; ++i) { isl_schedule_tree *tree; int correct_type; tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n_ancestor - 1 - i); if (!tree) return -1; correct_type = isl_schedule_tree_get_type(tree) == types[i]; isl_schedule_tree_free(tree); if (!correct_type) return 0; } return 1; } /* Given a node "node" that appears in an extension (i.e., it is the child * of a filter in a sequence inside an extension node), are the spaces * of the extension specified by "extension" disjoint from those * of both the original extension and the domain elements that reach * that original extension? */ static int is_disjoint_extension(__isl_keep isl_schedule_node *node, __isl_keep isl_union_map *extension) { isl_union_map *old; isl_union_set *domain; int empty; node = isl_schedule_node_copy(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); old = isl_schedule_node_extension_get_extension(node); domain = isl_schedule_node_get_universe_domain(node); isl_schedule_node_free(node); old = isl_union_map_universe(old); domain = isl_union_set_union(domain, isl_union_map_range(old)); extension = isl_union_map_copy(extension); extension = isl_union_map_intersect_range(extension, domain); empty = isl_union_map_is_empty(extension); isl_union_map_free(extension); return empty; } /* Given a node "node" that is governed by an extension node, extend * that extension node with "extension". * * In particular, "node" is the child of a filter in a sequence that * is in turn a child of an extension node. Extend that extension node * with "extension". * * Return a pointer to the parent of the original node (i.e., a filter). */ static __isl_give isl_schedule_node *extend_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { int pos; int disjoint; isl_union_map *node_extension; node = isl_schedule_node_parent(node); pos = isl_schedule_node_get_child_position(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_parent(node); node_extension = isl_schedule_node_extension_get_extension(node); disjoint = isl_union_map_is_disjoint(extension, node_extension); extension = isl_union_map_union(extension, node_extension); node = isl_schedule_node_extension_set_extension(node, extension); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_child(node, pos); if (disjoint < 0) return isl_schedule_node_free(node); if (!node) return NULL; if (!disjoint) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "extension domain should be disjoint from earlier " "extensions", return isl_schedule_node_free(node)); return node; } /* Return the universe of "uset" if this universe is disjoint from "ref". * Otherwise, return "uset". * * Also check if "uset" itself is disjoint from "ref", reporting * an error if it is not. */ static __isl_give isl_union_set *replace_by_universe_if_disjoint( __isl_take isl_union_set *uset, __isl_keep isl_union_set *ref) { int disjoint; isl_union_set *universe; disjoint = isl_union_set_is_disjoint(uset, ref); if (disjoint < 0) return isl_union_set_free(uset); if (!disjoint) isl_die(isl_union_set_get_ctx(uset), isl_error_invalid, "extension domain should be disjoint from " "current domain", return isl_union_set_free(uset)); universe = isl_union_set_universe(isl_union_set_copy(uset)); disjoint = isl_union_set_is_disjoint(universe, ref); if (disjoint >= 0 && disjoint) { isl_union_set_free(uset); return universe; } isl_union_set_free(universe); if (disjoint < 0) return isl_union_set_free(uset); return uset; } /* Insert an extension node on top of "node" with extension "extension". * In addition, insert a filter that separates node from the extension * between the extension node and "node". * Return a pointer to the inserted filter node. * * If "node" already appears in an extension (i.e., if it is the child * of a filter in a sequence inside an extension node), then extend that * extension with "extension" instead. * In this case, a pointer to the original filter node is returned. * Note that if some of the elements in the new extension live in the * same space as those of the original extension or the domain elements * reaching the original extension, then we insert a new extension anyway. * Otherwise, we would have to adjust the filters in the sequence child * of the extension to ensure that the elements in the new extension * are filtered out. */ static __isl_give isl_schedule_node *insert_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension) { enum isl_schedule_node_type ancestors[] = { isl_schedule_node_filter, isl_schedule_node_sequence, isl_schedule_node_extension }; isl_union_set *domain; isl_union_set *filter; int in_ext; in_ext = has_ancestors(node, 3, ancestors); if (in_ext < 0) goto error; if (in_ext) { int disjoint; disjoint = is_disjoint_extension(node, extension); if (disjoint < 0) goto error; if (disjoint) return extend_extension(node, extension); } filter = isl_schedule_node_get_domain(node); domain = isl_union_map_range(isl_union_map_copy(extension)); filter = replace_by_universe_if_disjoint(filter, domain); isl_union_set_free(domain); node = isl_schedule_node_insert_filter(node, filter); node = isl_schedule_node_insert_extension(node, extension); node = isl_schedule_node_child(node, 0); return node; error: isl_schedule_node_free(node); isl_union_map_free(extension); return NULL; } /* Replace the subtree that "node" points to by "tree" (which has * a sequence root with two children), except if the parent of "node" * is a sequence as well, in which case "tree" is spliced at the position * of "node" in its parent. * Return a pointer to the child of the "tree_pos" (filter) child of "tree" * in the updated schedule tree. */ static __isl_give isl_schedule_node *graft_or_splice( __isl_take isl_schedule_node *node, __isl_take isl_schedule_tree *tree, int tree_pos) { int pos; if (isl_schedule_node_get_parent_type(node) == isl_schedule_node_sequence) { pos = isl_schedule_node_get_child_position(node); node = isl_schedule_node_parent(node); node = isl_schedule_node_sequence_splice(node, pos, tree); } else { pos = 0; node = isl_schedule_node_graft_tree(node, tree); } node = isl_schedule_node_child(node, pos + tree_pos); node = isl_schedule_node_child(node, 0); return node; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before (if "before" is set) or after (if "before" is not set) * the node that "node" points to. * The root of "graft" is an extension node. * Return a pointer to the node that "node" pointed to. * * We first insert an extension node on top of "node" (or extend * the extension node if there already is one), with a filter on "node" * separating it from the extension. * We then insert a filter in the graft to separate it from the original * domain elements and combine the original and new tree in a sequence. * If we have extended an extension node, then the children of this * sequence are spliced in the sequence of the extended extension * at the position where "node" appears in the original extension. * Otherwise, the sequence pair is attached to the new extension node. */ static __isl_give isl_schedule_node *graft_extension( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft, int before) { isl_union_map *extension; isl_union_set *graft_domain; isl_union_set *node_domain; isl_schedule_tree *tree, *tree_graft; extension = isl_schedule_node_extension_get_extension(graft); graft_domain = isl_union_map_range(isl_union_map_copy(extension)); node_domain = isl_schedule_node_get_universe_domain(node); node = insert_extension(node, extension); graft_domain = replace_by_universe_if_disjoint(graft_domain, node_domain); isl_union_set_free(node_domain); tree = isl_schedule_node_get_tree(node); if (!isl_schedule_node_has_children(graft)) { tree_graft = isl_schedule_tree_from_filter(graft_domain); } else { graft = isl_schedule_node_child(graft, 0); tree_graft = isl_schedule_node_get_tree(graft); tree_graft = isl_schedule_tree_insert_filter(tree_graft, graft_domain); } if (before) tree = isl_schedule_tree_sequence_pair(tree_graft, tree); else tree = isl_schedule_tree_sequence_pair(tree, tree_graft); node = graft_or_splice(node, tree, before); isl_schedule_node_free(graft); return node; } /* Replace the root domain node of "node" by an extension node suitable * for insertion at "pos". * That is, create an extension node that maps the outer band nodes * at "pos" to the domain of the root node of "node" and attach * the child of this root node to the extension node. */ static __isl_give isl_schedule_node *extension_from_domain( __isl_take isl_schedule_node *node, __isl_keep isl_schedule_node *pos) { isl_union_set *universe; isl_union_set *domain; isl_union_map *ext; int depth; int anchored; isl_space *space; isl_schedule_node *res; isl_schedule_tree *tree; anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) return isl_schedule_node_free(node); if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "cannot graft anchored tree with domain root", return isl_schedule_node_free(node)); depth = isl_schedule_node_get_schedule_depth(pos); domain = isl_schedule_node_domain_get_domain(node); space = isl_union_set_get_space(domain); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, depth); universe = isl_union_set_from_set(isl_set_universe(space)); ext = isl_union_map_from_domain_and_range(universe, domain); res = isl_schedule_node_from_extension(ext); node = isl_schedule_node_child(node, 0); if (!node) return isl_schedule_node_free(res); if (!isl_schedule_tree_is_leaf(node->tree)) { tree = isl_schedule_node_get_tree(node); res = isl_schedule_node_child(res, 0); res = isl_schedule_node_graft_tree(res, tree); res = isl_schedule_node_parent(res); } isl_schedule_node_free(node); return res; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before (if "before" is set) or after (if "before" is not set) * the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * The schedule tree of "node" is modified to include an extension node * corresponding to the root node of "graft" as a child of the original * parent of "node". The original node that "node" points to and the * child of the root node of "graft" are attached to this extension node * through a sequence, with appropriate filters and with the child * of "graft" appearing before or after the original "node". * * If "node" already appears inside a sequence that is the child of * an extension node and if the spaces of the new domain elements * do not overlap with those of the original domain elements, * then that extension node is extended with the new extension * rather than introducing a new segment of extension and sequence nodes. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ static __isl_give isl_schedule_node *isl_schedule_node_graft_before_or_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft, int before) { if (!node || !graft) goto error; if (check_insert(node) < 0) goto error; if (isl_schedule_node_get_type(graft) == isl_schedule_node_domain) graft = extension_from_domain(graft, node); if (isl_schedule_node_get_type(graft) != isl_schedule_node_extension) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "expecting domain or extension as root of graft", goto error); return graft_extension(node, graft, before); error: isl_schedule_node_free(node); isl_schedule_node_free(graft); return NULL; } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed before the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ __isl_give isl_schedule_node *isl_schedule_node_graft_before( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft) { return isl_schedule_node_graft_before_or_after(node, graft, 1); } /* Insert a node "graft" into the schedule tree of "node" such that it * is executed after the node that "node" points to. * The root of "graft" may be either a domain or an extension node. * In the latter case, the domain of the extension needs to correspond * to the outer band nodes of "node". * The elements of the domain or the range of the extension may not * intersect with the domain elements that reach "node". * The schedule tree of "graft" may not be anchored. * * Return a pointer to the same node in the modified tree that * "node" pointed to in the original tree. */ __isl_give isl_schedule_node *isl_schedule_node_graft_after( __isl_take isl_schedule_node *node, __isl_take isl_schedule_node *graft) { return isl_schedule_node_graft_before_or_after(node, graft, 0); } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed before or after the second subset, depending on the value * of "before". * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. * If both subsets are non-empty, then a sequence node is introduced * to impose the order. If the grandparent of the original node was * itself a sequence, then the original child is replaced by two children * in this sequence instead. * The children in the sequence are copies of the original subtree, * simplified with respect to their filters. */ static __isl_give isl_schedule_node *isl_schedule_node_order_before_or_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter, int before) { enum isl_schedule_node_type ancestors[] = { isl_schedule_node_filter, isl_schedule_node_sequence }; isl_union_set *node_domain, *node_filter = NULL; isl_schedule_node *node2; isl_schedule_tree *tree1, *tree2; int empty1, empty2; int in_seq; if (!node || !filter) goto error; if (check_insert(node) < 0) goto error; in_seq = has_ancestors(node, 2, ancestors); if (in_seq < 0) goto error; if (in_seq) node = isl_schedule_node_parent(node); node_domain = isl_schedule_node_get_domain(node); filter = isl_union_set_gist(filter, isl_union_set_copy(node_domain)); node_filter = isl_union_set_copy(node_domain); node_filter = isl_union_set_subtract(node_filter, isl_union_set_copy(filter)); node_filter = isl_union_set_gist(node_filter, node_domain); empty1 = isl_union_set_is_empty(filter); empty2 = isl_union_set_is_empty(node_filter); if (empty1 < 0 || empty2 < 0) goto error; if (empty1 || empty2) { isl_union_set_free(filter); isl_union_set_free(node_filter); return node; } node2 = isl_schedule_node_copy(node); node = isl_schedule_node_gist(node, isl_union_set_copy(node_filter)); node2 = isl_schedule_node_gist(node2, isl_union_set_copy(filter)); tree1 = isl_schedule_node_get_tree(node); tree2 = isl_schedule_node_get_tree(node2); isl_schedule_node_free(node2); tree1 = isl_schedule_tree_insert_filter(tree1, node_filter); tree2 = isl_schedule_tree_insert_filter(tree2, filter); if (before) { tree1 = isl_schedule_tree_sequence_pair(tree2, tree1); node = graft_or_splice(node, tree1, 1); } else { tree1 = isl_schedule_tree_sequence_pair(tree1, tree2); node = graft_or_splice(node, tree1, 0); } return node; error: isl_schedule_node_free(node); isl_union_set_free(filter); isl_union_set_free(node_filter); return NULL; } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed before the second subset. * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. */ __isl_give isl_schedule_node *isl_schedule_node_order_before( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { return isl_schedule_node_order_before_or_after(node, filter, 1); } /* Split the domain elements that reach "node" into those that satisfy * "filter" and those that do not. Arrange for the first subset to be * executed after the second subset. * Return a pointer to the tree corresponding to the second subset, * except when this subset is empty in which case the original pointer * is returned. */ __isl_give isl_schedule_node *isl_schedule_node_order_after( __isl_take isl_schedule_node *node, __isl_take isl_union_set *filter) { return isl_schedule_node_order_before_or_after(node, filter, 0); } /* Reset the user pointer on all identifiers of parameters and tuples * in the schedule node "node". */ __isl_give isl_schedule_node *isl_schedule_node_reset_user( __isl_take isl_schedule_node *node) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_reset_user(tree); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Align the parameters of the schedule node "node" to those of "space". */ __isl_give isl_schedule_node *isl_schedule_node_align_params( __isl_take isl_schedule_node *node, __isl_take isl_space *space) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_align_params(tree, space); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Compute the pullback of schedule node "node" * by the function represented by "upma". * In other words, plug in "upma" in the iteration domains * of schedule node "node". * We currently do not handle expansion nodes. * * Note that this is only a helper function for * isl_schedule_pullback_union_pw_multi_aff. In order to maintain consistency, * this function should not be called on a single node without also * calling it on all the other nodes. */ __isl_give isl_schedule_node *isl_schedule_node_pullback_union_pw_multi_aff( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *upma) { isl_schedule_tree *tree; tree = isl_schedule_node_get_tree(node); tree = isl_schedule_tree_pullback_union_pw_multi_aff(tree, upma); node = isl_schedule_node_graft_tree(node, tree); return node; } /* Return the position of the subtree containing "node" among the children * of "ancestor". "node" is assumed to be a descendant of "ancestor". * In particular, both nodes should point to the same schedule tree. * * Return -1 on error. */ int isl_schedule_node_get_ancestor_child_position( __isl_keep isl_schedule_node *node, __isl_keep isl_schedule_node *ancestor) { int n1, n2; isl_schedule_tree *tree; if (!node || !ancestor) return -1; if (node->schedule != ancestor->schedule) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); n1 = isl_schedule_node_get_tree_depth(ancestor); n2 = isl_schedule_node_get_tree_depth(node); if (n1 >= n2) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); tree = isl_schedule_tree_list_get_schedule_tree(node->ancestors, n1); isl_schedule_tree_free(tree); if (tree != ancestor->tree) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "not a descendant", return -1); return node->child_pos[n1]; } /* Given two nodes that point to the same schedule tree, return their * closest shared ancestor. * * Since the two nodes point to the same schedule, they share at least * one ancestor, the root of the schedule. We move down from the root * to the first ancestor where the respective children have a different * child position. This is the requested ancestor. * If there is no ancestor where the children have a different position, * then one node is an ancestor of the other and then this node is * the requested ancestor. */ __isl_give isl_schedule_node *isl_schedule_node_get_shared_ancestor( __isl_keep isl_schedule_node *node1, __isl_keep isl_schedule_node *node2) { int i, n1, n2; if (!node1 || !node2) return NULL; if (node1->schedule != node2->schedule) isl_die(isl_schedule_node_get_ctx(node1), isl_error_invalid, "not part of same schedule", return NULL); n1 = isl_schedule_node_get_tree_depth(node1); n2 = isl_schedule_node_get_tree_depth(node2); if (n2 < n1) return isl_schedule_node_get_shared_ancestor(node2, node1); if (n1 == 0) return isl_schedule_node_copy(node1); if (isl_schedule_node_is_equal(node1, node2)) return isl_schedule_node_copy(node1); for (i = 0; i < n1; ++i) if (node1->child_pos[i] != node2->child_pos[i]) break; node1 = isl_schedule_node_copy(node1); return isl_schedule_node_ancestor(node1, n1 - i); } /* Print "node" to "p". */ __isl_give isl_printer *isl_printer_print_schedule_node( __isl_take isl_printer *p, __isl_keep isl_schedule_node *node) { if (!node) return isl_printer_free(p); return isl_printer_print_schedule_tree_mark(p, node->schedule->root, isl_schedule_tree_list_n_schedule_tree(node->ancestors), node->child_pos); } void isl_schedule_node_dump(__isl_keep isl_schedule_node *node) { isl_ctx *ctx; isl_printer *printer; if (!node) return; ctx = isl_schedule_node_get_ctx(node); printer = isl_printer_to_file(ctx, stderr); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule_node(printer, node); isl_printer_free(printer); } /* Return a string representation of "node". * Print the schedule node in block format as it would otherwise * look identical to the entire schedule. */ __isl_give char *isl_schedule_node_to_str(__isl_keep isl_schedule_node *node) { isl_printer *printer; char *s; if (!node) return NULL; printer = isl_printer_to_str(isl_schedule_node_get_ctx(node)); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule_node(printer, node); s = isl_printer_get_str(printer); isl_printer_free(printer); return s; } isl-0.16.1/isl_ast_graft.c0000664000175000017500000010576112645737060012322 00000000000000/* * Copyright 2012 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #include #include #include static __isl_give isl_ast_graft *isl_ast_graft_copy( __isl_keep isl_ast_graft *graft); #undef BASE #define BASE ast_graft #include #undef BASE #define BASE ast_graft #include isl_ctx *isl_ast_graft_get_ctx(__isl_keep isl_ast_graft *graft) { if (!graft) return NULL; return isl_basic_set_get_ctx(graft->enforced); } __isl_give isl_ast_node *isl_ast_graft_get_node( __isl_keep isl_ast_graft *graft) { return graft ? isl_ast_node_copy(graft->node) : NULL; } /* Create a graft for "node" with no guards and no enforced conditions. */ __isl_give isl_ast_graft *isl_ast_graft_alloc( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_space *space; isl_ast_graft *graft; if (!node) return NULL; ctx = isl_ast_node_get_ctx(node); graft = isl_calloc_type(ctx, isl_ast_graft); if (!graft) goto error; space = isl_ast_build_get_space(build, 1); graft->ref = 1; graft->node = node; graft->guard = isl_set_universe(isl_space_copy(space)); graft->enforced = isl_basic_set_universe(space); if (!graft->guard || !graft->enforced) return isl_ast_graft_free(graft); return graft; error: isl_ast_node_free(node); return NULL; } /* Create a graft with no guards and no enforced conditions * encapsulating a call to the domain element specified by "executed". * "executed" is assumed to be single-valued. */ __isl_give isl_ast_graft *isl_ast_graft_alloc_domain( __isl_take isl_map *executed, __isl_keep isl_ast_build *build) { isl_ast_node *node; node = isl_ast_build_call_from_executed(build, executed); return isl_ast_graft_alloc(node, build); } static __isl_give isl_ast_graft *isl_ast_graft_copy( __isl_keep isl_ast_graft *graft) { if (!graft) return NULL; graft->ref++; return graft; } /* Do all the grafts in "list" have the same guard and is this guard * independent of the current depth? */ static int equal_independent_guards(__isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { int i, n; int depth; isl_ast_graft *graft_0; int equal = 1; int skip; graft_0 = isl_ast_graft_list_get_ast_graft(list, 0); if (!graft_0) return -1; depth = isl_ast_build_get_depth(build); if (isl_set_dim(graft_0->guard, isl_dim_set) <= depth) skip = 0; else skip = isl_set_involves_dims(graft_0->guard, isl_dim_set, depth, 1); if (skip < 0 || skip) { isl_ast_graft_free(graft_0); return skip < 0 ? -1 : 0; } n = isl_ast_graft_list_n_ast_graft(list); for (i = 1; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); if (!graft) equal = -1; else equal = isl_set_is_equal(graft_0->guard, graft->guard); isl_ast_graft_free(graft); if (equal < 0 || !equal) break; } isl_ast_graft_free(graft_0); return equal; } /* Hoist "guard" out of the current level (given by "build"). * * In particular, eliminate the dimension corresponding to the current depth. */ static __isl_give isl_set *hoist_guard(__isl_take isl_set *guard, __isl_keep isl_ast_build *build) { int depth; depth = isl_ast_build_get_depth(build); if (depth < isl_set_dim(guard, isl_dim_set)) { guard = isl_set_remove_divs_involving_dims(guard, isl_dim_set, depth, 1); guard = isl_set_eliminate(guard, isl_dim_set, depth, 1); guard = isl_set_compute_divs(guard); } return guard; } /* Extract a common guard from the grafts in "list" that can be hoisted * out of the current level. If no such guard can be found, then return * a universal set. * * If all the grafts in the list have the same guard and if this guard * is independent of the current level, then it can be hoisted out. * If there is only one graft in the list and if its guard * depends on the current level, then we eliminate this level and * return the result. * * Otherwise, we return the unshifted simple hull of the guards. * In order to be able to hoist as many constraints as possible, * but at the same time avoid hoisting constraints that did not * appear in the guards in the first place, we intersect the guards * with all the information that is available (i.e., the domain * from the build and the enforced constraints of the graft) and * compute the unshifted hull of the result using only constraints * from the original guards. * In particular, intersecting the guards with other known information * allows us to hoist guards that are only explicit is some of * the grafts and implicit in the others. * * The special case for equal guards is needed in case those guards * are non-convex. Taking the simple hull would remove information * and would not allow for these guards to be hoisted completely. */ __isl_give isl_set *isl_ast_graft_list_extract_hoistable_guard( __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { int i, n; int equal; isl_ctx *ctx; isl_set *guard; isl_set_list *set_list; isl_basic_set *hull; if (!list || !build) return NULL; n = isl_ast_graft_list_n_ast_graft(list); if (n == 0) return isl_set_universe(isl_ast_build_get_space(build, 1)); equal = equal_independent_guards(list, build); if (equal < 0) return NULL; if (equal || n == 1) { isl_ast_graft *graft_0; graft_0 = isl_ast_graft_list_get_ast_graft(list, 0); if (!graft_0) return NULL; guard = isl_set_copy(graft_0->guard); if (!equal) guard = hoist_guard(guard, build); isl_ast_graft_free(graft_0); return guard; } ctx = isl_ast_build_get_ctx(build); set_list = isl_set_list_alloc(ctx, n); guard = isl_set_empty(isl_ast_build_get_space(build, 1)); for (i = 0; i < n; ++i) { isl_ast_graft *graft; isl_basic_set *enforced; isl_set *guard_i; graft = isl_ast_graft_list_get_ast_graft(list, i); enforced = isl_ast_graft_get_enforced(graft); guard_i = isl_set_copy(graft->guard); isl_ast_graft_free(graft); set_list = isl_set_list_add(set_list, isl_set_copy(guard_i)); guard_i = isl_set_intersect(guard_i, isl_set_from_basic_set(enforced)); guard_i = isl_set_intersect(guard_i, isl_ast_build_get_domain(build)); guard = isl_set_union(guard, guard_i); } hull = isl_set_unshifted_simple_hull_from_set_list(guard, set_list); guard = isl_set_from_basic_set(hull); return hoist_guard(guard, build); } /* Internal data structure used inside insert_if. * * list is the list of guarded nodes created by each call to insert_if. * node is the original node that is guarded by insert_if. * build is the build in which the AST is constructed. */ struct isl_insert_if_data { isl_ast_node_list *list; isl_ast_node *node; isl_ast_build *build; }; static isl_stat insert_if(__isl_take isl_basic_set *bset, void *user); /* Insert an if node around "node" testing the condition encoded * in guard "guard". * * If the user does not want any disjunctions in the if conditions * and if "guard" does involve a disjunction, then we make the different * disjuncts disjoint and insert an if node corresponding to each disjunct * around a copy of "node". The result is then a block node containing * this sequence of guarded copies of "node". */ static __isl_give isl_ast_node *ast_node_insert_if( __isl_take isl_ast_node *node, __isl_take isl_set *guard, __isl_keep isl_ast_build *build) { struct isl_insert_if_data data; isl_ctx *ctx; ctx = isl_ast_build_get_ctx(build); if (isl_options_get_ast_build_allow_or(ctx) || isl_set_n_basic_set(guard) <= 1) { isl_ast_node *if_node; isl_ast_expr *expr; expr = isl_ast_build_expr_from_set_internal(build, guard); if_node = isl_ast_node_alloc_if(expr); return isl_ast_node_if_set_then(if_node, node); } guard = isl_set_make_disjoint(guard); data.list = isl_ast_node_list_alloc(ctx, 0); data.node = node; data.build = build; if (isl_set_foreach_basic_set(guard, &insert_if, &data) < 0) data.list = isl_ast_node_list_free(data.list); isl_set_free(guard); isl_ast_node_free(data.node); return isl_ast_node_alloc_block(data.list); } /* Insert an if node around a copy of "data->node" testing the condition * encoded in guard "bset" and add the result to data->list. */ static isl_stat insert_if(__isl_take isl_basic_set *bset, void *user) { struct isl_insert_if_data *data = user; isl_ast_node *node; isl_set *set; set = isl_set_from_basic_set(bset); node = isl_ast_node_copy(data->node); node = ast_node_insert_if(node, set, data->build); data->list = isl_ast_node_list_add(data->list, node); return isl_stat_ok; } /* Insert an if node around graft->node testing the condition encoded * in guard "guard", assuming guard involves any conditions. */ static __isl_give isl_ast_graft *insert_if_node( __isl_take isl_ast_graft *graft, __isl_take isl_set *guard, __isl_keep isl_ast_build *build) { int univ; if (!graft) goto error; univ = isl_set_plain_is_universe(guard); if (univ < 0) goto error; if (univ) { isl_set_free(guard); return graft; } build = isl_ast_build_copy(build); graft->node = ast_node_insert_if(graft->node, guard, build); isl_ast_build_free(build); if (!graft->node) return isl_ast_graft_free(graft); return graft; error: isl_set_free(guard); return isl_ast_graft_free(graft); } /* Insert an if node around graft->node testing the condition encoded * in graft->guard, assuming graft->guard involves any conditions. */ static __isl_give isl_ast_graft *insert_pending_guard_node( __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { if (!graft) return NULL; return insert_if_node(graft, isl_set_copy(graft->guard), build); } /* Replace graft->enforced by "enforced". */ __isl_give isl_ast_graft *isl_ast_graft_set_enforced( __isl_take isl_ast_graft *graft, __isl_take isl_basic_set *enforced) { if (!graft || !enforced) goto error; isl_basic_set_free(graft->enforced); graft->enforced = enforced; return graft; error: isl_basic_set_free(enforced); return isl_ast_graft_free(graft); } /* Update "enforced" such that it only involves constraints that are * also enforced by "graft". */ static __isl_give isl_basic_set *update_enforced( __isl_take isl_basic_set *enforced, __isl_keep isl_ast_graft *graft, int depth) { isl_basic_set *enforced_g; enforced_g = isl_ast_graft_get_enforced(graft); if (depth < isl_basic_set_dim(enforced_g, isl_dim_set)) enforced_g = isl_basic_set_eliminate(enforced_g, isl_dim_set, depth, 1); enforced_g = isl_basic_set_remove_unknown_divs(enforced_g); enforced_g = isl_basic_set_align_params(enforced_g, isl_basic_set_get_space(enforced)); enforced = isl_basic_set_align_params(enforced, isl_basic_set_get_space(enforced_g)); enforced = isl_set_simple_hull(isl_basic_set_union(enforced, enforced_g)); return enforced; } /* Extend the node at *body with node. * * If body points to the else branch, then *body may still be NULL. * If so, we simply attach node to this else branch. * Otherwise, we attach a list containing the statements already * attached at *body followed by node. */ static void extend_body(__isl_keep isl_ast_node **body, __isl_take isl_ast_node *node) { isl_ast_node_list *list; if (!*body) { *body = node; return; } if ((*body)->type == isl_ast_node_block) { list = isl_ast_node_block_get_children(*body); isl_ast_node_free(*body); } else list = isl_ast_node_list_from_ast_node(*body); list = isl_ast_node_list_add(list, node); *body = isl_ast_node_alloc_block(list); } /* Merge "graft" into the last graft of "list". * body points to the then or else branch of an if node in that last graft. * * We attach graft->node to this branch and update the enforced * set of the last graft of "list" to take into account the enforced * set of "graft". */ static __isl_give isl_ast_graft_list *graft_extend_body( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_node **body, __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { int n; int depth; isl_ast_graft *last; isl_space *space; isl_basic_set *enforced; if (!list || !graft) goto error; extend_body(body, isl_ast_node_copy(graft->node)); if (!*body) goto error; n = isl_ast_graft_list_n_ast_graft(list); last = isl_ast_graft_list_get_ast_graft(list, n - 1); depth = isl_ast_build_get_depth(build); space = isl_ast_build_get_space(build, 1); enforced = isl_basic_set_empty(space); enforced = update_enforced(enforced, last, depth); enforced = update_enforced(enforced, graft, depth); last = isl_ast_graft_set_enforced(last, enforced); list = isl_ast_graft_list_set_ast_graft(list, n - 1, last); isl_ast_graft_free(graft); return list; error: isl_ast_graft_free(graft); return isl_ast_graft_list_free(list); } /* Merge "graft" into the last graft of "list", attaching graft->node * to the then branch of "last_if". */ static __isl_give isl_ast_graft_list *extend_then( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_node *last_if, __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { return graft_extend_body(list, &last_if->u.i.then, graft, build); } /* Merge "graft" into the last graft of "list", attaching graft->node * to the else branch of "last_if". */ static __isl_give isl_ast_graft_list *extend_else( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_node *last_if, __isl_take isl_ast_graft *graft, __isl_keep isl_ast_build *build) { return graft_extend_body(list, &last_if->u.i.else_node, graft, build); } /* This data structure keeps track of an if node. * * "node" is the actual if-node * "guard" is the original, non-simplified guard of the node * "complement" is the complement of "guard" in the context of outer if nodes */ struct isl_if_node { isl_ast_node *node; isl_set *guard; isl_set *complement; }; /* Given a list of "n" if nodes, clear those starting at "first" * and return "first" (i.e., the updated size of the array). */ static int clear_if_nodes(struct isl_if_node *if_node, int first, int n) { int i; for (i = first; i < n; ++i) { isl_set_free(if_node[i].guard); isl_set_free(if_node[i].complement); } return first; } /* For each graft in "list", * insert an if node around graft->node testing the condition encoded * in graft->guard, assuming graft->guard involves any conditions. * * We keep track of a list of generated if nodes that can be extended * without changing the order of the elements in "list". * If the guard of a graft is a subset of either the guard or its complement * of one of those if nodes, then the node * of the new graft is inserted into the then or else branch of the last graft * and the current graft is discarded. * The guard of the node is then simplified based on the conditions * enforced at that then or else branch. * Otherwise, the current graft is appended to the list. * * We only construct else branches if allowed by the user. */ static __isl_give isl_ast_graft_list *insert_pending_guard_nodes( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { int i, j, n, n_if; int allow_else; isl_ctx *ctx; isl_ast_graft_list *res; struct isl_if_node *if_node = NULL; if (!build || !list) return isl_ast_graft_list_free(list); ctx = isl_ast_build_get_ctx(build); n = isl_ast_graft_list_n_ast_graft(list); allow_else = isl_options_get_ast_build_allow_else(ctx); n_if = 0; if (n > 1) { if_node = isl_alloc_array(ctx, struct isl_if_node, n - 1); if (!if_node) return isl_ast_graft_list_free(list); } res = isl_ast_graft_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_set *guard; isl_ast_graft *graft; int subset, found_then, found_else; isl_ast_node *node; graft = isl_ast_graft_list_get_ast_graft(list, i); if (!graft) break; subset = 0; found_then = found_else = -1; if (n_if > 0) { isl_set *test; test = isl_set_copy(graft->guard); test = isl_set_intersect(test, isl_set_copy(build->domain)); for (j = n_if - 1; j >= 0; --j) { subset = isl_set_is_subset(test, if_node[j].guard); if (subset < 0 || subset) { found_then = j; break; } if (!allow_else) continue; subset = isl_set_is_subset(test, if_node[j].complement); if (subset < 0 || subset) { found_else = j; break; } } n_if = clear_if_nodes(if_node, j + 1, n_if); isl_set_free(test); } if (subset < 0) { graft = isl_ast_graft_free(graft); break; } guard = isl_set_copy(graft->guard); if (found_then >= 0) graft->guard = isl_set_gist(graft->guard, isl_set_copy(if_node[found_then].guard)); else if (found_else >= 0) graft->guard = isl_set_gist(graft->guard, isl_set_copy(if_node[found_else].complement)); node = graft->node; if (!graft->guard) graft = isl_ast_graft_free(graft); graft = insert_pending_guard_node(graft, build); if (graft && graft->node != node && i != n - 1) { isl_set *set; if_node[n_if].node = graft->node; if_node[n_if].guard = guard; if (found_then >= 0) set = if_node[found_then].guard; else if (found_else >= 0) set = if_node[found_else].complement; else set = build->domain; set = isl_set_copy(set); set = isl_set_subtract(set, isl_set_copy(guard)); if_node[n_if].complement = set; n_if++; } else isl_set_free(guard); if (!graft) break; if (found_then >= 0) res = extend_then(res, if_node[found_then].node, graft, build); else if (found_else >= 0) res = extend_else(res, if_node[found_else].node, graft, build); else res = isl_ast_graft_list_add(res, graft); } if (i < n) res = isl_ast_graft_list_free(res); isl_ast_graft_list_free(list); clear_if_nodes(if_node, 0, n_if); free(if_node); return res; } /* For each graft in "list", * insert an if node around graft->node testing the condition encoded * in graft->guard, assuming graft->guard involves any conditions. * Subsequently remove the guards from the grafts. */ __isl_give isl_ast_graft_list *isl_ast_graft_list_insert_pending_guard_nodes( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { int i, n; isl_set *universe; list = insert_pending_guard_nodes(list, build); if (!list) return NULL; universe = isl_set_universe(isl_ast_build_get_space(build, 1)); n = isl_ast_graft_list_n_ast_graft(list); for (i = 0; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); if (!graft) break; isl_set_free(graft->guard); graft->guard = isl_set_copy(universe); if (!graft->guard) graft = isl_ast_graft_free(graft); list = isl_ast_graft_list_set_ast_graft(list, i, graft); } isl_set_free(universe); if (i < n) return isl_ast_graft_list_free(list); return list; } /* Collect the nodes contained in the grafts in "list" in a node list. */ static __isl_give isl_ast_node_list *extract_node_list( __isl_keep isl_ast_graft_list *list) { int i, n; isl_ctx *ctx; isl_ast_node_list *node_list; if (!list) return NULL; ctx = isl_ast_graft_list_get_ctx(list); n = isl_ast_graft_list_n_ast_graft(list); node_list = isl_ast_node_list_alloc(ctx, n); for (i = 0; i < n; ++i) { isl_ast_node *node; isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); node = isl_ast_graft_get_node(graft); node_list = isl_ast_node_list_add(node_list, node); isl_ast_graft_free(graft); } return node_list; } /* Look for shared enforced constraints by all the elements in "list" * on outer loops (with respect to the current depth) and return the result. * * If there are no elements in "list", then return the empty set. */ __isl_give isl_basic_set *isl_ast_graft_list_extract_shared_enforced( __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { int i, n; int depth; isl_space *space; isl_basic_set *enforced; if (!list) return NULL; space = isl_ast_build_get_space(build, 1); enforced = isl_basic_set_empty(space); depth = isl_ast_build_get_depth(build); n = isl_ast_graft_list_n_ast_graft(list); for (i = 0; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); enforced = update_enforced(enforced, graft, depth); isl_ast_graft_free(graft); } return enforced; } /* Record "guard" in "graft" so that it will be enforced somewhere * up the tree. If the graft already has a guard, then it may be partially * redundant in combination with the new guard and in the context * the generated constraints of "build". In fact, the new guard * may in itself have some redundant constraints. * We therefore (re)compute the gist of the intersection * and coalesce the result. */ static __isl_give isl_ast_graft *store_guard(__isl_take isl_ast_graft *graft, __isl_take isl_set *guard, __isl_keep isl_ast_build *build) { int is_universe; if (!graft) goto error; is_universe = isl_set_plain_is_universe(guard); if (is_universe < 0) goto error; if (is_universe) { isl_set_free(guard); return graft; } graft->guard = isl_set_intersect(graft->guard, guard); graft->guard = isl_set_gist(graft->guard, isl_ast_build_get_generated(build)); graft->guard = isl_set_coalesce(graft->guard); if (!graft->guard) return isl_ast_graft_free(graft); return graft; error: isl_set_free(guard); return isl_ast_graft_free(graft); } /* For each graft in "list", replace its guard with the gist with * respect to "context". */ static __isl_give isl_ast_graft_list *gist_guards( __isl_take isl_ast_graft_list *list, __isl_keep isl_set *context) { int i, n; if (!list) return NULL; n = isl_ast_graft_list_n_ast_graft(list); for (i = 0; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); if (!graft) break; graft->guard = isl_set_gist(graft->guard, isl_set_copy(context)); if (!graft->guard) graft = isl_ast_graft_free(graft); list = isl_ast_graft_list_set_ast_graft(list, i, graft); } if (i < n) return isl_ast_graft_list_free(list); return list; } /* For each graft in "list", replace its guard with the gist with * respect to "context". */ __isl_give isl_ast_graft_list *isl_ast_graft_list_gist_guards( __isl_take isl_ast_graft_list *list, __isl_take isl_set *context) { list = gist_guards(list, context); isl_set_free(context); return list; } /* Allocate a graft in "build" based on the list of grafts in "sub_build". * "guard" and "enforced" are the guard and enforced constraints * of the allocated graft. The guard is used to simplify the guards * of the elements in "list". * * The node is initialized to either a block containing the nodes of "children" * or, if there is only a single child, the node of that child. * If the current level requires a for node, it should be inserted by * a subsequent call to isl_ast_graft_insert_for. */ __isl_give isl_ast_graft *isl_ast_graft_alloc_from_children( __isl_take isl_ast_graft_list *list, __isl_take isl_set *guard, __isl_take isl_basic_set *enforced, __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build) { isl_ast_build *guard_build; isl_ast_node *node; isl_ast_node_list *node_list; isl_ast_graft *graft; guard_build = isl_ast_build_copy(sub_build); guard_build = isl_ast_build_replace_pending_by_guard(guard_build, isl_set_copy(guard)); list = gist_guards(list, guard); list = insert_pending_guard_nodes(list, guard_build); isl_ast_build_free(guard_build); node_list = extract_node_list(list); node = isl_ast_node_from_ast_node_list(node_list); isl_ast_graft_list_free(list); graft = isl_ast_graft_alloc(node, build); graft = store_guard(graft, guard, build); graft = isl_ast_graft_enforce(graft, enforced); return graft; } /* Combine the grafts in the list into a single graft. * * The guard is initialized to the shared guard of the list elements (if any), * provided it does not depend on the current dimension. * The guards in the elements are then simplified with respect to the * hoisted guard and materialized as if nodes around the contained AST nodes * in the context of "sub_build". * * The enforced set is initialized to the simple hull of the enforced sets * of the elements, provided the ast_build_exploit_nested_bounds option is set * or the new graft will be used at the same level. * * The node is initialized to either a block containing the nodes of "list" * or, if there is only a single element, the node of that element. */ static __isl_give isl_ast_graft *ast_graft_list_fuse( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { isl_ast_graft *graft; isl_basic_set *enforced; isl_set *guard; if (!list) return NULL; enforced = isl_ast_graft_list_extract_shared_enforced(list, build); guard = isl_ast_graft_list_extract_hoistable_guard(list, build); graft = isl_ast_graft_alloc_from_children(list, guard, enforced, build, build); return graft; } /* Combine the grafts in the list into a single graft. * Return a list containing this single graft. * If the original list is empty, then return an empty list. */ __isl_give isl_ast_graft_list *isl_ast_graft_list_fuse( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { isl_ast_graft *graft; if (!list) return NULL; if (isl_ast_graft_list_n_ast_graft(list) <= 1) return list; graft = ast_graft_list_fuse(list, build); return isl_ast_graft_list_from_ast_graft(graft); } /* Combine the two grafts into a single graft. * Return a list containing this single graft. */ static __isl_give isl_ast_graft *isl_ast_graft_fuse( __isl_take isl_ast_graft *graft1, __isl_take isl_ast_graft *graft2, __isl_keep isl_ast_build *build) { isl_ctx *ctx; isl_ast_graft_list *list; ctx = isl_ast_build_get_ctx(build); list = isl_ast_graft_list_alloc(ctx, 2); list = isl_ast_graft_list_add(list, graft1); list = isl_ast_graft_list_add(list, graft2); return ast_graft_list_fuse(list, build); } /* Insert a for node enclosing the current graft->node. */ __isl_give isl_ast_graft *isl_ast_graft_insert_for( __isl_take isl_ast_graft *graft, __isl_take isl_ast_node *node) { if (!graft) goto error; graft->node = isl_ast_node_for_set_body(node, graft->node); if (!graft->node) return isl_ast_graft_free(graft); return graft; error: isl_ast_node_free(node); isl_ast_graft_free(graft); return NULL; } /* Insert a mark governing the current graft->node. */ __isl_give isl_ast_graft *isl_ast_graft_insert_mark( __isl_take isl_ast_graft *graft, __isl_take isl_id *mark) { if (!graft) goto error; graft->node = isl_ast_node_alloc_mark(mark, graft->node); if (!graft->node) return isl_ast_graft_free(graft); return graft; error: isl_id_free(mark); isl_ast_graft_free(graft); return NULL; } /* Represent the graft list as an AST node. * This operation drops the information about guards in the grafts, so * if there are any pending guards, then they are materialized as if nodes. */ __isl_give isl_ast_node *isl_ast_node_from_graft_list( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build) { isl_ast_node_list *node_list; list = insert_pending_guard_nodes(list, build); node_list = extract_node_list(list); isl_ast_graft_list_free(list); return isl_ast_node_from_ast_node_list(node_list); } void *isl_ast_graft_free(__isl_take isl_ast_graft *graft) { if (!graft) return NULL; if (--graft->ref > 0) return NULL; isl_ast_node_free(graft->node); isl_set_free(graft->guard); isl_basic_set_free(graft->enforced); free(graft); return NULL; } /* Record that the grafted tree enforces * "enforced" by intersecting graft->enforced with "enforced". */ __isl_give isl_ast_graft *isl_ast_graft_enforce( __isl_take isl_ast_graft *graft, __isl_take isl_basic_set *enforced) { if (!graft || !enforced) goto error; enforced = isl_basic_set_align_params(enforced, isl_basic_set_get_space(graft->enforced)); graft->enforced = isl_basic_set_align_params(graft->enforced, isl_basic_set_get_space(enforced)); graft->enforced = isl_basic_set_intersect(graft->enforced, enforced); if (!graft->enforced) return isl_ast_graft_free(graft); return graft; error: isl_basic_set_free(enforced); return isl_ast_graft_free(graft); } __isl_give isl_basic_set *isl_ast_graft_get_enforced( __isl_keep isl_ast_graft *graft) { return graft ? isl_basic_set_copy(graft->enforced) : NULL; } __isl_give isl_set *isl_ast_graft_get_guard(__isl_keep isl_ast_graft *graft) { return graft ? isl_set_copy(graft->guard) : NULL; } /* Record that "guard" needs to be inserted in "graft". */ __isl_give isl_ast_graft *isl_ast_graft_add_guard( __isl_take isl_ast_graft *graft, __isl_take isl_set *guard, __isl_keep isl_ast_build *build) { return store_guard(graft, guard, build); } /* Reformulate the "graft", which was generated in the context * of an inner code generation, in terms of the outer code generation * AST build. * * If "product" is set, then the domain of the inner code generation build is * * [O -> S] * * with O the domain of the outer code generation build. * We essentially need to project out S. * * If "product" is not set, then we need to project the domains onto * their parameter spaces. */ __isl_give isl_ast_graft *isl_ast_graft_unembed(__isl_take isl_ast_graft *graft, int product) { isl_basic_set *enforced; if (!graft) return NULL; if (product) { enforced = graft->enforced; enforced = isl_basic_map_domain(isl_basic_set_unwrap(enforced)); graft->enforced = enforced; graft->guard = isl_map_domain(isl_set_unwrap(graft->guard)); } else { graft->enforced = isl_basic_set_params(graft->enforced); graft->guard = isl_set_params(graft->guard); } graft->guard = isl_set_compute_divs(graft->guard); if (!graft->enforced || !graft->guard) return isl_ast_graft_free(graft); return graft; } /* Reformulate the grafts in "list", which were generated in the context * of an inner code generation, in terms of the outer code generation * AST build. */ __isl_give isl_ast_graft_list *isl_ast_graft_list_unembed( __isl_take isl_ast_graft_list *list, int product) { int i, n; n = isl_ast_graft_list_n_ast_graft(list); for (i = 0; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); graft = isl_ast_graft_unembed(graft, product); list = isl_ast_graft_list_set_ast_graft(list, i, graft); } return list; } /* Compute the preimage of "graft" under the function represented by "ma". * In other words, plug in "ma" in "enforced" and "guard" fields of "graft". */ __isl_give isl_ast_graft *isl_ast_graft_preimage_multi_aff( __isl_take isl_ast_graft *graft, __isl_take isl_multi_aff *ma) { isl_basic_set *enforced; if (!graft) return NULL; enforced = graft->enforced; graft->enforced = isl_basic_set_preimage_multi_aff(enforced, isl_multi_aff_copy(ma)); graft->guard = isl_set_preimage_multi_aff(graft->guard, ma); if (!graft->enforced || !graft->guard) return isl_ast_graft_free(graft); return graft; } /* Compute the preimage of all the grafts in "list" under * the function represented by "ma". */ __isl_give isl_ast_graft_list *isl_ast_graft_list_preimage_multi_aff( __isl_take isl_ast_graft_list *list, __isl_take isl_multi_aff *ma) { int i, n; n = isl_ast_graft_list_n_ast_graft(list); for (i = 0; i < n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list, i); graft = isl_ast_graft_preimage_multi_aff(graft, isl_multi_aff_copy(ma)); list = isl_ast_graft_list_set_ast_graft(list, i, graft); } isl_multi_aff_free(ma); return list; } /* Compare two grafts based on their guards. */ static int cmp_graft(__isl_keep isl_ast_graft *a, __isl_keep isl_ast_graft *b, void *user) { return isl_set_plain_cmp(a->guard, b->guard); } /* Order the elements in "list" based on their guards. */ __isl_give isl_ast_graft_list *isl_ast_graft_list_sort_guard( __isl_take isl_ast_graft_list *list) { return isl_ast_graft_list_sort(list, &cmp_graft, NULL); } /* Merge the given two lists into a single list of grafts, * merging grafts with the same guard into a single graft. * * "list2" has been sorted using isl_ast_graft_list_sort. * "list1" may be the result of a previous call to isl_ast_graft_list_merge * and may therefore not be completely sorted. * * The elements in "list2" need to be executed after those in "list1", * but if the guard of a graft in "list2" is disjoint from the guards * of some final elements in "list1", then it can be moved up to before * those final elements. * * In particular, we look at each element g of "list2" in turn * and move it up beyond elements of "list1" that would be sorted * after g as long as each of these elements has a guard that is disjoint * from that of g. * * We do not allow the second or any later element of "list2" to be moved * before a previous elements of "list2" even if the reason that * that element didn't move up further was that its guard was not disjoint * from that of the previous element in "list1". */ __isl_give isl_ast_graft_list *isl_ast_graft_list_merge( __isl_take isl_ast_graft_list *list1, __isl_take isl_ast_graft_list *list2, __isl_keep isl_ast_build *build) { int i, j, first; if (!list1 || !list2 || !build) goto error; if (list2->n == 0) { isl_ast_graft_list_free(list2); return list1; } if (list1->n == 0) { isl_ast_graft_list_free(list1); return list2; } first = 0; for (i = 0; i < list2->n; ++i) { isl_ast_graft *graft; graft = isl_ast_graft_list_get_ast_graft(list2, i); if (!graft) break; for (j = list1->n; j >= 0; --j) { int cmp, disjoint; isl_ast_graft *graft_j; if (j == first) cmp = -1; else cmp = isl_set_plain_cmp(list1->p[j - 1]->guard, graft->guard); if (cmp > 0) { disjoint = isl_set_is_disjoint(graft->guard, list1->p[j - 1]->guard); if (disjoint < 0) { list1 = isl_ast_graft_list_free(list1); break; } if (!disjoint) cmp = -1; } if (cmp > 0) continue; if (cmp < 0) { list1 = isl_ast_graft_list_insert(list1, j, graft); break; } --j; graft_j = isl_ast_graft_list_get_ast_graft(list1, j); graft_j = isl_ast_graft_fuse(graft_j, graft, build); list1 = isl_ast_graft_list_set_ast_graft(list1, j, graft_j); break; } if (j < 0) isl_die(isl_ast_build_get_ctx(build), isl_error_internal, "element failed to get inserted", break); first = j + 1; if (!list1) break; } if (i < list2->n) list1 = isl_ast_graft_list_free(list1); isl_ast_graft_list_free(list2); return list1; error: isl_ast_graft_list_free(list1); isl_ast_graft_list_free(list2); return NULL; } __isl_give isl_printer *isl_printer_print_ast_graft(__isl_take isl_printer *p, __isl_keep isl_ast_graft *graft) { if (!p) return NULL; if (!graft) return isl_printer_free(p); p = isl_printer_print_str(p, "("); p = isl_printer_print_str(p, "guard: "); p = isl_printer_print_set(p, graft->guard); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "enforced: "); p = isl_printer_print_basic_set(p, graft->enforced); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "node: "); p = isl_printer_print_ast_node(p, graft->node); p = isl_printer_print_str(p, ")"); return p; } isl-0.16.1/isl_val.c0000664000175000017500000010445112645737061011126 00000000000000/* * Copyright 2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #undef BASE #define BASE val #include /* Allocate an isl_val object with indeterminate value. */ __isl_give isl_val *isl_val_alloc(isl_ctx *ctx) { isl_val *v; v = isl_alloc_type(ctx, struct isl_val); if (!v) return NULL; v->ctx = ctx; isl_ctx_ref(ctx); v->ref = 1; isl_int_init(v->n); isl_int_init(v->d); return v; } /* Return a reference to an isl_val representing zero. */ __isl_give isl_val *isl_val_zero(isl_ctx *ctx) { return isl_val_int_from_si(ctx, 0); } /* Return a reference to an isl_val representing one. */ __isl_give isl_val *isl_val_one(isl_ctx *ctx) { return isl_val_int_from_si(ctx, 1); } /* Return a reference to an isl_val representing negative one. */ __isl_give isl_val *isl_val_negone(isl_ctx *ctx) { return isl_val_int_from_si(ctx, -1); } /* Return a reference to an isl_val representing NaN. */ __isl_give isl_val *isl_val_nan(isl_ctx *ctx) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set_si(v->n, 0); isl_int_set_si(v->d, 0); return v; } /* Change "v" into a NaN. */ __isl_give isl_val *isl_val_set_nan(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_nan(v)) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_set_si(v->n, 0); isl_int_set_si(v->d, 0); return v; } /* Return a reference to an isl_val representing +infinity. */ __isl_give isl_val *isl_val_infty(isl_ctx *ctx) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set_si(v->n, 1); isl_int_set_si(v->d, 0); return v; } /* Return a reference to an isl_val representing -infinity. */ __isl_give isl_val *isl_val_neginfty(isl_ctx *ctx) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set_si(v->n, -1); isl_int_set_si(v->d, 0); return v; } /* Return a reference to an isl_val representing the integer "i". */ __isl_give isl_val *isl_val_int_from_si(isl_ctx *ctx, long i) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set_si(v->n, i); isl_int_set_si(v->d, 1); return v; } /* Change the value of "v" to be equal to the integer "i". */ __isl_give isl_val *isl_val_set_si(__isl_take isl_val *v, long i) { if (!v) return NULL; if (isl_val_is_int(v) && isl_int_cmp_si(v->n, i) == 0) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_set_si(v->n, i); isl_int_set_si(v->d, 1); return v; } /* Change the value of "v" to be equal to zero. */ __isl_give isl_val *isl_val_set_zero(__isl_take isl_val *v) { return isl_val_set_si(v, 0); } /* Return a reference to an isl_val representing the unsigned integer "u". */ __isl_give isl_val *isl_val_int_from_ui(isl_ctx *ctx, unsigned long u) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set_ui(v->n, u); isl_int_set_si(v->d, 1); return v; } /* Return a reference to an isl_val representing the integer "n". */ __isl_give isl_val *isl_val_int_from_isl_int(isl_ctx *ctx, isl_int n) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set(v->n, n); isl_int_set_si(v->d, 1); return v; } /* Return a reference to an isl_val representing the rational value "n"/"d". * Normalizing the isl_val (if needed) is left to the caller. */ __isl_give isl_val *isl_val_rat_from_isl_int(isl_ctx *ctx, isl_int n, isl_int d) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; isl_int_set(v->n, n); isl_int_set(v->d, d); return v; } /* Return a new reference to "v". */ __isl_give isl_val *isl_val_copy(__isl_keep isl_val *v) { if (!v) return NULL; v->ref++; return v; } /* Return a fresh copy of "val". */ __isl_give isl_val *isl_val_dup(__isl_keep isl_val *val) { isl_val *dup; if (!val) return NULL; dup = isl_val_alloc(isl_val_get_ctx(val)); if (!dup) return NULL; isl_int_set(dup->n, val->n); isl_int_set(dup->d, val->d); return dup; } /* Return an isl_val that is equal to "val" and that has only * a single reference. */ __isl_give isl_val *isl_val_cow(__isl_take isl_val *val) { if (!val) return NULL; if (val->ref == 1) return val; val->ref--; return isl_val_dup(val); } /* Free "v" and return NULL. */ __isl_null isl_val *isl_val_free(__isl_take isl_val *v) { if (!v) return NULL; if (--v->ref > 0) return NULL; isl_ctx_deref(v->ctx); isl_int_clear(v->n); isl_int_clear(v->d); free(v); return NULL; } /* Extract the numerator of a rational value "v" as an integer. * * If "v" is not a rational value, then the result is undefined. */ long isl_val_get_num_si(__isl_keep isl_val *v) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); if (!isl_int_fits_slong(v->n)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "numerator too large", return 0); return isl_int_get_si(v->n); } /* Extract the numerator of a rational value "v" as an isl_int. * * If "v" is not a rational value, then the result is undefined. */ int isl_val_get_num_isl_int(__isl_keep isl_val *v, isl_int *n) { if (!v) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); isl_int_set(*n, v->n); return 0; } /* Extract the denominator of a rational value "v" as an integer. * * If "v" is not a rational value, then the result is undefined. */ long isl_val_get_den_si(__isl_keep isl_val *v) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); if (!isl_int_fits_slong(v->d)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "denominator too large", return 0); return isl_int_get_si(v->d); } /* Extract the denominator of a rational value "v" as an isl_val. * * If "v" is not a rational value, then the result is undefined. */ __isl_give isl_val *isl_val_get_den_val(__isl_keep isl_val *v) { if (!v) return NULL; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return NULL); return isl_val_int_from_isl_int(isl_val_get_ctx(v), v->d); } /* Return an approximation of "v" as a double. */ double isl_val_get_d(__isl_keep isl_val *v) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); return isl_int_get_d(v->n) / isl_int_get_d(v->d); } /* Return the isl_ctx to which "val" belongs. */ isl_ctx *isl_val_get_ctx(__isl_keep isl_val *val) { return val ? val->ctx : NULL; } /* Normalize "v". * * In particular, make sure that the denominator of a rational value * is positive and the numerator and denominator do not have any * common divisors. * * This function should not be called by an external user * since it will only be given normalized values. */ __isl_give isl_val *isl_val_normalize(__isl_take isl_val *v) { isl_ctx *ctx; if (!v) return NULL; if (isl_val_is_int(v)) return v; if (!isl_val_is_rat(v)) return v; if (isl_int_is_neg(v->d)) { isl_int_neg(v->d, v->d); isl_int_neg(v->n, v->n); } ctx = isl_val_get_ctx(v); isl_int_gcd(ctx->normalize_gcd, v->n, v->d); if (isl_int_is_one(ctx->normalize_gcd)) return v; isl_int_divexact(v->n, v->n, ctx->normalize_gcd); isl_int_divexact(v->d, v->d, ctx->normalize_gcd); return v; } /* Return the opposite of "v". */ __isl_give isl_val *isl_val_neg(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_nan(v)) return v; if (isl_val_is_zero(v)) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_neg(v->n, v->n); return v; } /* Return the inverse of "v". */ __isl_give isl_val *isl_val_inv(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_nan(v)) return v; if (isl_val_is_zero(v)) { isl_ctx *ctx = isl_val_get_ctx(v); isl_val_free(v); return isl_val_nan(ctx); } if (isl_val_is_infty(v) || isl_val_is_neginfty(v)) { isl_ctx *ctx = isl_val_get_ctx(v); isl_val_free(v); return isl_val_zero(ctx); } v = isl_val_cow(v); if (!v) return NULL; isl_int_swap(v->n, v->d); return isl_val_normalize(v); } /* Return the absolute value of "v". */ __isl_give isl_val *isl_val_abs(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_nan(v)) return v; if (isl_val_is_nonneg(v)) return v; return isl_val_neg(v); } /* Return the "floor" (greatest integer part) of "v". * That is, return the result of rounding towards -infinity. */ __isl_give isl_val *isl_val_floor(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_int(v)) return v; if (!isl_val_is_rat(v)) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_fdiv_q(v->n, v->n, v->d); isl_int_set_si(v->d, 1); return v; } /* Return the "ceiling" of "v". * That is, return the result of rounding towards +infinity. */ __isl_give isl_val *isl_val_ceil(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_int(v)) return v; if (!isl_val_is_rat(v)) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_cdiv_q(v->n, v->n, v->d); isl_int_set_si(v->d, 1); return v; } /* Truncate "v". * That is, return the result of rounding towards zero. */ __isl_give isl_val *isl_val_trunc(__isl_take isl_val *v) { if (!v) return NULL; if (isl_val_is_int(v)) return v; if (!isl_val_is_rat(v)) return v; v = isl_val_cow(v); if (!v) return NULL; isl_int_tdiv_q(v->n, v->n, v->d); isl_int_set_si(v->d, 1); return v; } /* Return 2^v, where v is an integer (that is not too large). */ __isl_give isl_val *isl_val_2exp(__isl_take isl_val *v) { unsigned long exp; int neg; v = isl_val_cow(v); if (!v) return NULL; if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "can only compute integer powers", return isl_val_free(v)); neg = isl_val_is_neg(v); if (neg) isl_int_neg(v->n, v->n); if (!isl_int_fits_ulong(v->n)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "exponent too large", return isl_val_free(v)); exp = isl_int_get_ui(v->n); if (neg) { isl_int_mul_2exp(v->d, v->d, exp); isl_int_set_si(v->n, 1); } else { isl_int_mul_2exp(v->n, v->d, exp); } return v; } /* Return the minimum of "v1" and "v2". */ __isl_give isl_val *isl_val_min(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if (isl_val_le(v1, v2)) { isl_val_free(v2); return v1; } else { isl_val_free(v1); return v2; } error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Return the maximum of "v1" and "v2". */ __isl_give isl_val *isl_val_max(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if (isl_val_ge(v1, v2)) { isl_val_free(v2); return v1; } else { isl_val_free(v1); return v2; } error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Return the sum of "v1" and "v2". */ __isl_give isl_val *isl_val_add(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if ((isl_val_is_infty(v1) && isl_val_is_neginfty(v2)) || (isl_val_is_neginfty(v1) && isl_val_is_infty(v2))) { isl_val_free(v2); return isl_val_set_nan(v1); } if (isl_val_is_infty(v1) || isl_val_is_neginfty(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_infty(v2) || isl_val_is_neginfty(v2)) { isl_val_free(v1); return v2; } if (isl_val_is_zero(v1)) { isl_val_free(v1); return v2; } if (isl_val_is_zero(v2)) { isl_val_free(v2); return v1; } v1 = isl_val_cow(v1); if (!v1) goto error; if (isl_val_is_int(v1) && isl_val_is_int(v2)) isl_int_add(v1->n, v1->n, v2->n); else { if (isl_int_eq(v1->d, v2->d)) isl_int_add(v1->n, v1->n, v2->n); else { isl_int_mul(v1->n, v1->n, v2->d); isl_int_addmul(v1->n, v2->n, v1->d); isl_int_mul(v1->d, v1->d, v2->d); } v1 = isl_val_normalize(v1); } isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Return the sum of "v1" and "v2". */ __isl_give isl_val *isl_val_add_ui(__isl_take isl_val *v1, unsigned long v2) { if (!v1) return NULL; if (!isl_val_is_rat(v1)) return v1; if (v2 == 0) return v1; v1 = isl_val_cow(v1); if (!v1) return NULL; isl_int_addmul_ui(v1->n, v1->d, v2); return v1; } /* Subtract "v2" from "v1". */ __isl_give isl_val *isl_val_sub(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if ((isl_val_is_infty(v1) && isl_val_is_infty(v2)) || (isl_val_is_neginfty(v1) && isl_val_is_neginfty(v2))) { isl_val_free(v2); return isl_val_set_nan(v1); } if (isl_val_is_infty(v1) || isl_val_is_neginfty(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_infty(v2) || isl_val_is_neginfty(v2)) { isl_val_free(v1); return isl_val_neg(v2); } if (isl_val_is_zero(v2)) { isl_val_free(v2); return v1; } if (isl_val_is_zero(v1)) { isl_val_free(v1); return isl_val_neg(v2); } v1 = isl_val_cow(v1); if (!v1) goto error; if (isl_val_is_int(v1) && isl_val_is_int(v2)) isl_int_sub(v1->n, v1->n, v2->n); else { if (isl_int_eq(v1->d, v2->d)) isl_int_sub(v1->n, v1->n, v2->n); else { isl_int_mul(v1->n, v1->n, v2->d); isl_int_submul(v1->n, v2->n, v1->d); isl_int_mul(v1->d, v1->d, v2->d); } v1 = isl_val_normalize(v1); } isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Subtract "v2" from "v1". */ __isl_give isl_val *isl_val_sub_ui(__isl_take isl_val *v1, unsigned long v2) { if (!v1) return NULL; if (!isl_val_is_rat(v1)) return v1; if (v2 == 0) return v1; v1 = isl_val_cow(v1); if (!v1) return NULL; isl_int_submul_ui(v1->n, v1->d, v2); return v1; } /* Return the product of "v1" and "v2". */ __isl_give isl_val *isl_val_mul(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if ((!isl_val_is_rat(v1) && isl_val_is_zero(v2)) || (isl_val_is_zero(v1) && !isl_val_is_rat(v2))) { isl_val_free(v2); return isl_val_set_nan(v1); } if (isl_val_is_zero(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_zero(v2)) { isl_val_free(v1); return v2; } if (isl_val_is_infty(v1) || isl_val_is_neginfty(v1)) { if (isl_val_is_neg(v2)) v1 = isl_val_neg(v1); isl_val_free(v2); return v1; } if (isl_val_is_infty(v2) || isl_val_is_neginfty(v2)) { if (isl_val_is_neg(v1)) v2 = isl_val_neg(v2); isl_val_free(v1); return v2; } v1 = isl_val_cow(v1); if (!v1) goto error; if (isl_val_is_int(v1) && isl_val_is_int(v2)) isl_int_mul(v1->n, v1->n, v2->n); else { isl_int_mul(v1->n, v1->n, v2->n); isl_int_mul(v1->d, v1->d, v2->d); v1 = isl_val_normalize(v1); } isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Return the product of "v1" and "v2". * * This is a private copy of isl_val_mul for use in the generic * isl_multi_*_scale_val instantiated for isl_val. */ __isl_give isl_val *isl_val_scale_val(__isl_take isl_val *v1, __isl_take isl_val *v2) { return isl_val_mul(v1, v2); } /* Return the product of "v1" and "v2". */ __isl_give isl_val *isl_val_mul_ui(__isl_take isl_val *v1, unsigned long v2) { if (!v1) return NULL; if (isl_val_is_nan(v1)) return v1; if (!isl_val_is_rat(v1)) { if (v2 == 0) v1 = isl_val_set_nan(v1); return v1; } if (v2 == 1) return v1; v1 = isl_val_cow(v1); if (!v1) return NULL; isl_int_mul_ui(v1->n, v1->n, v2); return isl_val_normalize(v1); } /* Divide "v1" by "v2". */ __isl_give isl_val *isl_val_div(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (isl_val_is_nan(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_nan(v2)) { isl_val_free(v1); return v2; } if (isl_val_is_zero(v2) || (!isl_val_is_rat(v1) && !isl_val_is_rat(v2))) { isl_val_free(v2); return isl_val_set_nan(v1); } if (isl_val_is_zero(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_infty(v1) || isl_val_is_neginfty(v1)) { if (isl_val_is_neg(v2)) v1 = isl_val_neg(v1); isl_val_free(v2); return v1; } if (isl_val_is_infty(v2) || isl_val_is_neginfty(v2)) { isl_val_free(v2); return isl_val_set_zero(v1); } v1 = isl_val_cow(v1); if (!v1) goto error; if (isl_val_is_int(v2)) { isl_int_mul(v1->d, v1->d, v2->n); v1 = isl_val_normalize(v1); } else { isl_int_mul(v1->d, v1->d, v2->n); isl_int_mul(v1->n, v1->n, v2->d); v1 = isl_val_normalize(v1); } isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Divide "v1" by "v2". * * This is a private copy of isl_val_div for use in the generic * isl_multi_*_scale_down_val instantiated for isl_val. */ __isl_give isl_val *isl_val_scale_down_val(__isl_take isl_val *v1, __isl_take isl_val *v2) { return isl_val_div(v1, v2); } /* Given two integer values "v1" and "v2", check if "v1" is divisible by "v2". */ isl_bool isl_val_is_divisible_by(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { if (!v1 || !v2) return isl_bool_error; if (!isl_val_is_int(v1) || !isl_val_is_int(v2)) isl_die(isl_val_get_ctx(v1), isl_error_invalid, "expecting two integers", return isl_bool_error); return isl_int_is_divisible_by(v1->n, v2->n); } /* Given two integer values "v1" and "v2", return the residue of "v1" * modulo "v2". */ __isl_give isl_val *isl_val_mod(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (!isl_val_is_int(v1) || !isl_val_is_int(v2)) isl_die(isl_val_get_ctx(v1), isl_error_invalid, "expecting two integers", goto error); if (isl_val_is_nonneg(v1) && isl_val_lt(v1, v2)) { isl_val_free(v2); return v1; } v1 = isl_val_cow(v1); if (!v1) goto error; isl_int_fdiv_r(v1->n, v1->n, v2->n); isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Given two integer values "v1" and "v2", return the residue of "v1" * modulo "v2". * * This is a private copy of isl_val_mod for use in the generic * isl_multi_*_mod_multi_val instantiated for isl_val. */ __isl_give isl_val *isl_val_mod_val(__isl_take isl_val *v1, __isl_take isl_val *v2) { return isl_val_mod(v1, v2); } /* Given two integer values, return their greatest common divisor. */ __isl_give isl_val *isl_val_gcd(__isl_take isl_val *v1, __isl_take isl_val *v2) { if (!v1 || !v2) goto error; if (!isl_val_is_int(v1) || !isl_val_is_int(v2)) isl_die(isl_val_get_ctx(v1), isl_error_invalid, "expecting two integers", goto error); if (isl_val_eq(v1, v2)) { isl_val_free(v2); return v1; } if (isl_val_is_one(v1)) { isl_val_free(v2); return v1; } if (isl_val_is_one(v2)) { isl_val_free(v1); return v2; } v1 = isl_val_cow(v1); if (!v1) goto error; isl_int_gcd(v1->n, v1->n, v2->n); isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); return NULL; } /* Compute x, y and g such that g = gcd(a,b) and a*x+b*y = g. */ static void isl_int_gcdext(isl_int *g, isl_int *x, isl_int *y, isl_int a, isl_int b) { isl_int d, tmp; isl_int a_copy, b_copy; isl_int_init(a_copy); isl_int_init(b_copy); isl_int_init(d); isl_int_init(tmp); isl_int_set(a_copy, a); isl_int_set(b_copy, b); isl_int_abs(*g, a_copy); isl_int_abs(d, b_copy); isl_int_set_si(*x, 1); isl_int_set_si(*y, 0); while (isl_int_is_pos(d)) { isl_int_fdiv_q(tmp, *g, d); isl_int_submul(*x, tmp, *y); isl_int_submul(*g, tmp, d); isl_int_swap(*g, d); isl_int_swap(*x, *y); } if (isl_int_is_zero(a_copy)) isl_int_set_si(*x, 0); else if (isl_int_is_neg(a_copy)) isl_int_neg(*x, *x); if (isl_int_is_zero(b_copy)) isl_int_set_si(*y, 0); else { isl_int_mul(tmp, a_copy, *x); isl_int_sub(tmp, *g, tmp); isl_int_divexact(*y, tmp, b_copy); } isl_int_clear(d); isl_int_clear(tmp); isl_int_clear(a_copy); isl_int_clear(b_copy); } /* Given two integer values v1 and v2, return their greatest common divisor g, * as well as two integers x and y such that x * v1 + y * v2 = g. */ __isl_give isl_val *isl_val_gcdext(__isl_take isl_val *v1, __isl_take isl_val *v2, __isl_give isl_val **x, __isl_give isl_val **y) { isl_ctx *ctx; isl_val *a = NULL, *b = NULL; if (!x && !y) return isl_val_gcd(v1, v2); if (!v1 || !v2) goto error; ctx = isl_val_get_ctx(v1); if (!isl_val_is_int(v1) || !isl_val_is_int(v2)) isl_die(ctx, isl_error_invalid, "expecting two integers", goto error); v1 = isl_val_cow(v1); a = isl_val_alloc(ctx); b = isl_val_alloc(ctx); if (!v1 || !a || !b) goto error; isl_int_gcdext(&v1->n, &a->n, &b->n, v1->n, v2->n); if (x) { isl_int_set_si(a->d, 1); *x = a; } else isl_val_free(a); if (y) { isl_int_set_si(b->d, 1); *y = b; } else isl_val_free(b); isl_val_free(v2); return v1; error: isl_val_free(v1); isl_val_free(v2); isl_val_free(a); isl_val_free(b); if (x) *x = NULL; if (y) *y = NULL; return NULL; } /* Does "v" represent an integer value? */ isl_bool isl_val_is_int(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_one(v->d); } /* Does "v" represent a rational value? */ isl_bool isl_val_is_rat(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return !isl_int_is_zero(v->d); } /* Does "v" represent NaN? */ isl_bool isl_val_is_nan(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_zero(v->n) && isl_int_is_zero(v->d); } /* Does "v" represent +infinity? */ isl_bool isl_val_is_infty(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_pos(v->n) && isl_int_is_zero(v->d); } /* Does "v" represent -infinity? */ isl_bool isl_val_is_neginfty(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_neg(v->n) && isl_int_is_zero(v->d); } /* Does "v" represent the integer zero? */ isl_bool isl_val_is_zero(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_zero(v->n) && !isl_int_is_zero(v->d); } /* Does "v" represent the integer one? */ isl_bool isl_val_is_one(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_eq(v->n, v->d); } /* Does "v" represent the integer negative one? */ isl_bool isl_val_is_negone(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_neg(v->n) && isl_int_abs_eq(v->n, v->d); } /* Is "v" (strictly) positive? */ isl_bool isl_val_is_pos(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_pos(v->n); } /* Is "v" (strictly) negative? */ isl_bool isl_val_is_neg(__isl_keep isl_val *v) { if (!v) return isl_bool_error; return isl_int_is_neg(v->n); } /* Is "v" non-negative? */ isl_bool isl_val_is_nonneg(__isl_keep isl_val *v) { if (!v) return isl_bool_error; if (isl_val_is_nan(v)) return isl_bool_false; return isl_int_is_nonneg(v->n); } /* Is "v" non-positive? */ isl_bool isl_val_is_nonpos(__isl_keep isl_val *v) { if (!v) return isl_bool_error; if (isl_val_is_nan(v)) return isl_bool_false; return isl_int_is_nonpos(v->n); } /* Return the sign of "v". * * The sign of NaN is undefined. */ int isl_val_sgn(__isl_keep isl_val *v) { if (!v) return 0; if (isl_val_is_zero(v)) return 0; if (isl_val_is_pos(v)) return 1; return -1; } /* Is "v1" (strictly) less than "v2"? */ isl_bool isl_val_lt(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { isl_int t; isl_bool lt; if (!v1 || !v2) return isl_bool_error; if (isl_val_is_int(v1) && isl_val_is_int(v2)) return isl_int_lt(v1->n, v2->n); if (isl_val_is_nan(v1) || isl_val_is_nan(v2)) return isl_bool_false; if (isl_val_eq(v1, v2)) return isl_bool_false; if (isl_val_is_infty(v2)) return isl_bool_true; if (isl_val_is_infty(v1)) return isl_bool_false; if (isl_val_is_neginfty(v1)) return isl_bool_true; if (isl_val_is_neginfty(v2)) return isl_bool_false; isl_int_init(t); isl_int_mul(t, v1->n, v2->d); isl_int_submul(t, v2->n, v1->d); lt = isl_int_is_neg(t); isl_int_clear(t); return lt; } /* Is "v1" (strictly) greater than "v2"? */ isl_bool isl_val_gt(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { return isl_val_lt(v2, v1); } /* Is "v1" less than or equal to "v2"? */ isl_bool isl_val_le(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { isl_int t; isl_bool le; if (!v1 || !v2) return isl_bool_error; if (isl_val_is_int(v1) && isl_val_is_int(v2)) return isl_int_le(v1->n, v2->n); if (isl_val_is_nan(v1) || isl_val_is_nan(v2)) return isl_bool_false; if (isl_val_eq(v1, v2)) return isl_bool_true; if (isl_val_is_infty(v2)) return isl_bool_true; if (isl_val_is_infty(v1)) return isl_bool_false; if (isl_val_is_neginfty(v1)) return isl_bool_true; if (isl_val_is_neginfty(v2)) return isl_bool_false; isl_int_init(t); isl_int_mul(t, v1->n, v2->d); isl_int_submul(t, v2->n, v1->d); le = isl_int_is_nonpos(t); isl_int_clear(t); return le; } /* Is "v1" greater than or equal to "v2"? */ isl_bool isl_val_ge(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { return isl_val_le(v2, v1); } /* How does "v" compare to "i"? * * Return 1 if v is greater, -1 if v is smaller and 0 if v is equal to i. * * If v is NaN (or NULL), then the result is undefined. */ int isl_val_cmp_si(__isl_keep isl_val *v, long i) { isl_int t; int cmp; if (!v) return 0; if (isl_val_is_int(v)) return isl_int_cmp_si(v->n, i); if (isl_val_is_nan(v)) return 0; if (isl_val_is_infty(v)) return 1; if (isl_val_is_neginfty(v)) return -1; isl_int_init(t); isl_int_mul_si(t, v->d, i); isl_int_sub(t, v->n, t); cmp = isl_int_sgn(t); isl_int_clear(t); return cmp; } /* Is "v1" equal to "v2"? */ isl_bool isl_val_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { if (!v1 || !v2) return isl_bool_error; if (isl_val_is_nan(v1) || isl_val_is_nan(v2)) return isl_bool_false; return isl_int_eq(v1->n, v2->n) && isl_int_eq(v1->d, v2->d); } /* Is "v1" equal to "v2" in absolute value? */ isl_bool isl_val_abs_eq(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { if (!v1 || !v2) return isl_bool_error; if (isl_val_is_nan(v1) || isl_val_is_nan(v2)) return isl_bool_false; return isl_int_abs_eq(v1->n, v2->n) && isl_int_eq(v1->d, v2->d); } /* Is "v1" different from "v2"? */ isl_bool isl_val_ne(__isl_keep isl_val *v1, __isl_keep isl_val *v2) { if (!v1 || !v2) return isl_bool_error; if (isl_val_is_nan(v1) || isl_val_is_nan(v2)) return isl_bool_false; return isl_int_ne(v1->n, v2->n) || isl_int_ne(v1->d, v2->d); } /* Print a textual representation of "v" onto "p". */ __isl_give isl_printer *isl_printer_print_val(__isl_take isl_printer *p, __isl_keep isl_val *v) { int neg; if (!p || !v) return isl_printer_free(p); neg = isl_int_is_neg(v->n); if (neg) { p = isl_printer_print_str(p, "-"); isl_int_neg(v->n, v->n); } if (isl_int_is_zero(v->d)) { int sgn = isl_int_sgn(v->n); p = isl_printer_print_str(p, sgn < 0 ? "-infty" : sgn == 0 ? "NaN" : "infty"); } else p = isl_printer_print_isl_int(p, v->n); if (neg) isl_int_neg(v->n, v->n); if (!isl_int_is_zero(v->d) && !isl_int_is_one(v->d)) { p = isl_printer_print_str(p, "/"); p = isl_printer_print_isl_int(p, v->d); } return p; } /* Is "val1" (obviously) equal to "val2"? * * This is a private copy of isl_val_eq for use in the generic * isl_multi_*_plain_is_equal instantiated for isl_val. */ int isl_val_plain_is_equal(__isl_keep isl_val *val1, __isl_keep isl_val *val2) { return isl_val_eq(val1, val2); } /* Does "v" have any non-zero coefficients * for any dimension in the given range? * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have any coefficients, this function * always return 0. */ int isl_val_involves_dims(__isl_keep isl_val *v, enum isl_dim_type type, unsigned first, unsigned n) { if (!v) return -1; return 0; } /* Insert "n" dimensions of type "type" at position "first". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything. */ __isl_give isl_val *isl_val_insert_dims(__isl_take isl_val *v, enum isl_dim_type type, unsigned first, unsigned n) { return v; } /* Drop the the "n" first dimensions of type "type" at position "first". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything. */ __isl_give isl_val *isl_val_drop_dims(__isl_take isl_val *v, enum isl_dim_type type, unsigned first, unsigned n) { return v; } /* Change the name of the dimension of type "type" at position "pos" to "s". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything. */ __isl_give isl_val *isl_val_set_dim_name(__isl_take isl_val *v, enum isl_dim_type type, unsigned pos, const char *s) { return v; } /* Return the space of "v". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. The conditions surrounding the call to this function make sure * that this function will never actually get called. We return a valid * space anyway, just in case. */ __isl_give isl_space *isl_val_get_space(__isl_keep isl_val *v) { if (!v) return NULL; return isl_space_params_alloc(isl_val_get_ctx(v), 0); } /* Reset the domain space of "v" to "space". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything, apart from error handling and cleaning up memory. */ __isl_give isl_val *isl_val_reset_domain_space(__isl_take isl_val *v, __isl_take isl_space *space) { if (!space) return isl_val_free(v); isl_space_free(space); return v; } /* Align the parameters of "v" to those of "space". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything, apart from error handling and cleaning up memory. * Note that the conditions surrounding the call to this function make sure * that this function will never actually get called. */ __isl_give isl_val *isl_val_align_params(__isl_take isl_val *v, __isl_take isl_space *space) { if (!space) return isl_val_free(v); isl_space_free(space); return v; } /* Reorder the dimensions of the domain of "v" according * to the given reordering. * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * does not do anything, apart from error handling and cleaning up memory. */ __isl_give isl_val *isl_val_realign_domain(__isl_take isl_val *v, __isl_take isl_reordering *r) { if (!r) return isl_val_free(v); isl_reordering_free(r); return v; } /* Return an isl_val that is zero on "ls". * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * simply returns a zero isl_val in the same context as "ls". */ __isl_give isl_val *isl_val_zero_on_domain(__isl_take isl_local_space *ls) { isl_ctx *ctx; if (!ls) return NULL; ctx = isl_local_space_get_ctx(ls); isl_local_space_free(ls); return isl_val_zero(ctx); } /* Do the parameters of "v" match those of "space"? * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * simply returns 1, except if "v" or "space" are NULL. */ int isl_val_matching_params(__isl_keep isl_val *v, __isl_keep isl_space *space) { if (!v || !space) return -1; return 1; } /* Check that the domain space of "v" matches "space". * * Return 0 on success and -1 on error. * * This function is only meant to be used in the generic isl_multi_* * functions which have to deal with base objects that have an associated * space. Since an isl_val does not have an associated space, this function * simply returns 0, except if "v" or "space" are NULL. */ int isl_val_check_match_domain_space(__isl_keep isl_val *v, __isl_keep isl_space *space) { if (!v || !space) return -1; return 0; } #undef BASE #define BASE val #define NO_DOMAIN #define NO_IDENTITY #define NO_FROM_BASE #define NO_MOVE_DIMS #include /* Apply "fn" to each of the elements of "mv" with as second argument "v". */ static __isl_give isl_multi_val *isl_multi_val_fn_val( __isl_take isl_multi_val *mv, __isl_give isl_val *(*fn)(__isl_take isl_val *v1, __isl_take isl_val *v2), __isl_take isl_val *v) { int i; mv = isl_multi_val_cow(mv); if (!mv || !v) goto error; for (i = 0; i < mv->n; ++i) { mv->p[i] = fn(mv->p[i], isl_val_copy(v)); if (!mv->p[i]) goto error; } isl_val_free(v); return mv; error: isl_val_free(v); isl_multi_val_free(mv); return NULL; } /* Add "v" to each of the elements of "mv". */ __isl_give isl_multi_val *isl_multi_val_add_val(__isl_take isl_multi_val *mv, __isl_take isl_val *v) { if (!v) return isl_multi_val_free(mv); if (isl_val_is_zero(v)) { isl_val_free(v); return mv; } return isl_multi_val_fn_val(mv, &isl_val_add, v); } /* Reduce the elements of "mv" modulo "v". */ __isl_give isl_multi_val *isl_multi_val_mod_val(__isl_take isl_multi_val *mv, __isl_take isl_val *v) { return isl_multi_val_fn_val(mv, &isl_val_mod, v); } isl-0.16.1/isl_map_lexopt_templ.c0000664000175000017500000000777312645737061013726 00000000000000/* * Copyright 2010 INRIA Saclay * Copyright 2012 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ /* Function for computing the lexicographic optimum of a map * in the form of either an isl_map or an isl_pw_multi_aff. */ #define xSF(TYPE,SUFFIX) TYPE ## SUFFIX #define SF(TYPE,SUFFIX) xSF(TYPE,SUFFIX) /* Given a basic map "bmap", compute the lexicographically minimal * (or maximal) image element for each domain element in dom. * Set *empty to those elements in dom that do not have an image element. * * We first make sure the basic sets in dom are disjoint and then * simply collect the results over each of the basic sets separately. * We could probably improve the efficiency a bit by moving the union * domain down into the parametric integer programming. */ static __isl_give TYPE *SF(basic_map_partial_lexopt,SUFFIX)( __isl_take isl_basic_map *bmap, __isl_take isl_set *dom, __isl_give isl_set **empty, int max) { int i; TYPE *res; dom = isl_set_make_disjoint(dom); if (!dom) goto error; if (isl_set_plain_is_empty(dom)) { isl_space *space = isl_basic_map_get_space(bmap); if (empty) *empty = dom; else isl_set_free(dom); isl_basic_map_free(bmap); return EMPTY(space); } res = SF(isl_basic_map_partial_lexopt,SUFFIX)(isl_basic_map_copy(bmap), isl_basic_set_copy(dom->p[0]), empty, max); for (i = 1; i < dom->n; ++i) { TYPE *res_i; isl_set *empty_i; res_i = SF(isl_basic_map_partial_lexopt,SUFFIX)( isl_basic_map_copy(bmap), isl_basic_set_copy(dom->p[i]), &empty_i, max); res = ADD(res, res_i); *empty = isl_set_union_disjoint(*empty, empty_i); } isl_set_free(dom); isl_basic_map_free(bmap); return res; error: *empty = NULL; isl_set_free(dom); isl_basic_map_free(bmap); return NULL; } static __isl_give TYPE *SF(isl_map_partial_lexopt_aligned,SUFFIX)( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, int max); /* Given a map "map", compute the lexicographically minimal * (or maximal) image element for each domain element in dom. * Set *empty to those elements in dom that do not have an image element. * * Align parameters if needed and then call isl_map_partial_lexopt_aligned. */ static __isl_give TYPE *SF(isl_map_partial_lexopt,SUFFIX)( __isl_take isl_map *map, __isl_take isl_set *dom, __isl_give isl_set **empty, int max) { if (!map || !dom) goto error; if (isl_space_match(map->dim, isl_dim_param, dom->dim, isl_dim_param)) return SF(isl_map_partial_lexopt_aligned,SUFFIX)(map, dom, empty, max); if (!isl_space_has_named_params(map->dim) || !isl_space_has_named_params(dom->dim)) isl_die(map->ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); map = isl_map_align_params(map, isl_map_get_space(dom)); dom = isl_map_align_params(dom, isl_map_get_space(map)); return SF(isl_map_partial_lexopt_aligned,SUFFIX)(map, dom, empty, max); error: if (empty) *empty = NULL; isl_set_free(dom); isl_map_free(map); return NULL; } __isl_give TYPE *SF(isl_map_lexopt,SUFFIX)(__isl_take isl_map *map, int max) { isl_set *dom = NULL; isl_space *dom_space; if (!map) goto error; dom_space = isl_space_domain(isl_space_copy(map->dim)); dom = isl_set_universe(dom_space); return SF(isl_map_partial_lexopt,SUFFIX)(map, dom, NULL, max); error: isl_map_free(map); return NULL; } __isl_give TYPE *SF(isl_map_lexmin,SUFFIX)(__isl_take isl_map *map) { return SF(isl_map_lexopt,SUFFIX)(map, 0); } __isl_give TYPE *SF(isl_map_lexmax,SUFFIX)(__isl_take isl_map *map) { return SF(isl_map_lexopt,SUFFIX)(map, 1); } __isl_give TYPE *SF(isl_set_lexmin,SUFFIX)(__isl_take isl_set *set) { return SF(isl_map_lexmin,SUFFIX)(set); } __isl_give TYPE *SF(isl_set_lexmax,SUFFIX)(__isl_take isl_set *set) { return SF(isl_map_lexmax,SUFFIX)(set); } isl-0.16.1/isl_test_imath.c0000664000175000017500000000366112645737061012506 00000000000000/* * Copyright 2015 INRIA Paris-Rocquencourt * * Use of this software is governed by the MIT license * * Written by Michael Kruse, INRIA Paris-Rocquencourt, * Domaine de Voluceau, Rocquenqourt, B.P. 105, * 78153 Le Chesnay Cedex France */ #include #include #include /* This constant is not defined in limits.h, but IMath uses it */ #define ULONG_MIN 0ul /* Test the IMath internals assumed by the imath implementation of isl_int. * * In particular, we test the ranges of IMath-defined types. * * Also, isl uses the existence and function of imath's struct * fields. The digits are stored with less significant digits at lower array * indices. Where they are stored (on the heap or in the field 'single') does * not matter. */ int test_imath_internals() { mpz_t val; mp_result retval; assert(sizeof(mp_small) == sizeof(long)); assert(MP_SMALL_MIN == LONG_MIN); assert(MP_SMALL_MAX == LONG_MAX); assert(sizeof(mp_usmall) == sizeof(unsigned long)); assert(MP_USMALL_MIN == ULONG_MIN); assert(MP_USMALL_MAX == ULONG_MAX); retval = mp_int_init_value(&val, 0); assert(retval == MP_OK); assert(val.alloc >= val.used); assert(val.used == 1); assert(val.sign == MP_ZPOS); assert(val.digits[0] == 0); retval = mp_int_set_value(&val, -1); assert(retval == MP_OK); assert(val.alloc >= val.used); assert(val.used == 1); assert(val.sign == MP_NEG); assert(val.digits[0] == 1); retval = mp_int_set_value(&val, 1); assert(retval == MP_OK); assert(val.alloc >= val.used); assert(val.used == 1); assert(val.sign == MP_ZPOS); assert(val.digits[0] == 1); retval = mp_int_mul_pow2(&val, sizeof(mp_digit) * CHAR_BIT, &val); assert(retval == MP_OK); assert(val.alloc >= val.used); assert(val.used == 2); assert(val.sign == MP_ZPOS); assert(val.digits[0] == 0); assert(val.digits[1] == 1); mp_int_clear(&val); return 0; } int main() { if (test_imath_internals() < 0) return -1; return 0; } isl-0.16.1/isl_reordering.h0000664000175000017500000000207112645737061012504 00000000000000#ifndef ISL_REORDERING_H #define ISL_REORDERING_H #include /* pos maps original dimensions to new dimensions. * The final dimension is given by dim. * The number of dimensions (i.e., the range of values) in the result * may be larger than the number of dimensions in the input. * In particular, the possible values of the entries in pos ranges from 0 to * the total dimension of dim - 1, unless isl_reordering_extend * has been called. */ struct isl_reordering { int ref; isl_space *dim; unsigned len; int pos[1]; }; typedef struct isl_reordering isl_reordering; __isl_give isl_reordering *isl_parameter_alignment_reordering( __isl_keep isl_space *alignee, __isl_keep isl_space *aligner); __isl_give isl_reordering *isl_reordering_copy(__isl_keep isl_reordering *exp); void *isl_reordering_free(__isl_take isl_reordering *exp); __isl_give isl_reordering *isl_reordering_extend_space( __isl_take isl_reordering *exp, __isl_take isl_space *dim); __isl_give isl_reordering *isl_reordering_extend(__isl_take isl_reordering *exp, unsigned extra); #endif isl-0.16.1/basis_reduction_templ.c0000664000175000017500000002053012645737060014045 00000000000000/* * Copyright 2006-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium */ #include #include #include #include #include #include "isl_basis_reduction.h" static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha) { int i; for (i = 0; i < n; ++i) GBR_lp_get_alpha(lp, first + i, &alpha[i]); } /* Compute a reduced basis for the set represented by the tableau "tab". * tab->basis, which must be initialized by the calling function to an affine * unimodular basis, is updated to reflect the reduced basis. * The first tab->n_zero rows of the basis (ignoring the constant row) * are assumed to correspond to equalities and are left untouched. * tab->n_zero is updated to reflect any additional equalities that * have been detected in the first rows of the new basis. * The final tab->n_unbounded rows of the basis are assumed to correspond * to unbounded directions and are also left untouched. * In particular this means that the remaining rows are assumed to * correspond to bounded directions. * * This function implements the algorithm described in * "An Implementation of the Generalized Basis Reduction Algorithm * for Integer Programming" of Cook el al. to compute a reduced basis. * We use \epsilon = 1/4. * * If ctx->opt->gbr_only_first is set, the user is only interested * in the first direction. In this case we stop the basis reduction when * the width in the first direction becomes smaller than 2. */ struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab) { unsigned dim; struct isl_ctx *ctx; struct isl_mat *B; int i; GBR_LP *lp = NULL; GBR_type F_old, alpha, F_new; int row; isl_int tmp; struct isl_vec *b_tmp; GBR_type *F = NULL; GBR_type *alpha_buffer[2] = { NULL, NULL }; GBR_type *alpha_saved; GBR_type F_saved; int use_saved = 0; isl_int mu[2]; GBR_type mu_F[2]; GBR_type two; GBR_type one; int empty = 0; int fixed = 0; int fixed_saved = 0; int mu_fixed[2]; int n_bounded; int gbr_only_first; if (!tab) return NULL; if (tab->empty) return tab; ctx = tab->mat->ctx; gbr_only_first = ctx->opt->gbr_only_first; dim = tab->n_var; B = tab->basis; if (!B) return tab; n_bounded = dim - tab->n_unbounded; if (n_bounded <= tab->n_zero + 1) return tab; isl_int_init(tmp); isl_int_init(mu[0]); isl_int_init(mu[1]); GBR_init(alpha); GBR_init(F_old); GBR_init(F_new); GBR_init(F_saved); GBR_init(mu_F[0]); GBR_init(mu_F[1]); GBR_init(two); GBR_init(one); b_tmp = isl_vec_alloc(ctx, dim); if (!b_tmp) goto error; F = isl_alloc_array(ctx, GBR_type, n_bounded); alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded); alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded); alpha_saved = alpha_buffer[0]; if (!F || !alpha_buffer[0] || !alpha_buffer[1]) goto error; for (i = 0; i < n_bounded; ++i) { GBR_init(F[i]); GBR_init(alpha_buffer[0][i]); GBR_init(alpha_buffer[1][i]); } GBR_set_ui(two, 2); GBR_set_ui(one, 1); lp = GBR_lp_init(tab); if (!lp) goto error; i = tab->n_zero; GBR_lp_set_obj(lp, B->row[1+i]+1, dim); ctx->stats->gbr_solved_lps++; if (GBR_lp_solve(lp) < 0) goto error; GBR_lp_get_obj_val(lp, &F[i]); if (GBR_lt(F[i], one)) { if (!GBR_is_zero(F[i])) { empty = GBR_lp_cut(lp, B->row[1+i]+1); if (empty) goto done; GBR_set_ui(F[i], 0); } tab->n_zero++; } do { if (i+1 == tab->n_zero) { GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim); ctx->stats->gbr_solved_lps++; if (GBR_lp_solve(lp) < 0) goto error; GBR_lp_get_obj_val(lp, &F_new); fixed = GBR_lp_is_fixed(lp); GBR_set_ui(alpha, 0); } else if (use_saved) { row = GBR_lp_next_row(lp); GBR_set(F_new, F_saved); fixed = fixed_saved; GBR_set(alpha, alpha_saved[i]); } else { row = GBR_lp_add_row(lp, B->row[1+i]+1, dim); GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim); ctx->stats->gbr_solved_lps++; if (GBR_lp_solve(lp) < 0) goto error; GBR_lp_get_obj_val(lp, &F_new); fixed = GBR_lp_is_fixed(lp); GBR_lp_get_alpha(lp, row, &alpha); if (i > 0) save_alpha(lp, row-i, i, alpha_saved); if (GBR_lp_del_row(lp) < 0) goto error; } GBR_set(F[i+1], F_new); GBR_floor(mu[0], alpha); GBR_ceil(mu[1], alpha); if (isl_int_eq(mu[0], mu[1])) isl_int_set(tmp, mu[0]); else { int j; for (j = 0; j <= 1; ++j) { isl_int_set(tmp, mu[j]); isl_seq_combine(b_tmp->el, ctx->one, B->row[1+i+1]+1, tmp, B->row[1+i]+1, dim); GBR_lp_set_obj(lp, b_tmp->el, dim); ctx->stats->gbr_solved_lps++; if (GBR_lp_solve(lp) < 0) goto error; GBR_lp_get_obj_val(lp, &mu_F[j]); mu_fixed[j] = GBR_lp_is_fixed(lp); if (i > 0) save_alpha(lp, row-i, i, alpha_buffer[j]); } if (GBR_lt(mu_F[0], mu_F[1])) j = 0; else j = 1; isl_int_set(tmp, mu[j]); GBR_set(F_new, mu_F[j]); fixed = mu_fixed[j]; alpha_saved = alpha_buffer[j]; } isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1, tmp, B->row[1+i]+1, dim); if (i+1 == tab->n_zero && fixed) { if (!GBR_is_zero(F[i+1])) { empty = GBR_lp_cut(lp, B->row[1+i+1]+1); if (empty) goto done; GBR_set_ui(F[i+1], 0); } tab->n_zero++; } GBR_set(F_old, F[i]); use_saved = 0; /* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */ GBR_set_ui(mu_F[0], 4); GBR_mul(mu_F[0], mu_F[0], F_new); GBR_set_ui(mu_F[1], 3); GBR_mul(mu_F[1], mu_F[1], F_old); if (GBR_lt(mu_F[0], mu_F[1])) { B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1); if (i > tab->n_zero) { use_saved = 1; GBR_set(F_saved, F_new); fixed_saved = fixed; if (GBR_lp_del_row(lp) < 0) goto error; --i; } else { GBR_set(F[tab->n_zero], F_new); if (gbr_only_first && GBR_lt(F[tab->n_zero], two)) break; if (fixed) { if (!GBR_is_zero(F[tab->n_zero])) { empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1); if (empty) goto done; GBR_set_ui(F[tab->n_zero], 0); } tab->n_zero++; } } } else { GBR_lp_add_row(lp, B->row[1+i]+1, dim); ++i; } } while (i < n_bounded - 1); if (0) { done: if (empty < 0) { error: isl_mat_free(B); B = NULL; } } GBR_lp_delete(lp); if (alpha_buffer[1]) for (i = 0; i < n_bounded; ++i) { GBR_clear(F[i]); GBR_clear(alpha_buffer[0][i]); GBR_clear(alpha_buffer[1][i]); } free(F); free(alpha_buffer[0]); free(alpha_buffer[1]); isl_vec_free(b_tmp); GBR_clear(alpha); GBR_clear(F_old); GBR_clear(F_new); GBR_clear(F_saved); GBR_clear(mu_F[0]); GBR_clear(mu_F[1]); GBR_clear(two); GBR_clear(one); isl_int_clear(tmp); isl_int_clear(mu[0]); isl_int_clear(mu[1]); tab->basis = B; return tab; } /* Compute an affine form of a reduced basis of the given basic * non-parametric set, which is assumed to be bounded and not * include any integer divisions. * The first column and the first row correspond to the constant term. * * If the input contains any equalities, we first create an initial * basis with the equalities first. Otherwise, we start off with * the identity matrix. */ struct isl_mat *isl_basic_set_reduced_basis(struct isl_basic_set *bset) { struct isl_mat *basis; struct isl_tab *tab; if (!bset) return NULL; if (isl_basic_set_dim(bset, isl_dim_div) != 0) isl_die(bset->ctx, isl_error_invalid, "no integer division allowed", return NULL); if (isl_basic_set_dim(bset, isl_dim_param) != 0) isl_die(bset->ctx, isl_error_invalid, "no parameters allowed", return NULL); tab = isl_tab_from_basic_set(bset, 0); if (!tab) return NULL; if (bset->n_eq == 0) tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var); else { isl_mat *eq; unsigned nvar = isl_basic_set_total_dim(bset); eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 1, nvar); eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis); tab->basis = isl_mat_lin_to_aff(tab->basis); tab->n_zero = bset->n_eq; isl_mat_free(eq); } tab = isl_tab_compute_reduced_basis(tab); if (!tab) return NULL; basis = isl_mat_copy(tab->basis); isl_tab_free(tab); return basis; } isl-0.16.1/isl_equalities.c0000664000175000017500000005236712645737060012520 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include "isl_map_private.h" #include "isl_equalities.h" #include /* Given a set of modulo constraints * * c + A y = 0 mod d * * this function computes a particular solution y_0 * * The input is given as a matrix B = [ c A ] and a vector d. * * The output is matrix containing the solution y_0 or * a zero-column matrix if the constraints admit no integer solution. * * The given set of constrains is equivalent to * * c + A y = -D x * * with D = diag d and x a fresh set of variables. * Reducing both c and A modulo d does not change the * value of y in the solution and may lead to smaller coefficients. * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M. * Then * [ x ] * M [ y ] = - c * and so * [ x ] * [ H 0 ] U^{-1} [ y ] = - c * Let * [ A ] [ x ] * [ B ] = U^{-1} [ y ] * then * H A + 0 B = -c * * so B may be chosen arbitrarily, e.g., B = 0, and then * * [ x ] = [ -c ] * U^{-1} [ y ] = [ 0 ] * or * [ x ] [ -c ] * [ y ] = U [ 0 ] * specifically, * * y = U_{2,1} (-c) * * If any of the coordinates of this y are non-integer * then the constraints admit no integer solution and * a zero-column matrix is returned. */ static struct isl_mat *particular_solution(struct isl_mat *B, struct isl_vec *d) { int i, j; struct isl_mat *M = NULL; struct isl_mat *C = NULL; struct isl_mat *U = NULL; struct isl_mat *H = NULL; struct isl_mat *cst = NULL; struct isl_mat *T = NULL; M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1); C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1); if (!M || !C) goto error; isl_int_set_si(C->row[0][0], 1); for (i = 0; i < B->n_row; ++i) { isl_seq_clr(M->row[i], B->n_row); isl_int_set(M->row[i][i], d->block.data[i]); isl_int_neg(C->row[1 + i][0], B->row[i][0]); isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]); for (j = 0; j < B->n_col - 1; ++j) isl_int_fdiv_r(M->row[i][B->n_row + j], B->row[i][1 + j], M->row[i][i]); } M = isl_mat_left_hermite(M, 0, &U, NULL); if (!M || !U) goto error; H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row); H = isl_mat_lin_to_aff(H); C = isl_mat_inverse_product(H, C); if (!C) goto error; for (i = 0; i < B->n_row; ++i) { if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0])) break; isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]); } if (i < B->n_row) cst = isl_mat_alloc(B->ctx, B->n_row, 0); else cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1); T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row); cst = isl_mat_product(T, cst); isl_mat_free(M); isl_mat_free(C); isl_mat_free(U); return cst; error: isl_mat_free(M); isl_mat_free(C); isl_mat_free(U); return NULL; } /* Compute and return the matrix * * U_1^{-1} diag(d_1, 1, ..., 1) * * with U_1 the unimodular completion of the first (and only) row of B. * The columns of this matrix generate the lattice that satisfies * the single (linear) modulo constraint. */ static struct isl_mat *parameter_compression_1( struct isl_mat *B, struct isl_vec *d) { struct isl_mat *U; U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1); if (!U) return NULL; isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1); U = isl_mat_unimodular_complete(U, 1); U = isl_mat_right_inverse(U); if (!U) return NULL; isl_mat_col_mul(U, 0, d->block.data[0], 0); U = isl_mat_lin_to_aff(U); return U; } /* Compute a common lattice of solutions to the linear modulo * constraints specified by B and d. * See also the documentation of isl_mat_parameter_compression. * We put the matrix * * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ] * * on a common denominator. This denominator D is the lcm of modulos d. * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1). * Putting this on the common denominator, we have * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D). */ static struct isl_mat *parameter_compression_multi( struct isl_mat *B, struct isl_vec *d) { int i, j, k; isl_int D; struct isl_mat *A = NULL, *U = NULL; struct isl_mat *T; unsigned size; isl_int_init(D); isl_vec_lcm(d, &D); size = B->n_col - 1; A = isl_mat_alloc(B->ctx, size, B->n_row * size); U = isl_mat_alloc(B->ctx, size, size); if (!U || !A) goto error; for (i = 0; i < B->n_row; ++i) { isl_seq_cpy(U->row[0], B->row[i] + 1, size); U = isl_mat_unimodular_complete(U, 1); if (!U) goto error; isl_int_divexact(D, D, d->block.data[i]); for (k = 0; k < U->n_col; ++k) isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]); isl_int_mul(D, D, d->block.data[i]); for (j = 1; j < U->n_row; ++j) for (k = 0; k < U->n_col; ++k) isl_int_mul(A->row[k][i*size+j], D, U->row[j][k]); } A = isl_mat_left_hermite(A, 0, NULL, NULL); T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row); T = isl_mat_lin_to_aff(T); if (!T) goto error; isl_int_set(T->row[0][0], D); T = isl_mat_right_inverse(T); if (!T) goto error; isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error); T = isl_mat_transpose(T); isl_mat_free(A); isl_mat_free(U); isl_int_clear(D); return T; error: isl_mat_free(A); isl_mat_free(U); isl_int_clear(D); return NULL; } /* Given a set of modulo constraints * * c + A y = 0 mod d * * this function returns an affine transformation T, * * y = T y' * * that bijectively maps the integer vectors y' to integer * vectors y that satisfy the modulo constraints. * * This function is inspired by Section 2.5.3 * of B. Meister, "Stating and Manipulating Periodicity in the Polytope * Model. Applications to Program Analysis and Optimization". * However, the implementation only follows the algorithm of that * section for computing a particular solution and not for computing * a general homogeneous solution. The latter is incomplete and * may remove some valid solutions. * Instead, we use an adaptation of the algorithm in Section 7 of * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope * Model: Bringing the Power of Quasi-Polynomials to the Masses". * * The input is given as a matrix B = [ c A ] and a vector d. * Each element of the vector d corresponds to a row in B. * The output is a lower triangular matrix. * If no integer vector y satisfies the given constraints then * a matrix with zero columns is returned. * * We first compute a particular solution y_0 to the given set of * modulo constraints in particular_solution. If no such solution * exists, then we return a zero-columned transformation matrix. * Otherwise, we compute the generic solution to * * A y = 0 mod d * * That is we want to compute G such that * * y = G y'' * * with y'' integer, describes the set of solutions. * * We first remove the common factors of each row. * In particular if gcd(A_i,d_i) != 1, then we divide the whole * row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1, * then we divide this row of A by the common factor, unless gcd(A_i) = 0. * In the later case, we simply drop the row (in both A and d). * * If there are no rows left in A, then G is the identity matrix. Otherwise, * for each row i, we now determine the lattice of integer vectors * that satisfies this row. Let U_i be the unimodular extension of the * row A_i. This unimodular extension exists because gcd(A_i) = 1. * The first component of * * y' = U_i y * * needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''. * Then, * * y = U_i^{-1} diag(d_i, 1, ..., 1) y'' * * for arbitrary integer vectors y''. That is, y belongs to the lattice * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1). * If there is only one row, then G = L_1. * * If there is more than one row left, we need to compute the intersection * of the lattices. That is, we need to compute an L such that * * L = L_i L_i' for all i * * with L_i' some integer matrices. Let A be constructed as follows * * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ] * * and computed the Hermite Normal Form of A = [ H 0 ] U * Then, * * L_i^{-T} = H U_{1,i} * * or * * H^{-T} = L_i U_{1,i}^T * * In other words G = L = H^{-T}. * To ensure that G is lower triangular, we compute and use its Hermite * normal form. * * The affine transformation matrix returned is then * * [ 1 0 ] * [ y_0 G ] * * as any y = y_0 + G y' with y' integer is a solution to the original * modulo constraints. */ struct isl_mat *isl_mat_parameter_compression( struct isl_mat *B, struct isl_vec *d) { int i; struct isl_mat *cst = NULL; struct isl_mat *T = NULL; isl_int D; if (!B || !d) goto error; isl_assert(B->ctx, B->n_row == d->size, goto error); cst = particular_solution(B, d); if (!cst) goto error; if (cst->n_col == 0) { T = isl_mat_alloc(B->ctx, B->n_col, 0); isl_mat_free(cst); isl_mat_free(B); isl_vec_free(d); return T; } isl_int_init(D); /* Replace a*g*row = 0 mod g*m by row = 0 mod m */ for (i = 0; i < B->n_row; ++i) { isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D); if (isl_int_is_one(D)) continue; if (isl_int_is_zero(D)) { B = isl_mat_drop_rows(B, i, 1); d = isl_vec_cow(d); if (!B || !d) goto error2; isl_seq_cpy(d->block.data+i, d->block.data+i+1, d->size - (i+1)); d->size--; i--; continue; } B = isl_mat_cow(B); if (!B) goto error2; isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1); isl_int_gcd(D, D, d->block.data[i]); d = isl_vec_cow(d); if (!d) goto error2; isl_int_divexact(d->block.data[i], d->block.data[i], D); } isl_int_clear(D); if (B->n_row == 0) T = isl_mat_identity(B->ctx, B->n_col); else if (B->n_row == 1) T = parameter_compression_1(B, d); else T = parameter_compression_multi(B, d); T = isl_mat_left_hermite(T, 0, NULL, NULL); if (!T) goto error; isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1); isl_mat_free(cst); isl_mat_free(B); isl_vec_free(d); return T; error2: isl_int_clear(D); error: isl_mat_free(cst); isl_mat_free(B); isl_vec_free(d); return NULL; } /* Given a set of equalities * * B(y) + A x = 0 (*) * * compute and return an affine transformation T, * * y = T y' * * that bijectively maps the integer vectors y' to integer * vectors y that satisfy the modulo constraints for some value of x. * * Let [H 0] be the Hermite Normal Form of A, i.e., * * A = [H 0] Q * * Then y is a solution of (*) iff * * H^-1 B(y) (= - [I 0] Q x) * * is an integer vector. Let d be the common denominator of H^-1. * We impose * * d H^-1 B(y) = 0 mod d * * and compute the solution using isl_mat_parameter_compression. */ __isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B, __isl_take isl_mat *A) { isl_ctx *ctx; isl_vec *d; int n_row, n_col; if (!A) return isl_mat_free(B); ctx = isl_mat_get_ctx(A); n_row = A->n_row; n_col = A->n_col; A = isl_mat_left_hermite(A, 0, NULL, NULL); A = isl_mat_drop_cols(A, n_row, n_col - n_row); A = isl_mat_lin_to_aff(A); A = isl_mat_right_inverse(A); d = isl_vec_alloc(ctx, n_row); if (A) d = isl_vec_set(d, A->row[0][0]); A = isl_mat_drop_rows(A, 0, 1); A = isl_mat_drop_cols(A, 0, 1); B = isl_mat_product(A, B); return isl_mat_parameter_compression(B, d); } /* Given a set of equalities * * M x - c = 0 * * this function computes a unimodular transformation from a lower-dimensional * space to the original space that bijectively maps the integer points x' * in the lower-dimensional space to the integer points x in the original * space that satisfy the equalities. * * The input is given as a matrix B = [ -c M ] and the output is a * matrix that maps [1 x'] to [1 x]. * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x']. * * First compute the (left) Hermite normal form of M, * * M [U1 U2] = M U = H = [H1 0] * or * M = H Q = [H1 0] [Q1] * [Q2] * * with U, Q unimodular, Q = U^{-1} (and H lower triangular). * Define the transformed variables as * * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x * [ x2' ] [Q2] * * The equalities then become * * H1 x1' - c = 0 or x1' = H1^{-1} c = c' * * If any of the c' is non-integer, then the original set has no * integer solutions (since the x' are a unimodular transformation * of the x) and a zero-column matrix is returned. * Otherwise, the transformation is given by * * x = U1 H1^{-1} c + U2 x2' * * The inverse transformation is simply * * x2' = Q2 x */ __isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B, __isl_give isl_mat **T2) { int i; struct isl_mat *H = NULL, *C = NULL, *H1, *U = NULL, *U1, *U2, *TC; unsigned dim; if (T2) *T2 = NULL; if (!B) goto error; dim = B->n_col - 1; H = isl_mat_sub_alloc(B, 0, B->n_row, 1, dim); H = isl_mat_left_hermite(H, 0, &U, T2); if (!H || !U || (T2 && !*T2)) goto error; if (T2) { *T2 = isl_mat_drop_rows(*T2, 0, B->n_row); *T2 = isl_mat_lin_to_aff(*T2); if (!*T2) goto error; } C = isl_mat_alloc(B->ctx, 1+B->n_row, 1); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(C->ctx, C->row+1, B->row, B->n_row, 0, 0, 1); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); TC = isl_mat_inverse_product(H1, C); if (!TC) goto error; isl_mat_free(H); if (!isl_int_is_one(TC->row[0][0])) { for (i = 0; i < B->n_row; ++i) { if (!isl_int_is_divisible_by(TC->row[1+i][0], TC->row[0][0])) { struct isl_ctx *ctx = B->ctx; isl_mat_free(B); isl_mat_free(TC); isl_mat_free(U); if (T2) { isl_mat_free(*T2); *T2 = isl_mat_alloc(ctx, 0, 1 + dim); } return isl_mat_alloc(ctx, 1 + dim, 0); } isl_seq_scale_down(TC->row[1+i], TC->row[1+i], TC->row[0][0], 1); } isl_int_set_si(TC->row[0][0], 1); } U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row); U1 = isl_mat_lin_to_aff(U1); U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row); U2 = isl_mat_lin_to_aff(U2); isl_mat_free(U); TC = isl_mat_product(U1, TC); TC = isl_mat_aff_direct_sum(TC, U2); isl_mat_free(B); return TC; error: isl_mat_free(B); isl_mat_free(H); isl_mat_free(U); if (T2) { isl_mat_free(*T2); *T2 = NULL; } return NULL; } /* Return "bset" and set *T and *T2 to the identity transformation * on "bset" (provided T and T2 are not NULL). */ static __isl_give isl_basic_set *return_with_identity( __isl_take isl_basic_set *bset, __isl_give isl_mat **T, __isl_give isl_mat **T2) { unsigned dim; isl_mat *id; if (!bset) return NULL; if (!T && !T2) return bset; dim = isl_basic_set_dim(bset, isl_dim_set); id = isl_mat_identity(isl_basic_map_get_ctx(bset), 1 + dim); if (T) *T = isl_mat_copy(id); if (T2) *T2 = isl_mat_copy(id); isl_mat_free(id); return bset; } /* Use the n equalities of bset to unimodularly transform the * variables x such that n transformed variables x1' have a constant value * and rewrite the constraints of bset in terms of the remaining * transformed variables x2'. The matrix pointed to by T maps * the new variables x2' back to the original variables x, while T2 * maps the original variables to the new variables. */ static struct isl_basic_set *compress_variables( struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2) { struct isl_mat *B, *TC; unsigned dim; if (T) *T = NULL; if (T2) *T2 = NULL; if (!bset) goto error; isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); isl_assert(bset->ctx, bset->n_div == 0, goto error); dim = isl_basic_set_n_dim(bset); isl_assert(bset->ctx, bset->n_eq <= dim, goto error); if (bset->n_eq == 0) return return_with_identity(bset, T, T2); B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim); TC = isl_mat_variable_compression(B, T2); if (!TC) goto error; if (TC->n_col == 0) { isl_mat_free(TC); if (T2) { isl_mat_free(*T2); *T2 = NULL; } return isl_basic_set_set_to_empty(bset); } bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC); if (T) *T = TC; return bset; error: isl_basic_set_free(bset); return NULL; } struct isl_basic_set *isl_basic_set_remove_equalities( struct isl_basic_set *bset, struct isl_mat **T, struct isl_mat **T2) { if (T) *T = NULL; if (T2) *T2 = NULL; if (!bset) return NULL; isl_assert(bset->ctx, isl_basic_set_n_param(bset) == 0, goto error); bset = isl_basic_set_gauss(bset, NULL); if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY)) return return_with_identity(bset, T, T2); bset = compress_variables(bset, T, T2); return bset; error: isl_basic_set_free(bset); *T = NULL; return NULL; } /* Check if dimension dim belongs to a residue class * i_dim \equiv r mod m * with m != 1 and if so return m in *modulo and r in *residue. * As a special case, when i_dim has a fixed value v, then * *modulo is set to 0 and *residue to v. * * If i_dim does not belong to such a residue class, then *modulo * is set to 1 and *residue is set to 0. */ int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, int pos, isl_int *modulo, isl_int *residue) { struct isl_ctx *ctx; struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1; unsigned total; unsigned nparam; if (!bset || !modulo || !residue) return -1; if (isl_basic_set_plain_dim_is_fixed(bset, pos, residue)) { isl_int_set_si(*modulo, 0); return 0; } ctx = isl_basic_set_get_ctx(bset); total = isl_basic_set_total_dim(bset); nparam = isl_basic_set_n_param(bset); H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total); H = isl_mat_left_hermite(H, 0, &U, NULL); if (!H) return -1; isl_seq_gcd(U->row[nparam + pos]+bset->n_eq, total-bset->n_eq, modulo); if (isl_int_is_zero(*modulo)) isl_int_set_si(*modulo, 1); if (isl_int_is_one(*modulo)) { isl_int_set_si(*residue, 0); isl_mat_free(H); isl_mat_free(U); return 0; } C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1); if (!C) goto error; isl_int_set_si(C->row[0][0], 1); isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1); H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row); H1 = isl_mat_lin_to_aff(H1); C = isl_mat_inverse_product(H1, C); isl_mat_free(H); U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq); U1 = isl_mat_lin_to_aff(U1); isl_mat_free(U); C = isl_mat_product(U1, C); if (!C) return -1; if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) { bset = isl_basic_set_copy(bset); bset = isl_basic_set_set_to_empty(bset); isl_basic_set_free(bset); isl_int_set_si(*modulo, 1); isl_int_set_si(*residue, 0); return 0; } isl_int_divexact(*residue, C->row[1][0], C->row[0][0]); isl_int_fdiv_r(*residue, *residue, *modulo); isl_mat_free(C); return 0; error: isl_mat_free(H); isl_mat_free(U); return -1; } /* Check if dimension dim belongs to a residue class * i_dim \equiv r mod m * with m != 1 and if so return m in *modulo and r in *residue. * As a special case, when i_dim has a fixed value v, then * *modulo is set to 0 and *residue to v. * * If i_dim does not belong to such a residue class, then *modulo * is set to 1 and *residue is set to 0. */ int isl_set_dim_residue_class(struct isl_set *set, int pos, isl_int *modulo, isl_int *residue) { isl_int m; isl_int r; int i; if (!set || !modulo || !residue) return -1; if (set->n == 0) { isl_int_set_si(*modulo, 0); isl_int_set_si(*residue, 0); return 0; } if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0) return -1; if (set->n == 1) return 0; if (isl_int_is_one(*modulo)) return 0; isl_int_init(m); isl_int_init(r); for (i = 1; i < set->n; ++i) { if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0) goto error; isl_int_gcd(*modulo, *modulo, m); isl_int_sub(m, *residue, r); isl_int_gcd(*modulo, *modulo, m); if (!isl_int_is_zero(*modulo)) isl_int_fdiv_r(*residue, *residue, *modulo); if (isl_int_is_one(*modulo)) break; } isl_int_clear(m); isl_int_clear(r); return 0; error: isl_int_clear(m); isl_int_clear(r); return -1; } /* Check if dimension "dim" belongs to a residue class * i_dim \equiv r mod m * with m != 1 and if so return m in *modulo and r in *residue. * As a special case, when i_dim has a fixed value v, then * *modulo is set to 0 and *residue to v. * * If i_dim does not belong to such a residue class, then *modulo * is set to 1 and *residue is set to 0. */ isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set, int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue) { *modulo = NULL; *residue = NULL; if (!set) return isl_stat_error; *modulo = isl_val_alloc(isl_set_get_ctx(set)); *residue = isl_val_alloc(isl_set_get_ctx(set)); if (!*modulo || !*residue) goto error; if (isl_set_dim_residue_class(set, pos, &(*modulo)->n, &(*residue)->n) < 0) goto error; isl_int_set_si((*modulo)->d, 1); isl_int_set_si((*residue)->d, 1); return isl_stat_ok; error: isl_val_free(*modulo); isl_val_free(*residue); return isl_stat_error; } isl-0.16.1/isl_int.h0000664000175000017500000000260212645737060011135 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_INT_H #define ISL_INT_H #define ISL_DEPRECATED_INT_H #include #include #include #include #ifdef USE_GMP_FOR_MP #include #endif #ifdef USE_IMATH_FOR_MP #ifdef USE_SMALL_INT_OPT #include #else /* USE_SMALL_INT_OPT */ #include #endif /* USE_SMALL_INT_OPT */ #endif /* USE_IMATH_FOR_MP */ #define isl_int_is_zero(i) (isl_int_sgn(i) == 0) #define isl_int_is_one(i) (isl_int_cmp_si(i,1) == 0) #define isl_int_is_negone(i) (isl_int_cmp_si(i,-1) == 0) #define isl_int_is_pos(i) (isl_int_sgn(i) > 0) #define isl_int_is_neg(i) (isl_int_sgn(i) < 0) #define isl_int_is_nonpos(i) (isl_int_sgn(i) <= 0) #define isl_int_is_nonneg(i) (isl_int_sgn(i) >= 0) #ifndef USE_SMALL_INT_OPT #define isl_int_print(out,i,width) \ do { \ char *s; \ s = isl_int_get_str(i); \ fprintf(out, "%*s", width, s); \ isl_int_free_str(s); \ } while (0) #endif /* USE_SMALL_INT_OPT */ __isl_give isl_printer *isl_printer_print_isl_int(__isl_take isl_printer *p, isl_int i); #endif /* ISL_INT_H */ isl-0.16.1/isl_local_space.c0000664000175000017500000010203712645737414012611 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include isl_ctx *isl_local_space_get_ctx(__isl_keep isl_local_space *ls) { return ls ? ls->dim->ctx : NULL; } __isl_give isl_local_space *isl_local_space_alloc_div(__isl_take isl_space *dim, __isl_take isl_mat *div) { isl_ctx *ctx; isl_local_space *ls = NULL; if (!dim || !div) goto error; ctx = isl_space_get_ctx(dim); ls = isl_calloc_type(ctx, struct isl_local_space); if (!ls) goto error; ls->ref = 1; ls->dim = dim; ls->div = div; return ls; error: isl_mat_free(div); isl_space_free(dim); isl_local_space_free(ls); return NULL; } __isl_give isl_local_space *isl_local_space_alloc(__isl_take isl_space *dim, unsigned n_div) { isl_ctx *ctx; isl_mat *div; unsigned total; if (!dim) return NULL; total = isl_space_dim(dim, isl_dim_all); ctx = isl_space_get_ctx(dim); div = isl_mat_alloc(ctx, n_div, 1 + 1 + total + n_div); return isl_local_space_alloc_div(dim, div); } __isl_give isl_local_space *isl_local_space_from_space(__isl_take isl_space *dim) { return isl_local_space_alloc(dim, 0); } __isl_give isl_local_space *isl_local_space_copy(__isl_keep isl_local_space *ls) { if (!ls) return NULL; ls->ref++; return ls; } __isl_give isl_local_space *isl_local_space_dup(__isl_keep isl_local_space *ls) { if (!ls) return NULL; return isl_local_space_alloc_div(isl_space_copy(ls->dim), isl_mat_copy(ls->div)); } __isl_give isl_local_space *isl_local_space_cow(__isl_take isl_local_space *ls) { if (!ls) return NULL; if (ls->ref == 1) return ls; ls->ref--; return isl_local_space_dup(ls); } __isl_null isl_local_space *isl_local_space_free( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (--ls->ref > 0) return NULL; isl_space_free(ls->dim); isl_mat_free(ls->div); free(ls); return NULL; } /* Is the local space that of a parameter domain? */ isl_bool isl_local_space_is_params(__isl_keep isl_local_space *ls) { if (!ls) return isl_bool_error; return isl_space_is_params(ls->dim); } /* Is the local space that of a set? */ isl_bool isl_local_space_is_set(__isl_keep isl_local_space *ls) { return ls ? isl_space_is_set(ls->dim) : isl_bool_error; } /* Return true if the two local spaces are identical, with identical * expressions for the integer divisions. */ isl_bool isl_local_space_is_equal(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2) { isl_bool equal; if (!ls1 || !ls2) return isl_bool_error; equal = isl_space_is_equal(ls1->dim, ls2->dim); if (equal < 0 || !equal) return equal; if (!isl_local_space_divs_known(ls1)) return isl_bool_false; if (!isl_local_space_divs_known(ls2)) return isl_bool_false; return isl_mat_is_equal(ls1->div, ls2->div); } /* Compare two isl_local_spaces. * * Return -1 if "ls1" is "smaller" than "ls2", 1 if "ls1" is "greater" * than "ls2" and 0 if they are equal. * * The order is fairly arbitrary. We do "prefer" divs that only involve * earlier dimensions in the sense that we consider local spaces where * the first differing div involves earlier dimensions to be smaller. */ int isl_local_space_cmp(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2) { int i; int cmp; int known1, known2; int last1, last2; int n_col; if (ls1 == ls2) return 0; if (!ls1) return -1; if (!ls2) return 1; cmp = isl_space_cmp(ls1->dim, ls2->dim); if (cmp != 0) return cmp; if (ls1->div->n_row != ls2->div->n_row) return ls1->div->n_row - ls2->div->n_row; n_col = isl_mat_cols(ls1->div); for (i = 0; i < ls1->div->n_row; ++i) { known1 = isl_local_space_div_is_known(ls1, i); known2 = isl_local_space_div_is_known(ls2, i); if (!known1 && !known2) continue; if (!known1) return 1; if (!known2) return -1; last1 = isl_seq_last_non_zero(ls1->div->row[i] + 1, n_col - 1); last2 = isl_seq_last_non_zero(ls2->div->row[i] + 1, n_col - 1); if (last1 != last2) return last1 - last2; cmp = isl_seq_cmp(ls1->div->row[i], ls2->div->row[i], n_col); if (cmp != 0) return cmp; } return 0; } int isl_local_space_dim(__isl_keep isl_local_space *ls, enum isl_dim_type type) { if (!ls) return 0; if (type == isl_dim_div) return ls->div->n_row; if (type == isl_dim_all) return isl_space_dim(ls->dim, isl_dim_all) + ls->div->n_row; return isl_space_dim(ls->dim, type); } unsigned isl_local_space_offset(__isl_keep isl_local_space *ls, enum isl_dim_type type) { isl_space *dim; if (!ls) return 0; dim = ls->dim; switch (type) { case isl_dim_cst: return 0; case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; case isl_dim_div: return 1 + dim->nparam + dim->n_in + dim->n_out; default: return 0; } } /* Return the position of the dimension of the given type and name * in "ls". * Return -1 if no such dimension can be found. */ int isl_local_space_find_dim_by_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, const char *name) { if (!ls) return -1; if (type == isl_dim_div) return -1; return isl_space_find_dim_by_name(ls->dim, type, name); } /* Does the given dimension have a name? */ isl_bool isl_local_space_has_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_has_dim_name(ls->dim, type, pos) : isl_bool_error; } const char *isl_local_space_get_dim_name(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_get_dim_name(ls->dim, type, pos) : NULL; } isl_bool isl_local_space_has_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_has_dim_id(ls->dim, type, pos) : isl_bool_error; } __isl_give isl_id *isl_local_space_get_dim_id(__isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return ls ? isl_space_get_dim_id(ls->dim, type, pos) : NULL; } __isl_give isl_aff *isl_local_space_get_div(__isl_keep isl_local_space *ls, int pos) { isl_aff *aff; if (!ls) return NULL; if (pos < 0 || pos >= ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return NULL); if (isl_int_is_zero(ls->div->row[pos][0])) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "expression of div unknown", return NULL); if (!isl_local_space_is_set(ls)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot represent divs of map spaces", return NULL); aff = isl_aff_alloc(isl_local_space_copy(ls)); if (!aff) return NULL; isl_seq_cpy(aff->v->el, ls->div->row[pos], aff->v->size); return aff; } __isl_give isl_space *isl_local_space_get_space(__isl_keep isl_local_space *ls) { if (!ls) return NULL; return isl_space_copy(ls->dim); } /* Replace the identifier of the tuple of type "type" by "id". */ __isl_give isl_local_space *isl_local_space_set_tuple_id( __isl_take isl_local_space *ls, enum isl_dim_type type, __isl_take isl_id *id) { ls = isl_local_space_cow(ls); if (!ls) goto error; ls->dim = isl_space_set_tuple_id(ls->dim, type, id); if (!ls->dim) return isl_local_space_free(ls); return ls; error: isl_id_free(id); return NULL; } __isl_give isl_local_space *isl_local_space_set_dim_name( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, const char *s) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_set_dim_name(ls->dim, type, pos, s); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_set_dim_id( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { ls = isl_local_space_cow(ls); if (!ls) goto error; ls->dim = isl_space_set_dim_id(ls->dim, type, pos, id); if (!ls->dim) return isl_local_space_free(ls); return ls; error: isl_id_free(id); return NULL; } __isl_give isl_local_space *isl_local_space_reset_space( __isl_take isl_local_space *ls, __isl_take isl_space *dim) { ls = isl_local_space_cow(ls); if (!ls || !dim) goto error; isl_space_free(ls->dim); ls->dim = dim; return ls; error: isl_local_space_free(ls); isl_space_free(dim); return NULL; } /* Reorder the columns of the given div definitions according to the * given reordering. * The order of the divs themselves is assumed not to change. */ static __isl_give isl_mat *reorder_divs(__isl_take isl_mat *div, __isl_take isl_reordering *r) { int i, j; isl_mat *mat; int extra; if (!div || !r) goto error; extra = isl_space_dim(r->dim, isl_dim_all) + div->n_row - r->len; mat = isl_mat_alloc(div->ctx, div->n_row, div->n_col + extra); if (!mat) goto error; for (i = 0; i < div->n_row; ++i) { isl_seq_cpy(mat->row[i], div->row[i], 2); isl_seq_clr(mat->row[i] + 2, mat->n_col - 2); for (j = 0; j < r->len; ++j) isl_int_set(mat->row[i][2 + r->pos[j]], div->row[i][2 + j]); } isl_reordering_free(r); isl_mat_free(div); return mat; error: isl_reordering_free(r); isl_mat_free(div); return NULL; } /* Reorder the dimensions of "ls" according to the given reordering. * The reordering r is assumed to have been extended with the local * variables, leaving them in the same order. */ __isl_give isl_local_space *isl_local_space_realign( __isl_take isl_local_space *ls, __isl_take isl_reordering *r) { ls = isl_local_space_cow(ls); if (!ls || !r) goto error; ls->div = reorder_divs(ls->div, isl_reordering_copy(r)); if (!ls->div) goto error; ls = isl_local_space_reset_space(ls, isl_space_copy(r->dim)); isl_reordering_free(r); return ls; error: isl_local_space_free(ls); isl_reordering_free(r); return NULL; } __isl_give isl_local_space *isl_local_space_add_div( __isl_take isl_local_space *ls, __isl_take isl_vec *div) { ls = isl_local_space_cow(ls); if (!ls || !div) goto error; if (ls->div->n_col != div->size) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "incompatible dimensions", goto error); ls->div = isl_mat_add_zero_cols(ls->div, 1); ls->div = isl_mat_add_rows(ls->div, 1); if (!ls->div) goto error; isl_seq_cpy(ls->div->row[ls->div->n_row - 1], div->el, div->size); isl_int_set_si(ls->div->row[ls->div->n_row - 1][div->size], 0); isl_vec_free(div); return ls; error: isl_local_space_free(ls); isl_vec_free(div); return NULL; } __isl_give isl_local_space *isl_local_space_replace_divs( __isl_take isl_local_space *ls, __isl_take isl_mat *div) { ls = isl_local_space_cow(ls); if (!ls || !div) goto error; isl_mat_free(ls->div); ls->div = div; return ls; error: isl_mat_free(div); isl_local_space_free(ls); return NULL; } /* Copy row "s" of "src" to row "d" of "dst", applying the expansion * defined by "exp". */ static void expand_row(__isl_keep isl_mat *dst, int d, __isl_keep isl_mat *src, int s, int *exp) { int i; unsigned c = src->n_col - src->n_row; isl_seq_cpy(dst->row[d], src->row[s], c); isl_seq_clr(dst->row[d] + c, dst->n_col - c); for (i = 0; i < s; ++i) isl_int_set(dst->row[d][c + exp[i]], src->row[s][c + i]); } /* Compare (known) divs. * Return non-zero if at least one of the two divs is unknown. * In particular, if both divs are unknown, we respect their * current order. Otherwise, we sort the known div after the unknown * div only if the known div depends on the unknown div. */ static int cmp_row(isl_int *row_i, isl_int *row_j, int i, int j, unsigned n_row, unsigned n_col) { int li, lj; int unknown_i, unknown_j; unknown_i = isl_int_is_zero(row_i[0]); unknown_j = isl_int_is_zero(row_j[0]); if (unknown_i && unknown_j) return i - j; if (unknown_i) li = n_col - n_row + i; else li = isl_seq_last_non_zero(row_i, n_col); if (unknown_j) lj = n_col - n_row + j; else lj = isl_seq_last_non_zero(row_j, n_col); if (li != lj) return li - lj; return isl_seq_cmp(row_i, row_j, n_col); } /* Call cmp_row for divs in a matrix. */ int isl_mat_cmp_div(__isl_keep isl_mat *div, int i, int j) { return cmp_row(div->row[i], div->row[j], i, j, div->n_row, div->n_col); } /* Call cmp_row for divs in a basic map. */ static int bmap_cmp_row(__isl_keep isl_basic_map *bmap, int i, int j, unsigned total) { return cmp_row(bmap->div[i], bmap->div[j], i, j, bmap->n_div, total); } /* Sort the divs in "bmap". * * We first make sure divs are placed after divs on which they depend. * Then we perform a simple insertion sort based on the same ordering * that is used in isl_merge_divs. */ __isl_give isl_basic_map *isl_basic_map_sort_divs( __isl_take isl_basic_map *bmap) { int i, j; unsigned total; bmap = isl_basic_map_order_divs(bmap); if (!bmap) return NULL; if (bmap->n_div <= 1) return bmap; total = 2 + isl_basic_map_total_dim(bmap); for (i = 1; i < bmap->n_div; ++i) { for (j = i - 1; j >= 0; --j) { if (bmap_cmp_row(bmap, j, j + 1, total) <= 0) break; isl_basic_map_swap_div(bmap, j, j + 1); } } return bmap; } /* Sort the divs in the basic maps of "map". */ __isl_give isl_map *isl_map_sort_divs(__isl_take isl_map *map) { return isl_map_inline_foreach_basic_map(map, &isl_basic_map_sort_divs); } /* Combine the two lists of divs into a single list. * For each row i in div1, exp1[i] is set to the position of the corresponding * row in the result. Similarly for div2 and exp2. * This function guarantees * exp1[i] >= i * exp1[i+1] > exp1[i] * For optimal merging, the two input list should have been sorted. */ __isl_give isl_mat *isl_merge_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2, int *exp1, int *exp2) { int i, j, k; isl_mat *div = NULL; unsigned d; if (!div1 || !div2) return NULL; d = div1->n_col - div1->n_row; div = isl_mat_alloc(div1->ctx, 1 + div1->n_row + div2->n_row, d + div1->n_row + div2->n_row); if (!div) return NULL; for (i = 0, j = 0, k = 0; i < div1->n_row && j < div2->n_row; ++k) { int cmp; expand_row(div, k, div1, i, exp1); expand_row(div, k + 1, div2, j, exp2); cmp = isl_mat_cmp_div(div, k, k + 1); if (cmp == 0) { exp1[i++] = k; exp2[j++] = k; } else if (cmp < 0) { exp1[i++] = k; } else { exp2[j++] = k; isl_seq_cpy(div->row[k], div->row[k + 1], div->n_col); } } for (; i < div1->n_row; ++i, ++k) { expand_row(div, k, div1, i, exp1); exp1[i] = k; } for (; j < div2->n_row; ++j, ++k) { expand_row(div, k, div2, j, exp2); exp2[j] = k; } div->n_row = k; div->n_col = d + k; return div; } /* Swap divs "a" and "b" in "ls". */ __isl_give isl_local_space *isl_local_space_swap_div( __isl_take isl_local_space *ls, int a, int b) { int offset; ls = isl_local_space_cow(ls); if (!ls) return NULL; if (a < 0 || a >= ls->div->n_row || b < 0 || b >= ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return isl_local_space_free(ls)); offset = ls->div->n_col - ls->div->n_row; ls->div = isl_mat_swap_cols(ls->div, offset + a, offset + b); ls->div = isl_mat_swap_rows(ls->div, a, b); if (!ls->div) return isl_local_space_free(ls); return ls; } /* Construct a local space that contains all the divs in either * "ls1" or "ls2". */ __isl_give isl_local_space *isl_local_space_intersect( __isl_take isl_local_space *ls1, __isl_take isl_local_space *ls2) { isl_ctx *ctx; int *exp1 = NULL; int *exp2 = NULL; isl_mat *div; int equal; if (!ls1 || !ls2) goto error; ctx = isl_local_space_get_ctx(ls1); if (!isl_space_is_equal(ls1->dim, ls2->dim)) isl_die(ctx, isl_error_invalid, "spaces should be identical", goto error); if (ls2->div->n_row == 0) { isl_local_space_free(ls2); return ls1; } if (ls1->div->n_row == 0) { isl_local_space_free(ls1); return ls2; } exp1 = isl_alloc_array(ctx, int, ls1->div->n_row); exp2 = isl_alloc_array(ctx, int, ls2->div->n_row); if (!exp1 || !exp2) goto error; div = isl_merge_divs(ls1->div, ls2->div, exp1, exp2); if (!div) goto error; equal = isl_mat_is_equal(ls1->div, div); if (equal < 0) goto error; if (!equal) ls1 = isl_local_space_cow(ls1); if (!ls1) goto error; free(exp1); free(exp2); isl_local_space_free(ls2); isl_mat_free(ls1->div); ls1->div = div; return ls1; error: free(exp1); free(exp2); isl_local_space_free(ls1); isl_local_space_free(ls2); return NULL; } /* Does "ls" have an explicit representation for div "div"? */ int isl_local_space_div_is_known(__isl_keep isl_local_space *ls, int div) { if (!ls) return -1; if (div < 0 || div >= ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "position out of bounds", return -1); return !isl_int_is_zero(ls->div->row[div][0]); } /* Does "ls" have an explicit representation for all local variables? */ isl_bool isl_local_space_divs_known(__isl_keep isl_local_space *ls) { int i; if (!ls) return isl_bool_error; for (i = 0; i < ls->div->n_row; ++i) if (isl_int_is_zero(ls->div->row[i][0])) return isl_bool_false; return isl_bool_true; } __isl_give isl_local_space *isl_local_space_domain( __isl_take isl_local_space *ls) { ls = isl_local_space_drop_dims(ls, isl_dim_out, 0, isl_local_space_dim(ls, isl_dim_out)); ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_range( __isl_take isl_local_space *ls) { ls = isl_local_space_drop_dims(ls, isl_dim_in, 0, isl_local_space_dim(ls, isl_dim_in)); ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_range(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Construct a local space for a map that has the given local * space as domain and that has a zero-dimensional range. */ __isl_give isl_local_space *isl_local_space_from_domain( __isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_from_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_add_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned n) { int pos; if (!ls) return NULL; pos = isl_local_space_dim(ls, type); return isl_local_space_insert_dims(ls, type, pos, n); } /* Remove common factor of non-constant terms and denominator. */ static void normalize_div(__isl_keep isl_local_space *ls, int div) { isl_ctx *ctx = ls->div->ctx; unsigned total = ls->div->n_col - 2; isl_seq_gcd(ls->div->row[div] + 2, total, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, ls->div->row[div][0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_seq_scale_down(ls->div->row[div] + 2, ls->div->row[div] + 2, ctx->normalize_gcd, total); isl_int_divexact(ls->div->row[div][0], ls->div->row[div][0], ctx->normalize_gcd); isl_int_fdiv_q(ls->div->row[div][1], ls->div->row[div][1], ctx->normalize_gcd); } /* Exploit the equalities in "eq" to simplify the expressions of * the integer divisions in "ls". * The integer divisions in "ls" are assumed to appear as regular * dimensions in "eq". */ __isl_give isl_local_space *isl_local_space_substitute_equalities( __isl_take isl_local_space *ls, __isl_take isl_basic_set *eq) { int i, j, k; unsigned total; unsigned n_div; if (!ls || !eq) goto error; total = isl_space_dim(eq->dim, isl_dim_all); if (isl_local_space_dim(ls, isl_dim_all) != total) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", goto error); total++; n_div = eq->n_div; for (i = 0; i < eq->n_eq; ++i) { j = isl_seq_last_non_zero(eq->eq[i], total + n_div); if (j < 0 || j == 0 || j >= total) continue; for (k = 0; k < ls->div->n_row; ++k) { if (isl_int_is_zero(ls->div->row[k][1 + j])) continue; ls = isl_local_space_cow(ls); if (!ls) goto error; ls->div = isl_mat_cow(ls->div); if (!ls->div) goto error; isl_seq_elim(ls->div->row[k] + 1, eq->eq[i], j, total, &ls->div->row[k][0]); normalize_div(ls, k); } } isl_basic_set_free(eq); return ls; error: isl_basic_set_free(eq); isl_local_space_free(ls); return NULL; } /* Plug in the affine expressions "subs" of length "subs_len" (including * the denominator and the constant term) into the variable at position "pos" * of the "n" div expressions starting at "first". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division starting at "first" with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) */ __isl_give isl_local_space *isl_local_space_substitute_seq( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, isl_int *subs, int subs_len, int first, int n) { int i; isl_int v; if (n == 0) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->div = isl_mat_cow(ls->div); if (!ls->div) return isl_local_space_free(ls); if (first + n > ls->div->n_row) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "index out of bounds", return isl_local_space_free(ls)); pos += isl_local_space_offset(ls, type); isl_int_init(v); for (i = first; i < first + n; ++i) { if (isl_int_is_zero(ls->div->row[i][1 + pos])) continue; isl_seq_substitute(ls->div->row[i], pos, subs, ls->div->n_col, subs_len, v); normalize_div(ls, i); } isl_int_clear(v); return ls; } /* Plug in "subs" for dimension "type", "pos" in the integer divisions * of "ls". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * Any integer division with a non-zero coefficient for i, * * floor((a i + g)/m) * * is replaced by * * floor((a f + d g)/(m d)) */ __isl_give isl_local_space *isl_local_space_substitute( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { ls = isl_local_space_cow(ls); if (!ls || !subs) return isl_local_space_free(ls); if (!isl_space_is_equal(ls->dim, subs->ls->dim)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", return isl_local_space_free(ls)); if (isl_local_space_dim(subs->ls, isl_dim_div) != 0) isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported, "cannot handle divs yet", return isl_local_space_free(ls)); return isl_local_space_substitute_seq(ls, type, pos, subs->v->el, subs->v->size, 0, ls->div->n_row); } int isl_local_space_is_named_or_nested(__isl_keep isl_local_space *ls, enum isl_dim_type type) { if (!ls) return -1; return isl_space_is_named_or_nested(ls->dim, type); } __isl_give isl_local_space *isl_local_space_drop_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, type)) return ls; ctx = isl_local_space_get_ctx(ls); if (first + n > isl_local_space_dim(ls, type)) isl_die(ctx, isl_error_invalid, "range out of bounds", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; if (type == isl_dim_div) { ls->div = isl_mat_drop_rows(ls->div, first, n); } else { ls->dim = isl_space_drop_dims(ls->dim, type, first, n); if (!ls->dim) return isl_local_space_free(ls); } first += 1 + isl_local_space_offset(ls, type); ls->div = isl_mat_drop_cols(ls->div, first, n); if (!ls->div) return isl_local_space_free(ls); return ls; } __isl_give isl_local_space *isl_local_space_insert_dims( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, type)) return ls; ctx = isl_local_space_get_ctx(ls); if (first > isl_local_space_dim(ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; if (type == isl_dim_div) { ls->div = isl_mat_insert_zero_rows(ls->div, first, n); } else { ls->dim = isl_space_insert_dims(ls->dim, type, first, n); if (!ls->dim) return isl_local_space_free(ls); } first += 1 + isl_local_space_offset(ls, type); ls->div = isl_mat_insert_zero_cols(ls->div, first, n); if (!ls->div) return isl_local_space_free(ls); return ls; } /* Check if the constraints pointed to by "constraint" is a div * constraint corresponding to div "div" in "ls". * * That is, if div = floor(f/m), then check if the constraint is * * f - m d >= 0 * or * -(f-(m-1)) + m d >= 0 */ int isl_local_space_is_div_constraint(__isl_keep isl_local_space *ls, isl_int *constraint, unsigned div) { unsigned pos; if (!ls) return -1; if (isl_int_is_zero(ls->div->row[div][0])) return 0; pos = isl_local_space_offset(ls, isl_dim_div) + div; if (isl_int_eq(constraint[pos], ls->div->row[div][0])) { int neg; isl_int_sub(ls->div->row[div][1], ls->div->row[div][1], ls->div->row[div][0]); isl_int_add_ui(ls->div->row[div][1], ls->div->row[div][1], 1); neg = isl_seq_is_neg(constraint, ls->div->row[div]+1, pos); isl_int_sub_ui(ls->div->row[div][1], ls->div->row[div][1], 1); isl_int_add(ls->div->row[div][1], ls->div->row[div][1], ls->div->row[div][0]); if (!neg) return 0; if (isl_seq_first_non_zero(constraint+pos+1, ls->div->n_row-div-1) != -1) return 0; } else if (isl_int_abs_eq(constraint[pos], ls->div->row[div][0])) { if (!isl_seq_eq(constraint, ls->div->row[div]+1, pos)) return 0; if (isl_seq_first_non_zero(constraint+pos+1, ls->div->n_row-div-1) != -1) return 0; } else return 0; return 1; } /* * Set active[i] to 1 if the dimension at position i is involved * in the linear expression l. */ int *isl_local_space_get_active(__isl_keep isl_local_space *ls, isl_int *l) { int i, j; isl_ctx *ctx; int *active = NULL; unsigned total; unsigned offset; ctx = isl_local_space_get_ctx(ls); total = isl_local_space_dim(ls, isl_dim_all); active = isl_calloc_array(ctx, int, total); if (total && !active) return NULL; for (i = 0; i < total; ++i) active[i] = !isl_int_is_zero(l[i]); offset = isl_local_space_offset(ls, isl_dim_div) - 1; for (i = ls->div->n_row - 1; i >= 0; --i) { if (!active[offset + i]) continue; for (j = 0; j < total; ++j) active[j] |= !isl_int_is_zero(ls->div->row[i][2 + j]); } return active; } /* Given a local space "ls" of a set, create a local space * for the lift of the set. In particular, the result * is of the form [dim -> local[..]], with ls->div->n_row variables in the * range of the wrapped map. */ __isl_give isl_local_space *isl_local_space_lift( __isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_lift(ls->dim, ls->div->n_row); ls->div = isl_mat_drop_rows(ls->div, 0, ls->div->n_row); if (!ls->dim || !ls->div) return isl_local_space_free(ls); return ls; } /* Construct a basic map that maps a set living in local space "ls" * to the corresponding lifted local space. */ __isl_give isl_basic_map *isl_local_space_lifting( __isl_take isl_local_space *ls) { isl_basic_map *lifting; isl_basic_set *bset; if (!ls) return NULL; if (!isl_local_space_is_set(ls)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "lifting only defined on set spaces", goto error); bset = isl_basic_set_from_local_space(ls); lifting = isl_basic_set_unwrap(isl_basic_set_lift(bset)); lifting = isl_basic_map_domain_map(lifting); lifting = isl_basic_map_reverse(lifting); return lifting; error: isl_local_space_free(ls); return NULL; } /* Compute the preimage of "ls" under the function represented by "ma". * In other words, plug in "ma" in "ls". The result is a local space * that is part of the domain space of "ma". * * If the divs in "ls" are represented as * * floor((a_i(p) + b_i x + c_i(divs))/n_i) * * and ma is represented by * * x = D(p) + F(y) + G(divs') * * then the resulting divs are * * floor((a_i(p) + b_i D(p) + b_i F(y) + B_i G(divs') + c_i(divs))/n_i) * * We first copy over the divs from "ma" and then * we add the modified divs from "ls". */ __isl_give isl_local_space *isl_local_space_preimage_multi_aff( __isl_take isl_local_space *ls, __isl_take isl_multi_aff *ma) { int i; isl_space *space; isl_local_space *res = NULL; int n_div_ls, n_div_ma; isl_int f, c1, c2, g; ma = isl_multi_aff_align_divs(ma); if (!ls || !ma) goto error; if (!isl_space_is_range_internal(ls->dim, ma->space)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "spaces don't match", goto error); n_div_ls = isl_local_space_dim(ls, isl_dim_div); n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0; space = isl_space_domain(isl_multi_aff_get_space(ma)); res = isl_local_space_alloc(space, n_div_ma + n_div_ls); if (!res) goto error; if (n_div_ma) { isl_mat_free(res->div); res->div = isl_mat_copy(ma->p[0]->ls->div); res->div = isl_mat_add_zero_cols(res->div, n_div_ls); res->div = isl_mat_add_rows(res->div, n_div_ls); if (!res->div) goto error; } isl_int_init(f); isl_int_init(c1); isl_int_init(c2); isl_int_init(g); for (i = 0; i < ls->div->n_row; ++i) { if (isl_int_is_zero(ls->div->row[i][0])) { isl_int_set_si(res->div->row[n_div_ma + i][0], 0); continue; } isl_seq_preimage(res->div->row[n_div_ma + i], ls->div->row[i], ma, 0, 0, n_div_ma, n_div_ls, f, c1, c2, g, 1); normalize_div(res, n_div_ma + i); } isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_local_space_free(ls); isl_multi_aff_free(ma); return res; error: isl_local_space_free(ls); isl_multi_aff_free(ma); isl_local_space_free(res); return NULL; } /* Move the "n" dimensions of "src_type" starting at "src_pos" of "ls" * to dimensions of "dst_type" at "dst_pos". * * Moving to/from local dimensions is not allowed. * We currently assume that the dimension type changes. */ __isl_give isl_local_space *isl_local_space_move_dims( __isl_take isl_local_space *ls, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { unsigned g_dst_pos; unsigned g_src_pos; if (!ls) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(ls, src_type) && !isl_local_space_is_named_or_nested(ls, dst_type)) return ls; if (src_pos + n > isl_local_space_dim(ls, src_type)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "range out of bounds", return isl_local_space_free(ls)); if (dst_pos > isl_local_space_dim(ls, dst_type)) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "position out of bounds", return isl_local_space_free(ls)); if (src_type == isl_dim_div) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot move divs", return isl_local_space_free(ls)); if (dst_type == isl_dim_div) isl_die(isl_local_space_get_ctx(ls), isl_error_invalid, "cannot move to divs", return isl_local_space_free(ls)); if (dst_type == src_type && dst_pos == src_pos) return ls; if (dst_type == src_type) isl_die(isl_local_space_get_ctx(ls), isl_error_unsupported, "moving dims within the same type not supported", return isl_local_space_free(ls)); ls = isl_local_space_cow(ls); if (!ls) return NULL; g_src_pos = 1 + isl_local_space_offset(ls, src_type) + src_pos; g_dst_pos = 1 + isl_local_space_offset(ls, dst_type) + dst_pos; if (dst_type > src_type) g_dst_pos -= n; ls->div = isl_mat_move_cols(ls->div, g_dst_pos, g_src_pos, n); if (!ls->div) return isl_local_space_free(ls); ls->dim = isl_space_move_dims(ls->dim, dst_type, dst_pos, src_type, src_pos, n); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Remove any internal structure of the domain of "ls". * If there is any such internal structure in the input, * then the name of the corresponding space is also removed. */ __isl_give isl_local_space *isl_local_space_flatten_domain( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (!ls->dim->nested[0]) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_flatten_domain(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Remove any internal structure of the range of "ls". * If there is any such internal structure in the input, * then the name of the corresponding space is also removed. */ __isl_give isl_local_space *isl_local_space_flatten_range( __isl_take isl_local_space *ls) { if (!ls) return NULL; if (!ls->dim->nested[1]) return ls; ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_flatten_range(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } /* Given the local space "ls" of a map, return the local space of a set * that lives in a space that wraps the space of "ls" and that has * the same divs. */ __isl_give isl_local_space *isl_local_space_wrap(__isl_take isl_local_space *ls) { ls = isl_local_space_cow(ls); if (!ls) return NULL; ls->dim = isl_space_wrap(ls->dim); if (!ls->dim) return isl_local_space_free(ls); return ls; } isl-0.16.1/isl_map_private.h0000664000175000017500000004734212645737450012667 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #ifndef ISL_MAP_PRIVATE_H #define ISL_MAP_PRIVATE_H #define isl_basic_set isl_basic_map #define isl_set isl_map #define isl_basic_set_list isl_basic_map_list #define isl_set_list isl_map_list #include #include #include #include #include #include #include /* A "basic map" is a relation between two sets of variables, * called the "in" and "out" variables. * A "basic set" is a basic map with a zero-dimensional * domain. * * It is implemented as a set with two extra fields: * n_in is the number of in variables * n_out is the number of out variables * n_in + n_out should be equal to set.dim */ struct isl_basic_map { int ref; #define ISL_BASIC_MAP_FINAL (1 << 0) #define ISL_BASIC_MAP_EMPTY (1 << 1) #define ISL_BASIC_MAP_NO_IMPLICIT (1 << 2) #define ISL_BASIC_MAP_NO_REDUNDANT (1 << 3) #define ISL_BASIC_MAP_RATIONAL (1 << 4) #define ISL_BASIC_MAP_NORMALIZED (1 << 5) #define ISL_BASIC_MAP_NORMALIZED_DIVS (1 << 6) #define ISL_BASIC_MAP_ALL_EQUALITIES (1 << 7) #define ISL_BASIC_MAP_REDUCED_COEFFICIENTS (1 << 8) #define ISL_BASIC_SET_FINAL (1 << 0) #define ISL_BASIC_SET_EMPTY (1 << 1) #define ISL_BASIC_SET_NO_IMPLICIT (1 << 2) #define ISL_BASIC_SET_NO_REDUNDANT (1 << 3) #define ISL_BASIC_SET_RATIONAL (1 << 4) #define ISL_BASIC_SET_NORMALIZED (1 << 5) #define ISL_BASIC_SET_NORMALIZED_DIVS (1 << 6) #define ISL_BASIC_SET_ALL_EQUALITIES (1 << 7) #define ISL_BASIC_SET_REDUCED_COEFFICIENTS (1 << 8) unsigned flags; struct isl_ctx *ctx; isl_space *dim; unsigned extra; unsigned n_eq; unsigned n_ineq; size_t c_size; isl_int **eq; isl_int **ineq; unsigned n_div; isl_int **div; struct isl_vec *sample; struct isl_blk block; struct isl_blk block2; }; #undef EL #define EL isl_basic_set #include /* A "map" is a (possibly disjoint) union of basic maps. * A "set" is a (possibly disjoint) union of basic sets. * * Currently, the isl_set structure is identical to the isl_map structure * and the library depends on this correspondence internally. * However, users should not depend on this correspondence. */ struct isl_map { int ref; #define ISL_MAP_DISJOINT (1 << 0) #define ISL_MAP_NORMALIZED (1 << 1) #define ISL_SET_DISJOINT (1 << 0) #define ISL_SET_NORMALIZED (1 << 1) unsigned flags; struct isl_ctx *ctx; isl_space *dim; int n; size_t size; struct isl_basic_map *p[1]; }; #undef EL #define EL isl_set #include __isl_give isl_basic_set *isl_basic_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_set *isl_basic_set_extend(__isl_take isl_basic_set *base, unsigned nparam, unsigned dim, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_set *isl_basic_set_extend_constraints( __isl_take isl_basic_set *base, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_set *isl_basic_set_finalize( __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_dup(__isl_keep isl_basic_set *bset); __isl_give isl_basic_set *isl_basic_set_simplify( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_alloc(isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_map *isl_basic_map_mark_final( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_finalize( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_extend(__isl_take isl_basic_map *base, unsigned nparam, unsigned n_in, unsigned n_out, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_map *isl_basic_map_extend_constraints( __isl_take isl_basic_map *base, unsigned n_eq, unsigned n_ineq); __isl_give isl_basic_map *isl_basic_map_simplify( __isl_take isl_basic_map *bmap); __isl_give isl_set *isl_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim, int n, unsigned flags); __isl_give isl_set *isl_set_add_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *bset); __isl_give isl_set *isl_set_finalize(__isl_take isl_set *set); __isl_give isl_set *isl_set_dup(__isl_keep isl_set *set); __isl_give isl_map *isl_map_alloc(isl_ctx *ctx, unsigned nparam, unsigned in, unsigned out, int n, unsigned flags); __isl_give isl_map *isl_map_add_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_dup(__isl_keep isl_map *map); __isl_give isl_map *isl_map_finalize(__isl_take isl_map *map); __isl_give isl_basic_set *isl_basic_set_from_underlying_set( __isl_take isl_basic_set *bset, __isl_take isl_basic_set *like); __isl_give isl_set *isl_set_from_underlying_set( __isl_take isl_set *set, __isl_take isl_basic_set *like); __isl_give isl_set *isl_set_to_underlying_set(__isl_take isl_set *set); __isl_give isl_map *isl_map_realign(__isl_take isl_map *map, __isl_take isl_reordering *r); __isl_give isl_set *isl_set_realign(__isl_take isl_set *set, __isl_take isl_reordering *r); __isl_give isl_map *isl_map_reset(__isl_take isl_map *map, enum isl_dim_type type); __isl_give isl_basic_set *isl_basic_set_reset_space( __isl_take isl_basic_set *bset, __isl_take isl_space *dim); __isl_give isl_basic_map *isl_basic_map_reset_space( __isl_take isl_basic_map *bmap, __isl_take isl_space *dim); __isl_give isl_map *isl_map_reset_space(__isl_take isl_map *map, __isl_take isl_space *dim); unsigned isl_basic_map_offset(struct isl_basic_map *bmap, enum isl_dim_type type); unsigned isl_basic_set_offset(struct isl_basic_set *bset, enum isl_dim_type type); int isl_basic_map_may_be_set(__isl_keep isl_basic_map *bmap); int isl_map_may_be_set(__isl_keep isl_map *map); int isl_map_compatible_domain(struct isl_map *map, struct isl_set *set); int isl_basic_map_compatible_domain(struct isl_basic_map *bmap, struct isl_basic_set *bset); int isl_basic_map_compatible_range(struct isl_basic_map *bmap, struct isl_basic_set *bset); struct isl_basic_map *isl_basic_map_extend_space(struct isl_basic_map *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq); struct isl_basic_set *isl_basic_set_extend_space(struct isl_basic_set *base, __isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq); struct isl_basic_set *isl_basic_set_add_constraints(struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned pos); struct isl_map *isl_map_grow(struct isl_map *map, int n); struct isl_set *isl_set_grow(struct isl_set *set, int n); isl_bool isl_basic_set_contains(__isl_keep isl_basic_set *bset, __isl_keep isl_vec *vec); isl_bool isl_basic_map_contains(__isl_keep isl_basic_map *bmap, __isl_keep isl_vec *vec); __isl_give isl_basic_set *isl_basic_set_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_set *isl_set_alloc_space(__isl_take isl_space *dim, int n, unsigned flags); __isl_give isl_basic_map *isl_basic_map_alloc_space(__isl_take isl_space *dim, unsigned extra, unsigned n_eq, unsigned n_ineq); __isl_give isl_map *isl_map_alloc_space(__isl_take isl_space *dim, int n, unsigned flags); unsigned isl_basic_map_total_dim(const struct isl_basic_map *bmap); int isl_basic_map_alloc_equality(struct isl_basic_map *bmap); int isl_basic_set_alloc_equality(struct isl_basic_set *bset); int isl_basic_set_free_inequality(struct isl_basic_set *bset, unsigned n); int isl_basic_map_free_equality(struct isl_basic_map *bmap, unsigned n); int isl_basic_set_free_equality(struct isl_basic_set *bset, unsigned n); int isl_basic_set_alloc_inequality(struct isl_basic_set *bset); int isl_basic_map_alloc_inequality(struct isl_basic_map *bmap); int isl_basic_map_free_inequality(struct isl_basic_map *bmap, unsigned n); int isl_basic_map_alloc_div(struct isl_basic_map *bmap); int isl_basic_set_alloc_div(struct isl_basic_set *bset); int isl_basic_map_free_div(struct isl_basic_map *bmap, unsigned n); int isl_basic_set_free_div(struct isl_basic_set *bset, unsigned n); void isl_basic_map_inequality_to_equality( struct isl_basic_map *bmap, unsigned pos); int isl_basic_map_drop_equality(struct isl_basic_map *bmap, unsigned pos); int isl_basic_set_drop_equality(struct isl_basic_set *bset, unsigned pos); int isl_basic_set_drop_inequality(struct isl_basic_set *bset, unsigned pos); int isl_basic_map_drop_inequality(struct isl_basic_map *bmap, unsigned pos); __isl_give isl_basic_set *isl_basic_set_add_eq(__isl_take isl_basic_set *bset, isl_int *eq); __isl_give isl_basic_map *isl_basic_map_add_eq(__isl_take isl_basic_map *bmap, isl_int *eq); __isl_give isl_basic_set *isl_basic_set_add_ineq(__isl_take isl_basic_set *bset, isl_int *ineq); __isl_give isl_basic_map *isl_basic_map_add_ineq(__isl_take isl_basic_map *bmap, isl_int *ineq); int isl_inequality_negate(struct isl_basic_map *bmap, unsigned pos); struct isl_basic_set *isl_basic_set_cow(struct isl_basic_set *bset); struct isl_basic_map *isl_basic_map_cow(struct isl_basic_map *bmap); struct isl_set *isl_set_cow(struct isl_set *set); struct isl_map *isl_map_cow(struct isl_map *map); uint32_t isl_basic_map_get_hash(__isl_keep isl_basic_map *bmap); struct isl_basic_map *isl_basic_map_set_to_empty(struct isl_basic_map *bmap); struct isl_basic_set *isl_basic_set_set_to_empty(struct isl_basic_set *bset); struct isl_basic_set *isl_basic_set_order_divs(struct isl_basic_set *bset); void isl_basic_map_swap_div(struct isl_basic_map *bmap, int a, int b); struct isl_basic_map *isl_basic_map_order_divs(struct isl_basic_map *bmap); __isl_give isl_map *isl_map_order_divs(__isl_take isl_map *map); struct isl_basic_map *isl_basic_map_align_divs( struct isl_basic_map *dst, struct isl_basic_map *src); struct isl_basic_set *isl_basic_set_align_divs( struct isl_basic_set *dst, struct isl_basic_set *src); __isl_give isl_map *isl_map_align_divs_to_basic_map_list( __isl_take isl_map *map, __isl_keep isl_basic_map_list *list); __isl_give isl_basic_map_list *isl_basic_map_list_align_divs_to_basic_map( __isl_take isl_basic_map_list *list, __isl_keep isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_sort_divs( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_sort_divs(__isl_take isl_map *map); struct isl_basic_map *isl_basic_map_gauss( struct isl_basic_map *bmap, int *progress); struct isl_basic_set *isl_basic_set_gauss( struct isl_basic_set *bset, int *progress); int isl_basic_map_constraint_cmp(__isl_keep isl_basic_map *bmap, isl_int *c1, isl_int *c2); __isl_give isl_basic_map *isl_basic_map_sort_constraints( __isl_take isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_set_sort_constraints( __isl_take isl_basic_set *bset); int isl_basic_map_plain_cmp(const __isl_keep isl_basic_map *bmap1, const __isl_keep isl_basic_map *bmap2); isl_bool isl_basic_map_plain_is_equal(__isl_keep isl_basic_map *bmap1, __isl_keep isl_basic_map *bmap2); struct isl_basic_map *isl_basic_map_normalize_constraints( struct isl_basic_map *bmap); struct isl_basic_set *isl_basic_set_normalize_constraints( struct isl_basic_set *bset); struct isl_basic_map *isl_basic_map_implicit_equalities( struct isl_basic_map *bmap); struct isl_basic_set *isl_basic_map_underlying_set(struct isl_basic_map *bmap); __isl_give isl_basic_set *isl_basic_set_underlying_set( __isl_take isl_basic_set *bset); __isl_give isl_basic_set_list *isl_basic_map_list_underlying_set( __isl_take isl_basic_map_list *list); struct isl_set *isl_map_underlying_set(struct isl_map *map); struct isl_basic_map *isl_basic_map_overlying_set(struct isl_basic_set *bset, struct isl_basic_map *like); __isl_give isl_basic_map *isl_basic_map_drop_constraint_involving_unknown_divs( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_drop_constraint_involving_unknown_divs( __isl_take isl_map *map); __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving( __isl_take isl_basic_set *bset, unsigned first, unsigned n); __isl_give isl_basic_set *isl_basic_set_drop(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n); struct isl_basic_map *isl_basic_map_drop(struct isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n); struct isl_set *isl_set_drop(struct isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); struct isl_basic_set *isl_basic_set_drop_dims( struct isl_basic_set *bset, unsigned first, unsigned n); struct isl_set *isl_set_drop_dims( struct isl_set *set, unsigned first, unsigned n); struct isl_map *isl_map_drop_inputs( struct isl_map *map, unsigned first, unsigned n); struct isl_map *isl_map_drop(struct isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_basic_map *isl_basic_map_remove_duplicate_constraints( __isl_take isl_basic_map *bmap, int *progress, int detect_divs); __isl_give isl_basic_map *isl_basic_map_detect_inequality_pairs( __isl_take isl_basic_map *bmap, int *progress); struct isl_map *isl_map_remove_empty_parts(struct isl_map *map); struct isl_set *isl_set_remove_empty_parts(struct isl_set *set); __isl_give isl_map *isl_map_remove_obvious_duplicates(__isl_take isl_map *map); struct isl_set *isl_set_normalize(struct isl_set *set); struct isl_set *isl_set_drop_vars( struct isl_set *set, unsigned first, unsigned n); struct isl_basic_map *isl_basic_map_eliminate_vars( struct isl_basic_map *bmap, unsigned pos, unsigned n); struct isl_basic_set *isl_basic_set_eliminate_vars( struct isl_basic_set *bset, unsigned pos, unsigned n); __isl_give isl_map *isl_map_eliminate(__isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_set *isl_set_eliminate(__isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n); int isl_basic_set_constraint_is_redundant(struct isl_basic_set **bset, isl_int *c, isl_int *opt_n, isl_int *opt_d); int isl_basic_map_add_div_constraint(__isl_keep isl_basic_map *bmap, unsigned div, int sign); int isl_basic_map_add_div_constraints(struct isl_basic_map *bmap, unsigned div); __isl_give isl_basic_map *isl_basic_map_add_known_div_constraints( __isl_take isl_basic_map *bmap); struct isl_basic_map *isl_basic_map_drop_redundant_divs( struct isl_basic_map *bmap); struct isl_basic_set *isl_basic_set_drop_redundant_divs( struct isl_basic_set *bset); struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset); struct isl_basic_set *isl_basic_set_lineality_space(struct isl_basic_set *bset); struct isl_basic_set *isl_basic_set_set_rational(struct isl_basic_set *bset); __isl_give isl_set *isl_set_set_rational(__isl_take isl_set *set); __isl_give isl_basic_map *isl_basic_map_set_rational( __isl_take isl_basic_map *bmap); __isl_give isl_map *isl_map_set_rational(__isl_take isl_map *map); int isl_map_has_rational(__isl_keep isl_map *map); int isl_set_has_rational(__isl_keep isl_set *set); struct isl_mat; struct isl_basic_set *isl_basic_set_preimage(struct isl_basic_set *bset, struct isl_mat *mat); struct isl_set *isl_set_preimage(struct isl_set *set, struct isl_mat *mat); __isl_give isl_basic_set *isl_basic_set_transform_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, __isl_take isl_mat *trans); isl_int *isl_set_wrap_facet(__isl_keep isl_set *set, isl_int *facet, isl_int *ridge); isl_bool isl_basic_map_contains_point(__isl_keep isl_basic_map *bmap, __isl_keep isl_point *point); isl_bool isl_set_contains_point(__isl_keep isl_set *set, __isl_keep isl_point *point); int isl_basic_set_vars_get_sign(__isl_keep isl_basic_set *bset, unsigned first, unsigned n, int *signs); int isl_set_foreach_orthant(__isl_keep isl_set *set, int (*fn)(__isl_take isl_set *orthant, int *signs, void *user), void *user); int isl_basic_map_add_div_constraints_var(__isl_keep isl_basic_map *bmap, unsigned pos, isl_int *div); int isl_basic_set_add_div_constraints_var(__isl_keep isl_basic_set *bset, unsigned pos, isl_int *div); int isl_basic_map_is_div_constraint(__isl_keep isl_basic_map *bmap, isl_int *constraint, unsigned div); int isl_basic_set_is_div_constraint(__isl_keep isl_basic_set *bset, isl_int *constraint, unsigned div); __isl_give isl_basic_set *isl_basic_set_from_local_space( __isl_take isl_local_space *ls); __isl_give isl_basic_map *isl_basic_map_from_local_space( __isl_take isl_local_space *ls); __isl_give isl_basic_set *isl_basic_set_expand_divs( __isl_take isl_basic_set *bset, __isl_take isl_mat *div, int *exp); isl_bool isl_basic_map_div_is_known(__isl_keep isl_basic_map *bmap, int div); isl_bool isl_basic_map_divs_known(__isl_keep isl_basic_map *bmap); isl_bool isl_map_divs_known(__isl_keep isl_map *map); __isl_give isl_mat *isl_basic_set_get_divs(__isl_keep isl_basic_set *bset); __isl_give isl_mat *isl_basic_map_get_divs(__isl_keep isl_basic_map *bmap); __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map, __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap)); __isl_give isl_map *isl_map_align_params_map_map_and( __isl_take isl_map *map1, __isl_take isl_map *map2, __isl_give isl_map *(*fn)(__isl_take isl_map *map1, __isl_take isl_map *map2)); isl_bool isl_map_align_params_map_map_and_test(__isl_keep isl_map *map1, __isl_keep isl_map *map2, isl_bool (*fn)(__isl_keep isl_map *map1, __isl_keep isl_map *map2)); int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max, int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user), void *user); int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max, int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user), void *user); __isl_give isl_set *isl_set_substitute(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs); __isl_give isl_set *isl_set_gist_params_basic_set(__isl_take isl_set *set, __isl_take isl_basic_set *context); int isl_map_compatible_range(__isl_keep isl_map *map, __isl_keep isl_set *set); isl_bool isl_basic_map_plain_is_single_valued(__isl_keep isl_basic_map *bmap); int isl_map_is_set(__isl_keep isl_map *map); int isl_basic_set_plain_dim_is_fixed(__isl_keep isl_basic_set *bset, unsigned dim, isl_int *val); __isl_give isl_map *isl_map_plain_gist_basic_map(__isl_take isl_map *map, __isl_take isl_basic_map *context); __isl_give isl_basic_map *isl_map_plain_unshifted_simple_hull( __isl_take isl_map *map); __isl_give isl_basic_set *isl_basic_set_plain_affine_hull( __isl_take isl_basic_set *bset); __isl_give isl_basic_map *isl_basic_map_plain_affine_hull( __isl_take isl_basic_map *bmap); int isl_basic_set_dim_residue_class(struct isl_basic_set *bset, int pos, isl_int *modulo, isl_int *residue); int isl_set_dim_residue_class(struct isl_set *set, int pos, isl_int *modulo, isl_int *residue); __isl_give isl_basic_set *isl_basic_set_fix(__isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_int value); __isl_give isl_set *isl_set_fix(__isl_take isl_set *set, enum isl_dim_type type, unsigned pos, isl_int value); int isl_map_plain_is_fixed(__isl_keep isl_map *map, enum isl_dim_type type, unsigned pos, isl_int *val); int isl_basic_map_output_defining_equality(__isl_keep isl_basic_map *bmap, int pos, int *div, int *ineq); __isl_give isl_basic_map *isl_basic_map_reduce_coefficients( __isl_take isl_basic_map *bmap); __isl_give isl_basic_map *isl_basic_map_shift_div( __isl_take isl_basic_map *bmap, int div, int pos, isl_int shift); __isl_give isl_basic_map_list *isl_map_get_basic_map_list( __isl_keep isl_map *map); __isl_give isl_map *isl_map_fixed_power(__isl_take isl_map *map, isl_int exp); int isl_basic_set_count_upto(__isl_keep isl_basic_set *bset, isl_int max, isl_int *count); int isl_set_count_upto(__isl_keep isl_set *set, isl_int max, isl_int *count); #endif isl-0.16.1/isl_printer_private.h0000664000175000017500000000213712645737414013566 00000000000000#ifndef ISL_PRINTER_PRIVATE_H #define ISL_PRINTER_PRIVATE_H #include #include struct isl_printer_ops; /* A printer to a file or a string. * * "dump" is set if the printing is performed from an isl_*_dump function. * * yaml_style is the YAML style in which the next elements should * be printed and may be either ISL_YAML_STYLE_BLOCK or ISL_YAML_STYLE_FLOW, * with ISL_YAML_STYLE_FLOW being the default. * yaml_state keeps track of the currently active YAML elements. * yaml_size is the size of this arrays, while yaml_depth * is the number of elements currently in use. * yaml_state may be NULL if no YAML printing is being performed. */ struct isl_printer { struct isl_ctx *ctx; struct isl_printer_ops *ops; FILE *file; int buf_n; int buf_size; char *buf; int indent; int output_format; int dump; char *indent_prefix; char *prefix; char *suffix; int width; int yaml_style; int yaml_depth; int yaml_size; enum isl_yaml_state *yaml_state; }; __isl_give isl_printer *isl_printer_set_dump(__isl_take isl_printer *p, int dump); #endif isl-0.16.1/isl_hide_deprecated.h0000664000175000017500000000541412645737060013440 00000000000000#define isl_aff_get_constant isl_gmp_aff_get_constant #define isl_aff_get_coefficient isl_gmp_aff_get_coefficient #define isl_aff_get_denominator isl_gmp_aff_get_denominator #define isl_aff_set_constant isl_gmp_aff_set_constant #define isl_aff_set_coefficient isl_gmp_aff_set_coefficient #define isl_aff_set_denominator isl_gmp_aff_set_denominator #define isl_aff_add_constant isl_gmp_aff_add_constant #define isl_aff_add_constant_num isl_gmp_aff_add_constant_num #define isl_aff_add_coefficient isl_gmp_aff_add_coefficient #define isl_aff_mod isl_gmp_aff_mod #define isl_aff_scale isl_gmp_aff_scale #define isl_aff_scale_down isl_gmp_aff_scale_down #define isl_pw_aff_mod isl_gmp_pw_aff_mod #define isl_pw_aff_scale isl_gmp_pw_aff_scale #define isl_pw_aff_scale_down isl_gmp_pw_aff_scale_down #define isl_multi_aff_scale isl_gmp_multi_aff_scale #define isl_ast_expr_get_int isl_gmp_ast_expr_get_int #define isl_constraint_get_constant isl_gmp_constraint_get_constant #define isl_constraint_get_coefficient isl_gmp_constraint_get_coefficient #define isl_constraint_set_constant isl_gmp_constraint_set_constant #define isl_constraint_set_coefficient isl_gmp_constraint_set_coefficient #define isl_basic_set_max isl_gmp_basic_set_max #define isl_set_min isl_gmp_set_min #define isl_set_max isl_gmp_set_max #define isl_gmp_hash isl_gmp_gmp_hash #define isl_basic_map_plain_is_fixed isl_gmp_basic_map_plain_is_fixed #define isl_map_fix isl_gmp_map_fix #define isl_map_plain_is_fixed isl_gmp_map_plain_is_fixed #define isl_map_fixed_power isl_gmp_map_fixed_power #define isl_mat_get_element isl_gmp_mat_get_element #define isl_mat_set_element isl_gmp_mat_set_element #define isl_point_get_coordinate isl_gmp_point_get_coordinate #define isl_point_set_coordinate isl_gmp_point_set_coordinate #define isl_qpolynomial_rat_cst_on_domain isl_gmp_qpolynomial_rat_cst_on_domain #define isl_qpolynomial_is_cst isl_gmp_qpolynomial_is_cst #define isl_qpolynomial_scale isl_gmp_qpolynomial_scale #define isl_term_get_num isl_gmp_term_get_num #define isl_term_get_den isl_gmp_term_get_den #define isl_qpolynomial_fold_scale isl_gmp_qpolynomial_fold_scale #define isl_pw_qpolynomial_fold_fix_dim isl_gmp_pw_qpolynomial_fold_fix_dim #define isl_basic_set_fix isl_gmp_basic_set_fix #define isl_set_lower_bound isl_gmp_set_lower_bound #define isl_set_upper_bound isl_gmp_set_upper_bound #define isl_set_fix isl_gmp_set_fix #define isl_set_plain_is_fixed isl_gmp_set_plain_is_fixed #define isl_union_map_fixed_power isl_gmp_union_map_fixed_power #define isl_val_int_from_isl_int isl_gmp_val_int_from_isl_int #define isl_val_get_num_isl_int isl_gmp_val_get_num_isl_int #define isl_vec_get_element isl_gmp_vec_get_element #define isl_vec_set_element isl_gmp_vec_set_element #define isl_vec_set isl_gmp_vec_set #define isl_vec_fdiv_r isl_gmp_vec_fdiv_r isl-0.16.1/isl_ast_build_expr.h0000664000175000017500000000154112645737060013350 00000000000000#ifndef ISL_AST_BUILD_EXPR_PRIVATE_H #define ISL_AST_BUILD_EXPR_PRIVATE_H #include #include __isl_give isl_ast_expr *isl_ast_build_expr_from_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset); __isl_give isl_ast_expr *isl_ast_build_expr_from_set_internal( __isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_expr *isl_ast_build_expr_from_pw_aff_internal( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa); __isl_give isl_ast_expr *isl_ast_expr_from_aff(__isl_take isl_aff *aff, __isl_keep isl_ast_build *build); __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(__isl_take isl_ast_expr *expr, int pos, __isl_take isl_ast_expr *arg); __isl_give isl_ast_node *isl_ast_build_call_from_executed( __isl_keep isl_ast_build *build, __isl_take isl_map *executed); #endif isl-0.16.1/isl_printer.c0000664000175000017500000004340712645737414012034 00000000000000#include #include #include static __isl_give isl_printer *file_start_line(__isl_take isl_printer *p) { fprintf(p->file, "%s%*s%s", p->indent_prefix ? p->indent_prefix : "", p->indent, "", p->prefix ? p->prefix : ""); return p; } static __isl_give isl_printer *file_end_line(__isl_take isl_printer *p) { fprintf(p->file, "%s\n", p->suffix ? p->suffix : ""); return p; } static __isl_give isl_printer *file_flush(__isl_take isl_printer *p) { fflush(p->file); return p; } static __isl_give isl_printer *file_print_str(__isl_take isl_printer *p, const char *s) { fprintf(p->file, "%s", s); return p; } static __isl_give isl_printer *file_print_double(__isl_take isl_printer *p, double d) { fprintf(p->file, "%g", d); return p; } static __isl_give isl_printer *file_print_int(__isl_take isl_printer *p, int i) { fprintf(p->file, "%d", i); return p; } static __isl_give isl_printer *file_print_isl_int(__isl_take isl_printer *p, isl_int i) { isl_int_print(p->file, i, p->width); return p; } static int grow_buf(__isl_keep isl_printer *p, int extra) { int new_size; char *new_buf; if (p->buf_size == 0) return -1; new_size = ((p->buf_n + extra + 1) * 3) / 2; new_buf = isl_realloc_array(p->ctx, p->buf, char, new_size); if (!new_buf) { p->buf_size = 0; return -1; } p->buf = new_buf; p->buf_size = new_size; return 0; } static __isl_give isl_printer *str_print(__isl_take isl_printer *p, const char *s, int len) { if (p->buf_n + len + 1 >= p->buf_size && grow_buf(p, len)) goto error; memcpy(p->buf + p->buf_n, s, len); p->buf_n += len; p->buf[p->buf_n] = '\0'; return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *str_print_indent(__isl_take isl_printer *p, int indent) { int i; if (p->buf_n + indent + 1 >= p->buf_size && grow_buf(p, indent)) goto error; for (i = 0; i < indent; ++i) p->buf[p->buf_n++] = ' '; return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *str_start_line(__isl_take isl_printer *p) { if (p->indent_prefix) p = str_print(p, p->indent_prefix, strlen(p->indent_prefix)); p = str_print_indent(p, p->indent); if (p->prefix) p = str_print(p, p->prefix, strlen(p->prefix)); return p; } static __isl_give isl_printer *str_end_line(__isl_take isl_printer *p) { if (p->suffix) p = str_print(p, p->suffix, strlen(p->suffix)); p = str_print(p, "\n", strlen("\n")); return p; } static __isl_give isl_printer *str_flush(__isl_take isl_printer *p) { p->buf_n = 0; p->buf[p->buf_n] = '\0'; return p; } static __isl_give isl_printer *str_print_str(__isl_take isl_printer *p, const char *s) { return str_print(p, s, strlen(s)); } static __isl_give isl_printer *str_print_double(__isl_take isl_printer *p, double d) { int left = p->buf_size - p->buf_n; int need = snprintf(p->buf + p->buf_n, left, "%g", d); if (need >= left) { if (grow_buf(p, need)) goto error; left = p->buf_size - p->buf_n; need = snprintf(p->buf + p->buf_n, left, "%g", d); } p->buf_n += need; return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *str_print_int(__isl_take isl_printer *p, int i) { int left = p->buf_size - p->buf_n; int need = snprintf(p->buf + p->buf_n, left, "%d", i); if (need >= left) { if (grow_buf(p, need)) goto error; left = p->buf_size - p->buf_n; need = snprintf(p->buf + p->buf_n, left, "%d", i); } p->buf_n += need; return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *str_print_isl_int(__isl_take isl_printer *p, isl_int i) { char *s; int len; s = isl_int_get_str(i); len = strlen(s); if (len < p->width) p = str_print_indent(p, p->width - len); p = str_print(p, s, len); isl_int_free_str(s); return p; } struct isl_printer_ops { __isl_give isl_printer *(*start_line)(__isl_take isl_printer *p); __isl_give isl_printer *(*end_line)(__isl_take isl_printer *p); __isl_give isl_printer *(*print_double)(__isl_take isl_printer *p, double d); __isl_give isl_printer *(*print_int)(__isl_take isl_printer *p, int i); __isl_give isl_printer *(*print_isl_int)(__isl_take isl_printer *p, isl_int i); __isl_give isl_printer *(*print_str)(__isl_take isl_printer *p, const char *s); __isl_give isl_printer *(*flush)(__isl_take isl_printer *p); }; static struct isl_printer_ops file_ops = { file_start_line, file_end_line, file_print_double, file_print_int, file_print_isl_int, file_print_str, file_flush }; static struct isl_printer_ops str_ops = { str_start_line, str_end_line, str_print_double, str_print_int, str_print_isl_int, str_print_str, str_flush }; __isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx, FILE *file) { struct isl_printer *p = isl_calloc_type(ctx, struct isl_printer); if (!p) return NULL; p->ctx = ctx; isl_ctx_ref(p->ctx); p->ops = &file_ops; p->file = file; p->buf = NULL; p->buf_n = 0; p->buf_size = 0; p->indent = 0; p->output_format = ISL_FORMAT_ISL; p->indent_prefix = NULL; p->prefix = NULL; p->suffix = NULL; p->width = 0; p->yaml_style = ISL_YAML_STYLE_FLOW; return p; } __isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx) { struct isl_printer *p = isl_calloc_type(ctx, struct isl_printer); if (!p) return NULL; p->ctx = ctx; isl_ctx_ref(p->ctx); p->ops = &str_ops; p->file = NULL; p->buf = isl_alloc_array(ctx, char, 256); if (!p->buf) goto error; p->buf_n = 0; p->buf[0] = '\0'; p->buf_size = 256; p->indent = 0; p->output_format = ISL_FORMAT_ISL; p->indent_prefix = NULL; p->prefix = NULL; p->suffix = NULL; p->width = 0; p->yaml_style = ISL_YAML_STYLE_FLOW; return p; error: isl_printer_free(p); return NULL; } __isl_null isl_printer *isl_printer_free(__isl_take isl_printer *p) { if (!p) return NULL; free(p->buf); free(p->indent_prefix); free(p->prefix); free(p->suffix); free(p->yaml_state); isl_ctx_deref(p->ctx); free(p); return NULL; } isl_ctx *isl_printer_get_ctx(__isl_keep isl_printer *printer) { return printer ? printer->ctx : NULL; } FILE *isl_printer_get_file(__isl_keep isl_printer *printer) { if (!printer) return NULL; if (!printer->file) isl_die(isl_printer_get_ctx(printer), isl_error_invalid, "not a file printer", return NULL); return printer->file; } __isl_give isl_printer *isl_printer_set_isl_int_width(__isl_take isl_printer *p, int width) { if (!p) return NULL; p->width = width; return p; } __isl_give isl_printer *isl_printer_set_indent(__isl_take isl_printer *p, int indent) { if (!p) return NULL; p->indent = indent; return p; } __isl_give isl_printer *isl_printer_indent(__isl_take isl_printer *p, int indent) { if (!p) return NULL; p->indent += indent; if (p->indent < 0) p->indent = 0; return p; } /* Replace the indent prefix of "p" by "prefix". */ __isl_give isl_printer *isl_printer_set_indent_prefix(__isl_take isl_printer *p, const char *prefix) { if (!p) return NULL; free(p->indent_prefix); p->indent_prefix = prefix ? strdup(prefix) : NULL; return p; } __isl_give isl_printer *isl_printer_set_prefix(__isl_take isl_printer *p, const char *prefix) { if (!p) return NULL; free(p->prefix); p->prefix = prefix ? strdup(prefix) : NULL; return p; } __isl_give isl_printer *isl_printer_set_suffix(__isl_take isl_printer *p, const char *suffix) { if (!p) return NULL; free(p->suffix); p->suffix = suffix ? strdup(suffix) : NULL; return p; } __isl_give isl_printer *isl_printer_set_output_format(__isl_take isl_printer *p, int output_format) { if (!p) return NULL; p->output_format = output_format; return p; } int isl_printer_get_output_format(__isl_keep isl_printer *p) { if (!p) return -1; return p->output_format; } /* Keep track of whether the printing to "p" is being performed from * an isl_*_dump function as specified by "dump". */ __isl_give isl_printer *isl_printer_set_dump(__isl_take isl_printer *p, int dump) { if (!p) return NULL; p->dump = dump; return p; } /* Set the YAML style of "p" to "yaml_style" and return the updated printer. */ __isl_give isl_printer *isl_printer_set_yaml_style(__isl_take isl_printer *p, int yaml_style) { if (!p) return NULL; p->yaml_style = yaml_style; return p; } /* Return the YAML style of "p" or -1 on error. */ int isl_printer_get_yaml_style(__isl_keep isl_printer *p) { if (!p) return -1; return p->yaml_style; } /* Push "state" onto the stack of currently active YAML elements and * return the updated printer. */ static __isl_give isl_printer *push_state(__isl_take isl_printer *p, enum isl_yaml_state state) { if (!p) return NULL; if (p->yaml_size < p->yaml_depth + 1) { enum isl_yaml_state *state; state = isl_realloc_array(p->ctx, p->yaml_state, enum isl_yaml_state, p->yaml_depth + 1); if (!state) return isl_printer_free(p); p->yaml_state = state; p->yaml_size = p->yaml_depth + 1; } p->yaml_state[p->yaml_depth] = state; p->yaml_depth++; return p; } /* Remove the innermost active YAML element from the stack and * return the updated printer. */ static __isl_give isl_printer *pop_state(__isl_take isl_printer *p) { if (!p) return NULL; p->yaml_depth--; return p; } /* Set the state of the innermost active YAML element to "state" and * return the updated printer. */ static __isl_give isl_printer *update_state(__isl_take isl_printer *p, enum isl_yaml_state state) { if (!p) return NULL; if (p->yaml_depth < 1) isl_die(isl_printer_get_ctx(p), isl_error_invalid, "not in YAML construct", return isl_printer_free(p)); p->yaml_state[p->yaml_depth - 1] = state; return p; } /* Return the state of the innermost active YAML element. * Return isl_yaml_none if we are not inside any YAML element. */ static enum isl_yaml_state current_state(__isl_keep isl_printer *p) { if (!p) return isl_yaml_none; if (p->yaml_depth < 1) return isl_yaml_none; return p->yaml_state[p->yaml_depth - 1]; } /* If we are printing a YAML document and we are at the start of an element, * print whatever is needed before we can print the actual element and * keep track of the fact that we are now printing the element. * If "eol" is set, then whatever we print is going to be the last * thing that gets printed on this line. * * If we are about the print the first key of a mapping, then nothing * extra needs to be printed. For any other key, however, we need * to either move to the next line (in block format) or print a comma * (in flow format). * Before printing a value in a mapping, we need to print a colon. * * For sequences, in flow format, we only need to print a comma * for each element except the first. * In block format, before the first element in the sequence, * we move to a new line, print a dash and increase the indentation. * Before any other element, we print a dash on a new line, * temporarily moving the indentation back. */ static __isl_give isl_printer *enter_state(__isl_take isl_printer *p, int eol) { enum isl_yaml_state state; if (!p) return NULL; state = current_state(p); if (state == isl_yaml_mapping_val_start) { if (eol) p = p->ops->print_str(p, ":"); else p = p->ops->print_str(p, ": "); p = update_state(p, isl_yaml_mapping_val); } else if (state == isl_yaml_mapping_first_key_start) { p = update_state(p, isl_yaml_mapping_key); } else if (state == isl_yaml_mapping_key_start) { if (p->yaml_style == ISL_YAML_STYLE_FLOW) p = p->ops->print_str(p, ", "); else { p = p->ops->end_line(p); p = p->ops->start_line(p); } p = update_state(p, isl_yaml_mapping_key); } else if (state == isl_yaml_sequence_first_start) { if (p->yaml_style != ISL_YAML_STYLE_FLOW) { p = p->ops->end_line(p); p = p->ops->start_line(p); p = p->ops->print_str(p, "- "); p = isl_printer_indent(p, 2); } p = update_state(p, isl_yaml_sequence); } else if (state == isl_yaml_sequence_start) { if (p->yaml_style == ISL_YAML_STYLE_FLOW) p = p->ops->print_str(p, ", "); else { p = p->ops->end_line(p); p = isl_printer_indent(p, -2); p = p->ops->start_line(p); p = p->ops->print_str(p, "- "); p = isl_printer_indent(p, 2); } p = update_state(p, isl_yaml_sequence); } return p; } __isl_give isl_printer *isl_printer_print_str(__isl_take isl_printer *p, const char *s) { if (!p) return NULL; if (!s) return isl_printer_free(p); p = enter_state(p, 0); if (!p) return NULL; return p->ops->print_str(p, s); } __isl_give isl_printer *isl_printer_print_double(__isl_take isl_printer *p, double d) { p = enter_state(p, 0); if (!p) return NULL; return p->ops->print_double(p, d); } __isl_give isl_printer *isl_printer_print_int(__isl_take isl_printer *p, int i) { p = enter_state(p, 0); if (!p) return NULL; return p->ops->print_int(p, i); } __isl_give isl_printer *isl_printer_print_isl_int(__isl_take isl_printer *p, isl_int i) { p = enter_state(p, 0); if (!p) return NULL; return p->ops->print_isl_int(p, i); } __isl_give isl_printer *isl_printer_start_line(__isl_take isl_printer *p) { if (!p) return NULL; return p->ops->start_line(p); } __isl_give isl_printer *isl_printer_end_line(__isl_take isl_printer *p) { if (!p) return NULL; return p->ops->end_line(p); } char *isl_printer_get_str(__isl_keep isl_printer *printer) { if (!printer || !printer->buf) return NULL; return strdup(printer->buf); } __isl_give isl_printer *isl_printer_flush(__isl_take isl_printer *p) { if (!p) return NULL; return p->ops->flush(p); } /* Start a YAML mapping and push a new state to reflect that we * are about to print the first key in a mapping. * * In flow style, print the opening brace. * In block style, move to the next line with an increased indentation, * except if this is the outer mapping or if we are inside a sequence * (in which case we have already increased the indentation and we want * to print the first key on the same line as the dash). */ __isl_give isl_printer *isl_printer_yaml_start_mapping( __isl_take isl_printer *p) { enum isl_yaml_state state; p = enter_state(p, p->yaml_style == ISL_YAML_STYLE_BLOCK); if (!p) return NULL; state = current_state(p); if (p->yaml_style == ISL_YAML_STYLE_FLOW) p = p->ops->print_str(p, "{ "); else if (state != isl_yaml_none && state != isl_yaml_sequence) { p = p->ops->end_line(p); p = isl_printer_indent(p, 2); p = p->ops->start_line(p); } p = push_state(p, isl_yaml_mapping_first_key_start); return p; } /* Finish a YAML mapping and pop it from the state stack. * * In flow style, print the closing brace. * * In block style, first check if we are still in the * isl_yaml_mapping_first_key_start state. If so, we have not printed * anything yet, so print "{}" to indicate an empty mapping. * If we increased the indentation in isl_printer_yaml_start_mapping, * then decrease it again. * If this is the outer mapping then print a newline. */ __isl_give isl_printer *isl_printer_yaml_end_mapping( __isl_take isl_printer *p) { enum isl_yaml_state state; state = current_state(p); p = pop_state(p); if (!p) return NULL; if (p->yaml_style == ISL_YAML_STYLE_FLOW) return p->ops->print_str(p, " }"); if (state == isl_yaml_mapping_first_key_start) p = p->ops->print_str(p, "{}"); if (!p) return NULL; state = current_state(p); if (state != isl_yaml_none && state != isl_yaml_sequence) p = isl_printer_indent(p, -2); if (state == isl_yaml_none) p = p->ops->end_line(p); return p; } /* Start a YAML sequence and push a new state to reflect that we * are about to print the first element in a sequence. * * In flow style, print the opening bracket. */ __isl_give isl_printer *isl_printer_yaml_start_sequence( __isl_take isl_printer *p) { p = enter_state(p, p->yaml_style == ISL_YAML_STYLE_BLOCK); p = push_state(p, isl_yaml_sequence_first_start); if (!p) return NULL; if (p->yaml_style == ISL_YAML_STYLE_FLOW) p = p->ops->print_str(p, "[ "); return p; } /* Finish a YAML sequence and pop it from the state stack. * * In flow style, print the closing bracket. * * In block style, check if we are still in the * isl_yaml_sequence_first_start state. If so, we have not printed * anything yet, so print "[]" or " []" to indicate an empty sequence. * We print the extra space when we instructed enter_state not * to print a space at the end of the line. * Otherwise, undo the increase in indentation performed by * enter_state when moving away from the isl_yaml_sequence_first_start * state. * If this is the outer sequence then print a newline. */ __isl_give isl_printer *isl_printer_yaml_end_sequence( __isl_take isl_printer *p) { enum isl_yaml_state state, up; state = current_state(p); p = pop_state(p); if (!p) return NULL; if (p->yaml_style == ISL_YAML_STYLE_FLOW) return p->ops->print_str(p, " ]"); up = current_state(p); if (state == isl_yaml_sequence_first_start) { if (up == isl_yaml_mapping_val) p = p->ops->print_str(p, " []"); else p = p->ops->print_str(p, "[]"); } else { p = isl_printer_indent(p, -2); } if (!p) return NULL; state = current_state(p); if (state == isl_yaml_none) p = p->ops->end_line(p); return p; } /* Mark the fact that the current element is finished and that * the next output belongs to the next element. * In particular, if we are printing a key, then prepare for * printing the subsequent value. If we are printing a value, * prepare for printing the next key. If we are printing an * element in a sequence, prepare for printing the next element. */ __isl_give isl_printer *isl_printer_yaml_next(__isl_take isl_printer *p) { enum isl_yaml_state state; if (!p) return NULL; if (p->yaml_depth < 1) isl_die(isl_printer_get_ctx(p), isl_error_invalid, "not in YAML construct", return isl_printer_free(p)); state = current_state(p); if (state == isl_yaml_mapping_key) state = isl_yaml_mapping_val_start; else if (state == isl_yaml_mapping_val) state = isl_yaml_mapping_key_start; else if (state == isl_yaml_sequence) state = isl_yaml_sequence_start; p = update_state(p, state); return p; } isl-0.16.1/isl_union_map_private.h0000664000175000017500000000053012645737061014061 00000000000000#define isl_union_set_list isl_union_map_list #define isl_union_set isl_union_map #include #include struct isl_union_map { int ref; isl_space *dim; struct isl_hash_table table; }; __isl_give isl_union_map *isl_union_map_reset_range_space( __isl_take isl_union_map *umap, __isl_take isl_space *space); isl-0.16.1/isl_constraint.c0000664000175000017500000011202512645737060012523 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include #include #include #include #include #include #undef BASE #define BASE constraint #include isl_ctx *isl_constraint_get_ctx(__isl_keep isl_constraint *c) { return c ? isl_local_space_get_ctx(c->ls) : NULL; } static unsigned n(struct isl_constraint *c, enum isl_dim_type type) { return isl_local_space_dim(c->ls, type); } static unsigned offset(struct isl_constraint *c, enum isl_dim_type type) { return isl_local_space_offset(c->ls, type); } static unsigned basic_map_offset(__isl_keep isl_basic_map *bmap, enum isl_dim_type type) { return type == isl_dim_div ? 1 + isl_space_dim(bmap->dim, isl_dim_all) : 1 + isl_space_offset(bmap->dim, type); } static unsigned basic_set_offset(struct isl_basic_set *bset, enum isl_dim_type type) { isl_space *dim = bset->dim; switch (type) { case isl_dim_param: return 1; case isl_dim_in: return 1 + dim->nparam; case isl_dim_out: return 1 + dim->nparam + dim->n_in; case isl_dim_div: return 1 + dim->nparam + dim->n_in + dim->n_out; default: return 0; } } __isl_give isl_constraint *isl_constraint_alloc_vec(int eq, __isl_take isl_local_space *ls, __isl_take isl_vec *v) { isl_constraint *constraint; if (!ls || !v) goto error; constraint = isl_alloc_type(isl_vec_get_ctx(v), isl_constraint); if (!constraint) goto error; constraint->ref = 1; constraint->eq = eq; constraint->ls = ls; constraint->v = v; return constraint; error: isl_local_space_free(ls); isl_vec_free(v); return NULL; } __isl_give isl_constraint *isl_constraint_alloc(int eq, __isl_take isl_local_space *ls) { isl_ctx *ctx; isl_vec *v; if (!ls) return NULL; ctx = isl_local_space_get_ctx(ls); v = isl_vec_alloc(ctx, 1 + isl_local_space_dim(ls, isl_dim_all)); v = isl_vec_clr(v); return isl_constraint_alloc_vec(eq, ls, v); } struct isl_constraint *isl_basic_map_constraint(struct isl_basic_map *bmap, isl_int **line) { int eq; isl_ctx *ctx; isl_vec *v; isl_local_space *ls = NULL; isl_constraint *constraint; if (!bmap || !line) goto error; eq = line >= bmap->eq; ctx = isl_basic_map_get_ctx(bmap); ls = isl_basic_map_get_local_space(bmap); v = isl_vec_alloc(ctx, 1 + isl_local_space_dim(ls, isl_dim_all)); if (!v) goto error; isl_seq_cpy(v->el, line[0], v->size); constraint = isl_constraint_alloc_vec(eq, ls, v); isl_basic_map_free(bmap); return constraint; error: isl_local_space_free(ls); isl_basic_map_free(bmap); return NULL; } struct isl_constraint *isl_basic_set_constraint(struct isl_basic_set *bset, isl_int **line) { return isl_basic_map_constraint((struct isl_basic_map *)bset, line); } __isl_give isl_constraint *isl_constraint_alloc_equality( __isl_take isl_local_space *ls) { return isl_constraint_alloc(1, ls); } __isl_give isl_constraint *isl_constraint_alloc_inequality( __isl_take isl_local_space *ls) { return isl_constraint_alloc(0, ls); } struct isl_constraint *isl_constraint_dup(struct isl_constraint *c) { if (!c) return NULL; return isl_constraint_alloc_vec(c->eq, isl_local_space_copy(c->ls), isl_vec_copy(c->v)); } struct isl_constraint *isl_constraint_cow(struct isl_constraint *c) { if (!c) return NULL; if (c->ref == 1) return c; c->ref--; return isl_constraint_dup(c); } struct isl_constraint *isl_constraint_copy(struct isl_constraint *constraint) { if (!constraint) return NULL; constraint->ref++; return constraint; } __isl_null isl_constraint *isl_constraint_free(__isl_take isl_constraint *c) { if (!c) return NULL; if (--c->ref > 0) return NULL; isl_local_space_free(c->ls); isl_vec_free(c->v); free(c); return NULL; } /* Return the number of constraints in "bmap", i.e., the * number of times isl_basic_map_foreach_constraint will * call the callback. */ int isl_basic_map_n_constraint(__isl_keep isl_basic_map *bmap) { if (!bmap) return -1; return bmap->n_eq + bmap->n_ineq; } /* Return the number of constraints in "bset", i.e., the * number of times isl_basic_set_foreach_constraint will * call the callback. */ int isl_basic_set_n_constraint(__isl_keep isl_basic_set *bset) { return isl_basic_map_n_constraint(bset); } isl_stat isl_basic_map_foreach_constraint(__isl_keep isl_basic_map *bmap, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user) { int i; struct isl_constraint *c; if (!bmap) return isl_stat_error; isl_assert(bmap->ctx, ISL_F_ISSET(bmap, ISL_BASIC_MAP_FINAL), return isl_stat_error); for (i = 0; i < bmap->n_eq; ++i) { c = isl_basic_map_constraint(isl_basic_map_copy(bmap), &bmap->eq[i]); if (!c) return isl_stat_error; if (fn(c, user) < 0) return isl_stat_error; } for (i = 0; i < bmap->n_ineq; ++i) { c = isl_basic_map_constraint(isl_basic_map_copy(bmap), &bmap->ineq[i]); if (!c) return isl_stat_error; if (fn(c, user) < 0) return isl_stat_error; } return isl_stat_ok; } isl_stat isl_basic_set_foreach_constraint(__isl_keep isl_basic_set *bset, isl_stat (*fn)(__isl_take isl_constraint *c, void *user), void *user) { return isl_basic_map_foreach_constraint((isl_basic_map *)bset, fn, user); } /* Add the constraint to the list that "user" points to, if it is not * a div constraint. */ static isl_stat collect_constraint(__isl_take isl_constraint *constraint, void *user) { isl_constraint_list **list = user; if (isl_constraint_is_div_constraint(constraint)) isl_constraint_free(constraint); else *list = isl_constraint_list_add(*list, constraint); return isl_stat_ok; } /* Return a list of constraints that, when combined, are equivalent * to "bmap". The input is required to have only known divs. * * There is no need to include the div constraints as they are * implied by the div expressions. */ __isl_give isl_constraint_list *isl_basic_map_get_constraint_list( __isl_keep isl_basic_map *bmap) { int n; int known; isl_ctx *ctx; isl_constraint_list *list; known = isl_basic_map_divs_known(bmap); if (known < 0) return NULL; ctx = isl_basic_map_get_ctx(bmap); if (!known) isl_die(ctx, isl_error_invalid, "input involves unknown divs", return NULL); n = isl_basic_map_n_constraint(bmap); list = isl_constraint_list_alloc(ctx, n); if (isl_basic_map_foreach_constraint(bmap, &collect_constraint, &list) < 0) list = isl_constraint_list_free(list); return list; } /* Return a list of constraints that, when combined, are equivalent * to "bset". The input is required to have only known divs. */ __isl_give isl_constraint_list *isl_basic_set_get_constraint_list( __isl_keep isl_basic_set *bset) { return isl_basic_map_get_constraint_list(bset); } int isl_constraint_is_equal(struct isl_constraint *constraint1, struct isl_constraint *constraint2) { int equal; if (!constraint1 || !constraint2) return 0; if (constraint1->eq != constraint2->eq) return 0; equal = isl_local_space_is_equal(constraint1->ls, constraint2->ls); if (equal < 0 || !equal) return equal; return isl_vec_is_equal(constraint1->v, constraint2->v); } struct isl_basic_map *isl_basic_map_add_constraint( struct isl_basic_map *bmap, struct isl_constraint *constraint) { isl_ctx *ctx; isl_space *dim; int equal_space; if (!bmap || !constraint) goto error; ctx = isl_constraint_get_ctx(constraint); dim = isl_constraint_get_space(constraint); equal_space = isl_space_is_equal(bmap->dim, dim); isl_space_free(dim); isl_assert(ctx, equal_space, goto error); bmap = isl_basic_map_intersect(bmap, isl_basic_map_from_constraint(constraint)); return bmap; error: isl_basic_map_free(bmap); isl_constraint_free(constraint); return NULL; } struct isl_basic_set *isl_basic_set_add_constraint( struct isl_basic_set *bset, struct isl_constraint *constraint) { return (struct isl_basic_set *) isl_basic_map_add_constraint((struct isl_basic_map *)bset, constraint); } __isl_give isl_map *isl_map_add_constraint(__isl_take isl_map *map, __isl_take isl_constraint *constraint) { isl_basic_map *bmap; bmap = isl_basic_map_from_constraint(constraint); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; } __isl_give isl_set *isl_set_add_constraint(__isl_take isl_set *set, __isl_take isl_constraint *constraint) { return isl_map_add_constraint(set, constraint); } __isl_give isl_space *isl_constraint_get_space( __isl_keep isl_constraint *constraint) { return constraint ? isl_local_space_get_space(constraint->ls) : NULL; } __isl_give isl_local_space *isl_constraint_get_local_space( __isl_keep isl_constraint *constraint) { return constraint ? isl_local_space_copy(constraint->ls) : NULL; } int isl_constraint_dim(struct isl_constraint *constraint, enum isl_dim_type type) { if (!constraint) return -1; return n(constraint, type); } isl_bool isl_constraint_involves_dims(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned first, unsigned n) { int i; isl_ctx *ctx; int *active = NULL; isl_bool involves = isl_bool_false; if (!constraint) return isl_bool_error; if (n == 0) return isl_bool_false; ctx = isl_constraint_get_ctx(constraint); if (first + n > isl_constraint_dim(constraint, type)) isl_die(ctx, isl_error_invalid, "range out of bounds", return isl_bool_error); active = isl_local_space_get_active(constraint->ls, constraint->v->el + 1); if (!active) goto error; first += isl_local_space_offset(constraint->ls, type) - 1; for (i = 0; i < n; ++i) if (active[first + i]) { involves = isl_bool_true; break; } free(active); return involves; error: free(active); return isl_bool_error; } /* Does the given constraint represent a lower bound on the given * dimension? */ isl_bool isl_constraint_is_lower_bound(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos) { if (!constraint) return isl_bool_error; if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "position out of bounds", return isl_bool_error); pos += isl_local_space_offset(constraint->ls, type); return isl_int_is_pos(constraint->v->el[pos]); } /* Does the given constraint represent an upper bound on the given * dimension? */ isl_bool isl_constraint_is_upper_bound(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos) { if (!constraint) return isl_bool_error; if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "position out of bounds", return isl_bool_error); pos += isl_local_space_offset(constraint->ls, type); return isl_int_is_neg(constraint->v->el[pos]); } const char *isl_constraint_get_dim_name(__isl_keep isl_constraint *constraint, enum isl_dim_type type, unsigned pos) { return constraint ? isl_local_space_get_dim_name(constraint->ls, type, pos) : NULL; } void isl_constraint_get_constant(struct isl_constraint *constraint, isl_int *v) { if (!constraint) return; isl_int_set(*v, constraint->v->el[0]); } /* Return the constant term of "constraint". */ __isl_give isl_val *isl_constraint_get_constant_val( __isl_keep isl_constraint *constraint) { isl_ctx *ctx; if (!constraint) return NULL; ctx = isl_constraint_get_ctx(constraint); return isl_val_int_from_isl_int(ctx, constraint->v->el[0]); } void isl_constraint_get_coefficient(struct isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int *v) { if (!constraint) return; if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(constraint->v->ctx, isl_error_invalid, "position out of bounds", return); pos += isl_local_space_offset(constraint->ls, type); isl_int_set(*v, constraint->v->el[pos]); } /* Return the coefficient of the variable of type "type" at position "pos" * of "constraint". */ __isl_give isl_val *isl_constraint_get_coefficient_val( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos) { isl_ctx *ctx; if (!constraint) return NULL; ctx = isl_constraint_get_ctx(constraint); if (pos < 0 || pos >= isl_local_space_dim(constraint->ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return NULL); pos += isl_local_space_offset(constraint->ls, type); return isl_val_int_from_isl_int(ctx, constraint->v->el[pos]); } __isl_give isl_aff *isl_constraint_get_div(__isl_keep isl_constraint *constraint, int pos) { if (!constraint) return NULL; return isl_local_space_get_div(constraint->ls, pos); } __isl_give isl_constraint *isl_constraint_set_constant( __isl_take isl_constraint *constraint, isl_int v) { constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; constraint->v = isl_vec_cow(constraint->v); if (!constraint->v) return isl_constraint_free(constraint); isl_int_set(constraint->v->el[0], v); return constraint; } /* Replace the constant term of "constraint" by "v". */ __isl_give isl_constraint *isl_constraint_set_constant_val( __isl_take isl_constraint *constraint, __isl_take isl_val *v) { constraint = isl_constraint_cow(constraint); if (!constraint || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "expecting integer value", goto error); constraint->v = isl_vec_set_element_val(constraint->v, 0, v); if (!constraint->v) constraint = isl_constraint_free(constraint); return constraint; error: isl_val_free(v); return isl_constraint_free(constraint); } __isl_give isl_constraint *isl_constraint_set_constant_si( __isl_take isl_constraint *constraint, int v) { constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; constraint->v = isl_vec_cow(constraint->v); if (!constraint->v) return isl_constraint_free(constraint); isl_int_set_si(constraint->v->el[0], v); return constraint; } __isl_give isl_constraint *isl_constraint_set_coefficient( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, isl_int v) { constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(constraint->v->ctx, isl_error_invalid, "position out of bounds", return isl_constraint_free(constraint)); constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; constraint->v = isl_vec_cow(constraint->v); if (!constraint->v) return isl_constraint_free(constraint); pos += isl_local_space_offset(constraint->ls, type); isl_int_set(constraint->v->el[pos], v); return constraint; } /* Replace the coefficient of the variable of type "type" at position "pos" * of "constraint" by "v". */ __isl_give isl_constraint *isl_constraint_set_coefficient_val( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, __isl_take isl_val *v) { constraint = isl_constraint_cow(constraint); if (!constraint || !v) goto error; if (!isl_val_is_int(v)) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "expecting integer value", goto error); if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "position out of bounds", goto error); pos += isl_local_space_offset(constraint->ls, type); constraint->v = isl_vec_set_element_val(constraint->v, pos, v); if (!constraint->v) constraint = isl_constraint_free(constraint); return constraint; error: isl_val_free(v); return isl_constraint_free(constraint); } __isl_give isl_constraint *isl_constraint_set_coefficient_si( __isl_take isl_constraint *constraint, enum isl_dim_type type, int pos, int v) { constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; if (pos >= isl_local_space_dim(constraint->ls, type)) isl_die(constraint->v->ctx, isl_error_invalid, "position out of bounds", return isl_constraint_free(constraint)); constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; constraint->v = isl_vec_cow(constraint->v); if (!constraint->v) return isl_constraint_free(constraint); pos += isl_local_space_offset(constraint->ls, type); isl_int_set_si(constraint->v->el[pos], v); return constraint; } /* Drop any constraint from "bset" that is identical to "constraint". * In particular, this means that the local spaces of "bset" and * "constraint" need to be the same. * * We manually set ISL_BASIC_SET_FINAL instead of calling * isl_basic_set_finalize because this function is called by CLooG, * which does not expect any variables to disappear. */ __isl_give isl_basic_set *isl_basic_set_drop_constraint( __isl_take isl_basic_set *bset, __isl_take isl_constraint *constraint) { int i; unsigned n; isl_int **row; unsigned total; isl_local_space *ls1; int equal; int equality; if (!bset || !constraint) goto error; ls1 = isl_basic_set_get_local_space(bset); equal = isl_local_space_is_equal(ls1, constraint->ls); isl_local_space_free(ls1); if (equal < 0) goto error; if (!equal) { isl_constraint_free(constraint); return bset; } bset = isl_basic_set_cow(bset); if (!bset) goto error; equality = isl_constraint_is_equality(constraint); if (equality) { n = bset->n_eq; row = bset->eq; } else { n = bset->n_ineq; row = bset->ineq; } total = isl_constraint_dim(constraint, isl_dim_all); for (i = 0; i < n; ++i) { if (!isl_seq_eq(row[i], constraint->v->el, 1 + total)) continue; if (equality && isl_basic_set_drop_equality(bset, i) < 0) goto error; if (!equality && isl_basic_set_drop_inequality(bset, i) < 0) goto error; break; } isl_constraint_free(constraint); ISL_F_SET(bset, ISL_BASIC_SET_FINAL); return bset; error: isl_constraint_free(constraint); isl_basic_set_free(bset); return NULL; } struct isl_constraint *isl_constraint_negate(struct isl_constraint *constraint) { isl_ctx *ctx; constraint = isl_constraint_cow(constraint); if (!constraint) return NULL; ctx = isl_constraint_get_ctx(constraint); if (isl_constraint_is_equality(constraint)) isl_die(ctx, isl_error_invalid, "cannot negate equality", return isl_constraint_free(constraint)); constraint->v = isl_vec_neg(constraint->v); constraint->v = isl_vec_cow(constraint->v); if (!constraint->v) return isl_constraint_free(constraint); isl_int_sub_ui(constraint->v->el[0], constraint->v->el[0], 1); return constraint; } isl_bool isl_constraint_is_equality(struct isl_constraint *constraint) { if (!constraint) return isl_bool_error; return constraint->eq; } int isl_constraint_is_div_constraint(__isl_keep isl_constraint *constraint) { int i; int n_div; if (!constraint) return -1; if (isl_constraint_is_equality(constraint)) return 0; n_div = isl_constraint_dim(constraint, isl_dim_div); for (i = 0; i < n_div; ++i) { if (isl_local_space_is_div_constraint(constraint->ls, constraint->v->el, i)) return 1; } return 0; } /* We manually set ISL_BASIC_SET_FINAL instead of calling * isl_basic_map_finalize because we want to keep the position * of the divs and we therefore do not want to throw away redundant divs. * This is arguably a bit fragile. */ __isl_give isl_basic_map *isl_basic_map_from_constraint( __isl_take isl_constraint *constraint) { int k; isl_local_space *ls; struct isl_basic_map *bmap; isl_int *c; unsigned total; if (!constraint) return NULL; ls = isl_local_space_copy(constraint->ls); bmap = isl_basic_map_from_local_space(ls); bmap = isl_basic_map_extend_constraints(bmap, 1, 1); if (isl_constraint_is_equality(constraint)) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; c = bmap->eq[k]; } else { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; c = bmap->ineq[k]; } total = isl_basic_map_total_dim(bmap); isl_seq_cpy(c, constraint->v->el, 1 + total); isl_constraint_free(constraint); if (bmap) ISL_F_SET(bmap, ISL_BASIC_SET_FINAL); return bmap; error: isl_constraint_free(constraint); isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_from_constraint( struct isl_constraint *constraint) { if (!constraint) return NULL; if (isl_constraint_dim(constraint, isl_dim_in) != 0) isl_die(isl_constraint_get_ctx(constraint), isl_error_invalid, "not a set constraint", goto error); return (isl_basic_set *)isl_basic_map_from_constraint(constraint); error: isl_constraint_free(constraint); return NULL; } /* Is the variable of "type" at position "pos" of "bmap" defined * in terms of earlier dimensions through an equality? * * If so, and if c is not NULL, then return a copy of this equality in *c. */ int isl_basic_map_has_defining_equality( __isl_keep isl_basic_map *bmap, enum isl_dim_type type, int pos, __isl_give isl_constraint **c) { int i; unsigned offset; unsigned total; if (!bmap) return -1; offset = basic_map_offset(bmap, type); total = isl_basic_map_total_dim(bmap); isl_assert(bmap->ctx, pos < isl_basic_map_dim(bmap, type), return -1); for (i = 0; i < bmap->n_eq; ++i) { if (isl_int_is_zero(bmap->eq[i][offset + pos]) || isl_seq_first_non_zero(bmap->eq[i]+offset+pos+1, 1+total-offset-pos-1) != -1) continue; if (c) *c = isl_basic_map_constraint(isl_basic_map_copy(bmap), &bmap->eq[i]); return 1; } return 0; } /* Is the variable of "type" at position "pos" of "bset" defined * in terms of earlier dimensions through an equality? * * If so, and if c is not NULL, then return a copy of this equality in *c. */ int isl_basic_set_has_defining_equality( __isl_keep isl_basic_set *bset, enum isl_dim_type type, int pos, __isl_give isl_constraint **c) { return isl_basic_map_has_defining_equality((isl_basic_map *)bset, type, pos, c); } int isl_basic_set_has_defining_inequalities( struct isl_basic_set *bset, enum isl_dim_type type, int pos, struct isl_constraint **lower, struct isl_constraint **upper) { int i, j; unsigned offset; unsigned total; isl_int m; isl_int **lower_line, **upper_line; if (!bset) return -1; offset = basic_set_offset(bset, type); total = isl_basic_set_total_dim(bset); isl_assert(bset->ctx, pos < isl_basic_set_dim(bset, type), return -1); isl_int_init(m); for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][offset + pos])) continue; if (isl_int_is_one(bset->ineq[i][offset + pos])) continue; if (isl_int_is_negone(bset->ineq[i][offset + pos])) continue; if (isl_seq_first_non_zero(bset->ineq[i]+offset+pos+1, 1+total-offset-pos-1) != -1) continue; for (j = i + 1; j < bset->n_ineq; ++j) { if (!isl_seq_is_neg(bset->ineq[i]+1, bset->ineq[j]+1, total)) continue; isl_int_add(m, bset->ineq[i][0], bset->ineq[j][0]); if (isl_int_abs_ge(m, bset->ineq[i][offset+pos])) continue; if (isl_int_is_pos(bset->ineq[i][offset+pos])) { lower_line = &bset->ineq[i]; upper_line = &bset->ineq[j]; } else { lower_line = &bset->ineq[j]; upper_line = &bset->ineq[i]; } *lower = isl_basic_set_constraint( isl_basic_set_copy(bset), lower_line); *upper = isl_basic_set_constraint( isl_basic_set_copy(bset), upper_line); isl_int_clear(m); return 1; } } *lower = NULL; *upper = NULL; isl_int_clear(m); return 0; } /* Given two constraints "a" and "b" on the variable at position "abs_pos" * (in "a" and "b"), add a constraint to "bset" that ensures that the * bound implied by "a" is (strictly) larger than the bound implied by "b". * * If both constraints imply lower bounds, then this means that "a" is * active in the result. * If both constraints imply upper bounds, then this means that "b" is * active in the result. */ static __isl_give isl_basic_set *add_larger_bound_constraint( __isl_take isl_basic_set *bset, isl_int *a, isl_int *b, unsigned abs_pos, int strict) { int k; isl_int t; unsigned total; k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; total = isl_basic_set_dim(bset, isl_dim_all); isl_int_init(t); isl_int_neg(t, b[1 + abs_pos]); isl_seq_combine(bset->ineq[k], t, a, a[1 + abs_pos], b, 1 + abs_pos); isl_seq_combine(bset->ineq[k] + 1 + abs_pos, t, a + 1 + abs_pos + 1, a[1 + abs_pos], b + 1 + abs_pos + 1, total - abs_pos); if (strict) isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); isl_int_clear(t); return bset; error: isl_basic_set_free(bset); return NULL; } /* Add constraints to "context" that ensure that "u" is the smallest * (and therefore active) upper bound on "abs_pos" in "bset" and return * the resulting basic set. */ static __isl_give isl_basic_set *set_smallest_upper_bound( __isl_keep isl_basic_set *context, __isl_keep isl_basic_set *bset, unsigned abs_pos, int n_upper, int u) { int j; context = isl_basic_set_copy(context); context = isl_basic_set_cow(context); context = isl_basic_set_extend_constraints(context, 0, n_upper - 1); for (j = 0; j < bset->n_ineq; ++j) { if (j == u) continue; if (!isl_int_is_neg(bset->ineq[j][1 + abs_pos])) continue; context = add_larger_bound_constraint(context, bset->ineq[j], bset->ineq[u], abs_pos, j > u); } context = isl_basic_set_simplify(context); context = isl_basic_set_finalize(context); return context; } /* Add constraints to "context" that ensure that "u" is the largest * (and therefore active) upper bound on "abs_pos" in "bset" and return * the resulting basic set. */ static __isl_give isl_basic_set *set_largest_lower_bound( __isl_keep isl_basic_set *context, __isl_keep isl_basic_set *bset, unsigned abs_pos, int n_lower, int l) { int j; context = isl_basic_set_copy(context); context = isl_basic_set_cow(context); context = isl_basic_set_extend_constraints(context, 0, n_lower - 1); for (j = 0; j < bset->n_ineq; ++j) { if (j == l) continue; if (!isl_int_is_pos(bset->ineq[j][1 + abs_pos])) continue; context = add_larger_bound_constraint(context, bset->ineq[l], bset->ineq[j], abs_pos, j > l); } context = isl_basic_set_simplify(context); context = isl_basic_set_finalize(context); return context; } static isl_stat foreach_upper_bound(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned abs_pos, __isl_take isl_basic_set *context, int n_upper, isl_stat (*fn)(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user), void *user) { isl_basic_set *context_i; isl_constraint *upper = NULL; int i; for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][1 + abs_pos])) continue; context_i = set_smallest_upper_bound(context, bset, abs_pos, n_upper, i); if (isl_basic_set_is_empty(context_i)) { isl_basic_set_free(context_i); continue; } upper = isl_basic_set_constraint(isl_basic_set_copy(bset), &bset->ineq[i]); if (!upper || !context_i) goto error; if (fn(NULL, upper, context_i, user) < 0) break; } isl_basic_set_free(context); if (i < bset->n_ineq) return isl_stat_error; return isl_stat_ok; error: isl_constraint_free(upper); isl_basic_set_free(context_i); isl_basic_set_free(context); return isl_stat_error; } static isl_stat foreach_lower_bound(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned abs_pos, __isl_take isl_basic_set *context, int n_lower, isl_stat (*fn)(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user), void *user) { isl_basic_set *context_i; isl_constraint *lower = NULL; int i; for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_zero(bset->ineq[i][1 + abs_pos])) continue; context_i = set_largest_lower_bound(context, bset, abs_pos, n_lower, i); if (isl_basic_set_is_empty(context_i)) { isl_basic_set_free(context_i); continue; } lower = isl_basic_set_constraint(isl_basic_set_copy(bset), &bset->ineq[i]); if (!lower || !context_i) goto error; if (fn(lower, NULL, context_i, user) < 0) break; } isl_basic_set_free(context); if (i < bset->n_ineq) return isl_stat_error; return isl_stat_ok; error: isl_constraint_free(lower); isl_basic_set_free(context_i); isl_basic_set_free(context); return isl_stat_error; } static isl_stat foreach_bound_pair(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned abs_pos, __isl_take isl_basic_set *context, int n_lower, int n_upper, isl_stat (*fn)(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user), void *user) { isl_basic_set *context_i, *context_j; isl_constraint *lower = NULL; isl_constraint *upper = NULL; int i, j; for (i = 0; i < bset->n_ineq; ++i) { if (!isl_int_is_pos(bset->ineq[i][1 + abs_pos])) continue; context_i = set_largest_lower_bound(context, bset, abs_pos, n_lower, i); if (isl_basic_set_is_empty(context_i)) { isl_basic_set_free(context_i); continue; } for (j = 0; j < bset->n_ineq; ++j) { if (!isl_int_is_neg(bset->ineq[j][1 + abs_pos])) continue; context_j = set_smallest_upper_bound(context_i, bset, abs_pos, n_upper, j); context_j = isl_basic_set_extend_constraints(context_j, 0, 1); context_j = add_larger_bound_constraint(context_j, bset->ineq[i], bset->ineq[j], abs_pos, 0); context_j = isl_basic_set_simplify(context_j); context_j = isl_basic_set_finalize(context_j); if (isl_basic_set_is_empty(context_j)) { isl_basic_set_free(context_j); continue; } lower = isl_basic_set_constraint(isl_basic_set_copy(bset), &bset->ineq[i]); upper = isl_basic_set_constraint(isl_basic_set_copy(bset), &bset->ineq[j]); if (!lower || !upper || !context_j) goto error; if (fn(lower, upper, context_j, user) < 0) break; } isl_basic_set_free(context_i); if (j < bset->n_ineq) break; } isl_basic_set_free(context); if (i < bset->n_ineq) return isl_stat_error; return isl_stat_ok; error: isl_constraint_free(lower); isl_constraint_free(upper); isl_basic_set_free(context_i); isl_basic_set_free(context_j); isl_basic_set_free(context); return isl_stat_error; } /* For each pair of lower and upper bounds on the variable "pos" * of type "type", call "fn" with these lower and upper bounds and the * set of constraints on the remaining variables where these bounds * are active, i.e., (stricly) larger/smaller than the other lower/upper bounds. * * If the designated variable is equal to an affine combination of the * other variables then fn is called with both lower and upper * set to the corresponding equality. * * If there is no lower (or upper) bound, then NULL is passed * as the corresponding bound. * * We first check if the variable is involved in any equality. * If not, we count the number of lower and upper bounds and * act accordingly. */ isl_stat isl_basic_set_foreach_bound_pair(__isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos, isl_stat (*fn)(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user), void *user) { int i; isl_constraint *lower = NULL; isl_constraint *upper = NULL; isl_basic_set *context = NULL; unsigned abs_pos; int n_lower, n_upper; if (!bset) return isl_stat_error; isl_assert(bset->ctx, pos < isl_basic_set_dim(bset, type), return isl_stat_error); isl_assert(bset->ctx, type == isl_dim_param || type == isl_dim_set, return isl_stat_error); abs_pos = pos; if (type == isl_dim_set) abs_pos += isl_basic_set_dim(bset, isl_dim_param); for (i = 0; i < bset->n_eq; ++i) { if (isl_int_is_zero(bset->eq[i][1 + abs_pos])) continue; lower = isl_basic_set_constraint(isl_basic_set_copy(bset), &bset->eq[i]); upper = isl_constraint_copy(lower); context = isl_basic_set_remove_dims(isl_basic_set_copy(bset), type, pos, 1); if (!lower || !upper || !context) goto error; return fn(lower, upper, context, user); } n_lower = 0; n_upper = 0; for (i = 0; i < bset->n_ineq; ++i) { if (isl_int_is_pos(bset->ineq[i][1 + abs_pos])) n_lower++; else if (isl_int_is_neg(bset->ineq[i][1 + abs_pos])) n_upper++; } context = isl_basic_set_copy(bset); context = isl_basic_set_cow(context); if (!context) goto error; for (i = context->n_ineq - 1; i >= 0; --i) if (!isl_int_is_zero(context->ineq[i][1 + abs_pos])) isl_basic_set_drop_inequality(context, i); context = isl_basic_set_drop(context, type, pos, 1); if (!n_lower && !n_upper) return fn(NULL, NULL, context, user); if (!n_lower) return foreach_upper_bound(bset, type, abs_pos, context, n_upper, fn, user); if (!n_upper) return foreach_lower_bound(bset, type, abs_pos, context, n_lower, fn, user); return foreach_bound_pair(bset, type, abs_pos, context, n_lower, n_upper, fn, user); error: isl_constraint_free(lower); isl_constraint_free(upper); isl_basic_set_free(context); return -1; } __isl_give isl_aff *isl_constraint_get_bound( __isl_keep isl_constraint *constraint, enum isl_dim_type type, int pos) { isl_aff *aff; isl_ctx *ctx; if (!constraint) return NULL; ctx = isl_constraint_get_ctx(constraint); if (pos >= isl_constraint_dim(constraint, type)) isl_die(ctx, isl_error_invalid, "index out of bounds", return NULL); if (isl_constraint_dim(constraint, isl_dim_in) != 0) isl_die(ctx, isl_error_invalid, "not a set constraint", return NULL); pos += offset(constraint, type); if (isl_int_is_zero(constraint->v->el[pos])) isl_die(ctx, isl_error_invalid, "constraint does not define a bound on given dimension", return NULL); aff = isl_aff_alloc(isl_local_space_copy(constraint->ls)); if (!aff) return NULL; if (isl_int_is_neg(constraint->v->el[pos])) isl_seq_cpy(aff->v->el + 1, constraint->v->el, aff->v->size - 1); else isl_seq_neg(aff->v->el + 1, constraint->v->el, aff->v->size - 1); isl_int_set_si(aff->v->el[1 + pos], 0); isl_int_abs(aff->v->el[0], constraint->v->el[pos]); return aff; } /* For an inequality constraint * * f >= 0 * * or an equality constraint * * f = 0 * * return the affine expression f. */ __isl_give isl_aff *isl_constraint_get_aff( __isl_keep isl_constraint *constraint) { isl_aff *aff; if (!constraint) return NULL; aff = isl_aff_alloc(isl_local_space_copy(constraint->ls)); if (!aff) return NULL; isl_seq_cpy(aff->v->el + 1, constraint->v->el, aff->v->size - 1); isl_int_set_si(aff->v->el[0], 1); return aff; } /* Construct an inequality (eq = 0) or equality (eq = 1) constraint from "aff". * In particular, construct aff >= 0 or aff = 0. * * The denominator of "aff" can be ignored. */ static __isl_give isl_constraint *isl_constraint_alloc_aff(int eq, __isl_take isl_aff *aff) { isl_local_space *ls; isl_vec *v; if (!aff) return NULL; ls = isl_aff_get_domain_local_space(aff); v = isl_vec_drop_els(isl_vec_copy(aff->v), 0, 1); isl_aff_free(aff); return isl_constraint_alloc_vec(eq, ls, v); } /* Construct an equality constraint equating the given affine expression * to zero. */ __isl_give isl_constraint *isl_equality_from_aff(__isl_take isl_aff *aff) { return isl_constraint_alloc_aff(1, aff); } /* Construct an inequality constraint enforcing the given affine expression * to be non-negative. */ __isl_give isl_constraint *isl_inequality_from_aff(__isl_take isl_aff *aff) { return isl_constraint_alloc_aff(0, aff); } /* Compare two isl_constraints. * * Return -1 if "c1" is "smaller" than "c2", 1 if "c1" is "greater" * than "c2" and 0 if they are equal. * * The order is fairly arbitrary. We do consider constraints that only involve * earlier dimensions as "smaller". */ int isl_constraint_plain_cmp(__isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2) { int cmp; int last1, last2; if (c1 == c2) return 0; if (!c1) return -1; if (!c2) return 1; cmp = isl_local_space_cmp(c1->ls, c2->ls); if (cmp != 0) return cmp; last1 = isl_seq_last_non_zero(c1->v->el + 1, c1->v->size - 1); last2 = isl_seq_last_non_zero(c2->v->el + 1, c1->v->size - 1); if (last1 != last2) return last1 - last2; return isl_seq_cmp(c1->v->el, c2->v->el, c1->v->size); } /* Compare two constraints based on their final (non-zero) coefficients. * In particular, the constraint that involves later variables or * that has a larger coefficient for a shared latest variable * is considered "greater" than the other constraint. * * Return -1 if "c1" is "smaller" than "c2", 1 if "c1" is "greater" * than "c2" and 0 if they are equal. * * If the constraints live in different local spaces, then we cannot * really compare the constraints so we compare the local spaces instead. */ int isl_constraint_cmp_last_non_zero(__isl_keep isl_constraint *c1, __isl_keep isl_constraint *c2) { int cmp; int last1, last2; if (c1 == c2) return 0; if (!c1) return -1; if (!c2) return 1; cmp = isl_local_space_cmp(c1->ls, c2->ls); if (cmp != 0) return cmp; last1 = isl_seq_last_non_zero(c1->v->el + 1, c1->v->size - 1); last2 = isl_seq_last_non_zero(c2->v->el + 1, c1->v->size - 1); if (last1 != last2) return last1 - last2; if (last1 == -1) return 0; return isl_int_abs_cmp(c1->v->el[1 + last1], c2->v->el[1 + last2]); } isl-0.16.1/isl_id.c0000664000175000017500000001127212645737060010735 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #undef BASE #define BASE id #include /* A special, static isl_id to use as domains (and ranges) * of sets and parameters domains. * The user should never get a hold on this isl_id. */ isl_id isl_id_none = { .ref = -1, .ctx = NULL, .name = "#none", .user = NULL }; isl_ctx *isl_id_get_ctx(__isl_keep isl_id *id) { return id ? id->ctx : NULL; } void *isl_id_get_user(__isl_keep isl_id *id) { return id ? id->user : NULL; } const char *isl_id_get_name(__isl_keep isl_id *id) { return id ? id->name : NULL; } static __isl_give isl_id *id_alloc(isl_ctx *ctx, const char *name, void *user) { const char *copy = name ? strdup(name) : NULL; isl_id *id; if (name && !copy) return NULL; id = isl_calloc_type(ctx, struct isl_id); if (!id) goto error; id->ctx = ctx; isl_ctx_ref(id->ctx); id->ref = 1; id->name = copy; id->user = user; id->hash = isl_hash_init(); if (name) id->hash = isl_hash_string(id->hash, name); else id->hash = isl_hash_builtin(id->hash, user); return id; error: free((char *)copy); return NULL; } uint32_t isl_id_get_hash(__isl_keep isl_id *id) { return id ? id->hash : 0; } struct isl_name_and_user { const char *name; void *user; }; static int isl_id_has_name_and_user(const void *entry, const void *val) { isl_id *id = (isl_id *)entry; struct isl_name_and_user *nu = (struct isl_name_and_user *) val; if (id->user != nu->user) return 0; if (id->name == nu->name) return 1; if (!id->name || !nu->name) return 0; return !strcmp(id->name, nu->name); } __isl_give isl_id *isl_id_alloc(isl_ctx *ctx, const char *name, void *user) { struct isl_hash_table_entry *entry; uint32_t id_hash; struct isl_name_and_user nu = { name, user }; if (!ctx) return NULL; id_hash = isl_hash_init(); if (name) id_hash = isl_hash_string(id_hash, name); else id_hash = isl_hash_builtin(id_hash, user); entry = isl_hash_table_find(ctx, &ctx->id_table, id_hash, isl_id_has_name_and_user, &nu, 1); if (!entry) return NULL; if (entry->data) return isl_id_copy(entry->data); entry->data = id_alloc(ctx, name, user); if (!entry->data) ctx->id_table.n--; return entry->data; } /* If the id has a negative refcount, then it is a static isl_id * which should not be changed. */ __isl_give isl_id *isl_id_copy(isl_id *id) { if (!id) return NULL; if (id->ref < 0) return id; id->ref++; return id; } /* Compare two isl_ids. * * The order is fairly arbitrary. We do keep the comparison of * the user pointers as a last resort since these pointer values * may not be stable across different systems or even different runs. */ int isl_id_cmp(__isl_keep isl_id *id1, __isl_keep isl_id *id2) { if (id1 == id2) return 0; if (!id1) return -1; if (!id2) return 1; if (!id1->name != !id2->name) return !id1->name - !id2->name; if (id1->name) { int cmp = strcmp(id1->name, id2->name); if (cmp != 0) return cmp; } if (id1->user < id2->user) return -1; else return 1; } static int isl_id_eq(const void *entry, const void *name) { return entry == name; } uint32_t isl_hash_id(uint32_t hash, __isl_keep isl_id *id) { if (id) isl_hash_hash(hash, id->hash); return hash; } /* Replace the free_user callback by "free_user". */ __isl_give isl_id *isl_id_set_free_user(__isl_take isl_id *id, __isl_give void (*free_user)(void *user)) { if (!id) return NULL; id->free_user = free_user; return id; } /* If the id has a negative refcount, then it is a static isl_id * and should not be freed. */ __isl_null isl_id *isl_id_free(__isl_take isl_id *id) { struct isl_hash_table_entry *entry; if (!id) return NULL; if (id->ref < 0) return NULL; if (--id->ref > 0) return NULL; entry = isl_hash_table_find(id->ctx, &id->ctx->id_table, id->hash, isl_id_eq, id, 0); if (!entry) isl_die(id->ctx, isl_error_unknown, "unable to find id", (void)0); else isl_hash_table_remove(id->ctx, &id->ctx->id_table, entry); if (id->free_user) id->free_user(id->user); free((char *)id->name); isl_ctx_deref(id->ctx); free(id); return NULL; } __isl_give isl_printer *isl_printer_print_id(__isl_take isl_printer *p, __isl_keep isl_id *id) { if (!id) goto error; if (id->name) p = isl_printer_print_str(p, id->name); if (id->user) { char buffer[50]; snprintf(buffer, sizeof(buffer), "@%p", id->user); p = isl_printer_print_str(p, buffer); } return p; error: isl_printer_free(p); return NULL; } isl-0.16.1/Makefile.in0000664000175000017500000023644012645755062011403 00000000000000# Makefile.in generated by automake 1.14.1 from Makefile.am. # @configure_input@ # Copyright (C) 1994-2013 Free Software Foundation, Inc. # This Makefile.in is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. @SET_MAKE@ VPATH = @srcdir@ am__is_gnu_make = test -n '$(MAKEFILE_LIST)' && test -n '$(MAKELEVEL)' am__make_running_with_option = \ case $${target_option-} in \ ?) ;; \ *) echo "am__make_running_with_option: internal error: invalid" \ "target option '$${target_option-}' specified" >&2; \ exit 1;; \ esac; \ has_opt=no; \ sane_makeflags=$$MAKEFLAGS; \ if $(am__is_gnu_make); then \ sane_makeflags=$$MFLAGS; \ else \ case $$MAKEFLAGS in \ *\\[\ \ ]*) \ bs=\\; \ sane_makeflags=`printf '%s\n' "$$MAKEFLAGS" \ | sed "s/$$bs$$bs[$$bs $$bs ]*//g"`;; \ esac; \ fi; \ skip_next=no; \ strip_trailopt () \ { \ flg=`printf '%s\n' "$$flg" | sed "s/$$1.*$$//"`; \ }; \ for flg in $$sane_makeflags; do \ test $$skip_next = yes && { skip_next=no; continue; }; \ case $$flg in \ *=*|--*) continue;; \ -*I) strip_trailopt 'I'; skip_next=yes;; \ -*I?*) strip_trailopt 'I';; \ -*O) strip_trailopt 'O'; skip_next=yes;; \ -*O?*) strip_trailopt 'O';; \ -*l) strip_trailopt 'l'; skip_next=yes;; \ -*l?*) strip_trailopt 'l';; \ -[dEDm]) skip_next=yes;; \ -[JT]) skip_next=yes;; \ esac; \ case $$flg in \ *$$target_option*) has_opt=yes; break;; \ esac; \ done; \ test $$has_opt = yes am__make_dryrun = (target_option=n; $(am__make_running_with_option)) am__make_keepgoing = (target_option=k; $(am__make_running_with_option)) pkgdatadir = $(datadir)/@PACKAGE@ pkgincludedir = $(includedir)/@PACKAGE@ pkglibdir = $(libdir)/@PACKAGE@ pkglibexecdir = $(libexecdir)/@PACKAGE@ am__cd = CDPATH="$${ZSH_VERSION+.}$(PATH_SEPARATOR)" && cd install_sh_DATA = $(install_sh) -c -m 644 install_sh_PROGRAM = $(install_sh) -c install_sh_SCRIPT = $(install_sh) -c INSTALL_HEADER = $(INSTALL_DATA) transform = $(program_transform_name) NORMAL_INSTALL = : PRE_INSTALL = : POST_INSTALL = : NORMAL_UNINSTALL = : PRE_UNINSTALL = : POST_UNINSTALL = : build_triplet = @build@ host_triplet = @host@ noinst_PROGRAMS = isl_test$(EXEEXT) isl_polyhedron_sample$(EXEEXT) \ isl_pip$(EXEEXT) isl_polyhedron_minimize$(EXEEXT) \ isl_polytope_scan$(EXEEXT) \ isl_polyhedron_detect_equalities$(EXEEXT) isl_cat$(EXEEXT) \ isl_closure$(EXEEXT) isl_bound$(EXEEXT) isl_codegen$(EXEEXT) \ isl_test_int$(EXEEXT) $(am__EXEEXT_1) TESTS = isl_test$(EXEEXT) codegen_test.sh pip_test.sh bound_test.sh \ isl_test_int$(EXEEXT) $(am__EXEEXT_1) @IMATH_FOR_MP_TRUE@am__append_1 = isl_test_imath @IMATH_FOR_MP_TRUE@am__append_2 = isl_test_imath @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@am__append_3 = isl_int_sioimath.h \ @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@ isl_int_sioimath.c \ @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@ isl_val_sioimath.c @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_FALSE@am__append_4 = isl_val_imath.c subdir = . DIST_COMMON = $(srcdir)/Makefile.in $(srcdir)/Makefile.am \ $(top_srcdir)/configure $(am__configure_deps) \ $(srcdir)/isl_config.h.in $(srcdir)/bound_test.sh.in \ $(srcdir)/codegen_test.sh.in $(srcdir)/pip_test.sh.in depcomp \ $(deprecated_HEADERS) $(am__pkginclude_HEADERS_DIST) \ test-driver AUTHORS ChangeLog README compile config.guess \ config.sub install-sh missing ltmain.sh ACLOCAL_M4 = $(top_srcdir)/aclocal.m4 am__aclocal_m4_deps = $(top_srcdir)/m4/ax_c___attribute__.m4 \ $(top_srcdir)/m4/ax_cc_maxopt.m4 \ $(top_srcdir)/m4/ax_check_compiler_flags.m4 \ $(top_srcdir)/m4/ax_compiler_vendor.m4 \ $(top_srcdir)/m4/ax_create_pkgconfig_info.m4 \ $(top_srcdir)/m4/ax_create_stdint_h.m4 \ $(top_srcdir)/m4/ax_detect_git_head.m4 \ $(top_srcdir)/m4/ax_detect_gmp.m4 \ $(top_srcdir)/m4/ax_detect_imath.m4 \ $(top_srcdir)/m4/ax_gcc_archflag.m4 \ $(top_srcdir)/m4/ax_gcc_warn_unused_result.m4 \ $(top_srcdir)/m4/ax_gcc_x86_cpuid.m4 \ $(top_srcdir)/m4/ax_set_warning_flags.m4 \ $(top_srcdir)/m4/ax_submodule.m4 $(top_srcdir)/m4/libtool.m4 \ $(top_srcdir)/m4/ltoptions.m4 $(top_srcdir)/m4/ltsugar.m4 \ $(top_srcdir)/m4/ltversion.m4 $(top_srcdir)/m4/lt~obsolete.m4 \ $(top_srcdir)/configure.ac am__configure_deps = $(am__aclocal_m4_deps) $(CONFIGURE_DEPENDENCIES) \ $(ACLOCAL_M4) am__CONFIG_DISTCLEAN_FILES = config.status config.cache config.log \ configure.lineno config.status.lineno mkinstalldirs = $(install_sh) -d CONFIG_HEADER = isl_config.h CONFIG_CLEAN_FILES = bound_test.sh codegen_test.sh pip_test.sh CONFIG_CLEAN_VPATH_FILES = am__vpath_adj_setup = srcdirstrip=`echo "$(srcdir)" | sed 's|.|.|g'`; am__vpath_adj = case $$p in \ $(srcdir)/*) f=`echo "$$p" | sed "s|^$$srcdirstrip/||"`;; \ *) f=$$p;; \ esac; am__strip_dir = f=`echo $$p | sed -e 's|^.*/||'`; am__install_max = 40 am__nobase_strip_setup = \ srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*|]/\\\\&/g'` am__nobase_strip = \ for p in $$list; do echo "$$p"; done | sed -e "s|$$srcdirstrip/||" am__nobase_list = $(am__nobase_strip_setup); \ for p in $$list; do echo "$$p $$p"; done | \ sed "s| $$srcdirstrip/| |;"' / .*\//!s/ .*/ ./; s,\( .*\)/[^/]*$$,\1,' | \ $(AWK) 'BEGIN { files["."] = "" } { files[$$2] = files[$$2] " " $$1; \ if (++n[$$2] == $(am__install_max)) \ { print $$2, files[$$2]; n[$$2] = 0; files[$$2] = "" } } \ END { for (dir in files) print dir, files[dir] }' am__base_list = \ sed '$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;$$!N;s/\n/ /g' | \ sed '$$!N;$$!N;$$!N;$$!N;s/\n/ /g' am__uninstall_files_from_dir = { \ test -z "$$files" \ || { test ! -d "$$dir" && test ! -f "$$dir" && test ! -r "$$dir"; } \ || { echo " ( cd '$$dir' && rm -f" $$files ")"; \ $(am__cd) "$$dir" && rm -f $$files; }; \ } am__installdirs = "$(DESTDIR)$(libdir)" "$(DESTDIR)$(pkgconfigdir)" \ "$(DESTDIR)$(deprecateddir)" "$(DESTDIR)$(pkgincludedir)" \ "$(DESTDIR)$(pkgincludedir)" LTLIBRARIES = $(lib_LTLIBRARIES) libisl_la_DEPENDENCIES = am__libisl_la_SOURCES_DIST = mp_get_memory_functions.c isl_int_gmp.h \ isl_gmp.c isl_val_gmp.c isl_hide_deprecated.h isl_imath.c \ isl_imath.h isl_int_imath.h imath_wrap/gmp_compat.h \ imath_wrap/imath.h imath_wrap/imrat.h imath_wrap/wrap.h \ imath_wrap/gmp_compat.c imath_wrap/imath.c imath_wrap/imrat.c \ isl_int_sioimath.h isl_int_sioimath.c isl_val_sioimath.c \ isl_val_imath.c isl_ast_int.c isl_aff.c isl_aff_private.h \ isl_affine_hull.c isl_arg.c isl_ast.c isl_ast_private.h \ isl_ast_build.c isl_ast_build_private.h isl_ast_build_expr.c \ isl_ast_build_expr.h isl_ast_codegen.c isl_ast_graft.c \ isl_ast_graft_private.h isl_band.c isl_band_private.h \ isl_basis_reduction.h basis_reduction_tab.c isl_bernstein.c \ isl_bernstein.h isl_blk.c isl_blk.h isl_bound.c isl_bound.h \ isl_coalesce.c isl_constraint.c isl_constraint_private.h \ isl_convex_hull.c isl_ctx.c isl_ctx_private.h isl_deprecated.c \ isl_dim_map.h isl_dim_map.c isl_equalities.c isl_equalities.h \ isl_factorization.c isl_factorization.h isl_farkas.c isl_ffs.c \ isl_flow.c isl_fold.c isl_hash.c isl_hash_private.h \ isl_id_to_ast_expr.c isl_id_to_pw_aff.c isl_ilp.c \ isl_ilp_private.h isl_input.c isl_int.h \ isl_local_space_private.h isl_local_space.c isl_lp.c \ isl_lp_private.h isl_map.c isl_map_list.c isl_map_simplify.c \ isl_map_subtract.c isl_map_private.h isl_map_to_basic_set.c \ isl_mat.c isl_mat_private.h isl_morph.c isl_morph.h isl_id.c \ isl_id_private.h isl_obj.c isl_options.c isl_options_private.h \ isl_output.c isl_output_private.h isl_point_private.h \ isl_point.c isl_polynomial_private.h isl_polynomial.c \ isl_printer_private.h isl_printer.c print.c isl_range.c \ isl_range.h isl_reordering.c isl_reordering.h isl_sample.h \ isl_sample.c isl_scan.c isl_scan.h isl_schedule.c \ isl_schedule_band.c isl_schedule_band.h isl_schedule_node.c \ isl_schedule_node_private.h isl_schedule_read.c \ isl_schedule_tree.c isl_schedule_tree.h isl_schedule_private.h \ isl_scheduler.c isl_set_list.c isl_sort.c isl_sort.h \ isl_space.c isl_space_private.h isl_stream.c \ isl_stream_private.h isl_seq.c isl_seq.h isl_tab.c isl_tab.h \ isl_tab_pip.c isl_tarjan.c isl_tarjan.h \ isl_transitive_closure.c isl_union_map.c \ isl_union_map_private.h isl_val.c isl_val_private.h \ isl_vec_private.h isl_vec.c isl_version.c \ isl_vertices_private.h isl_vertices.c isl_yaml.h @GMP_FOR_MP_TRUE@@NEED_GET_MEMORY_FUNCTIONS_TRUE@am__objects_1 = mp_get_memory_functions.lo am__dirstamp = $(am__leading_dot)dirstamp @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@am__objects_2 = \ @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@ isl_int_sioimath.lo \ @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_TRUE@ isl_val_sioimath.lo @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_FALSE@am__objects_3 = \ @IMATH_FOR_MP_TRUE@@SMALL_INT_OPT_FALSE@ isl_val_imath.lo @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@am__objects_4 = isl_imath.lo \ @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@ imath_wrap/gmp_compat.lo \ @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@ imath_wrap/imath.lo \ @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@ imath_wrap/imrat.lo \ @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@ $(am__objects_2) \ @GMP_FOR_MP_FALSE@@IMATH_FOR_MP_TRUE@ $(am__objects_3) @GMP_FOR_MP_TRUE@am__objects_4 = $(am__objects_1) isl_gmp.lo \ @GMP_FOR_MP_TRUE@ isl_val_gmp.lo @GMP_FOR_MP_TRUE@am__objects_5 = isl_ast_int.lo am_libisl_la_OBJECTS = $(am__objects_4) $(am__objects_5) isl_aff.lo \ isl_affine_hull.lo isl_arg.lo isl_ast.lo isl_ast_build.lo \ isl_ast_build_expr.lo isl_ast_codegen.lo isl_ast_graft.lo \ isl_band.lo basis_reduction_tab.lo isl_bernstein.lo isl_blk.lo \ isl_bound.lo isl_coalesce.lo isl_constraint.lo \ isl_convex_hull.lo isl_ctx.lo isl_deprecated.lo isl_dim_map.lo \ isl_equalities.lo isl_factorization.lo isl_farkas.lo \ isl_ffs.lo isl_flow.lo isl_fold.lo isl_hash.lo \ isl_id_to_ast_expr.lo isl_id_to_pw_aff.lo isl_ilp.lo \ isl_input.lo isl_local_space.lo isl_lp.lo isl_map.lo \ isl_map_list.lo isl_map_simplify.lo isl_map_subtract.lo \ isl_map_to_basic_set.lo isl_mat.lo isl_morph.lo isl_id.lo \ isl_obj.lo isl_options.lo isl_output.lo isl_point.lo \ isl_polynomial.lo isl_printer.lo print.lo isl_range.lo \ isl_reordering.lo isl_sample.lo isl_scan.lo isl_schedule.lo \ isl_schedule_band.lo isl_schedule_node.lo isl_schedule_read.lo \ isl_schedule_tree.lo isl_scheduler.lo isl_set_list.lo \ isl_sort.lo isl_space.lo isl_stream.lo isl_seq.lo isl_tab.lo \ isl_tab_pip.lo isl_tarjan.lo isl_transitive_closure.lo \ isl_union_map.lo isl_val.lo isl_vec.lo isl_version.lo \ isl_vertices.lo libisl_la_OBJECTS = $(am_libisl_la_OBJECTS) AM_V_lt = $(am__v_lt_@AM_V@) am__v_lt_ = $(am__v_lt_@AM_DEFAULT_V@) am__v_lt_0 = --silent am__v_lt_1 = libisl_la_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(libisl_la_LDFLAGS) $(LDFLAGS) -o $@ @IMATH_FOR_MP_TRUE@am__EXEEXT_1 = isl_test_imath$(EXEEXT) PROGRAMS = $(noinst_PROGRAMS) am_isl_bound_OBJECTS = bound.$(OBJEXT) isl_bound_OBJECTS = $(am_isl_bound_OBJECTS) isl_bound_DEPENDENCIES = libisl.la isl_bound_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(isl_bound_LDFLAGS) $(LDFLAGS) -o $@ am_isl_cat_OBJECTS = cat.$(OBJEXT) isl_cat_OBJECTS = $(am_isl_cat_OBJECTS) isl_cat_DEPENDENCIES = libisl.la am_isl_closure_OBJECTS = closure.$(OBJEXT) isl_closure_OBJECTS = $(am_isl_closure_OBJECTS) isl_closure_DEPENDENCIES = libisl.la am_isl_codegen_OBJECTS = codegen.$(OBJEXT) isl_codegen_OBJECTS = $(am_isl_codegen_OBJECTS) isl_codegen_DEPENDENCIES = libisl.la isl_codegen_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(isl_codegen_LDFLAGS) $(LDFLAGS) -o $@ am_isl_pip_OBJECTS = pip.$(OBJEXT) isl_pip_OBJECTS = $(am_isl_pip_OBJECTS) isl_pip_DEPENDENCIES = libisl.la isl_pip_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(isl_pip_LDFLAGS) $(LDFLAGS) -o $@ am_isl_polyhedron_detect_equalities_OBJECTS = \ polyhedron_detect_equalities.$(OBJEXT) isl_polyhedron_detect_equalities_OBJECTS = \ $(am_isl_polyhedron_detect_equalities_OBJECTS) isl_polyhedron_detect_equalities_DEPENDENCIES = libisl.la am_isl_polyhedron_minimize_OBJECTS = polyhedron_minimize.$(OBJEXT) isl_polyhedron_minimize_OBJECTS = \ $(am_isl_polyhedron_minimize_OBJECTS) isl_polyhedron_minimize_DEPENDENCIES = libisl.la isl_polyhedron_minimize_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC \ $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=link $(CCLD) \ $(AM_CFLAGS) $(CFLAGS) $(isl_polyhedron_minimize_LDFLAGS) \ $(LDFLAGS) -o $@ am_isl_polyhedron_sample_OBJECTS = polyhedron_sample.$(OBJEXT) isl_polyhedron_sample_OBJECTS = $(am_isl_polyhedron_sample_OBJECTS) isl_polyhedron_sample_DEPENDENCIES = libisl.la am_isl_polytope_scan_OBJECTS = polytope_scan.$(OBJEXT) isl_polytope_scan_OBJECTS = $(am_isl_polytope_scan_OBJECTS) isl_polytope_scan_DEPENDENCIES = libisl.la isl_test_SOURCES = isl_test.c isl_test_OBJECTS = isl_test.$(OBJEXT) isl_test_DEPENDENCIES = libisl.la isl_test_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(isl_test_LDFLAGS) $(LDFLAGS) -o $@ isl_test_imath_SOURCES = isl_test_imath.c isl_test_imath_OBJECTS = isl_test_imath.$(OBJEXT) @IMATH_FOR_MP_TRUE@isl_test_imath_DEPENDENCIES = libisl.la isl_test_imath_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC \ $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=link $(CCLD) \ $(AM_CFLAGS) $(CFLAGS) $(isl_test_imath_LDFLAGS) $(LDFLAGS) -o \ $@ isl_test_int_SOURCES = isl_test_int.c isl_test_int_OBJECTS = isl_test_int.$(OBJEXT) isl_test_int_DEPENDENCIES = libisl.la isl_test_int_LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(isl_test_int_LDFLAGS) $(LDFLAGS) -o $@ AM_V_P = $(am__v_P_@AM_V@) am__v_P_ = $(am__v_P_@AM_DEFAULT_V@) am__v_P_0 = false am__v_P_1 = : AM_V_GEN = $(am__v_GEN_@AM_V@) am__v_GEN_ = $(am__v_GEN_@AM_DEFAULT_V@) am__v_GEN_0 = @echo " GEN " $@; am__v_GEN_1 = AM_V_at = $(am__v_at_@AM_V@) am__v_at_ = $(am__v_at_@AM_DEFAULT_V@) am__v_at_0 = @ am__v_at_1 = DEFAULT_INCLUDES = depcomp = $(SHELL) $(top_srcdir)/depcomp am__depfiles_maybe = depfiles am__mv = mv -f COMPILE = $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) \ $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) LTCOMPILE = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=compile $(CC) $(DEFS) \ $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) \ $(AM_CFLAGS) $(CFLAGS) AM_V_CC = $(am__v_CC_@AM_V@) am__v_CC_ = $(am__v_CC_@AM_DEFAULT_V@) am__v_CC_0 = @echo " CC " $@; am__v_CC_1 = CCLD = $(CC) LINK = $(LIBTOOL) $(AM_V_lt) --tag=CC $(AM_LIBTOOLFLAGS) \ $(LIBTOOLFLAGS) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) \ $(AM_LDFLAGS) $(LDFLAGS) -o $@ AM_V_CCLD = $(am__v_CCLD_@AM_V@) am__v_CCLD_ = $(am__v_CCLD_@AM_DEFAULT_V@) am__v_CCLD_0 = @echo " CCLD " $@; am__v_CCLD_1 = SOURCES = $(libisl_la_SOURCES) $(isl_bound_SOURCES) $(isl_cat_SOURCES) \ $(isl_closure_SOURCES) $(isl_codegen_SOURCES) \ $(isl_pip_SOURCES) $(isl_polyhedron_detect_equalities_SOURCES) \ $(isl_polyhedron_minimize_SOURCES) \ $(isl_polyhedron_sample_SOURCES) $(isl_polytope_scan_SOURCES) \ isl_test.c isl_test_imath.c isl_test_int.c DIST_SOURCES = $(am__libisl_la_SOURCES_DIST) $(isl_bound_SOURCES) \ $(isl_cat_SOURCES) $(isl_closure_SOURCES) \ $(isl_codegen_SOURCES) $(isl_pip_SOURCES) \ $(isl_polyhedron_detect_equalities_SOURCES) \ $(isl_polyhedron_minimize_SOURCES) \ $(isl_polyhedron_sample_SOURCES) $(isl_polytope_scan_SOURCES) \ isl_test.c isl_test_imath.c isl_test_int.c RECURSIVE_TARGETS = all-recursive check-recursive cscopelist-recursive \ ctags-recursive dvi-recursive html-recursive info-recursive \ install-data-recursive install-dvi-recursive \ install-exec-recursive install-html-recursive \ install-info-recursive install-pdf-recursive \ install-ps-recursive install-recursive installcheck-recursive \ installdirs-recursive pdf-recursive ps-recursive \ tags-recursive uninstall-recursive am__can_run_installinfo = \ case $$AM_UPDATE_INFO_DIR in \ n|no|NO) false;; \ *) (install-info --version) >/dev/null 2>&1;; \ esac DATA = $(pkgconfig_DATA) am__pkginclude_HEADERS_DIST = include/isl/val_gmp.h include/isl/aff.h \ include/isl/aff_type.h include/isl/arg.h include/isl/ast.h \ include/isl/ast_type.h include/isl/ast_build.h \ include/isl/band.h include/isl/constraint.h include/isl/ctx.h \ include/isl/flow.h include/isl/id.h \ include/isl/id_to_ast_expr.h include/isl/id_to_pw_aff.h \ include/isl/ilp.h include/isl/hash.h include/isl/hmap.h \ include/isl/list.h include/isl/local_space.h include/isl/lp.h \ include/isl/mat.h include/isl/map.h \ include/isl/map_to_basic_set.h include/isl/map_type.h \ include/isl/multi.h include/isl/obj.h include/isl/options.h \ include/isl/point.h include/isl/polynomial.h \ include/isl/polynomial_type.h include/isl/printer.h \ include/isl/schedule.h include/isl/schedule_node.h \ include/isl/schedule_type.h include/isl/set.h \ include/isl/set_type.h include/isl/space.h \ include/isl/stream.h include/isl/union_map.h \ include/isl/union_map_type.h include/isl/union_set.h \ include/isl/union_set_type.h include/isl/val.h \ include/isl/vec.h include/isl/version.h include/isl/vertices.h HEADERS = $(deprecated_HEADERS) $(nodist_pkginclude_HEADERS) \ $(pkginclude_HEADERS) RECURSIVE_CLEAN_TARGETS = mostlyclean-recursive clean-recursive \ distclean-recursive maintainer-clean-recursive am__recursive_targets = \ $(RECURSIVE_TARGETS) \ $(RECURSIVE_CLEAN_TARGETS) \ $(am__extra_recursive_targets) AM_RECURSIVE_TARGETS = $(am__recursive_targets:-recursive=) TAGS CTAGS \ cscope check recheck distdir dist dist-all distcheck am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) \ $(LISP)isl_config.h.in # Read a list of newline-separated strings from the standard input, # and print each of them once, without duplicates. Input order is # *not* preserved. am__uniquify_input = $(AWK) '\ BEGIN { nonempty = 0; } \ { items[$$0] = 1; nonempty = 1; } \ END { if (nonempty) { for (i in items) print i; }; } \ ' # Make sure the list of sources is unique. This is necessary because, # e.g., the same source file might be shared among _SOURCES variables # for different programs/libraries. am__define_uniq_tagged_files = \ list='$(am__tagged_files)'; \ unique=`for i in $$list; do \ if test -f "$$i"; then echo $$i; else echo $(srcdir)/$$i; fi; \ done | $(am__uniquify_input)` ETAGS = etags CTAGS = ctags CSCOPE = cscope am__tty_colors_dummy = \ mgn= red= grn= lgn= blu= brg= std=; \ am__color_tests=no am__tty_colors = { \ $(am__tty_colors_dummy); \ if test "X$(AM_COLOR_TESTS)" = Xno; then \ am__color_tests=no; \ elif test "X$(AM_COLOR_TESTS)" = Xalways; then \ am__color_tests=yes; \ elif test "X$$TERM" != Xdumb && { test -t 1; } 2>/dev/null; then \ am__color_tests=yes; \ fi; \ if test $$am__color_tests = yes; then \ red=''; \ grn=''; \ lgn=''; \ blu=''; \ mgn=''; \ brg=''; \ std=''; \ fi; \ } am__recheck_rx = ^[ ]*:recheck:[ ]* am__global_test_result_rx = ^[ ]*:global-test-result:[ ]* am__copy_in_global_log_rx = ^[ ]*:copy-in-global-log:[ ]* # A command that, given a newline-separated list of test names on the # standard input, print the name of the tests that are to be re-run # upon "make recheck". am__list_recheck_tests = $(AWK) '{ \ recheck = 1; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ { \ if ((getline line2 < ($$0 ".log")) < 0) \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[nN][Oo]/) \ { \ recheck = 0; \ break; \ } \ else if (line ~ /$(am__recheck_rx)[yY][eE][sS]/) \ { \ break; \ } \ }; \ if (recheck) \ print $$0; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # A command that, given a newline-separated list of test names on the # standard input, create the global log from their .trs and .log files. am__create_global_log = $(AWK) ' \ function fatal(msg) \ { \ print "fatal: making $@: " msg | "cat >&2"; \ exit 1; \ } \ function rst_section(header) \ { \ print header; \ len = length(header); \ for (i = 1; i <= len; i = i + 1) \ printf "="; \ printf "\n\n"; \ } \ { \ copy_in_global_log = 1; \ global_test_result = "RUN"; \ while ((rc = (getline line < ($$0 ".trs"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".trs"); \ if (line ~ /$(am__global_test_result_rx)/) \ { \ sub("$(am__global_test_result_rx)", "", line); \ sub("[ ]*$$", "", line); \ global_test_result = line; \ } \ else if (line ~ /$(am__copy_in_global_log_rx)[nN][oO]/) \ copy_in_global_log = 0; \ }; \ if (copy_in_global_log) \ { \ rst_section(global_test_result ": " $$0); \ while ((rc = (getline line < ($$0 ".log"))) != 0) \ { \ if (rc < 0) \ fatal("failed to read from " $$0 ".log"); \ print line; \ }; \ printf "\n"; \ }; \ close ($$0 ".trs"); \ close ($$0 ".log"); \ }' # Restructured Text title. am__rst_title = { sed 's/.*/ & /;h;s/./=/g;p;x;s/ *$$//;p;g' && echo; } # Solaris 10 'make', and several other traditional 'make' implementations, # pass "-e" to $(SHELL), and POSIX 2008 even requires this. Work around it # by disabling -e (using the XSI extension "set +e") if it's set. am__sh_e_setup = case $$- in *e*) set +e;; esac # Default flags passed to test drivers. am__common_driver_flags = \ --color-tests "$$am__color_tests" \ --enable-hard-errors "$$am__enable_hard_errors" \ --expect-failure "$$am__expect_failure" # To be inserted before the command running the test. Creates the # directory for the log if needed. Stores in $dir the directory # containing $f, in $tst the test, in $log the log. Executes the # developer- defined test setup AM_TESTS_ENVIRONMENT (if any), and # passes TESTS_ENVIRONMENT. Set up options for the wrapper that # will run the test scripts (or their associated LOG_COMPILER, if # thy have one). am__check_pre = \ $(am__sh_e_setup); \ $(am__vpath_adj_setup) $(am__vpath_adj) \ $(am__tty_colors); \ srcdir=$(srcdir); export srcdir; \ case "$@" in \ */*) am__odir=`echo "./$@" | sed 's|/[^/]*$$||'`;; \ *) am__odir=.;; \ esac; \ test "x$$am__odir" = x"." || test -d "$$am__odir" \ || $(MKDIR_P) "$$am__odir" || exit $$?; \ if test -f "./$$f"; then dir=./; \ elif test -f "$$f"; then dir=; \ else dir="$(srcdir)/"; fi; \ tst=$$dir$$f; log='$@'; \ if test -n '$(DISABLE_HARD_ERRORS)'; then \ am__enable_hard_errors=no; \ else \ am__enable_hard_errors=yes; \ fi; \ case " $(XFAIL_TESTS) " in \ *[\ \ ]$$f[\ \ ]* | *[\ \ ]$$dir$$f[\ \ ]*) \ am__expect_failure=yes;; \ *) \ am__expect_failure=no;; \ esac; \ $(AM_TESTS_ENVIRONMENT) $(TESTS_ENVIRONMENT) # A shell command to get the names of the tests scripts with any registered # extension removed (i.e., equivalently, the names of the test logs, with # the '.log' extension removed). The result is saved in the shell variable # '$bases'. This honors runtime overriding of TESTS and TEST_LOGS. Sadly, # we cannot use something simpler, involving e.g., "$(TEST_LOGS:.log=)", # since that might cause problem with VPATH rewrites for suffix-less tests. # See also 'test-harness-vpath-rewrite.sh' and 'test-trs-basic.sh'. am__set_TESTS_bases = \ bases='$(TEST_LOGS)'; \ bases=`for i in $$bases; do echo $$i; done | sed 's/\.log$$//'`; \ bases=`echo $$bases` RECHECK_LOGS = $(TEST_LOGS) TEST_SUITE_LOG = test-suite.log TEST_EXTENSIONS = @EXEEXT@ .test LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver LOG_COMPILE = $(LOG_COMPILER) $(AM_LOG_FLAGS) $(LOG_FLAGS) am__set_b = \ case '$@' in \ */*) \ case '$*' in \ */*) b='$*';; \ *) b=`echo '$@' | sed 's/\.log$$//'`; \ esac;; \ *) \ b='$*';; \ esac am__test_logs1 = $(TESTS:=.log) am__test_logs2 = $(am__test_logs1:@EXEEXT@.log=.log) TEST_LOGS = $(am__test_logs2:.test.log=.log) TEST_LOG_DRIVER = $(SHELL) $(top_srcdir)/test-driver TEST_LOG_COMPILE = $(TEST_LOG_COMPILER) $(AM_TEST_LOG_FLAGS) \ $(TEST_LOG_FLAGS) DISTFILES = $(DIST_COMMON) $(DIST_SOURCES) $(TEXINFOS) $(EXTRA_DIST) distdir = $(PACKAGE)-$(VERSION) top_distdir = $(distdir) am__remove_distdir = \ if test -d "$(distdir)"; then \ find "$(distdir)" -type d ! -perm -200 -exec chmod u+w {} ';' \ && rm -rf "$(distdir)" \ || { sleep 5 && rm -rf "$(distdir)"; }; \ else :; fi am__post_remove_distdir = $(am__remove_distdir) am__relativize = \ dir0=`pwd`; \ sed_first='s,^\([^/]*\)/.*$$,\1,'; \ sed_rest='s,^[^/]*/*,,'; \ sed_last='s,^.*/\([^/]*\)$$,\1,'; \ sed_butlast='s,/*[^/]*$$,,'; \ while test -n "$$dir1"; do \ first=`echo "$$dir1" | sed -e "$$sed_first"`; \ if test "$$first" != "."; then \ if test "$$first" = ".."; then \ dir2=`echo "$$dir0" | sed -e "$$sed_last"`/"$$dir2"; \ dir0=`echo "$$dir0" | sed -e "$$sed_butlast"`; \ else \ first2=`echo "$$dir2" | sed -e "$$sed_first"`; \ if test "$$first2" = "$$first"; then \ dir2=`echo "$$dir2" | sed -e "$$sed_rest"`; \ else \ dir2="../$$dir2"; \ fi; \ dir0="$$dir0"/"$$first"; \ fi; \ fi; \ dir1=`echo "$$dir1" | sed -e "$$sed_rest"`; \ done; \ reldir="$$dir2" DIST_ARCHIVES = $(distdir).tar.gz GZIP_ENV = --best DIST_TARGETS = dist-gzip distuninstallcheck_listfiles = find . -type f -print am__distuninstallcheck_listfiles = $(distuninstallcheck_listfiles) \ | sed 's|^\./|$(prefix)/|' | grep -v '$(infodir)/dir$$' distcleancheck_listfiles = find . -type f -print ACLOCAL = @ACLOCAL@ AMTAR = @AMTAR@ AM_DEFAULT_VERBOSITY = @AM_DEFAULT_VERBOSITY@ AR = @AR@ AUTOCONF = @AUTOCONF@ AUTOHEADER = @AUTOHEADER@ AUTOMAKE = @AUTOMAKE@ AWK = @AWK@ CC = @CC@ CCDEPMODE = @CCDEPMODE@ CFLAGS = @CFLAGS@ CLANG_CXXFLAGS = @CLANG_CXXFLAGS@ CLANG_LDFLAGS = @CLANG_LDFLAGS@ CLANG_LIBS = @CLANG_LIBS@ CPP = @CPP@ CPPFLAGS = @CPPFLAGS@ CXX = @CXX@ CXXCPP = @CXXCPP@ CXXDEPMODE = @CXXDEPMODE@ CXXFLAGS = @CXXFLAGS@ CYGPATH_W = @CYGPATH_W@ DEFS = @DEFS@ DEPDIR = @DEPDIR@ DLLTOOL = @DLLTOOL@ DSYMUTIL = @DSYMUTIL@ DUMPBIN = @DUMPBIN@ ECHO_C = @ECHO_C@ ECHO_N = @ECHO_N@ ECHO_T = @ECHO_T@ EGREP = @EGREP@ EXEEXT = @EXEEXT@ FGREP = @FGREP@ GIT_HEAD = @GIT_HEAD@ GIT_HEAD_ID = @GIT_HEAD_ID@ GIT_HEAD_VERSION = @GIT_HEAD_VERSION@ GREP = @GREP@ INSTALL = @INSTALL@ INSTALL_DATA = @INSTALL_DATA@ INSTALL_PROGRAM = @INSTALL_PROGRAM@ INSTALL_SCRIPT = @INSTALL_SCRIPT@ INSTALL_STRIP_PROGRAM = @INSTALL_STRIP_PROGRAM@ LD = @LD@ LDFLAGS = @LDFLAGS@ LIBOBJS = @LIBOBJS@ LIBS = @LIBS@ LIBTOOL = @LIBTOOL@ LIB_CLANG_EDIT = @LIB_CLANG_EDIT@ LIPO = @LIPO@ LN_S = @LN_S@ LTLIBOBJS = @LTLIBOBJS@ MAKEINFO = @MAKEINFO@ MANIFEST_TOOL = @MANIFEST_TOOL@ MKDIR_P = @MKDIR_P@ MP_CPPFLAGS = @MP_CPPFLAGS@ MP_LDFLAGS = @MP_LDFLAGS@ MP_LIBS = @MP_LIBS@ NM = @NM@ NMEDIT = @NMEDIT@ OBJDUMP = @OBJDUMP@ OBJEXT = @OBJEXT@ OTOOL = @OTOOL@ OTOOL64 = @OTOOL64@ PACKAGE = @PACKAGE@ PACKAGE_BUGREPORT = @PACKAGE_BUGREPORT@ PACKAGE_NAME = @PACKAGE_NAME@ PACKAGE_STRING = @PACKAGE_STRING@ PACKAGE_TARNAME = @PACKAGE_TARNAME@ PACKAGE_URL = @PACKAGE_URL@ PACKAGE_VERSION = @PACKAGE_VERSION@ PATH_SEPARATOR = @PATH_SEPARATOR@ PDFLATEX = @PDFLATEX@ PERL = @PERL@ POD2HTML = @POD2HTML@ PRTDIAG = @PRTDIAG@ RANLIB = @RANLIB@ SED = @SED@ SET_MAKE = @SET_MAKE@ SHELL = @SHELL@ STRIP = @STRIP@ VERSION = @VERSION@ WARNING_FLAGS = @WARNING_FLAGS@ abs_builddir = @abs_builddir@ abs_srcdir = @abs_srcdir@ abs_top_builddir = @abs_top_builddir@ abs_top_srcdir = @abs_top_srcdir@ ac_ct_AR = @ac_ct_AR@ ac_ct_CC = @ac_ct_CC@ ac_ct_CXX = @ac_ct_CXX@ ac_ct_DUMPBIN = @ac_ct_DUMPBIN@ am__include = @am__include@ am__leading_dot = @am__leading_dot@ am__quote = @am__quote@ am__tar = @am__tar@ am__untar = @am__untar@ bindir = @bindir@ build = @build@ build_alias = @build_alias@ build_cpu = @build_cpu@ build_os = @build_os@ build_vendor = @build_vendor@ builddir = @builddir@ datadir = @datadir@ datarootdir = @datarootdir@ docdir = @docdir@ dvidir = @dvidir@ exec_prefix = @exec_prefix@ host = @host@ host_alias = @host_alias@ host_cpu = @host_cpu@ host_os = @host_os@ host_vendor = @host_vendor@ htmldir = @htmldir@ includedir = @includedir@ infodir = @infodir@ install_sh = @install_sh@ libdir = @libdir@ libexecdir = @libexecdir@ llvm_config_found = @llvm_config_found@ localedir = @localedir@ localstatedir = @localstatedir@ mandir = @mandir@ mkdir_p = @mkdir_p@ oldincludedir = @oldincludedir@ pdfdir = @pdfdir@ pkgconfig_libdir = @pkgconfig_libdir@ pkgconfig_libfile = @pkgconfig_libfile@ prefix = @prefix@ program_transform_name = @program_transform_name@ psdir = @psdir@ sbindir = @sbindir@ sharedstatedir = @sharedstatedir@ srcdir = @srcdir@ sysconfdir = @sysconfdir@ target_alias = @target_alias@ top_build_prefix = @top_build_prefix@ top_builddir = @top_builddir@ top_srcdir = @top_srcdir@ versioninfo = @versioninfo@ @HAVE_CLANG_TRUE@MAYBE_INTERFACE = interface SUBDIRS = . $(MAYBE_INTERFACE) doc DIST_SUBDIRS = $(MAYBE_INTERFACE) doc ACLOCAL_AMFLAGS = -I m4 AUTOMAKE_OPTIONS = nostdinc subdir-objects lib_LTLIBRARIES = libisl.la @GMP_FOR_MP_TRUE@MP_SRC = \ @GMP_FOR_MP_TRUE@ $(GET_MEMORY_FUNCTIONS) \ @GMP_FOR_MP_TRUE@ isl_int_gmp.h \ @GMP_FOR_MP_TRUE@ isl_gmp.c \ @GMP_FOR_MP_TRUE@ isl_val_gmp.c @IMATH_FOR_MP_TRUE@MP_SRC = isl_hide_deprecated.h isl_imath.c \ @IMATH_FOR_MP_TRUE@ isl_imath.h isl_int_imath.h \ @IMATH_FOR_MP_TRUE@ imath_wrap/gmp_compat.h imath_wrap/imath.h \ @IMATH_FOR_MP_TRUE@ imath_wrap/imrat.h imath_wrap/wrap.h \ @IMATH_FOR_MP_TRUE@ imath_wrap/gmp_compat.c imath_wrap/imath.c \ @IMATH_FOR_MP_TRUE@ imath_wrap/imrat.c $(am__append_3) \ @IMATH_FOR_MP_TRUE@ $(am__append_4) @GMP_FOR_MP_TRUE@DEPRECATED_SRC = isl_ast_int.c @IMATH_FOR_MP_TRUE@DEPRECATED_SRC = @GMP_FOR_MP_TRUE@MP_INCLUDE_H = include/isl/val_gmp.h @IMATH_FOR_MP_TRUE@MP_INCLUDE_H = @GMP_FOR_MP_TRUE@@NEED_GET_MEMORY_FUNCTIONS_TRUE@GET_MEMORY_FUNCTIONS = mp_get_memory_functions.c AM_CPPFLAGS = -I. -I$(srcdir) -I$(srcdir)/include -Iinclude/ @MP_CPPFLAGS@ AM_CFLAGS = @WARNING_FLAGS@ libisl_la_SOURCES = \ $(MP_SRC) \ $(DEPRECATED_SRC) \ isl_aff.c \ isl_aff_private.h \ isl_affine_hull.c \ isl_arg.c \ isl_ast.c \ isl_ast_private.h \ isl_ast_build.c \ isl_ast_build_private.h \ isl_ast_build_expr.c \ isl_ast_build_expr.h \ isl_ast_codegen.c \ isl_ast_graft.c \ isl_ast_graft_private.h \ isl_band.c \ isl_band_private.h \ isl_basis_reduction.h \ basis_reduction_tab.c \ isl_bernstein.c \ isl_bernstein.h \ isl_blk.c \ isl_blk.h \ isl_bound.c \ isl_bound.h \ isl_coalesce.c \ isl_constraint.c \ isl_constraint_private.h \ isl_convex_hull.c \ isl_ctx.c \ isl_ctx_private.h \ isl_deprecated.c \ isl_dim_map.h \ isl_dim_map.c \ isl_equalities.c \ isl_equalities.h \ isl_factorization.c \ isl_factorization.h \ isl_farkas.c \ isl_ffs.c \ isl_flow.c \ isl_fold.c \ isl_hash.c \ isl_hash_private.h \ isl_id_to_ast_expr.c \ isl_id_to_pw_aff.c \ isl_ilp.c \ isl_ilp_private.h \ isl_input.c \ isl_int.h \ isl_local_space_private.h \ isl_local_space.c \ isl_lp.c \ isl_lp_private.h \ isl_map.c \ isl_map_list.c \ isl_map_simplify.c \ isl_map_subtract.c \ isl_map_private.h \ isl_map_to_basic_set.c \ isl_mat.c \ isl_mat_private.h \ isl_morph.c \ isl_morph.h \ isl_id.c \ isl_id_private.h \ isl_obj.c \ isl_options.c \ isl_options_private.h \ isl_output.c \ isl_output_private.h \ isl_point_private.h \ isl_point.c \ isl_polynomial_private.h \ isl_polynomial.c \ isl_printer_private.h \ isl_printer.c \ print.c \ isl_range.c \ isl_range.h \ isl_reordering.c \ isl_reordering.h \ isl_sample.h \ isl_sample.c \ isl_scan.c \ isl_scan.h \ isl_schedule.c \ isl_schedule_band.c \ isl_schedule_band.h \ isl_schedule_node.c \ isl_schedule_node_private.h \ isl_schedule_read.c \ isl_schedule_tree.c \ isl_schedule_tree.h \ isl_schedule_private.h \ isl_scheduler.c \ isl_set_list.c \ isl_sort.c \ isl_sort.h \ isl_space.c \ isl_space_private.h \ isl_stream.c \ isl_stream_private.h \ isl_seq.c \ isl_seq.h \ isl_tab.c \ isl_tab.h \ isl_tab_pip.c \ isl_tarjan.c \ isl_tarjan.h \ isl_transitive_closure.c \ isl_union_map.c \ isl_union_map_private.h \ isl_val.c \ isl_val_private.h \ isl_vec_private.h \ isl_vec.c \ isl_version.c \ isl_vertices_private.h \ isl_vertices.c \ isl_yaml.h libisl_la_LIBADD = @MP_LIBS@ libisl_la_LDFLAGS = -version-info @versioninfo@ \ @MP_LDFLAGS@ isl_test_LDFLAGS = @MP_LDFLAGS@ isl_test_LDADD = libisl.la @MP_LIBS@ isl_test_int_LDFLAGS = @MP_LDFLAGS@ isl_test_int_LDADD = libisl.la @MP_LIBS@ @IMATH_FOR_MP_TRUE@isl_test_imath_LDFLAGS = @MP_LDFLAGS@ @IMATH_FOR_MP_TRUE@isl_test_imath_LDADD = libisl.la @MP_LIBS@ isl_polyhedron_sample_LDADD = libisl.la isl_polyhedron_sample_SOURCES = \ polyhedron_sample.c isl_pip_LDFLAGS = @MP_LDFLAGS@ isl_pip_LDADD = libisl.la @MP_LIBS@ isl_pip_SOURCES = \ pip.c isl_codegen_LDFLAGS = @MP_LDFLAGS@ isl_codegen_LDADD = libisl.la @MP_LIBS@ isl_codegen_SOURCES = \ codegen.c isl_bound_LDFLAGS = @MP_LDFLAGS@ isl_bound_LDADD = libisl.la @MP_LIBS@ isl_bound_SOURCES = \ bound.c isl_polyhedron_minimize_LDFLAGS = @MP_LDFLAGS@ isl_polyhedron_minimize_LDADD = libisl.la @MP_LIBS@ isl_polyhedron_minimize_SOURCES = \ polyhedron_minimize.c isl_polytope_scan_LDADD = libisl.la isl_polytope_scan_SOURCES = \ polytope_scan.c isl_polyhedron_detect_equalities_LDADD = libisl.la isl_polyhedron_detect_equalities_SOURCES = \ polyhedron_detect_equalities.c isl_cat_LDADD = libisl.la isl_cat_SOURCES = \ cat.c isl_closure_LDADD = libisl.la isl_closure_SOURCES = \ closure.c nodist_pkginclude_HEADERS = \ include/isl/stdint.h pkginclude_HEADERS = \ $(MP_INCLUDE_H) \ include/isl/aff.h \ include/isl/aff_type.h \ include/isl/arg.h \ include/isl/ast.h \ include/isl/ast_type.h \ include/isl/ast_build.h \ include/isl/band.h \ include/isl/constraint.h \ include/isl/ctx.h \ include/isl/flow.h \ include/isl/id.h \ include/isl/id_to_ast_expr.h \ include/isl/id_to_pw_aff.h \ include/isl/ilp.h \ include/isl/hash.h \ include/isl/hmap.h \ include/isl/list.h \ include/isl/local_space.h \ include/isl/lp.h \ include/isl/mat.h \ include/isl/map.h \ include/isl/map_to_basic_set.h \ include/isl/map_type.h \ include/isl/multi.h \ include/isl/obj.h \ include/isl/options.h \ include/isl/point.h \ include/isl/polynomial.h \ include/isl/polynomial_type.h \ include/isl/printer.h \ include/isl/schedule.h \ include/isl/schedule_node.h \ include/isl/schedule_type.h \ include/isl/set.h \ include/isl/set_type.h \ include/isl/space.h \ include/isl/stream.h \ include/isl/union_map.h \ include/isl/union_map_type.h \ include/isl/union_set.h \ include/isl/union_set_type.h \ include/isl/val.h \ include/isl/vec.h \ include/isl/version.h \ include/isl/vertices.h deprecateddir = $(pkgincludedir)/deprecated deprecated_HEADERS = \ include/isl/deprecated/int.h \ include/isl/deprecated/aff_int.h \ include/isl/deprecated/ast_int.h \ include/isl/deprecated/constraint_int.h \ include/isl/deprecated/ilp_int.h \ include/isl/deprecated/map_int.h \ include/isl/deprecated/mat_int.h \ include/isl/deprecated/point_int.h \ include/isl/deprecated/polynomial_int.h \ include/isl/deprecated/set_int.h \ include/isl/deprecated/union_map_int.h \ include/isl/deprecated/val_int.h \ include/isl/deprecated/vec_int.h BUILT_SOURCES = gitversion.h CLEANFILES = \ gitversion.h DISTCLEANFILES = \ isl-uninstalled.sh \ isl-uninstalled.pc \ isl.pc \ isl.pc.in \ include/isl/stdint.h EXTRA_DIST = \ LICENSE \ isl_config_post.h \ basis_reduction_templ.c \ isl_hmap_templ.c \ isl_list_templ.c \ isl_list_templ.h \ isl_map_lexopt_templ.c \ isl_multi_macro.h \ isl_multi_templ.c \ isl_multi_templ.h \ isl_multi_apply_templ.c \ isl_multi_apply_set.c \ isl_multi_apply_union_set.c \ isl_multi_coalesce.c \ isl_multi_floor.c \ isl_multi_gist.c \ isl_multi_intersect.c \ print_templ.c \ isl_power_templ.c \ isl_pw_templ.c \ isl_union_macro.h \ isl_union_templ.c \ isl_union_single.c \ isl_union_multi.c \ isl_union_eval.c \ isl_union_neg.c \ isl.py \ doc/CodingStyle \ doc/SubmittingPatches \ doc/chicago.bst \ doc/chicago.sty \ doc/implementation.tex \ doc/isl.bib \ doc/mypod2latex \ doc/manual.tex \ doc/user.pod \ imath/gmp_compat.c \ imath/gmp_compat.h \ imath/imath.c \ imath/imath.h \ imath/imrat.c \ imath/imrat.h \ interface/all.h \ interface/isl.py.top \ test_inputs pkgconfigdir = $(pkgconfig_libdir) pkgconfig_DATA = $(pkgconfig_libfile) all: $(BUILT_SOURCES) isl_config.h $(MAKE) $(AM_MAKEFLAGS) all-recursive .SUFFIXES: .SUFFIXES: .c .lo .log .o .obj .test .test$(EXEEXT) .trs am--refresh: Makefile @: $(srcdir)/Makefile.in: $(srcdir)/Makefile.am $(am__configure_deps) @for dep in $?; do \ case '$(am__configure_deps)' in \ *$$dep*) \ echo ' cd $(srcdir) && $(AUTOMAKE) --foreign'; \ $(am__cd) $(srcdir) && $(AUTOMAKE) --foreign \ && exit 0; \ exit 1;; \ esac; \ done; \ echo ' cd $(top_srcdir) && $(AUTOMAKE) --foreign Makefile'; \ $(am__cd) $(top_srcdir) && \ $(AUTOMAKE) --foreign Makefile .PRECIOUS: Makefile Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status @case '$?' in \ *config.status*) \ echo ' $(SHELL) ./config.status'; \ $(SHELL) ./config.status;; \ *) \ echo ' cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe)'; \ cd $(top_builddir) && $(SHELL) ./config.status $@ $(am__depfiles_maybe);; \ esac; $(top_builddir)/config.status: $(top_srcdir)/configure $(CONFIG_STATUS_DEPENDENCIES) $(SHELL) ./config.status --recheck $(top_srcdir)/configure: $(am__configure_deps) $(am__cd) $(srcdir) && $(AUTOCONF) $(ACLOCAL_M4): $(am__aclocal_m4_deps) $(am__cd) $(srcdir) && $(ACLOCAL) $(ACLOCAL_AMFLAGS) $(am__aclocal_m4_deps): isl_config.h: stamp-h1 @test -f $@ || rm -f stamp-h1 @test -f $@ || $(MAKE) $(AM_MAKEFLAGS) stamp-h1 stamp-h1: $(srcdir)/isl_config.h.in $(top_builddir)/config.status @rm -f stamp-h1 cd $(top_builddir) && $(SHELL) ./config.status isl_config.h $(srcdir)/isl_config.h.in: $(am__configure_deps) ($(am__cd) $(top_srcdir) && $(AUTOHEADER)) rm -f stamp-h1 touch $@ distclean-hdr: -rm -f isl_config.h stamp-h1 bound_test.sh: $(top_builddir)/config.status $(srcdir)/bound_test.sh.in cd $(top_builddir) && $(SHELL) ./config.status $@ codegen_test.sh: $(top_builddir)/config.status $(srcdir)/codegen_test.sh.in cd $(top_builddir) && $(SHELL) ./config.status $@ pip_test.sh: $(top_builddir)/config.status $(srcdir)/pip_test.sh.in cd $(top_builddir) && $(SHELL) ./config.status $@ install-libLTLIBRARIES: $(lib_LTLIBRARIES) @$(NORMAL_INSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ list2=; for p in $$list; do \ if test -f $$p; then \ list2="$$list2 $$p"; \ else :; fi; \ done; \ test -z "$$list2" || { \ echo " $(MKDIR_P) '$(DESTDIR)$(libdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(libdir)" || exit 1; \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 '$(DESTDIR)$(libdir)'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=install $(INSTALL) $(INSTALL_STRIP_FLAG) $$list2 "$(DESTDIR)$(libdir)"; \ } uninstall-libLTLIBRARIES: @$(NORMAL_UNINSTALL) @list='$(lib_LTLIBRARIES)'; test -n "$(libdir)" || list=; \ for p in $$list; do \ $(am__strip_dir) \ echo " $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f '$(DESTDIR)$(libdir)/$$f'"; \ $(LIBTOOL) $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) --mode=uninstall rm -f "$(DESTDIR)$(libdir)/$$f"; \ done clean-libLTLIBRARIES: -test -z "$(lib_LTLIBRARIES)" || rm -f $(lib_LTLIBRARIES) @list='$(lib_LTLIBRARIES)'; \ locs=`for p in $$list; do echo $$p; done | \ sed 's|^[^/]*$$|.|; s|/[^/]*$$||; s|$$|/so_locations|' | \ sort -u`; \ test -z "$$locs" || { \ echo rm -f $${locs}; \ rm -f $${locs}; \ } imath_wrap/$(am__dirstamp): @$(MKDIR_P) imath_wrap @: > imath_wrap/$(am__dirstamp) imath_wrap/$(DEPDIR)/$(am__dirstamp): @$(MKDIR_P) imath_wrap/$(DEPDIR) @: > imath_wrap/$(DEPDIR)/$(am__dirstamp) imath_wrap/gmp_compat.lo: imath_wrap/$(am__dirstamp) \ imath_wrap/$(DEPDIR)/$(am__dirstamp) imath_wrap/imath.lo: imath_wrap/$(am__dirstamp) \ imath_wrap/$(DEPDIR)/$(am__dirstamp) imath_wrap/imrat.lo: imath_wrap/$(am__dirstamp) \ imath_wrap/$(DEPDIR)/$(am__dirstamp) libisl.la: $(libisl_la_OBJECTS) $(libisl_la_DEPENDENCIES) $(EXTRA_libisl_la_DEPENDENCIES) $(AM_V_CCLD)$(libisl_la_LINK) -rpath $(libdir) $(libisl_la_OBJECTS) $(libisl_la_LIBADD) $(LIBS) clean-noinstPROGRAMS: @list='$(noinst_PROGRAMS)'; test -n "$$list" || exit 0; \ echo " rm -f" $$list; \ rm -f $$list || exit $$?; \ test -n "$(EXEEXT)" || exit 0; \ list=`for p in $$list; do echo "$$p"; done | sed 's/$(EXEEXT)$$//'`; \ echo " rm -f" $$list; \ rm -f $$list isl_bound$(EXEEXT): $(isl_bound_OBJECTS) $(isl_bound_DEPENDENCIES) $(EXTRA_isl_bound_DEPENDENCIES) @rm -f isl_bound$(EXEEXT) $(AM_V_CCLD)$(isl_bound_LINK) $(isl_bound_OBJECTS) $(isl_bound_LDADD) $(LIBS) isl_cat$(EXEEXT): $(isl_cat_OBJECTS) $(isl_cat_DEPENDENCIES) $(EXTRA_isl_cat_DEPENDENCIES) @rm -f isl_cat$(EXEEXT) $(AM_V_CCLD)$(LINK) $(isl_cat_OBJECTS) $(isl_cat_LDADD) $(LIBS) isl_closure$(EXEEXT): $(isl_closure_OBJECTS) $(isl_closure_DEPENDENCIES) $(EXTRA_isl_closure_DEPENDENCIES) @rm -f isl_closure$(EXEEXT) $(AM_V_CCLD)$(LINK) $(isl_closure_OBJECTS) $(isl_closure_LDADD) $(LIBS) isl_codegen$(EXEEXT): $(isl_codegen_OBJECTS) $(isl_codegen_DEPENDENCIES) $(EXTRA_isl_codegen_DEPENDENCIES) @rm -f isl_codegen$(EXEEXT) $(AM_V_CCLD)$(isl_codegen_LINK) $(isl_codegen_OBJECTS) $(isl_codegen_LDADD) $(LIBS) isl_pip$(EXEEXT): $(isl_pip_OBJECTS) $(isl_pip_DEPENDENCIES) $(EXTRA_isl_pip_DEPENDENCIES) @rm -f isl_pip$(EXEEXT) $(AM_V_CCLD)$(isl_pip_LINK) $(isl_pip_OBJECTS) $(isl_pip_LDADD) $(LIBS) isl_polyhedron_detect_equalities$(EXEEXT): $(isl_polyhedron_detect_equalities_OBJECTS) $(isl_polyhedron_detect_equalities_DEPENDENCIES) $(EXTRA_isl_polyhedron_detect_equalities_DEPENDENCIES) @rm -f isl_polyhedron_detect_equalities$(EXEEXT) $(AM_V_CCLD)$(LINK) $(isl_polyhedron_detect_equalities_OBJECTS) $(isl_polyhedron_detect_equalities_LDADD) $(LIBS) isl_polyhedron_minimize$(EXEEXT): $(isl_polyhedron_minimize_OBJECTS) $(isl_polyhedron_minimize_DEPENDENCIES) $(EXTRA_isl_polyhedron_minimize_DEPENDENCIES) @rm -f isl_polyhedron_minimize$(EXEEXT) $(AM_V_CCLD)$(isl_polyhedron_minimize_LINK) $(isl_polyhedron_minimize_OBJECTS) $(isl_polyhedron_minimize_LDADD) $(LIBS) isl_polyhedron_sample$(EXEEXT): $(isl_polyhedron_sample_OBJECTS) $(isl_polyhedron_sample_DEPENDENCIES) $(EXTRA_isl_polyhedron_sample_DEPENDENCIES) @rm -f isl_polyhedron_sample$(EXEEXT) $(AM_V_CCLD)$(LINK) $(isl_polyhedron_sample_OBJECTS) $(isl_polyhedron_sample_LDADD) $(LIBS) isl_polytope_scan$(EXEEXT): $(isl_polytope_scan_OBJECTS) $(isl_polytope_scan_DEPENDENCIES) $(EXTRA_isl_polytope_scan_DEPENDENCIES) @rm -f isl_polytope_scan$(EXEEXT) $(AM_V_CCLD)$(LINK) $(isl_polytope_scan_OBJECTS) $(isl_polytope_scan_LDADD) $(LIBS) isl_test$(EXEEXT): $(isl_test_OBJECTS) $(isl_test_DEPENDENCIES) $(EXTRA_isl_test_DEPENDENCIES) @rm -f isl_test$(EXEEXT) $(AM_V_CCLD)$(isl_test_LINK) $(isl_test_OBJECTS) $(isl_test_LDADD) $(LIBS) isl_test_imath$(EXEEXT): $(isl_test_imath_OBJECTS) $(isl_test_imath_DEPENDENCIES) $(EXTRA_isl_test_imath_DEPENDENCIES) @rm -f isl_test_imath$(EXEEXT) $(AM_V_CCLD)$(isl_test_imath_LINK) $(isl_test_imath_OBJECTS) $(isl_test_imath_LDADD) $(LIBS) isl_test_int$(EXEEXT): $(isl_test_int_OBJECTS) $(isl_test_int_DEPENDENCIES) $(EXTRA_isl_test_int_DEPENDENCIES) @rm -f isl_test_int$(EXEEXT) $(AM_V_CCLD)$(isl_test_int_LINK) $(isl_test_int_OBJECTS) $(isl_test_int_LDADD) $(LIBS) mostlyclean-compile: -rm -f *.$(OBJEXT) -rm -f imath_wrap/*.$(OBJEXT) -rm -f imath_wrap/*.lo distclean-compile: -rm -f *.tab.c @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/basis_reduction_tab.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/bound.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/cat.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/closure.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/codegen.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_aff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_affine_hull.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_arg.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast_build.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast_build_expr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast_codegen.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast_graft.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ast_int.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_band.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_bernstein.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_blk.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_bound.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_coalesce.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_constraint.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_convex_hull.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ctx.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_deprecated.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_dim_map.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_equalities.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_factorization.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_farkas.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ffs.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_flow.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_fold.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_gmp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_hash.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_id.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_id_to_ast_expr.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_id_to_pw_aff.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_ilp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_imath.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_input.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_int_sioimath.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_local_space.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_lp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_map.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_map_list.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_map_simplify.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_map_subtract.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_map_to_basic_set.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_mat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_morph.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_obj.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_options.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_output.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_point.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_polynomial.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_printer.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_range.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_reordering.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_sample.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_scan.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_schedule.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_schedule_band.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_schedule_node.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_schedule_read.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_schedule_tree.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_scheduler.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_seq.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_set_list.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_sort.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_space.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_stream.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_tab.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_tab_pip.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_tarjan.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_test.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_test_imath.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_test_int.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_transitive_closure.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_union_map.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_val.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_val_gmp.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_val_imath.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_val_sioimath.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_vec.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_version.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/isl_vertices.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/mp_get_memory_functions.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/pip.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/polyhedron_detect_equalities.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/polyhedron_minimize.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/polyhedron_sample.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/polytope_scan.Po@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/print.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@imath_wrap/$(DEPDIR)/gmp_compat.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@imath_wrap/$(DEPDIR)/imath.Plo@am__quote@ @AMDEP_TRUE@@am__include@ @am__quote@imath_wrap/$(DEPDIR)/imrat.Plo@am__quote@ .c.o: @am__fastdepCC_TRUE@ $(AM_V_CC)depbase=`echo $@ | sed 's|[^/]*$$|$(DEPDIR)/&|;s|\.o$$||'`;\ @am__fastdepCC_TRUE@ $(COMPILE) -MT $@ -MD -MP -MF $$depbase.Tpo -c -o $@ $< &&\ @am__fastdepCC_TRUE@ $(am__mv) $$depbase.Tpo $$depbase.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ $< .c.obj: @am__fastdepCC_TRUE@ $(AM_V_CC)depbase=`echo $@ | sed 's|[^/]*$$|$(DEPDIR)/&|;s|\.obj$$||'`;\ @am__fastdepCC_TRUE@ $(COMPILE) -MT $@ -MD -MP -MF $$depbase.Tpo -c -o $@ `$(CYGPATH_W) '$<'` &&\ @am__fastdepCC_TRUE@ $(am__mv) $$depbase.Tpo $$depbase.Po @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=no @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(COMPILE) -c -o $@ `$(CYGPATH_W) '$<'` .c.lo: @am__fastdepCC_TRUE@ $(AM_V_CC)depbase=`echo $@ | sed 's|[^/]*$$|$(DEPDIR)/&|;s|\.lo$$||'`;\ @am__fastdepCC_TRUE@ $(LTCOMPILE) -MT $@ -MD -MP -MF $$depbase.Tpo -c -o $@ $< &&\ @am__fastdepCC_TRUE@ $(am__mv) $$depbase.Tpo $$depbase.Plo @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='$<' object='$@' libtool=yes @AMDEPBACKSLASH@ @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(LTCOMPILE) -c -o $@ $< mostlyclean-libtool: -rm -f *.lo clean-libtool: -rm -rf .libs _libs -rm -rf imath_wrap/.libs imath_wrap/_libs distclean-libtool: -rm -f libtool config.lt install-pkgconfigDATA: $(pkgconfig_DATA) @$(NORMAL_INSTALL) @list='$(pkgconfig_DATA)'; test -n "$(pkgconfigdir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgconfigdir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgconfigdir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_DATA) $$files '$(DESTDIR)$(pkgconfigdir)'"; \ $(INSTALL_DATA) $$files "$(DESTDIR)$(pkgconfigdir)" || exit $$?; \ done uninstall-pkgconfigDATA: @$(NORMAL_UNINSTALL) @list='$(pkgconfig_DATA)'; test -n "$(pkgconfigdir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgconfigdir)'; $(am__uninstall_files_from_dir) install-deprecatedHEADERS: $(deprecated_HEADERS) @$(NORMAL_INSTALL) @list='$(deprecated_HEADERS)'; test -n "$(deprecateddir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(deprecateddir)'"; \ $(MKDIR_P) "$(DESTDIR)$(deprecateddir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(deprecateddir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(deprecateddir)" || exit $$?; \ done uninstall-deprecatedHEADERS: @$(NORMAL_UNINSTALL) @list='$(deprecated_HEADERS)'; test -n "$(deprecateddir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(deprecateddir)'; $(am__uninstall_files_from_dir) install-nodist_pkgincludeHEADERS: $(nodist_pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(nodist_pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-nodist_pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(nodist_pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) install-pkgincludeHEADERS: $(pkginclude_HEADERS) @$(NORMAL_INSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ if test -n "$$list"; then \ echo " $(MKDIR_P) '$(DESTDIR)$(pkgincludedir)'"; \ $(MKDIR_P) "$(DESTDIR)$(pkgincludedir)" || exit 1; \ fi; \ for p in $$list; do \ if test -f "$$p"; then d=; else d="$(srcdir)/"; fi; \ echo "$$d$$p"; \ done | $(am__base_list) | \ while read files; do \ echo " $(INSTALL_HEADER) $$files '$(DESTDIR)$(pkgincludedir)'"; \ $(INSTALL_HEADER) $$files "$(DESTDIR)$(pkgincludedir)" || exit $$?; \ done uninstall-pkgincludeHEADERS: @$(NORMAL_UNINSTALL) @list='$(pkginclude_HEADERS)'; test -n "$(pkgincludedir)" || list=; \ files=`for p in $$list; do echo $$p; done | sed -e 's|^.*/||'`; \ dir='$(DESTDIR)$(pkgincludedir)'; $(am__uninstall_files_from_dir) # This directory's subdirectories are mostly independent; you can cd # into them and run 'make' without going through this Makefile. # To change the values of 'make' variables: instead of editing Makefiles, # (1) if the variable is set in 'config.status', edit 'config.status' # (which will cause the Makefiles to be regenerated when you run 'make'); # (2) otherwise, pass the desired values on the 'make' command line. $(am__recursive_targets): @fail=; \ if $(am__make_keepgoing); then \ failcom='fail=yes'; \ else \ failcom='exit 1'; \ fi; \ dot_seen=no; \ target=`echo $@ | sed s/-recursive//`; \ case "$@" in \ distclean-* | maintainer-clean-*) list='$(DIST_SUBDIRS)' ;; \ *) list='$(SUBDIRS)' ;; \ esac; \ for subdir in $$list; do \ echo "Making $$target in $$subdir"; \ if test "$$subdir" = "."; then \ dot_seen=yes; \ local_target="$$target-am"; \ else \ local_target="$$target"; \ fi; \ ($(am__cd) $$subdir && $(MAKE) $(AM_MAKEFLAGS) $$local_target) \ || eval $$failcom; \ done; \ if test "$$dot_seen" = "no"; then \ $(MAKE) $(AM_MAKEFLAGS) "$$target-am" || exit 1; \ fi; test -z "$$fail" ID: $(am__tagged_files) $(am__define_uniq_tagged_files); mkid -fID $$unique tags: tags-recursive TAGS: tags tags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) set x; \ here=`pwd`; \ if ($(ETAGS) --etags-include --version) >/dev/null 2>&1; then \ include_option=--etags-include; \ empty_fix=.; \ else \ include_option=--include; \ empty_fix=; \ fi; \ list='$(SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ test ! -f $$subdir/TAGS || \ set "$$@" "$$include_option=$$here/$$subdir/TAGS"; \ fi; \ done; \ $(am__define_uniq_tagged_files); \ shift; \ if test -z "$(ETAGS_ARGS)$$*$$unique"; then :; else \ test -n "$$unique" || unique=$$empty_fix; \ if test $$# -gt 0; then \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ "$$@" $$unique; \ else \ $(ETAGS) $(ETAGSFLAGS) $(AM_ETAGSFLAGS) $(ETAGS_ARGS) \ $$unique; \ fi; \ fi ctags: ctags-recursive CTAGS: ctags ctags-am: $(TAGS_DEPENDENCIES) $(am__tagged_files) $(am__define_uniq_tagged_files); \ test -z "$(CTAGS_ARGS)$$unique" \ || $(CTAGS) $(CTAGSFLAGS) $(AM_CTAGSFLAGS) $(CTAGS_ARGS) \ $$unique GTAGS: here=`$(am__cd) $(top_builddir) && pwd` \ && $(am__cd) $(top_srcdir) \ && gtags -i $(GTAGS_ARGS) "$$here" cscope: cscope.files test ! -s cscope.files \ || $(CSCOPE) -b -q $(AM_CSCOPEFLAGS) $(CSCOPEFLAGS) -i cscope.files $(CSCOPE_ARGS) clean-cscope: -rm -f cscope.files cscope.files: clean-cscope cscopelist cscopelist: cscopelist-recursive cscopelist-am: $(am__tagged_files) list='$(am__tagged_files)'; \ case "$(srcdir)" in \ [\\/]* | ?:[\\/]*) sdir="$(srcdir)" ;; \ *) sdir=$(subdir)/$(srcdir) ;; \ esac; \ for i in $$list; do \ if test -f "$$i"; then \ echo "$(subdir)/$$i"; \ else \ echo "$$sdir/$$i"; \ fi; \ done >> $(top_builddir)/cscope.files distclean-tags: -rm -f TAGS ID GTAGS GRTAGS GSYMS GPATH tags -rm -f cscope.out cscope.in.out cscope.po.out cscope.files # Recover from deleted '.trs' file; this should ensure that # "rm -f foo.log; make foo.trs" re-run 'foo.test', and re-create # both 'foo.log' and 'foo.trs'. Break the recipe in two subshells # to avoid problems with "make -n". .log.trs: rm -f $< $@ $(MAKE) $(AM_MAKEFLAGS) $< # Leading 'am--fnord' is there to ensure the list of targets does not # expand to empty, as could happen e.g. with make check TESTS=''. am--fnord $(TEST_LOGS) $(TEST_LOGS:.log=.trs): $(am__force_recheck) am--force-recheck: @: $(TEST_SUITE_LOG): $(TEST_LOGS) @$(am__set_TESTS_bases); \ am__f_ok () { test -f "$$1" && test -r "$$1"; }; \ redo_bases=`for i in $$bases; do \ am__f_ok $$i.trs && am__f_ok $$i.log || echo $$i; \ done`; \ if test -n "$$redo_bases"; then \ redo_logs=`for i in $$redo_bases; do echo $$i.log; done`; \ redo_results=`for i in $$redo_bases; do echo $$i.trs; done`; \ if $(am__make_dryrun); then :; else \ rm -f $$redo_logs && rm -f $$redo_results || exit 1; \ fi; \ fi; \ if test -n "$$am__remaking_logs"; then \ echo "fatal: making $(TEST_SUITE_LOG): possible infinite" \ "recursion detected" >&2; \ else \ am__remaking_logs=yes $(MAKE) $(AM_MAKEFLAGS) $$redo_logs; \ fi; \ if $(am__make_dryrun); then :; else \ st=0; \ errmsg="fatal: making $(TEST_SUITE_LOG): failed to create"; \ for i in $$redo_bases; do \ test -f $$i.trs && test -r $$i.trs \ || { echo "$$errmsg $$i.trs" >&2; st=1; }; \ test -f $$i.log && test -r $$i.log \ || { echo "$$errmsg $$i.log" >&2; st=1; }; \ done; \ test $$st -eq 0 || exit 1; \ fi @$(am__sh_e_setup); $(am__tty_colors); $(am__set_TESTS_bases); \ ws='[ ]'; \ results=`for b in $$bases; do echo $$b.trs; done`; \ test -n "$$results" || results=/dev/null; \ all=` grep "^$$ws*:test-result:" $$results | wc -l`; \ pass=` grep "^$$ws*:test-result:$$ws*PASS" $$results | wc -l`; \ fail=` grep "^$$ws*:test-result:$$ws*FAIL" $$results | wc -l`; \ skip=` grep "^$$ws*:test-result:$$ws*SKIP" $$results | wc -l`; \ xfail=`grep "^$$ws*:test-result:$$ws*XFAIL" $$results | wc -l`; \ xpass=`grep "^$$ws*:test-result:$$ws*XPASS" $$results | wc -l`; \ error=`grep "^$$ws*:test-result:$$ws*ERROR" $$results | wc -l`; \ if test `expr $$fail + $$xpass + $$error` -eq 0; then \ success=true; \ else \ success=false; \ fi; \ br='==================='; br=$$br$$br$$br$$br; \ result_count () \ { \ if test x"$$1" = x"--maybe-color"; then \ maybe_colorize=yes; \ elif test x"$$1" = x"--no-color"; then \ maybe_colorize=no; \ else \ echo "$@: invalid 'result_count' usage" >&2; exit 4; \ fi; \ shift; \ desc=$$1 count=$$2; \ if test $$maybe_colorize = yes && test $$count -gt 0; then \ color_start=$$3 color_end=$$std; \ else \ color_start= color_end=; \ fi; \ echo "$${color_start}# $$desc $$count$${color_end}"; \ }; \ create_testsuite_report () \ { \ result_count $$1 "TOTAL:" $$all "$$brg"; \ result_count $$1 "PASS: " $$pass "$$grn"; \ result_count $$1 "SKIP: " $$skip "$$blu"; \ result_count $$1 "XFAIL:" $$xfail "$$lgn"; \ result_count $$1 "FAIL: " $$fail "$$red"; \ result_count $$1 "XPASS:" $$xpass "$$red"; \ result_count $$1 "ERROR:" $$error "$$mgn"; \ }; \ { \ echo "$(PACKAGE_STRING): $(subdir)/$(TEST_SUITE_LOG)" | \ $(am__rst_title); \ create_testsuite_report --no-color; \ echo; \ echo ".. contents:: :depth: 2"; \ echo; \ for b in $$bases; do echo $$b; done \ | $(am__create_global_log); \ } >$(TEST_SUITE_LOG).tmp || exit 1; \ mv $(TEST_SUITE_LOG).tmp $(TEST_SUITE_LOG); \ if $$success; then \ col="$$grn"; \ else \ col="$$red"; \ test x"$$VERBOSE" = x || cat $(TEST_SUITE_LOG); \ fi; \ echo "$${col}$$br$${std}"; \ echo "$${col}Testsuite summary for $(PACKAGE_STRING)$${std}"; \ echo "$${col}$$br$${std}"; \ create_testsuite_report --maybe-color; \ echo "$$col$$br$$std"; \ if $$success; then :; else \ echo "$${col}See $(subdir)/$(TEST_SUITE_LOG)$${std}"; \ if test -n "$(PACKAGE_BUGREPORT)"; then \ echo "$${col}Please report to $(PACKAGE_BUGREPORT)$${std}"; \ fi; \ echo "$$col$$br$$std"; \ fi; \ $$success || exit 1 check-TESTS: @list='$(RECHECK_LOGS)'; test -z "$$list" || rm -f $$list @list='$(RECHECK_LOGS:.log=.trs)'; test -z "$$list" || rm -f $$list @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ log_list=`for i in $$bases; do echo $$i.log; done`; \ trs_list=`for i in $$bases; do echo $$i.trs; done`; \ log_list=`echo $$log_list`; trs_list=`echo $$trs_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) TEST_LOGS="$$log_list"; \ exit $$?; recheck: all @test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) @set +e; $(am__set_TESTS_bases); \ bases=`for i in $$bases; do echo $$i; done \ | $(am__list_recheck_tests)` || exit 1; \ log_list=`for i in $$bases; do echo $$i.log; done`; \ log_list=`echo $$log_list`; \ $(MAKE) $(AM_MAKEFLAGS) $(TEST_SUITE_LOG) \ am__force_recheck=am--force-recheck \ TEST_LOGS="$$log_list"; \ exit $$? isl_test.log: isl_test$(EXEEXT) @p='isl_test$(EXEEXT)'; \ b='isl_test'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) codegen_test.sh.log: codegen_test.sh @p='codegen_test.sh'; \ b='codegen_test.sh'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) pip_test.sh.log: pip_test.sh @p='pip_test.sh'; \ b='pip_test.sh'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) bound_test.sh.log: bound_test.sh @p='bound_test.sh'; \ b='bound_test.sh'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) isl_test_int.log: isl_test_int$(EXEEXT) @p='isl_test_int$(EXEEXT)'; \ b='isl_test_int'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) isl_test_imath.log: isl_test_imath$(EXEEXT) @p='isl_test_imath$(EXEEXT)'; \ b='isl_test_imath'; \ $(am__check_pre) $(LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_LOG_DRIVER_FLAGS) $(LOG_DRIVER_FLAGS) -- $(LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) .test.log: @p='$<'; \ $(am__set_b); \ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ --log-file $$b.log --trs-file $$b.trs \ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ "$$tst" $(AM_TESTS_FD_REDIRECT) @am__EXEEXT_TRUE@.test$(EXEEXT).log: @am__EXEEXT_TRUE@ @p='$<'; \ @am__EXEEXT_TRUE@ $(am__set_b); \ @am__EXEEXT_TRUE@ $(am__check_pre) $(TEST_LOG_DRIVER) --test-name "$$f" \ @am__EXEEXT_TRUE@ --log-file $$b.log --trs-file $$b.trs \ @am__EXEEXT_TRUE@ $(am__common_driver_flags) $(AM_TEST_LOG_DRIVER_FLAGS) $(TEST_LOG_DRIVER_FLAGS) -- $(TEST_LOG_COMPILE) \ @am__EXEEXT_TRUE@ "$$tst" $(AM_TESTS_FD_REDIRECT) distdir: $(DISTFILES) $(am__remove_distdir) test -d "$(distdir)" || mkdir "$(distdir)" @srcdirstrip=`echo "$(srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ topsrcdirstrip=`echo "$(top_srcdir)" | sed 's/[].[^$$\\*]/\\\\&/g'`; \ list='$(DISTFILES)'; \ dist_files=`for file in $$list; do echo $$file; done | \ sed -e "s|^$$srcdirstrip/||;t" \ -e "s|^$$topsrcdirstrip/|$(top_builddir)/|;t"`; \ case $$dist_files in \ */*) $(MKDIR_P) `echo "$$dist_files" | \ sed '/\//!d;s|^|$(distdir)/|;s,/[^/]*$$,,' | \ sort -u` ;; \ esac; \ for file in $$dist_files; do \ if test -f $$file || test -d $$file; then d=.; else d=$(srcdir); fi; \ if test -d $$d/$$file; then \ dir=`echo "/$$file" | sed -e 's,/[^/]*$$,,'`; \ if test -d "$(distdir)/$$file"; then \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ if test -d $(srcdir)/$$file && test $$d != $(srcdir); then \ cp -fpR $(srcdir)/$$file "$(distdir)$$dir" || exit 1; \ find "$(distdir)/$$file" -type d ! -perm -700 -exec chmod u+rwx {} \;; \ fi; \ cp -fpR $$d/$$file "$(distdir)$$dir" || exit 1; \ else \ test -f "$(distdir)/$$file" \ || cp -p $$d/$$file "$(distdir)/$$file" \ || exit 1; \ fi; \ done @list='$(DIST_SUBDIRS)'; for subdir in $$list; do \ if test "$$subdir" = .; then :; else \ $(am__make_dryrun) \ || test -d "$(distdir)/$$subdir" \ || $(MKDIR_P) "$(distdir)/$$subdir" \ || exit 1; \ dir1=$$subdir; dir2="$(distdir)/$$subdir"; \ $(am__relativize); \ new_distdir=$$reldir; \ dir1=$$subdir; dir2="$(top_distdir)"; \ $(am__relativize); \ new_top_distdir=$$reldir; \ echo " (cd $$subdir && $(MAKE) $(AM_MAKEFLAGS) top_distdir="$$new_top_distdir" distdir="$$new_distdir" \\"; \ echo " am__remove_distdir=: am__skip_length_check=: am__skip_mode_fix=: distdir)"; \ ($(am__cd) $$subdir && \ $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$$new_top_distdir" \ distdir="$$new_distdir" \ am__remove_distdir=: \ am__skip_length_check=: \ am__skip_mode_fix=: \ distdir) \ || exit 1; \ fi; \ done $(MAKE) $(AM_MAKEFLAGS) \ top_distdir="$(top_distdir)" distdir="$(distdir)" \ dist-hook -test -n "$(am__skip_mode_fix)" \ || find "$(distdir)" -type d ! -perm -755 \ -exec chmod u+rwx,go+rx {} \; -o \ ! -type d ! -perm -444 -links 1 -exec chmod a+r {} \; -o \ ! -type d ! -perm -400 -exec chmod a+r {} \; -o \ ! -type d ! -perm -444 -exec $(install_sh) -c -m a+r {} {} \; \ || chmod -R a+r "$(distdir)" dist-gzip: distdir tardir=$(distdir) && $(am__tar) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).tar.gz $(am__post_remove_distdir) dist-bzip2: distdir tardir=$(distdir) && $(am__tar) | BZIP2=$${BZIP2--9} bzip2 -c >$(distdir).tar.bz2 $(am__post_remove_distdir) dist-lzip: distdir tardir=$(distdir) && $(am__tar) | lzip -c $${LZIP_OPT--9} >$(distdir).tar.lz $(am__post_remove_distdir) dist-xz: distdir tardir=$(distdir) && $(am__tar) | XZ_OPT=$${XZ_OPT--e} xz -c >$(distdir).tar.xz $(am__post_remove_distdir) dist-tarZ: distdir @echo WARNING: "Support for shar distribution archives is" \ "deprecated." >&2 @echo WARNING: "It will be removed altogether in Automake 2.0" >&2 tardir=$(distdir) && $(am__tar) | compress -c >$(distdir).tar.Z $(am__post_remove_distdir) dist-shar: distdir @echo WARNING: "Support for distribution archives compressed with" \ "legacy program 'compress' is deprecated." >&2 @echo WARNING: "It will be removed altogether in Automake 2.0" >&2 shar $(distdir) | GZIP=$(GZIP_ENV) gzip -c >$(distdir).shar.gz $(am__post_remove_distdir) dist-zip: distdir -rm -f $(distdir).zip zip -rq $(distdir).zip $(distdir) $(am__post_remove_distdir) dist dist-all: $(MAKE) $(AM_MAKEFLAGS) $(DIST_TARGETS) am__post_remove_distdir='@:' $(am__post_remove_distdir) # This target untars the dist file and tries a VPATH configuration. Then # it guarantees that the distribution is self-contained by making another # tarfile. distcheck: dist case '$(DIST_ARCHIVES)' in \ *.tar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).tar.gz | $(am__untar) ;;\ *.tar.bz2*) \ bzip2 -dc $(distdir).tar.bz2 | $(am__untar) ;;\ *.tar.lz*) \ lzip -dc $(distdir).tar.lz | $(am__untar) ;;\ *.tar.xz*) \ xz -dc $(distdir).tar.xz | $(am__untar) ;;\ *.tar.Z*) \ uncompress -c $(distdir).tar.Z | $(am__untar) ;;\ *.shar.gz*) \ GZIP=$(GZIP_ENV) gzip -dc $(distdir).shar.gz | unshar ;;\ *.zip*) \ unzip $(distdir).zip ;;\ esac chmod -R a-w $(distdir) chmod u+w $(distdir) mkdir $(distdir)/_build $(distdir)/_inst chmod a-w $(distdir) test -d $(distdir)/_build || exit 0; \ dc_install_base=`$(am__cd) $(distdir)/_inst && pwd | sed -e 's,^[^:\\/]:[\\/],/,'` \ && dc_destdir="$${TMPDIR-/tmp}/am-dc-$$$$/" \ && am__cwd=`pwd` \ && $(am__cd) $(distdir)/_build \ && ../configure \ $(AM_DISTCHECK_CONFIGURE_FLAGS) \ $(DISTCHECK_CONFIGURE_FLAGS) \ --srcdir=.. --prefix="$$dc_install_base" \ && $(MAKE) $(AM_MAKEFLAGS) \ && $(MAKE) $(AM_MAKEFLAGS) dvi \ && $(MAKE) $(AM_MAKEFLAGS) check \ && $(MAKE) $(AM_MAKEFLAGS) install \ && $(MAKE) $(AM_MAKEFLAGS) installcheck \ && $(MAKE) $(AM_MAKEFLAGS) uninstall \ && $(MAKE) $(AM_MAKEFLAGS) distuninstallcheck_dir="$$dc_install_base" \ distuninstallcheck \ && chmod -R a-w "$$dc_install_base" \ && ({ \ (cd ../.. && umask 077 && mkdir "$$dc_destdir") \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" install \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" uninstall \ && $(MAKE) $(AM_MAKEFLAGS) DESTDIR="$$dc_destdir" \ distuninstallcheck_dir="$$dc_destdir" distuninstallcheck; \ } || { rm -rf "$$dc_destdir"; exit 1; }) \ && rm -rf "$$dc_destdir" \ && $(MAKE) $(AM_MAKEFLAGS) dist \ && rm -rf $(DIST_ARCHIVES) \ && $(MAKE) $(AM_MAKEFLAGS) distcleancheck \ && cd "$$am__cwd" \ || exit 1 $(am__post_remove_distdir) @(echo "$(distdir) archives ready for distribution: "; \ list='$(DIST_ARCHIVES)'; for i in $$list; do echo $$i; done) | \ sed -e 1h -e 1s/./=/g -e 1p -e 1x -e '$$p' -e '$$x' distuninstallcheck: @test -n '$(distuninstallcheck_dir)' || { \ echo 'ERROR: trying to run $@ with an empty' \ '$$(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ $(am__cd) '$(distuninstallcheck_dir)' || { \ echo 'ERROR: cannot chdir into $(distuninstallcheck_dir)' >&2; \ exit 1; \ }; \ test `$(am__distuninstallcheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left after uninstall:" ; \ if test -n "$(DESTDIR)"; then \ echo " (check DESTDIR support)"; \ fi ; \ $(distuninstallcheck_listfiles) ; \ exit 1; } >&2 distcleancheck: distclean @if test '$(srcdir)' = . ; then \ echo "ERROR: distcleancheck can only run from a VPATH build" ; \ exit 1 ; \ fi @test `$(distcleancheck_listfiles) | wc -l` -eq 0 \ || { echo "ERROR: files left in build directory after distclean:" ; \ $(distcleancheck_listfiles) ; \ exit 1; } >&2 check-am: all-am $(MAKE) $(AM_MAKEFLAGS) check-TESTS check: $(BUILT_SOURCES) $(MAKE) $(AM_MAKEFLAGS) check-recursive all-am: Makefile $(LTLIBRARIES) $(PROGRAMS) $(DATA) $(HEADERS) \ isl_config.h installdirs: installdirs-recursive installdirs-am: for dir in "$(DESTDIR)$(libdir)" "$(DESTDIR)$(pkgconfigdir)" "$(DESTDIR)$(deprecateddir)" "$(DESTDIR)$(pkgincludedir)" "$(DESTDIR)$(pkgincludedir)"; do \ test -z "$$dir" || $(MKDIR_P) "$$dir"; \ done install: $(BUILT_SOURCES) $(MAKE) $(AM_MAKEFLAGS) install-recursive install-exec: install-exec-recursive install-data: install-data-recursive uninstall: uninstall-recursive install-am: all-am @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am installcheck: installcheck-recursive install-strip: if test -z '$(STRIP)'; then \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ install; \ else \ $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM="$(INSTALL_STRIP_PROGRAM)" \ install_sh_PROGRAM="$(INSTALL_STRIP_PROGRAM)" INSTALL_STRIP_FLAG=-s \ "INSTALL_PROGRAM_ENV=STRIPPROG='$(STRIP)'" install; \ fi mostlyclean-generic: -test -z "$(TEST_LOGS)" || rm -f $(TEST_LOGS) -test -z "$(TEST_LOGS:.log=.trs)" || rm -f $(TEST_LOGS:.log=.trs) -test -z "$(TEST_SUITE_LOG)" || rm -f $(TEST_SUITE_LOG) clean-generic: -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) distclean-generic: -test -z "$(CONFIG_CLEAN_FILES)" || rm -f $(CONFIG_CLEAN_FILES) -test . = "$(srcdir)" || test -z "$(CONFIG_CLEAN_VPATH_FILES)" || rm -f $(CONFIG_CLEAN_VPATH_FILES) -rm -f imath_wrap/$(DEPDIR)/$(am__dirstamp) -rm -f imath_wrap/$(am__dirstamp) -test -z "$(DISTCLEANFILES)" || rm -f $(DISTCLEANFILES) maintainer-clean-generic: @echo "This command is intended for maintainers to use" @echo "it deletes files that may require special tools to rebuild." -test -z "$(BUILT_SOURCES)" || rm -f $(BUILT_SOURCES) clean: clean-recursive clean-am: clean-generic clean-libLTLIBRARIES clean-libtool \ clean-noinstPROGRAMS mostlyclean-am distclean: distclean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf ./$(DEPDIR) imath_wrap/$(DEPDIR) -rm -f Makefile distclean-am: clean-am distclean-compile distclean-generic \ distclean-hdr distclean-libtool distclean-tags dvi: dvi-recursive dvi-am: html: html-recursive html-am: info: info-recursive info-am: install-data-am: install-data-local install-deprecatedHEADERS \ install-nodist_pkgincludeHEADERS install-pkgconfigDATA \ install-pkgincludeHEADERS install-dvi: install-dvi-recursive install-dvi-am: install-exec-am: install-libLTLIBRARIES install-html: install-html-recursive install-html-am: install-info: install-info-recursive install-info-am: install-man: install-pdf: install-pdf-recursive install-pdf-am: install-ps: install-ps-recursive install-ps-am: installcheck-am: maintainer-clean: maintainer-clean-recursive -rm -f $(am__CONFIG_DISTCLEAN_FILES) -rm -rf $(top_srcdir)/autom4te.cache -rm -rf ./$(DEPDIR) imath_wrap/$(DEPDIR) -rm -f Makefile maintainer-clean-am: distclean-am maintainer-clean-generic mostlyclean: mostlyclean-recursive mostlyclean-am: mostlyclean-compile mostlyclean-generic \ mostlyclean-libtool pdf: pdf-recursive pdf-am: ps: ps-recursive ps-am: uninstall-am: uninstall-deprecatedHEADERS uninstall-libLTLIBRARIES \ uninstall-local uninstall-nodist_pkgincludeHEADERS \ uninstall-pkgconfigDATA uninstall-pkgincludeHEADERS .MAKE: $(am__recursive_targets) all check check-am install install-am \ install-strip .PHONY: $(am__recursive_targets) CTAGS GTAGS TAGS all all-am \ am--refresh check check-TESTS check-am clean clean-cscope \ clean-generic clean-libLTLIBRARIES clean-libtool \ clean-noinstPROGRAMS cscope cscopelist-am ctags ctags-am dist \ dist-all dist-bzip2 dist-gzip dist-hook dist-lzip dist-shar \ dist-tarZ dist-xz dist-zip distcheck distclean \ distclean-compile distclean-generic distclean-hdr \ distclean-libtool distclean-tags distcleancheck distdir \ distuninstallcheck dvi dvi-am html html-am info info-am \ install install-am install-data install-data-am \ install-data-local install-deprecatedHEADERS install-dvi \ install-dvi-am install-exec install-exec-am install-html \ install-html-am install-info install-info-am \ install-libLTLIBRARIES install-man \ install-nodist_pkgincludeHEADERS install-pdf install-pdf-am \ install-pkgconfigDATA install-pkgincludeHEADERS install-ps \ install-ps-am install-strip installcheck installcheck-am \ installdirs installdirs-am maintainer-clean \ maintainer-clean-generic mostlyclean mostlyclean-compile \ mostlyclean-generic mostlyclean-libtool pdf pdf-am ps ps-am \ recheck tags tags-am uninstall uninstall-am \ uninstall-deprecatedHEADERS uninstall-libLTLIBRARIES \ uninstall-local uninstall-nodist_pkgincludeHEADERS \ uninstall-pkgconfigDATA uninstall-pkgincludeHEADERS dist-hook: echo @GIT_HEAD_VERSION@ > $(distdir)/GIT_HEAD_ID (cd doc; make manual.pdf) cp doc/manual.pdf $(distdir)/doc/ gitversion.h: @GIT_HEAD@ $(AM_V_GEN)echo '#define GIT_HEAD_ID "'@GIT_HEAD_VERSION@'"' > $@ install-data-local: $(srcdir)/isl.py @libisl=`sed -ne "/^library_names=/{s/.*='//;s/'$$//;s/ .*//;p;}" \ $(builddir)/libisl.la`; \ case $$libisl in \ '') echo Cannot find isl library name. GDB bindings not installed.;; \ *) echo $(INSTALL_DATA) $(srcdir)/isl.py \ $(DESTDIR)$(libdir)/$$libisl-gdb.py; \ test -z "$(libdir)" || $(MKDIR_P) "$(DESTDIR)$(libdir)"; \ $(INSTALL_DATA) $(srcdir)/isl.py $(DESTDIR)$(libdir)/$$libisl-gdb.py; esac uninstall-local: @libisl=`sed -ne "/^library_names=/{s/.*='//;s/'$$//;s/ .*//;p;}" \ $(builddir)/libisl.la`; \ if test -n "$${libisl}"; then \ rm -f $(DESTDIR)$(libdir)/$$libisl-gdb.py; \ fi # Tell versions [3.59,3.63) of GNU make to not export all variables. # Otherwise a system limit (for SysV at least) may be exceeded. .NOEXPORT: isl-0.16.1/isl_band_private.h0000664000175000017500000000250212645737060013000 00000000000000#ifndef ISL_BAND_PRIVATE_H #define ISL_BAND_PRIVATE_H #include #include #include #include /* Information about a band within a schedule. * * n is the number of scheduling dimensions within the band. * coincident is an array of length n, indicating whether a scheduling dimension * satisfies the coincidence constraints in the sense that * the corresponding dependence distances are zero. * pma is the partial schedule corresponding to this band. * schedule is the schedule that contains this band. * parent is the parent of this band (or NULL if the band is a root). * children are the children of this band (or NULL if the band is a leaf). * * To avoid circular dependences in the reference counting, * the schedule and parent pointers are not reference counted. * isl_band_copy increments the reference count of schedule to ensure * that outside references to the band keep the schedule alive. */ struct isl_band { int ref; int n; int *coincident; isl_union_pw_multi_aff *pma; isl_schedule *schedule; isl_band *parent; isl_band_list *children; }; #undef EL #define EL isl_band #include __isl_give isl_band *isl_band_alloc(isl_ctx *ctx); __isl_give isl_union_map *isl_band_list_get_suffix_schedule( __isl_keep isl_band_list *list); #endif isl-0.16.1/isl_space_private.h0000664000175000017500000000356612645737061013203 00000000000000#ifndef ISL_SPACE_PRIVATE #define ISL_SPACE_PRIVATE #include #include #include struct isl_name; struct isl_space { int ref; struct isl_ctx *ctx; unsigned nparam; unsigned n_in; /* zero for sets */ unsigned n_out; /* dim for sets */ isl_id *tuple_id[2]; isl_space *nested[2]; unsigned n_id; isl_id **ids; }; __isl_give isl_space *isl_space_cow(__isl_take isl_space *dim); __isl_give isl_space *isl_space_underlying(__isl_take isl_space *dim, unsigned n_div); uint32_t isl_space_get_hash(__isl_keep isl_space *dim); uint32_t isl_space_get_domain_hash(__isl_keep isl_space *space); isl_bool isl_space_is_domain_internal(__isl_keep isl_space *space1, __isl_keep isl_space *space2); isl_bool isl_space_is_range_internal(__isl_keep isl_space *space1, __isl_keep isl_space *space2); __isl_give isl_space *isl_space_as_set_space(__isl_take isl_space *dim); unsigned isl_space_offset(__isl_keep isl_space *dim, enum isl_dim_type type); int isl_space_may_be_set(__isl_keep isl_space *dim); int isl_space_is_named_or_nested(__isl_keep isl_space *dim, enum isl_dim_type type); int isl_space_has_named_params(__isl_keep isl_space *dim); __isl_give isl_space *isl_space_reset(__isl_take isl_space *dim, enum isl_dim_type type); __isl_give isl_space *isl_space_flatten(__isl_take isl_space *dim); __isl_give isl_space *isl_space_flatten_domain(__isl_take isl_space *dim); __isl_give isl_space *isl_space_flatten_range(__isl_take isl_space *dim); __isl_give isl_space *isl_space_replace(__isl_take isl_space *dst, enum isl_dim_type type, __isl_keep isl_space *src); __isl_give isl_space *isl_space_lift(__isl_take isl_space *dim, unsigned n_local); __isl_give isl_space *isl_space_extend_domain_with_range( __isl_take isl_space *domain, __isl_take isl_space *model); int isl_space_cmp(__isl_keep isl_space *space1, __isl_keep isl_space *space2); #endif isl-0.16.1/isl_lp.c0000664000175000017500000002225112645737060010753 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include "isl_tab.h" #include #include #include #include #include #include enum isl_lp_result isl_tab_solve_lp(struct isl_basic_map *bmap, int maximize, isl_int *f, isl_int denom, isl_int *opt, isl_int *opt_denom, struct isl_vec **sol) { struct isl_tab *tab; enum isl_lp_result res; unsigned dim = isl_basic_map_total_dim(bmap); if (maximize) isl_seq_neg(f, f, 1 + dim); bmap = isl_basic_map_gauss(bmap, NULL); tab = isl_tab_from_basic_map(bmap, 0); res = isl_tab_min(tab, f, denom, opt, opt_denom, 0); if (res == isl_lp_ok && sol) { *sol = isl_tab_get_sample_value(tab); if (!*sol) res = isl_lp_error; } isl_tab_free(tab); if (maximize) isl_seq_neg(f, f, 1 + dim); if (maximize && opt) isl_int_neg(*opt, *opt); return res; } /* Given a basic map "bmap" and an affine combination of the variables "f" * with denominator "denom", set *opt / *opt_denom to the minimal * (or maximal if "maximize" is true) value attained by f/d over "bmap", * assuming the basic map is not empty and the expression cannot attain * arbitrarily small (or large) values. * If opt_denom is NULL, then *opt is rounded up (or down) * to the nearest integer. * The return value reflects the nature of the result (empty, unbounded, * minmimal or maximal value returned in *opt). */ enum isl_lp_result isl_basic_map_solve_lp(struct isl_basic_map *bmap, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, struct isl_vec **sol) { if (sol) *sol = NULL; if (!bmap) return isl_lp_error; return isl_tab_solve_lp(bmap, max, f, d, opt, opt_denom, sol); } enum isl_lp_result isl_basic_set_solve_lp(struct isl_basic_set *bset, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, struct isl_vec **sol) { return isl_basic_map_solve_lp((struct isl_basic_map *)bset, max, f, d, opt, opt_denom, sol); } enum isl_lp_result isl_map_solve_lp(__isl_keep isl_map *map, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, struct isl_vec **sol) { int i; isl_int o; isl_int t; isl_int opt_i; isl_int opt_denom_i; enum isl_lp_result res; int max_div; isl_vec *v = NULL; if (!map) return isl_lp_error; if (map->n == 0) return isl_lp_empty; max_div = 0; for (i = 0; i < map->n; ++i) if (map->p[i]->n_div > max_div) max_div = map->p[i]->n_div; if (max_div > 0) { unsigned total = isl_space_dim(map->dim, isl_dim_all); v = isl_vec_alloc(map->ctx, 1 + total + max_div); if (!v) return isl_lp_error; isl_seq_cpy(v->el, f, 1 + total); isl_seq_clr(v->el + 1 + total, max_div); f = v->el; } if (!opt && map->n > 1 && sol) { isl_int_init(o); opt = &o; } if (map->n > 0) isl_int_init(opt_i); if (map->n > 0 && opt_denom) { isl_int_init(opt_denom_i); isl_int_init(t); } res = isl_basic_map_solve_lp(map->p[0], max, f, d, opt, opt_denom, sol); if (res == isl_lp_error || res == isl_lp_unbounded) goto done; if (sol) *sol = NULL; for (i = 1; i < map->n; ++i) { isl_vec *sol_i = NULL; enum isl_lp_result res_i; int better; res_i = isl_basic_map_solve_lp(map->p[i], max, f, d, &opt_i, opt_denom ? &opt_denom_i : NULL, sol ? &sol_i : NULL); if (res_i == isl_lp_error || res_i == isl_lp_unbounded) { res = res_i; goto done; } if (res_i == isl_lp_empty) continue; if (res == isl_lp_empty) { better = 1; } else if (!opt_denom) { if (max) better = isl_int_gt(opt_i, *opt); else better = isl_int_lt(opt_i, *opt); } else { isl_int_mul(t, opt_i, *opt_denom); isl_int_submul(t, *opt, opt_denom_i); if (max) better = isl_int_is_pos(t); else better = isl_int_is_neg(t); } if (better) { res = res_i; if (opt) isl_int_set(*opt, opt_i); if (opt_denom) isl_int_set(*opt_denom, opt_denom_i); if (sol) { isl_vec_free(*sol); *sol = sol_i; } } else isl_vec_free(sol_i); } done: isl_vec_free(v); if (map->n > 0 && opt_denom) { isl_int_clear(opt_denom_i); isl_int_clear(t); } if (map->n > 0) isl_int_clear(opt_i); if (opt == &o) isl_int_clear(o); return res; } enum isl_lp_result isl_set_solve_lp(__isl_keep isl_set *set, int max, isl_int *f, isl_int d, isl_int *opt, isl_int *opt_denom, struct isl_vec **sol) { return isl_map_solve_lp((struct isl_map *)set, max, f, d, opt, opt_denom, sol); } /* Return the optimal (rational) value of "obj" over "bset", assuming * that "obj" and "bset" have aligned parameters and divs. * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Call isl_basic_set_solve_lp and translate the results. */ static __isl_give isl_val *basic_set_opt_lp( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_ctx *ctx; isl_val *res; enum isl_lp_result lp_res; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); res = isl_val_alloc(ctx); if (!res) return NULL; lp_res = isl_basic_set_solve_lp(bset, max, obj->v->el + 1, obj->v->el[0], &res->n, &res->d, NULL); if (lp_res == isl_lp_ok) return isl_val_normalize(res); isl_val_free(res); if (lp_res == isl_lp_error) return NULL; if (lp_res == isl_lp_empty) return isl_val_nan(ctx); if (max) return isl_val_infty(ctx); else return isl_val_neginfty(ctx); } /* Return the optimal (rational) value of "obj" over "bset", assuming * that "obj" and "bset" have aligned parameters. * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. * * Align the divs of "bset" and "obj" and call basic_set_opt_lp. */ static __isl_give isl_val *isl_basic_set_opt_lp_val_aligned( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { int *exp1 = NULL; int *exp2 = NULL; isl_ctx *ctx; isl_mat *bset_div = NULL; isl_mat *div = NULL; isl_val *res; int bset_n_div, obj_n_div; if (!bset || !obj) return NULL; ctx = isl_aff_get_ctx(obj); if (!isl_space_is_equal(bset->dim, obj->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", return NULL); bset_n_div = isl_basic_set_dim(bset, isl_dim_div); obj_n_div = isl_aff_dim(obj, isl_dim_div); if (bset_n_div == 0 && obj_n_div == 0) return basic_set_opt_lp(bset, max, obj); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset_div = isl_basic_set_get_divs(bset); exp1 = isl_alloc_array(ctx, int, bset_n_div); exp2 = isl_alloc_array(ctx, int, obj_n_div); if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2)) goto error; div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2); bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1); obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2); res = basic_set_opt_lp(bset, max, obj); isl_mat_free(bset_div); isl_mat_free(div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return res; error: isl_mat_free(div); isl_mat_free(bset_div); free(exp1); free(exp2); isl_basic_set_free(bset); isl_aff_free(obj); return NULL; } /* Return the optimal (rational) value of "obj" over "bset". * If "max" is set, then the maximal value is computed. * Otherwise, the minimal value is computed. * * Return infinity or negative infinity if the optimal value is unbounded and * NaN if "bset" is empty. */ static __isl_give isl_val *isl_basic_set_opt_lp_val( __isl_keep isl_basic_set *bset, int max, __isl_keep isl_aff *obj) { isl_val *res; if (!bset || !obj) return NULL; if (isl_space_match(bset->dim, isl_dim_param, obj->ls->dim, isl_dim_param)) return isl_basic_set_opt_lp_val_aligned(bset, max, obj); bset = isl_basic_set_copy(bset); obj = isl_aff_copy(obj); bset = isl_basic_set_align_params(bset, isl_aff_get_domain_space(obj)); obj = isl_aff_align_params(obj, isl_basic_set_get_space(bset)); res = isl_basic_set_opt_lp_val_aligned(bset, max, obj); isl_basic_set_free(bset); isl_aff_free(obj); return res; } /* Return the minimal (rational) value of "obj" over "bset". * * Return negative infinity if the minimal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_min_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_lp_val(bset, 0, obj); } /* Return the maximal (rational) value of "obj" over "bset". * * Return infinity if the maximal value is unbounded and * NaN if "bset" is empty. */ __isl_give isl_val *isl_basic_set_max_lp_val(__isl_keep isl_basic_set *bset, __isl_keep isl_aff *obj) { return isl_basic_set_opt_lp_val(bset, 1, obj); } isl-0.16.1/polyhedron_detect_equalities.c0000664000175000017500000000131412645737061015427 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include int main(int argc, char **argv) { struct isl_ctx *ctx = isl_ctx_alloc(); struct isl_basic_set *bset; isl_printer *p; bset = isl_basic_set_read_from_file(ctx, stdin); bset = isl_basic_set_detect_equalities(bset); p = isl_printer_to_file(ctx, stdout); p = isl_printer_set_output_format(p, ISL_FORMAT_POLYLIB); p = isl_printer_print_basic_set(p, bset); isl_printer_free(p); isl_basic_set_free(bset); isl_ctx_free(ctx); return 0; } isl-0.16.1/isl_val_sioimath.c0000664000175000017500000000354312645737061013023 00000000000000#include /* Return a reference to an isl_val representing the unsigned * integer value stored in the "n" chunks of size "size" at "chunks". * The least significant chunk is assumed to be stored first. */ __isl_give isl_val *isl_val_int_from_chunks(isl_ctx *ctx, size_t n, size_t size, const void *chunks) { isl_val *v; v = isl_val_alloc(ctx); if (!v) return NULL; impz_import(isl_sioimath_reinit_big(v->n), n, -1, size, 0, 0, chunks); isl_sioimath_try_demote(v->n); isl_int_set_si(v->d, 1); return v; } /* Store a representation of the absolute value of the numerator of "v" * in terms of chunks of size "size" at "chunks". * The least significant chunk is stored first. * The number of chunks in the result can be obtained by calling * isl_val_n_abs_num_chunks. The user is responsible for allocating * enough memory to store the results. * * In the special case of a zero value, isl_val_n_abs_num_chunks will * return one, while impz_export will not fill in any chunks. We therefore * do it ourselves. */ int isl_val_get_abs_num_chunks(__isl_keep isl_val *v, size_t size, void *chunks) { isl_sioimath_scratchspace_t scratch; if (!v || !chunks) return -1; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return -1); impz_export(chunks, NULL, -1, size, 0, 0, isl_sioimath_bigarg_src(*v->n, &scratch)); if (isl_val_is_zero(v)) memset(chunks, 0, size); return 0; } /* Return the number of chunks of size "size" required to * store the absolute value of the numerator of "v". */ size_t isl_val_n_abs_num_chunks(__isl_keep isl_val *v, size_t size) { if (!v) return 0; if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational value", return 0); size *= 8; return (isl_sioimath_sizeinbase(*v->n, 2) + size - 1) / size; } isl-0.16.1/basis_reduction_tab.c0000664000175000017500000002103112645737060013467 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include "isl_tab.h" #include #include struct tab_lp { struct isl_ctx *ctx; struct isl_vec *row; struct isl_tab *tab; struct isl_tab_undo **stack; isl_int *obj; isl_int opt; isl_int opt_denom; isl_int tmp; isl_int tmp2; int neq; unsigned dim; /* number of constraints in initial product tableau */ int con_offset; /* objective function has fixed or no integer value */ int is_fixed; }; #ifdef USE_GMP_FOR_MP #define GBR_type mpq_t #define GBR_init(v) mpq_init(v) #define GBR_clear(v) mpq_clear(v) #define GBR_set(a,b) mpq_set(a,b) #define GBR_set_ui(a,b) mpq_set_ui(a,b,1) #define GBR_mul(a,b,c) mpq_mul(a,b,c) #define GBR_lt(a,b) (mpq_cmp(a,b) < 0) #define GBR_is_zero(a) (mpq_sgn(a) == 0) #define GBR_numref(a) mpq_numref(a) #define GBR_denref(a) mpq_denref(a) #define GBR_floor(a,b) mpz_fdiv_q(a,GBR_numref(b),GBR_denref(b)) #define GBR_ceil(a,b) mpz_cdiv_q(a,GBR_numref(b),GBR_denref(b)) #define GBR_set_num_neg(a, b) mpz_neg(GBR_numref(*a), b); #define GBR_set_den(a, b) mpz_set(GBR_denref(*a), b); #endif /* USE_GMP_FOR_MP */ #ifdef USE_IMATH_FOR_MP #include #define GBR_type mp_rat #define GBR_init(v) v = mp_rat_alloc() #define GBR_clear(v) mp_rat_free(v) #define GBR_set(a,b) mp_rat_copy(b,a) #define GBR_set_ui(a,b) mp_rat_set_uvalue(a,b,1) #define GBR_mul(a,b,c) mp_rat_mul(b,c,a) #define GBR_lt(a,b) (mp_rat_compare(a,b) < 0) #define GBR_is_zero(a) (mp_rat_compare_zero(a) == 0) #ifdef USE_SMALL_INT_OPT #define GBR_numref(a) isl_sioimath_encode_big(mp_rat_numer_ref(a)) #define GBR_denref(a) isl_sioimath_encode_big(mp_rat_denom_ref(a)) #define GBR_floor(a, b) isl_sioimath_fdiv_q((a), GBR_numref(b), GBR_denref(b)) #define GBR_ceil(a, b) isl_sioimath_cdiv_q((a), GBR_numref(b), GBR_denref(b)) #define GBR_set_num_neg(a, b) \ do { \ isl_sioimath_scratchspace_t scratch; \ impz_neg(mp_rat_numer_ref(*a), \ isl_sioimath_bigarg_src(*b, &scratch));\ } while (0) #define GBR_set_den(a, b) \ do { \ isl_sioimath_scratchspace_t scratch; \ impz_set(mp_rat_denom_ref(*a), \ isl_sioimath_bigarg_src(*b, &scratch));\ } while (0) #else /* USE_SMALL_INT_OPT */ #define GBR_numref(a) mp_rat_numer_ref(a) #define GBR_denref(a) mp_rat_denom_ref(a) #define GBR_floor(a,b) impz_fdiv_q(a,GBR_numref(b),GBR_denref(b)) #define GBR_ceil(a,b) impz_cdiv_q(a,GBR_numref(b),GBR_denref(b)) #define GBR_set_num_neg(a, b) impz_neg(GBR_numref(*a), b) #define GBR_set_den(a, b) impz_set(GBR_denref(*a), b) #endif /* USE_SMALL_INT_OPT */ #endif /* USE_IMATH_FOR_MP */ static struct tab_lp *init_lp(struct isl_tab *tab); static void set_lp_obj(struct tab_lp *lp, isl_int *row, int dim); static int solve_lp(struct tab_lp *lp); static void get_obj_val(struct tab_lp* lp, GBR_type *F); static void delete_lp(struct tab_lp *lp); static int add_lp_row(struct tab_lp *lp, isl_int *row, int dim); static void get_alpha(struct tab_lp* lp, int row, GBR_type *alpha); static int del_lp_row(struct tab_lp *lp) WARN_UNUSED; static int cut_lp_to_hyperplane(struct tab_lp *lp, isl_int *row); #define GBR_LP struct tab_lp #define GBR_lp_init(P) init_lp(P) #define GBR_lp_set_obj(lp, obj, dim) set_lp_obj(lp, obj, dim) #define GBR_lp_solve(lp) solve_lp(lp) #define GBR_lp_get_obj_val(lp, F) get_obj_val(lp, F) #define GBR_lp_delete(lp) delete_lp(lp) #define GBR_lp_next_row(lp) lp->neq #define GBR_lp_add_row(lp, row, dim) add_lp_row(lp, row, dim) #define GBR_lp_get_alpha(lp, row, alpha) get_alpha(lp, row, alpha) #define GBR_lp_del_row(lp) del_lp_row(lp) #define GBR_lp_is_fixed(lp) (lp)->is_fixed #define GBR_lp_cut(lp, obj) cut_lp_to_hyperplane(lp, obj) #include "basis_reduction_templ.c" /* Set up a tableau for the Cartesian product of bset with itself. * This could be optimized by first setting up a tableau for bset * and then performing the Cartesian product on the tableau. */ static struct isl_tab *gbr_tab(struct isl_tab *tab, struct isl_vec *row) { unsigned dim; struct isl_tab *prod; if (!tab || !row) return NULL; dim = tab->n_var; prod = isl_tab_product(tab, tab); if (isl_tab_extend_cons(prod, 3 * dim + 1) < 0) { isl_tab_free(prod); return NULL; } return prod; } static struct tab_lp *init_lp(struct isl_tab *tab) { struct tab_lp *lp = NULL; if (!tab) return NULL; lp = isl_calloc_type(tab->mat->ctx, struct tab_lp); if (!lp) return NULL; isl_int_init(lp->opt); isl_int_init(lp->opt_denom); isl_int_init(lp->tmp); isl_int_init(lp->tmp2); lp->dim = tab->n_var; lp->ctx = tab->mat->ctx; isl_ctx_ref(lp->ctx); lp->stack = isl_alloc_array(lp->ctx, struct isl_tab_undo *, lp->dim); lp->row = isl_vec_alloc(lp->ctx, 1 + 2 * lp->dim); if (!lp->row) goto error; lp->tab = gbr_tab(tab, lp->row); if (!lp->tab) goto error; lp->con_offset = lp->tab->n_con; lp->obj = NULL; lp->neq = 0; return lp; error: delete_lp(lp); return NULL; } static void set_lp_obj(struct tab_lp *lp, isl_int *row, int dim) { lp->obj = row; } static int solve_lp(struct tab_lp *lp) { enum isl_lp_result res; unsigned flags = 0; lp->is_fixed = 0; isl_int_set_si(lp->row->el[0], 0); isl_seq_cpy(lp->row->el + 1, lp->obj, lp->dim); isl_seq_neg(lp->row->el + 1 + lp->dim, lp->obj, lp->dim); if (lp->neq) flags = ISL_TAB_SAVE_DUAL; res = isl_tab_min(lp->tab, lp->row->el, lp->ctx->one, &lp->opt, &lp->opt_denom, flags); isl_int_mul_ui(lp->opt_denom, lp->opt_denom, 2); if (isl_int_abs_lt(lp->opt, lp->opt_denom)) { struct isl_vec *sample = isl_tab_get_sample_value(lp->tab); if (!sample) return -1; isl_seq_inner_product(lp->obj, sample->el + 1, lp->dim, &lp->tmp); isl_seq_inner_product(lp->obj, sample->el + 1 + lp->dim, lp->dim, &lp->tmp2); isl_int_cdiv_q(lp->tmp, lp->tmp, sample->el[0]); isl_int_fdiv_q(lp->tmp2, lp->tmp2, sample->el[0]); if (isl_int_ge(lp->tmp, lp->tmp2)) lp->is_fixed = 1; isl_vec_free(sample); } isl_int_divexact_ui(lp->opt_denom, lp->opt_denom, 2); if (res < 0) return -1; if (res != isl_lp_ok) isl_die(lp->ctx, isl_error_internal, "unexpected missing (bounded) solution", return -1); return 0; } /* The current objective function has a fixed (or no) integer value. * Cut the tableau to the hyperplane that fixes this value in * both halves of the tableau. * Return 1 if the resulting tableau is empty. */ static int cut_lp_to_hyperplane(struct tab_lp *lp, isl_int *row) { enum isl_lp_result res; isl_int_set_si(lp->row->el[0], 0); isl_seq_cpy(lp->row->el + 1, row, lp->dim); isl_seq_clr(lp->row->el + 1 + lp->dim, lp->dim); res = isl_tab_min(lp->tab, lp->row->el, lp->ctx->one, &lp->tmp, NULL, 0); if (res != isl_lp_ok) return -1; isl_int_neg(lp->row->el[0], lp->tmp); if (isl_tab_add_eq(lp->tab, lp->row->el) < 0) return -1; isl_seq_cpy(lp->row->el + 1 + lp->dim, row, lp->dim); isl_seq_clr(lp->row->el + 1, lp->dim); if (isl_tab_add_eq(lp->tab, lp->row->el) < 0) return -1; lp->con_offset += 2; return lp->tab->empty; } static void get_obj_val(struct tab_lp* lp, GBR_type *F) { GBR_set_num_neg(F, lp->opt); GBR_set_den(F, lp->opt_denom); } static void delete_lp(struct tab_lp *lp) { if (!lp) return; isl_int_clear(lp->opt); isl_int_clear(lp->opt_denom); isl_int_clear(lp->tmp); isl_int_clear(lp->tmp2); isl_vec_free(lp->row); free(lp->stack); isl_tab_free(lp->tab); isl_ctx_deref(lp->ctx); free(lp); } static int add_lp_row(struct tab_lp *lp, isl_int *row, int dim) { lp->stack[lp->neq] = isl_tab_snap(lp->tab); isl_int_set_si(lp->row->el[0], 0); isl_seq_cpy(lp->row->el + 1, row, lp->dim); isl_seq_neg(lp->row->el + 1 + lp->dim, row, lp->dim); if (isl_tab_add_valid_eq(lp->tab, lp->row->el) < 0) return -1; return lp->neq++; } static void get_alpha(struct tab_lp* lp, int row, GBR_type *alpha) { row += lp->con_offset; GBR_set_num_neg(alpha, lp->tab->dual->el[1 + row]); GBR_set_den(alpha, lp->tab->dual->el[0]); } static int del_lp_row(struct tab_lp *lp) { lp->neq--; return isl_tab_rollback(lp->tab, lp->stack[lp->neq]); } isl-0.16.1/ltmain.sh0000644000175000017500000115505212423122120011125 00000000000000#! /bin/sh # libtool (GNU libtool) 2.4.2.418 # Provide generalized library-building support services. # Written by Gordon Matzigkeit , 1996 # Copyright (C) 1996-2013 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # GNU Libtool is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . PROGRAM=libtool PACKAGE=libtool VERSION=2.4.2.418 package_revision=2.4.2.418 ## ------ ## ## Usage. ## ## ------ ## # Run './libtool --help' for help with using this script from the # command line. ## ------------------------------- ## ## User overridable command paths. ## ## ------------------------------- ## # After configure completes, it has a better idea of some of the # shell tools we need than the defaults used by the functions shared # with bootstrap, so set those here where they can still be over- # ridden by the user, but otherwise take precedence. : ${AUTOCONF="autoconf"} : ${AUTOMAKE="automake"} ## -------------------------- ## ## Source external libraries. ## ## -------------------------- ## # Much of our low-level functionality needs to be sourced from external # libraries, which are installed to $pkgauxdir. # Set a version string for this script. scriptversion=2013-08-23.20; # UTC # General shell script boiler plate, and helper functions. # Written by Gary V. Vaughan, 2004 # Copyright (C) 2004-2013 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # As a special exception to the GNU General Public License, if you distribute # this file as part of a program or library that is built using GNU Libtool, # you may include this file under the same distribution terms that you use # for the rest of that program. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNES FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Please report bugs or propose patches to gary@gnu.org. ## ------ ## ## Usage. ## ## ------ ## # Evaluate this file near the top of your script to gain access to # the functions and variables defined here: # # . `echo "$0" | ${SED-sed} 's|[^/]*$||'`/build-aux/funclib.sh # # If you need to override any of the default environment variable # settings, do that before evaluating this file. ## -------------------- ## ## Shell normalisation. ## ## -------------------- ## # Some shells need a little help to be as Bourne compatible as possible. # Before doing anything else, make sure all that help has been provided! DUALCASE=1; export DUALCASE # for MKS sh if test -n "${ZSH_VERSION+set}" && (emulate sh) >/dev/null 2>&1; then : emulate sh NULLCMD=: # Pre-4.2 versions of Zsh do word splitting on ${1+"$@"}, which # is contrary to our usage. Disable this feature. alias -g '${1+"$@"}'='"$@"' setopt NO_GLOB_SUBST else case `(set -o) 2>/dev/null` in *posix*) set -o posix ;; esac fi # NLS nuisances: We save the old values in case they are required later. _G_user_locale= _G_safe_locale= for _G_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test set = \"\${$_G_var+set}\"; then save_$_G_var=\$$_G_var $_G_var=C export $_G_var _G_user_locale=\"$_G_var=\\\$save_\$_G_var; \$_G_user_locale\" _G_safe_locale=\"$_G_var=C; \$_G_safe_locale\" fi" done # CDPATH. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH # Make sure IFS has a sensible default sp=' ' nl=' ' IFS="$sp $nl" # There are still modern systems that have problems with 'echo' mis- # handling backslashes, among others, so make sure $bs_echo is set to a # command that correctly interprets backslashes. # (this code from Autoconf 2.68) # Printing a long string crashes Solaris 7 /usr/bin/printf. bs_echo='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' bs_echo=$bs_echo$bs_echo$bs_echo$bs_echo$bs_echo bs_echo=$bs_echo$bs_echo$bs_echo$bs_echo$bs_echo$bs_echo # Prefer a ksh shell builtin over an external printf program on Solaris, # but without wasting forks for bash or zsh. if test -z "$BASH_VERSION$ZSH_VERSION" \ && (test "X`print -r -- $bs_echo`" = "X$bs_echo") 2>/dev/null; then bs_echo='print -r --' bs_echo_n='print -rn --' elif (test "X`printf %s $bs_echo`" = "X$bs_echo") 2>/dev/null; then bs_echo='printf %s\n' bs_echo_n='printf %s' else if test "X`(/usr/ucb/echo -n -n $bs_echo) 2>/dev/null`" = "X-n $bs_echo"; then bs_echo_body='eval /usr/ucb/echo -n "$1$nl"' bs_echo_n='/usr/ucb/echo -n' else bs_echo_body='eval expr "X$1" : "X\\(.*\\)"' bs_echo_n_body='eval arg=$1; case $arg in #( *"$nl"*) expr "X$arg" : "X\\(.*\\)$nl"; arg=`expr "X$arg" : ".*$nl\\(.*\\)"`;; esac; expr "X$arg" : "X\\(.*\\)" | tr -d "$nl" ' export bs_echo_n_body bs_echo_n='sh -c $bs_echo_n_body bs_echo' fi export bs_echo_body bs_echo='sh -c $bs_echo_body bs_echo' fi ## ------------------------------- ## ## User overridable command paths. ## ## ------------------------------- ## # All uppercase variable names are used for environment variables. These # variables can be overridden by the user before calling a script that # uses them if a suitable command of that name is not already available # in the command search PATH. : ${CP="cp -f"} : ${ECHO="$bs_echo"} : ${EGREP="grep -E"} : ${FGREP="grep -F"} : ${GREP="grep"} : ${LN_S="ln -s"} : ${MAKE="make"} : ${MKDIR="mkdir"} : ${MV="mv -f"} : ${RM="rm -f"} : ${SED="sed"} : ${SHELL="${CONFIG_SHELL-/bin/sh}"} ## -------------------- ## ## Useful sed snippets. ## ## -------------------- ## sed_dirname='s|/[^/]*$||' sed_basename='s|^.*/||' # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. sed_quote_subst='s|\([`"$\\]\)|\\\1|g' # Same as above, but do not quote variable references. sed_double_quote_subst='s/\(["`\\]\)/\\\1/g' # Sed substitution that turns a string into a regex matching for the # string literally. sed_make_literal_regex='s|[].[^$\\*\/]|\\&|g' # Sed substitution that converts a w32 file name or path # that contains forward slashes, into one that contains # (escaped) backslashes. A very naive implementation. sed_naive_backslashify='s|\\\\*|\\|g;s|/|\\|g;s|\\|\\\\|g' # Re-'\' parameter expansions in output of sed_double_quote_subst that # were '\'-ed in input to the same. If an odd number of '\' preceded a # '$' in input to sed_double_quote_subst, that '$' was protected from # expansion. Since each input '\' is now two '\'s, look for any number # of runs of four '\'s followed by two '\'s and then a '$'. '\' that '$'. _G_bs='\\' _G_bs2='\\\\' _G_bs4='\\\\\\\\' _G_dollar='\$' sed_double_backslash="\ s/$_G_bs4/&\\ /g s/^$_G_bs2$_G_dollar/$_G_bs&/ s/\\([^$_G_bs]\\)$_G_bs2$_G_dollar/\\1$_G_bs2$_G_bs$_G_dollar/g s/\n//g" ## ----------------- ## ## Global variables. ## ## ----------------- ## # Except for the global variables explicitly listed below, the following # functions in the '^func_' namespace, and the '^require_' namespace # variables initialised in the 'Resource management' section, sourcing # this file will not pollute your global namespace with anything # else. There's no portable way to scope variables in Bourne shell # though, so actually running these functions will sometimes place # results into a variable named after the function, and often use # temporary variables in the '^_G_' namespace. If you are careful to # avoid using those namespaces casually in your sourcing script, things # should continue to work as you expect. And, of course, you can freely # overwrite any of the functions or variables defined here before # calling anything to customize them. EXIT_SUCCESS=0 EXIT_FAILURE=1 EXIT_MISMATCH=63 # $? = 63 is used to indicate version mismatch to missing. EXIT_SKIP=77 # $? = 77 is used to indicate a skipped test to automake. # Allow overriding, eg assuming that you follow the convention of # putting '$debug_cmd' at the start of all your functions, you can get # bash to show function call trace with: # # debug_cmd='eval echo "${FUNCNAME[0]} $*" >&2' bash your-script-name debug_cmd=${debug_cmd-":"} exit_cmd=: # By convention, finish your script with: # # exit $exit_status # # so that you can set exit_status to non-zero if you want to indicate # something went wrong during execution without actually bailing out at # the point of failure. exit_status=$EXIT_SUCCESS # Work around backward compatibility issue on IRIX 6.5. On IRIX 6.4+, sh # is ksh but when the shell is invoked as "sh" and the current value of # the _XPG environment variable is not equal to 1 (one), the special # positional parameter $0, within a function call, is the name of the # function. progpath=$0 # The name of this program. progname=`$bs_echo "$progpath" |$SED "$sed_basename"` # Make sure we have an absolute progpath for reexecution: case $progpath in [\\/]*|[A-Za-z]:\\*) ;; *[\\/]*) progdir=`$bs_echo "$progpath" |$SED "$sed_dirname"` progdir=`cd "$progdir" && pwd` progpath=$progdir/$progname ;; *) _G_IFS=$IFS IFS=${PATH_SEPARATOR-:} for progdir in $PATH; do IFS=$_G_IFS test -x "$progdir/$progname" && break done IFS=$_G_IFS test -n "$progdir" || progdir=`pwd` progpath=$progdir/$progname ;; esac ## ----------------- ## ## Standard options. ## ## ----------------- ## # The following options affect the operation of the functions defined # below, and should be set appropriately depending on run-time para- # meters passed on the command line. opt_dry_run=false opt_quiet=false opt_verbose=false # Categories 'all' and 'none' are always available. Append any others # you will pass as the first argument to func_warning from your own # code. warning_categories= # By default, display warnings according to 'opt_warning_types'. Set # 'warning_func' to ':' to elide all warnings, or func_fatal_error to # treat the next displayed warning as a fatal error. warning_func=func_warn_and_continue # Set to 'all' to display all warnings, 'none' to suppress all # warnings, or a space delimited list of some subset of # 'warning_categories' to display only the listed warnings. opt_warning_types=all ## -------------------- ## ## Resource management. ## ## -------------------- ## # This section contains definitions for functions that each ensure a # particular resource (a file, or a non-empty configuration variable for # example) is available, and if appropriate to extract default values # from pertinent package files. Call them using their associated # 'require_*' variable to ensure that they are executed, at most, once. # # It's entirely deliberate that calling these functions can set # variables that don't obey the namespace limitations obeyed by the rest # of this file, in order that that they be as useful as possible to # callers. # require_term_colors # ------------------- # Allow display of bold text on terminals that support it. require_term_colors=func_require_term_colors func_require_term_colors () { $debug_cmd test -t 1 && { # COLORTERM and USE_ANSI_COLORS environment variables take # precedence, because most terminfo databases neglect to describe # whether color sequences are supported. test -n "${COLORTERM+set}" && : ${USE_ANSI_COLORS="1"} if test 1 = "$USE_ANSI_COLORS"; then # Standard ANSI escape sequences tc_reset='' tc_bold=''; tc_standout='' tc_red=''; tc_green='' tc_blue=''; tc_cyan='' else # Otherwise trust the terminfo database after all. test -n "`tput sgr0 2>/dev/null`" && { tc_reset=`tput sgr0` test -n "`tput bold 2>/dev/null`" && tc_bold=`tput bold` tc_standout=$tc_bold test -n "`tput smso 2>/dev/null`" && tc_standout=`tput smso` test -n "`tput setaf 1 2>/dev/null`" && tc_red=`tput setaf 1` test -n "`tput setaf 2 2>/dev/null`" && tc_green=`tput setaf 2` test -n "`tput setaf 4 2>/dev/null`" && tc_blue=`tput setaf 4` test -n "`tput setaf 5 2>/dev/null`" && tc_cyan=`tput setaf 5` } fi } require_term_colors=: } ## ----------------- ## ## Function library. ## ## ----------------- ## # This section contains a variety of useful functions to call in your # scripts. Take note of the portable wrappers for features provided by # some modern shells, which will fall back to slower equivalents on # less featureful shells. # func_append VAR VALUE # --------------------- # Append VALUE onto the existing contents of VAR. # We should try to minimise forks, especially on Windows where they are # unreasonably slow, so skip the feature probes when bash or zsh are # being used: if test set = "${BASH_VERSION+set}${ZSH_VERSION+set}"; then : ${_G_HAVE_ARITH_OP="yes"} : ${_G_HAVE_XSI_OPS="yes"} # The += operator was introduced in bash 3.1 case $BASH_VERSION in [12].* | 3.0 | 3.0*) ;; *) : ${_G_HAVE_PLUSEQ_OP="yes"} ;; esac fi # _G_HAVE_PLUSEQ_OP # Can be empty, in which case the shell is probed, "yes" if += is # useable or anything else if it does not work. test -z "$_G_HAVE_PLUSEQ_OP" \ && (eval 'x=a; x+=" b"; test "a b" = "$x"') 2>/dev/null \ && _G_HAVE_PLUSEQ_OP=yes if test yes = "$_G_HAVE_PLUSEQ_OP" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_append () { $debug_cmd eval "$1+=\$2" }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_append () { $debug_cmd eval "$1=\$$1\$2" } fi # func_append_quoted VAR VALUE # ---------------------------- # Quote VALUE and append to the end of shell variable VAR, separated # by a space. if test yes = "$_G_HAVE_PLUSEQ_OP"; then eval 'func_append_quoted () { $debug_cmd func_quote_for_eval "$2" eval "$1+=\\ \$func_quote_for_eval_result" }' else func_append_quoted () { $debug_cmd func_quote_for_eval "$2" eval "$1=\$$1\\ \$func_quote_for_eval_result" } fi # func_append_uniq VAR VALUE # -------------------------- # Append unique VALUE onto the existing contents of VAR, assuming # entries are delimited by the first character of VALUE. For example: # # func_append_uniq options " --another-option option-argument" # # will only append to $options if " --another-option option-argument " # is not already present somewhere in $options already (note spaces at # each end implied by leading space in second argument). func_append_uniq () { $debug_cmd eval _G_current_value='`$bs_echo $'$1'`' _G_delim=`expr "$2" : '\(.\)'` case $_G_delim$_G_current_value$_G_delim in *"$2$_G_delim"*) ;; *) func_append "$@" ;; esac } # func_arith TERM... # ------------------ # Set func_arith_result to the result of evaluating TERMs. test -z "$_G_HAVE_ARITH_OP" \ && (eval 'test 2 = $(( 1 + 1 ))') 2>/dev/null \ && _G_HAVE_ARITH_OP=yes if test yes = "$_G_HAVE_ARITH_OP"; then eval 'func_arith () { $debug_cmd func_arith_result=$(( $* )) }' else func_arith () { $debug_cmd func_arith_result=`expr "$@"` } fi # func_basename FILE # ------------------ # Set func_basename_result to FILE with everything up to and including # the last / stripped. if test yes = "$_G_HAVE_XSI_OPS"; then # If this shell supports suffix pattern removal, then use it to avoid # forking. Hide the definitions single quotes in case the shell chokes # on unsupported syntax... _b='func_basename_result=${1##*/}' _d='case $1 in */*) func_dirname_result=${1%/*}$2 ;; * ) func_dirname_result=$3 ;; esac' else # ...otherwise fall back to using sed. _b='func_basename_result=`$ECHO "$1" |$SED "$sed_basename"`' _d='func_dirname_result=`$ECHO "$1" |$SED "$sed_dirname"` if test "X$func_dirname_result" = "X$1"; then func_dirname_result=$3 else func_append func_dirname_result "$2" fi' fi eval 'func_basename () { $debug_cmd '"$_b"' }' # func_dirname FILE APPEND NONDIR_REPLACEMENT # ------------------------------------------- # Compute the dirname of FILE. If nonempty, add APPEND to the result, # otherwise set result to NONDIR_REPLACEMENT. eval 'func_dirname () { $debug_cmd '"$_d"' }' # func_dirname_and_basename FILE APPEND NONDIR_REPLACEMENT # -------------------------------------------------------- # Perform func_basename and func_dirname in a single function # call: # dirname: Compute the dirname of FILE. If nonempty, # add APPEND to the result, otherwise set result # to NONDIR_REPLACEMENT. # value returned in "$func_dirname_result" # basename: Compute filename of FILE. # value retuned in "$func_basename_result" # For efficiency, we do not delegate to the functions above but instead # duplicate the functionality here. eval 'func_dirname_and_basename () { $debug_cmd '"$_b"' '"$_d"' }' # func_echo ARG... # ---------------- # Echo program name prefixed message. func_echo () { $debug_cmd _G_message=$* func_echo_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_IFS $bs_echo "$progname: $_G_line" done IFS=$func_echo_IFS } # func_echo_all ARG... # -------------------- # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } # func_echo_infix_1 INFIX ARG... # ------------------------------ # Echo program name, followed by INFIX on the first line, with any # additional lines not showing INFIX. func_echo_infix_1 () { $debug_cmd $require_term_colors _G_infix=$1; shift _G_indent=$_G_infix _G_prefix="$progname: $_G_infix: " _G_message=$* # Strip color escape sequences before counting printable length for _G_tc in "$tc_reset" "$tc_bold" "$tc_standout" "$tc_red" "$tc_green" "$tc_blue" "$tc_cyan" do test -n "$_G_tc" && { _G_esc_tc=`$bs_echo "$_G_tc" | sed "$sed_make_literal_regex"` _G_indent=`$bs_echo "$_G_indent" | sed "s|$_G_esc_tc||g"` } done _G_indent="$progname: "`echo "$_G_indent" | sed 's|.| |g'`" " ## exclude from sc_prohibit_nested_quotes func_echo_infix_1_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_infix_1_IFS $bs_echo "$_G_prefix$tc_bold$_G_line$tc_reset" >&2 _G_prefix=$_G_indent done IFS=$func_echo_infix_1_IFS } # func_error ARG... # ----------------- # Echo program name prefixed message to standard error. func_error () { $debug_cmd $require_term_colors func_echo_infix_1 " $tc_standout${tc_red}error$tc_reset" "$*" >&2 } # func_fatal_error ARG... # ----------------------- # Echo program name prefixed message to standard error, and exit. func_fatal_error () { $debug_cmd func_error "$*" exit $EXIT_FAILURE } # func_grep EXPRESSION FILENAME # ----------------------------- # Check whether EXPRESSION matches any line of FILENAME, without output. func_grep () { $debug_cmd $GREP "$1" "$2" >/dev/null 2>&1 } # func_len STRING # --------------- # Set func_len_result to the length of STRING. STRING may not # start with a hyphen. test -z "$_G_HAVE_XSI_OPS" \ && (eval 'x=a/b/c; test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \ && _G_HAVE_XSI_OPS=yes if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_len () { $debug_cmd func_len_result=${#1} }' else func_len () { $debug_cmd func_len_result=`expr "$1" : ".*" 2>/dev/null || echo $max_cmd_len` } fi # func_mkdir_p DIRECTORY-PATH # --------------------------- # Make sure the entire path to DIRECTORY-PATH is available. func_mkdir_p () { $debug_cmd _G_directory_path=$1 _G_dir_list= if test -n "$_G_directory_path" && test : != "$opt_dry_run"; then # Protect directory names starting with '-' case $_G_directory_path in -*) _G_directory_path=./$_G_directory_path ;; esac # While some portion of DIR does not yet exist... while test ! -d "$_G_directory_path"; do # ...make a list in topmost first order. Use a colon delimited # list incase some portion of path contains whitespace. _G_dir_list=$_G_directory_path:$_G_dir_list # If the last portion added has no slash in it, the list is done case $_G_directory_path in */*) ;; *) break ;; esac # ...otherwise throw away the child directory and loop _G_directory_path=`$ECHO "$_G_directory_path" | $SED -e "$sed_dirname"` done _G_dir_list=`$ECHO "$_G_dir_list" | $SED 's|:*$||'` func_mkdir_p_IFS=$IFS; IFS=: for _G_dir in $_G_dir_list; do IFS=$func_mkdir_p_IFS # mkdir can fail with a 'File exist' error if two processes # try to create one of the directories concurrently. Don't # stop in that case! $MKDIR "$_G_dir" 2>/dev/null || : done IFS=$func_mkdir_p_IFS # Bail out if we (or some other process) failed to create a directory. test -d "$_G_directory_path" || \ func_fatal_error "Failed to create '$1'" fi } # func_mktempdir [BASENAME] # ------------------------- # Make a temporary directory that won't clash with other running # libtool processes, and avoids race conditions if possible. If # given, BASENAME is the basename for that directory. func_mktempdir () { $debug_cmd _G_template=${TMPDIR-/tmp}/${1-$progname} if test : = "$opt_dry_run"; then # Return a directory name, but don't create it in dry-run mode _G_tmpdir=$_G_template-$$ else # If mktemp works, use that first and foremost _G_tmpdir=`mktemp -d "$_G_template-XXXXXXXX" 2>/dev/null` if test ! -d "$_G_tmpdir"; then # Failing that, at least try and use $RANDOM to avoid a race _G_tmpdir=$_G_template-${RANDOM-0}$$ func_mktempdir_umask=`umask` umask 0077 $MKDIR "$_G_tmpdir" umask $func_mktempdir_umask fi # If we're not in dry-run mode, bomb out on failure test -d "$_G_tmpdir" || \ func_fatal_error "cannot create temporary directory '$_G_tmpdir'" fi $ECHO "$_G_tmpdir" } # func_normal_abspath PATH # ------------------------ # Remove doubled-up and trailing slashes, "." path components, # and cancel out any ".." path components in PATH after making # it an absolute path. func_normal_abspath () { $debug_cmd # These SED scripts presuppose an absolute path with a trailing slash. _G_pathcar='s|^/\([^/]*\).*$|\1|' _G_pathcdr='s|^/[^/]*||' _G_removedotparts=':dotsl s|/\./|/|g t dotsl s|/\.$|/|' _G_collapseslashes='s|/\{1,\}|/|g' _G_finalslash='s|/*$|/|' # Start from root dir and reassemble the path. func_normal_abspath_result= func_normal_abspath_tpath=$1 func_normal_abspath_altnamespace= case $func_normal_abspath_tpath in "") # Empty path, that just means $cwd. func_stripname '' '/' "`pwd`" func_normal_abspath_result=$func_stripname_result return ;; # The next three entries are used to spot a run of precisely # two leading slashes without using negated character classes; # we take advantage of case's first-match behaviour. ///*) # Unusual form of absolute path, do nothing. ;; //*) # Not necessarily an ordinary path; POSIX reserves leading '//' # and for example Cygwin uses it to access remote file shares # over CIFS/SMB, so we conserve a leading double slash if found. func_normal_abspath_altnamespace=/ ;; /*) # Absolute path, do nothing. ;; *) # Relative path, prepend $cwd. func_normal_abspath_tpath=`pwd`/$func_normal_abspath_tpath ;; esac # Cancel out all the simple stuff to save iterations. We also want # the path to end with a slash for ease of parsing, so make sure # there is one (and only one) here. func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_removedotparts" -e "$_G_collapseslashes" -e "$_G_finalslash"` while :; do # Processed it all yet? if test / = "$func_normal_abspath_tpath"; then # If we ascended to the root using ".." the result may be empty now. if test -z "$func_normal_abspath_result"; then func_normal_abspath_result=/ fi break fi func_normal_abspath_tcomponent=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_pathcar"` func_normal_abspath_tpath=`$ECHO "$func_normal_abspath_tpath" | $SED \ -e "$_G_pathcdr"` # Figure out what to do with it case $func_normal_abspath_tcomponent in "") # Trailing empty path component, ignore it. ;; ..) # Parent dir; strip last assembled component from result. func_dirname "$func_normal_abspath_result" func_normal_abspath_result=$func_dirname_result ;; *) # Actual path component, append it. func_append func_normal_abspath_result "/$func_normal_abspath_tcomponent" ;; esac done # Restore leading double-slash if one was found on entry. func_normal_abspath_result=$func_normal_abspath_altnamespace$func_normal_abspath_result } # func_notquiet ARG... # -------------------- # Echo program name prefixed message only when not in quiet mode. func_notquiet () { $debug_cmd $opt_quiet || func_echo ${1+"$@"} # A bug in bash halts the script if the last line of a function # fails when set -e is in force, so we need another command to # work around that: : } # func_relative_path SRCDIR DSTDIR # -------------------------------- # Set func_relative_path_result to the relative path from SRCDIR to DSTDIR. func_relative_path () { $debug_cmd func_relative_path_result= func_normal_abspath "$1" func_relative_path_tlibdir=$func_normal_abspath_result func_normal_abspath "$2" func_relative_path_tbindir=$func_normal_abspath_result # Ascend the tree starting from libdir while :; do # check if we have found a prefix of bindir case $func_relative_path_tbindir in $func_relative_path_tlibdir) # found an exact match func_relative_path_tcancelled= break ;; $func_relative_path_tlibdir*) # found a matching prefix func_stripname "$func_relative_path_tlibdir" '' "$func_relative_path_tbindir" func_relative_path_tcancelled=$func_stripname_result if test -z "$func_relative_path_result"; then func_relative_path_result=. fi break ;; *) func_dirname $func_relative_path_tlibdir func_relative_path_tlibdir=$func_dirname_result if test -z "$func_relative_path_tlibdir"; then # Have to descend all the way to the root! func_relative_path_result=../$func_relative_path_result func_relative_path_tcancelled=$func_relative_path_tbindir break fi func_relative_path_result=../$func_relative_path_result ;; esac done # Now calculate path; take care to avoid doubling-up slashes. func_stripname '' '/' "$func_relative_path_result" func_relative_path_result=$func_stripname_result func_stripname '/' '/' "$func_relative_path_tcancelled" if test -n "$func_stripname_result"; then func_append func_relative_path_result "/$func_stripname_result" fi # Normalisation. If bindir is libdir, return '.' else relative path. if test -n "$func_relative_path_result"; then func_stripname './' '' "$func_relative_path_result" func_relative_path_result=$func_stripname_result fi test -n "$func_relative_path_result" || func_relative_path_result=. : } # func_quote_for_eval ARG... # -------------------------- # Aesthetically quote ARGs to be evaled later. # This function returns two values: # i) func_quote_for_eval_result # double-quoted, suitable for a subsequent eval # ii) func_quote_for_eval_unquoted_result # has all characters that are still active within double # quotes backslashified. func_quote_for_eval () { $debug_cmd func_quote_for_eval_unquoted_result= func_quote_for_eval_result= while test 0 -lt $#; do case $1 in *[\\\`\"\$]*) _G_unquoted_arg=`printf '%s\n' "$1" |$SED "$sed_quote_subst"` ;; *) _G_unquoted_arg=$1 ;; esac if test -n "$func_quote_for_eval_unquoted_result"; then func_append func_quote_for_eval_unquoted_result " $_G_unquoted_arg" else func_append func_quote_for_eval_unquoted_result "$_G_unquoted_arg" fi case $_G_unquoted_arg in # Double-quote args containing shell metacharacters to delay # word splitting, command substitution and variable expansion # for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") _G_quoted_arg=\"$_G_unquoted_arg\" ;; *) _G_quoted_arg=$_G_unquoted_arg ;; esac if test -n "$func_quote_for_eval_result"; then func_append func_quote_for_eval_result " $_G_quoted_arg" else func_append func_quote_for_eval_result "$_G_quoted_arg" fi shift done } # func_quote_for_expand ARG # ------------------------- # Aesthetically quote ARG to be evaled later; same as above, # but do not quote variable references. func_quote_for_expand () { $debug_cmd case $1 in *[\\\`\"]*) _G_arg=`$ECHO "$1" | $SED \ -e "$sed_double_quote_subst" -e "$sed_double_backslash"` ;; *) _G_arg=$1 ;; esac case $_G_arg in # Double-quote args containing shell metacharacters to delay # word splitting and command substitution for a subsequent eval. # Many Bourne shells cannot handle close brackets correctly # in scan sets, so we specify it separately. *[\[\~\#\^\&\*\(\)\{\}\|\;\<\>\?\'\ \ ]*|*]*|"") _G_arg=\"$_G_arg\" ;; esac func_quote_for_expand_result=$_G_arg } # func_stripname PREFIX SUFFIX NAME # --------------------------------- # strip PREFIX and SUFFIX from NAME, and store in func_stripname_result. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_stripname () { $debug_cmd # pdksh 5.2.14 does not do ${X%$Y} correctly if both X and Y are # positional parameters, so assign one to ordinary variable first. func_stripname_result=$3 func_stripname_result=${func_stripname_result#"$1"} func_stripname_result=${func_stripname_result%"$2"} }' else func_stripname () { $debug_cmd case $2 in .*) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%\\\\$2\$%%"`;; *) func_stripname_result=`$ECHO "$3" | $SED -e "s%^$1%%" -e "s%$2\$%%"`;; esac } fi # func_show_eval CMD [FAIL_EXP] # ----------------------------- # Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. func_show_eval () { $debug_cmd _G_cmd=$1 _G_fail_exp=${2-':'} func_quote_for_expand "$_G_cmd" eval "func_notquiet $func_quote_for_expand_result" $opt_dry_run || { eval "$_G_cmd" _G_status=$? if test 0 -ne "$_G_status"; then eval "(exit $_G_status); $_G_fail_exp" fi } } # func_show_eval_locale CMD [FAIL_EXP] # ------------------------------------ # Unless opt_quiet is true, then output CMD. Then, if opt_dryrun is # not true, evaluate CMD. If the evaluation of CMD fails, and FAIL_EXP # is given, then evaluate it. Use the saved locale for evaluation. func_show_eval_locale () { $debug_cmd _G_cmd=$1 _G_fail_exp=${2-':'} $opt_quiet || { func_quote_for_expand "$_G_cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || { eval "$_G_user_locale $_G_cmd" _G_status=$? eval "$_G_safe_locale" if test 0 -ne "$_G_status"; then eval "(exit $_G_status); $_G_fail_exp" fi } } # func_tr_sh # ---------- # Turn $1 into a string suitable for a shell variable name. # Result is stored in $func_tr_sh_result. All characters # not in the set a-zA-Z0-9_ are replaced with '_'. Further, # if $1 begins with a digit, a '_' is prepended as well. func_tr_sh () { $debug_cmd case $1 in [0-9]* | *[!a-zA-Z0-9_]*) func_tr_sh_result=`$ECHO "$1" | $SED -e 's/^\([0-9]\)/_\1/' -e 's/[^a-zA-Z0-9_]/_/g'` ;; * ) func_tr_sh_result=$1 ;; esac } # func_verbose ARG... # ------------------- # Echo program name prefixed message in verbose mode only. func_verbose () { $debug_cmd $opt_verbose && func_echo "$*" : } # func_warn_and_continue ARG... # ----------------------------- # Echo program name prefixed warning message to standard error. func_warn_and_continue () { $debug_cmd $require_term_colors func_echo_infix_1 "${tc_red}warning$tc_reset" "$*" >&2 } # func_warning CATEGORY ARG... # ---------------------------- # Echo program name prefixed warning message to standard error. Warning # messages can be filtered according to CATEGORY, where this function # elides messages where CATEGORY is not listed in the global variable # 'opt_warning_types'. func_warning () { $debug_cmd # CATEGORY must be in the warning_categories list! case " $warning_categories " in *" $1 "*) ;; *) func_internal_error "invalid warning category '$1'" ;; esac _G_category=$1 shift case " $opt_warning_types " in *" $_G_category "*) $warning_func ${1+"$@"} ;; esac } # func_sort_ver VER1 VER2 # ----------------------- # 'sort -V' is not generally available. # Note this deviates from the version comparison in automake # in that it treats 1.5 < 1.5.0, and treats 1.4.4a < 1.4-p3a # but this should suffice as we won't be specifying old # version formats or redundant trailing .0 in bootstrap.conf. # If we did want full compatibility then we should probably # use m4_version_compare from autoconf. func_sort_ver () { $debug_cmd ver1=$1 ver2=$2 # Split on '.' and compare each component. i=1 while :; do p1=`echo "$ver1" |cut -d. -f$i` p2=`echo "$ver2" |cut -d. -f$i` if test ! "$p1"; then echo "$1 $2" break elif test ! "$p2"; then echo "$2 $1" break elif test ! "$p1" = "$p2"; then if test "$p1" -gt "$p2" 2>/dev/null; then # numeric comparison echo "$2 $1" elif test "$p2" -gt "$p1" 2>/dev/null; then # numeric comparison echo "$1 $2" else # numeric, then lexicographic comparison lp=`printf "$p1\n$p2\n" |sort -n |tail -n1` if test "$lp" = "$p2"; then echo "$1 $2" else echo "$2 $1" fi fi break fi i=`expr $i + 1` done } # Local variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC" # time-stamp-time-zone: "UTC" # End: #! /bin/sh # Set a version string for this script. scriptversion=2012-10-21.11; # UTC # A portable, pluggable option parser for Bourne shell. # Written by Gary V. Vaughan, 2010 # Copyright (C) 2010-2013 Free Software Foundation, Inc. # This is free software; see the source for copying conditions. There is NO # warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # Please report bugs or propose patches to gary@gnu.org. ## ------ ## ## Usage. ## ## ------ ## # This file is a library for parsing options in your shell scripts along # with assorted other useful supporting features that you can make use # of too. # # For the simplest scripts you might need only: # # #!/bin/sh # . relative/path/to/funclib.sh # . relative/path/to/options-parser # scriptversion=1.0 # func_options ${1+"$@"} # eval set dummy "$func_options_result"; shift # ...rest of your script... # # In order for the '--version' option to work, you will need to have a # suitably formatted comment like the one at the top of this file # starting with '# Written by ' and ending with '# warranty; '. # # For '-h' and '--help' to work, you will also need a one line # description of your script's purpose in a comment directly above the # '# Written by ' line, like the one at the top of this file. # # The default options also support '--debug', which will turn on shell # execution tracing (see the comment above debug_cmd below for another # use), and '--verbose' and the func_verbose function to allow your script # to display verbose messages only when your user has specified # '--verbose'. # # After sourcing this file, you can plug processing for additional # options by amending the variables from the 'Configuration' section # below, and following the instructions in the 'Option parsing' # section further down. ## -------------- ## ## Configuration. ## ## -------------- ## # You should override these variables in your script after sourcing this # file so that they reflect the customisations you have added to the # option parser. # The usage line for option parsing errors and the start of '-h' and # '--help' output messages. You can embed shell variables for delayed # expansion at the time the message is displayed, but you will need to # quote other shell meta-characters carefully to prevent them being # expanded when the contents are evaled. usage='$progpath [OPTION]...' # Short help message in response to '-h' and '--help'. Add to this or # override it after sourcing this library to reflect the full set of # options your script accepts. usage_message="\ --debug enable verbose shell tracing -W, --warnings=CATEGORY report the warnings falling in CATEGORY [all] -v, --verbose verbosely report processing --version print version information and exit -h, --help print short or long help message and exit " # Additional text appended to 'usage_message' in response to '--help'. long_help_message=" Warning categories include: 'all' show all warnings 'none' turn off all the warnings 'error' warnings are treated as fatal errors" # Help message printed before fatal option parsing errors. fatal_help="Try '\$progname --help' for more information." ## ------------------------- ## ## Hook function management. ## ## ------------------------- ## # This section contains functions for adding, removing, and running hooks # to the main code. A hook is just a named list of of function, that can # be run in order later on. # func_hookable FUNC_NAME # ----------------------- # Declare that FUNC_NAME will run hooks added with # 'func_add_hook FUNC_NAME ...'. func_hookable () { $debug_cmd func_append hookable_fns " $1" } # func_add_hook FUNC_NAME HOOK_FUNC # --------------------------------- # Request that FUNC_NAME call HOOK_FUNC before it returns. FUNC_NAME must # first have been declared "hookable" by a call to 'func_hookable'. func_add_hook () { $debug_cmd case " $hookable_fns " in *" $1 "*) ;; *) func_fatal_error "'$1' does not accept hook functions." ;; esac eval func_append ${1}_hooks '" $2"' } # func_remove_hook FUNC_NAME HOOK_FUNC # ------------------------------------ # Remove HOOK_FUNC from the list of functions called by FUNC_NAME. func_remove_hook () { $debug_cmd eval ${1}_hooks='`$bs_echo "\$'$1'_hooks" |$SED "s| '$2'||"`' } # func_run_hooks FUNC_NAME [ARG]... # --------------------------------- # Run all hook functions registered to FUNC_NAME. # It is assumed that the list of hook functions contains nothing more # than a whitespace-delimited list of legal shell function names, and # no effort is wasted trying to catch shell meta-characters or preserve # whitespace. func_run_hooks () { $debug_cmd case " $hookable_fns " in *" $1 "*) ;; *) func_fatal_error "'$1' does not support hook funcions.n" ;; esac eval _G_hook_fns=\$$1_hooks; shift for _G_hook in $_G_hook_fns; do eval $_G_hook '"$@"' # store returned options list back into positional # parameters for next 'cmd' execution. eval _G_hook_result=\$${_G_hook}_result eval set dummy "$_G_hook_result"; shift done func_quote_for_eval ${1+"$@"} func_run_hooks_result=$func_quote_for_eval_result } ## --------------- ## ## Option parsing. ## ## --------------- ## # In order to add your own option parsing hooks, you must accept the # full positional parameter list in your hook function, remove any # options that you action, and then pass back the remaining unprocessed # options in '_result', escaped suitably for # 'eval'. Like this: # # my_options_prep () # { # $debug_cmd # # # Extend the existing usage message. # usage_message=$usage_message' # -s, --silent don'\''t print informational messages # ' # # func_quote_for_eval ${1+"$@"} # my_options_prep_result=$func_quote_for_eval_result # } # func_add_hook func_options_prep my_options_prep # # # my_silent_option () # { # $debug_cmd # # # Note that for efficiency, we parse as many options as we can # # recognise in a loop before passing the remainder back to the # # caller on the first unrecognised argument we encounter. # while test $# -gt 0; do # opt=$1; shift # case $opt in # --silent|-s) opt_silent=: ;; # # Separate non-argument short options: # -s*) func_split_short_opt "$_G_opt" # set dummy "$func_split_short_opt_name" \ # "-$func_split_short_opt_arg" ${1+"$@"} # shift # ;; # *) set dummy "$_G_opt" "$*"; shift; break ;; # esac # done # # func_quote_for_eval ${1+"$@"} # my_silent_option_result=$func_quote_for_eval_result # } # func_add_hook func_parse_options my_silent_option # # # my_option_validation () # { # $debug_cmd # # $opt_silent && $opt_verbose && func_fatal_help "\ # '--silent' and '--verbose' options are mutually exclusive." # # func_quote_for_eval ${1+"$@"} # my_option_validation_result=$func_quote_for_eval_result # } # func_add_hook func_validate_options my_option_validation # # You'll alse need to manually amend $usage_message to reflect the extra # options you parse. It's preferable to append if you can, so that # multiple option parsing hooks can be added safely. # func_options [ARG]... # --------------------- # All the functions called inside func_options are hookable. See the # individual implementations for details. func_hookable func_options func_options () { $debug_cmd func_options_prep ${1+"$@"} eval func_parse_options \ ${func_options_prep_result+"$func_options_prep_result"} eval func_validate_options \ ${func_parse_options_result+"$func_parse_options_result"} eval func_run_hooks func_options \ ${func_validate_options_result+"$func_validate_options_result"} # save modified positional parameters for caller func_options_result=$func_run_hooks_result } # func_options_prep [ARG]... # -------------------------- # All initialisations required before starting the option parse loop. # Note that when calling hook functions, we pass through the list of # positional parameters. If a hook function modifies that list, and # needs to propogate that back to rest of this script, then the complete # modified list must be put in 'func_run_hooks_result' before # returning. func_hookable func_options_prep func_options_prep () { $debug_cmd # Option defaults: opt_verbose=false opt_warning_types= func_run_hooks func_options_prep ${1+"$@"} # save modified positional parameters for caller func_options_prep_result=$func_run_hooks_result } # func_parse_options [ARG]... # --------------------------- # The main option parsing loop. func_hookable func_parse_options func_parse_options () { $debug_cmd func_parse_options_result= # this just eases exit handling while test $# -gt 0; do # Defer to hook functions for initial option parsing, so they # get priority in the event of reusing an option name. func_run_hooks func_parse_options ${1+"$@"} # Adjust func_parse_options positional parameters to match eval set dummy "$func_run_hooks_result"; shift # Break out of the loop if we already parsed every option. test $# -gt 0 || break _G_opt=$1 shift case $_G_opt in --debug|-x) debug_cmd='set -x' func_echo "enabling shell trace mode" $debug_cmd ;; --no-warnings|--no-warning|--no-warn) set dummy --warnings none ${1+"$@"} shift ;; --warnings|--warning|-W) test $# = 0 && func_missing_arg $_G_opt && break case " $warning_categories $1" in *" $1 "*) # trailing space prevents matching last $1 above func_append_uniq opt_warning_types " $1" ;; *all) opt_warning_types=$warning_categories ;; *none) opt_warning_types=none warning_func=: ;; *error) opt_warning_types=$warning_categories warning_func=func_fatal_error ;; *) func_fatal_error \ "unsupported warning category: '$1'" ;; esac shift ;; --verbose|-v) opt_verbose=: ;; --version) func_version ;; -\?|-h) func_usage ;; --help) func_help ;; # Separate optargs to long options (plugins may need this): --*=*) func_split_equals "$_G_opt" set dummy "$func_split_equals_lhs" \ "$func_split_equals_rhs" ${1+"$@"} shift ;; # Separate optargs to short options: -W*) func_split_short_opt "$_G_opt" set dummy "$func_split_short_opt_name" \ "$func_split_short_opt_arg" ${1+"$@"} shift ;; # Separate non-argument short options: -\?*|-h*|-v*|-x*) func_split_short_opt "$_G_opt" set dummy "$func_split_short_opt_name" \ "-$func_split_short_opt_arg" ${1+"$@"} shift ;; --) break ;; -*) func_fatal_help "unrecognised option: '$_G_opt'" ;; *) set dummy "$_G_opt" ${1+"$@"}; shift; break ;; esac done # save modified positional parameters for caller func_quote_for_eval ${1+"$@"} func_parse_options_result=$func_quote_for_eval_result } # func_validate_options [ARG]... # ------------------------------ # Perform any sanity checks on option settings and/or unconsumed # arguments. func_hookable func_validate_options func_validate_options () { $debug_cmd # Display all warnings if -W was not given. test -n "$opt_warning_types" || opt_warning_types=" $warning_categories" func_run_hooks func_validate_options ${1+"$@"} # Bail if the options were screwed! $exit_cmd $EXIT_FAILURE # save modified positional parameters for caller func_validate_options_result=$func_run_hooks_result } ## ------------------## ## Helper functions. ## ## ------------------## # This section contains the helper functions used by the rest of the # hookable option parser framework in ascii-betical order. # func_fatal_help ARG... # ---------------------- # Echo program name prefixed message to standard error, followed by # a help hint, and exit. func_fatal_help () { $debug_cmd eval \$bs_echo \""Usage: $usage"\" eval \$bs_echo \""$fatal_help"\" func_error ${1+"$@"} exit $EXIT_FAILURE } # func_help # --------- # Echo long help message to standard output and exit. func_help () { $debug_cmd func_usage_message $bs_echo "$long_help_message" exit 0 } # func_missing_arg ARGNAME # ------------------------ # Echo program name prefixed message to standard error and set global # exit_cmd. func_missing_arg () { $debug_cmd func_error "Missing argument for '$1'." exit_cmd=exit } # func_split_equals STRING # ------------------------ # Set func_split_equals_lhs and func_split_equals_rhs shell variables after # splitting STRING at the '=' sign. test -z "$_G_HAVE_XSI_OPS" \ && (eval 'x=a/b/c; test 5aa/bb/cc = "${#x}${x%%/*}${x%/*}${x#*/}${x##*/}"') 2>/dev/null \ && _G_HAVE_XSI_OPS=yes if test yes = "$_G_HAVE_XSI_OPS" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_split_equals () { $debug_cmd func_split_equals_lhs=${1%%=*} func_split_equals_rhs=${1#*=} test "x$func_split_equals_lhs" = "x$1" \ && func_split_equals_rhs= }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_split_equals () { $debug_cmd func_split_equals_lhs=`expr "x$1" : 'x\([^=]*\)'` func_split_equals_rhs= test "x$func_split_equals_lhs" = "x$1" \ || func_split_equals_rhs=`expr "x$1" : 'x[^=]*=\(.*\)$'` } fi #func_split_equals # func_split_short_opt SHORTOPT # ----------------------------- # Set func_split_short_opt_name and func_split_short_opt_arg shell # variables after splitting SHORTOPT after the 2nd character. if test yes = "$_G_HAVE_XSI_OPS" then # This is an XSI compatible shell, allowing a faster implementation... eval 'func_split_short_opt () { $debug_cmd func_split_short_opt_arg=${1#??} func_split_short_opt_name=${1%"$func_split_short_opt_arg"} }' else # ...otherwise fall back to using expr, which is often a shell builtin. func_split_short_opt () { $debug_cmd func_split_short_opt_name=`expr "x$1" : 'x-\(.\)'` func_split_short_opt_arg=`expr "x$1" : 'x-.\(.*\)$'` } fi #func_split_short_opt # func_usage # ---------- # Echo short help message to standard output and exit. func_usage () { $debug_cmd func_usage_message $bs_echo "Run '$progname --help |${PAGER-more}' for full usage" exit 0 } # func_usage_message # ------------------ # Echo short help message to standard output. func_usage_message () { $debug_cmd eval \$bs_echo \""Usage: $usage"\" echo $SED -n 's|^# || /^Written by/{ x;p;x } h /^Written by/q' < "$progpath" echo eval \$bs_echo \""$usage_message"\" } # func_version # ------------ # Echo version message to standard output and exit. func_version () { $debug_cmd printf '%s\n' "$progname $scriptversion" $SED -n '/^##/q /(C)/!b go :more /\./!{ N s|\n# | | b more } :go /^# Written by /,/# warranty; / { s|^# || s|^# *$|| s|\((C)\)[ 0-9,-]*[ ,-]\([1-9][0-9]* \)|\1 \2| p } /^# Written by / { s|^# || p } /^warranty; /q' < "$progpath" exit $? } # Local variables: # mode: shell-script # sh-indentation: 2 # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-pattern: "10/scriptversion=%:y-%02m-%02d.%02H; # UTC" # time-stamp-time-zone: "UTC" # End: # Set a version string. scriptversion='(GNU libtool) 2.4.2.418' # func_echo ARG... # ---------------- # Libtool also displays the current mode in messages, so override # funclib.sh func_echo with this custom definition. func_echo () { $debug_cmd _G_message=$* func_echo_IFS=$IFS IFS=$nl for _G_line in $_G_message; do IFS=$func_echo_IFS $bs_echo "$progname${opt_mode+: $opt_mode}: $_G_line" done IFS=$func_echo_IFS } # func_warning ARG... # ------------------- # Libtool warnings are not categorized, so override funclib.sh # func_warning with this simpler definition. func_warning () { $debug_cmd $warning_func ${1+"$@"} } ## ---------------- ## ## Options parsing. ## ## ---------------- ## # Hook in the functions to make sure our own options are parsed during # the option parsing loop. usage='$progpath [OPTION]... [MODE-ARG]...' # Short help message in response to '-h'. usage_message="Options: --config show all configuration variables --debug enable verbose shell tracing -n, --dry-run display commands without modifying any files --features display basic configuration information and exit --mode=MODE use operation mode MODE --no-warnings equivalent to '-Wnone' --preserve-dup-deps don't remove duplicate dependency libraries --quiet, --silent don't print informational messages --tag=TAG use configuration variables from tag TAG -v, --verbose print more informational messages than default --version print version information -W, --warnings=CATEGORY report the warnings falling in CATEGORY [all] -h, --help, --help-all print short, long, or detailed help message " # Additional text appended to 'usage_message' in response to '--help'. long_help_message=$long_help_message" MODE must be one of the following: clean remove files from the build directory compile compile a source file into a libtool object execute automatically set library path, then run a program finish complete the installation of libtool libraries install install libraries or executables link create a library or an executable uninstall remove libraries from an installed directory MODE-ARGS vary depending on the MODE. When passed as first option, '--mode=MODE' may be abbreviated as 'MODE' or a unique abbreviation of that. Try '$progname --help --mode=MODE' for a more detailed description of MODE. When reporting a bug, please describe a test case to reproduce it and include the following information: host-triplet: $host shell: $SHELL compiler: $LTCC compiler flags: $LTCFLAGS linker: $LD (gnu? $with_gnu_ld) version: $progname (GNU libtool) 2.4.2.418 automake: `($AUTOMAKE --version) 2>/dev/null |$SED 1q` autoconf: `($AUTOCONF --version) 2>/dev/null |$SED 1q` Report bugs to . GNU libtool home page: . General help using GNU software: ." # func_lo2o OBJECT-NAME # --------------------- # Transform OBJECT-NAME from a '.lo' suffix to the platform specific # object suffix. lo2o=s/\\.lo\$/.$objext/ o2lo=s/\\.$objext\$/.lo/ if test yes = "$_G_HAVE_XSI_OPS"; then eval 'func_lo2o () { case $1 in *.lo) func_lo2o_result=${1%.lo}.$objext ;; * ) func_lo2o_result=$1 ;; esac }' # func_xform LIBOBJ-OR-SOURCE # --------------------------- # Transform LIBOBJ-OR-SOURCE from a '.o' or '.c' (or otherwise) # suffix to a '.lo' libtool-object suffix. eval 'func_xform () { func_xform_result=${1%.*}.lo }' else # ...otherwise fall back to using sed. func_lo2o () { func_lo2o_result=`$ECHO "$1" | $SED "$lo2o"` } func_xform () { func_xform_result=`$ECHO "$1" | $SED 's|\.[^.]*$|.lo|'` } fi # func_fatal_configuration ARG... # ------------------------------- # Echo program name prefixed message to standard error, followed by # a configuration failure hint, and exit. func_fatal_configuration () { func__fatal_error ${1+"$@"} \ "See the $PACKAGE documentation for more information." \ "Fatal configuration error." } # func_config # ----------- # Display the configuration for all the tags in this script. func_config () { re_begincf='^# ### BEGIN LIBTOOL' re_endcf='^# ### END LIBTOOL' # Default configuration. $SED "1,/$re_begincf CONFIG/d;/$re_endcf CONFIG/,\$d" < "$progpath" # Now print the configurations for the tags. for tagname in $taglist; do $SED -n "/$re_begincf TAG CONFIG: $tagname\$/,/$re_endcf TAG CONFIG: $tagname\$/p" < "$progpath" done exit $? } # func_features # ------------- # Display the features supported by this script. func_features () { echo "host: $host" if test yes = "$build_libtool_libs"; then echo "enable shared libraries" else echo "disable shared libraries" fi if test yes = "$build_old_libs"; then echo "enable static libraries" else echo "disable static libraries" fi exit $? } # func_enable_tag TAGNAME # ----------------------- # Verify that TAGNAME is valid, and either flag an error and exit, or # enable the TAGNAME tag. We also add TAGNAME to the global $taglist # variable here. func_enable_tag () { # Global variable: tagname=$1 re_begincf="^# ### BEGIN LIBTOOL TAG CONFIG: $tagname\$" re_endcf="^# ### END LIBTOOL TAG CONFIG: $tagname\$" sed_extractcf=/$re_begincf/,/$re_endcf/p # Validate tagname. case $tagname in *[!-_A-Za-z0-9,/]*) func_fatal_error "invalid tag name: $tagname" ;; esac # Don't test for the "default" C tag, as we know it's # there but not specially marked. case $tagname in CC) ;; *) if $GREP "$re_begincf" "$progpath" >/dev/null 2>&1; then taglist="$taglist $tagname" # Evaluate the configuration. Be careful to quote the path # and the sed script, to avoid splitting on whitespace, but # also don't use non-portable quotes within backquotes within # quotes we have to do it in 2 steps: extractedcf=`$SED -n -e "$sed_extractcf" < "$progpath"` eval "$extractedcf" else func_error "ignoring unknown tag $tagname" fi ;; esac } # func_check_version_match # ------------------------ # Ensure that we are using m4 macros, and libtool script from the same # release of libtool. func_check_version_match () { if test "$package_revision" != "$macro_revision"; then if test "$VERSION" != "$macro_version"; then if test -z "$macro_version"; then cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from an older release. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, but the $progname: definition of this LT_INIT comes from $PACKAGE $macro_version. $progname: You should recreate aclocal.m4 with macros from $PACKAGE $VERSION $progname: and run autoconf again. _LT_EOF fi else cat >&2 <<_LT_EOF $progname: Version mismatch error. This is $PACKAGE $VERSION, revision $package_revision, $progname: but the definition of this LT_INIT comes from revision $macro_revision. $progname: You should recreate aclocal.m4 with macros from revision $package_revision $progname: of $PACKAGE $VERSION and run autoconf again. _LT_EOF fi exit $EXIT_MISMATCH fi } # libtool_options_prep [ARG]... # ----------------------------- # Preparation for options parsed by libtool. libtool_options_prep () { $debug_mode # Option defaults: opt_config=false opt_dlopen= opt_dry_run=false opt_help=false opt_mode= opt_preserve_dup_deps=false opt_quiet=false nonopt= preserve_args= # Shorthand for --mode=foo, only valid as the first argument case $1 in clean|clea|cle|cl) shift; set dummy --mode clean ${1+"$@"}; shift ;; compile|compil|compi|comp|com|co|c) shift; set dummy --mode compile ${1+"$@"}; shift ;; execute|execut|execu|exec|exe|ex|e) shift; set dummy --mode execute ${1+"$@"}; shift ;; finish|finis|fini|fin|fi|f) shift; set dummy --mode finish ${1+"$@"}; shift ;; install|instal|insta|inst|ins|in|i) shift; set dummy --mode install ${1+"$@"}; shift ;; link|lin|li|l) shift; set dummy --mode link ${1+"$@"}; shift ;; uninstall|uninstal|uninsta|uninst|unins|unin|uni|un|u) shift; set dummy --mode uninstall ${1+"$@"}; shift ;; esac # Pass back the list of options. func_quote_for_eval ${1+"$@"} libtool_options_prep_result=$func_quote_for_eval_result } func_add_hook func_options_prep libtool_options_prep # libtool_parse_options [ARG]... # --------------------------------- # Provide handling for libtool specific options. libtool_parse_options () { $debug_cmd # Perform our own loop to consume as many options as possible in # each iteration. while test $# -gt 0; do _G_opt=$1 shift case $_G_opt in --dry-run|--dryrun|-n) opt_dry_run=: ;; --config) func_config ;; --dlopen|-dlopen) opt_dlopen="${opt_dlopen+$opt_dlopen }$1" shift ;; --preserve-dup-deps) opt_preserve_dup_deps=: ;; --features) func_features ;; --finish) set dummy --mode finish ${1+"$@"}; shift ;; --help) opt_help=: ;; --help-all) opt_help=': help-all' ;; --mode) test $# = 0 && func_missing_arg $_G_opt && break opt_mode=$1 case $1 in # Valid mode arguments: clean|compile|execute|finish|install|link|relink|uninstall) ;; # Catch anything else as an error *) func_error "invalid argument for $_G_opt" exit_cmd=exit break ;; esac shift ;; --no-silent|--no-quiet) opt_quiet=false func_append preserve_args " $_G_opt" ;; --no-warnings|--no-warning|--no-warn) opt_warning=false func_append preserve_args " $_G_opt" ;; --no-verbose) opt_verbose=false func_append preserve_args " $_G_opt" ;; --silent|--quiet) opt_quiet=: opt_verbose=false func_append preserve_args " $_G_opt" ;; --tag) test $# = 0 && func_missing_arg $_G_opt && break opt_tag=$1 func_append preserve_args " $_G_opt $1" func_enable_tag "$1" shift ;; --verbose|-v) opt_quiet=false opt_verbose=: func_append preserve_args " $_G_opt" ;; # An option not handled by this hook function: *) set dummy "$_G_opt" ${1+"$@"}; shift; break ;; esac done # save modified positional parameters for caller func_quote_for_eval ${1+"$@"} libtool_parse_options_result=$func_quote_for_eval_result } func_add_hook func_parse_options libtool_parse_options # libtool_validate_options [ARG]... # --------------------------------- # Perform any sanity checks on option settings and/or unconsumed # arguments. libtool_validate_options () { # save first non-option argument if test 0 -lt $#; then nonopt=$1 shift fi # preserve --debug test : = "$debug_cmd" || func_append preserve_args " --debug" case $host in *cygwin* | *mingw* | *pw32* | *cegcc*) # don't eliminate duplications in $postdeps and $predeps opt_duplicate_compiler_generated_deps=: ;; *) opt_duplicate_compiler_generated_deps=$opt_preserve_dup_deps ;; esac $opt_help || { # Sanity checks first: func_check_version_match test yes != "$build_libtool_libs" \ && test yes != "$build_old_libs" \ && func_fatal_configuration "not configured to build any kind of library" # Darwin sucks eval std_shrext=\"$shrext_cmds\" # Only execute mode is allowed to have -dlopen flags. if test -n "$opt_dlopen" && test execute != "$opt_mode"; then func_error "unrecognized option '-dlopen'" $ECHO "$help" 1>&2 exit $EXIT_FAILURE fi # Change the help message to a mode-specific one. generic_help=$help help="Try '$progname --help --mode=$opt_mode' for more information." } # Pass back the unparsed argument list func_quote_for_eval ${1+"$@"} libtool_validate_options_result=$func_quote_for_eval_result } func_add_hook func_validate_options libtool_validate_options # Process options as early as possible so that --help and --version # can return quickly. func_options ${1+"$@"} eval set dummy "$func_options_result"; shift ## ----------- ## ## Main. ## ## ----------- ## magic='%%%MAGIC variable%%%' magic_exe='%%%MAGIC EXE variable%%%' # Global variables. extracted_archives= extracted_serial=0 # If this variable is set in any of the actions, the command in it # will be execed at the end. This prevents here-documents from being # left over by shells. exec_cmd= # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $1 _LTECHO_EOF' } # func_lalib_p file # True iff FILE is a libtool '.la' library or '.lo' object file. # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_lalib_p () { test -f "$1" && $SED -e 4q "$1" 2>/dev/null \ | $GREP "^# Generated by .*$PACKAGE" > /dev/null 2>&1 } # func_lalib_unsafe_p file # True iff FILE is a libtool '.la' library or '.lo' object file. # This function implements the same check as func_lalib_p without # resorting to external programs. To this end, it redirects stdin and # closes it afterwards, without saving the original file descriptor. # As a safety measure, use it only where a negative result would be # fatal anyway. Works if 'file' does not exist. func_lalib_unsafe_p () { lalib_p=no if test -f "$1" && test -r "$1" && exec 5<&0 <"$1"; then for lalib_p_l in 1 2 3 4 do read lalib_p_line case $lalib_p_line in \#\ Generated\ by\ *$PACKAGE* ) lalib_p=yes; break;; esac done exec 0<&5 5<&- fi test yes = "$lalib_p" } # func_ltwrapper_script_p file # True iff FILE is a libtool wrapper script # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_script_p () { func_lalib_p "$1" } # func_ltwrapper_executable_p file # True iff FILE is a libtool wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_executable_p () { func_ltwrapper_exec_suffix= case $1 in *.exe) ;; *) func_ltwrapper_exec_suffix=.exe ;; esac $GREP "$magic_exe" "$1$func_ltwrapper_exec_suffix" >/dev/null 2>&1 } # func_ltwrapper_scriptname file # Assumes file is an ltwrapper_executable # uses $file to determine the appropriate filename for a # temporary ltwrapper_script. func_ltwrapper_scriptname () { func_dirname_and_basename "$1" "" "." func_stripname '' '.exe' "$func_basename_result" func_ltwrapper_scriptname_result=$func_dirname_result/$objdir/${func_stripname_result}_ltshwrapper } # func_ltwrapper_p file # True iff FILE is a libtool wrapper script or wrapper executable # This function is only a basic sanity check; it will hardly flush out # determined imposters. func_ltwrapper_p () { func_ltwrapper_script_p "$1" || func_ltwrapper_executable_p "$1" } # func_execute_cmds commands fail_cmd # Execute tilde-delimited COMMANDS. # If FAIL_CMD is given, eval that upon failure. # FAIL_CMD may read-access the current command in variable CMD! func_execute_cmds () { $debug_cmd save_ifs=$IFS; IFS='~' for cmd in $1; do IFS=$sp$nl eval cmd=\"$cmd\" IFS=$save_ifs func_show_eval "$cmd" "${2-:}" done IFS=$save_ifs } # func_source file # Source FILE, adding directory component if necessary. # Note that it is not necessary on cygwin/mingw to append a dot to # FILE even if both FILE and FILE.exe exist: automatic-append-.exe # behavior happens only for exec(3), not for open(2)! Also, sourcing # 'FILE.' does not work on cygwin managed mounts. func_source () { $debug_cmd case $1 in */* | *\\*) . "$1" ;; *) . "./$1" ;; esac } # func_resolve_sysroot PATH # Replace a leading = in PATH with a sysroot. Store the result into # func_resolve_sysroot_result func_resolve_sysroot () { func_resolve_sysroot_result=$1 case $func_resolve_sysroot_result in =*) func_stripname '=' '' "$func_resolve_sysroot_result" func_resolve_sysroot_result=$lt_sysroot$func_stripname_result ;; esac } # func_replace_sysroot PATH # If PATH begins with the sysroot, replace it with = and # store the result into func_replace_sysroot_result. func_replace_sysroot () { case $lt_sysroot:$1 in ?*:"$lt_sysroot"*) func_stripname "$lt_sysroot" '' "$1" func_replace_sysroot_result='='$func_stripname_result ;; *) # Including no sysroot. func_replace_sysroot_result=$1 ;; esac } # func_infer_tag arg # Infer tagged configuration to use if any are available and # if one wasn't chosen via the "--tag" command line option. # Only attempt this if the compiler in the base compile # command doesn't match the default compiler. # arg is usually of the form 'gcc ...' func_infer_tag () { $debug_cmd if test -n "$available_tags" && test -z "$tagname"; then CC_quoted= for arg in $CC; do func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case $@ in # Blanks in the command may have been stripped by the calling shell, # but not from the CC environment variable when configure was run. " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) ;; # Blanks at the start of $base_compile will cause this to fail # if we don't check for them as well. *) for z in $available_tags; do if $GREP "^# ### BEGIN LIBTOOL TAG CONFIG: $z$" < "$progpath" > /dev/null; then # Evaluate the configuration. eval "`$SED -n -e '/^# ### BEGIN LIBTOOL TAG CONFIG: '$z'$/,/^# ### END LIBTOOL TAG CONFIG: '$z'$/p' < $progpath`" CC_quoted= for arg in $CC; do # Double-quote args containing other shell metacharacters. func_append_quoted CC_quoted "$arg" done CC_expanded=`func_echo_all $CC` CC_quoted_expanded=`func_echo_all $CC_quoted` case "$@ " in " $CC "* | "$CC "* | " $CC_expanded "* | "$CC_expanded "* | \ " $CC_quoted"* | "$CC_quoted "* | " $CC_quoted_expanded "* | "$CC_quoted_expanded "*) # The compiler in the base compile command matches # the one in the tagged configuration. # Assume this is the tagged configuration we want. tagname=$z break ;; esac fi done # If $tagname still isn't set, then no tagged configuration # was found and let the user know that the "--tag" command # line option must be used. if test -z "$tagname"; then func_echo "unable to infer tagged configuration" func_fatal_error "specify a tag with '--tag'" # else # func_verbose "using $tagname tagged configuration" fi ;; esac fi } # func_write_libtool_object output_name pic_name nonpic_name # Create a libtool object file (analogous to a ".la" file), # but don't create it if we're doing a dry run. func_write_libtool_object () { write_libobj=$1 if test yes = "$build_libtool_libs"; then write_lobj=\'$2\' else write_lobj=none fi if test yes = "$build_old_libs"; then write_oldobj=\'$3\' else write_oldobj=none fi $opt_dry_run || { cat >${write_libobj}T </dev/null` if test "$?" -eq 0 && test -n "$func_convert_core_file_wine_to_w32_tmp"; then func_convert_core_file_wine_to_w32_result=`$ECHO "$func_convert_core_file_wine_to_w32_tmp" | $SED -e "$sed_naive_backslashify"` else func_convert_core_file_wine_to_w32_result= fi fi } # end: func_convert_core_file_wine_to_w32 # func_convert_core_path_wine_to_w32 ARG # Helper function used by path conversion functions when $build is *nix, and # $host is mingw, cygwin, or some other w32 environment. Relies on a correctly # configured wine environment available, with the winepath program in $build's # $PATH. Assumes ARG has no leading or trailing path separator characters. # # ARG is path to be converted from $build format to win32. # Result is available in $func_convert_core_path_wine_to_w32_result. # Unconvertible file (directory) names in ARG are skipped; if no directory names # are convertible, then the result may be empty. func_convert_core_path_wine_to_w32 () { $debug_cmd # unfortunately, winepath doesn't convert paths, only file names func_convert_core_path_wine_to_w32_result= if test -n "$1"; then oldIFS=$IFS IFS=: for func_convert_core_path_wine_to_w32_f in $1; do IFS=$oldIFS func_convert_core_file_wine_to_w32 "$func_convert_core_path_wine_to_w32_f" if test -n "$func_convert_core_file_wine_to_w32_result"; then if test -z "$func_convert_core_path_wine_to_w32_result"; then func_convert_core_path_wine_to_w32_result=$func_convert_core_file_wine_to_w32_result else func_append func_convert_core_path_wine_to_w32_result ";$func_convert_core_file_wine_to_w32_result" fi fi done IFS=$oldIFS fi } # end: func_convert_core_path_wine_to_w32 # func_cygpath ARGS... # Wrapper around calling the cygpath program via LT_CYGPATH. This is used when # when (1) $build is *nix and Cygwin is hosted via a wine environment; or (2) # $build is MSYS and $host is Cygwin, or (3) $build is Cygwin. In case (1) or # (2), returns the Cygwin file name or path in func_cygpath_result (input # file name or path is assumed to be in w32 format, as previously converted # from $build's *nix or MSYS format). In case (3), returns the w32 file name # or path in func_cygpath_result (input file name or path is assumed to be in # Cygwin format). Returns an empty string on error. # # ARGS are passed to cygpath, with the last one being the file name or path to # be converted. # # Specify the absolute *nix (or w32) name to cygpath in the LT_CYGPATH # environment variable; do not put it in $PATH. func_cygpath () { $debug_cmd if test -n "$LT_CYGPATH" && test -f "$LT_CYGPATH"; then func_cygpath_result=`$LT_CYGPATH "$@" 2>/dev/null` if test "$?" -ne 0; then # on failure, ensure result is empty func_cygpath_result= fi else func_cygpath_result= func_error "LT_CYGPATH is empty or specifies non-existent file: '$LT_CYGPATH'" fi } #end: func_cygpath # func_convert_core_msys_to_w32 ARG # Convert file name or path ARG from MSYS format to w32 format. Return # result in func_convert_core_msys_to_w32_result. func_convert_core_msys_to_w32 () { $debug_cmd # awkward: cmd appends spaces to result func_convert_core_msys_to_w32_result=`( cmd //c echo "$1" ) 2>/dev/null | $SED -e 's/[ ]*$//' -e "$sed_naive_backslashify"` } #end: func_convert_core_msys_to_w32 # func_convert_file_check ARG1 ARG2 # Verify that ARG1 (a file name in $build format) was converted to $host # format in ARG2. Otherwise, emit an error message, but continue (resetting # func_to_host_file_result to ARG1). func_convert_file_check () { $debug_cmd if test -z "$2" && test -n "$1"; then func_error "Could not determine host file name corresponding to" func_error " '$1'" func_error "Continuing, but uninstalled executables may not work." # Fallback: func_to_host_file_result=$1 fi } # end func_convert_file_check # func_convert_path_check FROM_PATHSEP TO_PATHSEP FROM_PATH TO_PATH # Verify that FROM_PATH (a path in $build format) was converted to $host # format in TO_PATH. Otherwise, emit an error message, but continue, resetting # func_to_host_file_result to a simplistic fallback value (see below). func_convert_path_check () { $debug_cmd if test -z "$4" && test -n "$3"; then func_error "Could not determine the host path corresponding to" func_error " '$3'" func_error "Continuing, but uninstalled executables may not work." # Fallback. This is a deliberately simplistic "conversion" and # should not be "improved". See libtool.info. if test "x$1" != "x$2"; then lt_replace_pathsep_chars="s|$1|$2|g" func_to_host_path_result=`echo "$3" | $SED -e "$lt_replace_pathsep_chars"` else func_to_host_path_result=$3 fi fi } # end func_convert_path_check # func_convert_path_front_back_pathsep FRONTPAT BACKPAT REPL ORIG # Modifies func_to_host_path_result by prepending REPL if ORIG matches FRONTPAT # and appending REPL if ORIG matches BACKPAT. func_convert_path_front_back_pathsep () { $debug_cmd case $4 in $1 ) func_to_host_path_result=$3$func_to_host_path_result ;; esac case $4 in $2 ) func_append func_to_host_path_result "$3" ;; esac } # end func_convert_path_front_back_pathsep ################################################## # $build to $host FILE NAME CONVERSION FUNCTIONS # ################################################## # invoked via '$to_host_file_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # Result will be available in $func_to_host_file_result. # func_to_host_file ARG # Converts the file name ARG from $build format to $host format. Return result # in func_to_host_file_result. func_to_host_file () { $debug_cmd $to_host_file_cmd "$1" } # end func_to_host_file # func_to_tool_file ARG LAZY # converts the file name ARG from $build format to toolchain format. Return # result in func_to_tool_file_result. If the conversion in use is listed # in (the comma separated) LAZY, no conversion takes place. func_to_tool_file () { $debug_cmd case ,$2, in *,"$to_tool_file_cmd",*) func_to_tool_file_result=$1 ;; *) $to_tool_file_cmd "$1" func_to_tool_file_result=$func_to_host_file_result ;; esac } # end func_to_tool_file # func_convert_file_noop ARG # Copy ARG to func_to_host_file_result. func_convert_file_noop () { func_to_host_file_result=$1 } # end func_convert_file_noop # func_convert_file_msys_to_w32 ARG # Convert file name ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_file_result. func_convert_file_msys_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_to_host_file_result=$func_convert_core_msys_to_w32_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_w32 # func_convert_file_cygwin_to_w32 ARG # Convert file name ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_file_cygwin_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then # because $build is cygwin, we call "the" cygpath in $PATH; no need to use # LT_CYGPATH in this case. func_to_host_file_result=`cygpath -m "$1"` fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_cygwin_to_w32 # func_convert_file_nix_to_w32 ARG # Convert file name ARG from *nix to w32 format. Requires a wine environment # and a working winepath. Returns result in func_to_host_file_result. func_convert_file_nix_to_w32 () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_file_wine_to_w32 "$1" func_to_host_file_result=$func_convert_core_file_wine_to_w32_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_w32 # func_convert_file_msys_to_cygwin ARG # Convert file name ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_file_msys_to_cygwin () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then func_convert_core_msys_to_w32 "$1" func_cygpath -u "$func_convert_core_msys_to_w32_result" func_to_host_file_result=$func_cygpath_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_msys_to_cygwin # func_convert_file_nix_to_cygwin ARG # Convert file name ARG from *nix to Cygwin format. Requires Cygwin installed # in a wine environment, working winepath, and LT_CYGPATH set. Returns result # in func_to_host_file_result. func_convert_file_nix_to_cygwin () { $debug_cmd func_to_host_file_result=$1 if test -n "$1"; then # convert from *nix to w32, then use cygpath to convert from w32 to cygwin. func_convert_core_file_wine_to_w32 "$1" func_cygpath -u "$func_convert_core_file_wine_to_w32_result" func_to_host_file_result=$func_cygpath_result fi func_convert_file_check "$1" "$func_to_host_file_result" } # end func_convert_file_nix_to_cygwin ############################################# # $build to $host PATH CONVERSION FUNCTIONS # ############################################# # invoked via '$to_host_path_cmd ARG' # # In each case, ARG is the path to be converted from $build to $host format. # The result will be available in $func_to_host_path_result. # # Path separators are also converted from $build format to $host format. If # ARG begins or ends with a path separator character, it is preserved (but # converted to $host format) on output. # # All path conversion functions are named using the following convention: # file name conversion function : func_convert_file_X_to_Y () # path conversion function : func_convert_path_X_to_Y () # where, for any given $build/$host combination the 'X_to_Y' value is the # same. If conversion functions are added for new $build/$host combinations, # the two new functions must follow this pattern, or func_init_to_host_path_cmd # will break. # func_init_to_host_path_cmd # Ensures that function "pointer" variable $to_host_path_cmd is set to the # appropriate value, based on the value of $to_host_file_cmd. to_host_path_cmd= func_init_to_host_path_cmd () { $debug_cmd if test -z "$to_host_path_cmd"; then func_stripname 'func_convert_file_' '' "$to_host_file_cmd" to_host_path_cmd=func_convert_path_$func_stripname_result fi } # func_to_host_path ARG # Converts the path ARG from $build format to $host format. Return result # in func_to_host_path_result. func_to_host_path () { $debug_cmd func_init_to_host_path_cmd $to_host_path_cmd "$1" } # end func_to_host_path # func_convert_path_noop ARG # Copy ARG to func_to_host_path_result. func_convert_path_noop () { func_to_host_path_result=$1 } # end func_convert_path_noop # func_convert_path_msys_to_w32 ARG # Convert path ARG from (mingw) MSYS to (mingw) w32 format; automatic # conversion to w32 is not available inside the cwrapper. Returns result in # func_to_host_path_result. func_convert_path_msys_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # Remove leading and trailing path separator characters from ARG. MSYS # behavior is inconsistent here; cygpath turns them into '.;' and ';.'; # and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result=$func_convert_core_msys_to_w32_result func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_msys_to_w32 # func_convert_path_cygwin_to_w32 ARG # Convert path ARG from Cygwin to w32 format. Returns result in # func_to_host_file_result. func_convert_path_cygwin_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_to_host_path_result=`cygpath -m -p "$func_to_host_path_tmp1"` func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_cygwin_to_w32 # func_convert_path_nix_to_w32 ARG # Convert path ARG from *nix to w32 format. Requires a wine environment and # a working winepath. Returns result in func_to_host_file_result. func_convert_path_nix_to_w32 () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_to_host_path_result=$func_convert_core_path_wine_to_w32_result func_convert_path_check : ";" \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" ";" "$1" fi } # end func_convert_path_nix_to_w32 # func_convert_path_msys_to_cygwin ARG # Convert path ARG from MSYS to Cygwin format. Requires LT_CYGPATH set. # Returns result in func_to_host_file_result. func_convert_path_msys_to_cygwin () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # See func_convert_path_msys_to_w32: func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_msys_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_msys_to_w32_result" func_to_host_path_result=$func_cygpath_result func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_msys_to_cygwin # func_convert_path_nix_to_cygwin ARG # Convert path ARG from *nix to Cygwin format. Requires Cygwin installed in a # a wine environment, working winepath, and LT_CYGPATH set. Returns result in # func_to_host_file_result. func_convert_path_nix_to_cygwin () { $debug_cmd func_to_host_path_result=$1 if test -n "$1"; then # Remove leading and trailing path separator characters from # ARG. msys behavior is inconsistent here, cygpath turns them # into '.;' and ';.', and winepath ignores them completely. func_stripname : : "$1" func_to_host_path_tmp1=$func_stripname_result func_convert_core_path_wine_to_w32 "$func_to_host_path_tmp1" func_cygpath -u -p "$func_convert_core_path_wine_to_w32_result" func_to_host_path_result=$func_cygpath_result func_convert_path_check : : \ "$func_to_host_path_tmp1" "$func_to_host_path_result" func_convert_path_front_back_pathsep ":*" "*:" : "$1" fi } # end func_convert_path_nix_to_cygwin # func_dll_def_p FILE # True iff FILE is a Windows DLL '.def' file. # Keep in sync with _LT_DLL_DEF_P in libtool.m4 func_dll_def_p () { $debug_cmd func_dll_def_p_tmp=`$SED -n \ -e 's/^[ ]*//' \ -e '/^\(;.*\)*$/d' \ -e 's/^\(EXPORTS\|LIBRARY\)\([ ].*\)*$/DEF/p' \ -e q \ "$1"` test DEF = "$func_dll_def_p_tmp" } # func_mode_compile arg... func_mode_compile () { $debug_cmd # Get the compilation command and the source file. base_compile= srcfile=$nonopt # always keep a non-empty value in "srcfile" suppress_opt=yes suppress_output= arg_mode=normal libobj= later= pie_flag= for arg do case $arg_mode in arg ) # do not "continue". Instead, add this to base_compile lastarg=$arg arg_mode=normal ;; target ) libobj=$arg arg_mode=normal continue ;; normal ) # Accept any command-line options. case $arg in -o) test -n "$libobj" && \ func_fatal_error "you cannot specify '-o' more than once" arg_mode=target continue ;; -pie | -fpie | -fPIE) func_append pie_flag " $arg" continue ;; -shared | -static | -prefer-pic | -prefer-non-pic) func_append later " $arg" continue ;; -no-suppress) suppress_opt=no continue ;; -Xcompiler) arg_mode=arg # the next one goes into the "base_compile" arg list continue # The current "srcfile" will either be retained or ;; # replaced later. I would guess that would be a bug. -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result lastarg= save_ifs=$IFS; IFS=, for arg in $args; do IFS=$save_ifs func_append_quoted lastarg "$arg" done IFS=$save_ifs func_stripname ' ' '' "$lastarg" lastarg=$func_stripname_result # Add the arguments to base_compile. func_append base_compile " $lastarg" continue ;; *) # Accept the current argument as the source file. # The previous "srcfile" becomes the current argument. # lastarg=$srcfile srcfile=$arg ;; esac # case $arg ;; esac # case $arg_mode # Aesthetically quote the previous argument. func_append_quoted base_compile "$lastarg" done # for arg case $arg_mode in arg) func_fatal_error "you must specify an argument for -Xcompile" ;; target) func_fatal_error "you must specify a target with '-o'" ;; *) # Get the name of the library object. test -z "$libobj" && { func_basename "$srcfile" libobj=$func_basename_result } ;; esac # Recognize several different file suffixes. # If the user specifies -o file.o, it is replaced with file.lo case $libobj in *.[cCFSifmso] | \ *.ada | *.adb | *.ads | *.asm | \ *.c++ | *.cc | *.ii | *.class | *.cpp | *.cxx | \ *.[fF][09]? | *.for | *.java | *.go | *.obj | *.sx | *.cu | *.cup) func_xform "$libobj" libobj=$func_xform_result ;; esac case $libobj in *.lo) func_lo2o "$libobj"; obj=$func_lo2o_result ;; *) func_fatal_error "cannot determine name of library object from '$libobj'" ;; esac func_infer_tag $base_compile for arg in $later; do case $arg in -shared) test yes = "$build_libtool_libs" \ || func_fatal_configuration "cannot build a shared library" build_old_libs=no continue ;; -static) build_libtool_libs=no build_old_libs=yes continue ;; -prefer-pic) pic_mode=yes continue ;; -prefer-non-pic) pic_mode=no continue ;; esac done func_quote_for_eval "$libobj" test "X$libobj" != "X$func_quote_for_eval_result" \ && $ECHO "X$libobj" | $GREP '[]~#^*{};<>?"'"'"' &()|`$[]' \ && func_warning "libobj name '$libobj' may not contain shell special characters." func_dirname_and_basename "$obj" "/" "" objname=$func_basename_result xdir=$func_dirname_result lobj=$xdir$objdir/$objname test -z "$base_compile" && \ func_fatal_help "you must specify a compilation command" # Delete any leftover library objects. if test yes = "$build_old_libs"; then removelist="$obj $lobj $libobj ${libobj}T" else removelist="$lobj $libobj ${libobj}T" fi # On Cygwin there's no "real" PIC flag so we must build both object types case $host_os in cygwin* | mingw* | pw32* | os2* | cegcc*) pic_mode=default ;; esac if test no = "$pic_mode" && test pass_all != "$deplibs_check_method"; then # non-PIC code in shared libraries is not supported pic_mode=default fi # Calculate the filename of the output object if compiler does # not support -o with -c if test no = "$compiler_c_o"; then output_obj=`$ECHO "$srcfile" | $SED 's%^.*/%%; s%\.[^.]*$%%'`.$objext lockfile=$output_obj.lock else output_obj= need_locks=no lockfile= fi # Lock this critical section if it is needed # We use this script file to make the link, it avoids creating a new file if test yes = "$need_locks"; then until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done elif test warn = "$need_locks"; then if test -f "$lockfile"; then $ECHO "\ *** ERROR, $lockfile exists and contains: `cat $lockfile 2>/dev/null` This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi func_append removelist " $output_obj" $ECHO "$srcfile" > "$lockfile" fi $opt_dry_run || $RM $removelist func_append removelist " $lockfile" trap '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' 1 2 15 func_to_tool_file "$srcfile" func_convert_file_msys_to_w32 srcfile=$func_to_tool_file_result func_quote_for_eval "$srcfile" qsrcfile=$func_quote_for_eval_result # Only build a PIC object if we are building libtool libraries. if test yes = "$build_libtool_libs"; then # Without this assignment, base_compile gets emptied. fbsd_hideous_sh_bug=$base_compile if test no != "$pic_mode"; then command="$base_compile $qsrcfile $pic_flag" else # Don't build PIC code command="$base_compile $qsrcfile" fi func_mkdir_p "$xdir$objdir" if test -z "$output_obj"; then # Place PIC objects in $objdir func_append command " -o $lobj" fi func_show_eval_locale "$command" \ 'test -n "$output_obj" && $RM $removelist; exit $EXIT_FAILURE' if test warn = "$need_locks" && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed, then go on to compile the next one if test -n "$output_obj" && test "X$output_obj" != "X$lobj"; then func_show_eval '$MV "$output_obj" "$lobj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi # Allow error messages only from the first compilation. if test yes = "$suppress_opt"; then suppress_output=' >/dev/null 2>&1' fi fi # Only build a position-dependent object if we build old libraries. if test yes = "$build_old_libs"; then if test yes != "$pic_mode"; then # Don't build PIC code command="$base_compile $qsrcfile$pie_flag" else command="$base_compile $qsrcfile $pic_flag" fi if test yes = "$compiler_c_o"; then func_append command " -o $obj" fi # Suppress compiler output if we already did a PIC compilation. func_append command "$suppress_output" func_show_eval_locale "$command" \ '$opt_dry_run || $RM $removelist; exit $EXIT_FAILURE' if test warn = "$need_locks" && test "X`cat $lockfile 2>/dev/null`" != "X$srcfile"; then $ECHO "\ *** ERROR, $lockfile contains: `cat $lockfile 2>/dev/null` but it should contain: $srcfile This indicates that another process is trying to use the same temporary object file, and libtool could not work around it because your compiler does not support '-c' and '-o' together. If you repeat this compilation, it may succeed, by chance, but you had better avoid parallel builds (make -j) in this platform, or get a better compiler." $opt_dry_run || $RM $removelist exit $EXIT_FAILURE fi # Just move the object if needed if test -n "$output_obj" && test "X$output_obj" != "X$obj"; then func_show_eval '$MV "$output_obj" "$obj"' \ 'error=$?; $opt_dry_run || $RM $removelist; exit $error' fi fi $opt_dry_run || { func_write_libtool_object "$libobj" "$objdir/$objname" "$objname" # Unlock the critical section if it was locked if test no != "$need_locks"; then removelist=$lockfile $RM "$lockfile" fi } exit $EXIT_SUCCESS } $opt_help || { test compile = "$opt_mode" && func_mode_compile ${1+"$@"} } func_mode_help () { # We need to display help for each of the modes. case $opt_mode in "") # Generic help is extracted from the usage comments # at the start of this file. func_help ;; clean) $ECHO \ "Usage: $progname [OPTION]... --mode=clean RM [RM-OPTION]... FILE... Remove files from the build directory. RM is the name of the program to use to delete files associated with each FILE (typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed to RM. If FILE is a libtool library, object or program, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; compile) $ECHO \ "Usage: $progname [OPTION]... --mode=compile COMPILE-COMMAND... SOURCEFILE Compile a source file into a libtool library object. This mode accepts the following additional options: -o OUTPUT-FILE set the output file name to OUTPUT-FILE -no-suppress do not suppress compiler output for multiple passes -prefer-pic try to build PIC objects only -prefer-non-pic try to build non-PIC objects only -shared do not build a '.o' file suitable for static linking -static only build a '.o' file suitable for static linking -Wc,FLAG pass FLAG directly to the compiler COMPILE-COMMAND is a command to be used in creating a 'standard' object file from the given SOURCEFILE. The output file name is determined by removing the directory component from SOURCEFILE, then substituting the C source code suffix '.c' with the library object suffix, '.lo'." ;; execute) $ECHO \ "Usage: $progname [OPTION]... --mode=execute COMMAND [ARGS]... Automatically set library path, then run a program. This mode accepts the following additional options: -dlopen FILE add the directory containing FILE to the library path This mode sets the library path environment variable according to '-dlopen' flags. If any of the ARGS are libtool executable wrappers, then they are translated into their corresponding uninstalled binary, and any of their required library directories are added to the library path. Then, COMMAND is executed, with ARGS as arguments." ;; finish) $ECHO \ "Usage: $progname [OPTION]... --mode=finish [LIBDIR]... Complete the installation of libtool libraries. Each LIBDIR is a directory that contains libtool libraries. The commands that this mode executes may require superuser privileges. Use the '--dry-run' option if you just want to see what would be executed." ;; install) $ECHO \ "Usage: $progname [OPTION]... --mode=install INSTALL-COMMAND... Install executables or libraries. INSTALL-COMMAND is the installation command. The first component should be either the 'install' or 'cp' program. The following components of INSTALL-COMMAND are treated specially: -inst-prefix-dir PREFIX-DIR Use PREFIX-DIR as a staging area for installation The rest of the components are interpreted as arguments to that command (only BSD-compatible install options are recognized)." ;; link) $ECHO \ "Usage: $progname [OPTION]... --mode=link LINK-COMMAND... Link object files or libraries together to form another library, or to create an executable program. LINK-COMMAND is a command using the C compiler that you would use to create a program from several object files. The following components of LINK-COMMAND are treated specially: -all-static do not do any dynamic linking at all -avoid-version do not add a version suffix if possible -bindir BINDIR specify path to binaries directory (for systems where libraries must be found in the PATH setting at runtime) -dlopen FILE '-dlpreopen' FILE if it cannot be dlopened at runtime -dlpreopen FILE link in FILE and add its symbols to lt_preloaded_symbols -export-dynamic allow symbols from OUTPUT-FILE to be resolved with dlsym(3) -export-symbols SYMFILE try to export only the symbols listed in SYMFILE -export-symbols-regex REGEX try to export only the symbols matching REGEX -LLIBDIR search LIBDIR for required installed libraries -lNAME OUTPUT-FILE requires the installed library libNAME -module build a library that can dlopened -no-fast-install disable the fast-install mode -no-install link a not-installable executable -no-undefined declare that a library does not refer to external symbols -o OUTPUT-FILE create OUTPUT-FILE from the specified objects -objectlist FILE Use a list of object files found in FILE to specify objects -precious-files-regex REGEX don't remove output files matching REGEX -release RELEASE specify package release information -rpath LIBDIR the created library will eventually be installed in LIBDIR -R[ ]LIBDIR add LIBDIR to the runtime path of programs and libraries -shared only do dynamic linking of libtool libraries -shrext SUFFIX override the standard shared library file extension -static do not do any dynamic linking of uninstalled libtool libraries -static-libtool-libs do not do any dynamic linking of libtool libraries -version-info CURRENT[:REVISION[:AGE]] specify library version info [each variable defaults to 0] -weak LIBNAME declare that the target provides the LIBNAME interface -Wc,FLAG -Xcompiler FLAG pass linker-specific FLAG directly to the compiler -Wl,FLAG -Xlinker FLAG pass linker-specific FLAG directly to the linker -XCClinker FLAG pass link-specific FLAG to the compiler driver (CC) All other options (arguments beginning with '-') are ignored. Every other argument is treated as a filename. Files ending in '.la' are treated as uninstalled libtool libraries, other files are standard or library object files. If the OUTPUT-FILE ends in '.la', then a libtool library is created, only library objects ('.lo' files) may be specified, and '-rpath' is required, except when creating a convenience library. If OUTPUT-FILE ends in '.a' or '.lib', then a standard library is created using 'ar' and 'ranlib', or on Windows using 'lib'. If OUTPUT-FILE ends in '.lo' or '.$objext', then a reloadable object file is created, otherwise an executable program is created." ;; uninstall) $ECHO \ "Usage: $progname [OPTION]... --mode=uninstall RM [RM-OPTION]... FILE... Remove libraries from an installation directory. RM is the name of the program to use to delete files associated with each FILE (typically '/bin/rm'). RM-OPTIONS are options (such as '-f') to be passed to RM. If FILE is a libtool library, all the files associated with it are deleted. Otherwise, only FILE itself is deleted using RM." ;; *) func_fatal_help "invalid operation mode '$opt_mode'" ;; esac echo $ECHO "Try '$progname --help' for more information about other modes." } # Now that we've collected a possible --mode arg, show help if necessary if $opt_help; then if test : = "$opt_help"; then func_mode_help else { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do func_mode_help done } | sed -n '1p; 2,$s/^Usage:/ or: /p' { func_help noexit for opt_mode in compile link execute install finish uninstall clean; do echo func_mode_help done } | sed '1d /^When reporting/,/^Report/{ H d } $x /information about other modes/d /more detailed .*MODE/d s/^Usage:.*--mode=\([^ ]*\) .*/Description of \1 mode:/' fi exit $? fi # func_mode_execute arg... func_mode_execute () { $debug_cmd # The first argument is the command name. cmd=$nonopt test -z "$cmd" && \ func_fatal_help "you must specify a COMMAND" # Handle -dlopen flags immediately. for file in $opt_dlopen; do test -f "$file" \ || func_fatal_help "'$file' is not a file" dir= case $file in *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "'$lib' is not a valid libtool archive" # Read the libtool library. dlname= library_names= func_source "$file" # Skip this library if it cannot be dlopened. if test -z "$dlname"; then # Warn if it was a shared library. test -n "$library_names" && \ func_warning "'$file' was not linked with '-export-dynamic'" continue fi func_dirname "$file" "" "." dir=$func_dirname_result if test -f "$dir/$objdir/$dlname"; then func_append dir "/$objdir" else if test ! -f "$dir/$dlname"; then func_fatal_error "cannot find '$dlname' in '$dir' or '$dir/$objdir'" fi fi ;; *.lo) # Just add the directory containing the .lo file. func_dirname "$file" "" "." dir=$func_dirname_result ;; *) func_warning "'-dlopen' is ignored for non-libtool libraries and objects" continue ;; esac # Get the absolute pathname. absdir=`cd "$dir" && pwd` test -n "$absdir" && dir=$absdir # Now add the directory to shlibpath_var. if eval "test -z \"\$$shlibpath_var\""; then eval "$shlibpath_var=\"\$dir\"" else eval "$shlibpath_var=\"\$dir:\$$shlibpath_var\"" fi done # This variable tells wrapper scripts just to set shlibpath_var # rather than running their programs. libtool_execute_magic=$magic # Check if any of the arguments is a wrapper script. args= for file do case $file in -* | *.la | *.lo ) ;; *) # Do a test to see if this is really a libtool program. if func_ltwrapper_script_p "$file"; then func_source "$file" # Transform arg to wrapped name. file=$progdir/$program elif func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" func_source "$func_ltwrapper_scriptname_result" # Transform arg to wrapped name. file=$progdir/$program fi ;; esac # Quote arguments (to preserve shell metacharacters). func_append_quoted args "$file" done if $opt_dry_run; then # Display what would be done. if test -n "$shlibpath_var"; then eval "\$ECHO \"\$shlibpath_var=\$$shlibpath_var\"" echo "export $shlibpath_var" fi $ECHO "$cmd$args" exit $EXIT_SUCCESS else if test -n "$shlibpath_var"; then # Export the shlibpath_var. eval "export $shlibpath_var" fi # Restore saved environment variables for lt_var in LANG LANGUAGE LC_ALL LC_CTYPE LC_COLLATE LC_MESSAGES do eval "if test \"\${save_$lt_var+set}\" = set; then $lt_var=\$save_$lt_var; export $lt_var else $lt_unset $lt_var fi" done # Now prepare to actually exec the command. exec_cmd=\$cmd$args fi } test execute = "$opt_mode" && func_mode_execute ${1+"$@"} # func_mode_finish arg... func_mode_finish () { $debug_cmd libs= libdirs= admincmds= for opt in "$nonopt" ${1+"$@"} do if test -d "$opt"; then func_append libdirs " $opt" elif test -f "$opt"; then if func_lalib_unsafe_p "$opt"; then func_append libs " $opt" else func_warning "'$opt' is not a valid libtool archive" fi else func_fatal_error "invalid argument '$opt'" fi done if test -n "$libs"; then if test -n "$lt_sysroot"; then sysroot_regex=`$ECHO "$lt_sysroot" | $SED "$sed_make_literal_regex"` sysroot_cmd="s/\([ ']\)$sysroot_regex/\1/g;" else sysroot_cmd= fi # Remove sysroot references if $opt_dry_run; then for lib in $libs; do echo "removing references to $lt_sysroot and '=' prefixes from $lib" done else tmpdir=`func_mktempdir` for lib in $libs; do sed -e "$sysroot_cmd s/\([ ']-[LR]\)=/\1/g; s/\([ ']\)=/\1/g" $lib \ > $tmpdir/tmp-la mv -f $tmpdir/tmp-la $lib done ${RM}r "$tmpdir" fi fi if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then for libdir in $libdirs; do if test -n "$finish_cmds"; then # Do each command in the finish commands. func_execute_cmds "$finish_cmds" 'admincmds="$admincmds '"$cmd"'"' fi if test -n "$finish_eval"; then # Do the single finish_eval. eval cmds=\"$finish_eval\" $opt_dry_run || eval "$cmds" || func_append admincmds " $cmds" fi done fi # Exit here if they wanted silent mode. $opt_quiet && exit $EXIT_SUCCESS if test -n "$finish_cmds$finish_eval" && test -n "$libdirs"; then echo "----------------------------------------------------------------------" echo "Libraries have been installed in:" for libdir in $libdirs; do $ECHO " $libdir" done echo echo "If you ever happen to want to link against installed libraries" echo "in a given directory, LIBDIR, you must either use libtool, and" echo "specify the full pathname of the library, or use the '-LLIBDIR'" echo "flag during linking and do at least one of the following:" if test -n "$shlibpath_var"; then echo " - add LIBDIR to the '$shlibpath_var' environment variable" echo " during execution" fi if test -n "$runpath_var"; then echo " - add LIBDIR to the '$runpath_var' environment variable" echo " during linking" fi if test -n "$hardcode_libdir_flag_spec"; then libdir=LIBDIR eval flag=\"$hardcode_libdir_flag_spec\" $ECHO " - use the '$flag' linker flag" fi if test -n "$admincmds"; then $ECHO " - have your system administrator run these commands:$admincmds" fi if test -f /etc/ld.so.conf; then echo " - have your system administrator add LIBDIR to '/etc/ld.so.conf'" fi echo echo "See any operating system documentation about shared libraries for" case $host in solaris2.[6789]|solaris2.1[0-9]) echo "more information, such as the ld(1), crle(1) and ld.so(8) manual" echo "pages." ;; *) echo "more information, such as the ld(1) and ld.so(8) manual pages." ;; esac echo "----------------------------------------------------------------------" fi exit $EXIT_SUCCESS } test finish = "$opt_mode" && func_mode_finish ${1+"$@"} # func_mode_install arg... func_mode_install () { $debug_cmd # There may be an optional sh(1) argument at the beginning of # install_prog (especially on Windows NT). if test "$SHELL" = "$nonopt" || test /bin/sh = "$nonopt" || # Allow the use of GNU shtool's install command. case $nonopt in *shtool*) :;; *) false;; esac then # Aesthetically quote it. func_quote_for_eval "$nonopt" install_prog="$func_quote_for_eval_result " arg=$1 shift else install_prog= arg=$nonopt fi # The real first argument should be the name of the installation program. # Aesthetically quote it. func_quote_for_eval "$arg" func_append install_prog "$func_quote_for_eval_result" install_shared_prog=$install_prog case " $install_prog " in *[\\\ /]cp\ *) install_cp=: ;; *) install_cp=false ;; esac # We need to accept at least all the BSD install flags. dest= files= opts= prev= install_type= isdir=false stripme= no_mode=: for arg do arg2= if test -n "$dest"; then func_append files " $dest" dest=$arg continue fi case $arg in -d) isdir=: ;; -f) if $install_cp; then :; else prev=$arg fi ;; -g | -m | -o) prev=$arg ;; -s) stripme=" -s" continue ;; -*) ;; *) # If the previous option needed an argument, then skip it. if test -n "$prev"; then if test X-m = "X$prev" && test -n "$install_override_mode"; then arg2=$install_override_mode no_mode=false fi prev= else dest=$arg continue fi ;; esac # Aesthetically quote the argument. func_quote_for_eval "$arg" func_append install_prog " $func_quote_for_eval_result" if test -n "$arg2"; then func_quote_for_eval "$arg2" fi func_append install_shared_prog " $func_quote_for_eval_result" done test -z "$install_prog" && \ func_fatal_help "you must specify an install program" test -n "$prev" && \ func_fatal_help "the '$prev' option requires an argument" if test -n "$install_override_mode" && $no_mode; then if $install_cp; then :; else func_quote_for_eval "$install_override_mode" func_append install_shared_prog " -m $func_quote_for_eval_result" fi fi if test -z "$files"; then if test -z "$dest"; then func_fatal_help "no file or destination specified" else func_fatal_help "you must specify a destination" fi fi # Strip any trailing slash from the destination. func_stripname '' '/' "$dest" dest=$func_stripname_result # Check to see that the destination is a directory. test -d "$dest" && isdir=: if $isdir; then destdir=$dest destname= else func_dirname_and_basename "$dest" "" "." destdir=$func_dirname_result destname=$func_basename_result # Not a directory, so check to see that there is only one file specified. set dummy $files; shift test "$#" -gt 1 && \ func_fatal_help "'$dest' is not a directory" fi case $destdir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) for file in $files; do case $file in *.lo) ;; *) func_fatal_help "'$destdir' must be an absolute directory name" ;; esac done ;; esac # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic=$magic staticlibs= future_libdirs= current_libdirs= for file in $files; do # Do each installation. case $file in *.$libext) # Do the static libraries later. func_append staticlibs " $file" ;; *.la) func_resolve_sysroot "$file" file=$func_resolve_sysroot_result # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$file" \ || func_fatal_help "'$file' is not a valid libtool archive" library_names= old_library= relink_command= func_source "$file" # Add the libdir to current_libdirs if it is the destination. if test "X$destdir" = "X$libdir"; then case "$current_libdirs " in *" $libdir "*) ;; *) func_append current_libdirs " $libdir" ;; esac else # Note the libdir as a future libdir. case "$future_libdirs " in *" $libdir "*) ;; *) func_append future_libdirs " $libdir" ;; esac fi func_dirname "$file" "/" "" dir=$func_dirname_result func_append dir "$objdir" if test -n "$relink_command"; then # Determine the prefix the user has applied to our future dir. inst_prefix_dir=`$ECHO "$destdir" | $SED -e "s%$libdir\$%%"` # Don't allow the user to place us outside of our expected # location b/c this prevents finding dependent libraries that # are installed to the same prefix. # At present, this check doesn't affect windows .dll's that # are installed into $libdir/../bin (currently, that works fine) # but it's something to keep an eye on. test "$inst_prefix_dir" = "$destdir" && \ func_fatal_error "error: cannot install '$file' to a directory not ending in $libdir" if test -n "$inst_prefix_dir"; then # Stick the inst_prefix_dir data into the link command. relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%-inst-prefix-dir $inst_prefix_dir%"` else relink_command=`$ECHO "$relink_command" | $SED "s%@inst_prefix_dir@%%"` fi func_warning "relinking '$file'" func_show_eval "$relink_command" \ 'func_fatal_error "error: relink '\''$file'\'' with the above command before installing it"' fi # See the names of the shared library. set dummy $library_names; shift if test -n "$1"; then realname=$1 shift srcname=$realname test -n "$relink_command" && srcname=${realname}T # Install the shared library and build the symlinks. func_show_eval "$install_shared_prog $dir/$srcname $destdir/$realname" \ 'exit $?' tstripme=$stripme case $host_os in cygwin* | mingw* | pw32* | cegcc*) case $realname in *.dll.a) tstripme= ;; esac ;; esac if test -n "$tstripme" && test -n "$striplib"; then func_show_eval "$striplib $destdir/$realname" 'exit $?' fi if test "$#" -gt 0; then # Delete the old symlinks, and create new ones. # Try 'ln -sf' first, because the 'ln' binary might depend on # the symlink we replace! Solaris /bin/ln does not understand -f, # so we also need to try rm && ln -s. for linkname do test "$linkname" != "$realname" \ && func_show_eval "(cd $destdir && { $LN_S -f $realname $linkname || { $RM $linkname && $LN_S $realname $linkname; }; })" done fi # Do each command in the postinstall commands. lib=$destdir/$realname func_execute_cmds "$postinstall_cmds" 'exit $?' fi # Install the pseudo-library for information purposes. func_basename "$file" name=$func_basename_result instname=$dir/${name}i func_show_eval "$install_prog $instname $destdir/$name" 'exit $?' # Maybe install the static library, too. test -n "$old_library" && func_append staticlibs " $dir/$old_library" ;; *.lo) # Install (i.e. copy) a libtool object. # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile=$destdir/$destname else func_basename "$file" destfile=$func_basename_result destfile=$destdir/$destfile fi # Deduce the name of the destination old-style object file. case $destfile in *.lo) func_lo2o "$destfile" staticdest=$func_lo2o_result ;; *.$objext) staticdest=$destfile destfile= ;; *) func_fatal_help "cannot copy a libtool object to '$destfile'" ;; esac # Install the libtool object if requested. test -n "$destfile" && \ func_show_eval "$install_prog $file $destfile" 'exit $?' # Install the old object if enabled. if test yes = "$build_old_libs"; then # Deduce the name of the old-style object file. func_lo2o "$file" staticobj=$func_lo2o_result func_show_eval "$install_prog \$staticobj \$staticdest" 'exit $?' fi exit $EXIT_SUCCESS ;; *) # Figure out destination file name, if it wasn't already specified. if test -n "$destname"; then destfile=$destdir/$destname else func_basename "$file" destfile=$func_basename_result destfile=$destdir/$destfile fi # If the file is missing, and there is a .exe on the end, strip it # because it is most likely a libtool script we actually want to # install stripped_ext= case $file in *.exe) if test ! -f "$file"; then func_stripname '' '.exe' "$file" file=$func_stripname_result stripped_ext=.exe fi ;; esac # Do a test to see if this is really a libtool program. case $host in *cygwin* | *mingw*) if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" wrapper=$func_ltwrapper_scriptname_result else func_stripname '' '.exe' "$file" wrapper=$func_stripname_result fi ;; *) wrapper=$file ;; esac if func_ltwrapper_script_p "$wrapper"; then notinst_deplibs= relink_command= func_source "$wrapper" # Check the variables that should have been set. test -z "$generated_by_libtool_version" && \ func_fatal_error "invalid libtool wrapper script '$wrapper'" finalize=: for lib in $notinst_deplibs; do # Check to see that each library is installed. libdir= if test -f "$lib"; then func_source "$lib" fi libfile=$libdir/`$ECHO "$lib" | $SED 's%^.*/%%g'` if test -n "$libdir" && test ! -f "$libfile"; then func_warning "'$lib' has not been installed in '$libdir'" finalize=false fi done relink_command= func_source "$wrapper" outputname= if test no = "$fast_install" && test -n "$relink_command"; then $opt_dry_run || { if $finalize; then tmpdir=`func_mktempdir` func_basename "$file$stripped_ext" file=$func_basename_result outputname=$tmpdir/$file # Replace the output file specification. relink_command=`$ECHO "$relink_command" | $SED 's%@OUTPUT@%'"$outputname"'%g'` $opt_quiet || { func_quote_for_expand "$relink_command" eval "func_echo $func_quote_for_expand_result" } if eval "$relink_command"; then : else func_error "error: relink '$file' with the above command before installing it" $opt_dry_run || ${RM}r "$tmpdir" continue fi file=$outputname else func_warning "cannot relink '$file'" fi } else # Install the binary that we compiled earlier. file=`$ECHO "$file$stripped_ext" | $SED "s%\([^/]*\)$%$objdir/\1%"` fi fi # remove .exe since cygwin /usr/bin/install will append another # one anyway case $install_prog,$host in */usr/bin/install*,*cygwin*) case $file:$destfile in *.exe:*.exe) # this is ok ;; *.exe:*) destfile=$destfile.exe ;; *:*.exe) func_stripname '' '.exe' "$destfile" destfile=$func_stripname_result ;; esac ;; esac func_show_eval "$install_prog\$stripme \$file \$destfile" 'exit $?' $opt_dry_run || if test -n "$outputname"; then ${RM}r "$tmpdir" fi ;; esac done for file in $staticlibs; do func_basename "$file" name=$func_basename_result # Set up the ranlib parameters. oldlib=$destdir/$name func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result func_show_eval "$install_prog \$file \$oldlib" 'exit $?' if test -n "$stripme" && test -n "$old_striplib"; then func_show_eval "$old_striplib $tool_oldlib" 'exit $?' fi # Do each command in the postinstall commands. func_execute_cmds "$old_postinstall_cmds" 'exit $?' done test -n "$future_libdirs" && \ func_warning "remember to run '$progname --finish$future_libdirs'" if test -n "$current_libdirs"; then # Maybe just do a dry run. $opt_dry_run && current_libdirs=" -n$current_libdirs" exec_cmd='$SHELL "$progpath" $preserve_args --finish$current_libdirs' else exit $EXIT_SUCCESS fi } test install = "$opt_mode" && func_mode_install ${1+"$@"} # func_generate_dlsyms outputname originator pic_p # Extract symbols from dlprefiles and create ${outputname}S.o with # a dlpreopen symbol table. func_generate_dlsyms () { $debug_cmd my_outputname=$1 my_originator=$2 my_pic_p=${3-false} my_prefix=`$ECHO "$my_originator" | sed 's%[^a-zA-Z0-9]%_%g'` my_dlsyms= if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then if test -n "$NM" && test -n "$global_symbol_pipe"; then my_dlsyms=${my_outputname}S.c else func_error "not configured to extract global symbols from dlpreopened files" fi fi if test -n "$my_dlsyms"; then case $my_dlsyms in "") ;; *.c) # Discover the nlist of each of the dlfiles. nlist=$output_objdir/$my_outputname.nm func_show_eval "$RM $nlist ${nlist}S ${nlist}T" # Parse the name list into a source file. func_verbose "creating $output_objdir/$my_dlsyms" $opt_dry_run || $ECHO > "$output_objdir/$my_dlsyms" "\ /* $my_dlsyms - symbol resolution table for '$my_outputname' dlsym emulation. */ /* Generated by $PROGRAM (GNU $PACKAGE) $VERSION */ #ifdef __cplusplus extern \"C\" { #endif #if defined __GNUC__ && (((__GNUC__ == 4) && (__GNUC_MINOR__ >= 4)) || (__GNUC__ > 4)) #pragma GCC diagnostic ignored \"-Wstrict-prototypes\" #endif /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT_DLSYM_CONST #else # define LT_DLSYM_CONST const #endif #define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0) /* External symbol declarations for the compiler. */\ " if test yes = "$dlself"; then func_verbose "generating symbol list for '$output'" $opt_dry_run || echo ': @PROGRAM@ ' > "$nlist" # Add our own program objects to the symbol list. progfiles=`$ECHO "$objs$old_deplibs" | $SP2NL | $SED "$lo2o" | $NL2SP` for progfile in $progfiles; do func_to_tool_file "$progfile" func_convert_file_msys_to_w32 func_verbose "extracting global C symbols from '$func_to_tool_file_result'" $opt_dry_run || eval "$NM $func_to_tool_file_result | $global_symbol_pipe >> '$nlist'" done if test -n "$exclude_expsyms"; then $opt_dry_run || { eval '$EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi if test -n "$export_symbols_regex"; then $opt_dry_run || { eval '$EGREP -e "$export_symbols_regex" "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' } fi # Prepare the list of exported symbols if test -z "$export_symbols"; then export_symbols=$output_objdir/$outputname.exp $opt_dry_run || { $RM $export_symbols eval "$SED -n -e '/^: @PROGRAM@ $/d' -e 's/^.* \(.*\)$/\1/p' "'< "$nlist" > "$export_symbols"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$export_symbols" >> "$output_objdir/$outputname.def"' ;; esac } else $opt_dry_run || { eval "$SED -e 's/\([].[*^$]\)/\\\\\1/g' -e 's/^/ /' -e 's/$/$/'"' < "$export_symbols" > "$output_objdir/$outputname.exp"' eval '$GREP -f "$output_objdir/$outputname.exp" < "$nlist" > "$nlist"T' eval '$MV "$nlist"T "$nlist"' case $host in *cygwin* | *mingw* | *cegcc* ) eval "echo EXPORTS "'> "$output_objdir/$outputname.def"' eval 'cat "$nlist" >> "$output_objdir/$outputname.def"' ;; esac } fi fi for dlprefile in $dlprefiles; do func_verbose "extracting global C symbols from '$dlprefile'" func_basename "$dlprefile" name=$func_basename_result case $host in *cygwin* | *mingw* | *cegcc* ) # if an import library, we need to obtain dlname if func_win32_import_lib_p "$dlprefile"; then func_tr_sh "$dlprefile" eval "curr_lafile=\$libfile_$func_tr_sh_result" dlprefile_dlbasename= if test -n "$curr_lafile" && func_lalib_p "$curr_lafile"; then # Use subshell, to avoid clobbering current variable values dlprefile_dlname=`source "$curr_lafile" && echo "$dlname"` if test -n "$dlprefile_dlname"; then func_basename "$dlprefile_dlname" dlprefile_dlbasename=$func_basename_result else # no lafile. user explicitly requested -dlpreopen . $sharedlib_from_linklib_cmd "$dlprefile" dlprefile_dlbasename=$sharedlib_from_linklib_result fi fi $opt_dry_run || { if test -n "$dlprefile_dlbasename"; then eval '$ECHO ": $dlprefile_dlbasename" >> "$nlist"' else func_warning "Could not compute DLL name from $name" eval '$ECHO ": $name " >> "$nlist"' fi func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe | $SED -e '/I __imp/d' -e 's/I __nm_/D /;s/_nm__//' >> '$nlist'" } else # not an import lib $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } fi ;; *) $opt_dry_run || { eval '$ECHO ": $name " >> "$nlist"' func_to_tool_file "$dlprefile" func_convert_file_msys_to_w32 eval "$NM \"$func_to_tool_file_result\" 2>/dev/null | $global_symbol_pipe >> '$nlist'" } ;; esac done $opt_dry_run || { # Make sure we have at least an empty file. test -f "$nlist" || : > "$nlist" if test -n "$exclude_expsyms"; then $EGREP -v " ($exclude_expsyms)$" "$nlist" > "$nlist"T $MV "$nlist"T "$nlist" fi # Try sorting and uniquifying the output. if $GREP -v "^: " < "$nlist" | if sort -k 3 /dev/null 2>&1; then sort -k 3 else sort +2 fi | uniq > "$nlist"S; then : else $GREP -v "^: " < "$nlist" > "$nlist"S fi if test -f "$nlist"S; then eval "$global_symbol_to_cdecl"' < "$nlist"S >> "$output_objdir/$my_dlsyms"' else echo '/* NONE */' >> "$output_objdir/$my_dlsyms" fi func_show_eval '$RM "${nlist}I"' if test -n "$global_symbol_to_import"; then eval "$global_symbol_to_import"' < "$nlist"S > "$nlist"I' fi echo >> "$output_objdir/$my_dlsyms" "\ /* The mapping between symbol names and symbols. */ typedef struct { const char *name; void *address; } lt_dlsymlist; extern LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[];\ " if test -s "$nlist"I; then echo >> "$output_objdir/$my_dlsyms" "\ static void lt_syminit(void) { LT_DLSYM_CONST lt_dlsymlist *symbol = lt_${my_prefix}_LTX_preloaded_symbols; for (; symbol->name; ++symbol) {" $SED 's/.*/ if (STREQ (symbol->name, \"&\")) symbol->address = (void *) \&&;/' < "$nlist"I >> "$output_objdir/$my_dlsyms" echo >> "$output_objdir/$my_dlsyms" "\ } }" fi echo >> "$output_objdir/$my_dlsyms" "\ LT_DLSYM_CONST lt_dlsymlist lt_${my_prefix}_LTX_preloaded_symbols[] = { {\"$my_originator\", (void *) 0}," if test -s "$nlist"I; then echo >> "$output_objdir/$my_dlsyms" "\ {\"@INIT@\", (void *) <_syminit}," fi case $need_lib_prefix in no) eval "$global_symbol_to_c_name_address" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; *) eval "$global_symbol_to_c_name_address_lib_prefix" < "$nlist" >> "$output_objdir/$my_dlsyms" ;; esac echo >> "$output_objdir/$my_dlsyms" "\ {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt_${my_prefix}_LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif\ " } # !$opt_dry_run pic_flag_for_symtable= case "$compile_command " in *" -static "*) ;; *) case $host in # compiling the symbol table file with pic_flag works around # a FreeBSD bug that causes programs to crash when -lm is # linked before any other PIC object. But we must not use # pic_flag when linking with -static. The problem exists in # FreeBSD 2.2.6 and is fixed in FreeBSD 3.1. *-*-freebsd2.*|*-*-freebsd3.0*|*-*-freebsdelf3.0*) pic_flag_for_symtable=" $pic_flag -DFREEBSD_WORKAROUND" ;; *-*-hpux*) pic_flag_for_symtable=" $pic_flag" ;; *) $my_pic_p && pic_flag_for_symtable=" $pic_flag" ;; esac ;; esac symtab_cflags= for arg in $LTCFLAGS; do case $arg in -pie | -fpie | -fPIE) ;; *) func_append symtab_cflags " $arg" ;; esac done # Now compile the dynamic symbol file. func_show_eval '(cd $output_objdir && $LTCC$symtab_cflags -c$no_builtin_flag$pic_flag_for_symtable "$my_dlsyms")' 'exit $?' # Clean up the generated files. func_show_eval '$RM "$output_objdir/$my_dlsyms" "$nlist" "${nlist}S" "${nlist}T" "${nlist}I"' # Transform the symbol file into the correct name. symfileobj=$output_objdir/${my_outputname}S.$objext case $host in *cygwin* | *mingw* | *cegcc* ) if test -f "$output_objdir/$my_outputname.def"; then compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$output_objdir/$my_outputname.def $symfileobj%"` else compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` fi ;; *) compile_command=`$ECHO "$compile_command" | $SED "s%@SYMFILE@%$symfileobj%"` finalize_command=`$ECHO "$finalize_command" | $SED "s%@SYMFILE@%$symfileobj%"` ;; esac ;; *) func_fatal_error "unknown suffix for '$my_dlsyms'" ;; esac else # We keep going just in case the user didn't refer to # lt_preloaded_symbols. The linker will fail if global_symbol_pipe # really was required. # Nullify the symbol file. compile_command=`$ECHO "$compile_command" | $SED "s% @SYMFILE@%%"` finalize_command=`$ECHO "$finalize_command" | $SED "s% @SYMFILE@%%"` fi } # func_cygming_gnu_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is a GNU/binutils-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_gnu_implib_p () { $debug_cmd func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_gnu_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $EGREP ' (_head_[A-Za-z0-9_]+_[ad]l*|[A-Za-z0-9_]+_[ad]l*_iname)$'` test -n "$func_cygming_gnu_implib_tmp" } # func_cygming_ms_implib_p ARG # This predicate returns with zero status (TRUE) if # ARG is an MS-style import library. Returns # with nonzero status (FALSE) otherwise. func_cygming_ms_implib_p () { $debug_cmd func_to_tool_file "$1" func_convert_file_msys_to_w32 func_cygming_ms_implib_tmp=`$NM "$func_to_tool_file_result" | eval "$global_symbol_pipe" | $GREP '_NULL_IMPORT_DESCRIPTOR'` test -n "$func_cygming_ms_implib_tmp" } # func_win32_libid arg # return the library type of file 'arg' # # Need a lot of goo to handle *both* DLLs and import libs # Has to be a shell function in order to 'eat' the argument # that is supplied when $file_magic_command is called. # Despite the name, also deal with 64 bit binaries. func_win32_libid () { $debug_cmd win32_libid_type=unknown win32_fileres=`file -L $1 2>/dev/null` case $win32_fileres in *ar\ archive\ import\ library*) # definitely import win32_libid_type="x86 archive import" ;; *ar\ archive*) # could be an import, or static # Keep the egrep pattern in sync with the one in _LT_CHECK_MAGIC_METHOD. if eval $OBJDUMP -f $1 | $SED -e '10q' 2>/dev/null | $EGREP 'file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' >/dev/null; then case $nm_interface in "MS dumpbin") if func_cygming_ms_implib_p "$1" || func_cygming_gnu_implib_p "$1" then win32_nmres=import else win32_nmres= fi ;; *) func_to_tool_file "$1" func_convert_file_msys_to_w32 win32_nmres=`eval $NM -f posix -A \"$func_to_tool_file_result\" | $SED -n -e ' 1,100{ / I /{ s|.*|import| p q } }'` ;; esac case $win32_nmres in import*) win32_libid_type="x86 archive import";; *) win32_libid_type="x86 archive static";; esac fi ;; *DLL*) win32_libid_type="x86 DLL" ;; *executable*) # but shell scripts are "executable" too... case $win32_fileres in *MS\ Windows\ PE\ Intel*) win32_libid_type="x86 DLL" ;; esac ;; esac $ECHO "$win32_libid_type" } # func_cygming_dll_for_implib ARG # # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib () { $debug_cmd sharedlib_from_linklib_result=`$DLLTOOL --identify-strict --identify "$1"` } # func_cygming_dll_for_implib_fallback_core SECTION_NAME LIBNAMEs # # The is the core of a fallback implementation of a # platform-specific function to extract the name of the # DLL associated with the specified import library LIBNAME. # # SECTION_NAME is either .idata$6 or .idata$7, depending # on the platform and compiler that created the implib. # # Echos the name of the DLL associated with the # specified import library. func_cygming_dll_for_implib_fallback_core () { $debug_cmd match_literal=`$ECHO "$1" | $SED "$sed_make_literal_regex"` $OBJDUMP -s --section "$1" "$2" 2>/dev/null | $SED '/^Contents of section '"$match_literal"':/{ # Place marker at beginning of archive member dllname section s/.*/====MARK====/ p d } # These lines can sometimes be longer than 43 characters, but # are always uninteresting /:[ ]*file format pe[i]\{,1\}-/d /^In archive [^:]*:/d # Ensure marker is printed /^====MARK====/p # Remove all lines with less than 43 characters /^.\{43\}/!d # From remaining lines, remove first 43 characters s/^.\{43\}//' | $SED -n ' # Join marker and all lines until next marker into a single line /^====MARK====/ b para H $ b para b :para x s/\n//g # Remove the marker s/^====MARK====// # Remove trailing dots and whitespace s/[\. \t]*$// # Print /./p' | # we now have a list, one entry per line, of the stringified # contents of the appropriate section of all members of the # archive that possess that section. Heuristic: eliminate # all those that have a first or second character that is # a '.' (that is, objdump's representation of an unprintable # character.) This should work for all archives with less than # 0x302f exports -- but will fail for DLLs whose name actually # begins with a literal '.' or a single character followed by # a '.'. # # Of those that remain, print the first one. $SED -e '/^\./d;/^.\./d;q' } # func_cygming_dll_for_implib_fallback ARG # Platform-specific function to extract the # name of the DLL associated with the specified # import library ARG. # # This fallback implementation is for use when $DLLTOOL # does not support the --identify-strict option. # Invoked by eval'ing the libtool variable # $sharedlib_from_linklib_cmd # Result is available in the variable # $sharedlib_from_linklib_result func_cygming_dll_for_implib_fallback () { $debug_cmd if func_cygming_gnu_implib_p "$1"; then # binutils import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$7' "$1"` elif func_cygming_ms_implib_p "$1"; then # ms-generated import library sharedlib_from_linklib_result=`func_cygming_dll_for_implib_fallback_core '.idata$6' "$1"` else # unknown sharedlib_from_linklib_result= fi } # func_extract_an_archive dir oldlib func_extract_an_archive () { $debug_cmd f_ex_an_ar_dir=$1; shift f_ex_an_ar_oldlib=$1 if test yes = "$lock_old_archive_extraction"; then lockfile=$f_ex_an_ar_oldlib.lock until $opt_dry_run || ln "$progpath" "$lockfile" 2>/dev/null; do func_echo "Waiting for $lockfile to be removed" sleep 2 done fi func_show_eval "(cd \$f_ex_an_ar_dir && $AR x \"\$f_ex_an_ar_oldlib\")" \ 'stat=$?; rm -f "$lockfile"; exit $stat' if test yes = "$lock_old_archive_extraction"; then $opt_dry_run || rm -f "$lockfile" fi if ($AR t "$f_ex_an_ar_oldlib" | sort | sort -uc >/dev/null 2>&1); then : else func_fatal_error "object name conflicts in archive: $f_ex_an_ar_dir/$f_ex_an_ar_oldlib" fi } # func_extract_archives gentop oldlib ... func_extract_archives () { $debug_cmd my_gentop=$1; shift my_oldlibs=${1+"$@"} my_oldobjs= my_xlib= my_xabs= my_xdir= for my_xlib in $my_oldlibs; do # Extract the objects. case $my_xlib in [\\/]* | [A-Za-z]:[\\/]*) my_xabs=$my_xlib ;; *) my_xabs=`pwd`"/$my_xlib" ;; esac func_basename "$my_xlib" my_xlib=$func_basename_result my_xlib_u=$my_xlib while :; do case " $extracted_archives " in *" $my_xlib_u "*) func_arith $extracted_serial + 1 extracted_serial=$func_arith_result my_xlib_u=lt$extracted_serial-$my_xlib ;; *) break ;; esac done extracted_archives="$extracted_archives $my_xlib_u" my_xdir=$my_gentop/$my_xlib_u func_mkdir_p "$my_xdir" case $host in *-darwin*) func_verbose "Extracting $my_xabs" # Do not bother doing anything if just a dry run $opt_dry_run || { darwin_orig_dir=`pwd` cd $my_xdir || exit $? darwin_archive=$my_xabs darwin_curdir=`pwd` func_basename "$darwin_archive" darwin_base_archive=$func_basename_result darwin_arches=`$LIPO -info "$darwin_archive" 2>/dev/null | $GREP Architectures 2>/dev/null || true` if test -n "$darwin_arches"; then darwin_arches=`$ECHO "$darwin_arches" | $SED -e 's/.*are://'` darwin_arch= func_verbose "$darwin_base_archive has multiple architectures $darwin_arches" for darwin_arch in $darwin_arches; do func_mkdir_p "unfat-$$/$darwin_base_archive-$darwin_arch" $LIPO -thin $darwin_arch -output "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive" "$darwin_archive" cd "unfat-$$/$darwin_base_archive-$darwin_arch" func_extract_an_archive "`pwd`" "$darwin_base_archive" cd "$darwin_curdir" $RM "unfat-$$/$darwin_base_archive-$darwin_arch/$darwin_base_archive" done # $darwin_arches ## Okay now we've a bunch of thin objects, gotta fatten them up :) darwin_filelist=`find unfat-$$ -type f -name \*.o -print -o -name \*.lo -print | $SED -e "$basename" | sort -u` darwin_file= darwin_files= for darwin_file in $darwin_filelist; do darwin_files=`find unfat-$$ -name $darwin_file -print | sort | $NL2SP` $LIPO -create -output "$darwin_file" $darwin_files done # $darwin_filelist $RM -rf unfat-$$ cd "$darwin_orig_dir" else cd $darwin_orig_dir func_extract_an_archive "$my_xdir" "$my_xabs" fi # $darwin_arches } # !$opt_dry_run ;; *) func_extract_an_archive "$my_xdir" "$my_xabs" ;; esac my_oldobjs="$my_oldobjs "`find $my_xdir -name \*.$objext -print -o -name \*.lo -print | sort | $NL2SP` done func_extract_archives_result=$my_oldobjs } # func_emit_wrapper [arg=no] # # Emit a libtool wrapper script on stdout. # Don't directly open a file because we may want to # incorporate the script contents within a cygwin/mingw # wrapper executable. Must ONLY be called from within # func_mode_link because it depends on a number of variables # set therein. # # ARG is the value that the WRAPPER_SCRIPT_BELONGS_IN_OBJDIR # variable will take. If 'yes', then the emitted script # will assume that the directory where it is stored is # the $objdir directory. This is a cygwin/mingw-specific # behavior. func_emit_wrapper () { func_emit_wrapper_arg1=${1-no} $ECHO "\ #! $SHELL # $output - temporary wrapper script for $objdir/$outputname # Generated by $PROGRAM (GNU $PACKAGE) $VERSION # # The $output program cannot be directly executed until all the libtool # libraries that it depends on are installed. # # This wrapper script should never be moved out of the build directory. # If it is, it will not operate correctly. # Sed substitution that helps us do robust quoting. It backslashifies # metacharacters that are still active within double-quoted strings. sed_quote_subst='$sed_quote_subst' # Be Bourne compatible if test -n \"\${ZSH_VERSION+set}\" && (emulate sh) >/dev/null 2>&1; then emulate sh NULLCMD=: # Zsh 3.x and 4.x performs word splitting on \${1+\"\$@\"}, which # is contrary to our usage. Disable this feature. alias -g '\${1+\"\$@\"}'='\"\$@\"' setopt NO_GLOB_SUBST else case \`(set -o) 2>/dev/null\` in *posix*) set -o posix;; esac fi BIN_SH=xpg4; export BIN_SH # for Tru64 DUALCASE=1; export DUALCASE # for MKS sh # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH relink_command=\"$relink_command\" # This environment variable determines our operation mode. if test \"\$libtool_install_magic\" = \"$magic\"; then # install mode needs the following variables: generated_by_libtool_version='$macro_version' notinst_deplibs='$notinst_deplibs' else # When we are sourced in execute mode, \$file and \$ECHO are already set. if test \"\$libtool_execute_magic\" != \"$magic\"; then file=\"\$0\"" qECHO=`$ECHO "$ECHO" | $SED "$sed_quote_subst"` $ECHO "\ # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$1 _LTECHO_EOF' } ECHO=\"$qECHO\" fi # Very basic option parsing. These options are (a) specific to # the libtool wrapper, (b) are identical between the wrapper # /script/ and the wrapper /executable/ that is used only on # windows platforms, and (c) all begin with the string "--lt-" # (application programs are unlikely to have options that match # this pattern). # # There are only two supported options: --lt-debug and # --lt-dump-script. There is, deliberately, no --lt-help. # # The first argument to this parsing function should be the # script's $0 value, followed by "$@". lt_option_debug= func_parse_lt_options () { lt_script_arg0=\$0 shift for lt_opt do case \"\$lt_opt\" in --lt-debug) lt_option_debug=1 ;; --lt-dump-script) lt_dump_D=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%/[^/]*$%%'\` test \"X\$lt_dump_D\" = \"X\$lt_script_arg0\" && lt_dump_D=. lt_dump_F=\`\$ECHO \"X\$lt_script_arg0\" | $SED -e 's/^X//' -e 's%^.*/%%'\` cat \"\$lt_dump_D/\$lt_dump_F\" exit 0 ;; --lt-*) \$ECHO \"Unrecognized --lt- option: '\$lt_opt'\" 1>&2 exit 1 ;; esac done # Print the debug banner immediately: if test -n \"\$lt_option_debug\"; then echo \"$outputname:$output:\$LINENO: libtool wrapper (GNU $PACKAGE) $VERSION\" 1>&2 fi } # Used when --lt-debug. Prints its arguments to stdout # (redirection is the responsibility of the caller) func_lt_dump_args () { lt_dump_args_N=1; for lt_arg do \$ECHO \"$outputname:$output:\$LINENO: newargv[\$lt_dump_args_N]: \$lt_arg\" lt_dump_args_N=\`expr \$lt_dump_args_N + 1\` done } # Core function for launching the target application func_exec_program_core () { " case $host in # Backslashes separate directories on plain windows *-*-mingw | *-*-os2* | *-cegcc*) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir\\\\\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir\\\\\$program\" \${1+\"\$@\"} " ;; *) $ECHO "\ if test -n \"\$lt_option_debug\"; then \$ECHO \"$outputname:$output:\$LINENO: newargv[0]: \$progdir/\$program\" 1>&2 func_lt_dump_args \${1+\"\$@\"} 1>&2 fi exec \"\$progdir/\$program\" \${1+\"\$@\"} " ;; esac $ECHO "\ \$ECHO \"\$0: cannot exec \$program \$*\" 1>&2 exit 1 } # A function to encapsulate launching the target application # Strips options in the --lt-* namespace from \$@ and # launches target application with the remaining arguments. func_exec_program () { case \" \$* \" in *\\ --lt-*) for lt_wr_arg do case \$lt_wr_arg in --lt-*) ;; *) set x \"\$@\" \"\$lt_wr_arg\"; shift;; esac shift done ;; esac func_exec_program_core \${1+\"\$@\"} } # Parse options func_parse_lt_options \"\$0\" \${1+\"\$@\"} # Find the directory that this script lives in. thisdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*$%%'\` test \"x\$thisdir\" = \"x\$file\" && thisdir=. # Follow symbolic links until we get to the real thisdir. file=\`ls -ld \"\$file\" | $SED -n 's/.*-> //p'\` while test -n \"\$file\"; do destdir=\`\$ECHO \"\$file\" | $SED 's%/[^/]*\$%%'\` # If there was a directory component, then change thisdir. if test \"x\$destdir\" != \"x\$file\"; then case \"\$destdir\" in [\\\\/]* | [A-Za-z]:[\\\\/]*) thisdir=\"\$destdir\" ;; *) thisdir=\"\$thisdir/\$destdir\" ;; esac fi file=\`\$ECHO \"\$file\" | $SED 's%^.*/%%'\` file=\`ls -ld \"\$thisdir/\$file\" | $SED -n 's/.*-> //p'\` done # Usually 'no', except on cygwin/mingw when embedded into # the cwrapper. WRAPPER_SCRIPT_BELONGS_IN_OBJDIR=$func_emit_wrapper_arg1 if test \"\$WRAPPER_SCRIPT_BELONGS_IN_OBJDIR\" = \"yes\"; then # special case for '.' if test \"\$thisdir\" = \".\"; then thisdir=\`pwd\` fi # remove .libs from thisdir case \"\$thisdir\" in *[\\\\/]$objdir ) thisdir=\`\$ECHO \"\$thisdir\" | $SED 's%[\\\\/][^\\\\/]*$%%'\` ;; $objdir ) thisdir=. ;; esac fi # Try to get the absolute directory name. absdir=\`cd \"\$thisdir\" && pwd\` test -n \"\$absdir\" && thisdir=\"\$absdir\" " if test yes = "$fast_install"; then $ECHO "\ program=lt-'$outputname'$exeext progdir=\"\$thisdir/$objdir\" if test ! -f \"\$progdir/\$program\" || { file=\`ls -1dt \"\$progdir/\$program\" \"\$progdir/../\$program\" 2>/dev/null | $SED 1q\`; \\ test \"X\$file\" != \"X\$progdir/\$program\"; }; then file=\"\$\$-\$program\" if test ! -d \"\$progdir\"; then $MKDIR \"\$progdir\" else $RM \"\$progdir/\$file\" fi" $ECHO "\ # relink executable if necessary if test -n \"\$relink_command\"; then if relink_command_output=\`eval \$relink_command 2>&1\`; then : else $ECHO \"\$relink_command_output\" >&2 $RM \"\$progdir/\$file\" exit 1 fi fi $MV \"\$progdir/\$file\" \"\$progdir/\$program\" 2>/dev/null || { $RM \"\$progdir/\$program\"; $MV \"\$progdir/\$file\" \"\$progdir/\$program\"; } $RM \"\$progdir/\$file\" fi" else $ECHO "\ program='$outputname' progdir=\"\$thisdir/$objdir\" " fi $ECHO "\ if test -f \"\$progdir/\$program\"; then" # fixup the dll searchpath if we need to. # # Fix the DLL searchpath if we need to. Do this before prepending # to shlibpath, because on Windows, both are PATH and uninstalled # libraries must come first. if test -n "$dllsearchpath"; then $ECHO "\ # Add the dll search path components to the executable PATH PATH=$dllsearchpath:\$PATH " fi # Export our shlibpath_var if we have one. if test yes = "$shlibpath_overrides_runpath" && test -n "$shlibpath_var" && test -n "$temp_rpath"; then $ECHO "\ # Add our own library path to $shlibpath_var $shlibpath_var=\"$temp_rpath\$$shlibpath_var\" # Some systems cannot cope with colon-terminated $shlibpath_var # The second colon is a workaround for a bug in BeOS R4 sed $shlibpath_var=\`\$ECHO \"\$$shlibpath_var\" | $SED 's/::*\$//'\` export $shlibpath_var " fi $ECHO "\ if test \"\$libtool_execute_magic\" != \"$magic\"; then # Run the actual program with our arguments. func_exec_program \${1+\"\$@\"} fi else # The program doesn't exist. \$ECHO \"\$0: error: '\$progdir/\$program' does not exist\" 1>&2 \$ECHO \"This script is just a wrapper for \$program.\" 1>&2 \$ECHO \"See the $PACKAGE documentation for more information.\" 1>&2 exit 1 fi fi\ " } # func_emit_cwrapperexe_src # emit the source code for a wrapper executable on stdout # Must ONLY be called from within func_mode_link because # it depends on a number of variable set therein. func_emit_cwrapperexe_src () { cat < #include #ifdef _MSC_VER # include # include # include #else # include # include # ifdef __CYGWIN__ # include # endif #endif #include #include #include #include #include #include #include #include #define STREQ(s1, s2) (strcmp ((s1), (s2)) == 0) /* declarations of non-ANSI functions */ #if defined __MINGW32__ # ifdef __STRICT_ANSI__ int _putenv (const char *); # endif #elif defined __CYGWIN__ # ifdef __STRICT_ANSI__ char *realpath (const char *, char *); int putenv (char *); int setenv (const char *, const char *, int); # endif /* #elif defined other_platform || defined ... */ #endif /* portability defines, excluding path handling macros */ #if defined _MSC_VER # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv # define S_IXUSR _S_IEXEC #elif defined __MINGW32__ # define setmode _setmode # define stat _stat # define chmod _chmod # define getcwd _getcwd # define putenv _putenv #elif defined __CYGWIN__ # define HAVE_SETENV # define FOPEN_WB "wb" /* #elif defined other platforms ... */ #endif #if defined PATH_MAX # define LT_PATHMAX PATH_MAX #elif defined MAXPATHLEN # define LT_PATHMAX MAXPATHLEN #else # define LT_PATHMAX 1024 #endif #ifndef S_IXOTH # define S_IXOTH 0 #endif #ifndef S_IXGRP # define S_IXGRP 0 #endif /* path handling portability macros */ #ifndef DIR_SEPARATOR # define DIR_SEPARATOR '/' # define PATH_SEPARATOR ':' #endif #if defined _WIN32 || defined __MSDOS__ || defined __DJGPP__ || \ defined __OS2__ # define HAVE_DOS_BASED_FILE_SYSTEM # define FOPEN_WB "wb" # ifndef DIR_SEPARATOR_2 # define DIR_SEPARATOR_2 '\\' # endif # ifndef PATH_SEPARATOR_2 # define PATH_SEPARATOR_2 ';' # endif #endif #ifndef DIR_SEPARATOR_2 # define IS_DIR_SEPARATOR(ch) ((ch) == DIR_SEPARATOR) #else /* DIR_SEPARATOR_2 */ # define IS_DIR_SEPARATOR(ch) \ (((ch) == DIR_SEPARATOR) || ((ch) == DIR_SEPARATOR_2)) #endif /* DIR_SEPARATOR_2 */ #ifndef PATH_SEPARATOR_2 # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR) #else /* PATH_SEPARATOR_2 */ # define IS_PATH_SEPARATOR(ch) ((ch) == PATH_SEPARATOR_2) #endif /* PATH_SEPARATOR_2 */ #ifndef FOPEN_WB # define FOPEN_WB "w" #endif #ifndef _O_BINARY # define _O_BINARY 0 #endif #define XMALLOC(type, num) ((type *) xmalloc ((num) * sizeof(type))) #define XFREE(stale) do { \ if (stale) { free (stale); stale = 0; } \ } while (0) #if defined LT_DEBUGWRAPPER static int lt_debug = 1; #else static int lt_debug = 0; #endif const char *program_name = "libtool-wrapper"; /* in case xstrdup fails */ void *xmalloc (size_t num); char *xstrdup (const char *string); const char *base_name (const char *name); char *find_executable (const char *wrapper); char *chase_symlinks (const char *pathspec); int make_executable (const char *path); int check_executable (const char *path); char *strendzap (char *str, const char *pat); void lt_debugprintf (const char *file, int line, const char *fmt, ...); void lt_fatal (const char *file, int line, const char *message, ...); static const char *nonnull (const char *s); static const char *nonempty (const char *s); void lt_setenv (const char *name, const char *value); char *lt_extend_str (const char *orig_value, const char *add, int to_end); void lt_update_exe_path (const char *name, const char *value); void lt_update_lib_path (const char *name, const char *value); char **prepare_spawn (char **argv); void lt_dump_script (FILE *f); EOF cat <= 0) && (st.st_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) return 1; else return 0; } int make_executable (const char *path) { int rval = 0; struct stat st; lt_debugprintf (__FILE__, __LINE__, "(make_executable): %s\n", nonempty (path)); if ((!path) || (!*path)) return 0; if (stat (path, &st) >= 0) { rval = chmod (path, st.st_mode | S_IXOTH | S_IXGRP | S_IXUSR); } return rval; } /* Searches for the full path of the wrapper. Returns newly allocated full path name if found, NULL otherwise Does not chase symlinks, even on platforms that support them. */ char * find_executable (const char *wrapper) { int has_slash = 0; const char *p; const char *p_next; /* static buffer for getcwd */ char tmp[LT_PATHMAX + 1]; size_t tmp_len; char *concat_name; lt_debugprintf (__FILE__, __LINE__, "(find_executable): %s\n", nonempty (wrapper)); if ((wrapper == NULL) || (*wrapper == '\0')) return NULL; /* Absolute path? */ #if defined HAVE_DOS_BASED_FILE_SYSTEM if (isalpha ((unsigned char) wrapper[0]) && wrapper[1] == ':') { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } else { #endif if (IS_DIR_SEPARATOR (wrapper[0])) { concat_name = xstrdup (wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } #if defined HAVE_DOS_BASED_FILE_SYSTEM } #endif for (p = wrapper; *p; p++) if (*p == '/') { has_slash = 1; break; } if (!has_slash) { /* no slashes; search PATH */ const char *path = getenv ("PATH"); if (path != NULL) { for (p = path; *p; p = p_next) { const char *q; size_t p_len; for (q = p; *q; q++) if (IS_PATH_SEPARATOR (*q)) break; p_len = (size_t) (q - p); p_next = (*q == '\0' ? q : q + 1); if (p_len == 0) { /* empty path: current directory */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); } else { concat_name = XMALLOC (char, p_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, p, p_len); concat_name[p_len] = '/'; strcpy (concat_name + p_len + 1, wrapper); } if (check_executable (concat_name)) return concat_name; XFREE (concat_name); } } /* not found in PATH; assume curdir */ } /* Relative path | not found in path: prepend cwd */ if (getcwd (tmp, LT_PATHMAX) == NULL) lt_fatal (__FILE__, __LINE__, "getcwd failed: %s", nonnull (strerror (errno))); tmp_len = strlen (tmp); concat_name = XMALLOC (char, tmp_len + 1 + strlen (wrapper) + 1); memcpy (concat_name, tmp, tmp_len); concat_name[tmp_len] = '/'; strcpy (concat_name + tmp_len + 1, wrapper); if (check_executable (concat_name)) return concat_name; XFREE (concat_name); return NULL; } char * chase_symlinks (const char *pathspec) { #ifndef S_ISLNK return xstrdup (pathspec); #else char buf[LT_PATHMAX]; struct stat s; char *tmp_pathspec = xstrdup (pathspec); char *p; int has_symlinks = 0; while (strlen (tmp_pathspec) && !has_symlinks) { lt_debugprintf (__FILE__, __LINE__, "checking path component for symlinks: %s\n", tmp_pathspec); if (lstat (tmp_pathspec, &s) == 0) { if (S_ISLNK (s.st_mode) != 0) { has_symlinks = 1; break; } /* search backwards for last DIR_SEPARATOR */ p = tmp_pathspec + strlen (tmp_pathspec) - 1; while ((p > tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) p--; if ((p == tmp_pathspec) && (!IS_DIR_SEPARATOR (*p))) { /* no more DIR_SEPARATORS left */ break; } *p = '\0'; } else { lt_fatal (__FILE__, __LINE__, "error accessing file \"%s\": %s", tmp_pathspec, nonnull (strerror (errno))); } } XFREE (tmp_pathspec); if (!has_symlinks) { return xstrdup (pathspec); } tmp_pathspec = realpath (pathspec, buf); if (tmp_pathspec == 0) { lt_fatal (__FILE__, __LINE__, "could not follow symlinks for %s", pathspec); } return xstrdup (tmp_pathspec); #endif } char * strendzap (char *str, const char *pat) { size_t len, patlen; assert (str != NULL); assert (pat != NULL); len = strlen (str); patlen = strlen (pat); if (patlen <= len) { str += len - patlen; if (STREQ (str, pat)) *str = '\0'; } return str; } void lt_debugprintf (const char *file, int line, const char *fmt, ...) { va_list args; if (lt_debug) { (void) fprintf (stderr, "%s:%s:%d: ", program_name, file, line); va_start (args, fmt); (void) vfprintf (stderr, fmt, args); va_end (args); } } static void lt_error_core (int exit_status, const char *file, int line, const char *mode, const char *message, va_list ap) { fprintf (stderr, "%s:%s:%d: %s: ", program_name, file, line, mode); vfprintf (stderr, message, ap); fprintf (stderr, ".\n"); if (exit_status >= 0) exit (exit_status); } void lt_fatal (const char *file, int line, const char *message, ...) { va_list ap; va_start (ap, message); lt_error_core (EXIT_FAILURE, file, line, "FATAL", message, ap); va_end (ap); } static const char * nonnull (const char *s) { return s ? s : "(null)"; } static const char * nonempty (const char *s) { return (s && !*s) ? "(empty)" : nonnull (s); } void lt_setenv (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_setenv) setting '%s' to '%s'\n", nonnull (name), nonnull (value)); { #ifdef HAVE_SETENV /* always make a copy, for consistency with !HAVE_SETENV */ char *str = xstrdup (value); setenv (name, str, 1); #else size_t len = strlen (name) + 1 + strlen (value) + 1; char *str = XMALLOC (char, len); sprintf (str, "%s=%s", name, value); if (putenv (str) != EXIT_SUCCESS) { XFREE (str); } #endif } } char * lt_extend_str (const char *orig_value, const char *add, int to_end) { char *new_value; if (orig_value && *orig_value) { size_t orig_value_len = strlen (orig_value); size_t add_len = strlen (add); new_value = XMALLOC (char, add_len + orig_value_len + 1); if (to_end) { strcpy (new_value, orig_value); strcpy (new_value + orig_value_len, add); } else { strcpy (new_value, add); strcpy (new_value + add_len, orig_value); } } else { new_value = xstrdup (add); } return new_value; } void lt_update_exe_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_exe_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); /* some systems can't cope with a ':'-terminated path #' */ size_t len = strlen (new_value); while ((len > 0) && IS_PATH_SEPARATOR (new_value[len-1])) { new_value[--len] = '\0'; } lt_setenv (name, new_value); XFREE (new_value); } } void lt_update_lib_path (const char *name, const char *value) { lt_debugprintf (__FILE__, __LINE__, "(lt_update_lib_path) modifying '%s' by prepending '%s'\n", nonnull (name), nonnull (value)); if (name && *name && value && *value) { char *new_value = lt_extend_str (getenv (name), value, 0); lt_setenv (name, new_value); XFREE (new_value); } } EOF case $host_os in mingw*) cat <<"EOF" /* Prepares an argument vector before calling spawn(). Note that spawn() does not by itself call the command interpreter (getenv ("COMSPEC") != NULL ? getenv ("COMSPEC") : ({ OSVERSIONINFO v; v.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); GetVersionEx(&v); v.dwPlatformId == VER_PLATFORM_WIN32_NT; }) ? "cmd.exe" : "command.com"). Instead it simply concatenates the arguments, separated by ' ', and calls CreateProcess(). We must quote the arguments since Win32 CreateProcess() interprets characters like ' ', '\t', '\\', '"' (but not '<' and '>') in a special way: - Space and tab are interpreted as delimiters. They are not treated as delimiters if they are surrounded by double quotes: "...". - Unescaped double quotes are removed from the input. Their only effect is that within double quotes, space and tab are treated like normal characters. - Backslashes not followed by double quotes are not special. - But 2*n+1 backslashes followed by a double quote become n backslashes followed by a double quote (n >= 0): \" -> " \\\" -> \" \\\\\" -> \\" */ #define SHELL_SPECIAL_CHARS "\"\\ \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" #define SHELL_SPACE_CHARS " \001\002\003\004\005\006\007\010\011\012\013\014\015\016\017\020\021\022\023\024\025\026\027\030\031\032\033\034\035\036\037" char ** prepare_spawn (char **argv) { size_t argc; char **new_argv; size_t i; /* Count number of arguments. */ for (argc = 0; argv[argc] != NULL; argc++) ; /* Allocate new argument vector. */ new_argv = XMALLOC (char *, argc + 1); /* Put quoted arguments into the new argument vector. */ for (i = 0; i < argc; i++) { const char *string = argv[i]; if (string[0] == '\0') new_argv[i] = xstrdup ("\"\""); else if (strpbrk (string, SHELL_SPECIAL_CHARS) != NULL) { int quote_around = (strpbrk (string, SHELL_SPACE_CHARS) != NULL); size_t length; unsigned int backslashes; const char *s; char *quoted_string; char *p; length = 0; backslashes = 0; if (quote_around) length++; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') length += backslashes + 1; length++; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) length += backslashes + 1; quoted_string = XMALLOC (char, length + 1); p = quoted_string; backslashes = 0; if (quote_around) *p++ = '"'; for (s = string; *s != '\0'; s++) { char c = *s; if (c == '"') { unsigned int j; for (j = backslashes + 1; j > 0; j--) *p++ = '\\'; } *p++ = c; if (c == '\\') backslashes++; else backslashes = 0; } if (quote_around) { unsigned int j; for (j = backslashes; j > 0; j--) *p++ = '\\'; *p++ = '"'; } *p = '\0'; new_argv[i] = quoted_string; } else new_argv[i] = (char *) string; } new_argv[argc] = NULL; return new_argv; } EOF ;; esac cat <<"EOF" void lt_dump_script (FILE* f) { EOF func_emit_wrapper yes | $SED -n -e ' s/^\(.\{79\}\)\(..*\)/\1\ \2/ h s/\([\\"]\)/\\\1/g s/$/\\n/ s/\([^\n]*\).*/ fputs ("\1", f);/p g D' cat <<"EOF" } EOF } # end: func_emit_cwrapperexe_src # func_win32_import_lib_p ARG # True if ARG is an import lib, as indicated by $file_magic_cmd func_win32_import_lib_p () { $debug_cmd case `eval $file_magic_cmd \"\$1\" 2>/dev/null | $SED -e 10q` in *import*) : ;; *) false ;; esac } # func_mode_link arg... func_mode_link () { $debug_cmd case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) # It is impossible to link a dll without this setting, and # we shouldn't force the makefile maintainer to figure out # what system we are compiling for in order to pass an extra # flag for every libtool invocation. # allow_undefined=no # FIXME: Unfortunately, there are problems with the above when trying # to make a dll that has undefined symbols, in which case not # even a static library is built. For now, we need to specify # -no-undefined on the libtool link line when we can be certain # that all symbols are satisfied, otherwise we get a static library. allow_undefined=yes ;; *) allow_undefined=yes ;; esac libtool_args=$nonopt base_compile="$nonopt $@" compile_command=$nonopt finalize_command=$nonopt compile_rpath= finalize_rpath= compile_shlibpath= finalize_shlibpath= convenience= old_convenience= deplibs= old_deplibs= compiler_flags= linker_flags= dllsearchpath= lib_search_path=`pwd` inst_prefix_dir= new_inherited_linker_flags= avoid_version=no bindir= dlfiles= dlprefiles= dlself=no export_dynamic=no export_symbols= export_symbols_regex= generated= libobjs= ltlibs= module=no no_install=no objs= non_pic_objects= precious_files_regex= prefer_static_libs=no preload=false prev= prevarg= release= rpath= xrpath= perm_rpath= temp_rpath= thread_safe=no vinfo= vinfo_number=no weak_libs= single_module=$wl-single_module func_infer_tag $base_compile # We need to know -static, to get the right output filenames. for arg do case $arg in -shared) test yes != "$build_libtool_libs" \ && func_fatal_configuration "cannot build a shared library" build_old_libs=no break ;; -all-static | -static | -static-libtool-libs) case $arg in -all-static) if test yes = "$build_libtool_libs" && test -z "$link_static_flag"; then func_warning "complete static linking is impossible in this configuration" fi if test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; -static) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=built ;; -static-libtool-libs) if test -z "$pic_flag" && test -n "$link_static_flag"; then dlopen_self=$dlopen_self_static fi prefer_static_libs=yes ;; esac build_libtool_libs=no build_old_libs=yes break ;; esac done # See if our shared archives depend on static archives. test -n "$old_archive_from_new_cmds" && build_old_libs=yes # Go through the arguments, transforming them on the way. while test "$#" -gt 0; do arg=$1 shift func_quote_for_eval "$arg" qarg=$func_quote_for_eval_unquoted_result func_append libtool_args " $func_quote_for_eval_result" # If the previous option needs an argument, assign it. if test -n "$prev"; then case $prev in output) func_append compile_command " @OUTPUT@" func_append finalize_command " @OUTPUT@" ;; esac case $prev in bindir) bindir=$arg prev= continue ;; dlfiles|dlprefiles) $preload || { # Add the symbol object into the linking commands. func_append compile_command " @SYMFILE@" func_append finalize_command " @SYMFILE@" preload=: } case $arg in *.la | *.lo) ;; # We handle these cases below. force) if test no = "$dlself"; then dlself=needless export_dynamic=yes fi prev= continue ;; self) if test dlprefiles = "$prev"; then dlself=yes elif test dlfiles = "$prev" && test yes != "$dlopen_self"; then dlself=yes else dlself=needless export_dynamic=yes fi prev= continue ;; *) if test dlfiles = "$prev"; then func_append dlfiles " $arg" else func_append dlprefiles " $arg" fi prev= continue ;; esac ;; expsyms) export_symbols=$arg test -f "$arg" \ || func_fatal_error "symbol file '$arg' does not exist" prev= continue ;; expsyms_regex) export_symbols_regex=$arg prev= continue ;; framework) case $host in *-*-darwin*) case "$deplibs " in *" $qarg.ltframework "*) ;; *) func_append deplibs " $qarg.ltframework" # this is fixed later ;; esac ;; esac prev= continue ;; inst_prefix) inst_prefix_dir=$arg prev= continue ;; mllvm) # Clang does not use LLVM to link, so we can simply discard any # '-mllvm $arg' options when doing the link step. prev= continue ;; objectlist) if test -f "$arg"; then save_arg=$arg moreargs= for fil in `cat "$save_arg"` do # func_append moreargs " $fil" arg=$fil # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test none = "$pic_object" && test none = "$non_pic_object"; then func_fatal_error "cannot find name of object for '$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result if test none != "$pic_object"; then # Prepend the subdirectory the object is found in. pic_object=$xdir$pic_object if test dlfiles = "$prev"; then if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test dlprefiles = "$prev"; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg=$pic_object fi # Non-PIC object. if test none != "$non_pic_object"; then # Prepend the subdirectory the object is found in. non_pic_object=$xdir$non_pic_object # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test none = "$pic_object"; then arg=$non_pic_object fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object=$pic_object func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "'$arg' is not a valid libtool object" fi fi done else func_fatal_error "link input file '$arg' does not exist" fi arg=$save_arg prev= continue ;; precious_regex) precious_files_regex=$arg prev= continue ;; release) release=-$arg prev= continue ;; rpath | xrpath) # We need an absolute path. case $arg in [\\/]* | [A-Za-z]:[\\/]*) ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac if test rpath = "$prev"; then case "$rpath " in *" $arg "*) ;; *) func_append rpath " $arg" ;; esac else case "$xrpath " in *" $arg "*) ;; *) func_append xrpath " $arg" ;; esac fi prev= continue ;; shrext) shrext_cmds=$arg prev= continue ;; weak) func_append weak_libs " $arg" prev= continue ;; xcclinker) func_append linker_flags " $qarg" func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xcompiler) func_append compiler_flags " $qarg" prev= func_append compile_command " $qarg" func_append finalize_command " $qarg" continue ;; xlinker) func_append linker_flags " $qarg" func_append compiler_flags " $wl$qarg" prev= func_append compile_command " $wl$qarg" func_append finalize_command " $wl$qarg" continue ;; *) eval "$prev=\"\$arg\"" prev= continue ;; esac fi # test -n "$prev" prevarg=$arg case $arg in -all-static) if test -n "$link_static_flag"; then # See comment for -static flag below, for more details. func_append compile_command " $link_static_flag" func_append finalize_command " $link_static_flag" fi continue ;; -allow-undefined) # FIXME: remove this flag sometime in the future. func_fatal_error "'-allow-undefined' must not be used because it is the default" ;; -avoid-version) avoid_version=yes continue ;; -bindir) prev=bindir continue ;; -dlopen) prev=dlfiles continue ;; -dlpreopen) prev=dlprefiles continue ;; -export-dynamic) export_dynamic=yes continue ;; -export-symbols | -export-symbols-regex) if test -n "$export_symbols" || test -n "$export_symbols_regex"; then func_fatal_error "more than one -exported-symbols argument is not allowed" fi if test X-export-symbols = "X$arg"; then prev=expsyms else prev=expsyms_regex fi continue ;; -framework) prev=framework continue ;; -inst-prefix-dir) prev=inst_prefix continue ;; # The native IRIX linker understands -LANG:*, -LIST:* and -LNO:* # so, if we see these flags be careful not to treat them like -L -L[A-Z][A-Z]*:*) case $with_gcc/$host in no/*-*-irix* | /*-*-irix*) func_append compile_command " $arg" func_append finalize_command " $arg" ;; esac continue ;; -L*) func_stripname "-L" '' "$arg" if test -z "$func_stripname_result"; then if test "$#" -gt 0; then func_fatal_error "require no space between '-L' and '$1'" else func_fatal_error "need path for '-L' option" fi fi func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; *) absdir=`cd "$dir" && pwd` test -z "$absdir" && \ func_fatal_error "cannot determine absolute directory name of '$dir'" dir=$absdir ;; esac case "$deplibs " in *" -L$dir "* | *" $arg "*) # Will only happen for absolute or sysroot arguments ;; *) # Preserve sysroot, but never include relative directories case $dir in [\\/]* | [A-Za-z]:[\\/]* | =*) func_append deplibs " $arg" ;; *) func_append deplibs " -L$dir" ;; esac func_append lib_search_path " $dir" ;; esac case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`$ECHO "$dir" | $SED 's*/lib$*/bin*'` case :$dllsearchpath: in *":$dir:"*) ;; ::) dllsearchpath=$dir;; *) func_append dllsearchpath ":$dir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac continue ;; -l*) if test X-lc = "X$arg" || test X-lm = "X$arg"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-beos* | *-cegcc* | *-*-haiku*) # These systems don't actually have a C or math library (as such) continue ;; *-*-os2*) # These systems don't actually have a C library (as such) test X-lc = "X$arg" && continue ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*) # Do not include libc due to us having libc/libc_r. test X-lc = "X$arg" && continue ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C and math libraries are in the System framework func_append deplibs " System.ltframework" continue ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype test X-lc = "X$arg" && continue ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work test X-lc = "X$arg" && continue ;; esac elif test X-lc_r = "X$arg"; then case $host in *-*-openbsd* | *-*-freebsd* | *-*-dragonfly* | *-*-bitrig*) # Do not include libc_r directly, use -pthread flag. continue ;; esac fi func_append deplibs " $arg" continue ;; -mllvm) prev=mllvm continue ;; -module) module=yes continue ;; # Tru64 UNIX uses -model [arg] to determine the layout of C++ # classes, name mangling, and exception handling. # Darwin uses the -arch flag to determine output architecture. -model|-arch|-isysroot|--sysroot) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" prev=xcompiler continue ;; -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) func_append compiler_flags " $arg" func_append compile_command " $arg" func_append finalize_command " $arg" case "$new_inherited_linker_flags " in *" $arg "*) ;; * ) func_append new_inherited_linker_flags " $arg" ;; esac continue ;; -multi_module) single_module=$wl-multi_module continue ;; -no-fast-install) fast_install=no continue ;; -no-install) case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-darwin* | *-cegcc*) # The PATH hackery in wrapper scripts is required on Windows # and Darwin in order for the loader to find any dlls it needs. func_warning "'-no-install' is ignored for $host" func_warning "assuming '-no-fast-install' instead" fast_install=no ;; *) no_install=yes ;; esac continue ;; -no-undefined) allow_undefined=no continue ;; -objectlist) prev=objectlist continue ;; -o) prev=output ;; -precious-files-regex) prev=precious_regex continue ;; -release) prev=release continue ;; -rpath) prev=rpath continue ;; -R) prev=xrpath continue ;; -R*) func_stripname '-R' '' "$arg" dir=$func_stripname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) ;; =*) func_stripname '=' '' "$dir" dir=$lt_sysroot$func_stripname_result ;; *) func_fatal_error "only absolute run-paths are allowed" ;; esac case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac continue ;; -shared) # The effects of -shared are defined in a previous loop. continue ;; -shrext) prev=shrext continue ;; -static | -static-libtool-libs) # The effects of -static are defined in a previous loop. # We used to do the same as -all-static on platforms that # didn't have a PIC flag, but the assumption that the effects # would be equivalent was wrong. It would break on at least # Digital Unix and AIX. continue ;; -thread-safe) thread_safe=yes continue ;; -version-info) prev=vinfo continue ;; -version-number) prev=vinfo vinfo_number=yes continue ;; -weak) prev=weak continue ;; -Wc,*) func_stripname '-Wc,' '' "$arg" args=$func_stripname_result arg= save_ifs=$IFS; IFS=, for flag in $args; do IFS=$save_ifs func_quote_for_eval "$flag" func_append arg " $func_quote_for_eval_result" func_append compiler_flags " $func_quote_for_eval_result" done IFS=$save_ifs func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Wl,*) func_stripname '-Wl,' '' "$arg" args=$func_stripname_result arg= save_ifs=$IFS; IFS=, for flag in $args; do IFS=$save_ifs func_quote_for_eval "$flag" func_append arg " $wl$func_quote_for_eval_result" func_append compiler_flags " $wl$func_quote_for_eval_result" func_append linker_flags " $func_quote_for_eval_result" done IFS=$save_ifs func_stripname ' ' '' "$arg" arg=$func_stripname_result ;; -Xcompiler) prev=xcompiler continue ;; -Xlinker) prev=xlinker continue ;; -XCClinker) prev=xcclinker continue ;; # -msg_* for osf cc -msg_*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; # Flags to be passed through unchanged, with rationale: # -64, -mips[0-9] enable 64-bit mode for the SGI compiler # -r[0-9][0-9]* specify processor for the SGI compiler # -xarch=*, -xtarget=* enable 64-bit mode for the Sun compiler # +DA*, +DD* enable 64-bit mode for the HP compiler # -q* compiler args for the IBM compiler # -m*, -t[45]*, -txscale* architecture-specific flags for GCC # -F/path path to uninstalled frameworks, gcc on darwin # -p, -pg, --coverage, -fprofile-* profiling flags for GCC # @file GCC response files # -tp=* Portland pgcc target processor selection # --sysroot=* for sysroot support # -O*, -g*, -flto*, -fwhopr*, -fuse-linker-plugin GCC link-time optimization # -stdlib=* select c++ std lib with clang -64|-mips[0-9]|-r[0-9][0-9]*|-xarch=*|-xtarget=*|+DA*|+DD*|-q*|-m*| \ -t[45]*|-txscale*|-p|-pg|--coverage|-fprofile-*|-F*|@*|-tp=*|--sysroot=*| \ -O*|-g*|-flto*|-fwhopr*|-fuse-linker-plugin|-stdlib=*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result func_append compile_command " $arg" func_append finalize_command " $arg" func_append compiler_flags " $arg" continue ;; # Some other compiler flag. -* | +*) func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; *.$objext) # A standard object. func_append objs " $arg" ;; *.lo) # A libtool-controlled object. # Check to see that this really is a libtool object. if func_lalib_unsafe_p "$arg"; then pic_object= non_pic_object= # Read the .lo file func_source "$arg" if test -z "$pic_object" || test -z "$non_pic_object" || test none = "$pic_object" && test none = "$non_pic_object"; then func_fatal_error "cannot find name of object for '$arg'" fi # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result test none = "$pic_object" || { # Prepend the subdirectory the object is found in. pic_object=$xdir$pic_object if test dlfiles = "$prev"; then if test yes = "$build_libtool_libs" && test yes = "$dlopen_support"; then func_append dlfiles " $pic_object" prev= continue else # If libtool objects are unsupported, then we need to preload. prev=dlprefiles fi fi # CHECK ME: I think I busted this. -Ossama if test dlprefiles = "$prev"; then # Preload the old-style object. func_append dlprefiles " $pic_object" prev= fi # A PIC object. func_append libobjs " $pic_object" arg=$pic_object } # Non-PIC object. if test none != "$non_pic_object"; then # Prepend the subdirectory the object is found in. non_pic_object=$xdir$non_pic_object # A standard non-PIC object func_append non_pic_objects " $non_pic_object" if test -z "$pic_object" || test none = "$pic_object"; then arg=$non_pic_object fi else # If the PIC object exists, use it instead. # $xdir was prepended to $pic_object above. non_pic_object=$pic_object func_append non_pic_objects " $non_pic_object" fi else # Only an error if not doing a dry-run. if $opt_dry_run; then # Extract subdirectory from the argument. func_dirname "$arg" "/" "" xdir=$func_dirname_result func_lo2o "$arg" pic_object=$xdir$objdir/$func_lo2o_result non_pic_object=$xdir$func_lo2o_result func_append libobjs " $pic_object" func_append non_pic_objects " $non_pic_object" else func_fatal_error "'$arg' is not a valid libtool object" fi fi ;; *.$libext) # An archive. func_append deplibs " $arg" func_append old_deplibs " $arg" continue ;; *.la) # A libtool-controlled library. func_resolve_sysroot "$arg" if test dlfiles = "$prev"; then # This library was specified with -dlopen. func_append dlfiles " $func_resolve_sysroot_result" prev= elif test dlprefiles = "$prev"; then # The library was specified with -dlpreopen. func_append dlprefiles " $func_resolve_sysroot_result" prev= else func_append deplibs " $func_resolve_sysroot_result" fi continue ;; # Some other compiler argument. *) # Unknown arguments in both finalize_command and compile_command need # to be aesthetically quoted because they are evaled later. func_quote_for_eval "$arg" arg=$func_quote_for_eval_result ;; esac # arg # Now actually substitute the argument into the commands. if test -n "$arg"; then func_append compile_command " $arg" func_append finalize_command " $arg" fi done # argument parsing loop test -n "$prev" && \ func_fatal_help "the '$prevarg' option requires an argument" if test yes = "$export_dynamic" && test -n "$export_dynamic_flag_spec"; then eval arg=\"$export_dynamic_flag_spec\" func_append compile_command " $arg" func_append finalize_command " $arg" fi oldlibs= # calculate the name of the file, without its directory func_basename "$output" outputname=$func_basename_result libobjs_save=$libobjs if test -n "$shlibpath_var"; then # get the directories listed in $shlibpath_var eval shlib_search_path=\`\$ECHO \"\$$shlibpath_var\" \| \$SED \'s/:/ /g\'\` else shlib_search_path= fi eval sys_lib_search_path=\"$sys_lib_search_path_spec\" eval sys_lib_dlsearch_path=\"$sys_lib_dlsearch_path_spec\" func_dirname "$output" "/" "" output_objdir=$func_dirname_result$objdir func_to_tool_file "$output_objdir/" tool_output_objdir=$func_to_tool_file_result # Create the object directory. func_mkdir_p "$output_objdir" # Determine the type of output case $output in "") func_fatal_help "you must specify an output file" ;; *.$libext) linkmode=oldlib ;; *.lo | *.$objext) linkmode=obj ;; *.la) linkmode=lib ;; *) linkmode=prog ;; # Anything else should be a program. esac specialdeplibs= libs= # Find all interdependent deplibs by searching for libraries # that are linked more than once (e.g. -la -lb -la) for deplib in $deplibs; do if $opt_preserve_dup_deps; then case "$libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append libs " $deplib" done if test lib = "$linkmode"; then libs="$predeps $libs $compiler_lib_search_path $postdeps" # Compute libraries that are listed more than once in $predeps # $postdeps and mark them as special (i.e., whose duplicates are # not to be eliminated). pre_post_deps= if $opt_duplicate_compiler_generated_deps; then for pre_post_dep in $predeps $postdeps; do case "$pre_post_deps " in *" $pre_post_dep "*) func_append specialdeplibs " $pre_post_deps" ;; esac func_append pre_post_deps " $pre_post_dep" done fi pre_post_deps= fi deplibs= newdependency_libs= newlib_search_path= need_relink=no # whether we're linking any uninstalled libtool libraries notinst_deplibs= # not-installed libtool libraries notinst_path= # paths that contain not-installed libtool libraries case $linkmode in lib) passes="conv dlpreopen link" for file in $dlfiles $dlprefiles; do case $file in *.la) ;; *) func_fatal_help "libraries can '-dlopen' only libtool libraries: $file" ;; esac done ;; prog) compile_deplibs= finalize_deplibs= alldeplibs=false newdlfiles= newdlprefiles= passes="conv scan dlopen dlpreopen link" ;; *) passes="conv" ;; esac for pass in $passes; do # The preopen pass in lib mode reverses $deplibs; put it back here # so that -L comes before libs that need it for instance... if test lib,link = "$linkmode,$pass"; then ## FIXME: Find the place where the list is rebuilt in the wrong ## order, and fix it there properly tmp_deplibs= for deplib in $deplibs; do tmp_deplibs="$deplib $tmp_deplibs" done deplibs=$tmp_deplibs fi if test lib,link = "$linkmode,$pass" || test prog,scan = "$linkmode,$pass"; then libs=$deplibs deplibs= fi if test prog = "$linkmode"; then case $pass in dlopen) libs=$dlfiles ;; dlpreopen) libs=$dlprefiles ;; link) libs="$deplibs %DEPLIBS% $dependency_libs" ;; esac fi if test lib,dlpreopen = "$linkmode,$pass"; then # Collect and forward deplibs of preopened libtool libs for lib in $dlprefiles; do # Ignore non-libtool-libs dependency_libs= func_resolve_sysroot "$lib" case $lib in *.la) func_source "$func_resolve_sysroot_result" ;; esac # Collect preopened libtool deplibs, except any this library # has declared as weak libs for deplib in $dependency_libs; do func_basename "$deplib" deplib_base=$func_basename_result case " $weak_libs " in *" $deplib_base "*) ;; *) func_append deplibs " $deplib" ;; esac done done libs=$dlprefiles fi if test dlopen = "$pass"; then # Collect dlpreopened libraries save_deplibs=$deplibs deplibs= fi for deplib in $libs; do lib= found=false case $deplib in -mt|-mthreads|-kthread|-Kthread|-pthread|-pthreads|--thread-safe \ |-threads|-fopenmp|-openmp|-mp|-xopenmp|-omp|-qsmp=*) if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append compiler_flags " $deplib" if test lib = "$linkmode"; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -l*) if test lib != "$linkmode" && test prog != "$linkmode"; then func_warning "'-l' is ignored for archives/objects" continue fi func_stripname '-l' '' "$deplib" name=$func_stripname_result if test lib = "$linkmode"; then searchdirs="$newlib_search_path $lib_search_path $compiler_lib_search_dirs $sys_lib_search_path $shlib_search_path" else searchdirs="$newlib_search_path $lib_search_path $sys_lib_search_path $shlib_search_path" fi for searchdir in $searchdirs; do for search_ext in .la $std_shrext .so .a; do # Search the libtool library lib=$searchdir/lib$name$search_ext if test -f "$lib"; then if test .la = "$search_ext"; then found=: else found=false fi break 2 fi done done if $found; then # deplib is a libtool library # If $allow_libtool_libs_with_static_runtimes && $deplib is a stdlib, # We need to do some special things here, and not later. if test yes = "$allow_libtool_libs_with_static_runtimes"; then case " $predeps $postdeps " in *" $deplib "*) if func_lalib_p "$lib"; then library_names= old_library= func_source "$lib" for l in $old_library $library_names; do ll=$l done if test "X$ll" = "X$old_library"; then # only static version available found=false func_dirname "$lib" "" "." ladir=$func_dirname_result lib=$ladir/$old_library if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs" fi continue fi fi ;; *) ;; esac fi else # deplib doesn't seem to be a libtool library if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" test lib = "$linkmode" && newdependency_libs="$deplib $newdependency_libs" fi continue fi ;; # -l *.ltframework) if test prog,link = "$linkmode,$pass"; then compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else deplibs="$deplib $deplibs" if test lib = "$linkmode"; then case "$new_inherited_linker_flags " in *" $deplib "*) ;; * ) func_append new_inherited_linker_flags " $deplib" ;; esac fi fi continue ;; -L*) case $linkmode in lib) deplibs="$deplib $deplibs" test conv = "$pass" && continue newdependency_libs="$deplib $newdependency_libs" func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; prog) if test conv = "$pass"; then deplibs="$deplib $deplibs" continue fi if test scan = "$pass"; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; *) func_warning "'-L' is ignored for archives/objects" ;; esac # linkmode continue ;; # -L -R*) if test link = "$pass"; then func_stripname '-R' '' "$deplib" func_resolve_sysroot "$func_stripname_result" dir=$func_resolve_sysroot_result # Make sure the xrpath contains only unique directories. case "$xrpath " in *" $dir "*) ;; *) func_append xrpath " $dir" ;; esac fi deplibs="$deplib $deplibs" continue ;; *.la) func_resolve_sysroot "$deplib" lib=$func_resolve_sysroot_result ;; *.$libext) if test conv = "$pass"; then deplibs="$deplib $deplibs" continue fi case $linkmode in lib) # Linking convenience modules into shared libraries is allowed, # but linking other static libraries is non-portable. case " $dlpreconveniencelibs " in *" $deplib "*) ;; *) valid_a_lib=false case $deplibs_check_method in match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` if eval "\$ECHO \"$deplib\"" 2>/dev/null | $SED 10q \ | $EGREP "$match_pattern_regex" > /dev/null; then valid_a_lib=: fi ;; pass_all) valid_a_lib=: ;; esac if $valid_a_lib; then echo $ECHO "*** Warning: Linking the shared library $output against the" $ECHO "*** static library $deplib is not portable!" deplibs="$deplib $deplibs" else echo $ECHO "*** Warning: Trying to link with static lib archive $deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because the file extensions .$libext of this argument makes me believe" echo "*** that it is just a static archive that I should not use here." fi ;; esac continue ;; prog) if test link != "$pass"; then deplibs="$deplib $deplibs" else compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" fi continue ;; esac # linkmode ;; # *.$libext *.lo | *.$objext) if test conv = "$pass"; then deplibs="$deplib $deplibs" elif test prog = "$linkmode"; then if test dlpreopen = "$pass" || test yes != "$dlopen_support" || test no = "$build_libtool_libs"; then # If there is no dlopen support or we're linking statically, # we need to preload. func_append newdlprefiles " $deplib" compile_deplibs="$deplib $compile_deplibs" finalize_deplibs="$deplib $finalize_deplibs" else func_append newdlfiles " $deplib" fi fi continue ;; %DEPLIBS%) alldeplibs=: continue ;; esac # case $deplib $found || test -f "$lib" \ || func_fatal_error "cannot find the library '$lib' or unhandled argument '$deplib'" # Check to see that this really is a libtool archive. func_lalib_unsafe_p "$lib" \ || func_fatal_error "'$lib' is not a valid libtool archive" func_dirname "$lib" "" "." ladir=$func_dirname_result dlname= dlopen= dlpreopen= libdir= library_names= old_library= inherited_linker_flags= # If the library was installed with an old release of libtool, # it will not redefine variables installed, or shouldnotlink installed=yes shouldnotlink=no avoidtemprpath= # Read the .la file func_source "$lib" # Convert "-framework foo" to "foo.ltframework" if test -n "$inherited_linker_flags"; then tmp_inherited_linker_flags=`$ECHO "$inherited_linker_flags" | $SED 's/-framework \([^ $]*\)/\1.ltframework/g'` for tmp_inherited_linker_flag in $tmp_inherited_linker_flags; do case " $new_inherited_linker_flags " in *" $tmp_inherited_linker_flag "*) ;; *) func_append new_inherited_linker_flags " $tmp_inherited_linker_flag";; esac done fi dependency_libs=`$ECHO " $dependency_libs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` if test lib,link = "$linkmode,$pass" || test prog,scan = "$linkmode,$pass" || { test prog != "$linkmode" && test lib != "$linkmode"; }; then test -n "$dlopen" && func_append dlfiles " $dlopen" test -n "$dlpreopen" && func_append dlprefiles " $dlpreopen" fi if test conv = "$pass"; then # Only check for convenience libraries deplibs="$lib $deplibs" if test -z "$libdir"; then if test -z "$old_library"; then func_fatal_error "cannot find name of link library for '$lib'" fi # It is a libtool convenience library, so add in its objects. func_append convenience " $ladir/$objdir/$old_library" func_append old_convenience " $ladir/$objdir/$old_library" elif test prog != "$linkmode" && test lib != "$linkmode"; then func_fatal_error "'$lib' is not a convenience library" fi tmp_libs= for deplib in $dependency_libs; do deplibs="$deplib $deplibs" if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done continue fi # $pass = conv # Get the name of the library we link against. linklib= if test -n "$old_library" && { test yes = "$prefer_static_libs" || test built,no = "$prefer_static_libs,$installed"; }; then linklib=$old_library else for l in $old_library $library_names; do linklib=$l done fi if test -z "$linklib"; then func_fatal_error "cannot find name of link library for '$lib'" fi # This library was specified with -dlopen. if test dlopen = "$pass"; then test -z "$libdir" \ && func_fatal_error "cannot -dlopen a convenience library: '$lib'" if test -z "$dlname" || test yes != "$dlopen_support" || test no = "$build_libtool_libs" then # If there is no dlname, no dlopen support or we're linking # statically, we need to preload. We also need to preload any # dependent libraries so libltdl's deplib preloader doesn't # bomb out in the load deplibs phase. func_append dlprefiles " $lib $dependency_libs" else func_append newdlfiles " $lib" fi continue fi # $pass = dlopen # We need an absolute path. case $ladir in [\\/]* | [A-Za-z]:[\\/]*) abs_ladir=$ladir ;; *) abs_ladir=`cd "$ladir" && pwd` if test -z "$abs_ladir"; then func_warning "cannot determine absolute directory name of '$ladir'" func_warning "passing it literally to the linker, although it might fail" abs_ladir=$ladir fi ;; esac func_basename "$lib" laname=$func_basename_result # Find the relevant object directory and library name. if test yes = "$installed"; then if test ! -f "$lt_sysroot$libdir/$linklib" && test -f "$abs_ladir/$linklib"; then func_warning "library '$lib' was moved." dir=$ladir absdir=$abs_ladir libdir=$abs_ladir else dir=$lt_sysroot$libdir absdir=$lt_sysroot$libdir fi test yes = "$hardcode_automatic" && avoidtemprpath=yes else if test ! -f "$ladir/$objdir/$linklib" && test -f "$abs_ladir/$linklib"; then dir=$ladir absdir=$abs_ladir # Remove this search path later func_append notinst_path " $abs_ladir" else dir=$ladir/$objdir absdir=$abs_ladir/$objdir # Remove this search path later func_append notinst_path " $abs_ladir" fi fi # $installed = yes func_stripname 'lib' '.la' "$laname" name=$func_stripname_result # This library was specified with -dlpreopen. if test dlpreopen = "$pass"; then if test -z "$libdir" && test prog = "$linkmode"; then func_fatal_error "only libraries may -dlpreopen a convenience library: '$lib'" fi case $host in # special handling for platforms with PE-DLLs. *cygwin* | *mingw* | *cegcc* ) # Linker will automatically link against shared library if both # static and shared are present. Therefore, ensure we extract # symbols from the import library if a shared library is present # (otherwise, the dlopen module name will be incorrect). We do # this by putting the import library name into $newdlprefiles. # We recover the dlopen module name by 'saving' the la file # name in a special purpose variable, and (later) extracting the # dlname from the la file. if test -n "$dlname"; then func_tr_sh "$dir/$linklib" eval "libfile_$func_tr_sh_result=\$abs_ladir/\$laname" func_append newdlprefiles " $dir/$linklib" else func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" fi ;; * ) # Prefer using a static library (so that no silly _DYNAMIC symbols # are required to link). if test -n "$old_library"; then func_append newdlprefiles " $dir/$old_library" # Keep a list of preopened convenience libraries to check # that they are being used correctly in the link pass. test -z "$libdir" && \ func_append dlpreconveniencelibs " $dir/$old_library" # Otherwise, use the dlname, so that lt_dlopen finds it. elif test -n "$dlname"; then func_append newdlprefiles " $dir/$dlname" else func_append newdlprefiles " $dir/$linklib" fi ;; esac fi # $pass = dlpreopen if test -z "$libdir"; then # Link the convenience library if test lib = "$linkmode"; then deplibs="$dir/$old_library $deplibs" elif test prog,link = "$linkmode,$pass"; then compile_deplibs="$dir/$old_library $compile_deplibs" finalize_deplibs="$dir/$old_library $finalize_deplibs" else deplibs="$lib $deplibs" # used for prog,scan pass fi continue fi if test prog = "$linkmode" && test link != "$pass"; then func_append newlib_search_path " $ladir" deplibs="$lib $deplibs" linkalldeplibs=false if test no != "$link_all_deplibs" || test -z "$library_names" || test no = "$build_libtool_libs"; then linkalldeplibs=: fi tmp_libs= for deplib in $dependency_libs; do case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result" func_append newlib_search_path " $func_resolve_sysroot_result" ;; esac # Need to link against all dependency_libs? if $linkalldeplibs; then deplibs="$deplib $deplibs" else # Need to hardcode shared library paths # or/and link against static libraries newdependency_libs="$deplib $newdependency_libs" fi if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $deplib "*) func_append specialdeplibs " $deplib" ;; esac fi func_append tmp_libs " $deplib" done # for deplib continue fi # $linkmode = prog... if test prog,link = "$linkmode,$pass"; then if test -n "$library_names" && { { test no = "$prefer_static_libs" || test built,yes = "$prefer_static_libs,$installed"; } || test -z "$old_library"; }; then # We need to hardcode the library path if test -n "$shlibpath_var" && test -z "$avoidtemprpath"; then # Make sure the rpath contains only unique directories. case $temp_rpath: in *"$absdir:"*) ;; *) func_append temp_rpath "$absdir:" ;; esac fi # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi # $linkmode,$pass = prog,link... if $alldeplibs && { test pass_all = "$deplibs_check_method" || { test yes = "$build_libtool_libs" && test -n "$library_names"; }; }; then # We only need to search for static libraries continue fi fi link_static=no # Whether the deplib will be linked statically use_static_libs=$prefer_static_libs if test built = "$use_static_libs" && test yes = "$installed"; then use_static_libs=no fi if test -n "$library_names" && { test no = "$use_static_libs" || test -z "$old_library"; }; then case $host in *cygwin* | *mingw* | *cegcc*) # No point in relinking DLLs because paths are not encoded func_append notinst_deplibs " $lib" need_relink=no ;; *) if test no = "$installed"; then func_append notinst_deplibs " $lib" need_relink=yes fi ;; esac # This is a shared library # Warn about portability, can't link against -module's on some # systems (darwin). Don't bleat about dlopened modules though! dlopenmodule= for dlpremoduletest in $dlprefiles; do if test "X$dlpremoduletest" = "X$lib"; then dlopenmodule=$dlpremoduletest break fi done if test -z "$dlopenmodule" && test yes = "$shouldnotlink" && test link = "$pass"; then echo if test prog = "$linkmode"; then $ECHO "*** Warning: Linking the executable $output against the loadable module" else $ECHO "*** Warning: Linking the shared library $output against the loadable module" fi $ECHO "*** $linklib is not portable!" fi if test lib = "$linkmode" && test yes = "$hardcode_into_libs"; then # Hardcode the library path. # Skip directories that are in the system default run-time # search path. case " $sys_lib_dlsearch_path " in *" $absdir "*) ;; *) case "$compile_rpath " in *" $absdir "*) ;; *) func_append compile_rpath " $absdir" ;; esac ;; esac case " $sys_lib_dlsearch_path " in *" $libdir "*) ;; *) case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac ;; esac fi if test -n "$old_archive_from_expsyms_cmds"; then # figure out the soname set dummy $library_names shift realname=$1 shift libname=`eval "\\$ECHO \"$libname_spec\""` # use dlname if we got it. it's perfectly good, no? if test -n "$dlname"; then soname=$dlname elif test -n "$soname_spec"; then # bleh windows case $host in *cygwin* | mingw* | *cegcc*) func_arith $current - $age major=$func_arith_result versuffix=-$major ;; esac eval soname=\"$soname_spec\" else soname=$realname fi # Make a new name for the extract_expsyms_cmds to use soroot=$soname func_basename "$soroot" soname=$func_basename_result func_stripname 'lib' '.dll' "$soname" newlib=libimp-$func_stripname_result.a # If the library has no export list, then create one now if test -f "$output_objdir/$soname-def"; then : else func_verbose "extracting exported symbol list from '$soname'" func_execute_cmds "$extract_expsyms_cmds" 'exit $?' fi # Create $newlib if test -f "$output_objdir/$newlib"; then :; else func_verbose "generating import library for '$soname'" func_execute_cmds "$old_archive_from_expsyms_cmds" 'exit $?' fi # make sure the library variables are pointing to the new library dir=$output_objdir linklib=$newlib fi # test -n "$old_archive_from_expsyms_cmds" if test prog = "$linkmode" || test relink != "$opt_mode"; then add_shlibpath= add_dir= add= lib_linked=yes case $hardcode_action in immediate | unsupported) if test no = "$hardcode_direct"; then add=$dir/$linklib case $host in *-*-sco3.2v5.0.[024]*) add_dir=-L$dir ;; *-*-sysv4*uw2*) add_dir=-L$dir ;; *-*-sysv5OpenUNIX* | *-*-sysv5UnixWare7.[01].[10]* | \ *-*-unixware7*) add_dir=-L$dir ;; *-*-darwin* ) # if the lib is a (non-dlopened) module then we cannot # link against it, someone is ignoring the earlier warnings if /usr/bin/file -L $add 2> /dev/null | $GREP ": [^:]* bundle" >/dev/null; then if test "X$dlopenmodule" != "X$lib"; then $ECHO "*** Warning: lib $linklib is a module, not a shared library" if test -z "$old_library"; then echo echo "*** And there doesn't seem to be a static archive available" echo "*** The link will probably fail, sorry" else add=$dir/$old_library fi elif test -n "$old_library"; then add=$dir/$old_library fi fi esac elif test no = "$hardcode_minus_L"; then case $host in *-*-sunos*) add_shlibpath=$dir ;; esac add_dir=-L$dir add=-l$name elif test no = "$hardcode_shlibpath_var"; then add_shlibpath=$dir add=-l$name else lib_linked=no fi ;; relink) if test yes = "$hardcode_direct" && test no = "$hardcode_direct_absolute"; then add=$dir/$linklib elif test yes = "$hardcode_minus_L"; then add_dir=-L$absdir # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add=-l$name elif test yes = "$hardcode_shlibpath_var"; then add_shlibpath=$dir add=-l$name else lib_linked=no fi ;; *) lib_linked=no ;; esac if test yes != "$lib_linked"; then func_fatal_configuration "unsupported hardcode properties" fi if test -n "$add_shlibpath"; then case :$compile_shlibpath: in *":$add_shlibpath:"*) ;; *) func_append compile_shlibpath "$add_shlibpath:" ;; esac fi if test prog = "$linkmode"; then test -n "$add_dir" && compile_deplibs="$add_dir $compile_deplibs" test -n "$add" && compile_deplibs="$add $compile_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" if test yes != "$hardcode_direct" && test yes != "$hardcode_minus_L" && test yes = "$hardcode_shlibpath_var"; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac fi fi fi if test prog = "$linkmode" || test relink = "$opt_mode"; then add_shlibpath= add_dir= add= # Finalize command for both is simple: just hardcode it. if test yes = "$hardcode_direct" && test no = "$hardcode_direct_absolute"; then add=$libdir/$linklib elif test yes = "$hardcode_minus_L"; then add_dir=-L$libdir add=-l$name elif test yes = "$hardcode_shlibpath_var"; then case :$finalize_shlibpath: in *":$libdir:"*) ;; *) func_append finalize_shlibpath "$libdir:" ;; esac add=-l$name elif test yes = "$hardcode_automatic"; then if test -n "$inst_prefix_dir" && test -f "$inst_prefix_dir$libdir/$linklib"; then add=$inst_prefix_dir$libdir/$linklib else add=$libdir/$linklib fi else # We cannot seem to hardcode it, guess we'll fake it. add_dir=-L$libdir # Try looking first in the location we're being installed to. if test -n "$inst_prefix_dir"; then case $libdir in [\\/]*) func_append add_dir " -L$inst_prefix_dir$libdir" ;; esac fi add=-l$name fi if test prog = "$linkmode"; then test -n "$add_dir" && finalize_deplibs="$add_dir $finalize_deplibs" test -n "$add" && finalize_deplibs="$add $finalize_deplibs" else test -n "$add_dir" && deplibs="$add_dir $deplibs" test -n "$add" && deplibs="$add $deplibs" fi fi elif test prog = "$linkmode"; then # Here we assume that one of hardcode_direct or hardcode_minus_L # is not unsupported. This is valid on all known static and # shared platforms. if test unsupported != "$hardcode_direct"; then test -n "$old_library" && linklib=$old_library compile_deplibs="$dir/$linklib $compile_deplibs" finalize_deplibs="$dir/$linklib $finalize_deplibs" else compile_deplibs="-l$name -L$dir $compile_deplibs" finalize_deplibs="-l$name -L$dir $finalize_deplibs" fi elif test yes = "$build_libtool_libs"; then # Not a shared library if test pass_all != "$deplibs_check_method"; then # We're trying link a shared library against a static one # but the system doesn't support it. # Just print a warning and add the library to dependency_libs so # that the program can be linked against the static library. echo $ECHO "*** Warning: This system cannot link to static lib archive $lib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have." if test yes = "$module"; then echo "*** But as you try to build a module library, libtool will still create " echo "*** a static module, that should work as long as the dlopening application" echo "*** is linked with the -dlopen flag to resolve symbols at runtime." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using 'nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** 'nm' from GNU binutils and a full rebuild may help." fi if test no = "$build_old_libs"; then build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi else deplibs="$dir/$old_library $deplibs" link_static=yes fi fi # link shared/static library? if test lib = "$linkmode"; then if test -n "$dependency_libs" && { test yes != "$hardcode_into_libs" || test yes = "$build_old_libs" || test yes = "$link_static"; }; then # Extract -R from dependency_libs temp_deplibs= for libdir in $dependency_libs; do case $libdir in -R*) func_stripname '-R' '' "$libdir" temp_xrpath=$func_stripname_result case " $xrpath " in *" $temp_xrpath "*) ;; *) func_append xrpath " $temp_xrpath";; esac;; *) func_append temp_deplibs " $libdir";; esac done dependency_libs=$temp_deplibs fi func_append newlib_search_path " $absdir" # Link against this library test no = "$link_static" && newdependency_libs="$abs_ladir/$laname $newdependency_libs" # ... and its dependency_libs tmp_libs= for deplib in $dependency_libs; do newdependency_libs="$deplib $newdependency_libs" case $deplib in -L*) func_stripname '-L' '' "$deplib" func_resolve_sysroot "$func_stripname_result";; *) func_resolve_sysroot "$deplib" ;; esac if $opt_preserve_dup_deps; then case "$tmp_libs " in *" $func_resolve_sysroot_result "*) func_append specialdeplibs " $func_resolve_sysroot_result" ;; esac fi func_append tmp_libs " $func_resolve_sysroot_result" done if test no != "$link_all_deplibs"; then # Add the search paths of all dependency libraries for deplib in $dependency_libs; do path= case $deplib in -L*) path=$deplib ;; *.la) func_resolve_sysroot "$deplib" deplib=$func_resolve_sysroot_result func_dirname "$deplib" "" "." dir=$func_dirname_result # We need an absolute path. case $dir in [\\/]* | [A-Za-z]:[\\/]*) absdir=$dir ;; *) absdir=`cd "$dir" && pwd` if test -z "$absdir"; then func_warning "cannot determine absolute directory name of '$dir'" absdir=$dir fi ;; esac if $GREP "^installed=no" $deplib > /dev/null; then case $host in *-*-darwin*) depdepl= eval deplibrary_names=`$SED -n -e 's/^library_names=\(.*\)$/\1/p' $deplib` if test -n "$deplibrary_names"; then for tmp in $deplibrary_names; do depdepl=$tmp done if test -f "$absdir/$objdir/$depdepl"; then depdepl=$absdir/$objdir/$depdepl darwin_install_name=`$OTOOL -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` if test -z "$darwin_install_name"; then darwin_install_name=`$OTOOL64 -L $depdepl | awk '{if (NR == 2) {print $1;exit}}'` fi func_append compiler_flags " $wl-dylib_file $wl$darwin_install_name:$depdepl" func_append linker_flags " -dylib_file $darwin_install_name:$depdepl" path= fi fi ;; *) path=-L$absdir/$objdir ;; esac else eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $deplib` test -z "$libdir" && \ func_fatal_error "'$deplib' is not a valid libtool archive" test "$absdir" != "$libdir" && \ func_warning "'$deplib' seems to be moved" path=-L$absdir fi ;; esac case " $deplibs " in *" $path "*) ;; *) deplibs="$path $deplibs" ;; esac done fi # link_all_deplibs != no fi # linkmode = lib done # for deplib in $libs if test link = "$pass"; then if test prog = "$linkmode"; then compile_deplibs="$new_inherited_linker_flags $compile_deplibs" finalize_deplibs="$new_inherited_linker_flags $finalize_deplibs" else compiler_flags="$compiler_flags "`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` fi fi dependency_libs=$newdependency_libs if test dlpreopen = "$pass"; then # Link the dlpreopened libraries before other libraries for deplib in $save_deplibs; do deplibs="$deplib $deplibs" done fi if test dlopen != "$pass"; then test conv = "$pass" || { # Make sure lib_search_path contains only unique directories. lib_search_path= for dir in $newlib_search_path; do case "$lib_search_path " in *" $dir "*) ;; *) func_append lib_search_path " $dir" ;; esac done newlib_search_path= } if test prog,link = "$linkmode,$pass"; then vars="compile_deplibs finalize_deplibs" else vars=deplibs fi for var in $vars dependency_libs; do # Add libraries to $var in reverse order eval tmp_libs=\"\$$var\" new_libs= for deplib in $tmp_libs; do # FIXME: Pedantically, this is the right thing to do, so # that some nasty dependency loop isn't accidentally # broken: #new_libs="$deplib $new_libs" # Pragmatically, this seems to cause very few problems in # practice: case $deplib in -L*) new_libs="$deplib $new_libs" ;; -R*) ;; *) # And here is the reason: when a library appears more # than once as an explicit dependence of a library, or # is implicitly linked in more than once by the # compiler, it is considered special, and multiple # occurrences thereof are not removed. Compare this # with having the same library being listed as a # dependency of multiple other libraries: in this case, # we know (pedantically, we assume) the library does not # need to be listed more than once, so we keep only the # last copy. This is not always right, but it is rare # enough that we require users that really mean to play # such unportable linking tricks to link the library # using -Wl,-lname, so that libtool does not consider it # for duplicate removal. case " $specialdeplibs " in *" $deplib "*) new_libs="$deplib $new_libs" ;; *) case " $new_libs " in *" $deplib "*) ;; *) new_libs="$deplib $new_libs" ;; esac ;; esac ;; esac done tmp_libs= for deplib in $new_libs; do case $deplib in -L*) case " $tmp_libs " in *" $deplib "*) ;; *) func_append tmp_libs " $deplib" ;; esac ;; *) func_append tmp_libs " $deplib" ;; esac done eval $var=\"$tmp_libs\" done # for var fi # Last step: remove runtime libs from dependency_libs # (they stay in deplibs) tmp_libs= for i in $dependency_libs; do case " $predeps $postdeps $compiler_lib_search_path " in *" $i "*) i= ;; esac if test -n "$i"; then func_append tmp_libs " $i" fi done dependency_libs=$tmp_libs done # for pass if test prog = "$linkmode"; then dlfiles=$newdlfiles fi if test prog = "$linkmode" || test lib = "$linkmode"; then dlprefiles=$newdlprefiles fi case $linkmode in oldlib) if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then func_warning "'-dlopen' is ignored for archives" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "'-l' and '-L' are ignored for archives" ;; esac test -n "$rpath" && \ func_warning "'-rpath' is ignored for archives" test -n "$xrpath" && \ func_warning "'-R' is ignored for archives" test -n "$vinfo" && \ func_warning "'-version-info/-version-number' is ignored for archives" test -n "$release" && \ func_warning "'-release' is ignored for archives" test -n "$export_symbols$export_symbols_regex" && \ func_warning "'-export-symbols' is ignored for archives" # Now set the variables for building old libraries. build_libtool_libs=no oldlibs=$output func_append objs "$old_deplibs" ;; lib) # Make sure we only generate libraries of the form 'libNAME.la'. case $outputname in lib*) func_stripname 'lib' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" ;; *) test no = "$module" \ && func_fatal_help "libtool library '$output' must begin with 'lib'" if test no != "$need_lib_prefix"; then # Add the "lib" prefix for modules if required func_stripname '' '.la' "$outputname" name=$func_stripname_result eval shared_ext=\"$shrext_cmds\" eval libname=\"$libname_spec\" else func_stripname '' '.la' "$outputname" libname=$func_stripname_result fi ;; esac if test -n "$objs"; then if test pass_all != "$deplibs_check_method"; then func_fatal_error "cannot build libtool library '$output' from non-libtool objects on this host:$objs" else echo $ECHO "*** Warning: Linking the shared library $output against the non-libtool" $ECHO "*** objects $objs is not portable!" func_append libobjs " $objs" fi fi test no = "$dlself" \ || func_warning "'-dlopen self' is ignored for libtool libraries" set dummy $rpath shift test 1 -lt "$#" \ && func_warning "ignoring multiple '-rpath's for a libtool library" install_libdir=$1 oldlibs= if test -z "$rpath"; then if test yes = "$build_libtool_libs"; then # Building a libtool convenience library. # Some compilers have problems with a '.al' extension so # convenience libraries should have the same extension an # archive normally would. oldlibs="$output_objdir/$libname.$libext $oldlibs" build_libtool_libs=convenience build_old_libs=yes fi test -n "$vinfo" && \ func_warning "'-version-info/-version-number' is ignored for convenience libraries" test -n "$release" && \ func_warning "'-release' is ignored for convenience libraries" else # Parse the version information argument. save_ifs=$IFS; IFS=: set dummy $vinfo 0 0 0 shift IFS=$save_ifs test -n "$7" && \ func_fatal_help "too many parameters to '-version-info'" # convert absolute version numbers to libtool ages # this retains compatibility with .la files and attempts # to make the code below a bit more comprehensible case $vinfo_number in yes) number_major=$1 number_minor=$2 number_revision=$3 # # There are really only two kinds -- those that # use the current revision as the major version # and those that subtract age and use age as # a minor version. But, then there is irix # that has an extra 1 added just for fun # case $version_type in # correct linux to gnu/linux during the next big refactor darwin|linux|osf|windows|none) func_arith $number_major + $number_minor current=$func_arith_result age=$number_minor revision=$number_revision ;; freebsd-aout|freebsd-elf|qnx|sunos) current=$number_major revision=$number_minor age=0 ;; irix|nonstopux) func_arith $number_major + $number_minor current=$func_arith_result age=$number_minor revision=$number_minor lt_irix_increment=no ;; esac ;; no) current=$1 revision=$2 age=$3 ;; esac # Check that each of the things are valid numbers. case $current in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "CURRENT '$current' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac case $revision in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "REVISION '$revision' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac case $age in 0|[1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9]|[1-9][0-9][0-9][0-9][0-9]) ;; *) func_error "AGE '$age' must be a nonnegative integer" func_fatal_error "'$vinfo' is not valid version information" ;; esac if test "$age" -gt "$current"; then func_error "AGE '$age' is greater than the current interface number '$current'" func_fatal_error "'$vinfo' is not valid version information" fi # Calculate the version variables. major= versuffix= verstring= case $version_type in none) ;; darwin) # Like Linux, but with the current version available in # verstring for coding it into the library header func_arith $current - $age major=.$func_arith_result versuffix=$major.$age.$revision # Darwin ld doesn't like 0 for these options... func_arith $current + 1 minor_current=$func_arith_result xlcverstring="$wl-compatibility_version $wl$minor_current $wl-current_version $wl$minor_current.$revision" verstring="-compatibility_version $minor_current -current_version $minor_current.$revision" # On Darwin other compilers case $CC in nagfor*) verstring="$wl-compatibility_version $wl$minor_current $wl-current_version $wl$minor_current.$revision" ;; *) verstring="-compatibility_version $minor_current -current_version $minor_current.$revision" ;; esac ;; freebsd-aout) major=.$current versuffix=.$current.$revision ;; freebsd-elf) major=.$current versuffix=.$current ;; irix | nonstopux) if test no = "$lt_irix_increment"; then func_arith $current - $age else func_arith $current - $age + 1 fi major=$func_arith_result case $version_type in nonstopux) verstring_prefix=nonstopux ;; *) verstring_prefix=sgi ;; esac verstring=$verstring_prefix$major.$revision # Add in all the interfaces that we are compatible with. loop=$revision while test 0 -ne "$loop"; do func_arith $revision - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring=$verstring_prefix$major.$iface:$verstring done # Before this point, $major must not contain '.'. major=.$major versuffix=$major.$revision ;; linux) # correct to gnu/linux during the next big refactor func_arith $current - $age major=.$func_arith_result versuffix=$major.$age.$revision ;; osf) func_arith $current - $age major=.$func_arith_result versuffix=.$current.$age.$revision verstring=$current.$age.$revision # Add in all the interfaces that we are compatible with. loop=$age while test 0 -ne "$loop"; do func_arith $current - $loop iface=$func_arith_result func_arith $loop - 1 loop=$func_arith_result verstring=$verstring:$iface.0 done # Make executables depend on our current version. func_append verstring ":$current.0" ;; qnx) major=.$current versuffix=.$current ;; sunos) major=.$current versuffix=.$current.$revision ;; windows) # Use '-' rather than '.', since we only want one # extension on DOS 8.3 file systems. func_arith $current - $age major=$func_arith_result versuffix=-$major ;; *) func_fatal_configuration "unknown library version type '$version_type'" ;; esac # Clear the version info if we defaulted, and they specified a release. if test -z "$vinfo" && test -n "$release"; then major= case $version_type in darwin) # we can't check for "0.0" in archive_cmds due to quoting # problems, so we reset it completely verstring= ;; *) verstring=0.0 ;; esac if test no = "$need_version"; then versuffix= else versuffix=.0.0 fi fi # Remove version info from name if versioning should be avoided if test yes,no = "$avoid_version,$need_version"; then major= versuffix= verstring= fi # Check to see if the archive will have undefined symbols. if test yes = "$allow_undefined"; then if test unsupported = "$allow_undefined_flag"; then if test yes = "$build_old_libs"; then func_warning "undefined symbols not allowed in $host shared libraries; building static only" build_libtool_libs=no else func_fatal_error "can't build $host shared library unless -no-undefined is specified" fi fi else # Don't allow undefined symbols. allow_undefined_flag=$no_undefined_flag fi fi func_generate_dlsyms "$libname" "$libname" : func_append libobjs " $symfileobj" test " " = "$libobjs" && libobjs= if test relink != "$opt_mode"; then # Remove our outputs, but don't remove object files since they # may have been created when compiling PIC objects. removelist= tempremovelist=`$ECHO "$output_objdir/*"` for p in $tempremovelist; do case $p in *.$objext | *.gcno) ;; $output_objdir/$outputname | $output_objdir/$libname.* | $output_objdir/$libname$release.*) if test -n "$precious_files_regex"; then if $ECHO "$p" | $EGREP -e "$precious_files_regex" >/dev/null 2>&1 then continue fi fi func_append removelist " $p" ;; *) ;; esac done test -n "$removelist" && \ func_show_eval "${RM}r \$removelist" fi # Now set the variables for building old libraries. if test yes = "$build_old_libs" && test convenience != "$build_libtool_libs"; then func_append oldlibs " $output_objdir/$libname.$libext" # Transform .lo files to .o files. oldobjs="$objs "`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; $lo2o" | $NL2SP` fi # Eliminate all temporary directories. #for path in $notinst_path; do # lib_search_path=`$ECHO "$lib_search_path " | $SED "s% $path % %g"` # deplibs=`$ECHO "$deplibs " | $SED "s% -L$path % %g"` # dependency_libs=`$ECHO "$dependency_libs " | $SED "s% -L$path % %g"` #done if test -n "$xrpath"; then # If the user specified any rpath flags, then add them. temp_xrpath= for libdir in $xrpath; do func_replace_sysroot "$libdir" func_append temp_xrpath " -R$func_replace_sysroot_result" case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done if test yes != "$hardcode_into_libs" || test yes = "$build_old_libs"; then dependency_libs="$temp_xrpath $dependency_libs" fi fi # Make sure dlfiles contains only unique files that won't be dlpreopened old_dlfiles=$dlfiles dlfiles= for lib in $old_dlfiles; do case " $dlprefiles $dlfiles " in *" $lib "*) ;; *) func_append dlfiles " $lib" ;; esac done # Make sure dlprefiles contains only unique files old_dlprefiles=$dlprefiles dlprefiles= for lib in $old_dlprefiles; do case "$dlprefiles " in *" $lib "*) ;; *) func_append dlprefiles " $lib" ;; esac done if test yes = "$build_libtool_libs"; then if test -n "$rpath"; then case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-*-beos* | *-cegcc* | *-*-haiku*) # these systems don't actually have a c library (as such)! ;; *-*-rhapsody* | *-*-darwin1.[012]) # Rhapsody C library is in the System framework func_append deplibs " System.ltframework" ;; *-*-netbsd*) # Don't link with libc until the a.out ld.so is fixed. ;; *-*-openbsd* | *-*-freebsd* | *-*-dragonfly*) # Do not include libc due to us having libc/libc_r. ;; *-*-sco3.2v5* | *-*-sco5v6*) # Causes problems with __ctype ;; *-*-sysv4.2uw2* | *-*-sysv5* | *-*-unixware* | *-*-OpenUNIX*) # Compiler inserts libc in the correct place for threads to work ;; *) # Add libc to deplibs on all other systems if necessary. if test yes = "$build_libtool_need_lc"; then func_append deplibs " -lc" fi ;; esac fi # Transform deplibs into only deplibs that can be linked in shared. name_save=$name libname_save=$libname release_save=$release versuffix_save=$versuffix major_save=$major # I'm not sure if I'm treating the release correctly. I think # release should show up in the -l (ie -lgmp5) so we don't want to # add it in twice. Is that correct? release= versuffix= major= newdeplibs= droppeddeps=no case $deplibs_check_method in pass_all) # Don't check for shared/static. Everything works. # This might be a little naive. We might want to check # whether the library exists or not. But this is on # osf3 & osf4 and I'm not really sure... Just # implementing what was already the behavior. newdeplibs=$deplibs ;; test_compile) # This code stresses the "libraries are programs" paradigm to its # limits. Maybe even breaks it. We compile a program, linking it # against the deplibs as a proxy for the library. Then we can check # whether they linked in statically or dynamically with ldd. $opt_dry_run || $RM conftest.c cat > conftest.c </dev/null` $nocaseglob else potential_libs=`ls $i/$libnameglob[.-]* 2>/dev/null` fi for potent_lib in $potential_libs; do # Follow soft links. if ls -lLd "$potent_lib" 2>/dev/null | $GREP " -> " >/dev/null; then continue fi # The statement above tries to avoid entering an # endless loop below, in case of cyclic links. # We might still enter an endless loop, since a link # loop can be closed while we follow links, # but so what? potlib=$potent_lib while test -h "$potlib" 2>/dev/null; do potliblink=`ls -ld $potlib | $SED 's/.* -> //'` case $potliblink in [\\/]* | [A-Za-z]:[\\/]*) potlib=$potliblink;; *) potlib=`$ECHO "$potlib" | $SED 's|[^/]*$||'`"$potliblink";; esac done if eval $file_magic_cmd \"\$potlib\" 2>/dev/null | $SED -e 10q | $EGREP "$file_magic_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib= break 2 fi done done fi if test -n "$a_deplib"; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib"; then $ECHO "*** with $libname but no candidates were found. (...for file magic test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a file magic. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; match_pattern*) set dummy $deplibs_check_method; shift match_pattern_regex=`expr "$deplibs_check_method" : "$1 \(.*\)"` for a_deplib in $deplibs; do case $a_deplib in -l*) func_stripname -l '' "$a_deplib" name=$func_stripname_result if test yes = "$allow_libtool_libs_with_static_runtimes"; then case " $predeps $postdeps " in *" $a_deplib "*) func_append newdeplibs " $a_deplib" a_deplib= ;; esac fi if test -n "$a_deplib"; then libname=`eval "\\$ECHO \"$libname_spec\""` for i in $lib_search_path $sys_lib_search_path $shlib_search_path; do potential_libs=`ls $i/$libname[.-]* 2>/dev/null` for potent_lib in $potential_libs; do potlib=$potent_lib # see symlink-check above in file_magic test if eval "\$ECHO \"$potent_lib\"" 2>/dev/null | $SED 10q | \ $EGREP "$match_pattern_regex" > /dev/null; then func_append newdeplibs " $a_deplib" a_deplib= break 2 fi done done fi if test -n "$a_deplib"; then droppeddeps=yes echo $ECHO "*** Warning: linker path does not have real file for library $a_deplib." echo "*** I have the capability to make that library automatically link in when" echo "*** you link to this library. But I can only do this if you have a" echo "*** shared version of the library, which you do not appear to have" echo "*** because I did check the linker path looking for a file starting" if test -z "$potlib"; then $ECHO "*** with $libname but no candidates were found. (...for regex pattern test)" else $ECHO "*** with $libname and none of the candidates passed a file format test" $ECHO "*** using a regex pattern. Last file checked: $potlib" fi fi ;; *) # Add a -L argument. func_append newdeplibs " $a_deplib" ;; esac done # Gone through all deplibs. ;; none | unknown | *) newdeplibs= tmp_deplibs=`$ECHO " $deplibs" | $SED 's/ -lc$//; s/ -[LR][^ ]*//g'` if test yes = "$allow_libtool_libs_with_static_runtimes"; then for i in $predeps $postdeps; do # can't use Xsed below, because $i might contain '/' tmp_deplibs=`$ECHO " $tmp_deplibs" | $SED "s|$i||"` done fi case $tmp_deplibs in *[!\ \ ]*) echo if test none = "$deplibs_check_method"; then echo "*** Warning: inter-library dependencies are not supported in this platform." else echo "*** Warning: inter-library dependencies are not known to be supported." fi echo "*** All declared inter-library dependencies are being dropped." droppeddeps=yes ;; esac ;; esac versuffix=$versuffix_save major=$major_save release=$release_save libname=$libname_save name=$name_save case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library with the System framework newdeplibs=`$ECHO " $newdeplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac if test yes = "$droppeddeps"; then if test yes = "$module"; then echo echo "*** Warning: libtool could not satisfy all declared inter-library" $ECHO "*** dependencies of module $libname. Therefore, libtool will create" echo "*** a static module, that should work as long as the dlopening" echo "*** application is linked with the -dlopen flag." if test -z "$global_symbol_pipe"; then echo echo "*** However, this would only work if libtool was able to extract symbol" echo "*** lists from a program, using 'nm' or equivalent, but libtool could" echo "*** not find such a program. So, this module is probably useless." echo "*** 'nm' from GNU binutils and a full rebuild may help." fi if test no = "$build_old_libs"; then oldlibs=$output_objdir/$libname.$libext build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi else echo "*** The inter-library dependencies that have been dropped here will be" echo "*** automatically added whenever a program is linked with this library" echo "*** or is declared to -dlopen it." if test no = "$allow_undefined"; then echo echo "*** Since this library must not contain undefined symbols," echo "*** because either the platform does not support them or" echo "*** it was explicitly requested with -no-undefined," echo "*** libtool will only create a static version of it." if test no = "$build_old_libs"; then oldlibs=$output_objdir/$libname.$libext build_libtool_libs=module build_old_libs=yes else build_libtool_libs=no fi fi fi fi # Done checking deplibs! deplibs=$newdeplibs fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" case $host in *-*-darwin*) newdeplibs=`$ECHO " $newdeplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` new_inherited_linker_flags=`$ECHO " $new_inherited_linker_flags" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` deplibs=`$ECHO " $deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done deplibs=$new_libs # All the library-specific variables (install_libdir is set above). library_names= old_library= dlname= # Test again, we may have decided not to build it any more if test yes = "$build_libtool_libs"; then # Remove $wl instances when linking with ld. # FIXME: should test the right _cmds variable. case $archive_cmds in *\$LD\ *) wl= ;; esac if test yes = "$hardcode_into_libs"; then # Hardcode the library paths hardcode_libdirs= dep_rpath= rpath=$finalize_rpath test relink = "$opt_mode" || rpath=$compile_rpath$rpath for libdir in $rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then func_replace_sysroot "$libdir" libdir=$func_replace_sysroot_result if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append dep_rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval "dep_rpath=\"$hardcode_libdir_flag_spec\"" fi if test -n "$runpath_var" && test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done eval "$runpath_var='$rpath\$$runpath_var'; export $runpath_var" fi test -n "$dep_rpath" && deplibs="$dep_rpath $deplibs" fi shlibpath=$finalize_shlibpath test relink = "$opt_mode" || shlibpath=$compile_shlibpath$shlibpath if test -n "$shlibpath"; then eval "$shlibpath_var='$shlibpath\$$shlibpath_var'; export $shlibpath_var" fi # Get the real and link names of the library. eval shared_ext=\"$shrext_cmds\" eval library_names=\"$library_names_spec\" set dummy $library_names shift realname=$1 shift if test -n "$soname_spec"; then eval soname=\"$soname_spec\" else soname=$realname fi if test -z "$dlname"; then dlname=$soname fi lib=$output_objdir/$realname linknames= for link do func_append linknames " $link" done # Use standard objects if they are pic test -z "$pic_flag" && libobjs=`$ECHO "$libobjs" | $SP2NL | $SED "$lo2o" | $NL2SP` test "X$libobjs" = "X " && libobjs= delfiles= if test -n "$export_symbols" && test -n "$include_expsyms"; then $opt_dry_run || cp "$export_symbols" "$output_objdir/$libname.uexp" export_symbols=$output_objdir/$libname.uexp func_append delfiles " $export_symbols" fi orig_export_symbols= case $host_os in cygwin* | mingw* | cegcc*) if test -n "$export_symbols" && test -z "$export_symbols_regex"; then # exporting using user supplied symfile func_dll_def_p "$export_symbols" || { # and it's NOT already a .def file. Must figure out # which of the given symbols are data symbols and tag # them as such. So, trigger use of export_symbols_cmds. # export_symbols gets reassigned inside the "prepare # the list of exported symbols" if statement, so the # include_expsyms logic still works. orig_export_symbols=$export_symbols export_symbols= always_export_symbols=yes } fi ;; esac # Prepare the list of exported symbols if test -z "$export_symbols"; then if test yes = "$always_export_symbols" || test -n "$export_symbols_regex"; then func_verbose "generating symbol list for '$libname.la'" export_symbols=$output_objdir/$libname.exp $opt_dry_run || $RM $export_symbols cmds=$export_symbols_cmds save_ifs=$IFS; IFS='~' for cmd1 in $cmds; do IFS=$save_ifs # Take the normal branch if the nm_file_list_spec branch # doesn't work or if tool conversion is not needed. case $nm_file_list_spec~$to_tool_file_cmd in *~func_convert_file_noop | *~func_convert_file_msys_to_w32 | ~*) try_normal_branch=yes eval cmd=\"$cmd1\" func_len " $cmd" len=$func_len_result ;; *) try_normal_branch=no ;; esac if test yes = "$try_normal_branch" \ && { test "$len" -lt "$max_cmd_len" \ || test "$max_cmd_len" -le -1; } then func_show_eval "$cmd" 'exit $?' skipped_export=false elif test -n "$nm_file_list_spec"; then func_basename "$output" output_la=$func_basename_result save_libobjs=$libobjs save_output=$output output=$output_objdir/$output_la.nm func_to_tool_file "$output" libobjs=$nm_file_list_spec$func_to_tool_file_result func_append delfiles " $output" func_verbose "creating $NM input file list: $output" for obj in $save_libobjs; do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > "$output" eval cmd=\"$cmd1\" func_show_eval "$cmd" 'exit $?' output=$save_output libobjs=$save_libobjs skipped_export=false else # The command line is too long to execute in one step. func_verbose "using reloadable object file for export list..." skipped_export=: # Break out early, otherwise skipped_export may be # set to false by a later but shorter cmd. break fi done IFS=$save_ifs if test -n "$export_symbols_regex" && test : != "$skipped_export"; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi fi if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols=$export_symbols test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test : != "$skipped_export" && test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for '$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands, which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi tmp_deplibs= for test_deplib in $deplibs; do case " $convenience " in *" $test_deplib "*) ;; *) func_append tmp_deplibs " $test_deplib" ;; esac done deplibs=$tmp_deplibs if test -n "$convenience"; then if test -n "$whole_archive_flag_spec" && test yes = "$compiler_needs_object" && test -z "$libobjs"; then # extract the archives, so we have objects to list. # TODO: could optimize this to just extract one archive. whole_archive_flag_spec= fi if test -n "$whole_archive_flag_spec"; then save_libobjs=$libobjs eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= else gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $convenience func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi fi if test yes = "$thread_safe" && test -n "$thread_safe_flag_spec"; then eval flag=\"$thread_safe_flag_spec\" func_append linker_flags " $flag" fi # Make a backup of the uninstalled library when relinking if test relink = "$opt_mode"; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}U && $MV $realname ${realname}U)' || exit $? fi # Do each of the archive commands. if test yes = "$module" && test -n "$module_cmds"; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then eval test_cmds=\"$module_expsym_cmds\" cmds=$module_expsym_cmds else eval test_cmds=\"$module_cmds\" cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then eval test_cmds=\"$archive_expsym_cmds\" cmds=$archive_expsym_cmds else eval test_cmds=\"$archive_cmds\" cmds=$archive_cmds fi fi if test : != "$skipped_export" && func_len " $test_cmds" && len=$func_len_result && test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then : else # The command line is too long to link in one step, link piecewise # or, if using GNU ld and skipped_export is not :, use a linker # script. # Save the value of $output and $libobjs because we want to # use them later. If we have whole_archive_flag_spec, we # want to use save_libobjs as it was before # whole_archive_flag_spec was expanded, because we can't # assume the linker understands whole_archive_flag_spec. # This may have to be revisited, in case too many # convenience libraries get linked in and end up exceeding # the spec. if test -z "$convenience" || test -z "$whole_archive_flag_spec"; then save_libobjs=$libobjs fi save_output=$output func_basename "$output" output_la=$func_basename_result # Clear the reloadable object creation command queue and # initialize k to one. test_cmds= concat_cmds= objlist= last_robj= k=1 if test -n "$save_libobjs" && test : != "$skipped_export" && test yes = "$with_gnu_ld"; then output=$output_objdir/$output_la.lnkscript func_verbose "creating GNU ld script: $output" echo 'INPUT (' > $output for obj in $save_libobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done echo ')' >> $output func_append delfiles " $output" func_to_tool_file "$output" output=$func_to_tool_file_result elif test -n "$save_libobjs" && test : != "$skipped_export" && test -n "$file_list_spec"; then output=$output_objdir/$output_la.lnk func_verbose "creating linker input file list: $output" : > $output set x $save_libobjs shift firstobj= if test yes = "$compiler_needs_object"; then firstobj="$1 " shift fi for obj do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" >> $output done func_append delfiles " $output" func_to_tool_file "$output" output=$firstobj\"$file_list_spec$func_to_tool_file_result\" else if test -n "$save_libobjs"; then func_verbose "creating reloadable object files..." output=$output_objdir/$output_la-$k.$objext eval test_cmds=\"$reload_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 # Loop over the list of objects to be linked. for obj in $save_libobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result if test -z "$objlist" || test "$len" -lt "$max_cmd_len"; then func_append objlist " $obj" else # The command $test_cmds is almost too long, add a # command to the queue. if test 1 -eq "$k"; then # The first file doesn't have a previous command to add. reload_objs=$objlist eval concat_cmds=\"$reload_cmds\" else # All subsequent reloadable object files will link in # the last one created. reload_objs="$objlist $last_robj" eval concat_cmds=\"\$concat_cmds~$reload_cmds~\$RM $last_robj\" fi last_robj=$output_objdir/$output_la-$k.$objext func_arith $k + 1 k=$func_arith_result output=$output_objdir/$output_la-$k.$objext objlist=" $obj" func_len " $last_robj" func_arith $len0 + $func_len_result len=$func_arith_result fi done # Handle the remaining objects by creating one last # reloadable object file. All subsequent reloadable object # files will link in the last one created. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ reload_objs="$objlist $last_robj" eval concat_cmds=\"\$concat_cmds$reload_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\" fi func_append delfiles " $output" else output= fi ${skipped_export-false} && { func_verbose "generating symbol list for '$libname.la'" export_symbols=$output_objdir/$libname.exp $opt_dry_run || $RM $export_symbols libobjs=$output # Append the command to create the export file. test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\$concat_cmds$export_symbols_cmds\" if test -n "$last_robj"; then eval concat_cmds=\"\$concat_cmds~\$RM $last_robj\" fi } test -n "$save_libobjs" && func_verbose "creating a temporary reloadable object file: $output" # Loop through the commands generated above and execute them. save_ifs=$IFS; IFS='~' for cmd in $concat_cmds; do IFS=$save_ifs $opt_quiet || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test relink = "$opt_mode"; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS=$save_ifs if test -n "$export_symbols_regex" && ${skipped_export-false}; then func_show_eval '$EGREP -e "$export_symbols_regex" "$export_symbols" > "${export_symbols}T"' func_show_eval '$MV "${export_symbols}T" "$export_symbols"' fi fi ${skipped_export-false} && { if test -n "$export_symbols" && test -n "$include_expsyms"; then tmp_export_symbols=$export_symbols test -n "$orig_export_symbols" && tmp_export_symbols=$orig_export_symbols $opt_dry_run || eval '$ECHO "$include_expsyms" | $SP2NL >> "$tmp_export_symbols"' fi if test -n "$orig_export_symbols"; then # The given exports_symbols file has to be filtered, so filter it. func_verbose "filter symbol list for '$libname.la' to tag DATA exports" # FIXME: $output_objdir/$libname.filter potentially contains lots of # 's' commands, which not all seds can handle. GNU sed should be fine # though. Also, the filter scales superlinearly with the number of # global variables. join(1) would be nice here, but unfortunately # isn't a blessed tool. $opt_dry_run || $SED -e '/[ ,]DATA/!d;s,\(.*\)\([ \,].*\),s|^\1$|\1\2|,' < $export_symbols > $output_objdir/$libname.filter func_append delfiles " $export_symbols $output_objdir/$libname.filter" export_symbols=$output_objdir/$libname.def $opt_dry_run || $SED -f $output_objdir/$libname.filter < $orig_export_symbols > $export_symbols fi } libobjs=$output # Restore the value of output. output=$save_output if test -n "$convenience" && test -n "$whole_archive_flag_spec"; then eval libobjs=\"\$libobjs $whole_archive_flag_spec\" test "X$libobjs" = "X " && libobjs= fi # Expand the library linking commands again to reset the # value of $libobjs for piecewise linking. # Do each of the archive commands. if test yes = "$module" && test -n "$module_cmds"; then if test -n "$export_symbols" && test -n "$module_expsym_cmds"; then cmds=$module_expsym_cmds else cmds=$module_cmds fi else if test -n "$export_symbols" && test -n "$archive_expsym_cmds"; then cmds=$archive_expsym_cmds else cmds=$archive_cmds fi fi fi if test -n "$delfiles"; then # Append the command to remove temporary files to $cmds. eval cmds=\"\$cmds~\$RM $delfiles\" fi # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append libobjs " $func_extract_archives_result" test "X$libobjs" = "X " && libobjs= fi save_ifs=$IFS; IFS='~' for cmd in $cmds; do IFS=$sp$nl eval cmd=\"$cmd\" IFS=$save_ifs $opt_quiet || { func_quote_for_expand "$cmd" eval "func_echo $func_quote_for_expand_result" } $opt_dry_run || eval "$cmd" || { lt_exit=$? # Restore the uninstalled library and exit if test relink = "$opt_mode"; then ( cd "$output_objdir" && \ $RM "${realname}T" && \ $MV "${realname}U" "$realname" ) fi exit $lt_exit } done IFS=$save_ifs # Restore the uninstalled library and exit if test relink = "$opt_mode"; then $opt_dry_run || eval '(cd $output_objdir && $RM ${realname}T && $MV $realname ${realname}T && $MV ${realname}U $realname)' || exit $? if test -n "$convenience"; then if test -z "$whole_archive_flag_spec"; then func_show_eval '${RM}r "$gentop"' fi fi exit $EXIT_SUCCESS fi # Create links to the real library. for linkname in $linknames; do if test "$realname" != "$linkname"; then func_show_eval '(cd "$output_objdir" && $RM "$linkname" && $LN_S "$realname" "$linkname")' 'exit $?' fi done # If -module or -export-dynamic was specified, set the dlname. if test yes = "$module" || test yes = "$export_dynamic"; then # On all known operating systems, these are identical. dlname=$soname fi fi ;; obj) if test -n "$dlfiles$dlprefiles" || test no != "$dlself"; then func_warning "'-dlopen' is ignored for objects" fi case " $deplibs" in *\ -l* | *\ -L*) func_warning "'-l' and '-L' are ignored for objects" ;; esac test -n "$rpath" && \ func_warning "'-rpath' is ignored for objects" test -n "$xrpath" && \ func_warning "'-R' is ignored for objects" test -n "$vinfo" && \ func_warning "'-version-info' is ignored for objects" test -n "$release" && \ func_warning "'-release' is ignored for objects" case $output in *.lo) test -n "$objs$old_deplibs" && \ func_fatal_error "cannot build library object '$output' from non-libtool objects" libobj=$output func_lo2o "$libobj" obj=$func_lo2o_result ;; *) libobj= obj=$output ;; esac # Delete the old objects. $opt_dry_run || $RM $obj $libobj # Objects from convenience libraries. This assumes # single-version convenience libraries. Whenever we create # different ones for PIC/non-PIC, this we'll have to duplicate # the extraction. reload_conv_objs= gentop= # reload_cmds runs $LD directly, so let us get rid of # -Wl from whole_archive_flag_spec and hope we can get by with # turning comma into space.. wl= if test -n "$convenience"; then if test -n "$whole_archive_flag_spec"; then eval tmp_whole_archive_flags=\"$whole_archive_flag_spec\" reload_conv_objs=$reload_objs\ `$ECHO "$tmp_whole_archive_flags" | $SED 's|,| |g'` else gentop=$output_objdir/${obj}x func_append generated " $gentop" func_extract_archives $gentop $convenience reload_conv_objs="$reload_objs $func_extract_archives_result" fi fi # If we're not building shared, we need to use non_pic_objs test yes = "$build_libtool_libs" || libobjs=$non_pic_objects # Create the old-style object. reload_objs=$objs$old_deplibs' '`$ECHO "$libobjs" | $SP2NL | $SED "/\.$libext$/d; /\.lib$/d; $lo2o" | $NL2SP`' '$reload_conv_objs output=$obj func_execute_cmds "$reload_cmds" 'exit $?' # Exit if we aren't doing a library object file. if test -z "$libobj"; then if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS fi test yes = "$build_libtool_libs" || { if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi # Create an invalid libtool object if no PIC, so that we don't # accidentally link it into a program. # $show "echo timestamp > $libobj" # $opt_dry_run || eval "echo timestamp > $libobj" || exit $? exit $EXIT_SUCCESS } if test -n "$pic_flag" || test default != "$pic_mode"; then # Only do commands if we really have different PIC objects. reload_objs="$libobjs $reload_conv_objs" output=$libobj func_execute_cmds "$reload_cmds" 'exit $?' fi if test -n "$gentop"; then func_show_eval '${RM}r "$gentop"' fi exit $EXIT_SUCCESS ;; prog) case $host in *cygwin*) func_stripname '' '.exe' "$output" output=$func_stripname_result.exe;; esac test -n "$vinfo" && \ func_warning "'-version-info' is ignored for programs" test -n "$release" && \ func_warning "'-release' is ignored for programs" $preload \ && test unknown,unknown,unknown = "$dlopen_support,$dlopen_self,$dlopen_self_static" \ && func_warning "'LT_INIT([dlopen])' not used. Assuming no dlopen support." case $host in *-*-rhapsody* | *-*-darwin1.[012]) # On Rhapsody replace the C library is the System framework compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's/ -lc / System.ltframework /'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's/ -lc / System.ltframework /'` ;; esac case $host in *-*-darwin*) # Don't allow lazy linking, it breaks C++ global constructors # But is supposedly fixed on 10.4 or later (yay!). if test CXX = "$tagname"; then case ${MACOSX_DEPLOYMENT_TARGET-10.0} in 10.[0123]) func_append compile_command " $wl-bind_at_load" func_append finalize_command " $wl-bind_at_load" ;; esac fi # Time to change all our "foo.ltframework" stuff back to "-framework foo" compile_deplibs=`$ECHO " $compile_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` finalize_deplibs=`$ECHO " $finalize_deplibs" | $SED 's% \([^ $]*\).ltframework% -framework \1%g'` ;; esac # move library search paths that coincide with paths to not yet # installed libraries to the beginning of the library search list new_libs= for path in $notinst_path; do case " $new_libs " in *" -L$path/$objdir "*) ;; *) case " $compile_deplibs " in *" -L$path/$objdir "*) func_append new_libs " -L$path/$objdir" ;; esac ;; esac done for deplib in $compile_deplibs; do case $deplib in -L*) case " $new_libs " in *" $deplib "*) ;; *) func_append new_libs " $deplib" ;; esac ;; *) func_append new_libs " $deplib" ;; esac done compile_deplibs=$new_libs func_append compile_command " $compile_deplibs" func_append finalize_command " $finalize_deplibs" if test -n "$rpath$xrpath"; then # If the user specified any rpath flags, then add them. for libdir in $rpath $xrpath; do # This is the magic to use -rpath. case "$finalize_rpath " in *" $libdir "*) ;; *) func_append finalize_rpath " $libdir" ;; esac done fi # Now hardcode the library paths rpath= hardcode_libdirs= for libdir in $compile_rpath $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$perm_rpath " in *" $libdir "*) ;; *) func_append perm_rpath " $libdir" ;; esac fi case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-os2* | *-cegcc*) testbindir=`$ECHO "$libdir" | $SED -e 's*/lib$*/bin*'` case :$dllsearchpath: in *":$libdir:"*) ;; ::) dllsearchpath=$libdir;; *) func_append dllsearchpath ":$libdir";; esac case :$dllsearchpath: in *":$testbindir:"*) ;; ::) dllsearchpath=$testbindir;; *) func_append dllsearchpath ":$testbindir";; esac ;; esac done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval rpath=\" $hardcode_libdir_flag_spec\" fi compile_rpath=$rpath rpath= hardcode_libdirs= for libdir in $finalize_rpath; do if test -n "$hardcode_libdir_flag_spec"; then if test -n "$hardcode_libdir_separator"; then if test -z "$hardcode_libdirs"; then hardcode_libdirs=$libdir else # Just accumulate the unique libdirs. case $hardcode_libdir_separator$hardcode_libdirs$hardcode_libdir_separator in *"$hardcode_libdir_separator$libdir$hardcode_libdir_separator"*) ;; *) func_append hardcode_libdirs "$hardcode_libdir_separator$libdir" ;; esac fi else eval flag=\"$hardcode_libdir_flag_spec\" func_append rpath " $flag" fi elif test -n "$runpath_var"; then case "$finalize_perm_rpath " in *" $libdir "*) ;; *) func_append finalize_perm_rpath " $libdir" ;; esac fi done # Substitute the hardcoded libdirs into the rpath. if test -n "$hardcode_libdir_separator" && test -n "$hardcode_libdirs"; then libdir=$hardcode_libdirs eval rpath=\" $hardcode_libdir_flag_spec\" fi finalize_rpath=$rpath if test -n "$libobjs" && test yes = "$build_old_libs"; then # Transform all the library objects into standard objects. compile_command=`$ECHO "$compile_command" | $SP2NL | $SED "$lo2o" | $NL2SP` finalize_command=`$ECHO "$finalize_command" | $SP2NL | $SED "$lo2o" | $NL2SP` fi func_generate_dlsyms "$outputname" "@PROGRAM@" false # template prelinking step if test -n "$prelink_cmds"; then func_execute_cmds "$prelink_cmds" 'exit $?' fi wrappers_required=: case $host in *cegcc* | *mingw32ce*) # Disable wrappers for cegcc and mingw32ce hosts, we are cross compiling anyway. wrappers_required=false ;; *cygwin* | *mingw* ) test yes = "$build_libtool_libs" || wrappers_required=false ;; *) if test no = "$need_relink" || test yes != "$build_libtool_libs"; then wrappers_required=false fi ;; esac $wrappers_required || { # Replace the output file specification. compile_command=`$ECHO "$compile_command" | $SED 's%@OUTPUT@%'"$output"'%g'` link_command=$compile_command$compile_rpath # We have no uninstalled library dependencies, so finalize right now. exit_status=0 func_show_eval "$link_command" 'exit_status=$?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Delete the generated files. if test -f "$output_objdir/${outputname}S.$objext"; then func_show_eval '$RM "$output_objdir/${outputname}S.$objext"' fi exit $exit_status } if test -n "$compile_shlibpath$finalize_shlibpath"; then compile_command="$shlibpath_var=\"$compile_shlibpath$finalize_shlibpath\$$shlibpath_var\" $compile_command" fi if test -n "$finalize_shlibpath"; then finalize_command="$shlibpath_var=\"$finalize_shlibpath\$$shlibpath_var\" $finalize_command" fi compile_var= finalize_var= if test -n "$runpath_var"; then if test -n "$perm_rpath"; then # We should set the runpath_var. rpath= for dir in $perm_rpath; do func_append rpath "$dir:" done compile_var="$runpath_var=\"$rpath\$$runpath_var\" " fi if test -n "$finalize_perm_rpath"; then # We should set the runpath_var. rpath= for dir in $finalize_perm_rpath; do func_append rpath "$dir:" done finalize_var="$runpath_var=\"$rpath\$$runpath_var\" " fi fi if test yes = "$no_install"; then # We don't need to create a wrapper script. link_command=$compile_var$compile_command$compile_rpath # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output"'%g'` # Delete the old output file. $opt_dry_run || $RM $output # Link the executable and exit func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi exit $EXIT_SUCCESS fi case $hardcode_action,$fast_install in relink,*) # Fast installation is not supported link_command=$compile_var$compile_command$compile_rpath relink_command=$finalize_var$finalize_command$finalize_rpath func_warning "this platform does not like uninstalled shared libraries" func_warning "'$output' will be relinked during installation" ;; *,yes) link_command=$finalize_var$compile_command$finalize_rpath relink_command=`$ECHO "$compile_var$compile_command$compile_rpath" | $SED 's%@OUTPUT@%\$progdir/\$file%g'` ;; *,no) link_command=$compile_var$compile_command$compile_rpath relink_command=$finalize_var$finalize_command$finalize_rpath ;; *,needless) link_command=$finalize_var$compile_command$finalize_rpath relink_command= ;; esac # Replace the output file specification. link_command=`$ECHO "$link_command" | $SED 's%@OUTPUT@%'"$output_objdir/$outputname"'%g'` # Delete the old output files. $opt_dry_run || $RM $output $output_objdir/$outputname $output_objdir/lt-$outputname func_show_eval "$link_command" 'exit $?' if test -n "$postlink_cmds"; then func_to_tool_file "$output_objdir/$outputname" postlink_cmds=`func_echo_all "$postlink_cmds" | $SED -e 's%@OUTPUT@%'"$output_objdir/$outputname"'%g' -e 's%@TOOL_OUTPUT@%'"$func_to_tool_file_result"'%g'` func_execute_cmds "$postlink_cmds" 'exit $?' fi # Now create the wrapper script. func_verbose "creating $output" # Quote the relink command for shipping. if test -n "$relink_command"; then # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done relink_command="(cd `pwd`; $relink_command)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` fi # Only actually do things if not in dry run mode. $opt_dry_run || { # win32 will think the script is a binary if it has # a .exe suffix, so we strip it off here. case $output in *.exe) func_stripname '' '.exe' "$output" output=$func_stripname_result ;; esac # test for cygwin because mv fails w/o .exe extensions case $host in *cygwin*) exeext=.exe func_stripname '' '.exe' "$outputname" outputname=$func_stripname_result ;; *) exeext= ;; esac case $host in *cygwin* | *mingw* ) func_dirname_and_basename "$output" "" "." output_name=$func_basename_result output_path=$func_dirname_result cwrappersource=$output_path/$objdir/lt-$output_name.c cwrapper=$output_path/$output_name.exe $RM $cwrappersource $cwrapper trap "$RM $cwrappersource $cwrapper; exit $EXIT_FAILURE" 1 2 15 func_emit_cwrapperexe_src > $cwrappersource # The wrapper executable is built using the $host compiler, # because it contains $host paths and files. If cross- # compiling, it, like the target executable, must be # executed on the $host or under an emulation environment. $opt_dry_run || { $LTCC $LTCFLAGS -o $cwrapper $cwrappersource $STRIP $cwrapper } # Now, create the wrapper script for func_source use: func_ltwrapper_scriptname $cwrapper $RM $func_ltwrapper_scriptname_result trap "$RM $func_ltwrapper_scriptname_result; exit $EXIT_FAILURE" 1 2 15 $opt_dry_run || { # note: this script will not be executed, so do not chmod. if test "x$build" = "x$host"; then $cwrapper --lt-dump-script > $func_ltwrapper_scriptname_result else func_emit_wrapper no > $func_ltwrapper_scriptname_result fi } ;; * ) $RM $output trap "$RM $output; exit $EXIT_FAILURE" 1 2 15 func_emit_wrapper no > $output chmod +x $output ;; esac } exit $EXIT_SUCCESS ;; esac # See if we need to build an old-fashioned archive. for oldlib in $oldlibs; do case $build_libtool_libs in convenience) oldobjs="$libobjs_save $symfileobj" addlibs=$convenience build_libtool_libs=no ;; module) oldobjs=$libobjs_save addlibs=$old_convenience build_libtool_libs=no ;; *) oldobjs="$old_deplibs $non_pic_objects" $preload && test -f "$symfileobj" \ && func_append oldobjs " $symfileobj" addlibs=$old_convenience ;; esac if test -n "$addlibs"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $addlibs func_append oldobjs " $func_extract_archives_result" fi # Do each command in the archive commands. if test -n "$old_archive_from_new_cmds" && test yes = "$build_libtool_libs"; then cmds=$old_archive_from_new_cmds else # Add any objects from preloaded convenience libraries if test -n "$dlprefiles"; then gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_extract_archives $gentop $dlprefiles func_append oldobjs " $func_extract_archives_result" fi # POSIX demands no paths to be encoded in archives. We have # to avoid creating archives with duplicate basenames if we # might have to extract them afterwards, e.g., when creating a # static archive out of a convenience library, or when linking # the entirety of a libtool archive into another (currently # not supported by libtool). if (for obj in $oldobjs do func_basename "$obj" $ECHO "$func_basename_result" done | sort | sort -uc >/dev/null 2>&1); then : else echo "copying selected object files to avoid basename conflicts..." gentop=$output_objdir/${outputname}x func_append generated " $gentop" func_mkdir_p "$gentop" save_oldobjs=$oldobjs oldobjs= counter=1 for obj in $save_oldobjs do func_basename "$obj" objbase=$func_basename_result case " $oldobjs " in " ") oldobjs=$obj ;; *[\ /]"$objbase "*) while :; do # Make sure we don't pick an alternate name that also # overlaps. newobj=lt$counter-$objbase func_arith $counter + 1 counter=$func_arith_result case " $oldobjs " in *[\ /]"$newobj "*) ;; *) if test ! -f "$gentop/$newobj"; then break; fi ;; esac done func_show_eval "ln $obj $gentop/$newobj || cp $obj $gentop/$newobj" func_append oldobjs " $gentop/$newobj" ;; *) func_append oldobjs " $obj" ;; esac done fi func_to_tool_file "$oldlib" func_convert_file_msys_to_w32 tool_oldlib=$func_to_tool_file_result eval cmds=\"$old_archive_cmds\" func_len " $cmds" len=$func_len_result if test "$len" -lt "$max_cmd_len" || test "$max_cmd_len" -le -1; then cmds=$old_archive_cmds elif test -n "$archiver_list_spec"; then func_verbose "using command file archive linking..." for obj in $oldobjs do func_to_tool_file "$obj" $ECHO "$func_to_tool_file_result" done > $output_objdir/$libname.libcmd func_to_tool_file "$output_objdir/$libname.libcmd" oldobjs=" $archiver_list_spec$func_to_tool_file_result" cmds=$old_archive_cmds else # the command line is too long to link in one step, link in parts func_verbose "using piecewise archive linking..." save_RANLIB=$RANLIB RANLIB=: objlist= concat_cmds= save_oldobjs=$oldobjs oldobjs= # Is there a better way of finding the last object in the list? for obj in $save_oldobjs do last_oldobj=$obj done eval test_cmds=\"$old_archive_cmds\" func_len " $test_cmds" len0=$func_len_result len=$len0 for obj in $save_oldobjs do func_len " $obj" func_arith $len + $func_len_result len=$func_arith_result func_append objlist " $obj" if test "$len" -lt "$max_cmd_len"; then : else # the above command should be used before it gets too long oldobjs=$objlist if test "$obj" = "$last_oldobj"; then RANLIB=$save_RANLIB fi test -z "$concat_cmds" || concat_cmds=$concat_cmds~ eval concat_cmds=\"\$concat_cmds$old_archive_cmds\" objlist= len=$len0 fi done RANLIB=$save_RANLIB oldobjs=$objlist if test -z "$oldobjs"; then eval cmds=\"\$concat_cmds\" else eval cmds=\"\$concat_cmds~\$old_archive_cmds\" fi fi fi func_execute_cmds "$cmds" 'exit $?' done test -n "$generated" && \ func_show_eval "${RM}r$generated" # Now create the libtool archive. case $output in *.la) old_library= test yes = "$build_old_libs" && old_library=$libname.$libext func_verbose "creating $output" # Preserve any variables that may affect compiler behavior for var in $variables_saved_for_relink; do if eval test -z \"\${$var+set}\"; then relink_command="{ test -z \"\${$var+set}\" || $lt_unset $var || { $var=; export $var; }; }; $relink_command" elif eval var_value=\$$var; test -z "$var_value"; then relink_command="$var=; export $var; $relink_command" else func_quote_for_eval "$var_value" relink_command="$var=$func_quote_for_eval_result; export $var; $relink_command" fi done # Quote the link command for shipping. relink_command="(cd `pwd`; $SHELL \"$progpath\" $preserve_args --mode=relink $libtool_args @inst_prefix_dir@)" relink_command=`$ECHO "$relink_command" | $SED "$sed_quote_subst"` if test yes = "$hardcode_automatic"; then relink_command= fi # Only create the output if not a dry run. $opt_dry_run || { for installed in no yes; do if test yes = "$installed"; then if test -z "$install_libdir"; then break fi output=$output_objdir/${outputname}i # Replace all uninstalled libtool libraries with the installed ones newdependency_libs= for deplib in $dependency_libs; do case $deplib in *.la) func_basename "$deplib" name=$func_basename_result func_resolve_sysroot "$deplib" eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $func_resolve_sysroot_result` test -z "$libdir" && \ func_fatal_error "'$deplib' is not a valid libtool archive" func_append newdependency_libs " ${lt_sysroot:+=}$libdir/$name" ;; -L*) func_stripname -L '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -L$func_replace_sysroot_result" ;; -R*) func_stripname -R '' "$deplib" func_replace_sysroot "$func_stripname_result" func_append newdependency_libs " -R$func_replace_sysroot_result" ;; *) func_append newdependency_libs " $deplib" ;; esac done dependency_libs=$newdependency_libs newdlfiles= for lib in $dlfiles; do case $lib in *.la) func_basename "$lib" name=$func_basename_result eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "'$lib' is not a valid libtool archive" func_append newdlfiles " ${lt_sysroot:+=}$libdir/$name" ;; *) func_append newdlfiles " $lib" ;; esac done dlfiles=$newdlfiles newdlprefiles= for lib in $dlprefiles; do case $lib in *.la) # Only pass preopened files to the pseudo-archive (for # eventual linking with the app. that links it) if we # didn't already link the preopened objects directly into # the library: func_basename "$lib" name=$func_basename_result eval libdir=`$SED -n -e 's/^libdir=\(.*\)$/\1/p' $lib` test -z "$libdir" && \ func_fatal_error "'$lib' is not a valid libtool archive" func_append newdlprefiles " ${lt_sysroot:+=}$libdir/$name" ;; esac done dlprefiles=$newdlprefiles else newdlfiles= for lib in $dlfiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlfiles " $abs" done dlfiles=$newdlfiles newdlprefiles= for lib in $dlprefiles; do case $lib in [\\/]* | [A-Za-z]:[\\/]*) abs=$lib ;; *) abs=`pwd`"/$lib" ;; esac func_append newdlprefiles " $abs" done dlprefiles=$newdlprefiles fi $RM $output # place dlname in correct position for cygwin # In fact, it would be nice if we could use this code for all target # systems that can't hard-code library paths into their executables # and that have no shared library path variable independent of PATH, # but it turns out we can't easily determine that from inspecting # libtool variables, so we have to hard-code the OSs to which it # applies here; at the moment, that means platforms that use the PE # object format with DLL files. See the long comment at the top of # tests/bindir.at for full details. tdlname=$dlname case $host,$output,$installed,$module,$dlname in *cygwin*,*lai,yes,no,*.dll | *mingw*,*lai,yes,no,*.dll | *cegcc*,*lai,yes,no,*.dll) # If a -bindir argument was supplied, place the dll there. if test -n "$bindir"; then func_relative_path "$install_libdir" "$bindir" tdlname=$func_relative_path_result/$dlname else # Otherwise fall back on heuristic. tdlname=../bin/$dlname fi ;; esac $ECHO > $output "\ # $outputname - a libtool library file # Generated by $PROGRAM (GNU $PACKAGE) $VERSION # # Please DO NOT delete this file! # It is necessary for linking the library. # The name that we can dlopen(3). dlname='$tdlname' # Names of this library. library_names='$library_names' # The name of the static archive. old_library='$old_library' # Linker flags that cannot go in dependency_libs. inherited_linker_flags='$new_inherited_linker_flags' # Libraries that this one depends upon. dependency_libs='$dependency_libs' # Names of additional weak libraries provided by this library weak_library_names='$weak_libs' # Version information for $libname. current=$current age=$age revision=$revision # Is this an already installed library? installed=$installed # Should we warn about portability when linking against -modules? shouldnotlink=$module # Files to dlopen/dlpreopen dlopen='$dlfiles' dlpreopen='$dlprefiles' # Directory that this library needs to be installed in: libdir='$install_libdir'" if test no,yes = "$installed,$need_relink"; then $ECHO >> $output "\ relink_command=\"$relink_command\"" fi done } # Do a symbolic link so that the libtool archive can be found in # LD_LIBRARY_PATH before the program is installed. func_show_eval '( cd "$output_objdir" && $RM "$outputname" && $LN_S "../$outputname" "$outputname" )' 'exit $?' ;; esac exit $EXIT_SUCCESS } if test link = "$opt_mode" || test relink = "$opt_mode"; then func_mode_link ${1+"$@"} fi # func_mode_uninstall arg... func_mode_uninstall () { $debug_cmd RM=$nonopt files= rmforce=false exit_status=0 # This variable tells wrapper scripts just to set variables rather # than running their programs. libtool_install_magic=$magic for arg do case $arg in -f) func_append RM " $arg"; rmforce=: ;; -*) func_append RM " $arg" ;; *) func_append files " $arg" ;; esac done test -z "$RM" && \ func_fatal_help "you must specify an RM program" rmdirs= for file in $files; do func_dirname "$file" "" "." dir=$func_dirname_result if test . = "$dir"; then odir=$objdir else odir=$dir/$objdir fi func_basename "$file" name=$func_basename_result test uninstall = "$opt_mode" && odir=$dir # Remember odir for removal later, being careful to avoid duplicates if test clean = "$opt_mode"; then case " $rmdirs " in *" $odir "*) ;; *) func_append rmdirs " $odir" ;; esac fi # Don't error if the file doesn't exist and rm -f was used. if { test -L "$file"; } >/dev/null 2>&1 || { test -h "$file"; } >/dev/null 2>&1 || test -f "$file"; then : elif test -d "$file"; then exit_status=1 continue elif $rmforce; then continue fi rmfiles=$file case $name in *.la) # Possibly a libtool archive, so verify it. if func_lalib_p "$file"; then func_source $dir/$name # Delete the libtool libraries and symlinks. for n in $library_names; do func_append rmfiles " $odir/$n" done test -n "$old_library" && func_append rmfiles " $odir/$old_library" case $opt_mode in clean) case " $library_names " in *" $dlname "*) ;; *) test -n "$dlname" && func_append rmfiles " $odir/$dlname" ;; esac test -n "$libdir" && func_append rmfiles " $odir/$name $odir/${name}i" ;; uninstall) if test -n "$library_names"; then # Do each command in the postuninstall commands. func_execute_cmds "$postuninstall_cmds" '$rmforce || exit_status=1' fi if test -n "$old_library"; then # Do each command in the old_postuninstall commands. func_execute_cmds "$old_postuninstall_cmds" '$rmforce || exit_status=1' fi # FIXME: should reinstall the best remaining shared library. ;; esac fi ;; *.lo) # Possibly a libtool object, so verify it. if func_lalib_p "$file"; then # Read the .lo file func_source $dir/$name # Add PIC object to the list of files to remove. if test -n "$pic_object" && test none != "$pic_object"; then func_append rmfiles " $dir/$pic_object" fi # Add non-PIC object to the list of files to remove. if test -n "$non_pic_object" && test none != "$non_pic_object"; then func_append rmfiles " $dir/$non_pic_object" fi fi ;; *) if test clean = "$opt_mode"; then noexename=$name case $file in *.exe) func_stripname '' '.exe' "$file" file=$func_stripname_result func_stripname '' '.exe' "$name" noexename=$func_stripname_result # $file with .exe has already been added to rmfiles, # add $file without .exe func_append rmfiles " $file" ;; esac # Do a test to see if this is a libtool program. if func_ltwrapper_p "$file"; then if func_ltwrapper_executable_p "$file"; then func_ltwrapper_scriptname "$file" relink_command= func_source $func_ltwrapper_scriptname_result func_append rmfiles " $func_ltwrapper_scriptname_result" else relink_command= func_source $dir/$noexename fi # note $name still contains .exe if it was in $file originally # as does the version of $file that was added into $rmfiles func_append rmfiles " $odir/$name $odir/${name}S.$objext" if test yes = "$fast_install" && test -n "$relink_command"; then func_append rmfiles " $odir/lt-$name" fi if test "X$noexename" != "X$name"; then func_append rmfiles " $odir/lt-$noexename.c" fi fi fi ;; esac func_show_eval "$RM $rmfiles" 'exit_status=1' done # Try to remove the $objdir's in the directories where we deleted files for dir in $rmdirs; do if test -d "$dir"; then func_show_eval "rmdir $dir >/dev/null 2>&1" fi done exit $exit_status } if test uninstall = "$opt_mode" || test clean = "$opt_mode"; then func_mode_uninstall ${1+"$@"} fi test -z "$opt_mode" && { help=$generic_help func_fatal_help "you must specify a MODE" } test -z "$exec_cmd" && \ func_fatal_help "invalid operation mode '$opt_mode'" if test -n "$exec_cmd"; then eval exec "$exec_cmd" exit $EXIT_FAILURE fi exit $exit_status # The TAGs below are defined such that we never get into a situation # where we disable both kinds of libraries. Given conflicting # choices, we go for a static library, that is the most portable, # since we can't tell whether shared libraries were disabled because # the user asked for that or because the platform doesn't support # them. This is particularly important on AIX, because we don't # support having both static and shared libraries enabled at the same # time on that platform, so we default to a shared-only configuration. # If a disable-shared tag is given, we'll fallback to a static-only # configuration. But we'll never go from static-only to shared-only. # ### BEGIN LIBTOOL TAG CONFIG: disable-shared build_libtool_libs=no build_old_libs=yes # ### END LIBTOOL TAG CONFIG: disable-shared # ### BEGIN LIBTOOL TAG CONFIG: disable-static build_old_libs=`case $build_libtool_libs in yes) echo no;; *) echo yes;; esac` # ### END LIBTOOL TAG CONFIG: disable-static # Local Variables: # mode:shell-script # sh-indentation:2 # End: isl-0.16.1/isl_ilp_private.h0000664000175000017500000000041012645737060012654 00000000000000#ifndef ISL_ILP_PRIVATE_H #define ISL_ILP_PRIVATE_H #include #include #include enum isl_lp_result isl_basic_set_solve_ilp(__isl_keep isl_basic_set *bset, int max, isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p); #endif isl-0.16.1/isl_space.c0000664000175000017500000016606312645737235011451 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2013-2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include isl_ctx *isl_space_get_ctx(__isl_keep isl_space *dim) { return dim ? dim->ctx : NULL; } __isl_give isl_space *isl_space_alloc(isl_ctx *ctx, unsigned nparam, unsigned n_in, unsigned n_out) { isl_space *dim; dim = isl_alloc_type(ctx, struct isl_space); if (!dim) return NULL; dim->ctx = ctx; isl_ctx_ref(ctx); dim->ref = 1; dim->nparam = nparam; dim->n_in = n_in; dim->n_out = n_out; dim->tuple_id[0] = NULL; dim->tuple_id[1] = NULL; dim->nested[0] = NULL; dim->nested[1] = NULL; dim->n_id = 0; dim->ids = NULL; return dim; } /* Mark the space as being that of a set, by setting the domain tuple * to isl_id_none. */ static __isl_give isl_space *mark_as_set(__isl_take isl_space *space) { space = isl_space_cow(space); if (!space) return NULL; space = isl_space_set_tuple_id(space, isl_dim_in, &isl_id_none); return space; } /* Is the space that of a set? */ isl_bool isl_space_is_set(__isl_keep isl_space *space) { if (!space) return isl_bool_error; if (space->n_in != 0 || space->nested[0]) return isl_bool_false; if (space->tuple_id[0] != &isl_id_none) return isl_bool_false; return isl_bool_true; } /* Is the given space that of a map? */ isl_bool isl_space_is_map(__isl_keep isl_space *space) { if (!space) return isl_bool_error; return space->tuple_id[0] != &isl_id_none && space->tuple_id[1] != &isl_id_none; } __isl_give isl_space *isl_space_set_alloc(isl_ctx *ctx, unsigned nparam, unsigned dim) { isl_space *space; space = isl_space_alloc(ctx, nparam, 0, dim); space = mark_as_set(space); return space; } /* Mark the space as being that of a parameter domain, by setting * both tuples to isl_id_none. */ static __isl_give isl_space *mark_as_params(isl_space *space) { if (!space) return NULL; space = isl_space_set_tuple_id(space, isl_dim_in, &isl_id_none); space = isl_space_set_tuple_id(space, isl_dim_out, &isl_id_none); return space; } /* Is the space that of a parameter domain? */ isl_bool isl_space_is_params(__isl_keep isl_space *space) { if (!space) return isl_bool_error; if (space->n_in != 0 || space->nested[0] || space->n_out != 0 || space->nested[1]) return isl_bool_false; if (space->tuple_id[0] != &isl_id_none) return isl_bool_false; if (space->tuple_id[1] != &isl_id_none) return isl_bool_false; return isl_bool_true; } /* Create a space for a parameter domain. */ __isl_give isl_space *isl_space_params_alloc(isl_ctx *ctx, unsigned nparam) { isl_space *space; space = isl_space_alloc(ctx, nparam, 0, 0); space = mark_as_params(space); return space; } static unsigned global_pos(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos) { struct isl_ctx *ctx = dim->ctx; switch (type) { case isl_dim_param: isl_assert(ctx, pos < dim->nparam, return isl_space_dim(dim, isl_dim_all)); return pos; case isl_dim_in: isl_assert(ctx, pos < dim->n_in, return isl_space_dim(dim, isl_dim_all)); return pos + dim->nparam; case isl_dim_out: isl_assert(ctx, pos < dim->n_out, return isl_space_dim(dim, isl_dim_all)); return pos + dim->nparam + dim->n_in; default: isl_assert(ctx, 0, return isl_space_dim(dim, isl_dim_all)); } return isl_space_dim(dim, isl_dim_all); } /* Extend length of ids array to the total number of dimensions. */ static __isl_give isl_space *extend_ids(__isl_take isl_space *dim) { isl_id **ids; int i; if (isl_space_dim(dim, isl_dim_all) <= dim->n_id) return dim; if (!dim->ids) { dim->ids = isl_calloc_array(dim->ctx, isl_id *, isl_space_dim(dim, isl_dim_all)); if (!dim->ids) goto error; } else { ids = isl_realloc_array(dim->ctx, dim->ids, isl_id *, isl_space_dim(dim, isl_dim_all)); if (!ids) goto error; dim->ids = ids; for (i = dim->n_id; i < isl_space_dim(dim, isl_dim_all); ++i) dim->ids[i] = NULL; } dim->n_id = isl_space_dim(dim, isl_dim_all); return dim; error: isl_space_free(dim); return NULL; } static __isl_give isl_space *set_id(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { dim = isl_space_cow(dim); if (!dim) goto error; pos = global_pos(dim, type, pos); if (pos == isl_space_dim(dim, isl_dim_all)) goto error; if (pos >= dim->n_id) { if (!id) return dim; dim = extend_ids(dim); if (!dim) goto error; } dim->ids[pos] = id; return dim; error: isl_id_free(id); isl_space_free(dim); return NULL; } static __isl_keep isl_id *get_id(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos) { if (!dim) return NULL; pos = global_pos(dim, type, pos); if (pos == isl_space_dim(dim, isl_dim_all)) return NULL; if (pos >= dim->n_id) return NULL; return dim->ids[pos]; } static unsigned offset(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return 0; case isl_dim_in: return dim->nparam; case isl_dim_out: return dim->nparam + dim->n_in; default: return 0; } } static unsigned n(__isl_keep isl_space *dim, enum isl_dim_type type) { switch (type) { case isl_dim_param: return dim->nparam; case isl_dim_in: return dim->n_in; case isl_dim_out: return dim->n_out; case isl_dim_all: return dim->nparam + dim->n_in + dim->n_out; default: return 0; } } unsigned isl_space_dim(__isl_keep isl_space *dim, enum isl_dim_type type) { if (!dim) return 0; return n(dim, type); } unsigned isl_space_offset(__isl_keep isl_space *dim, enum isl_dim_type type) { if (!dim) return 0; return offset(dim, type); } static __isl_give isl_space *copy_ids(__isl_take isl_space *dst, enum isl_dim_type dst_type, unsigned offset, __isl_keep isl_space *src, enum isl_dim_type src_type) { int i; isl_id *id; if (!dst) return NULL; for (i = 0; i < n(src, src_type); ++i) { id = get_id(src, src_type, i); if (!id) continue; dst = set_id(dst, dst_type, offset + i, isl_id_copy(id)); if (!dst) return NULL; } return dst; } __isl_take isl_space *isl_space_dup(__isl_keep isl_space *dim) { isl_space *dup; if (!dim) return NULL; dup = isl_space_alloc(dim->ctx, dim->nparam, dim->n_in, dim->n_out); if (!dup) return NULL; if (dim->tuple_id[0] && !(dup->tuple_id[0] = isl_id_copy(dim->tuple_id[0]))) goto error; if (dim->tuple_id[1] && !(dup->tuple_id[1] = isl_id_copy(dim->tuple_id[1]))) goto error; if (dim->nested[0] && !(dup->nested[0] = isl_space_copy(dim->nested[0]))) goto error; if (dim->nested[1] && !(dup->nested[1] = isl_space_copy(dim->nested[1]))) goto error; if (!dim->ids) return dup; dup = copy_ids(dup, isl_dim_param, 0, dim, isl_dim_param); dup = copy_ids(dup, isl_dim_in, 0, dim, isl_dim_in); dup = copy_ids(dup, isl_dim_out, 0, dim, isl_dim_out); return dup; error: isl_space_free(dup); return NULL; } __isl_give isl_space *isl_space_cow(__isl_take isl_space *dim) { if (!dim) return NULL; if (dim->ref == 1) return dim; dim->ref--; return isl_space_dup(dim); } __isl_give isl_space *isl_space_copy(__isl_keep isl_space *dim) { if (!dim) return NULL; dim->ref++; return dim; } __isl_null isl_space *isl_space_free(__isl_take isl_space *space) { int i; if (!space) return NULL; if (--space->ref > 0) return NULL; isl_id_free(space->tuple_id[0]); isl_id_free(space->tuple_id[1]); isl_space_free(space->nested[0]); isl_space_free(space->nested[1]); for (i = 0; i < space->n_id; ++i) isl_id_free(space->ids[i]); free(space->ids); isl_ctx_deref(space->ctx); free(space); return NULL; } /* Check if "s" is a valid dimension or tuple name. * We currently only forbid names that look like a number. * * s is assumed to be non-NULL. */ static int name_ok(isl_ctx *ctx, const char *s) { char *p; long dummy; dummy = strtol(s, &p, 0); if (p != s) isl_die(ctx, isl_error_invalid, "name looks like a number", return 0); return 1; } /* Is it possible for the given dimension type to have a tuple id? */ static int space_can_have_id(__isl_keep isl_space *space, enum isl_dim_type type) { if (!space) return 0; if (isl_space_is_params(space)) isl_die(space->ctx, isl_error_invalid, "parameter spaces don't have tuple ids", return 0); if (isl_space_is_set(space) && type != isl_dim_set) isl_die(space->ctx, isl_error_invalid, "set spaces can only have a set id", return 0); if (type != isl_dim_in && type != isl_dim_out) isl_die(space->ctx, isl_error_invalid, "only input, output and set tuples can have ids", return 0); return 1; } /* Does the tuple have an id? */ isl_bool isl_space_has_tuple_id(__isl_keep isl_space *dim, enum isl_dim_type type) { if (!space_can_have_id(dim, type)) return isl_bool_error; return dim->tuple_id[type - isl_dim_in] != NULL; } __isl_give isl_id *isl_space_get_tuple_id(__isl_keep isl_space *dim, enum isl_dim_type type) { int has_id; if (!dim) return NULL; has_id = isl_space_has_tuple_id(dim, type); if (has_id < 0) return NULL; if (!has_id) isl_die(dim->ctx, isl_error_invalid, "tuple has no id", return NULL); return isl_id_copy(dim->tuple_id[type - isl_dim_in]); } __isl_give isl_space *isl_space_set_tuple_id(__isl_take isl_space *dim, enum isl_dim_type type, __isl_take isl_id *id) { dim = isl_space_cow(dim); if (!dim || !id) goto error; if (type != isl_dim_in && type != isl_dim_out) isl_die(dim->ctx, isl_error_invalid, "only input, output and set tuples can have names", goto error); isl_id_free(dim->tuple_id[type - isl_dim_in]); dim->tuple_id[type - isl_dim_in] = id; return dim; error: isl_id_free(id); isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_reset_tuple_id(__isl_take isl_space *dim, enum isl_dim_type type) { dim = isl_space_cow(dim); if (!dim) return NULL; if (type != isl_dim_in && type != isl_dim_out) isl_die(dim->ctx, isl_error_invalid, "only input, output and set tuples can have names", goto error); isl_id_free(dim->tuple_id[type - isl_dim_in]); dim->tuple_id[type - isl_dim_in] = NULL; return dim; error: isl_space_free(dim); return NULL; } /* Set the id of the given dimension of "space" to "id". * If the dimension already has an id, then it is replaced. * If the dimension is a parameter, then we need to change it * in the nested spaces (if any) as well. */ __isl_give isl_space *isl_space_set_dim_id(__isl_take isl_space *space, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { space = isl_space_cow(space); if (!space || !id) goto error; if (type == isl_dim_param) { int i; for (i = 0; i < 2; ++i) { if (!space->nested[i]) continue; space->nested[i] = isl_space_set_dim_id(space->nested[i], type, pos, isl_id_copy(id)); if (!space->nested[i]) goto error; } } isl_id_free(get_id(space, type, pos)); return set_id(space, type, pos, id); error: isl_id_free(id); isl_space_free(space); return NULL; } /* Reset the id of the given dimension of "space". * If the dimension already has an id, then it is removed. * If the dimension is a parameter, then we need to reset it * in the nested spaces (if any) as well. */ __isl_give isl_space *isl_space_reset_dim_id(__isl_take isl_space *space, enum isl_dim_type type, unsigned pos) { space = isl_space_cow(space); if (!space) goto error; if (type == isl_dim_param) { int i; for (i = 0; i < 2; ++i) { if (!space->nested[i]) continue; space->nested[i] = isl_space_reset_dim_id(space->nested[i], type, pos); if (!space->nested[i]) goto error; } } isl_id_free(get_id(space, type, pos)); return set_id(space, type, pos, NULL); error: isl_space_free(space); return NULL; } isl_bool isl_space_has_dim_id(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos) { if (!dim) return isl_bool_error; return get_id(dim, type, pos) != NULL; } __isl_give isl_id *isl_space_get_dim_id(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos) { if (!dim) return NULL; if (!get_id(dim, type, pos)) isl_die(dim->ctx, isl_error_invalid, "dim has no id", return NULL); return isl_id_copy(get_id(dim, type, pos)); } __isl_give isl_space *isl_space_set_tuple_name(__isl_take isl_space *dim, enum isl_dim_type type, const char *s) { isl_id *id; if (!dim) return NULL; if (!s) return isl_space_reset_tuple_id(dim, type); if (!name_ok(dim->ctx, s)) goto error; id = isl_id_alloc(dim->ctx, s, NULL); return isl_space_set_tuple_id(dim, type, id); error: isl_space_free(dim); return NULL; } /* Does the tuple have a name? */ isl_bool isl_space_has_tuple_name(__isl_keep isl_space *space, enum isl_dim_type type) { isl_id *id; if (!space_can_have_id(space, type)) return isl_bool_error; id = space->tuple_id[type - isl_dim_in]; return id && id->name; } const char *isl_space_get_tuple_name(__isl_keep isl_space *dim, enum isl_dim_type type) { isl_id *id; if (!dim) return NULL; if (type != isl_dim_in && type != isl_dim_out) return NULL; id = dim->tuple_id[type - isl_dim_in]; return id ? id->name : NULL; } __isl_give isl_space *isl_space_set_dim_name(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, const char *s) { isl_id *id; if (!dim) return NULL; if (!s) return isl_space_reset_dim_id(dim, type, pos); if (!name_ok(dim->ctx, s)) goto error; id = isl_id_alloc(dim->ctx, s, NULL); return isl_space_set_dim_id(dim, type, pos, id); error: isl_space_free(dim); return NULL; } /* Does the given dimension have a name? */ isl_bool isl_space_has_dim_name(__isl_keep isl_space *space, enum isl_dim_type type, unsigned pos) { isl_id *id; if (!space) return isl_bool_error; id = get_id(space, type, pos); return id && id->name; } __isl_keep const char *isl_space_get_dim_name(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos) { isl_id *id = get_id(dim, type, pos); return id ? id->name : NULL; } int isl_space_find_dim_by_id(__isl_keep isl_space *dim, enum isl_dim_type type, __isl_keep isl_id *id) { int i; int offset; int n; if (!dim || !id) return -1; offset = isl_space_offset(dim, type); n = isl_space_dim(dim, type); for (i = 0; i < n && offset + i < dim->n_id; ++i) if (dim->ids[offset + i] == id) return i; return -1; } int isl_space_find_dim_by_name(__isl_keep isl_space *space, enum isl_dim_type type, const char *name) { int i; int offset; int n; if (!space || !name) return -1; offset = isl_space_offset(space, type); n = isl_space_dim(space, type); for (i = 0; i < n && offset + i < space->n_id; ++i) if (space->ids[offset + i]->name && !strcmp(space->ids[offset + i]->name, name)) return i; return -1; } /* Reset the user pointer on all identifiers of parameters and tuples * of "space". */ __isl_give isl_space *isl_space_reset_user(__isl_take isl_space *space) { int i; isl_ctx *ctx; isl_id *id; const char *name; if (!space) return NULL; ctx = isl_space_get_ctx(space); for (i = 0; i < space->nparam && i < space->n_id; ++i) { if (!isl_id_get_user(space->ids[i])) continue; space = isl_space_cow(space); if (!space) return NULL; name = isl_id_get_name(space->ids[i]); id = isl_id_alloc(ctx, name, NULL); isl_id_free(space->ids[i]); space->ids[i] = id; if (!id) return isl_space_free(space); } for (i = 0; i < 2; ++i) { if (!space->tuple_id[i]) continue; if (!isl_id_get_user(space->tuple_id[i])) continue; space = isl_space_cow(space); if (!space) return NULL; name = isl_id_get_name(space->tuple_id[i]); id = isl_id_alloc(ctx, name, NULL); isl_id_free(space->tuple_id[i]); space->tuple_id[i] = id; if (!id) return isl_space_free(space); } for (i = 0; i < 2; ++i) { if (!space->nested[i]) continue; space = isl_space_cow(space); if (!space) return NULL; space->nested[i] = isl_space_reset_user(space->nested[i]); if (!space->nested[i]) return isl_space_free(space); } return space; } static __isl_keep isl_id *tuple_id(__isl_keep isl_space *dim, enum isl_dim_type type) { if (!dim) return NULL; if (type == isl_dim_in) return dim->tuple_id[0]; if (type == isl_dim_out) return dim->tuple_id[1]; return NULL; } static __isl_keep isl_space *nested(__isl_keep isl_space *dim, enum isl_dim_type type) { if (!dim) return NULL; if (type == isl_dim_in) return dim->nested[0]; if (type == isl_dim_out) return dim->nested[1]; return NULL; } /* Are the two spaces the same, apart from positions and names of parameters? */ static int isl_space_has_equal_tuples(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { if (!space1 || !space2) return -1; if (space1 == space2) return 1; return isl_space_tuple_is_equal(space1, isl_dim_in, space2, isl_dim_in) && isl_space_tuple_is_equal(space1, isl_dim_out, space2, isl_dim_out); } /* Check if the tuple of type "type1" of "space1" is the same as * the tuple of type "type2" of "space2". * * That is, check if the tuples have the same identifier, the same dimension * and the same internal structure. * The identifiers of the dimensions inside the tuples do not affect the result. * * Note that this function only checks the tuples themselves. * If nested tuples are involved, then we need to be careful not * to have result affected by possibly differing parameters * in those nested tuples. */ isl_bool isl_space_tuple_is_equal(__isl_keep isl_space *space1, enum isl_dim_type type1, __isl_keep isl_space *space2, enum isl_dim_type type2) { isl_id *id1, *id2; isl_space *nested1, *nested2; if (!space1 || !space2) return isl_bool_error; if (space1 == space2 && type1 == type2) return isl_bool_true; if (n(space1, type1) != n(space2, type2)) return isl_bool_false; id1 = tuple_id(space1, type1); id2 = tuple_id(space2, type2); if (!id1 ^ !id2) return isl_bool_false; if (id1 && id1 != id2) return isl_bool_false; nested1 = nested(space1, type1); nested2 = nested(space2, type2); if (!nested1 ^ !nested2) return isl_bool_false; if (nested1 && !isl_space_has_equal_tuples(nested1, nested2)) return isl_bool_false; return isl_bool_true; } /* This is the old, undocumented, name for isl_space_tuple_is_equal. * It will be removed at some point. */ int isl_space_tuple_match(__isl_keep isl_space *space1, enum isl_dim_type type1, __isl_keep isl_space *space2, enum isl_dim_type type2) { return isl_space_tuple_is_equal(space1, type1, space2, type2); } static int match(__isl_keep isl_space *dim1, enum isl_dim_type dim1_type, __isl_keep isl_space *dim2, enum isl_dim_type dim2_type) { int i; if (dim1 == dim2 && dim1_type == dim2_type) return 1; if (!isl_space_tuple_is_equal(dim1, dim1_type, dim2, dim2_type)) return 0; if (!dim1->ids && !dim2->ids) return 1; for (i = 0; i < n(dim1, dim1_type); ++i) { if (get_id(dim1, dim1_type, i) != get_id(dim2, dim2_type, i)) return 0; } return 1; } int isl_space_match(__isl_keep isl_space *dim1, enum isl_dim_type dim1_type, __isl_keep isl_space *dim2, enum isl_dim_type dim2_type) { if (!dim1 || !dim2) return -1; return match(dim1, dim1_type, dim2, dim2_type); } static void get_ids(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned first, unsigned n, __isl_keep isl_id **ids) { int i; for (i = 0; i < n ; ++i) ids[i] = get_id(dim, type, first + i); } __isl_give isl_space *isl_space_extend(__isl_take isl_space *space, unsigned nparam, unsigned n_in, unsigned n_out) { isl_id **ids = NULL; if (!space) return NULL; if (space->nparam == nparam && space->n_in == n_in && space->n_out == n_out) return space; isl_assert(space->ctx, space->nparam <= nparam, goto error); isl_assert(space->ctx, space->n_in <= n_in, goto error); isl_assert(space->ctx, space->n_out <= n_out, goto error); space = isl_space_cow(space); if (!space) goto error; if (space->ids) { unsigned n; n = nparam + n_in + n_out; if (n < nparam || n < n_in || n < n_out) isl_die(isl_space_get_ctx(space), isl_error_invalid, "overflow in total number of dimensions", goto error); ids = isl_calloc_array(space->ctx, isl_id *, n); if (!ids) goto error; get_ids(space, isl_dim_param, 0, space->nparam, ids); get_ids(space, isl_dim_in, 0, space->n_in, ids + nparam); get_ids(space, isl_dim_out, 0, space->n_out, ids + nparam + n_in); free(space->ids); space->ids = ids; space->n_id = nparam + n_in + n_out; } space->nparam = nparam; space->n_in = n_in; space->n_out = n_out; return space; error: free(ids); isl_space_free(space); return NULL; } __isl_give isl_space *isl_space_add_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned n) { dim = isl_space_reset(dim, type); if (!dim) return NULL; switch (type) { case isl_dim_param: dim = isl_space_extend(dim, dim->nparam + n, dim->n_in, dim->n_out); if (dim && dim->nested[0] && !(dim->nested[0] = isl_space_add_dims(dim->nested[0], isl_dim_param, n))) goto error; if (dim && dim->nested[1] && !(dim->nested[1] = isl_space_add_dims(dim->nested[1], isl_dim_param, n))) goto error; return dim; case isl_dim_in: return isl_space_extend(dim, dim->nparam, dim->n_in + n, dim->n_out); case isl_dim_out: return isl_space_extend(dim, dim->nparam, dim->n_in, dim->n_out + n); default: isl_die(dim->ctx, isl_error_invalid, "cannot add dimensions of specified type", goto error); } error: isl_space_free(dim); return NULL; } static int valid_dim_type(enum isl_dim_type type) { switch (type) { case isl_dim_param: case isl_dim_in: case isl_dim_out: return 1; default: return 0; } } /* Insert "n" dimensions of type "type" at position "pos". * If we are inserting parameters, then they are also inserted in * any nested spaces. */ __isl_give isl_space *isl_space_insert_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned pos, unsigned n) { isl_id **ids = NULL; if (!dim) return NULL; if (n == 0) return isl_space_reset(dim, type); if (!valid_dim_type(type)) isl_die(dim->ctx, isl_error_invalid, "cannot insert dimensions of specified type", goto error); isl_assert(dim->ctx, pos <= isl_space_dim(dim, type), goto error); dim = isl_space_cow(dim); if (!dim) return NULL; if (dim->ids) { enum isl_dim_type t, o = isl_dim_param; int off; int s[3]; ids = isl_calloc_array(dim->ctx, isl_id *, dim->nparam + dim->n_in + dim->n_out + n); if (!ids) goto error; off = 0; s[isl_dim_param - o] = dim->nparam; s[isl_dim_in - o] = dim->n_in; s[isl_dim_out - o] = dim->n_out; for (t = isl_dim_param; t <= isl_dim_out; ++t) { if (t != type) { get_ids(dim, t, 0, s[t - o], ids + off); off += s[t - o]; } else { get_ids(dim, t, 0, pos, ids + off); off += pos + n; get_ids(dim, t, pos, s[t - o] - pos, ids + off); off += s[t - o] - pos; } } free(dim->ids); dim->ids = ids; dim->n_id = dim->nparam + dim->n_in + dim->n_out + n; } switch (type) { case isl_dim_param: dim->nparam += n; break; case isl_dim_in: dim->n_in += n; break; case isl_dim_out: dim->n_out += n; break; default: ; } dim = isl_space_reset(dim, type); if (type == isl_dim_param) { if (dim && dim->nested[0] && !(dim->nested[0] = isl_space_insert_dims(dim->nested[0], isl_dim_param, pos, n))) goto error; if (dim && dim->nested[1] && !(dim->nested[1] = isl_space_insert_dims(dim->nested[1], isl_dim_param, pos, n))) goto error; } return dim; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_move_dims(__isl_take isl_space *dim, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; if (!dim) return NULL; if (n == 0) { dim = isl_space_reset(dim, src_type); return isl_space_reset(dim, dst_type); } isl_assert(dim->ctx, src_pos + n <= isl_space_dim(dim, src_type), goto error); if (dst_type == src_type && dst_pos == src_pos) return dim; isl_assert(dim->ctx, dst_type != src_type, goto error); dim = isl_space_reset(dim, src_type); dim = isl_space_reset(dim, dst_type); dim = isl_space_cow(dim); if (!dim) return NULL; if (dim->ids) { isl_id **ids; enum isl_dim_type t, o = isl_dim_param; int off; int s[3]; ids = isl_calloc_array(dim->ctx, isl_id *, dim->nparam + dim->n_in + dim->n_out); if (!ids) goto error; off = 0; s[isl_dim_param - o] = dim->nparam; s[isl_dim_in - o] = dim->n_in; s[isl_dim_out - o] = dim->n_out; for (t = isl_dim_param; t <= isl_dim_out; ++t) { if (t == dst_type) { get_ids(dim, t, 0, dst_pos, ids + off); off += dst_pos; get_ids(dim, src_type, src_pos, n, ids + off); off += n; get_ids(dim, t, dst_pos, s[t - o] - dst_pos, ids + off); off += s[t - o] - dst_pos; } else if (t == src_type) { get_ids(dim, t, 0, src_pos, ids + off); off += src_pos; get_ids(dim, t, src_pos + n, s[t - o] - src_pos - n, ids + off); off += s[t - o] - src_pos - n; } else { get_ids(dim, t, 0, s[t - o], ids + off); off += s[t - o]; } } free(dim->ids); dim->ids = ids; dim->n_id = dim->nparam + dim->n_in + dim->n_out; } switch (dst_type) { case isl_dim_param: dim->nparam += n; break; case isl_dim_in: dim->n_in += n; break; case isl_dim_out: dim->n_out += n; break; default: ; } switch (src_type) { case isl_dim_param: dim->nparam -= n; break; case isl_dim_in: dim->n_in -= n; break; case isl_dim_out: dim->n_out -= n; break; default: ; } if (dst_type != isl_dim_param && src_type != isl_dim_param) return dim; for (i = 0; i < 2; ++i) { if (!dim->nested[i]) continue; dim->nested[i] = isl_space_replace(dim->nested[i], isl_dim_param, dim); if (!dim->nested[i]) goto error; } return dim; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_join(__isl_take isl_space *left, __isl_take isl_space *right) { isl_space *dim; if (!left || !right) goto error; isl_assert(left->ctx, match(left, isl_dim_param, right, isl_dim_param), goto error); isl_assert(left->ctx, isl_space_tuple_is_equal(left, isl_dim_out, right, isl_dim_in), goto error); dim = isl_space_alloc(left->ctx, left->nparam, left->n_in, right->n_out); if (!dim) goto error; dim = copy_ids(dim, isl_dim_param, 0, left, isl_dim_param); dim = copy_ids(dim, isl_dim_in, 0, left, isl_dim_in); dim = copy_ids(dim, isl_dim_out, 0, right, isl_dim_out); if (dim && left->tuple_id[0] && !(dim->tuple_id[0] = isl_id_copy(left->tuple_id[0]))) goto error; if (dim && right->tuple_id[1] && !(dim->tuple_id[1] = isl_id_copy(right->tuple_id[1]))) goto error; if (dim && left->nested[0] && !(dim->nested[0] = isl_space_copy(left->nested[0]))) goto error; if (dim && right->nested[1] && !(dim->nested[1] = isl_space_copy(right->nested[1]))) goto error; isl_space_free(left); isl_space_free(right); return dim; error: isl_space_free(left); isl_space_free(right); return NULL; } /* Given two map spaces { A -> C } and { B -> D }, construct the space * { [A -> B] -> [C -> D] }. * Given two set spaces { A } and { B }, construct the space { [A -> B] }. */ __isl_give isl_space *isl_space_product(__isl_take isl_space *left, __isl_take isl_space *right) { isl_space *dom1, *dom2, *nest1, *nest2; int is_set; if (!left || !right) goto error; is_set = isl_space_is_set(left); if (is_set != isl_space_is_set(right)) isl_die(isl_space_get_ctx(left), isl_error_invalid, "expecting either two set spaces or two map spaces", goto error); if (is_set) return isl_space_range_product(left, right); isl_assert(left->ctx, match(left, isl_dim_param, right, isl_dim_param), goto error); dom1 = isl_space_domain(isl_space_copy(left)); dom2 = isl_space_domain(isl_space_copy(right)); nest1 = isl_space_wrap(isl_space_join(isl_space_reverse(dom1), dom2)); dom1 = isl_space_range(left); dom2 = isl_space_range(right); nest2 = isl_space_wrap(isl_space_join(isl_space_reverse(dom1), dom2)); return isl_space_join(isl_space_reverse(nest1), nest2); error: isl_space_free(left); isl_space_free(right); return NULL; } /* Given two spaces { A -> C } and { B -> C }, construct the space * { [A -> B] -> C } */ __isl_give isl_space *isl_space_domain_product(__isl_take isl_space *left, __isl_take isl_space *right) { isl_space *ran, *dom1, *dom2, *nest; if (!left || !right) goto error; if (!match(left, isl_dim_param, right, isl_dim_param)) isl_die(left->ctx, isl_error_invalid, "parameters need to match", goto error); if (!isl_space_tuple_is_equal(left, isl_dim_out, right, isl_dim_out)) isl_die(left->ctx, isl_error_invalid, "ranges need to match", goto error); ran = isl_space_range(isl_space_copy(left)); dom1 = isl_space_domain(left); dom2 = isl_space_domain(right); nest = isl_space_wrap(isl_space_join(isl_space_reverse(dom1), dom2)); return isl_space_join(isl_space_reverse(nest), ran); error: isl_space_free(left); isl_space_free(right); return NULL; } __isl_give isl_space *isl_space_range_product(__isl_take isl_space *left, __isl_take isl_space *right) { isl_space *dom, *ran1, *ran2, *nest; if (!left || !right) goto error; isl_assert(left->ctx, match(left, isl_dim_param, right, isl_dim_param), goto error); if (!isl_space_tuple_is_equal(left, isl_dim_in, right, isl_dim_in)) isl_die(left->ctx, isl_error_invalid, "domains need to match", goto error); dom = isl_space_domain(isl_space_copy(left)); ran1 = isl_space_range(left); ran2 = isl_space_range(right); nest = isl_space_wrap(isl_space_join(isl_space_reverse(ran1), ran2)); return isl_space_join(isl_space_reverse(dom), nest); error: isl_space_free(left); isl_space_free(right); return NULL; } /* Given a space of the form [A -> B] -> [C -> D], return the space A -> C. */ __isl_give isl_space *isl_space_factor_domain(__isl_take isl_space *space) { space = isl_space_domain_factor_domain(space); space = isl_space_range_factor_domain(space); return space; } /* Given a space of the form [A -> B] -> C, return the space A -> C. */ __isl_give isl_space *isl_space_domain_factor_domain( __isl_take isl_space *space) { isl_space *nested; isl_space *domain; if (!space) return NULL; if (!isl_space_domain_is_wrapping(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "domain not a product", return isl_space_free(space)); nested = space->nested[0]; domain = isl_space_copy(space); domain = isl_space_drop_dims(domain, isl_dim_in, nested->n_in, nested->n_out); if (!domain) return isl_space_free(space); if (nested->tuple_id[0]) { domain->tuple_id[0] = isl_id_copy(nested->tuple_id[0]); if (!domain->tuple_id[0]) goto error; } if (nested->nested[0]) { domain->nested[0] = isl_space_copy(nested->nested[0]); if (!domain->nested[0]) goto error; } isl_space_free(space); return domain; error: isl_space_free(space); isl_space_free(domain); return NULL; } /* Given a space of the form [A -> B] -> C, return the space B -> C. */ __isl_give isl_space *isl_space_domain_factor_range( __isl_take isl_space *space) { isl_space *nested; isl_space *range; if (!space) return NULL; if (!isl_space_domain_is_wrapping(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "domain not a product", return isl_space_free(space)); nested = space->nested[0]; range = isl_space_copy(space); range = isl_space_drop_dims(range, isl_dim_in, 0, nested->n_in); if (!range) return isl_space_free(space); if (nested->tuple_id[1]) { range->tuple_id[0] = isl_id_copy(nested->tuple_id[1]); if (!range->tuple_id[0]) goto error; } if (nested->nested[1]) { range->nested[0] = isl_space_copy(nested->nested[1]); if (!range->nested[0]) goto error; } isl_space_free(space); return range; error: isl_space_free(space); isl_space_free(range); return NULL; } /* Given a space of the form A -> [B -> C], return the space A -> B. */ __isl_give isl_space *isl_space_range_factor_domain( __isl_take isl_space *space) { isl_space *nested; isl_space *domain; if (!space) return NULL; if (!isl_space_range_is_wrapping(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "range not a product", return isl_space_free(space)); nested = space->nested[1]; domain = isl_space_copy(space); domain = isl_space_drop_dims(domain, isl_dim_out, nested->n_in, nested->n_out); if (!domain) return isl_space_free(space); if (nested->tuple_id[0]) { domain->tuple_id[1] = isl_id_copy(nested->tuple_id[0]); if (!domain->tuple_id[1]) goto error; } if (nested->nested[0]) { domain->nested[1] = isl_space_copy(nested->nested[0]); if (!domain->nested[1]) goto error; } isl_space_free(space); return domain; error: isl_space_free(space); isl_space_free(domain); return NULL; } /* Internal function that selects the range of the map that is * embedded in either a set space or the range of a map space. * In particular, given a space of the form [A -> B], return the space B. * Given a space of the form A -> [B -> C], return the space A -> C. */ static __isl_give isl_space *range_factor_range(__isl_take isl_space *space) { isl_space *nested; isl_space *range; if (!space) return NULL; nested = space->nested[1]; range = isl_space_copy(space); range = isl_space_drop_dims(range, isl_dim_out, 0, nested->n_in); if (!range) return isl_space_free(space); if (nested->tuple_id[1]) { range->tuple_id[1] = isl_id_copy(nested->tuple_id[1]); if (!range->tuple_id[1]) goto error; } if (nested->nested[1]) { range->nested[1] = isl_space_copy(nested->nested[1]); if (!range->nested[1]) goto error; } isl_space_free(space); return range; error: isl_space_free(space); isl_space_free(range); return NULL; } /* Given a space of the form A -> [B -> C], return the space A -> C. */ __isl_give isl_space *isl_space_range_factor_range( __isl_take isl_space *space) { if (!space) return NULL; if (!isl_space_range_is_wrapping(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "range not a product", return isl_space_free(space)); return range_factor_range(space); } /* Given a space of the form [A -> B], return the space B. */ static __isl_give isl_space *set_factor_range(__isl_take isl_space *space) { if (!space) return NULL; if (!isl_space_is_wrapping(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "not a product", return isl_space_free(space)); return range_factor_range(space); } /* Given a space of the form [A -> B] -> [C -> D], return the space B -> D. * Given a space of the form [A -> B], return the space B. */ __isl_give isl_space *isl_space_factor_range(__isl_take isl_space *space) { if (!space) return NULL; if (isl_space_is_set(space)) return set_factor_range(space); space = isl_space_domain_factor_range(space); space = isl_space_range_factor_range(space); return space; } __isl_give isl_space *isl_space_map_from_set(__isl_take isl_space *dim) { isl_ctx *ctx; isl_id **ids = NULL; if (!dim) return NULL; ctx = isl_space_get_ctx(dim); if (!isl_space_is_set(dim)) isl_die(ctx, isl_error_invalid, "not a set space", goto error); dim = isl_space_cow(dim); if (!dim) return NULL; if (dim->ids) { ids = isl_calloc_array(dim->ctx, isl_id *, dim->nparam + dim->n_out + dim->n_out); if (!ids) goto error; get_ids(dim, isl_dim_param, 0, dim->nparam, ids); get_ids(dim, isl_dim_out, 0, dim->n_out, ids + dim->nparam); } dim->n_in = dim->n_out; if (ids) { free(dim->ids); dim->ids = ids; dim->n_id = dim->nparam + dim->n_out + dim->n_out; dim = copy_ids(dim, isl_dim_out, 0, dim, isl_dim_in); } isl_id_free(dim->tuple_id[0]); dim->tuple_id[0] = isl_id_copy(dim->tuple_id[1]); isl_space_free(dim->nested[0]); dim->nested[0] = isl_space_copy(dim->nested[1]); return dim; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_map_from_domain_and_range( __isl_take isl_space *domain, __isl_take isl_space *range) { if (!domain || !range) goto error; if (!isl_space_is_set(domain)) isl_die(isl_space_get_ctx(domain), isl_error_invalid, "domain is not a set space", goto error); if (!isl_space_is_set(range)) isl_die(isl_space_get_ctx(range), isl_error_invalid, "range is not a set space", goto error); return isl_space_join(isl_space_reverse(domain), range); error: isl_space_free(domain); isl_space_free(range); return NULL; } static __isl_give isl_space *set_ids(__isl_take isl_space *dim, enum isl_dim_type type, unsigned first, unsigned n, __isl_take isl_id **ids) { int i; for (i = 0; i < n ; ++i) dim = set_id(dim, type, first + i, ids[i]); return dim; } __isl_give isl_space *isl_space_reverse(__isl_take isl_space *dim) { unsigned t; isl_space *nested; isl_id **ids = NULL; isl_id *id; if (!dim) return NULL; if (match(dim, isl_dim_in, dim, isl_dim_out)) return dim; dim = isl_space_cow(dim); if (!dim) return NULL; id = dim->tuple_id[0]; dim->tuple_id[0] = dim->tuple_id[1]; dim->tuple_id[1] = id; nested = dim->nested[0]; dim->nested[0] = dim->nested[1]; dim->nested[1] = nested; if (dim->ids) { int n_id = dim->n_in + dim->n_out; ids = isl_alloc_array(dim->ctx, isl_id *, n_id); if (n_id && !ids) goto error; get_ids(dim, isl_dim_in, 0, dim->n_in, ids); get_ids(dim, isl_dim_out, 0, dim->n_out, ids + dim->n_in); } t = dim->n_in; dim->n_in = dim->n_out; dim->n_out = t; if (dim->ids) { dim = set_ids(dim, isl_dim_out, 0, dim->n_out, ids); dim = set_ids(dim, isl_dim_in, 0, dim->n_in, ids + dim->n_out); free(ids); } return dim; error: free(ids); isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_drop_dims(__isl_take isl_space *dim, enum isl_dim_type type, unsigned first, unsigned num) { int i; if (!dim) return NULL; if (num == 0) return isl_space_reset(dim, type); if (!valid_dim_type(type)) isl_die(dim->ctx, isl_error_invalid, "cannot drop dimensions of specified type", goto error); if (first + num > n(dim, type) || first + num < first) isl_die(isl_space_get_ctx(dim), isl_error_invalid, "index out of bounds", return isl_space_free(dim)); dim = isl_space_cow(dim); if (!dim) goto error; if (dim->ids) { dim = extend_ids(dim); if (!dim) goto error; for (i = 0; i < num; ++i) isl_id_free(get_id(dim, type, first + i)); for (i = first+num; i < n(dim, type); ++i) set_id(dim, type, i - num, get_id(dim, type, i)); switch (type) { case isl_dim_param: get_ids(dim, isl_dim_in, 0, dim->n_in, dim->ids + offset(dim, isl_dim_in) - num); case isl_dim_in: get_ids(dim, isl_dim_out, 0, dim->n_out, dim->ids + offset(dim, isl_dim_out) - num); default: ; } dim->n_id -= num; } switch (type) { case isl_dim_param: dim->nparam -= num; break; case isl_dim_in: dim->n_in -= num; break; case isl_dim_out: dim->n_out -= num; break; default: ; } dim = isl_space_reset(dim, type); if (type == isl_dim_param) { if (dim && dim->nested[0] && !(dim->nested[0] = isl_space_drop_dims(dim->nested[0], isl_dim_param, first, num))) goto error; if (dim && dim->nested[1] && !(dim->nested[1] = isl_space_drop_dims(dim->nested[1], isl_dim_param, first, num))) goto error; } return dim; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_drop_inputs(__isl_take isl_space *dim, unsigned first, unsigned n) { if (!dim) return NULL; return isl_space_drop_dims(dim, isl_dim_in, first, n); } __isl_give isl_space *isl_space_drop_outputs(__isl_take isl_space *dim, unsigned first, unsigned n) { if (!dim) return NULL; return isl_space_drop_dims(dim, isl_dim_out, first, n); } __isl_give isl_space *isl_space_domain(__isl_take isl_space *dim) { if (!dim) return NULL; dim = isl_space_drop_outputs(dim, 0, dim->n_out); dim = isl_space_reverse(dim); dim = mark_as_set(dim); return dim; } __isl_give isl_space *isl_space_from_domain(__isl_take isl_space *dim) { if (!dim) return NULL; if (!isl_space_is_set(dim)) isl_die(isl_space_get_ctx(dim), isl_error_invalid, "not a set space", goto error); dim = isl_space_reverse(dim); dim = isl_space_reset(dim, isl_dim_out); return dim; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_range(__isl_take isl_space *dim) { if (!dim) return NULL; dim = isl_space_drop_inputs(dim, 0, dim->n_in); dim = mark_as_set(dim); return dim; } __isl_give isl_space *isl_space_from_range(__isl_take isl_space *dim) { if (!dim) return NULL; if (!isl_space_is_set(dim)) isl_die(isl_space_get_ctx(dim), isl_error_invalid, "not a set space", goto error); return isl_space_reset(dim, isl_dim_in); error: isl_space_free(dim); return NULL; } /* Given a map space A -> B, return the map space [A -> B] -> A. */ __isl_give isl_space *isl_space_domain_map(__isl_take isl_space *space) { isl_space *domain; domain = isl_space_from_range(isl_space_domain(isl_space_copy(space))); space = isl_space_from_domain(isl_space_wrap(space)); space = isl_space_join(space, domain); return space; } /* Given a map space A -> B, return the map space [A -> B] -> B. */ __isl_give isl_space *isl_space_range_map(__isl_take isl_space *space) { isl_space *range; range = isl_space_from_range(isl_space_range(isl_space_copy(space))); space = isl_space_from_domain(isl_space_wrap(space)); space = isl_space_join(space, range); return space; } __isl_give isl_space *isl_space_params(__isl_take isl_space *space) { if (isl_space_is_params(space)) return space; space = isl_space_drop_dims(space, isl_dim_in, 0, isl_space_dim(space, isl_dim_in)); space = isl_space_drop_dims(space, isl_dim_out, 0, isl_space_dim(space, isl_dim_out)); space = mark_as_params(space); return space; } __isl_give isl_space *isl_space_set_from_params(__isl_take isl_space *space) { if (!space) return NULL; if (!isl_space_is_params(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "not a parameter space", goto error); return isl_space_reset(space, isl_dim_set); error: isl_space_free(space); return NULL; } __isl_give isl_space *isl_space_as_set_space(__isl_take isl_space *dim) { dim = isl_space_cow(dim); if (!dim) return NULL; dim->n_out += dim->n_in; dim->n_in = 0; dim = isl_space_reset(dim, isl_dim_in); dim = isl_space_reset(dim, isl_dim_out); return dim; } __isl_give isl_space *isl_space_underlying(__isl_take isl_space *dim, unsigned n_div) { int i; if (!dim) return NULL; if (n_div == 0 && dim->nparam == 0 && dim->n_in == 0 && dim->n_id == 0) return isl_space_reset(isl_space_reset(dim, isl_dim_in), isl_dim_out); dim = isl_space_cow(dim); if (!dim) return NULL; dim->n_out += dim->nparam + dim->n_in + n_div; dim->nparam = 0; dim->n_in = 0; for (i = 0; i < dim->n_id; ++i) isl_id_free(get_id(dim, isl_dim_out, i)); dim->n_id = 0; dim = isl_space_reset(dim, isl_dim_in); dim = isl_space_reset(dim, isl_dim_out); return dim; } /* Are the two spaces the same, including positions and names of parameters? */ isl_bool isl_space_is_equal(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2) { if (!dim1 || !dim2) return isl_bool_error; if (dim1 == dim2) return isl_bool_true; return match(dim1, isl_dim_param, dim2, isl_dim_param) && isl_space_tuple_is_equal(dim1, isl_dim_in, dim2, isl_dim_in) && isl_space_tuple_is_equal(dim1, isl_dim_out, dim2, isl_dim_out); } /* Is space1 equal to the domain of space2? * * In the internal version we also allow space2 to be the space of a set, * provided space1 is a parameter space. */ isl_bool isl_space_is_domain_internal(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { if (!space1 || !space2) return isl_bool_error; if (!isl_space_is_set(space1)) return isl_bool_false; return match(space1, isl_dim_param, space2, isl_dim_param) && isl_space_tuple_is_equal(space1, isl_dim_set, space2, isl_dim_in); } /* Is space1 equal to the domain of space2? */ isl_bool isl_space_is_domain(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { if (!space2) return isl_bool_error; if (!isl_space_is_map(space2)) return isl_bool_false; return isl_space_is_domain_internal(space1, space2); } /* Is space1 equal to the range of space2? * * In the internal version, space2 is allowed to be the space of a set, * in which case it should be equal to space1. */ isl_bool isl_space_is_range_internal(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { if (!space1 || !space2) return isl_bool_error; if (!isl_space_is_set(space1)) return isl_bool_false; return match(space1, isl_dim_param, space2, isl_dim_param) && isl_space_tuple_is_equal(space1, isl_dim_set, space2, isl_dim_out); } /* Is space1 equal to the range of space2? */ isl_bool isl_space_is_range(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { if (!space2) return isl_bool_error; if (!isl_space_is_map(space2)) return isl_bool_false; return isl_space_is_range_internal(space1, space2); } int isl_space_compatible(__isl_keep isl_space *dim1, __isl_keep isl_space *dim2) { return dim1->nparam == dim2->nparam && dim1->n_in + dim1->n_out == dim2->n_in + dim2->n_out; } /* Update "hash" by hashing in "space". * Changes in this function should be reflected in isl_hash_space_domain. */ static uint32_t isl_hash_space(uint32_t hash, __isl_keep isl_space *space) { int i; isl_id *id; if (!space) return hash; isl_hash_byte(hash, space->nparam % 256); isl_hash_byte(hash, space->n_in % 256); isl_hash_byte(hash, space->n_out % 256); for (i = 0; i < space->nparam; ++i) { id = get_id(space, isl_dim_param, i); hash = isl_hash_id(hash, id); } id = tuple_id(space, isl_dim_in); hash = isl_hash_id(hash, id); id = tuple_id(space, isl_dim_out); hash = isl_hash_id(hash, id); hash = isl_hash_space(hash, space->nested[0]); hash = isl_hash_space(hash, space->nested[1]); return hash; } /* Update "hash" by hashing in the domain of "space". * The result of this function is equal to the result of applying * isl_hash_space to the domain of "space". */ static uint32_t isl_hash_space_domain(uint32_t hash, __isl_keep isl_space *space) { int i; isl_id *id; if (!space) return hash; isl_hash_byte(hash, space->nparam % 256); isl_hash_byte(hash, 0); isl_hash_byte(hash, space->n_in % 256); for (i = 0; i < space->nparam; ++i) { id = get_id(space, isl_dim_param, i); hash = isl_hash_id(hash, id); } hash = isl_hash_id(hash, &isl_id_none); id = tuple_id(space, isl_dim_in); hash = isl_hash_id(hash, id); hash = isl_hash_space(hash, space->nested[0]); return hash; } uint32_t isl_space_get_hash(__isl_keep isl_space *dim) { uint32_t hash; if (!dim) return 0; hash = isl_hash_init(); hash = isl_hash_space(hash, dim); return hash; } /* Return the hash value of the domain of "space". * That is, isl_space_get_domain_hash(space) is equal to * isl_space_get_hash(isl_space_domain(space)). */ uint32_t isl_space_get_domain_hash(__isl_keep isl_space *space) { uint32_t hash; if (!space) return 0; hash = isl_hash_init(); hash = isl_hash_space_domain(hash, space); return hash; } isl_bool isl_space_is_wrapping(__isl_keep isl_space *dim) { if (!dim) return isl_bool_error; if (!isl_space_is_set(dim)) return isl_bool_false; return dim->nested[1] != NULL; } /* Is "space" the space of a map where the domain is a wrapped map space? */ isl_bool isl_space_domain_is_wrapping(__isl_keep isl_space *space) { if (!space) return isl_bool_error; if (isl_space_is_set(space)) return isl_bool_false; return space->nested[0] != NULL; } /* Is "space" the space of a map where the range is a wrapped map space? */ isl_bool isl_space_range_is_wrapping(__isl_keep isl_space *space) { if (!space) return isl_bool_error; if (isl_space_is_set(space)) return isl_bool_false; return space->nested[1] != NULL; } __isl_give isl_space *isl_space_wrap(__isl_take isl_space *dim) { isl_space *wrap; if (!dim) return NULL; wrap = isl_space_set_alloc(dim->ctx, dim->nparam, dim->n_in + dim->n_out); wrap = copy_ids(wrap, isl_dim_param, 0, dim, isl_dim_param); wrap = copy_ids(wrap, isl_dim_set, 0, dim, isl_dim_in); wrap = copy_ids(wrap, isl_dim_set, dim->n_in, dim, isl_dim_out); if (!wrap) goto error; wrap->nested[1] = dim; return wrap; error: isl_space_free(dim); return NULL; } __isl_give isl_space *isl_space_unwrap(__isl_take isl_space *dim) { isl_space *unwrap; if (!dim) return NULL; if (!isl_space_is_wrapping(dim)) isl_die(dim->ctx, isl_error_invalid, "not a wrapping space", goto error); unwrap = isl_space_copy(dim->nested[1]); isl_space_free(dim); return unwrap; error: isl_space_free(dim); return NULL; } int isl_space_is_named_or_nested(__isl_keep isl_space *dim, enum isl_dim_type type) { if (type != isl_dim_in && type != isl_dim_out) return 0; if (!dim) return -1; if (dim->tuple_id[type - isl_dim_in]) return 1; if (dim->nested[type - isl_dim_in]) return 1; return 0; } int isl_space_may_be_set(__isl_keep isl_space *dim) { if (!dim) return -1; if (isl_space_is_set(dim)) return 1; if (isl_space_dim(dim, isl_dim_in) != 0) return 0; if (isl_space_is_named_or_nested(dim, isl_dim_in)) return 0; return 1; } __isl_give isl_space *isl_space_reset(__isl_take isl_space *dim, enum isl_dim_type type) { if (!isl_space_is_named_or_nested(dim, type)) return dim; dim = isl_space_cow(dim); if (!dim) return NULL; isl_id_free(dim->tuple_id[type - isl_dim_in]); dim->tuple_id[type - isl_dim_in] = NULL; isl_space_free(dim->nested[type - isl_dim_in]); dim->nested[type - isl_dim_in] = NULL; return dim; } __isl_give isl_space *isl_space_flatten(__isl_take isl_space *dim) { if (!dim) return NULL; if (!dim->nested[0] && !dim->nested[1]) return dim; if (dim->nested[0]) dim = isl_space_reset(dim, isl_dim_in); if (dim && dim->nested[1]) dim = isl_space_reset(dim, isl_dim_out); return dim; } __isl_give isl_space *isl_space_flatten_domain(__isl_take isl_space *dim) { if (!dim) return NULL; if (!dim->nested[0]) return dim; return isl_space_reset(dim, isl_dim_in); } __isl_give isl_space *isl_space_flatten_range(__isl_take isl_space *dim) { if (!dim) return NULL; if (!dim->nested[1]) return dim; return isl_space_reset(dim, isl_dim_out); } /* Replace the dimensions of the given type of dst by those of src. */ __isl_give isl_space *isl_space_replace(__isl_take isl_space *dst, enum isl_dim_type type, __isl_keep isl_space *src) { dst = isl_space_cow(dst); if (!dst || !src) goto error; dst = isl_space_drop_dims(dst, type, 0, isl_space_dim(dst, type)); dst = isl_space_add_dims(dst, type, isl_space_dim(src, type)); dst = copy_ids(dst, type, 0, src, type); if (dst && type == isl_dim_param) { int i; for (i = 0; i <= 1; ++i) { if (!dst->nested[i]) continue; dst->nested[i] = isl_space_replace(dst->nested[i], type, src); if (!dst->nested[i]) goto error; } } return dst; error: isl_space_free(dst); return NULL; } /* Given a dimension specification "dim" of a set, create a dimension * specification for the lift of the set. In particular, the result * is of the form [dim -> local[..]], with n_local variables in the * range of the wrapped map. */ __isl_give isl_space *isl_space_lift(__isl_take isl_space *dim, unsigned n_local) { isl_space *local_dim; if (!dim) return NULL; local_dim = isl_space_dup(dim); local_dim = isl_space_drop_dims(local_dim, isl_dim_set, 0, dim->n_out); local_dim = isl_space_add_dims(local_dim, isl_dim_set, n_local); local_dim = isl_space_set_tuple_name(local_dim, isl_dim_set, "local"); dim = isl_space_join(isl_space_from_domain(dim), isl_space_from_range(local_dim)); dim = isl_space_wrap(dim); dim = isl_space_set_tuple_name(dim, isl_dim_set, "lifted"); return dim; } isl_bool isl_space_can_zip(__isl_keep isl_space *dim) { if (!dim) return isl_bool_error; return dim->nested[0] && dim->nested[1]; } __isl_give isl_space *isl_space_zip(__isl_take isl_space *dim) { isl_space *dom, *ran; isl_space *dom_dom, *dom_ran, *ran_dom, *ran_ran; if (!isl_space_can_zip(dim)) isl_die(dim->ctx, isl_error_invalid, "dim cannot be zipped", goto error); if (!dim) return NULL; dom = isl_space_unwrap(isl_space_domain(isl_space_copy(dim))); ran = isl_space_unwrap(isl_space_range(dim)); dom_dom = isl_space_domain(isl_space_copy(dom)); dom_ran = isl_space_range(dom); ran_dom = isl_space_domain(isl_space_copy(ran)); ran_ran = isl_space_range(ran); dom = isl_space_join(isl_space_from_domain(dom_dom), isl_space_from_range(ran_dom)); ran = isl_space_join(isl_space_from_domain(dom_ran), isl_space_from_range(ran_ran)); return isl_space_join(isl_space_from_domain(isl_space_wrap(dom)), isl_space_from_range(isl_space_wrap(ran))); error: isl_space_free(dim); return NULL; } /* Can we apply isl_space_curry to "space"? * That is, does it have a nested relation in its domain? */ isl_bool isl_space_can_curry(__isl_keep isl_space *space) { if (!space) return isl_bool_error; return !!space->nested[0]; } /* Given a space (A -> B) -> C, return the corresponding space * A -> (B -> C). */ __isl_give isl_space *isl_space_curry(__isl_take isl_space *space) { isl_space *dom, *ran; isl_space *dom_dom, *dom_ran; if (!space) return NULL; if (!isl_space_can_curry(space)) isl_die(space->ctx, isl_error_invalid, "space cannot be curried", goto error); dom = isl_space_unwrap(isl_space_domain(isl_space_copy(space))); ran = isl_space_range(space); dom_dom = isl_space_domain(isl_space_copy(dom)); dom_ran = isl_space_range(dom); ran = isl_space_join(isl_space_from_domain(dom_ran), isl_space_from_range(ran)); return isl_space_join(isl_space_from_domain(dom_dom), isl_space_from_range(isl_space_wrap(ran))); error: isl_space_free(space); return NULL; } /* Can isl_space_range_curry be applied to "space"? * That is, does it have a nested relation in its range, * the domain of which is itself a nested relation? */ isl_bool isl_space_can_range_curry(__isl_keep isl_space *space) { isl_bool can; if (!space) return isl_bool_error; can = isl_space_range_is_wrapping(space); if (can < 0 || !can) return can; return isl_space_can_curry(space->nested[1]); } /* Given a space A -> ((B -> C) -> D), return the corresponding space * A -> (B -> (C -> D)). */ __isl_give isl_space *isl_space_range_curry(__isl_take isl_space *space) { if (!space) return NULL; if (!isl_space_can_range_curry(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "space range cannot be curried", return isl_space_free(space)); space = isl_space_cow(space); if (!space) return NULL; space->nested[1] = isl_space_curry(space->nested[1]); if (!space->nested[1]) return isl_space_free(space); return space; } /* Can we apply isl_space_uncurry to "space"? * That is, does it have a nested relation in its range? */ isl_bool isl_space_can_uncurry(__isl_keep isl_space *space) { if (!space) return isl_bool_error; return !!space->nested[1]; } /* Given a space A -> (B -> C), return the corresponding space * (A -> B) -> C. */ __isl_give isl_space *isl_space_uncurry(__isl_take isl_space *space) { isl_space *dom, *ran; isl_space *ran_dom, *ran_ran; if (!space) return NULL; if (!isl_space_can_uncurry(space)) isl_die(space->ctx, isl_error_invalid, "space cannot be uncurried", return isl_space_free(space)); dom = isl_space_domain(isl_space_copy(space)); ran = isl_space_unwrap(isl_space_range(space)); ran_dom = isl_space_domain(isl_space_copy(ran)); ran_ran = isl_space_range(ran); dom = isl_space_join(isl_space_from_domain(dom), isl_space_from_range(ran_dom)); return isl_space_join(isl_space_from_domain(isl_space_wrap(dom)), isl_space_from_range(ran_ran)); } int isl_space_has_named_params(__isl_keep isl_space *dim) { int i; unsigned off; if (!dim) return -1; if (dim->nparam == 0) return 1; off = isl_space_offset(dim, isl_dim_param); if (off + dim->nparam > dim->n_id) return 0; for (i = 0; i < dim->nparam; ++i) if (!dim->ids[off + i]) return 0; return 1; } /* Align the initial parameters of dim1 to match the order in dim2. */ __isl_give isl_space *isl_space_align_params(__isl_take isl_space *dim1, __isl_take isl_space *dim2) { isl_reordering *exp; if (!isl_space_has_named_params(dim1) || !isl_space_has_named_params(dim2)) isl_die(isl_space_get_ctx(dim1), isl_error_invalid, "parameter alignment requires named parameters", goto error); dim2 = isl_space_params(dim2); exp = isl_parameter_alignment_reordering(dim1, dim2); exp = isl_reordering_extend_space(exp, dim1); isl_space_free(dim2); if (!exp) return NULL; dim1 = isl_space_copy(exp->dim); isl_reordering_free(exp); return dim1; error: isl_space_free(dim1); isl_space_free(dim2); return NULL; } /* Given the space of set (domain), construct a space for a map * with as domain the given space and as range the range of "model". */ __isl_give isl_space *isl_space_extend_domain_with_range( __isl_take isl_space *space, __isl_take isl_space *model) { if (!model) goto error; space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, isl_space_dim(model, isl_dim_out)); if (isl_space_has_tuple_id(model, isl_dim_out)) space = isl_space_set_tuple_id(space, isl_dim_out, isl_space_get_tuple_id(model, isl_dim_out)); if (!space) goto error; if (model->nested[1]) { isl_space *nested = isl_space_copy(model->nested[1]); int n_nested, n_space; nested = isl_space_align_params(nested, isl_space_copy(space)); n_nested = isl_space_dim(nested, isl_dim_param); n_space = isl_space_dim(space, isl_dim_param); if (n_nested > n_space) nested = isl_space_drop_dims(nested, isl_dim_param, n_space, n_nested - n_space); if (!nested) goto error; space->nested[1] = nested; } isl_space_free(model); return space; error: isl_space_free(model); isl_space_free(space); return NULL; } /* Compare the "type" dimensions of two isl_spaces. * * The order is fairly arbitrary. */ static int isl_space_cmp_type(__isl_keep isl_space *space1, __isl_keep isl_space *space2, enum isl_dim_type type) { int cmp; isl_space *nested1, *nested2; if (isl_space_dim(space1, type) != isl_space_dim(space2, type)) return isl_space_dim(space1, type) - isl_space_dim(space2, type); cmp = isl_id_cmp(tuple_id(space1, type), tuple_id(space2, type)); if (cmp != 0) return cmp; nested1 = nested(space1, type); nested2 = nested(space2, type); if (!nested1 != !nested2) return !nested1 - !nested2; if (nested1) return isl_space_cmp(nested1, nested2); return 0; } /* Compare two isl_spaces. * * The order is fairly arbitrary. */ int isl_space_cmp(__isl_keep isl_space *space1, __isl_keep isl_space *space2) { int i; int cmp; if (space1 == space2) return 0; if (!space1) return -1; if (!space2) return 1; cmp = isl_space_cmp_type(space1, space2, isl_dim_param); if (cmp != 0) return cmp; cmp = isl_space_cmp_type(space1, space2, isl_dim_in); if (cmp != 0) return cmp; cmp = isl_space_cmp_type(space1, space2, isl_dim_out); if (cmp != 0) return cmp; if (!space1->ids && !space2->ids) return 0; for (i = 0; i < n(space1, isl_dim_param); ++i) { cmp = isl_id_cmp(get_id(space1, isl_dim_param, i), get_id(space2, isl_dim_param, i)); if (cmp != 0) return cmp; } return 0; } isl-0.16.1/missing0000755000175000017500000001533012423122200010674 00000000000000#! /bin/sh # Common wrapper for a few potentially missing GNU programs. scriptversion=2013-10-28.13; # UTC # Copyright (C) 1996-2013 Free Software Foundation, Inc. # Originally written by Fran,cois Pinard , 1996. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see . # As a special exception to the GNU General Public License, if you # distribute this file as part of a program that contains a # configuration script generated by Autoconf, you may include it under # the same distribution terms that you use for the rest of that program. if test $# -eq 0; then echo 1>&2 "Try '$0 --help' for more information" exit 1 fi case $1 in --is-lightweight) # Used by our autoconf macros to check whether the available missing # script is modern enough. exit 0 ;; --run) # Back-compat with the calling convention used by older automake. shift ;; -h|--h|--he|--hel|--help) echo "\ $0 [OPTION]... PROGRAM [ARGUMENT]... Run 'PROGRAM [ARGUMENT]...', returning a proper advice when this fails due to PROGRAM being missing or too old. Options: -h, --help display this help and exit -v, --version output version information and exit Supported PROGRAM values: aclocal autoconf autoheader autom4te automake makeinfo bison yacc flex lex help2man Version suffixes to PROGRAM as well as the prefixes 'gnu-', 'gnu', and 'g' are ignored when checking the name. Send bug reports to ." exit $? ;; -v|--v|--ve|--ver|--vers|--versi|--versio|--version) echo "missing $scriptversion (GNU Automake)" exit $? ;; -*) echo 1>&2 "$0: unknown '$1' option" echo 1>&2 "Try '$0 --help' for more information" exit 1 ;; esac # Run the given program, remember its exit status. "$@"; st=$? # If it succeeded, we are done. test $st -eq 0 && exit 0 # Also exit now if we it failed (or wasn't found), and '--version' was # passed; such an option is passed most likely to detect whether the # program is present and works. case $2 in --version|--help) exit $st;; esac # Exit code 63 means version mismatch. This often happens when the user # tries to use an ancient version of a tool on a file that requires a # minimum version. if test $st -eq 63; then msg="probably too old" elif test $st -eq 127; then # Program was missing. msg="missing on your system" else # Program was found and executed, but failed. Give up. exit $st fi perl_URL=http://www.perl.org/ flex_URL=http://flex.sourceforge.net/ gnu_software_URL=http://www.gnu.org/software program_details () { case $1 in aclocal|automake) echo "The '$1' program is part of the GNU Automake package:" echo "<$gnu_software_URL/automake>" echo "It also requires GNU Autoconf, GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/autoconf>" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; autoconf|autom4te|autoheader) echo "The '$1' program is part of the GNU Autoconf package:" echo "<$gnu_software_URL/autoconf/>" echo "It also requires GNU m4 and Perl in order to run:" echo "<$gnu_software_URL/m4/>" echo "<$perl_URL>" ;; esac } give_advice () { # Normalize program name to check for. normalized_program=`echo "$1" | sed ' s/^gnu-//; t s/^gnu//; t s/^g//; t'` printf '%s\n' "'$1' is $msg." configure_deps="'configure.ac' or m4 files included by 'configure.ac'" case $normalized_program in autoconf*) echo "You should only need it if you modified 'configure.ac'," echo "or m4 files included by it." program_details 'autoconf' ;; autoheader*) echo "You should only need it if you modified 'acconfig.h' or" echo "$configure_deps." program_details 'autoheader' ;; automake*) echo "You should only need it if you modified 'Makefile.am' or" echo "$configure_deps." program_details 'automake' ;; aclocal*) echo "You should only need it if you modified 'acinclude.m4' or" echo "$configure_deps." program_details 'aclocal' ;; autom4te*) echo "You might have modified some maintainer files that require" echo "the 'autom4te' program to be rebuilt." program_details 'autom4te' ;; bison*|yacc*) echo "You should only need it if you modified a '.y' file." echo "You may want to install the GNU Bison package:" echo "<$gnu_software_URL/bison/>" ;; lex*|flex*) echo "You should only need it if you modified a '.l' file." echo "You may want to install the Fast Lexical Analyzer package:" echo "<$flex_URL>" ;; help2man*) echo "You should only need it if you modified a dependency" \ "of a man page." echo "You may want to install the GNU Help2man package:" echo "<$gnu_software_URL/help2man/>" ;; makeinfo*) echo "You should only need it if you modified a '.texi' file, or" echo "any other file indirectly affecting the aspect of the manual." echo "You might want to install the Texinfo package:" echo "<$gnu_software_URL/texinfo/>" echo "The spurious makeinfo call might also be the consequence of" echo "using a buggy 'make' (AIX, DU, IRIX), in which case you might" echo "want to install GNU make:" echo "<$gnu_software_URL/make/>" ;; *) echo "You might have modified some files without having the proper" echo "tools for further handling them. Check the 'README' file, it" echo "often tells you about the needed prerequisites for installing" echo "this package. You may also peek at any GNU archive site, in" echo "case some other package contains this missing '$1' program." ;; esac } give_advice "$1" | sed -e '1s/^/WARNING: /' \ -e '2,$s/^/ /' >&2 # Propagate the correct exit status (expected to be 127 for a program # not found, 63 for a program that failed due to version mismatch). exit $st # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: isl-0.16.1/isl_schedule_private.h0000664000175000017500000000243312645737061013674 00000000000000#ifndef ISL_SCHEDLUE_PRIVATE_H #define ISL_SCHEDLUE_PRIVATE_H #include #include #include /* A complete schedule tree. * * band_forest points to a band forest representation of the schedule * and may be NULL if the forest hasn't been created yet. * * "root" is the root of the schedule tree and may be NULL if we * have created a band forest corresponding to the schedule. * * A pointer to "leaf" may be used to represent a leaf of the schedule. * It should not appear as a child to any other isl_schedule_tree objects, * but an isl_schedule_node may point to "leaf" if it refers to * a leaf of this schedule tree. */ struct isl_schedule { int ref; isl_band_list *band_forest; isl_schedule_tree *root; struct isl_schedule_tree leaf; }; __isl_give isl_schedule *isl_schedule_from_schedule_tree(isl_ctx *ctx, __isl_take isl_schedule_tree *tree); __isl_give isl_schedule *isl_schedule_set_root( __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree); __isl_give isl_space *isl_schedule_get_space( __isl_keep isl_schedule *schedule); __isl_give isl_union_set *isl_schedule_get_domain( __isl_keep isl_schedule *schedule); __isl_keep isl_schedule_tree *isl_schedule_peek_leaf( __isl_keep isl_schedule *schedule); #endif isl-0.16.1/isl_transitive_closure.c0000664000175000017500000023013512645737235014272 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include #include #include #include #include #include #include #include #include #include #include int isl_map_is_transitively_closed(__isl_keep isl_map *map) { isl_map *map2; int closed; map2 = isl_map_apply_range(isl_map_copy(map), isl_map_copy(map)); closed = isl_map_is_subset(map2, map); isl_map_free(map2); return closed; } int isl_union_map_is_transitively_closed(__isl_keep isl_union_map *umap) { isl_union_map *umap2; int closed; umap2 = isl_union_map_apply_range(isl_union_map_copy(umap), isl_union_map_copy(umap)); closed = isl_union_map_is_subset(umap2, umap); isl_union_map_free(umap2); return closed; } /* Given a map that represents a path with the length of the path * encoded as the difference between the last output coordindate * and the last input coordinate, set this length to either * exactly "length" (if "exactly" is set) or at least "length" * (if "exactly" is not set). */ static __isl_give isl_map *set_path_length(__isl_take isl_map *map, int exactly, int length) { isl_space *dim; struct isl_basic_map *bmap; unsigned d; unsigned nparam; int k; isl_int *c; if (!map) return NULL; dim = isl_map_get_space(map); d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); if (exactly) { k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; c = bmap->eq[k]; } else { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; c = bmap->ineq[k]; } isl_seq_clr(c, 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(c[0], -length); isl_int_set_si(c[1 + nparam + d - 1], -1); isl_int_set_si(c[1 + nparam + d + d - 1], 1); bmap = isl_basic_map_finalize(bmap); map = isl_map_intersect(map, isl_map_from_basic_map(bmap)); return map; error: isl_basic_map_free(bmap); isl_map_free(map); return NULL; } /* Check whether the overapproximation of the power of "map" is exactly * the power of "map". Let R be "map" and A_k the overapproximation. * The approximation is exact if * * A_1 = R * A_k = A_{k-1} \circ R k >= 2 * * Since A_k is known to be an overapproximation, we only need to check * * A_1 \subset R * A_k \subset A_{k-1} \circ R k >= 2 * * In practice, "app" has an extra input and output coordinate * to encode the length of the path. So, we first need to add * this coordinate to "map" and set the length of the path to * one. */ static int check_power_exactness(__isl_take isl_map *map, __isl_take isl_map *app) { int exact; isl_map *app_1; isl_map *app_2; map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_add_dims(map, isl_dim_out, 1); map = set_path_length(map, 1, 1); app_1 = set_path_length(isl_map_copy(app), 1, 1); exact = isl_map_is_subset(app_1, map); isl_map_free(app_1); if (!exact || exact < 0) { isl_map_free(app); isl_map_free(map); return exact; } app_1 = set_path_length(isl_map_copy(app), 0, 1); app_2 = set_path_length(app, 0, 2); app_1 = isl_map_apply_range(map, app_1); exact = isl_map_is_subset(app_2, app_1); isl_map_free(app_1); isl_map_free(app_2); return exact; } /* Check whether the overapproximation of the power of "map" is exactly * the power of "map", possibly after projecting out the power (if "project" * is set). * * If "project" is set and if "steps" can only result in acyclic paths, * then we check * * A = R \cup (A \circ R) * * where A is the overapproximation with the power projected out, i.e., * an overapproximation of the transitive closure. * More specifically, since A is known to be an overapproximation, we check * * A \subset R \cup (A \circ R) * * Otherwise, we check if the power is exact. * * Note that "app" has an extra input and output coordinate to encode * the length of the part. If we are only interested in the transitive * closure, then we can simply project out these coordinates first. */ static int check_exactness(__isl_take isl_map *map, __isl_take isl_map *app, int project) { isl_map *test; int exact; unsigned d; if (!project) return check_power_exactness(map, app); d = isl_map_dim(map, isl_dim_in); app = set_path_length(app, 0, 1); app = isl_map_project_out(app, isl_dim_in, d, 1); app = isl_map_project_out(app, isl_dim_out, d, 1); app = isl_map_reset_space(app, isl_map_get_space(map)); test = isl_map_apply_range(isl_map_copy(map), isl_map_copy(app)); test = isl_map_union(test, isl_map_copy(map)); exact = isl_map_is_subset(app, test); isl_map_free(app); isl_map_free(test); isl_map_free(map); return exact; } /* * The transitive closure implementation is based on the paper * "Computing the Transitive Closure of a Union of Affine Integer * Tuple Relations" by Anna Beletska, Denis Barthou, Wlodzimierz Bielecki and * Albert Cohen. */ /* Given a set of n offsets v_i (the rows of "steps"), construct a relation * of the given dimension specification (Z^{n+1} -> Z^{n+1}) * that maps an element x to any element that can be reached * by taking a non-negative number of steps along any of * the extended offsets v'_i = [v_i 1]. * That is, construct * * { [x] -> [y] : exists k_i >= 0, y = x + \sum_i k_i v'_i } * * For any element in this relation, the number of steps taken * is equal to the difference in the final coordinates. */ static __isl_give isl_map *path_along_steps(__isl_take isl_space *dim, __isl_keep isl_mat *steps) { int i, j, k; struct isl_basic_map *path = NULL; unsigned d; unsigned n; unsigned nparam; if (!dim || !steps) goto error; d = isl_space_dim(dim, isl_dim_in); n = steps->n_row; nparam = isl_space_dim(dim, isl_dim_param); path = isl_basic_map_alloc_space(isl_space_copy(dim), n, d, n); for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_div(path); if (k < 0) goto error; isl_assert(steps->ctx, i == k, goto error); isl_int_set_si(path->div[k][0], 0); } for (i = 0; i < d; ++i) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->eq[k][1 + nparam + i], 1); isl_int_set_si(path->eq[k][1 + nparam + d + i], -1); if (i == d - 1) for (j = 0; j < n; ++j) isl_int_set_si(path->eq[k][1 + nparam + 2 * d + j], 1); else for (j = 0; j < n; ++j) isl_int_set(path->eq[k][1 + nparam + 2 * d + j], steps->row[j][i]); } for (i = 0; i < n; ++i) { k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->ineq[k][1 + nparam + 2 * d + i], 1); } isl_space_free(dim); path = isl_basic_map_simplify(path); path = isl_basic_map_finalize(path); return isl_map_from_basic_map(path); error: isl_space_free(dim); isl_basic_map_free(path); return NULL; } #define IMPURE 0 #define PURE_PARAM 1 #define PURE_VAR 2 #define MIXED 3 /* Check whether the parametric constant term of constraint c is never * positive in "bset". */ static int parametric_constant_never_positive(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity) { unsigned d; unsigned n_div; unsigned nparam; int i; int k; int empty; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); bset = isl_basic_set_copy(bset); bset = isl_basic_set_cow(bset); bset = isl_basic_set_extend_constraints(bset, 0, 1); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k], 1 + isl_basic_set_total_dim(bset)); isl_seq_cpy(bset->ineq[k], c, 1 + nparam); for (i = 0; i < n_div; ++i) { if (div_purity[i] != PURE_PARAM) continue; isl_int_set(bset->ineq[k][1 + nparam + d + i], c[1 + nparam + d + i]); } isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); empty = isl_basic_set_is_empty(bset); isl_basic_set_free(bset); return empty; error: isl_basic_set_free(bset); return -1; } /* Return PURE_PARAM if only the coefficients of the parameters are non-zero. * Return PURE_VAR if only the coefficients of the set variables are non-zero. * Return MIXED if only the coefficients of the parameters and the set * variables are non-zero and if moreover the parametric constant * can never attain positive values. * Return IMPURE otherwise. */ static int purity(__isl_keep isl_basic_set *bset, isl_int *c, int *div_purity, int eq) { unsigned d; unsigned n_div; unsigned nparam; int empty; int i; int p = 0, v = 0; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); for (i = 0; i < n_div; ++i) { if (isl_int_is_zero(c[1 + nparam + d + i])) continue; switch (div_purity[i]) { case PURE_PARAM: p = 1; break; case PURE_VAR: v = 1; break; default: return IMPURE; } } if (!p && isl_seq_first_non_zero(c + 1, nparam) == -1) return PURE_VAR; if (!v && isl_seq_first_non_zero(c + 1 + nparam, d) == -1) return PURE_PARAM; empty = parametric_constant_never_positive(bset, c, div_purity); if (eq && empty >= 0 && !empty) { isl_seq_neg(c, c, 1 + nparam + d + n_div); empty = parametric_constant_never_positive(bset, c, div_purity); } return empty < 0 ? -1 : empty ? MIXED : IMPURE; } /* Return an array of integers indicating the type of each div in bset. * If the div is (recursively) defined in terms of only the parameters, * then the type is PURE_PARAM. * If the div is (recursively) defined in terms of only the set variables, * then the type is PURE_VAR. * Otherwise, the type is IMPURE. */ static __isl_give int *get_div_purity(__isl_keep isl_basic_set *bset) { int i, j; int *div_purity; unsigned d; unsigned n_div; unsigned nparam; if (!bset) return NULL; n_div = isl_basic_set_dim(bset, isl_dim_div); d = isl_basic_set_dim(bset, isl_dim_set); nparam = isl_basic_set_dim(bset, isl_dim_param); div_purity = isl_alloc_array(bset->ctx, int, n_div); if (n_div && !div_purity) return NULL; for (i = 0; i < bset->n_div; ++i) { int p = 0, v = 0; if (isl_int_is_zero(bset->div[i][0])) { div_purity[i] = IMPURE; continue; } if (isl_seq_first_non_zero(bset->div[i] + 2, nparam) != -1) p = 1; if (isl_seq_first_non_zero(bset->div[i] + 2 + nparam, d) != -1) v = 1; for (j = 0; j < i; ++j) { if (isl_int_is_zero(bset->div[i][2 + nparam + d + j])) continue; switch (div_purity[j]) { case PURE_PARAM: p = 1; break; case PURE_VAR: v = 1; break; default: p = v = 1; break; } } div_purity[i] = v ? p ? IMPURE : PURE_VAR : PURE_PARAM; } return div_purity; } /* Given a path with the as yet unconstrained length at position "pos", * check if setting the length to zero results in only the identity * mapping. */ static int empty_path_is_identity(__isl_keep isl_basic_map *path, unsigned pos) { isl_basic_map *test = NULL; isl_basic_map *id = NULL; int k; int is_id; test = isl_basic_map_copy(path); test = isl_basic_map_extend_constraints(test, 1, 0); k = isl_basic_map_alloc_equality(test); if (k < 0) goto error; isl_seq_clr(test->eq[k], 1 + isl_basic_map_total_dim(test)); isl_int_set_si(test->eq[k][pos], 1); id = isl_basic_map_identity(isl_basic_map_get_space(path)); is_id = isl_basic_map_is_equal(test, id); isl_basic_map_free(test); isl_basic_map_free(id); return is_id; error: isl_basic_map_free(test); return -1; } /* If any of the constraints is found to be impure then this function * sets *impurity to 1. * * If impurity is NULL then we are dealing with a non-parametric set * and so the constraints are obviously PURE_VAR. */ static __isl_give isl_basic_map *add_delta_constraints( __isl_take isl_basic_map *path, __isl_keep isl_basic_set *delta, unsigned off, unsigned nparam, unsigned d, int *div_purity, int eq, int *impurity) { int i, k; int n = eq ? delta->n_eq : delta->n_ineq; isl_int **delta_c = eq ? delta->eq : delta->ineq; unsigned n_div; n_div = isl_basic_set_dim(delta, isl_dim_div); for (i = 0; i < n; ++i) { isl_int *path_c; int p = PURE_VAR; if (impurity) p = purity(delta, delta_c[i], div_purity, eq); if (p < 0) goto error; if (p != PURE_VAR && p != PURE_PARAM && !*impurity) *impurity = 1; if (p == IMPURE) continue; if (eq && p != MIXED) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; path_c = path->eq[k]; } else { k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; path_c = path->ineq[k]; } isl_seq_clr(path_c, 1 + isl_basic_map_total_dim(path)); if (p == PURE_VAR) { isl_seq_cpy(path_c + off, delta_c[i] + 1 + nparam, d); isl_int_set(path_c[off + d], delta_c[i][0]); } else if (p == PURE_PARAM) { isl_seq_cpy(path_c, delta_c[i], 1 + nparam); } else { isl_seq_cpy(path_c + off, delta_c[i] + 1 + nparam, d); isl_seq_cpy(path_c, delta_c[i], 1 + nparam); } isl_seq_cpy(path_c + off - n_div, delta_c[i] + 1 + nparam + d, n_div); } return path; error: isl_basic_map_free(path); return NULL; } /* Given a set of offsets "delta", construct a relation of the * given dimension specification (Z^{n+1} -> Z^{n+1}) that * is an overapproximation of the relations that * maps an element x to any element that can be reached * by taking a non-negative number of steps along any of * the elements in "delta". * That is, construct an approximation of * * { [x] -> [y] : exists f \in \delta, k \in Z : * y = x + k [f, 1] and k >= 0 } * * For any element in this relation, the number of steps taken * is equal to the difference in the final coordinates. * * In particular, let delta be defined as * * \delta = [p] -> { [x] : A x + a >= 0 and B p + b >= 0 and * C x + C'p + c >= 0 and * D x + D'p + d >= 0 } * * where the constraints C x + C'p + c >= 0 are such that the parametric * constant term of each constraint j, "C_j x + C'_j p + c_j", * can never attain positive values, then the relation is constructed as * * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and * A f + k a >= 0 and B p + b >= 0 and * C f + C'p + c >= 0 and k >= 1 } * union { [x] -> [x] } * * If the zero-length paths happen to correspond exactly to the identity * mapping, then we return * * { [x] -> [y] : exists [f, k] \in Z^{n+1} : y = x + f and * A f + k a >= 0 and B p + b >= 0 and * C f + C'p + c >= 0 and k >= 0 } * * instead. * * Existentially quantified variables in \delta are handled by * classifying them as independent of the parameters, purely * parameter dependent and others. Constraints containing * any of the other existentially quantified variables are removed. * This is safe, but leads to an additional overapproximation. * * If there are any impure constraints, then we also eliminate * the parameters from \delta, resulting in a set * * \delta' = { [x] : E x + e >= 0 } * * and add the constraints * * E f + k e >= 0 * * to the constructed relation. */ static __isl_give isl_map *path_along_delta(__isl_take isl_space *dim, __isl_take isl_basic_set *delta) { isl_basic_map *path = NULL; unsigned d; unsigned n_div; unsigned nparam; unsigned off; int i, k; int is_id; int *div_purity = NULL; int impurity = 0; if (!delta) goto error; n_div = isl_basic_set_dim(delta, isl_dim_div); d = isl_basic_set_dim(delta, isl_dim_set); nparam = isl_basic_set_dim(delta, isl_dim_param); path = isl_basic_map_alloc_space(isl_space_copy(dim), n_div + d + 1, d + 1 + delta->n_eq, delta->n_eq + delta->n_ineq + 1); off = 1 + nparam + 2 * (d + 1) + n_div; for (i = 0; i < n_div + d + 1; ++i) { k = isl_basic_map_alloc_div(path); if (k < 0) goto error; isl_int_set_si(path->div[k][0], 0); } for (i = 0; i < d + 1; ++i) { k = isl_basic_map_alloc_equality(path); if (k < 0) goto error; isl_seq_clr(path->eq[k], 1 + isl_basic_map_total_dim(path)); isl_int_set_si(path->eq[k][1 + nparam + i], 1); isl_int_set_si(path->eq[k][1 + nparam + d + 1 + i], -1); isl_int_set_si(path->eq[k][off + i], 1); } div_purity = get_div_purity(delta); if (n_div && !div_purity) goto error; path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 1, &impurity); path = add_delta_constraints(path, delta, off, nparam, d, div_purity, 0, &impurity); if (impurity) { isl_space *dim = isl_basic_set_get_space(delta); delta = isl_basic_set_project_out(delta, isl_dim_param, 0, nparam); delta = isl_basic_set_add_dims(delta, isl_dim_param, nparam); delta = isl_basic_set_reset_space(delta, dim); if (!delta) goto error; path = isl_basic_map_extend_constraints(path, delta->n_eq, delta->n_ineq + 1); path = add_delta_constraints(path, delta, off, nparam, d, NULL, 1, NULL); path = add_delta_constraints(path, delta, off, nparam, d, NULL, 0, NULL); path = isl_basic_map_gauss(path, NULL); } is_id = empty_path_is_identity(path, off + d); if (is_id < 0) goto error; k = isl_basic_map_alloc_inequality(path); if (k < 0) goto error; isl_seq_clr(path->ineq[k], 1 + isl_basic_map_total_dim(path)); if (!is_id) isl_int_set_si(path->ineq[k][0], -1); isl_int_set_si(path->ineq[k][off + d], 1); free(div_purity); isl_basic_set_free(delta); path = isl_basic_map_finalize(path); if (is_id) { isl_space_free(dim); return isl_map_from_basic_map(path); } return isl_basic_map_union(path, isl_basic_map_identity(dim)); error: free(div_purity); isl_space_free(dim); isl_basic_set_free(delta); isl_basic_map_free(path); return NULL; } /* Given a dimension specification Z^{n+1} -> Z^{n+1} and a parameter "param", * construct a map that equates the parameter to the difference * in the final coordinates and imposes that this difference is positive. * That is, construct * * { [x,x_s] -> [y,y_s] : k = y_s - x_s > 0 } */ static __isl_give isl_map *equate_parameter_to_length(__isl_take isl_space *dim, unsigned param) { struct isl_basic_map *bmap; unsigned d; unsigned nparam; int k; d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); bmap = isl_basic_map_alloc_space(dim, 0, 1, 1); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[k][1 + param], -1); isl_int_set_si(bmap->eq[k][1 + nparam + d - 1], -1); isl_int_set_si(bmap->eq[k][1 + nparam + d + d - 1], 1); k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->ineq[k][1 + param], 1); isl_int_set_si(bmap->ineq[k][0], -1); bmap = isl_basic_map_finalize(bmap); return isl_map_from_basic_map(bmap); error: isl_basic_map_free(bmap); return NULL; } /* Check whether "path" is acyclic, where the last coordinates of domain * and range of path encode the number of steps taken. * That is, check whether * * { d | d = y - x and (x,y) in path } * * does not contain any element with positive last coordinate (positive length) * and zero remaining coordinates (cycle). */ static int is_acyclic(__isl_take isl_map *path) { int i; int acyclic; unsigned dim; struct isl_set *delta; delta = isl_map_deltas(path); dim = isl_set_dim(delta, isl_dim_set); for (i = 0; i < dim; ++i) { if (i == dim -1) delta = isl_set_lower_bound_si(delta, isl_dim_set, i, 1); else delta = isl_set_fix_si(delta, isl_dim_set, i, 0); } acyclic = isl_set_is_empty(delta); isl_set_free(delta); return acyclic; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the space D \times Z to another * element from the same space, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) } * * The elements of the singleton \Delta_i's are collected as the * rows of the steps matrix. For all these \Delta_i's together, * a single path is constructed. * For each of the other \Delta_i's, we compute an overapproximation * of the paths along elements of \Delta_i. * Since each of these paths performs an addition, composition is * symmetric and we can simply compose all resulting paths in any order. */ static __isl_give isl_map *construct_extended_path(__isl_take isl_space *dim, __isl_keep isl_map *map, int *project) { struct isl_mat *steps = NULL; struct isl_map *path = NULL; unsigned d; int i, j, n; if (!map) goto error; d = isl_map_dim(map, isl_dim_in); path = isl_map_identity(isl_space_copy(dim)); steps = isl_mat_alloc(map->ctx, map->n, d); if (!steps) goto error; n = 0; for (i = 0; i < map->n; ++i) { struct isl_basic_set *delta; delta = isl_basic_map_deltas(isl_basic_map_copy(map->p[i])); for (j = 0; j < d; ++j) { int fixed; fixed = isl_basic_set_plain_dim_is_fixed(delta, j, &steps->row[n][j]); if (fixed < 0) { isl_basic_set_free(delta); goto error; } if (!fixed) break; } if (j < d) { path = isl_map_apply_range(path, path_along_delta(isl_space_copy(dim), delta)); path = isl_map_coalesce(path); } else { isl_basic_set_free(delta); ++n; } } if (n > 0) { steps->n_row = n; path = isl_map_apply_range(path, path_along_steps(isl_space_copy(dim), steps)); } if (project && *project) { *project = is_acyclic(isl_map_copy(path)); if (*project < 0) goto error; } isl_space_free(dim); isl_mat_free(steps); return path; error: isl_space_free(dim); isl_mat_free(steps); isl_map_free(path); return NULL; } static int isl_set_overlaps(__isl_keep isl_set *set1, __isl_keep isl_set *set2) { isl_set *i; int no_overlap; if (!set1 || !set2) return -1; if (!isl_space_tuple_is_equal(set1->dim, isl_dim_set, set2->dim, isl_dim_set)) return 0; i = isl_set_intersect(isl_set_copy(set1), isl_set_copy(set2)); no_overlap = isl_set_is_empty(i); isl_set_free(i); return no_overlap < 0 ? -1 : !no_overlap; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the dom R \times Z to an * element from ran R \times Z, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) and * x in dom R and x + d in ran R and * \sum_i k_i >= 1 } */ static __isl_give isl_map *construct_component(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { struct isl_set *domain = NULL; struct isl_set *range = NULL; struct isl_map *app = NULL; struct isl_map *path = NULL; int overlaps; domain = isl_map_domain(isl_map_copy(map)); domain = isl_set_coalesce(domain); range = isl_map_range(isl_map_copy(map)); range = isl_set_coalesce(range); overlaps = isl_set_overlaps(domain, range); if (overlaps < 0 || !overlaps) { isl_set_free(domain); isl_set_free(range); isl_space_free(dim); if (overlaps < 0) map = NULL; map = isl_map_copy(map); map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_add_dims(map, isl_dim_out, 1); map = set_path_length(map, 1, 1); return map; } app = isl_map_from_domain_and_range(domain, range); app = isl_map_add_dims(app, isl_dim_in, 1); app = isl_map_add_dims(app, isl_dim_out, 1); path = construct_extended_path(isl_space_copy(dim), map, exact && *exact ? &project : NULL); app = isl_map_intersect(app, path); if (exact && *exact && (*exact = check_exactness(isl_map_copy(map), isl_map_copy(app), project)) < 0) goto error; isl_space_free(dim); app = set_path_length(app, 0, 1); return app; error: isl_space_free(dim); isl_map_free(app); return NULL; } /* Call construct_component and, if "project" is set, project out * the final coordinates. */ static __isl_give isl_map *construct_projected_component( __isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { isl_map *app; unsigned d; if (!dim) return NULL; d = isl_space_dim(dim, isl_dim_in); app = construct_component(dim, map, exact, project); if (project) { app = isl_map_project_out(app, isl_dim_in, d - 1, 1); app = isl_map_project_out(app, isl_dim_out, d - 1, 1); } return app; } /* Compute an extended version, i.e., with path lengths, of * an overapproximation of the transitive closure of "bmap" * with path lengths greater than or equal to zero and with * domain and range equal to "dom". */ static __isl_give isl_map *q_closure(__isl_take isl_space *dim, __isl_take isl_set *dom, __isl_keep isl_basic_map *bmap, int *exact) { int project = 1; isl_map *path; isl_map *map; isl_map *app; dom = isl_set_add_dims(dom, isl_dim_set, 1); app = isl_map_from_domain_and_range(dom, isl_set_copy(dom)); map = isl_map_from_basic_map(isl_basic_map_copy(bmap)); path = construct_extended_path(dim, map, &project); app = isl_map_intersect(app, path); if ((*exact = check_exactness(map, isl_map_copy(app), project)) < 0) goto error; return app; error: isl_map_free(app); return NULL; } /* Check whether qc has any elements of length at least one * with domain and/or range outside of dom and ran. */ static int has_spurious_elements(__isl_keep isl_map *qc, __isl_keep isl_set *dom, __isl_keep isl_set *ran) { isl_set *s; int subset; unsigned d; if (!qc || !dom || !ran) return -1; d = isl_map_dim(qc, isl_dim_in); qc = isl_map_copy(qc); qc = set_path_length(qc, 0, 1); qc = isl_map_project_out(qc, isl_dim_in, d - 1, 1); qc = isl_map_project_out(qc, isl_dim_out, d - 1, 1); s = isl_map_domain(isl_map_copy(qc)); subset = isl_set_is_subset(s, dom); isl_set_free(s); if (subset < 0) goto error; if (!subset) { isl_map_free(qc); return 1; } s = isl_map_range(qc); subset = isl_set_is_subset(s, ran); isl_set_free(s); return subset < 0 ? -1 : !subset; error: isl_map_free(qc); return -1; } #define LEFT 2 #define RIGHT 1 /* For each basic map in "map", except i, check whether it combines * with the transitive closure that is reflexive on C combines * to the left and to the right. * * In particular, if * * dom map_j \subseteq C * * then right[j] is set to 1. Otherwise, if * * ran map_i \cap dom map_j = \emptyset * * then right[j] is set to 0. Otherwise, composing to the right * is impossible. * * Similar, for composing to the left, we have if * * ran map_j \subseteq C * * then left[j] is set to 1. Otherwise, if * * dom map_i \cap ran map_j = \emptyset * * then left[j] is set to 0. Otherwise, composing to the left * is impossible. * * The return value is or'd with LEFT if composing to the left * is possible and with RIGHT if composing to the right is possible. */ static int composability(__isl_keep isl_set *C, int i, isl_set **dom, isl_set **ran, int *left, int *right, __isl_keep isl_map *map) { int j; int ok; ok = LEFT | RIGHT; for (j = 0; j < map->n && ok; ++j) { int overlaps, subset; if (j == i) continue; if (ok & RIGHT) { if (!dom[j]) dom[j] = isl_set_from_basic_set( isl_basic_map_domain( isl_basic_map_copy(map->p[j]))); if (!dom[j]) return -1; overlaps = isl_set_overlaps(ran[i], dom[j]); if (overlaps < 0) return -1; if (!overlaps) right[j] = 0; else { subset = isl_set_is_subset(dom[j], C); if (subset < 0) return -1; if (subset) right[j] = 1; else ok &= ~RIGHT; } } if (ok & LEFT) { if (!ran[j]) ran[j] = isl_set_from_basic_set( isl_basic_map_range( isl_basic_map_copy(map->p[j]))); if (!ran[j]) return -1; overlaps = isl_set_overlaps(dom[i], ran[j]); if (overlaps < 0) return -1; if (!overlaps) left[j] = 0; else { subset = isl_set_is_subset(ran[j], C); if (subset < 0) return -1; if (subset) left[j] = 1; else ok &= ~LEFT; } } } return ok; } static __isl_give isl_map *anonymize(__isl_take isl_map *map) { map = isl_map_reset(map, isl_dim_in); map = isl_map_reset(map, isl_dim_out); return map; } /* Return a map that is a union of the basic maps in "map", except i, * composed to left and right with qc based on the entries of "left" * and "right". */ static __isl_give isl_map *compose(__isl_keep isl_map *map, int i, __isl_take isl_map *qc, int *left, int *right) { int j; isl_map *comp; comp = isl_map_empty(isl_map_get_space(map)); for (j = 0; j < map->n; ++j) { isl_map *map_j; if (j == i) continue; map_j = isl_map_from_basic_map(isl_basic_map_copy(map->p[j])); map_j = anonymize(map_j); if (left && left[j]) map_j = isl_map_apply_range(map_j, isl_map_copy(qc)); if (right && right[j]) map_j = isl_map_apply_range(isl_map_copy(qc), map_j); comp = isl_map_union(comp, map_j); } comp = isl_map_compute_divs(comp); comp = isl_map_coalesce(comp); isl_map_free(qc); return comp; } /* Compute the transitive closure of "map" incrementally by * computing * * map_i^+ \cup qc^+ * * or * * map_i^+ \cup ((id \cup map_i^) \circ qc^+) * * or * * map_i^+ \cup (qc^+ \circ (id \cup map_i^)) * * depending on whether left or right are NULL. */ static __isl_give isl_map *compute_incremental( __isl_take isl_space *dim, __isl_keep isl_map *map, int i, __isl_take isl_map *qc, int *left, int *right, int *exact) { isl_map *map_i; isl_map *tc; isl_map *rtc = NULL; if (!map) goto error; isl_assert(map->ctx, left || right, goto error); map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); tc = construct_projected_component(isl_space_copy(dim), map_i, exact, 1); isl_map_free(map_i); if (*exact) qc = isl_map_transitive_closure(qc, exact); if (!*exact) { isl_space_free(dim); isl_map_free(tc); isl_map_free(qc); return isl_map_universe(isl_map_get_space(map)); } if (!left || !right) rtc = isl_map_union(isl_map_copy(tc), isl_map_identity(isl_map_get_space(tc))); if (!right) qc = isl_map_apply_range(rtc, qc); if (!left) qc = isl_map_apply_range(qc, rtc); qc = isl_map_union(tc, qc); isl_space_free(dim); return qc; error: isl_space_free(dim); isl_map_free(qc); return NULL; } /* Given a map "map", try to find a basic map such that * map^+ can be computed as * * map^+ = map_i^+ \cup * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ * * with C the simple hull of the domain and range of the input map. * map_i^ \cup Id_C is computed by allowing the path lengths to be zero * and by intersecting domain and range with C. * Of course, we need to check that this is actually equal to map_i^ \cup Id_C. * Also, we only use the incremental computation if all the transitive * closures are exact and if the number of basic maps in the union, * after computing the integer divisions, is smaller than the number * of basic maps in the input map. */ static int incemental_on_entire_domain(__isl_keep isl_space *dim, __isl_keep isl_map *map, isl_set **dom, isl_set **ran, int *left, int *right, __isl_give isl_map **res) { int i; isl_set *C; unsigned d; *res = NULL; C = isl_set_union(isl_map_domain(isl_map_copy(map)), isl_map_range(isl_map_copy(map))); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) return -1; if (C->n != 1) { isl_set_free(C); return 0; } d = isl_map_dim(map, isl_dim_in); for (i = 0; i < map->n; ++i) { isl_map *qc; int exact_i, spurious; int j; dom[i] = isl_set_from_basic_set(isl_basic_map_domain( isl_basic_map_copy(map->p[i]))); ran[i] = isl_set_from_basic_set(isl_basic_map_range( isl_basic_map_copy(map->p[i]))); qc = q_closure(isl_space_copy(dim), isl_set_copy(C), map->p[i], &exact_i); if (!qc) goto error; if (!exact_i) { isl_map_free(qc); continue; } spurious = has_spurious_elements(qc, dom[i], ran[i]); if (spurious) { isl_map_free(qc); if (spurious < 0) goto error; continue; } qc = isl_map_project_out(qc, isl_dim_in, d, 1); qc = isl_map_project_out(qc, isl_dim_out, d, 1); qc = isl_map_compute_divs(qc); for (j = 0; j < map->n; ++j) left[j] = right[j] = 1; qc = compose(map, i, qc, left, right); if (!qc) goto error; if (qc->n >= map->n) { isl_map_free(qc); continue; } *res = compute_incremental(isl_space_copy(dim), map, i, qc, left, right, &exact_i); if (!*res) goto error; if (exact_i) break; isl_map_free(*res); *res = NULL; } isl_set_free(C); return *res != NULL; error: isl_set_free(C); return -1; } /* Try and compute the transitive closure of "map" as * * map^+ = map_i^+ \cup * \bigcup_j ((map_i^+ \cup Id_C)^+ \circ map_j \circ (map_i^+ \cup Id_C))^+ * * with C either the simple hull of the domain and range of the entire * map or the simple hull of domain and range of map_i. */ static __isl_give isl_map *incremental_closure(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i; isl_set **dom = NULL; isl_set **ran = NULL; int *left = NULL; int *right = NULL; isl_set *C; unsigned d; isl_map *res = NULL; if (!project) return construct_projected_component(dim, map, exact, project); if (!map) goto error; if (map->n <= 1) return construct_projected_component(dim, map, exact, project); d = isl_map_dim(map, isl_dim_in); dom = isl_calloc_array(map->ctx, isl_set *, map->n); ran = isl_calloc_array(map->ctx, isl_set *, map->n); left = isl_calloc_array(map->ctx, int, map->n); right = isl_calloc_array(map->ctx, int, map->n); if (!ran || !dom || !left || !right) goto error; if (incemental_on_entire_domain(dim, map, dom, ran, left, right, &res) < 0) goto error; for (i = 0; !res && i < map->n; ++i) { isl_map *qc; int exact_i, spurious, comp; if (!dom[i]) dom[i] = isl_set_from_basic_set( isl_basic_map_domain( isl_basic_map_copy(map->p[i]))); if (!dom[i]) goto error; if (!ran[i]) ran[i] = isl_set_from_basic_set( isl_basic_map_range( isl_basic_map_copy(map->p[i]))); if (!ran[i]) goto error; C = isl_set_union(isl_set_copy(dom[i]), isl_set_copy(ran[i])); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) goto error; if (C->n != 1) { isl_set_free(C); continue; } comp = composability(C, i, dom, ran, left, right, map); if (!comp || comp < 0) { isl_set_free(C); if (comp < 0) goto error; continue; } qc = q_closure(isl_space_copy(dim), C, map->p[i], &exact_i); if (!qc) goto error; if (!exact_i) { isl_map_free(qc); continue; } spurious = has_spurious_elements(qc, dom[i], ran[i]); if (spurious) { isl_map_free(qc); if (spurious < 0) goto error; continue; } qc = isl_map_project_out(qc, isl_dim_in, d, 1); qc = isl_map_project_out(qc, isl_dim_out, d, 1); qc = isl_map_compute_divs(qc); qc = compose(map, i, qc, (comp & LEFT) ? left : NULL, (comp & RIGHT) ? right : NULL); if (!qc) goto error; if (qc->n >= map->n) { isl_map_free(qc); continue; } res = compute_incremental(isl_space_copy(dim), map, i, qc, (comp & LEFT) ? left : NULL, (comp & RIGHT) ? right : NULL, &exact_i); if (!res) goto error; if (exact_i) break; isl_map_free(res); res = NULL; } for (i = 0; i < map->n; ++i) { isl_set_free(dom[i]); isl_set_free(ran[i]); } free(dom); free(ran); free(left); free(right); if (res) { isl_space_free(dim); return res; } return construct_projected_component(dim, map, exact, project); error: if (dom) for (i = 0; i < map->n; ++i) isl_set_free(dom[i]); free(dom); if (ran) for (i = 0; i < map->n; ++i) isl_set_free(ran[i]); free(ran); free(left); free(right); isl_space_free(dim); return NULL; } /* Given an array of sets "set", add "dom" at position "pos" * and search for elements at earlier positions that overlap with "dom". * If any can be found, then merge all of them, together with "dom", into * a single set and assign the union to the first in the array, * which becomes the new group leader for all groups involved in the merge. * During the search, we only consider group leaders, i.e., those with * group[i] = i, as the other sets have already been combined * with one of the group leaders. */ static int merge(isl_set **set, int *group, __isl_take isl_set *dom, int pos) { int i; group[pos] = pos; set[pos] = isl_set_copy(dom); for (i = pos - 1; i >= 0; --i) { int o; if (group[i] != i) continue; o = isl_set_overlaps(set[i], dom); if (o < 0) goto error; if (!o) continue; set[i] = isl_set_union(set[i], set[group[pos]]); set[group[pos]] = NULL; if (!set[i]) goto error; group[group[pos]] = i; group[pos] = i; } isl_set_free(dom); return 0; error: isl_set_free(dom); return -1; } /* Replace each entry in the n by n grid of maps by the cross product * with the relation { [i] -> [i + 1] }. */ static int add_length(__isl_keep isl_map *map, isl_map ***grid, int n) { int i, j, k; isl_space *dim; isl_basic_map *bstep; isl_map *step; unsigned nparam; if (!map) return -1; dim = isl_map_get_space(map); nparam = isl_space_dim(dim, isl_dim_param); dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in)); dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out)); dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bstep = isl_basic_map_alloc_space(dim, 0, 1, 0); k = isl_basic_map_alloc_equality(bstep); if (k < 0) { isl_basic_map_free(bstep); return -1; } isl_seq_clr(bstep->eq[k], 1 + isl_basic_map_total_dim(bstep)); isl_int_set_si(bstep->eq[k][0], 1); isl_int_set_si(bstep->eq[k][1 + nparam], 1); isl_int_set_si(bstep->eq[k][1 + nparam + 1], -1); bstep = isl_basic_map_finalize(bstep); step = isl_map_from_basic_map(bstep); for (i = 0; i < n; ++i) for (j = 0; j < n; ++j) grid[i][j] = isl_map_product(grid[i][j], isl_map_copy(step)); isl_map_free(step); return 0; } /* The core of the Floyd-Warshall algorithm. * Updates the given n x x matrix of relations in place. * * The algorithm iterates over all vertices. In each step, the whole * matrix is updated to include all paths that go to the current vertex, * possibly stay there a while (including passing through earlier vertices) * and then come back. At the start of each iteration, the diagonal * element corresponding to the current vertex is replaced by its * transitive closure to account for all indirect paths that stay * in the current vertex. */ static void floyd_warshall_iterate(isl_map ***grid, int n, int *exact) { int r, p, q; for (r = 0; r < n; ++r) { int r_exact; grid[r][r] = isl_map_transitive_closure(grid[r][r], (exact && *exact) ? &r_exact : NULL); if (exact && *exact && !r_exact) *exact = 0; for (p = 0; p < n; ++p) for (q = 0; q < n; ++q) { isl_map *loop; if (p == r && q == r) continue; loop = isl_map_apply_range( isl_map_copy(grid[p][r]), isl_map_copy(grid[r][q])); grid[p][q] = isl_map_union(grid[p][q], loop); loop = isl_map_apply_range( isl_map_copy(grid[p][r]), isl_map_apply_range( isl_map_copy(grid[r][r]), isl_map_copy(grid[r][q]))); grid[p][q] = isl_map_union(grid[p][q], loop); grid[p][q] = isl_map_coalesce(grid[p][q]); } } } /* Given a partition of the domains and ranges of the basic maps in "map", * apply the Floyd-Warshall algorithm with the elements in the partition * as vertices. * * In particular, there are "n" elements in the partition and "group" is * an array of length 2 * map->n with entries in [0,n-1]. * * We first construct a matrix of relations based on the partition information, * apply Floyd-Warshall on this matrix of relations and then take the * union of all entries in the matrix as the final result. * * If we are actually computing the power instead of the transitive closure, * i.e., when "project" is not set, then the result should have the * path lengths encoded as the difference between an extra pair of * coordinates. We therefore apply the nested transitive closures * to relations that include these lengths. In particular, we replace * the input relation by the cross product with the unit length relation * { [i] -> [i + 1] }. */ static __isl_give isl_map *floyd_warshall_with_groups(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project, int *group, int n) { int i, j, k; isl_map ***grid = NULL; isl_map *app; if (!map) goto error; if (n == 1) { free(group); return incremental_closure(dim, map, exact, project); } grid = isl_calloc_array(map->ctx, isl_map **, n); if (!grid) goto error; for (i = 0; i < n; ++i) { grid[i] = isl_calloc_array(map->ctx, isl_map *, n); if (!grid[i]) goto error; for (j = 0; j < n; ++j) grid[i][j] = isl_map_empty(isl_map_get_space(map)); } for (k = 0; k < map->n; ++k) { i = group[2 * k]; j = group[2 * k + 1]; grid[i][j] = isl_map_union(grid[i][j], isl_map_from_basic_map( isl_basic_map_copy(map->p[k]))); } if (!project && add_length(map, grid, n) < 0) goto error; floyd_warshall_iterate(grid, n, exact); app = isl_map_empty(isl_map_get_space(grid[0][0])); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) app = isl_map_union(app, grid[i][j]); free(grid[i]); } free(grid); free(group); isl_space_free(dim); return app; error: if (grid) for (i = 0; i < n; ++i) { if (!grid[i]) continue; for (j = 0; j < n; ++j) isl_map_free(grid[i][j]); free(grid[i]); } free(grid); free(group); isl_space_free(dim); return NULL; } /* Partition the domains and ranges of the n basic relations in list * into disjoint cells. * * To find the partition, we simply consider all of the domains * and ranges in turn and combine those that overlap. * "set" contains the partition elements and "group" indicates * to which partition element a given domain or range belongs. * The domain of basic map i corresponds to element 2 * i in these arrays, * while the domain corresponds to element 2 * i + 1. * During the construction group[k] is either equal to k, * in which case set[k] contains the union of all the domains and * ranges in the corresponding group, or is equal to some l < k, * with l another domain or range in the same group. */ static int *setup_groups(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, isl_set ***set, int *n_group) { int i; int *group = NULL; int g; *set = isl_calloc_array(ctx, isl_set *, 2 * n); group = isl_alloc_array(ctx, int, 2 * n); if (!*set || !group) goto error; for (i = 0; i < n; ++i) { isl_set *dom; dom = isl_set_from_basic_set(isl_basic_map_domain( isl_basic_map_copy(list[i]))); if (merge(*set, group, dom, 2 * i) < 0) goto error; dom = isl_set_from_basic_set(isl_basic_map_range( isl_basic_map_copy(list[i]))); if (merge(*set, group, dom, 2 * i + 1) < 0) goto error; } g = 0; for (i = 0; i < 2 * n; ++i) if (group[i] == i) { if (g != i) { (*set)[g] = (*set)[i]; (*set)[i] = NULL; } group[i] = g++; } else group[i] = group[group[i]]; *n_group = g; return group; error: if (*set) { for (i = 0; i < 2 * n; ++i) isl_set_free((*set)[i]); free(*set); *set = NULL; } free(group); return NULL; } /* Check if the domains and ranges of the basic maps in "map" can * be partitioned, and if so, apply Floyd-Warshall on the elements * of the partition. Note that we also apply this algorithm * if we want to compute the power, i.e., when "project" is not set. * However, the results are unlikely to be exact since the recursive * calls inside the Floyd-Warshall algorithm typically result in * non-linear path lengths quite quickly. */ static __isl_give isl_map *floyd_warshall(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i; isl_set **set = NULL; int *group = NULL; int n; if (!map) goto error; if (map->n <= 1) return incremental_closure(dim, map, exact, project); group = setup_groups(map->ctx, map->p, map->n, &set, &n); if (!group) goto error; for (i = 0; i < 2 * map->n; ++i) isl_set_free(set[i]); free(set); return floyd_warshall_with_groups(dim, map, exact, project, group, n); error: isl_space_free(dim); return NULL; } /* Structure for representing the nodes of the graph of which * strongly connected components are being computed. * * list contains the actual nodes * check_closed is set if we may have used the fact that * a pair of basic maps can be interchanged */ struct isl_tc_follows_data { isl_basic_map **list; int check_closed; }; /* Check whether in the computation of the transitive closure * "list[i]" (R_1) should follow (or be part of the same component as) * "list[j]" (R_2). * * That is check whether * * R_1 \circ R_2 * * is a subset of * * R_2 \circ R_1 * * If so, then there is no reason for R_1 to immediately follow R_2 * in any path. * * *check_closed is set if the subset relation holds while * R_1 \circ R_2 is not empty. */ static isl_bool basic_map_follows(int i, int j, void *user) { struct isl_tc_follows_data *data = user; struct isl_map *map12 = NULL; struct isl_map *map21 = NULL; isl_bool subset; if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in, data->list[j]->dim, isl_dim_out)) return isl_bool_false; map21 = isl_map_from_basic_map( isl_basic_map_apply_range( isl_basic_map_copy(data->list[j]), isl_basic_map_copy(data->list[i]))); subset = isl_map_is_empty(map21); if (subset < 0) goto error; if (subset) { isl_map_free(map21); return isl_bool_false; } if (!isl_space_tuple_is_equal(data->list[i]->dim, isl_dim_in, data->list[i]->dim, isl_dim_out) || !isl_space_tuple_is_equal(data->list[j]->dim, isl_dim_in, data->list[j]->dim, isl_dim_out)) { isl_map_free(map21); return isl_bool_true; } map12 = isl_map_from_basic_map( isl_basic_map_apply_range( isl_basic_map_copy(data->list[i]), isl_basic_map_copy(data->list[j]))); subset = isl_map_is_subset(map21, map12); isl_map_free(map12); isl_map_free(map21); if (subset) data->check_closed = 1; return subset < 0 ? isl_bool_error : !subset; error: isl_map_free(map21); return isl_bool_error; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D * and a dimension specification (Z^{n+1} -> Z^{n+1}), * construct a map that is an overapproximation of the map * that takes an element from the dom R \times Z to an * element from ran R \times Z, such that the first n coordinates of the * difference between them is a sum of differences between images * and pre-images in one of the R_i and such that the last coordinate * is equal to the number of steps taken. * If "project" is set, then these final coordinates are not included, * i.e., a relation of type Z^n -> Z^n is returned. * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i, \sum_i k_i) and * x in dom R and x + d in ran R } * * or * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = (\sum_i k_i \delta_i) and * x in dom R and x + d in ran R } * * if "project" is set. * * We first split the map into strongly connected components, perform * the above on each component and then join the results in the correct * order, at each join also taking in the union of both arguments * to allow for paths that do not go through one of the two arguments. */ static __isl_give isl_map *construct_power_components(__isl_take isl_space *dim, __isl_keep isl_map *map, int *exact, int project) { int i, n, c; struct isl_map *path = NULL; struct isl_tc_follows_data data; struct isl_tarjan_graph *g = NULL; int *orig_exact; int local_exact; if (!map) goto error; if (map->n <= 1) return floyd_warshall(dim, map, exact, project); data.list = map->p; data.check_closed = 0; g = isl_tarjan_graph_init(map->ctx, map->n, &basic_map_follows, &data); if (!g) goto error; orig_exact = exact; if (data.check_closed && !exact) exact = &local_exact; c = 0; i = 0; n = map->n; if (project) path = isl_map_empty(isl_map_get_space(map)); else path = isl_map_empty(isl_space_copy(dim)); path = anonymize(path); while (n) { struct isl_map *comp; isl_map *path_comp, *path_comb; comp = isl_map_alloc_space(isl_map_get_space(map), n, 0); while (g->order[i] != -1) { comp = isl_map_add_basic_map(comp, isl_basic_map_copy(map->p[g->order[i]])); --n; ++i; } path_comp = floyd_warshall(isl_space_copy(dim), comp, exact, project); path_comp = anonymize(path_comp); path_comb = isl_map_apply_range(isl_map_copy(path), isl_map_copy(path_comp)); path = isl_map_union(path, path_comp); path = isl_map_union(path, path_comb); isl_map_free(comp); ++i; ++c; } if (c > 1 && data.check_closed && !*exact) { int closed; closed = isl_map_is_transitively_closed(path); if (closed < 0) goto error; if (!closed) { isl_tarjan_graph_free(g); isl_map_free(path); return floyd_warshall(dim, map, orig_exact, project); } } isl_tarjan_graph_free(g); isl_space_free(dim); return path; error: isl_tarjan_graph_free(g); isl_space_free(dim); isl_map_free(path); return NULL; } /* Given a union of basic maps R = \cup_i R_i \subseteq D \times D, * construct a map that is an overapproximation of the map * that takes an element from the space D to another * element from the same space, such that the difference between * them is a strictly positive sum of differences between images * and pre-images in one of the R_i. * The number of differences in the sum is equated to parameter "param". * That is, let * * \Delta_i = { y - x | (x, y) in R_i } * * then the constructed map is an overapproximation of * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = \sum_i k_i \delta_i and k = \sum_i k_i > 0 } * or * * { (x) -> (x + d) | \exists k_i >= 0, \delta_i \in \Delta_i : * d = \sum_i k_i \delta_i and \sum_i k_i > 0 } * * if "project" is set. * * If "project" is not set, then * we construct an extended mapping with an extra coordinate * that indicates the number of steps taken. In particular, * the difference in the last coordinate is equal to the number * of steps taken to move from a domain element to the corresponding * image element(s). */ static __isl_give isl_map *construct_power(__isl_keep isl_map *map, int *exact, int project) { struct isl_map *app = NULL; isl_space *dim = NULL; if (!map) return NULL; dim = isl_map_get_space(map); dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); app = construct_power_components(isl_space_copy(dim), map, exact, project); isl_space_free(dim); return app; } /* Compute the positive powers of "map", or an overapproximation. * If the result is exact, then *exact is set to 1. * * If project is set, then we are actually interested in the transitive * closure, so we can use a more relaxed exactness check. * The lengths of the paths are also projected out instead of being * encoded as the difference between an extra pair of final coordinates. */ static __isl_give isl_map *map_power(__isl_take isl_map *map, int *exact, int project) { struct isl_map *app = NULL; if (exact) *exact = 1; if (!map) return NULL; isl_assert(map->ctx, isl_map_dim(map, isl_dim_in) == isl_map_dim(map, isl_dim_out), goto error); app = construct_power(map, exact, project); isl_map_free(map); return app; error: isl_map_free(map); isl_map_free(app); return NULL; } /* Compute the positive powers of "map", or an overapproximation. * The result maps the exponent to a nested copy of the corresponding power. * If the result is exact, then *exact is set to 1. * map_power constructs an extended relation with the path lengths * encoded as the difference between the final coordinates. * In the final step, this difference is equated to an extra parameter * and made positive. The extra coordinates are subsequently projected out * and the parameter is turned into the domain of the result. */ __isl_give isl_map *isl_map_power(__isl_take isl_map *map, int *exact) { isl_space *target_dim; isl_space *dim; isl_map *diff; unsigned d; unsigned param; if (!map) return NULL; d = isl_map_dim(map, isl_dim_in); param = isl_map_dim(map, isl_dim_param); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); if (isl_map_plain_is_empty(map)) { map = isl_map_from_range(isl_map_wrap(map)); map = isl_map_add_dims(map, isl_dim_in, 1); map = isl_map_set_dim_name(map, isl_dim_in, 0, "k"); return map; } target_dim = isl_map_get_space(map); target_dim = isl_space_from_range(isl_space_wrap(target_dim)); target_dim = isl_space_add_dims(target_dim, isl_dim_in, 1); target_dim = isl_space_set_dim_name(target_dim, isl_dim_in, 0, "k"); map = map_power(map, exact, 0); map = isl_map_add_dims(map, isl_dim_param, 1); dim = isl_map_get_space(map); diff = equate_parameter_to_length(dim, param); map = isl_map_intersect(map, diff); map = isl_map_project_out(map, isl_dim_in, d, 1); map = isl_map_project_out(map, isl_dim_out, d, 1); map = isl_map_from_range(isl_map_wrap(map)); map = isl_map_move_dims(map, isl_dim_in, 0, isl_dim_param, param, 1); map = isl_map_reset_space(map, target_dim); return map; } /* Compute a relation that maps each element in the range of the input * relation to the lengths of all paths composed of edges in the input * relation that end up in the given range element. * The result may be an overapproximation, in which case *exact is set to 0. * The resulting relation is very similar to the power relation. * The difference are that the domain has been projected out, the * range has become the domain and the exponent is the range instead * of a parameter. */ __isl_give isl_map *isl_map_reaching_path_lengths(__isl_take isl_map *map, int *exact) { isl_space *dim; isl_map *diff; unsigned d; unsigned param; if (!map) return NULL; d = isl_map_dim(map, isl_dim_in); param = isl_map_dim(map, isl_dim_param); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); if (isl_map_plain_is_empty(map)) { if (exact) *exact = 1; map = isl_map_project_out(map, isl_dim_out, 0, d); map = isl_map_add_dims(map, isl_dim_out, 1); return map; } map = map_power(map, exact, 0); map = isl_map_add_dims(map, isl_dim_param, 1); dim = isl_map_get_space(map); diff = equate_parameter_to_length(dim, param); map = isl_map_intersect(map, diff); map = isl_map_project_out(map, isl_dim_in, 0, d + 1); map = isl_map_project_out(map, isl_dim_out, d, 1); map = isl_map_reverse(map); map = isl_map_move_dims(map, isl_dim_out, 0, isl_dim_param, param, 1); return map; } /* Check whether equality i of bset is a pure stride constraint * on a single dimensions, i.e., of the form * * v = k e * * with k a constant and e an existentially quantified variable. */ static int is_eq_stride(__isl_keep isl_basic_set *bset, int i) { unsigned nparam; unsigned d; unsigned n_div; int pos1; int pos2; if (!bset) return -1; if (!isl_int_is_zero(bset->eq[i][0])) return 0; nparam = isl_basic_set_dim(bset, isl_dim_param); d = isl_basic_set_dim(bset, isl_dim_set); n_div = isl_basic_set_dim(bset, isl_dim_div); if (isl_seq_first_non_zero(bset->eq[i] + 1, nparam) != -1) return 0; pos1 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam, d); if (pos1 == -1) return 0; if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + pos1 + 1, d - pos1 - 1) != -1) return 0; pos2 = isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d, n_div); if (pos2 == -1) return 0; if (isl_seq_first_non_zero(bset->eq[i] + 1 + nparam + d + pos2 + 1, n_div - pos2 - 1) != -1) return 0; if (!isl_int_is_one(bset->eq[i][1 + nparam + pos1]) && !isl_int_is_negone(bset->eq[i][1 + nparam + pos1])) return 0; return 1; } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive closure of this map, i.e., * * { i -> j : exists k > 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * the given domain and range. * * If with_id is set, then try to include as much of the identity mapping * as possible, by computing * * { i -> j : exists k >= 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * instead (i.e., allow k = 0). * * In practice, we compute the difference set * * delta = { j - i | i -> j in map }, * * look for stride constraint on the individual dimensions and compute * (constant) lower and upper bounds for each individual dimension, * adding a constraint for each bound not equal to infinity. */ static __isl_give isl_map *box_closure_on_domain(__isl_take isl_map *map, __isl_take isl_set *dom, __isl_take isl_set *ran, int with_id) { int i; int k; unsigned d; unsigned nparam; unsigned total; isl_space *dim; isl_set *delta; isl_map *app = NULL; isl_basic_set *aff = NULL; isl_basic_map *bmap = NULL; isl_vec *obj = NULL; isl_int opt; isl_int_init(opt); delta = isl_map_deltas(isl_map_copy(map)); aff = isl_set_affine_hull(isl_set_copy(delta)); if (!aff) goto error; dim = isl_map_get_space(map); d = isl_space_dim(dim, isl_dim_in); nparam = isl_space_dim(dim, isl_dim_param); total = isl_space_dim(dim, isl_dim_all); bmap = isl_basic_map_alloc_space(dim, aff->n_div + 1, aff->n_div, 2 * d + 1); for (i = 0; i < aff->n_div + 1; ++i) { k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_int_set_si(bmap->div[k][0], 0); } for (i = 0; i < aff->n_eq; ++i) { if (!is_eq_stride(aff, i)) continue; k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], 1 + nparam); isl_seq_cpy(bmap->eq[k] + 1 + nparam + d, aff->eq[i] + 1 + nparam, d); isl_seq_neg(bmap->eq[k] + 1 + nparam, aff->eq[i] + 1 + nparam, d); isl_seq_cpy(bmap->eq[k] + 1 + nparam + 2 * d, aff->eq[i] + 1 + nparam + d, aff->n_div); isl_int_set_si(bmap->eq[k][1 + total + aff->n_div], 0); } obj = isl_vec_alloc(map->ctx, 1 + nparam + d); if (!obj) goto error; isl_seq_clr(obj->el, 1 + nparam + d); for (i = 0; i < d; ++ i) { enum isl_lp_result res; isl_int_set_si(obj->el[1 + nparam + i], 1); res = isl_set_solve_lp(delta, 0, obj->el, map->ctx->one, &opt, NULL, NULL); if (res == isl_lp_error) goto error; if (res == isl_lp_ok) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); isl_int_set_si(bmap->ineq[k][1 + nparam + i], -1); isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], 1); isl_int_neg(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); } res = isl_set_solve_lp(delta, 1, obj->el, map->ctx->one, &opt, NULL, NULL); if (res == isl_lp_error) goto error; if (res == isl_lp_ok) { k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); isl_int_set_si(bmap->ineq[k][1 + nparam + i], 1); isl_int_set_si(bmap->ineq[k][1 + nparam + d + i], -1); isl_int_set(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], opt); } isl_int_set_si(obj->el[1 + nparam + i], 0); } k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + nparam + 2 * d + bmap->n_div); if (!with_id) isl_int_set_si(bmap->ineq[k][0], -1); isl_int_set_si(bmap->ineq[k][1 + nparam + 2 * d + aff->n_div], 1); app = isl_map_from_domain_and_range(dom, ran); isl_vec_free(obj); isl_basic_set_free(aff); isl_map_free(map); bmap = isl_basic_map_finalize(bmap); isl_set_free(delta); isl_int_clear(opt); map = isl_map_from_basic_map(bmap); map = isl_map_intersect(map, app); return map; error: isl_vec_free(obj); isl_basic_map_free(bmap); isl_basic_set_free(aff); isl_set_free(dom); isl_set_free(ran); isl_map_free(map); isl_set_free(delta); isl_int_clear(opt); return NULL; } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive closure of this map, i.e., * * { i -> j : exists k > 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * domain and range of the original map. */ static __isl_give isl_map *box_closure(__isl_take isl_map *map) { isl_set *domain; isl_set *range; domain = isl_map_domain(isl_map_copy(map)); domain = isl_set_coalesce(domain); range = isl_map_range(isl_map_copy(map)); range = isl_set_coalesce(range); return box_closure_on_domain(map, domain, range, 0); } /* Given a map, compute the smallest superset of this map that is of the form * * { i -> j : L <= j - i <= U and exists a_p: j_p - i_p = M_p a_p } * * (where p ranges over the (non-parametric) dimensions), * compute the transitive and partially reflexive closure of this map, i.e., * * { i -> j : exists k >= 0: * k L <= j - i <= k U and exists a: j_p - i_p = M_p a_p } * * and intersect domain and range of this transitive closure with * the given domain. */ static __isl_give isl_map *box_closure_with_identity(__isl_take isl_map *map, __isl_take isl_set *dom) { return box_closure_on_domain(map, dom, isl_set_copy(dom), 1); } /* Check whether app is the transitive closure of map. * In particular, check that app is acyclic and, if so, * check that * * app \subset (map \cup (map \circ app)) */ static int check_exactness_omega(__isl_keep isl_map *map, __isl_keep isl_map *app) { isl_set *delta; int i; int is_empty, is_exact; unsigned d; isl_map *test; delta = isl_map_deltas(isl_map_copy(app)); d = isl_set_dim(delta, isl_dim_set); for (i = 0; i < d; ++i) delta = isl_set_fix_si(delta, isl_dim_set, i, 0); is_empty = isl_set_is_empty(delta); isl_set_free(delta); if (is_empty < 0) return -1; if (!is_empty) return 0; test = isl_map_apply_range(isl_map_copy(app), isl_map_copy(map)); test = isl_map_union(test, isl_map_copy(map)); is_exact = isl_map_is_subset(app, test); isl_map_free(test); return is_exact; } /* Check if basic map M_i can be combined with all the other * basic maps such that * * (\cup_j M_j)^+ * * can be computed as * * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ * * In particular, check if we can compute a compact representation * of * * M_i^* \circ M_j \circ M_i^* * * for each j != i. * Let M_i^? be an extension of M_i^+ that allows paths * of length zero, i.e., the result of box_closure(., 1). * The criterion, as proposed by Kelly et al., is that * id = M_i^? - M_i^+ can be represented as a basic map * and that * * id \circ M_j \circ id = M_j * * for each j != i. * * If this function returns 1, then tc and qc are set to * M_i^+ and M_i^?, respectively. */ static int can_be_split_off(__isl_keep isl_map *map, int i, __isl_give isl_map **tc, __isl_give isl_map **qc) { isl_map *map_i, *id = NULL; int j = -1; isl_set *C; *tc = NULL; *qc = NULL; C = isl_set_union(isl_map_domain(isl_map_copy(map)), isl_map_range(isl_map_copy(map))); C = isl_set_from_basic_set(isl_set_simple_hull(C)); if (!C) goto error; map_i = isl_map_from_basic_map(isl_basic_map_copy(map->p[i])); *tc = box_closure(isl_map_copy(map_i)); *qc = box_closure_with_identity(map_i, C); id = isl_map_subtract(isl_map_copy(*qc), isl_map_copy(*tc)); if (!id || !*qc) goto error; if (id->n != 1 || (*qc)->n != 1) goto done; for (j = 0; j < map->n; ++j) { isl_map *map_j, *test; int is_ok; if (i == j) continue; map_j = isl_map_from_basic_map( isl_basic_map_copy(map->p[j])); test = isl_map_apply_range(isl_map_copy(id), isl_map_copy(map_j)); test = isl_map_apply_range(test, isl_map_copy(id)); is_ok = isl_map_is_equal(test, map_j); isl_map_free(map_j); isl_map_free(test); if (is_ok < 0) goto error; if (!is_ok) break; } done: isl_map_free(id); if (j == map->n) return 1; isl_map_free(*qc); isl_map_free(*tc); *qc = NULL; *tc = NULL; return 0; error: isl_map_free(id); isl_map_free(*qc); isl_map_free(*tc); *qc = NULL; *tc = NULL; return -1; } static __isl_give isl_map *box_closure_with_check(__isl_take isl_map *map, int *exact) { isl_map *app; app = box_closure(isl_map_copy(map)); if (exact) *exact = check_exactness_omega(map, app); isl_map_free(map); return app; } /* Compute an overapproximation of the transitive closure of "map" * using a variation of the algorithm from * "Transitive Closure of Infinite Graphs and its Applications" * by Kelly et al. * * We first check whether we can can split of any basic map M_i and * compute * * (\cup_j M_j)^+ * * as * * M_i \cup (\cup_{j \ne i} M_i^* \circ M_j \circ M_i^*)^+ * * using a recursive call on the remaining map. * * If not, we simply call box_closure on the whole map. */ static __isl_give isl_map *transitive_closure_omega(__isl_take isl_map *map, int *exact) { int i, j; int exact_i; isl_map *app; if (!map) return NULL; if (map->n == 1) return box_closure_with_check(map, exact); for (i = 0; i < map->n; ++i) { int ok; isl_map *qc, *tc; ok = can_be_split_off(map, i, &tc, &qc); if (ok < 0) goto error; if (!ok) continue; app = isl_map_alloc_space(isl_map_get_space(map), map->n - 1, 0); for (j = 0; j < map->n; ++j) { if (j == i) continue; app = isl_map_add_basic_map(app, isl_basic_map_copy(map->p[j])); } app = isl_map_apply_range(isl_map_copy(qc), app); app = isl_map_apply_range(app, qc); app = isl_map_union(tc, transitive_closure_omega(app, NULL)); exact_i = check_exactness_omega(map, app); if (exact_i == 1) { if (exact) *exact = exact_i; isl_map_free(map); return app; } isl_map_free(app); if (exact_i < 0) goto error; } return box_closure_with_check(map, exact); error: isl_map_free(map); return NULL; } /* Compute the transitive closure of "map", or an overapproximation. * If the result is exact, then *exact is set to 1. * Simply use map_power to compute the powers of map, but tell * it to project out the lengths of the paths instead of equating * the length to a parameter. */ __isl_give isl_map *isl_map_transitive_closure(__isl_take isl_map *map, int *exact) { isl_space *target_dim; int closed; if (!map) goto error; if (map->ctx->opt->closure == ISL_CLOSURE_BOX) return transitive_closure_omega(map, exact); map = isl_map_compute_divs(map); map = isl_map_coalesce(map); closed = isl_map_is_transitively_closed(map); if (closed < 0) goto error; if (closed) { if (exact) *exact = 1; return map; } target_dim = isl_map_get_space(map); map = map_power(map, exact, 1); map = isl_map_reset_space(map, target_dim); return map; error: isl_map_free(map); return NULL; } static isl_stat inc_count(__isl_take isl_map *map, void *user) { int *n = user; *n += map->n; isl_map_free(map); return isl_stat_ok; } static isl_stat collect_basic_map(__isl_take isl_map *map, void *user) { int i; isl_basic_map ***next = user; for (i = 0; i < map->n; ++i) { **next = isl_basic_map_copy(map->p[i]); if (!**next) goto error; (*next)++; } isl_map_free(map); return isl_stat_ok; error: isl_map_free(map); return isl_stat_error; } /* Perform Floyd-Warshall on the given list of basic relations. * The basic relations may live in different dimensions, * but basic relations that get assigned to the diagonal of the * grid have domains and ranges of the same dimension and so * the standard algorithm can be used because the nested transitive * closures are only applied to diagonal elements and because all * compositions are peformed on relations with compatible domains and ranges. */ static __isl_give isl_union_map *union_floyd_warshall_on_list(isl_ctx *ctx, __isl_keep isl_basic_map **list, int n, int *exact) { int i, j, k; int n_group; int *group = NULL; isl_set **set = NULL; isl_map ***grid = NULL; isl_union_map *app; group = setup_groups(ctx, list, n, &set, &n_group); if (!group) goto error; grid = isl_calloc_array(ctx, isl_map **, n_group); if (!grid) goto error; for (i = 0; i < n_group; ++i) { grid[i] = isl_calloc_array(ctx, isl_map *, n_group); if (!grid[i]) goto error; for (j = 0; j < n_group; ++j) { isl_space *dim1, *dim2, *dim; dim1 = isl_space_reverse(isl_set_get_space(set[i])); dim2 = isl_set_get_space(set[j]); dim = isl_space_join(dim1, dim2); grid[i][j] = isl_map_empty(dim); } } for (k = 0; k < n; ++k) { i = group[2 * k]; j = group[2 * k + 1]; grid[i][j] = isl_map_union(grid[i][j], isl_map_from_basic_map( isl_basic_map_copy(list[k]))); } floyd_warshall_iterate(grid, n_group, exact); app = isl_union_map_empty(isl_map_get_space(grid[0][0])); for (i = 0; i < n_group; ++i) { for (j = 0; j < n_group; ++j) app = isl_union_map_add_map(app, grid[i][j]); free(grid[i]); } free(grid); for (i = 0; i < 2 * n; ++i) isl_set_free(set[i]); free(set); free(group); return app; error: if (grid) for (i = 0; i < n_group; ++i) { if (!grid[i]) continue; for (j = 0; j < n_group; ++j) isl_map_free(grid[i][j]); free(grid[i]); } free(grid); if (set) { for (i = 0; i < 2 * n; ++i) isl_set_free(set[i]); free(set); } free(group); return NULL; } /* Perform Floyd-Warshall on the given union relation. * The implementation is very similar to that for non-unions. * The main difference is that it is applied unconditionally. * We first extract a list of basic maps from the union map * and then perform the algorithm on this list. */ static __isl_give isl_union_map *union_floyd_warshall( __isl_take isl_union_map *umap, int *exact) { int i, n; isl_ctx *ctx; isl_basic_map **list = NULL; isl_basic_map **next; isl_union_map *res; n = 0; if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) goto error; ctx = isl_union_map_get_ctx(umap); list = isl_calloc_array(ctx, isl_basic_map *, n); if (!list) goto error; next = list; if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) goto error; res = union_floyd_warshall_on_list(ctx, list, n, exact); if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); return res; error: if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); return NULL; } /* Decompose the give union relation into strongly connected components. * The implementation is essentially the same as that of * construct_power_components with the major difference that all * operations are performed on union maps. */ static __isl_give isl_union_map *union_components( __isl_take isl_union_map *umap, int *exact) { int i; int n; isl_ctx *ctx; isl_basic_map **list = NULL; isl_basic_map **next; isl_union_map *path = NULL; struct isl_tc_follows_data data; struct isl_tarjan_graph *g = NULL; int c, l; int recheck = 0; n = 0; if (isl_union_map_foreach_map(umap, inc_count, &n) < 0) goto error; if (n == 0) return umap; if (n <= 1) return union_floyd_warshall(umap, exact); ctx = isl_union_map_get_ctx(umap); list = isl_calloc_array(ctx, isl_basic_map *, n); if (!list) goto error; next = list; if (isl_union_map_foreach_map(umap, collect_basic_map, &next) < 0) goto error; data.list = list; data.check_closed = 0; g = isl_tarjan_graph_init(ctx, n, &basic_map_follows, &data); if (!g) goto error; c = 0; i = 0; l = n; path = isl_union_map_empty(isl_union_map_get_space(umap)); while (l) { isl_union_map *comp; isl_union_map *path_comp, *path_comb; comp = isl_union_map_empty(isl_union_map_get_space(umap)); while (g->order[i] != -1) { comp = isl_union_map_add_map(comp, isl_map_from_basic_map( isl_basic_map_copy(list[g->order[i]]))); --l; ++i; } path_comp = union_floyd_warshall(comp, exact); path_comb = isl_union_map_apply_range(isl_union_map_copy(path), isl_union_map_copy(path_comp)); path = isl_union_map_union(path, path_comp); path = isl_union_map_union(path, path_comb); ++i; ++c; } if (c > 1 && data.check_closed && !*exact) { int closed; closed = isl_union_map_is_transitively_closed(path); if (closed < 0) goto error; recheck = !closed; } isl_tarjan_graph_free(g); for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); if (recheck) { isl_union_map_free(path); return union_floyd_warshall(umap, exact); } isl_union_map_free(umap); return path; error: isl_tarjan_graph_free(g); if (list) { for (i = 0; i < n; ++i) isl_basic_map_free(list[i]); free(list); } isl_union_map_free(umap); isl_union_map_free(path); return NULL; } /* Compute the transitive closure of "umap", or an overapproximation. * If the result is exact, then *exact is set to 1. */ __isl_give isl_union_map *isl_union_map_transitive_closure( __isl_take isl_union_map *umap, int *exact) { int closed; if (!umap) return NULL; if (exact) *exact = 1; umap = isl_union_map_compute_divs(umap); umap = isl_union_map_coalesce(umap); closed = isl_union_map_is_transitively_closed(umap); if (closed < 0) goto error; if (closed) return umap; umap = union_components(umap, exact); return umap; error: isl_union_map_free(umap); return NULL; } struct isl_union_power { isl_union_map *pow; int *exact; }; static isl_stat power(__isl_take isl_map *map, void *user) { struct isl_union_power *up = user; map = isl_map_power(map, up->exact); up->pow = isl_union_map_from_map(map); return isl_stat_error; } /* Construct a map [x] -> [x+1], with parameters prescribed by "dim". */ static __isl_give isl_union_map *increment(__isl_take isl_space *dim) { int k; isl_basic_map *bmap; dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bmap = isl_basic_map_alloc_space(dim, 0, 1, 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->eq[k], isl_basic_map_total_dim(bmap)); isl_int_set_si(bmap->eq[k][0], 1); isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_in)], 1); isl_int_set_si(bmap->eq[k][isl_basic_map_offset(bmap, isl_dim_out)], -1); return isl_union_map_from_map(isl_map_from_basic_map(bmap)); error: isl_basic_map_free(bmap); return NULL; } /* Construct a map [[x]->[y]] -> [y-x], with parameters prescribed by "dim". */ static __isl_give isl_union_map *deltas_map(__isl_take isl_space *dim) { isl_basic_map *bmap; dim = isl_space_add_dims(dim, isl_dim_in, 1); dim = isl_space_add_dims(dim, isl_dim_out, 1); bmap = isl_basic_map_universe(dim); bmap = isl_basic_map_deltas_map(bmap); return isl_union_map_from_map(isl_map_from_basic_map(bmap)); } /* Compute the positive powers of "map", or an overapproximation. * The result maps the exponent to a nested copy of the corresponding power. * If the result is exact, then *exact is set to 1. */ __isl_give isl_union_map *isl_union_map_power(__isl_take isl_union_map *umap, int *exact) { int n; isl_union_map *inc; isl_union_map *dm; if (!umap) return NULL; n = isl_union_map_n_map(umap); if (n == 0) return umap; if (n == 1) { struct isl_union_power up = { NULL, exact }; isl_union_map_foreach_map(umap, &power, &up); isl_union_map_free(umap); return up.pow; } inc = increment(isl_union_map_get_space(umap)); umap = isl_union_map_product(inc, umap); umap = isl_union_map_transitive_closure(umap, exact); umap = isl_union_map_zip(umap); dm = deltas_map(isl_union_map_get_space(umap)); umap = isl_union_map_apply_domain(umap, dm); return umap; } #undef TYPE #define TYPE isl_map #include "isl_power_templ.c" #undef TYPE #define TYPE isl_union_map #include "isl_power_templ.c" isl-0.16.1/isl_scan.c0000664000175000017500000001674512645737061011300 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include "isl_basis_reduction.h" #include "isl_scan.h" #include #include "isl_tab.h" #include #include struct isl_counter { struct isl_scan_callback callback; isl_int count; isl_int max; }; static isl_stat increment_counter(struct isl_scan_callback *cb, __isl_take isl_vec *sample) { struct isl_counter *cnt = (struct isl_counter *)cb; isl_int_add_ui(cnt->count, cnt->count, 1); isl_vec_free(sample); if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max)) return isl_stat_ok; return isl_stat_error; } static int increment_range(struct isl_scan_callback *cb, isl_int min, isl_int max) { struct isl_counter *cnt = (struct isl_counter *)cb; isl_int_add(cnt->count, cnt->count, max); isl_int_sub(cnt->count, cnt->count, min); isl_int_add_ui(cnt->count, cnt->count, 1); if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max)) return 0; isl_int_set(cnt->count, cnt->max); return -1; } /* Call callback->add with the current sample value of the tableau "tab". */ static int add_solution(struct isl_tab *tab, struct isl_scan_callback *callback) { struct isl_vec *sample; if (!tab) return -1; sample = isl_tab_get_sample_value(tab); if (!sample) return -1; return callback->add(callback, sample); } static int scan_0D(struct isl_basic_set *bset, struct isl_scan_callback *callback) { struct isl_vec *sample; sample = isl_vec_alloc(bset->ctx, 1); isl_basic_set_free(bset); if (!sample) return -1; isl_int_set_si(sample->el[0], 1); return callback->add(callback, sample); } /* Look for all integer points in "bset", which is assumed to be bounded, * and call callback->add on each of them. * * We first compute a reduced basis for the set and then scan * the set in the directions of this basis. * We basically perform a depth first search, where in each level i * we compute the range in the i-th basis vector direction, given * fixed values in the directions of the previous basis vector. * We then add an equality to the tableau fixing the value in the * direction of the current basis vector to each value in the range * in turn and then continue to the next level. * * The search is implemented iteratively. "level" identifies the current * basis vector. "init" is true if we want the first value at the current * level and false if we want the next value. * Solutions are added in the leaves of the search tree, i.e., after * we have fixed a value in each direction of the basis. */ int isl_basic_set_scan(struct isl_basic_set *bset, struct isl_scan_callback *callback) { unsigned dim; struct isl_mat *B = NULL; struct isl_tab *tab = NULL; struct isl_vec *min; struct isl_vec *max; struct isl_tab_undo **snap; int level; int init; enum isl_lp_result res; if (!bset) return -1; dim = isl_basic_set_total_dim(bset); if (dim == 0) return scan_0D(bset, callback); min = isl_vec_alloc(bset->ctx, dim); max = isl_vec_alloc(bset->ctx, dim); snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim); if (!min || !max || !snap) goto error; tab = isl_tab_from_basic_set(bset, 0); if (!tab) goto error; if (isl_tab_extend_cons(tab, dim + 1) < 0) goto error; tab->basis = isl_mat_identity(bset->ctx, 1 + dim); if (1) tab = isl_tab_compute_reduced_basis(tab); if (!tab) goto error; B = isl_mat_copy(tab->basis); if (!B) goto error; level = 0; init = 1; while (level >= 0) { int empty = 0; if (init) { res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &min->el[level], NULL, 0); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); res = isl_tab_min(tab, B->row[1 + level], bset->ctx->one, &max->el[level], NULL, 0); isl_seq_neg(B->row[1 + level] + 1, B->row[1 + level] + 1, dim); isl_int_neg(max->el[level], max->el[level]); if (res == isl_lp_empty) empty = 1; if (res == isl_lp_error || res == isl_lp_unbounded) goto error; snap[level] = isl_tab_snap(tab); } else isl_int_add_ui(min->el[level], min->el[level], 1); if (empty || isl_int_gt(min->el[level], max->el[level])) { level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } if (level == dim - 1 && callback->add == increment_counter) { if (increment_range(callback, min->el[level], max->el[level])) goto error; level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, snap[level]) < 0) goto error; continue; } isl_int_neg(B->row[1 + level][0], min->el[level]); if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0) goto error; isl_int_set_si(B->row[1 + level][0], 0); if (level < dim - 1) { ++level; init = 1; continue; } if (add_solution(tab, callback) < 0) goto error; init = 0; if (isl_tab_rollback(tab, snap[level]) < 0) goto error; } isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return 0; error: isl_tab_free(tab); free(snap); isl_vec_free(min); isl_vec_free(max); isl_basic_set_free(bset); isl_mat_free(B); return -1; } int isl_set_scan(__isl_take isl_set *set, struct isl_scan_callback *callback) { int i; if (!set || !callback) goto error; set = isl_set_cow(set); set = isl_set_make_disjoint(set); set = isl_set_compute_divs(set); if (!set) goto error; for (i = 0; i < set->n; ++i) if (isl_basic_set_scan(isl_basic_set_copy(set->p[i]), callback) < 0) goto error; isl_set_free(set); return 0; error: isl_set_free(set); return -1; } int isl_basic_set_count_upto(__isl_keep isl_basic_set *bset, isl_int max, isl_int *count) { struct isl_counter cnt = { { &increment_counter } }; if (!bset) return -1; isl_int_init(cnt.count); isl_int_init(cnt.max); isl_int_set_si(cnt.count, 0); isl_int_set(cnt.max, max); if (isl_basic_set_scan(isl_basic_set_copy(bset), &cnt.callback) < 0 && isl_int_lt(cnt.count, cnt.max)) goto error; isl_int_set(*count, cnt.count); isl_int_clear(cnt.max); isl_int_clear(cnt.count); return 0; error: isl_int_clear(cnt.count); return -1; } int isl_set_count_upto(__isl_keep isl_set *set, isl_int max, isl_int *count) { struct isl_counter cnt = { { &increment_counter } }; if (!set) return -1; isl_int_init(cnt.count); isl_int_init(cnt.max); isl_int_set_si(cnt.count, 0); isl_int_set(cnt.max, max); if (isl_set_scan(isl_set_copy(set), &cnt.callback) < 0 && isl_int_lt(cnt.count, cnt.max)) goto error; isl_int_set(*count, cnt.count); isl_int_clear(cnt.max); isl_int_clear(cnt.count); return 0; error: isl_int_clear(cnt.count); return -1; } int isl_set_count(__isl_keep isl_set *set, isl_int *count) { if (!set) return -1; return isl_set_count_upto(set, set->ctx->zero, count); } /* Count the total number of elements in "set" (in an inefficient way) and * return the result. */ __isl_give isl_val *isl_set_count_val(__isl_keep isl_set *set) { isl_val *v; if (!set) return NULL; v = isl_val_zero(isl_set_get_ctx(set)); v = isl_val_cow(v); if (!v) return NULL; if (isl_set_count(set, &v->n) < 0) v = isl_val_free(v); return v; } isl-0.16.1/isl_union_multi.c0000664000175000017500000003050112645737061012700 00000000000000/* * Copyright 2010 INRIA Saclay * Copyright 2013 Ecole Normale Superieure * Copyright 2015 INRIA Paris-Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France * and INRIA Paris-Rocquencourt, Domaine de Voluceau, Rocquenqourt, B.P. 105, * 78153 Le Chesnay Cedex France */ #include #include /* A group of expressions defined over the same domain space "domain_space". * The entries of "part_table" are the individual expressions, * keyed on the entire space of the expression. * * Each UNION has its own groups, so there can only ever be a single * reference to each group. */ S(UNION,group) { isl_space *domain_space; struct isl_hash_table part_table; }; /* A union of expressions defined over different disjoint domains. * "space" describes the parameters. * The entries of "table" are keyed on the domain space of the entry and * contain groups of expressions that are defined over the same domain space. */ struct UNION { int ref; isl_space *space; struct isl_hash_table table; }; /* Internal data structure for isl_union_*_foreach_group. * "fn" is the function that needs to be called on each group. */ S(UNION,foreach_group_data) { isl_stat (*fn)(__isl_keep S(UNION,group) *group, void *user); void *user; }; /* Call data->fn on the group stored at *entry. */ static isl_stat FN(UNION,call_on_group)(void **entry, void *user) { S(UNION,group) *group = *entry; S(UNION,foreach_group_data) *data; data = (S(UNION,foreach_group_data) *) user; return data->fn(group, data->user); } /* Call "fn" on each group of expressions in "u". */ static isl_stat FN(UNION,foreach_group)(__isl_keep UNION *u, isl_stat (*fn)(__isl_keep S(UNION,group) *group, void *user), void *user) { S(UNION,foreach_group_data) data = { fn, user }; if (!u) return isl_stat_error; return isl_hash_table_foreach(u->space->ctx, &u->table, &FN(UNION,call_on_group), &data); } /* A isl_union_*_foreach_group callback for counting the total number * of expressions in a UNION. Add the number of expressions in "group" * to *n. */ static isl_stat FN(UNION,count_part)(__isl_keep S(UNION,group) *group, void *user) { int *n = user; if (!group) return isl_stat_error; *n += group->part_table.n; return isl_stat_ok; } /* Return the number of base expressions in "u". */ int FN(FN(UNION,n),PARTS)(__isl_keep UNION *u) { int n; n = 0; if (FN(UNION,foreach_group)(u, &FN(UNION,count_part), &n) < 0) n = -1; return n; } /* Free an entry in a group of expressions. * Each entry in such a group is a single expression. */ static isl_stat FN(UNION,free_group_entry)(void **entry, void *user) { PART *part = *entry; FN(PART,free)(part); return isl_stat_ok; } /* Free all memory allocated for "group" and return NULL. */ static __isl_null S(UNION,group) *FN(UNION,group_free)( __isl_take S(UNION,group) *group) { isl_ctx *ctx; if (!group) return NULL; ctx = isl_space_get_ctx(group->domain_space); isl_hash_table_foreach(ctx, &group->part_table, &FN(UNION,free_group_entry), NULL); isl_hash_table_clear(&group->part_table); isl_space_free(group->domain_space); free(group); return NULL; } /* Allocate a group of expressions defined over the same domain space * with domain space "domain_space" and initial size "size". */ static __isl_give S(UNION,group) *FN(UNION,group_alloc)( __isl_take isl_space *domain_space, int size) { isl_ctx *ctx; S(UNION,group) *group; if (!domain_space) return NULL; ctx = isl_space_get_ctx(domain_space); group = isl_calloc_type(ctx, S(UNION,group)); if (!group) goto error; group->domain_space = domain_space; if (isl_hash_table_init(ctx, &group->part_table, size) < 0) return FN(UNION,group_free)(group); return group; error: isl_space_free(domain_space); return NULL; } /* Is the space of "entry" equal to "space"? */ static int FN(UNION,has_space)(const void *entry, const void *val) { PART *part = (PART *) entry; isl_space *space = (isl_space *) val; return isl_space_is_equal(part->dim, space); } /* Return a group equal to "group", but with a single reference. * Since all groups have only a single reference, simply return "group". */ static __isl_give S(UNION,group) *FN(UNION,group_cow)( __isl_take S(UNION,group) *group) { return group; } S(UNION,foreach_data) { isl_stat (*fn)(__isl_take PART *part, void *user); void *user; }; static isl_stat FN(UNION,call_on_copy)(void **entry, void *user) { PART *part = *entry; S(UNION,foreach_data) *data = (S(UNION,foreach_data) *) user; part = FN(PART,copy)(part); if (!part) return isl_stat_error; return data->fn(part, data->user); } /* Call data->fn on a copy of each expression in "group". */ static isl_stat FN(UNION,group_call_on_copy)(__isl_keep S(UNION,group) *group, void *user) { isl_ctx *ctx; if (!group) return isl_stat_error; ctx = isl_space_get_ctx(group->domain_space); return isl_hash_table_foreach(ctx, &group->part_table, &FN(UNION,call_on_copy), user); } isl_stat FN(FN(UNION,foreach),PARTS)(__isl_keep UNION *u, isl_stat (*fn)(__isl_take PART *part, void *user), void *user) { S(UNION,foreach_data) data = { fn, user }; if (!u) return isl_stat_error; return FN(UNION,foreach_group)(u, &FN(UNION,group_call_on_copy), &data); } /* Is the domain space of the group of expressions at "entry" * equal to "space"? */ static int FN(UNION,group_has_domain_space)(const void *entry, const void *val) { S(UNION,group) *group = (S(UNION,group) *) entry; isl_space *space = (isl_space *) val; return isl_space_is_domain_internal(group->domain_space, space); } /* Return the entry, if any, in "u" that lives in "space". * If "reserve" is set, then an entry is created if it does not exist yet. * Return NULL on error and isl_hash_table_entry_none if no entry was found. * Note that when "reserve" is set, the function will never return * isl_hash_table_entry_none. * * First look for the group of expressions with the same domain space, * creating one if needed. * Then look for the expression living in the specified space in that group. */ static struct isl_hash_table_entry *FN(UNION,find_part_entry)( __isl_keep UNION *u, __isl_keep isl_space *space, int reserve) { isl_ctx *ctx; uint32_t hash; struct isl_hash_table_entry *group_entry, *part_entry; S(UNION,group) *group; if (!u || !space) return NULL; ctx = FN(UNION,get_ctx)(u); hash = isl_space_get_domain_hash(space); group_entry = isl_hash_table_find(ctx, &u->table, hash, &FN(UNION,group_has_domain_space), space, reserve); if (!group_entry) return reserve ? NULL : isl_hash_table_entry_none; if (reserve && !group_entry->data) { isl_space *domain = isl_space_domain(isl_space_copy(space)); group = FN(UNION,group_alloc)(domain, 1); group_entry->data = group; } else { group = group_entry->data; if (reserve) group = FN(UNION,group_cow)(group); } if (!group) return NULL; hash = isl_space_get_hash(space); part_entry = isl_hash_table_find(ctx, &group->part_table, hash, &FN(UNION,has_space), space, reserve); if (!reserve && !part_entry) return isl_hash_table_entry_none; return part_entry; } /* Remove "part_entry" from the hash table of "u". * * First look the group_entry in "u" holding the group that * contains "part_entry". Remove "part_entry" from that group. * If the group becomes empty, then also remove the group_entry from "u". */ static __isl_give UNION *FN(UNION,remove_part_entry)(__isl_take UNION *u, struct isl_hash_table_entry *part_entry) { isl_ctx *ctx; uint32_t hash; PART *part; struct isl_hash_table_entry *group_entry; S(UNION,group) *group; if (!u || !part_entry) return FN(UNION,free)(u); part = part_entry->data; ctx = FN(UNION,get_ctx)(u); hash = isl_space_get_domain_hash(part->dim); group_entry = isl_hash_table_find(ctx, &u->table, hash, &FN(UNION,group_has_domain_space), part->dim, 0); if (!group_entry) isl_die(ctx, isl_error_internal, "missing group", return FN(UNION,free)(u)); group = group_entry->data; isl_hash_table_remove(ctx, &group->part_table, part_entry); FN(PART,free)(part); if (group->part_table.n != 0) return u; isl_hash_table_remove(ctx, &u->table, group_entry); FN(UNION,group_free)(group); return u; } /* Are the domains of "part1" and "part2" disjoint? */ static isl_bool FN(UNION,disjoint_domain)(__isl_keep PART *part1, __isl_keep PART *part2) { isl_set *dom1, *dom2; isl_bool disjoint; if (!part1 || !part2) return isl_bool_error; dom1 = FN(PART,domain)(FN(PART,copy)(part1)); dom2 = FN(PART,domain)(FN(PART,copy)(part2)); disjoint = isl_set_is_disjoint(dom1, dom2); isl_set_free(dom1); isl_set_free(dom2); return disjoint; } /* Check that the expression at *entry has a domain that is disjoint * from that of "part", unless they also have the same target space. */ static isl_stat FN(UNION,check_disjoint_domain_entry)(void **entry, void *user) { PART *part = user; PART *other = *entry; isl_bool equal; isl_bool disjoint; equal = isl_space_is_equal(part->dim, other->dim); if (equal < 0) return isl_stat_error; if (equal) return isl_stat_ok; disjoint = FN(UNION,disjoint_domain)(part, other); if (disjoint < 0) return isl_stat_error; if (!disjoint) isl_die(FN(PART,get_ctx)(part), isl_error_invalid, "overlapping domain with other part", return isl_stat_error); return isl_stat_ok; } /* Check that the domain of "part" is disjoint from the domain of the entries * in "u" that are defined on the same domain space, but have a different * target space. * If there is no group of expressions in "u" with the same domain space, * then everything is fine. Otherwise, check the individual expressions * in that group. */ static isl_stat FN(UNION,check_disjoint_domain_other)(__isl_keep UNION *u, __isl_keep PART *part) { isl_ctx *ctx; uint32_t hash; struct isl_hash_table_entry *group_entry; S(UNION,group) *group; if (!u || !part) return isl_stat_error; ctx = FN(UNION,get_ctx)(u); hash = isl_space_get_domain_hash(part->dim); group_entry = isl_hash_table_find(ctx, &u->table, hash, &FN(UNION,group_has_domain_space), part->dim, 0); if (!group_entry) return isl_stat_ok; group = group_entry->data; return isl_hash_table_foreach(ctx, &group->part_table, &FN(UNION,check_disjoint_domain_entry), part); } /* Check that the domain of "part1" is disjoint from the domain of "part2". * This check is performed before "part2" is added to a UNION to ensure * that the UNION expression remains a function. */ static isl_stat FN(UNION,check_disjoint_domain)(__isl_keep PART *part1, __isl_keep PART *part2) { isl_bool disjoint; disjoint = FN(UNION,disjoint_domain)(part1, part2); if (disjoint < 0) return isl_stat_error; if (!disjoint) isl_die(FN(PART,get_ctx)(part1), isl_error_invalid, "domain of additional part should be disjoint", return isl_stat_error); return isl_stat_ok; } /* Internal data structure for isl_union_*_foreach_inplace. * "fn" is the function that needs to be called on each entry. */ S(UNION,foreach_inplace_data) { isl_stat (*fn)(void **entry, void *user); void *user; }; /* isl_union_*_foreach_group callback for calling data->fn on * each part entry in the group. */ static isl_stat FN(UNION,group_call_inplace)(__isl_keep S(UNION,group) *group, void *user) { isl_ctx *ctx; S(UNION,foreach_inplace_data) *data; if (!group) return isl_stat_error; data = (S(UNION,foreach_inplace_data) *) user; ctx = isl_space_get_ctx(group->domain_space); return isl_hash_table_foreach(ctx, &group->part_table, data->fn, data->user); } /* Call "fn" on each part entry of "u". */ static isl_stat FN(UNION,foreach_inplace)(__isl_keep UNION *u, isl_stat (*fn)(void **part, void *user), void *user) { S(UNION,foreach_inplace_data) data = { fn, user }; return FN(UNION,foreach_group)(u, &FN(UNION,group_call_inplace), &data); } /* Does "u" have a single reference? * That is, can we change "u" inplace? */ static isl_bool FN(UNION,has_single_reference)(__isl_keep UNION *u) { if (!u) return isl_bool_error; return u->ref == 1; } static isl_stat FN(UNION,free_u_entry)(void **entry, void *user) { S(UNION,group) *group = *entry; FN(UNION,group_free)(group); return isl_stat_ok; } #include isl-0.16.1/isl_dim_map.c0000664000175000017500000001253412645737060011751 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010-2011 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include struct isl_dim_map_entry { int pos; int sgn; }; /* Maps dst positions to src positions */ struct isl_dim_map { unsigned len; struct isl_dim_map_entry m[1]; }; __isl_give isl_dim_map *isl_dim_map_alloc(isl_ctx *ctx, unsigned len) { int i; struct isl_dim_map *dim_map; dim_map = isl_alloc(ctx, struct isl_dim_map, sizeof(struct isl_dim_map) + len * sizeof(struct isl_dim_map_entry)); if (!dim_map) return NULL; dim_map->len = 1 + len; dim_map->m[0].pos = 0; dim_map->m[0].sgn = 1; for (i = 0; i < len; ++i) dim_map->m[1 + i].sgn = 0; return dim_map; } void isl_dim_map_range(__isl_keep isl_dim_map *dim_map, unsigned dst_pos, unsigned dst_stride, unsigned src_pos, unsigned src_stride, unsigned n, int sign) { int i; if (!dim_map) return; for (i = 0; i < n; ++i) { unsigned d = 1 + dst_pos + dst_stride * i; unsigned s = 1 + src_pos + src_stride * i; dim_map->m[d].pos = s; dim_map->m[d].sgn = sign; } } void isl_dim_map_dim_range(__isl_keep isl_dim_map *dim_map, __isl_keep isl_space *dim, enum isl_dim_type type, unsigned first, unsigned n, unsigned dst_pos) { int i; unsigned src_pos; if (!dim_map || !dim) return; src_pos = 1 + isl_space_offset(dim, type); for (i = 0; i < n; ++i) { dim_map->m[1 + dst_pos + i].pos = src_pos + first + i; dim_map->m[1 + dst_pos + i].sgn = 1; } } void isl_dim_map_dim(__isl_keep isl_dim_map *dim_map, __isl_keep isl_space *dim, enum isl_dim_type type, unsigned dst_pos) { isl_dim_map_dim_range(dim_map, dim, type, 0, isl_space_dim(dim, type), dst_pos); } void isl_dim_map_div(__isl_keep isl_dim_map *dim_map, __isl_keep isl_basic_map *bmap, unsigned dst_pos) { int i; unsigned src_pos; if (!dim_map || !bmap) return; src_pos = 1 + isl_space_dim(bmap->dim, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) { dim_map->m[1 + dst_pos + i].pos = src_pos + i; dim_map->m[1 + dst_pos + i].sgn = 1; } } void isl_dim_map_dump(struct isl_dim_map *dim_map) { int i; for (i = 0; i < dim_map->len; ++i) fprintf(stderr, "%d -> %d * %d; ", i, dim_map->m[i].sgn, dim_map->m[i].pos); fprintf(stderr, "\n"); } static void copy_constraint_dim_map(isl_int *dst, isl_int *src, struct isl_dim_map *dim_map) { int i; for (i = 0; i < dim_map->len; ++i) { if (dim_map->m[i].sgn == 0) isl_int_set_si(dst[i], 0); else if (dim_map->m[i].sgn > 0) isl_int_set(dst[i], src[dim_map->m[i].pos]); else isl_int_neg(dst[i], src[dim_map->m[i].pos]); } } static void copy_div_dim_map(isl_int *dst, isl_int *src, struct isl_dim_map *dim_map) { isl_int_set(dst[0], src[0]); copy_constraint_dim_map(dst+1, src+1, dim_map); } __isl_give isl_basic_map *isl_basic_map_add_constraints_dim_map( __isl_take isl_basic_map *dst, __isl_take isl_basic_map *src, __isl_take isl_dim_map *dim_map) { int i; if (!src || !dst || !dim_map) goto error; for (i = 0; i < src->n_eq; ++i) { int i1 = isl_basic_map_alloc_equality(dst); if (i1 < 0) goto error; copy_constraint_dim_map(dst->eq[i1], src->eq[i], dim_map); } for (i = 0; i < src->n_ineq; ++i) { int i1 = isl_basic_map_alloc_inequality(dst); if (i1 < 0) goto error; copy_constraint_dim_map(dst->ineq[i1], src->ineq[i], dim_map); } for (i = 0; i < src->n_div; ++i) { int i1 = isl_basic_map_alloc_div(dst); if (i1 < 0) goto error; copy_div_dim_map(dst->div[i1], src->div[i], dim_map); } free(dim_map); isl_basic_map_free(src); return dst; error: free(dim_map); isl_basic_map_free(src); isl_basic_map_free(dst); return NULL; } __isl_give isl_basic_set *isl_basic_set_add_constraints_dim_map( __isl_take isl_basic_set *dst, __isl_take isl_basic_set *src, __isl_take isl_dim_map *dim_map) { return isl_basic_map_add_constraints_dim_map(dst, src, dim_map); } /* Extend the given dim_map with mappings for the divs in bmap. */ __isl_give isl_dim_map *isl_dim_map_extend(__isl_keep isl_dim_map *dim_map, __isl_keep isl_basic_map *bmap) { int i; struct isl_dim_map *res; int offset; offset = isl_basic_map_offset(bmap, isl_dim_div); res = isl_dim_map_alloc(bmap->ctx, dim_map->len - 1 + bmap->n_div); if (!res) return NULL; for (i = 0; i < dim_map->len; ++i) res->m[i] = dim_map->m[i]; for (i = 0; i < bmap->n_div; ++i) { res->m[dim_map->len + i].pos = offset + i; res->m[dim_map->len + i].sgn = 1; } return res; } /* Extract a dim_map from a reordering. * We essentially need to reverse the mapping, and add an offset * of 1 for the constant term. */ __isl_give isl_dim_map *isl_dim_map_from_reordering( __isl_keep isl_reordering *exp) { int i; isl_ctx *ctx; struct isl_dim_map *dim_map; if (!exp) return NULL; ctx = isl_space_get_ctx(exp->dim); dim_map = isl_dim_map_alloc(ctx, isl_space_dim(exp->dim, isl_dim_all)); if (!dim_map) return NULL; for (i = 0; i < exp->len; ++i) { dim_map->m[1 + exp->pos[i]].pos = 1 + i; dim_map->m[1 + exp->pos[i]].sgn = 1; } return dim_map; } isl-0.16.1/isl_aff.c0000664000175000017500000070533412645737414011111 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2011 Sven Verdoolaege * Copyright 2012-2014 Ecole Normale Superieure * Copyright 2014 INRIA Rocquencourt * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France * and Inria Paris - Rocquencourt, Domaine de Voluceau - Rocquencourt, * B.P. 105 - 78153 Le Chesnay, France */ #include #define ISL_DIM_H #include #include #include #include #include #include #include #include #include #include #include #include #include #undef BASE #define BASE aff #include #undef BASE #define BASE pw_aff #include #undef BASE #define BASE union_pw_aff #include #undef BASE #define BASE union_pw_multi_aff #include __isl_give isl_aff *isl_aff_alloc_vec(__isl_take isl_local_space *ls, __isl_take isl_vec *v) { isl_aff *aff; if (!ls || !v) goto error; aff = isl_calloc_type(v->ctx, struct isl_aff); if (!aff) goto error; aff->ref = 1; aff->ls = ls; aff->v = v; return aff; error: isl_local_space_free(ls); isl_vec_free(v); return NULL; } __isl_give isl_aff *isl_aff_alloc(__isl_take isl_local_space *ls) { isl_ctx *ctx; isl_vec *v; unsigned total; if (!ls) return NULL; ctx = isl_local_space_get_ctx(ls); if (!isl_local_space_divs_known(ls)) isl_die(ctx, isl_error_invalid, "local space has unknown divs", goto error); if (!isl_local_space_is_set(ls)) isl_die(ctx, isl_error_invalid, "domain of affine expression should be a set", goto error); total = isl_local_space_dim(ls, isl_dim_all); v = isl_vec_alloc(ctx, 1 + 1 + total); return isl_aff_alloc_vec(ls, v); error: isl_local_space_free(ls); return NULL; } __isl_give isl_aff *isl_aff_zero_on_domain(__isl_take isl_local_space *ls) { isl_aff *aff; aff = isl_aff_alloc(ls); if (!aff) return NULL; isl_int_set_si(aff->v->el[0], 1); isl_seq_clr(aff->v->el + 1, aff->v->size - 1); return aff; } /* Return a piecewise affine expression defined on the specified domain * that is equal to zero. */ __isl_give isl_pw_aff *isl_pw_aff_zero_on_domain(__isl_take isl_local_space *ls) { return isl_pw_aff_from_aff(isl_aff_zero_on_domain(ls)); } /* Return an affine expression defined on the specified domain * that represents NaN. */ __isl_give isl_aff *isl_aff_nan_on_domain(__isl_take isl_local_space *ls) { isl_aff *aff; aff = isl_aff_alloc(ls); if (!aff) return NULL; isl_seq_clr(aff->v->el, aff->v->size); return aff; } /* Return a piecewise affine expression defined on the specified domain * that represents NaN. */ __isl_give isl_pw_aff *isl_pw_aff_nan_on_domain(__isl_take isl_local_space *ls) { return isl_pw_aff_from_aff(isl_aff_nan_on_domain(ls)); } /* Return an affine expression that is equal to "val" on * domain local space "ls". */ __isl_give isl_aff *isl_aff_val_on_domain(__isl_take isl_local_space *ls, __isl_take isl_val *val) { isl_aff *aff; if (!ls || !val) goto error; if (!isl_val_is_rat(val)) isl_die(isl_val_get_ctx(val), isl_error_invalid, "expecting rational value", goto error); aff = isl_aff_alloc(isl_local_space_copy(ls)); if (!aff) goto error; isl_seq_clr(aff->v->el + 2, aff->v->size - 2); isl_int_set(aff->v->el[1], val->n); isl_int_set(aff->v->el[0], val->d); isl_local_space_free(ls); isl_val_free(val); return aff; error: isl_local_space_free(ls); isl_val_free(val); return NULL; } /* Return an affine expression that is equal to the specified dimension * in "ls". */ __isl_give isl_aff *isl_aff_var_on_domain(__isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos) { isl_space *space; isl_aff *aff; if (!ls) return NULL; space = isl_local_space_get_space(ls); if (!space) goto error; if (isl_space_is_map(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "expecting (parameter) set space", goto error); if (pos >= isl_local_space_dim(ls, type)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "position out of bounds", goto error); isl_space_free(space); aff = isl_aff_alloc(ls); if (!aff) return NULL; pos += isl_local_space_offset(aff->ls, type); isl_int_set_si(aff->v->el[0], 1); isl_seq_clr(aff->v->el + 1, aff->v->size - 1); isl_int_set_si(aff->v->el[1 + pos], 1); return aff; error: isl_local_space_free(ls); isl_space_free(space); return NULL; } /* Return a piecewise affine expression that is equal to * the specified dimension in "ls". */ __isl_give isl_pw_aff *isl_pw_aff_var_on_domain(__isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos) { return isl_pw_aff_from_aff(isl_aff_var_on_domain(ls, type, pos)); } __isl_give isl_aff *isl_aff_copy(__isl_keep isl_aff *aff) { if (!aff) return NULL; aff->ref++; return aff; } __isl_give isl_aff *isl_aff_dup(__isl_keep isl_aff *aff) { if (!aff) return NULL; return isl_aff_alloc_vec(isl_local_space_copy(aff->ls), isl_vec_copy(aff->v)); } __isl_give isl_aff *isl_aff_cow(__isl_take isl_aff *aff) { if (!aff) return NULL; if (aff->ref == 1) return aff; aff->ref--; return isl_aff_dup(aff); } __isl_null isl_aff *isl_aff_free(__isl_take isl_aff *aff) { if (!aff) return NULL; if (--aff->ref > 0) return NULL; isl_local_space_free(aff->ls); isl_vec_free(aff->v); free(aff); return NULL; } isl_ctx *isl_aff_get_ctx(__isl_keep isl_aff *aff) { return aff ? isl_local_space_get_ctx(aff->ls) : NULL; } /* Externally, an isl_aff has a map space, but internally, the * ls field corresponds to the domain of that space. */ int isl_aff_dim(__isl_keep isl_aff *aff, enum isl_dim_type type) { if (!aff) return 0; if (type == isl_dim_out) return 1; if (type == isl_dim_in) type = isl_dim_set; return isl_local_space_dim(aff->ls, type); } /* Return the position of the dimension of the given type and name * in "aff". * Return -1 if no such dimension can be found. */ int isl_aff_find_dim_by_name(__isl_keep isl_aff *aff, enum isl_dim_type type, const char *name) { if (!aff) return -1; if (type == isl_dim_out) return -1; if (type == isl_dim_in) type = isl_dim_set; return isl_local_space_find_dim_by_name(aff->ls, type, name); } __isl_give isl_space *isl_aff_get_domain_space(__isl_keep isl_aff *aff) { return aff ? isl_local_space_get_space(aff->ls) : NULL; } __isl_give isl_space *isl_aff_get_space(__isl_keep isl_aff *aff) { isl_space *space; if (!aff) return NULL; space = isl_local_space_get_space(aff->ls); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); return space; } __isl_give isl_local_space *isl_aff_get_domain_local_space( __isl_keep isl_aff *aff) { return aff ? isl_local_space_copy(aff->ls) : NULL; } __isl_give isl_local_space *isl_aff_get_local_space(__isl_keep isl_aff *aff) { isl_local_space *ls; if (!aff) return NULL; ls = isl_local_space_copy(aff->ls); ls = isl_local_space_from_domain(ls); ls = isl_local_space_add_dims(ls, isl_dim_out, 1); return ls; } /* Externally, an isl_aff has a map space, but internally, the * ls field corresponds to the domain of that space. */ const char *isl_aff_get_dim_name(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned pos) { if (!aff) return NULL; if (type == isl_dim_out) return NULL; if (type == isl_dim_in) type = isl_dim_set; return isl_local_space_get_dim_name(aff->ls, type, pos); } __isl_give isl_aff *isl_aff_reset_domain_space(__isl_take isl_aff *aff, __isl_take isl_space *dim) { aff = isl_aff_cow(aff); if (!aff || !dim) goto error; aff->ls = isl_local_space_reset_space(aff->ls, dim); if (!aff->ls) return isl_aff_free(aff); return aff; error: isl_aff_free(aff); isl_space_free(dim); return NULL; } /* Reset the space of "aff". This function is called from isl_pw_templ.c * and doesn't know if the space of an element object is represented * directly or through its domain. It therefore passes along both. */ __isl_give isl_aff *isl_aff_reset_space_and_domain(__isl_take isl_aff *aff, __isl_take isl_space *space, __isl_take isl_space *domain) { isl_space_free(space); return isl_aff_reset_domain_space(aff, domain); } /* Reorder the coefficients of the affine expression based * on the given reodering. * The reordering r is assumed to have been extended with the local * variables. */ static __isl_give isl_vec *vec_reorder(__isl_take isl_vec *vec, __isl_take isl_reordering *r, int n_div) { isl_vec *res; int i; if (!vec || !r) goto error; res = isl_vec_alloc(vec->ctx, 2 + isl_space_dim(r->dim, isl_dim_all) + n_div); isl_seq_cpy(res->el, vec->el, 2); isl_seq_clr(res->el + 2, res->size - 2); for (i = 0; i < r->len; ++i) isl_int_set(res->el[2 + r->pos[i]], vec->el[2 + i]); isl_reordering_free(r); isl_vec_free(vec); return res; error: isl_vec_free(vec); isl_reordering_free(r); return NULL; } /* Reorder the dimensions of the domain of "aff" according * to the given reordering. */ __isl_give isl_aff *isl_aff_realign_domain(__isl_take isl_aff *aff, __isl_take isl_reordering *r) { aff = isl_aff_cow(aff); if (!aff) goto error; r = isl_reordering_extend(r, aff->ls->div->n_row); aff->v = vec_reorder(aff->v, isl_reordering_copy(r), aff->ls->div->n_row); aff->ls = isl_local_space_realign(aff->ls, r); if (!aff->v || !aff->ls) return isl_aff_free(aff); return aff; error: isl_aff_free(aff); isl_reordering_free(r); return NULL; } __isl_give isl_aff *isl_aff_align_params(__isl_take isl_aff *aff, __isl_take isl_space *model) { if (!aff || !model) goto error; if (!isl_space_match(aff->ls->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(aff->ls->dim, model); exp = isl_reordering_extend_space(exp, isl_aff_get_domain_space(aff)); aff = isl_aff_realign_domain(aff, exp); } isl_space_free(model); return aff; error: isl_space_free(model); isl_aff_free(aff); return NULL; } /* Is "aff" obviously equal to zero? * * If the denominator is zero, then "aff" is not equal to zero. */ isl_bool isl_aff_plain_is_zero(__isl_keep isl_aff *aff) { if (!aff) return isl_bool_error; if (isl_int_is_zero(aff->v->el[0])) return isl_bool_false; return isl_seq_first_non_zero(aff->v->el + 1, aff->v->size - 1) < 0; } /* Does "aff" represent NaN? */ isl_bool isl_aff_is_nan(__isl_keep isl_aff *aff) { if (!aff) return isl_bool_error; return isl_seq_first_non_zero(aff->v->el, 2) < 0; } /* Does "pa" involve any NaNs? */ isl_bool isl_pw_aff_involves_nan(__isl_keep isl_pw_aff *pa) { int i; if (!pa) return isl_bool_error; if (pa->n == 0) return isl_bool_false; for (i = 0; i < pa->n; ++i) { isl_bool is_nan = isl_aff_is_nan(pa->p[i].aff); if (is_nan < 0 || is_nan) return is_nan; } return isl_bool_false; } /* Are "aff1" and "aff2" obviously equal? * * NaN is not equal to anything, not even to another NaN. */ isl_bool isl_aff_plain_is_equal(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2) { isl_bool equal; if (!aff1 || !aff2) return isl_bool_error; if (isl_aff_is_nan(aff1) || isl_aff_is_nan(aff2)) return isl_bool_false; equal = isl_local_space_is_equal(aff1->ls, aff2->ls); if (equal < 0 || !equal) return equal; return isl_vec_is_equal(aff1->v, aff2->v); } /* Return the common denominator of "aff" in "v". * * We cannot return anything meaningful in case of a NaN. */ int isl_aff_get_denominator(__isl_keep isl_aff *aff, isl_int *v) { if (!aff) return -1; if (isl_aff_is_nan(aff)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot get denominator of NaN", return -1); isl_int_set(*v, aff->v->el[0]); return 0; } /* Return the common denominator of "aff". */ __isl_give isl_val *isl_aff_get_denominator_val(__isl_keep isl_aff *aff) { isl_ctx *ctx; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); if (isl_aff_is_nan(aff)) return isl_val_nan(ctx); return isl_val_int_from_isl_int(ctx, aff->v->el[0]); } /* Return the constant term of "aff" in "v". * * We cannot return anything meaningful in case of a NaN. */ int isl_aff_get_constant(__isl_keep isl_aff *aff, isl_int *v) { if (!aff) return -1; if (isl_aff_is_nan(aff)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot get constant term of NaN", return -1); isl_int_set(*v, aff->v->el[1]); return 0; } /* Return the constant term of "aff". */ __isl_give isl_val *isl_aff_get_constant_val(__isl_keep isl_aff *aff) { isl_ctx *ctx; isl_val *v; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); if (isl_aff_is_nan(aff)) return isl_val_nan(ctx); v = isl_val_rat_from_isl_int(ctx, aff->v->el[1], aff->v->el[0]); return isl_val_normalize(v); } /* Return the coefficient of the variable of type "type" at position "pos" * of "aff" in "v". * * We cannot return anything meaningful in case of a NaN. */ int isl_aff_get_coefficient(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos, isl_int *v) { if (!aff) return -1; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return -1); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", return -1); if (isl_aff_is_nan(aff)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot get coefficient of NaN", return -1); pos += isl_local_space_offset(aff->ls, type); isl_int_set(*v, aff->v->el[1 + pos]); return 0; } /* Return the coefficient of the variable of type "type" at position "pos" * of "aff". */ __isl_give isl_val *isl_aff_get_coefficient_val(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos) { isl_ctx *ctx; isl_val *v; if (!aff) return NULL; ctx = isl_aff_get_ctx(aff); if (type == isl_dim_out) isl_die(ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return NULL); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return NULL); if (isl_aff_is_nan(aff)) return isl_val_nan(ctx); pos += isl_local_space_offset(aff->ls, type); v = isl_val_rat_from_isl_int(ctx, aff->v->el[1 + pos], aff->v->el[0]); return isl_val_normalize(v); } /* Return the sign of the coefficient of the variable of type "type" * at position "pos" of "aff". */ int isl_aff_coefficient_sgn(__isl_keep isl_aff *aff, enum isl_dim_type type, int pos) { isl_ctx *ctx; if (!aff) return 0; ctx = isl_aff_get_ctx(aff); if (type == isl_dim_out) isl_die(ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return 0); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return 0); pos += isl_local_space_offset(aff->ls, type); return isl_int_sgn(aff->v->el[1 + pos]); } /* Replace the denominator of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_denominator(__isl_take isl_aff *aff, isl_int v) { if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_set(aff->v->el[0], v); return aff; } /* Replace the numerator of the constant term of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_constant(__isl_take isl_aff *aff, isl_int v) { if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_set(aff->v->el[1], v); return aff; } /* Replace the constant term of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_constant_val(__isl_take isl_aff *aff, __isl_take isl_val *v) { if (!aff || !v) goto error; if (isl_aff_is_nan(aff)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational value", goto error); if (isl_int_eq(aff->v->el[1], v->n) && isl_int_eq(aff->v->el[0], v->d)) { isl_val_free(v); return aff; } aff = isl_aff_cow(aff); if (!aff) goto error; aff->v = isl_vec_cow(aff->v); if (!aff->v) goto error; if (isl_int_eq(aff->v->el[0], v->d)) { isl_int_set(aff->v->el[1], v->n); } else if (isl_int_is_one(v->d)) { isl_int_mul(aff->v->el[1], aff->v->el[0], v->n); } else { isl_seq_scale(aff->v->el + 1, aff->v->el + 1, v->d, aff->v->size - 1); isl_int_mul(aff->v->el[1], aff->v->el[0], v->n); isl_int_mul(aff->v->el[0], aff->v->el[0], v->d); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } /* Add "v" to the constant term of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_constant(__isl_take isl_aff *aff, isl_int v) { if (isl_int_is_zero(v)) return aff; if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_addmul(aff->v->el[1], aff->v->el[0], v); return aff; } /* Add "v" to the constant term of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_constant_val(__isl_take isl_aff *aff, __isl_take isl_val *v) { if (!aff || !v) goto error; if (isl_aff_is_nan(aff) || isl_val_is_zero(v)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational value", goto error); aff = isl_aff_cow(aff); if (!aff) goto error; aff->v = isl_vec_cow(aff->v); if (!aff->v) goto error; if (isl_int_is_one(v->d)) { isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n); } else if (isl_int_eq(aff->v->el[0], v->d)) { isl_int_add(aff->v->el[1], aff->v->el[1], v->n); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } else { isl_seq_scale(aff->v->el + 1, aff->v->el + 1, v->d, aff->v->size - 1); isl_int_addmul(aff->v->el[1], aff->v->el[0], v->n); isl_int_mul(aff->v->el[0], aff->v->el[0], v->d); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } __isl_give isl_aff *isl_aff_add_constant_si(__isl_take isl_aff *aff, int v) { isl_int t; isl_int_init(t); isl_int_set_si(t, v); aff = isl_aff_add_constant(aff, t); isl_int_clear(t); return aff; } /* Add "v" to the numerator of the constant term of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_constant_num(__isl_take isl_aff *aff, isl_int v) { if (isl_int_is_zero(v)) return aff; if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_add(aff->v->el[1], aff->v->el[1], v); return aff; } /* Add "v" to the numerator of the constant term of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_constant_num_si(__isl_take isl_aff *aff, int v) { isl_int t; if (v == 0) return aff; isl_int_init(t); isl_int_set_si(t, v); aff = isl_aff_add_constant_num(aff, t); isl_int_clear(t); return aff; } /* Replace the numerator of the constant term of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_constant_si(__isl_take isl_aff *aff, int v) { if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_set_si(aff->v->el[1], v); return aff; } /* Replace the numerator of the coefficient of the variable of type "type" * at position "pos" of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_coefficient(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v) { if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", return isl_aff_free(aff)); if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); pos += isl_local_space_offset(aff->ls, type); isl_int_set(aff->v->el[1 + pos], v); return aff; } /* Replace the numerator of the coefficient of the variable of type "type" * at position "pos" of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_coefficient_si(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v) { if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; if (pos < 0 || pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", return isl_aff_free(aff)); if (isl_aff_is_nan(aff)) return aff; pos += isl_local_space_offset(aff->ls, type); if (isl_int_cmp_si(aff->v->el[1 + pos], v) == 0) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_set_si(aff->v->el[1 + pos], v); return aff; } /* Replace the coefficient of the variable of type "type" at position "pos" * of "aff" by "v". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_set_coefficient_val(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v) { if (!aff || !v) goto error; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", goto error); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", goto error); if (isl_aff_is_nan(aff)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational value", goto error); pos += isl_local_space_offset(aff->ls, type); if (isl_int_eq(aff->v->el[1 + pos], v->n) && isl_int_eq(aff->v->el[0], v->d)) { isl_val_free(v); return aff; } aff = isl_aff_cow(aff); if (!aff) goto error; aff->v = isl_vec_cow(aff->v); if (!aff->v) goto error; if (isl_int_eq(aff->v->el[0], v->d)) { isl_int_set(aff->v->el[1 + pos], v->n); } else if (isl_int_is_one(v->d)) { isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n); } else { isl_seq_scale(aff->v->el + 1, aff->v->el + 1, v->d, aff->v->size - 1); isl_int_mul(aff->v->el[1 + pos], aff->v->el[0], v->n); isl_int_mul(aff->v->el[0], aff->v->el[0], v->d); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } /* Add "v" to the coefficient of the variable of type "type" * at position "pos" of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_coefficient(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, isl_int v) { if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", return isl_aff_free(aff)); if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); pos += isl_local_space_offset(aff->ls, type); isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v); return aff; } /* Add "v" to the coefficient of the variable of type "type" * at position "pos" of "aff". * * A NaN is unaffected by this operation. */ __isl_give isl_aff *isl_aff_add_coefficient_val(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, __isl_take isl_val *v) { if (!aff || !v) goto error; if (isl_val_is_zero(v)) { isl_val_free(v); return aff; } if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "output/set dimension does not have a coefficient", goto error); if (type == isl_dim_in) type = isl_dim_set; if (pos >= isl_local_space_dim(aff->ls, type)) isl_die(aff->v->ctx, isl_error_invalid, "position out of bounds", goto error); if (isl_aff_is_nan(aff)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational value", goto error); aff = isl_aff_cow(aff); if (!aff) goto error; aff->v = isl_vec_cow(aff->v); if (!aff->v) goto error; pos += isl_local_space_offset(aff->ls, type); if (isl_int_is_one(v->d)) { isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n); } else if (isl_int_eq(aff->v->el[0], v->d)) { isl_int_add(aff->v->el[1 + pos], aff->v->el[1 + pos], v->n); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } else { isl_seq_scale(aff->v->el + 1, aff->v->el + 1, v->d, aff->v->size - 1); isl_int_addmul(aff->v->el[1 + pos], aff->v->el[0], v->n); isl_int_mul(aff->v->el[0], aff->v->el[0], v->d); aff->v = isl_vec_normalize(aff->v); if (!aff->v) goto error; } isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } __isl_give isl_aff *isl_aff_add_coefficient_si(__isl_take isl_aff *aff, enum isl_dim_type type, int pos, int v) { isl_int t; isl_int_init(t); isl_int_set_si(t, v); aff = isl_aff_add_coefficient(aff, type, pos, t); isl_int_clear(t); return aff; } __isl_give isl_aff *isl_aff_get_div(__isl_keep isl_aff *aff, int pos) { if (!aff) return NULL; return isl_local_space_get_div(aff->ls, pos); } /* Return the negation of "aff". * * As a special case, -NaN = NaN. */ __isl_give isl_aff *isl_aff_neg(__isl_take isl_aff *aff) { if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_seq_neg(aff->v->el + 1, aff->v->el + 1, aff->v->size - 1); return aff; } /* Remove divs from the local space that do not appear in the affine * expression. * We currently only remove divs at the end. * Some intermediate divs may also not appear directly in the affine * expression, but we would also need to check that no other divs are * defined in terms of them. */ __isl_give isl_aff *isl_aff_remove_unused_divs(__isl_take isl_aff *aff) { int pos; int off; int n; if (!aff) return NULL; n = isl_local_space_dim(aff->ls, isl_dim_div); off = isl_local_space_offset(aff->ls, isl_dim_div); pos = isl_seq_last_non_zero(aff->v->el + 1 + off, n) + 1; if (pos == n) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->ls = isl_local_space_drop_dims(aff->ls, isl_dim_div, pos, n - pos); aff->v = isl_vec_drop_els(aff->v, 1 + off + pos, n - pos); if (!aff->ls || !aff->v) return isl_aff_free(aff); return aff; } /* Given two affine expressions "p" of length p_len (including the * denominator and the constant term) and "subs" of length subs_len, * plug in "subs" for the variable at position "pos". * The variables of "subs" and "p" are assumed to match up to subs_len, * but "p" may have additional variables. * "v" is an initialized isl_int that can be used internally. * * In particular, if "p" represents the expression * * (a i + g)/m * * with i the variable at position "pos" and "subs" represents the expression * * f/d * * then the result represents the expression * * (a f + d g)/(m d) * */ void isl_seq_substitute(isl_int *p, int pos, isl_int *subs, int p_len, int subs_len, isl_int v) { isl_int_set(v, p[1 + pos]); isl_int_set_si(p[1 + pos], 0); isl_seq_combine(p + 1, subs[0], p + 1, v, subs + 1, subs_len - 1); isl_seq_scale(p + subs_len, p + subs_len, subs[0], p_len - subs_len); isl_int_mul(p[0], p[0], subs[0]); } /* Look for any divs in the aff->ls with a denominator equal to one * and plug them into the affine expression and any subsequent divs * that may reference the div. */ static __isl_give isl_aff *plug_in_integral_divs(__isl_take isl_aff *aff) { int i, n; int len; isl_int v; isl_vec *vec; isl_local_space *ls; unsigned pos; if (!aff) return NULL; n = isl_local_space_dim(aff->ls, isl_dim_div); len = aff->v->size; for (i = 0; i < n; ++i) { if (!isl_int_is_one(aff->ls->div->row[i][0])) continue; ls = isl_local_space_copy(aff->ls); ls = isl_local_space_substitute_seq(ls, isl_dim_div, i, aff->ls->div->row[i], len, i + 1, n - (i + 1)); vec = isl_vec_copy(aff->v); vec = isl_vec_cow(vec); if (!ls || !vec) goto error; isl_int_init(v); pos = isl_local_space_offset(aff->ls, isl_dim_div) + i; isl_seq_substitute(vec->el, pos, aff->ls->div->row[i], len, len, v); isl_int_clear(v); isl_vec_free(aff->v); aff->v = vec; isl_local_space_free(aff->ls); aff->ls = ls; } return aff; error: isl_vec_free(vec); isl_local_space_free(ls); return isl_aff_free(aff); } /* Look for any divs j that appear with a unit coefficient inside * the definitions of other divs i and plug them into the definitions * of the divs i. * * In particular, an expression of the form * * floor((f(..) + floor(g(..)/n))/m) * * is simplified to * * floor((n * f(..) + g(..))/(n * m)) * * This simplification is correct because we can move the expression * f(..) into the inner floor in the original expression to obtain * * floor(floor((n * f(..) + g(..))/n)/m) * * from which we can derive the simplified expression. */ static __isl_give isl_aff *plug_in_unit_divs(__isl_take isl_aff *aff) { int i, j, n; int off; if (!aff) return NULL; n = isl_local_space_dim(aff->ls, isl_dim_div); off = isl_local_space_offset(aff->ls, isl_dim_div); for (i = 1; i < n; ++i) { for (j = 0; j < i; ++j) { if (!isl_int_is_one(aff->ls->div->row[i][1 + off + j])) continue; aff->ls = isl_local_space_substitute_seq(aff->ls, isl_dim_div, j, aff->ls->div->row[j], aff->v->size, i, 1); if (!aff->ls) return isl_aff_free(aff); } } return aff; } /* Swap divs "a" and "b" in "aff", which is assumed to be non-NULL. * * Even though this function is only called on isl_affs with a single * reference, we are careful to only change aff->v and aff->ls together. */ static __isl_give isl_aff *swap_div(__isl_take isl_aff *aff, int a, int b) { unsigned off = isl_local_space_offset(aff->ls, isl_dim_div); isl_local_space *ls; isl_vec *v; ls = isl_local_space_copy(aff->ls); ls = isl_local_space_swap_div(ls, a, b); v = isl_vec_copy(aff->v); v = isl_vec_cow(v); if (!ls || !v) goto error; isl_int_swap(v->el[1 + off + a], v->el[1 + off + b]); isl_vec_free(aff->v); aff->v = v; isl_local_space_free(aff->ls); aff->ls = ls; return aff; error: isl_vec_free(v); isl_local_space_free(ls); return isl_aff_free(aff); } /* Merge divs "a" and "b" in "aff", which is assumed to be non-NULL. * * We currently do not actually remove div "b", but simply add its * coefficient to that of "a" and then zero it out. */ static __isl_give isl_aff *merge_divs(__isl_take isl_aff *aff, int a, int b) { unsigned off = isl_local_space_offset(aff->ls, isl_dim_div); if (isl_int_is_zero(aff->v->el[1 + off + b])) return aff; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_add(aff->v->el[1 + off + a], aff->v->el[1 + off + a], aff->v->el[1 + off + b]); isl_int_set_si(aff->v->el[1 + off + b], 0); return aff; } /* Sort the divs in the local space of "aff" according to * the comparison function "cmp_row" in isl_local_space.c, * combining the coefficients of identical divs. * * Reordering divs does not change the semantics of "aff", * so there is no need to call isl_aff_cow. * Moreover, this function is currently only called on isl_affs * with a single reference. */ static __isl_give isl_aff *sort_divs(__isl_take isl_aff *aff) { int i, j, n; if (!aff) return NULL; n = isl_aff_dim(aff, isl_dim_div); for (i = 1; i < n; ++i) { for (j = i - 1; j >= 0; --j) { int cmp = isl_mat_cmp_div(aff->ls->div, j, j + 1); if (cmp < 0) break; if (cmp == 0) aff = merge_divs(aff, j, j + 1); else aff = swap_div(aff, j, j + 1); if (!aff) return NULL; } } return aff; } /* Normalize the representation of "aff". * * This function should only be called of "new" isl_affs, i.e., * with only a single reference. We therefore do not need to * worry about affecting other instances. */ __isl_give isl_aff *isl_aff_normalize(__isl_take isl_aff *aff) { if (!aff) return NULL; aff->v = isl_vec_normalize(aff->v); if (!aff->v) return isl_aff_free(aff); aff = plug_in_integral_divs(aff); aff = plug_in_unit_divs(aff); aff = sort_divs(aff); aff = isl_aff_remove_unused_divs(aff); return aff; } /* Given f, return floor(f). * If f is an integer expression, then just return f. * If f is a constant, then return the constant floor(f). * Otherwise, if f = g/m, write g = q m + r, * create a new div d = [r/m] and return the expression q + d. * The coefficients in r are taken to lie between -m/2 and m/2. * * As a special case, floor(NaN) = NaN. */ __isl_give isl_aff *isl_aff_floor(__isl_take isl_aff *aff) { int i; int size; isl_ctx *ctx; isl_vec *div; if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; if (isl_int_is_one(aff->v->el[0])) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); if (isl_aff_is_cst(aff)) { isl_int_fdiv_q(aff->v->el[1], aff->v->el[1], aff->v->el[0]); isl_int_set_si(aff->v->el[0], 1); return aff; } div = isl_vec_copy(aff->v); div = isl_vec_cow(div); if (!div) return isl_aff_free(aff); ctx = isl_aff_get_ctx(aff); isl_int_fdiv_q(aff->v->el[0], aff->v->el[0], ctx->two); for (i = 1; i < aff->v->size; ++i) { isl_int_fdiv_r(div->el[i], div->el[i], div->el[0]); isl_int_fdiv_q(aff->v->el[i], aff->v->el[i], div->el[0]); if (isl_int_gt(div->el[i], aff->v->el[0])) { isl_int_sub(div->el[i], div->el[i], div->el[0]); isl_int_add_ui(aff->v->el[i], aff->v->el[i], 1); } } aff->ls = isl_local_space_add_div(aff->ls, div); if (!aff->ls) return isl_aff_free(aff); size = aff->v->size; aff->v = isl_vec_extend(aff->v, size + 1); if (!aff->v) return isl_aff_free(aff); isl_int_set_si(aff->v->el[0], 1); isl_int_set_si(aff->v->el[size], 1); aff = isl_aff_normalize(aff); return aff; } /* Compute * * aff mod m = aff - m * floor(aff/m) */ __isl_give isl_aff *isl_aff_mod(__isl_take isl_aff *aff, isl_int m) { isl_aff *res; res = isl_aff_copy(aff); aff = isl_aff_scale_down(aff, m); aff = isl_aff_floor(aff); aff = isl_aff_scale(aff, m); res = isl_aff_sub(res, aff); return res; } /* Compute * * aff mod m = aff - m * floor(aff/m) * * with m an integer value. */ __isl_give isl_aff *isl_aff_mod_val(__isl_take isl_aff *aff, __isl_take isl_val *m) { isl_aff *res; if (!aff || !m) goto error; if (!isl_val_is_int(m)) isl_die(isl_val_get_ctx(m), isl_error_invalid, "expecting integer modulo", goto error); res = isl_aff_copy(aff); aff = isl_aff_scale_down_val(aff, isl_val_copy(m)); aff = isl_aff_floor(aff); aff = isl_aff_scale_val(aff, m); res = isl_aff_sub(res, aff); return res; error: isl_aff_free(aff); isl_val_free(m); return NULL; } /* Compute * * pwaff mod m = pwaff - m * floor(pwaff/m) */ __isl_give isl_pw_aff *isl_pw_aff_mod(__isl_take isl_pw_aff *pwaff, isl_int m) { isl_pw_aff *res; res = isl_pw_aff_copy(pwaff); pwaff = isl_pw_aff_scale_down(pwaff, m); pwaff = isl_pw_aff_floor(pwaff); pwaff = isl_pw_aff_scale(pwaff, m); res = isl_pw_aff_sub(res, pwaff); return res; } /* Compute * * pa mod m = pa - m * floor(pa/m) * * with m an integer value. */ __isl_give isl_pw_aff *isl_pw_aff_mod_val(__isl_take isl_pw_aff *pa, __isl_take isl_val *m) { if (!pa || !m) goto error; if (!isl_val_is_int(m)) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "expecting integer modulo", goto error); pa = isl_pw_aff_mod(pa, m->n); isl_val_free(m); return pa; error: isl_pw_aff_free(pa); isl_val_free(m); return NULL; } /* Given f, return ceil(f). * If f is an integer expression, then just return f. * Otherwise, let f be the expression * * e/m * * then return * * floor((e + m - 1)/m) * * As a special case, ceil(NaN) = NaN. */ __isl_give isl_aff *isl_aff_ceil(__isl_take isl_aff *aff) { if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; if (isl_int_is_one(aff->v->el[0])) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_add(aff->v->el[1], aff->v->el[1], aff->v->el[0]); isl_int_sub_ui(aff->v->el[1], aff->v->el[1], 1); aff = isl_aff_floor(aff); return aff; } /* Apply the expansion computed by isl_merge_divs. * The expansion itself is given by "exp" while the resulting * list of divs is given by "div". */ __isl_give isl_aff *isl_aff_expand_divs( __isl_take isl_aff *aff, __isl_take isl_mat *div, int *exp) { int i, j; int old_n_div; int new_n_div; int offset; aff = isl_aff_cow(aff); if (!aff || !div) goto error; old_n_div = isl_local_space_dim(aff->ls, isl_dim_div); new_n_div = isl_mat_rows(div); if (new_n_div < old_n_div) isl_die(isl_mat_get_ctx(div), isl_error_invalid, "not an expansion", goto error); aff->v = isl_vec_extend(aff->v, aff->v->size + new_n_div - old_n_div); if (!aff->v) goto error; offset = 1 + isl_local_space_offset(aff->ls, isl_dim_div); j = old_n_div - 1; for (i = new_n_div - 1; i >= 0; --i) { if (j >= 0 && exp[j] == i) { if (i != j) isl_int_swap(aff->v->el[offset + i], aff->v->el[offset + j]); j--; } else isl_int_set_si(aff->v->el[offset + i], 0); } aff->ls = isl_local_space_replace_divs(aff->ls, isl_mat_copy(div)); if (!aff->ls) goto error; isl_mat_free(div); return aff; error: isl_aff_free(aff); isl_mat_free(div); return NULL; } /* Add two affine expressions that live in the same local space. */ static __isl_give isl_aff *add_expanded(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { isl_int gcd, f; aff1 = isl_aff_cow(aff1); if (!aff1 || !aff2) goto error; aff1->v = isl_vec_cow(aff1->v); if (!aff1->v) goto error; isl_int_init(gcd); isl_int_init(f); isl_int_gcd(gcd, aff1->v->el[0], aff2->v->el[0]); isl_int_divexact(f, aff2->v->el[0], gcd); isl_seq_scale(aff1->v->el + 1, aff1->v->el + 1, f, aff1->v->size - 1); isl_int_divexact(f, aff1->v->el[0], gcd); isl_seq_addmul(aff1->v->el + 1, f, aff2->v->el + 1, aff1->v->size - 1); isl_int_divexact(f, aff2->v->el[0], gcd); isl_int_mul(aff1->v->el[0], aff1->v->el[0], f); isl_int_clear(f); isl_int_clear(gcd); isl_aff_free(aff2); return aff1; error: isl_aff_free(aff1); isl_aff_free(aff2); return NULL; } /* Return the sum of "aff1" and "aff2". * * If either of the two is NaN, then the result is NaN. */ __isl_give isl_aff *isl_aff_add(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { isl_ctx *ctx; int *exp1 = NULL; int *exp2 = NULL; isl_mat *div; int n_div1, n_div2; if (!aff1 || !aff2) goto error; ctx = isl_aff_get_ctx(aff1); if (!isl_space_is_equal(aff1->ls->dim, aff2->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", goto error); if (isl_aff_is_nan(aff1)) { isl_aff_free(aff2); return aff1; } if (isl_aff_is_nan(aff2)) { isl_aff_free(aff1); return aff2; } n_div1 = isl_aff_dim(aff1, isl_dim_div); n_div2 = isl_aff_dim(aff2, isl_dim_div); if (n_div1 == 0 && n_div2 == 0) return add_expanded(aff1, aff2); exp1 = isl_alloc_array(ctx, int, n_div1); exp2 = isl_alloc_array(ctx, int, n_div2); if ((n_div1 && !exp1) || (n_div2 && !exp2)) goto error; div = isl_merge_divs(aff1->ls->div, aff2->ls->div, exp1, exp2); aff1 = isl_aff_expand_divs(aff1, isl_mat_copy(div), exp1); aff2 = isl_aff_expand_divs(aff2, div, exp2); free(exp1); free(exp2); return add_expanded(aff1, aff2); error: free(exp1); free(exp2); isl_aff_free(aff1); isl_aff_free(aff2); return NULL; } __isl_give isl_aff *isl_aff_sub(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { return isl_aff_add(aff1, isl_aff_neg(aff2)); } /* Return the result of scaling "aff" by a factor of "f". * * As a special case, f * NaN = NaN. */ __isl_give isl_aff *isl_aff_scale(__isl_take isl_aff *aff, isl_int f) { isl_int gcd; if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; if (isl_int_is_one(f)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); if (isl_int_is_pos(f) && isl_int_is_divisible_by(aff->v->el[0], f)) { isl_int_divexact(aff->v->el[0], aff->v->el[0], f); return aff; } isl_int_init(gcd); isl_int_gcd(gcd, aff->v->el[0], f); isl_int_divexact(aff->v->el[0], aff->v->el[0], gcd); isl_int_divexact(gcd, f, gcd); isl_seq_scale(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1); isl_int_clear(gcd); return aff; } /* Multiple "aff" by "v". */ __isl_give isl_aff *isl_aff_scale_val(__isl_take isl_aff *aff, __isl_take isl_val *v) { if (!aff || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational factor", goto error); aff = isl_aff_scale(aff, v->n); aff = isl_aff_scale_down(aff, v->d); isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } /* Return the result of scaling "aff" down by a factor of "f". * * As a special case, NaN/f = NaN. */ __isl_give isl_aff *isl_aff_scale_down(__isl_take isl_aff *aff, isl_int f) { isl_int gcd; if (!aff) return NULL; if (isl_aff_is_nan(aff)) return aff; if (isl_int_is_one(f)) return aff; aff = isl_aff_cow(aff); if (!aff) return NULL; if (isl_int_is_zero(f)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot scale down by zero", return isl_aff_free(aff)); aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); isl_int_init(gcd); isl_seq_gcd(aff->v->el + 1, aff->v->size - 1, &gcd); isl_int_gcd(gcd, gcd, f); isl_seq_scale_down(aff->v->el + 1, aff->v->el + 1, gcd, aff->v->size - 1); isl_int_divexact(gcd, f, gcd); isl_int_mul(aff->v->el[0], aff->v->el[0], gcd); isl_int_clear(gcd); return aff; } /* Divide "aff" by "v". */ __isl_give isl_aff *isl_aff_scale_down_val(__isl_take isl_aff *aff, __isl_take isl_val *v) { if (!aff || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return aff; } if (!isl_val_is_rat(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting rational factor", goto error); if (!isl_val_is_pos(v)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "factor needs to be positive", goto error); aff = isl_aff_scale(aff, v->d); aff = isl_aff_scale_down(aff, v->n); isl_val_free(v); return aff; error: isl_aff_free(aff); isl_val_free(v); return NULL; } __isl_give isl_aff *isl_aff_scale_down_ui(__isl_take isl_aff *aff, unsigned f) { isl_int v; if (f == 1) return aff; isl_int_init(v); isl_int_set_ui(v, f); aff = isl_aff_scale_down(aff, v); isl_int_clear(v); return aff; } __isl_give isl_aff *isl_aff_set_dim_name(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, const char *s) { aff = isl_aff_cow(aff); if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "cannot set name of output/set dimension", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; aff->ls = isl_local_space_set_dim_name(aff->ls, type, pos, s); if (!aff->ls) return isl_aff_free(aff); return aff; } __isl_give isl_aff *isl_aff_set_dim_id(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { aff = isl_aff_cow(aff); if (!aff) goto error; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "cannot set name of output/set dimension", goto error); if (type == isl_dim_in) type = isl_dim_set; aff->ls = isl_local_space_set_dim_id(aff->ls, type, pos, id); if (!aff->ls) return isl_aff_free(aff); return aff; error: isl_id_free(id); isl_aff_free(aff); return NULL; } /* Replace the identifier of the input tuple of "aff" by "id". * type is currently required to be equal to isl_dim_in */ __isl_give isl_aff *isl_aff_set_tuple_id(__isl_take isl_aff *aff, enum isl_dim_type type, __isl_take isl_id *id) { aff = isl_aff_cow(aff); if (!aff) goto error; if (type != isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "cannot only set id of input tuple", goto error); aff->ls = isl_local_space_set_tuple_id(aff->ls, isl_dim_set, id); if (!aff->ls) return isl_aff_free(aff); return aff; error: isl_id_free(id); isl_aff_free(aff); return NULL; } /* Exploit the equalities in "eq" to simplify the affine expression * and the expressions of the integer divisions in the local space. * The integer divisions in this local space are assumed to appear * as regular dimensions in "eq". */ static __isl_give isl_aff *isl_aff_substitute_equalities_lifted( __isl_take isl_aff *aff, __isl_take isl_basic_set *eq) { int i, j; unsigned total; unsigned n_div; if (!eq) goto error; if (eq->n_eq == 0) { isl_basic_set_free(eq); return aff; } aff = isl_aff_cow(aff); if (!aff) goto error; aff->ls = isl_local_space_substitute_equalities(aff->ls, isl_basic_set_copy(eq)); aff->v = isl_vec_cow(aff->v); if (!aff->ls || !aff->v) goto error; total = 1 + isl_space_dim(eq->dim, isl_dim_all); n_div = eq->n_div; for (i = 0; i < eq->n_eq; ++i) { j = isl_seq_last_non_zero(eq->eq[i], total + n_div); if (j < 0 || j == 0 || j >= total) continue; isl_seq_elim(aff->v->el + 1, eq->eq[i], j, total, &aff->v->el[0]); } isl_basic_set_free(eq); aff = isl_aff_normalize(aff); return aff; error: isl_basic_set_free(eq); isl_aff_free(aff); return NULL; } /* Exploit the equalities in "eq" to simplify the affine expression * and the expressions of the integer divisions in the local space. */ __isl_give isl_aff *isl_aff_substitute_equalities(__isl_take isl_aff *aff, __isl_take isl_basic_set *eq) { int n_div; if (!aff || !eq) goto error; n_div = isl_local_space_dim(aff->ls, isl_dim_div); if (n_div > 0) eq = isl_basic_set_add_dims(eq, isl_dim_set, n_div); return isl_aff_substitute_equalities_lifted(aff, eq); error: isl_basic_set_free(eq); isl_aff_free(aff); return NULL; } /* Look for equalities among the variables shared by context and aff * and the integer divisions of aff, if any. * The equalities are then used to eliminate coefficients and/or integer * divisions from aff. */ __isl_give isl_aff *isl_aff_gist(__isl_take isl_aff *aff, __isl_take isl_set *context) { isl_basic_set *hull; int n_div; if (!aff) goto error; n_div = isl_local_space_dim(aff->ls, isl_dim_div); if (n_div > 0) { isl_basic_set *bset; isl_local_space *ls; context = isl_set_add_dims(context, isl_dim_set, n_div); ls = isl_aff_get_domain_local_space(aff); bset = isl_basic_set_from_local_space(ls); bset = isl_basic_set_lift(bset); bset = isl_basic_set_flatten(bset); context = isl_set_intersect(context, isl_set_from_basic_set(bset)); } hull = isl_set_affine_hull(context); return isl_aff_substitute_equalities_lifted(aff, hull); error: isl_aff_free(aff); isl_set_free(context); return NULL; } __isl_give isl_aff *isl_aff_gist_params(__isl_take isl_aff *aff, __isl_take isl_set *context) { isl_set *dom_context = isl_set_universe(isl_aff_get_domain_space(aff)); dom_context = isl_set_intersect_params(dom_context, context); return isl_aff_gist(aff, dom_context); } /* Return a basic set containing those elements in the space * of aff where it is positive. "rational" should not be set. * * If "aff" is NaN, then it is not positive. */ static __isl_give isl_basic_set *aff_pos_basic_set(__isl_take isl_aff *aff, int rational) { isl_constraint *ineq; isl_basic_set *bset; isl_val *c; if (!aff) return NULL; if (isl_aff_is_nan(aff)) { isl_space *space = isl_aff_get_domain_space(aff); isl_aff_free(aff); return isl_basic_set_empty(space); } if (rational) isl_die(isl_aff_get_ctx(aff), isl_error_unsupported, "rational sets not supported", goto error); ineq = isl_inequality_from_aff(aff); c = isl_constraint_get_constant_val(ineq); c = isl_val_sub_ui(c, 1); ineq = isl_constraint_set_constant_val(ineq, c); bset = isl_basic_set_from_constraint(ineq); bset = isl_basic_set_simplify(bset); return bset; error: isl_aff_free(aff); return NULL; } /* Return a basic set containing those elements in the space * of aff where it is non-negative. * If "rational" is set, then return a rational basic set. * * If "aff" is NaN, then it is not non-negative (it's not negative either). */ static __isl_give isl_basic_set *aff_nonneg_basic_set( __isl_take isl_aff *aff, int rational) { isl_constraint *ineq; isl_basic_set *bset; if (!aff) return NULL; if (isl_aff_is_nan(aff)) { isl_space *space = isl_aff_get_domain_space(aff); isl_aff_free(aff); return isl_basic_set_empty(space); } ineq = isl_inequality_from_aff(aff); bset = isl_basic_set_from_constraint(ineq); if (rational) bset = isl_basic_set_set_rational(bset); bset = isl_basic_set_simplify(bset); return bset; } /* Return a basic set containing those elements in the space * of aff where it is non-negative. */ __isl_give isl_basic_set *isl_aff_nonneg_basic_set(__isl_take isl_aff *aff) { return aff_nonneg_basic_set(aff, 0); } /* Return a basic set containing those elements in the domain space * of aff where it is negative. */ __isl_give isl_basic_set *isl_aff_neg_basic_set(__isl_take isl_aff *aff) { aff = isl_aff_neg(aff); aff = isl_aff_add_constant_num_si(aff, -1); return isl_aff_nonneg_basic_set(aff); } /* Return a basic set containing those elements in the space * of aff where it is zero. * If "rational" is set, then return a rational basic set. * * If "aff" is NaN, then it is not zero. */ static __isl_give isl_basic_set *aff_zero_basic_set(__isl_take isl_aff *aff, int rational) { isl_constraint *ineq; isl_basic_set *bset; if (!aff) return NULL; if (isl_aff_is_nan(aff)) { isl_space *space = isl_aff_get_domain_space(aff); isl_aff_free(aff); return isl_basic_set_empty(space); } ineq = isl_equality_from_aff(aff); bset = isl_basic_set_from_constraint(ineq); if (rational) bset = isl_basic_set_set_rational(bset); bset = isl_basic_set_simplify(bset); return bset; } /* Return a basic set containing those elements in the space * of aff where it is zero. */ __isl_give isl_basic_set *isl_aff_zero_basic_set(__isl_take isl_aff *aff) { return aff_zero_basic_set(aff, 0); } /* Return a basic set containing those elements in the shared space * of aff1 and aff2 where aff1 is greater than or equal to aff2. */ __isl_give isl_basic_set *isl_aff_ge_basic_set(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { aff1 = isl_aff_sub(aff1, aff2); return isl_aff_nonneg_basic_set(aff1); } /* Return a basic set containing those elements in the shared space * of aff1 and aff2 where aff1 is smaller than or equal to aff2. */ __isl_give isl_basic_set *isl_aff_le_basic_set(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { return isl_aff_ge_basic_set(aff2, aff1); } __isl_give isl_aff *isl_aff_add_on_domain(__isl_keep isl_set *dom, __isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { aff1 = isl_aff_add(aff1, aff2); aff1 = isl_aff_gist(aff1, isl_set_copy(dom)); return aff1; } int isl_aff_is_empty(__isl_keep isl_aff *aff) { if (!aff) return -1; return 0; } /* Check whether the given affine expression has non-zero coefficient * for any dimension in the given range or if any of these dimensions * appear with non-zero coefficients in any of the integer divisions * involved in the affine expression. */ isl_bool isl_aff_involves_dims(__isl_keep isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n) { int i; isl_ctx *ctx; int *active = NULL; isl_bool involves = isl_bool_false; if (!aff) return isl_bool_error; if (n == 0) return isl_bool_false; ctx = isl_aff_get_ctx(aff); if (first + n > isl_aff_dim(aff, type)) isl_die(ctx, isl_error_invalid, "range out of bounds", return isl_bool_error); active = isl_local_space_get_active(aff->ls, aff->v->el + 2); if (!active) goto error; first += isl_local_space_offset(aff->ls, type) - 1; for (i = 0; i < n; ++i) if (active[first + i]) { involves = isl_bool_true; break; } free(active); return involves; error: free(active); return isl_bool_error; } __isl_give isl_aff *isl_aff_drop_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "cannot drop output/set dimension", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type)) return aff; ctx = isl_aff_get_ctx(aff); if (first + n > isl_local_space_dim(aff->ls, type)) isl_die(ctx, isl_error_invalid, "range out of bounds", return isl_aff_free(aff)); aff = isl_aff_cow(aff); if (!aff) return NULL; aff->ls = isl_local_space_drop_dims(aff->ls, type, first, n); if (!aff->ls) return isl_aff_free(aff); first += 1 + isl_local_space_offset(aff->ls, type); aff->v = isl_vec_drop_els(aff->v, first, n); if (!aff->v) return isl_aff_free(aff); return aff; } /* Project the domain of the affine expression onto its parameter space. * The affine expression may not involve any of the domain dimensions. */ __isl_give isl_aff *isl_aff_project_domain_on_params(__isl_take isl_aff *aff) { isl_space *space; unsigned n; int involves; n = isl_aff_dim(aff, isl_dim_in); involves = isl_aff_involves_dims(aff, isl_dim_in, 0, n); if (involves < 0) return isl_aff_free(aff); if (involves) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "affine expression involves some of the domain dimensions", return isl_aff_free(aff)); aff = isl_aff_drop_dims(aff, isl_dim_in, 0, n); space = isl_aff_get_domain_space(aff); space = isl_space_params(space); aff = isl_aff_reset_domain_space(aff, space); return aff; } __isl_give isl_aff *isl_aff_insert_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned first, unsigned n) { isl_ctx *ctx; if (!aff) return NULL; if (type == isl_dim_out) isl_die(aff->v->ctx, isl_error_invalid, "cannot insert output/set dimensions", return isl_aff_free(aff)); if (type == isl_dim_in) type = isl_dim_set; if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, type)) return aff; ctx = isl_aff_get_ctx(aff); if (first > isl_local_space_dim(aff->ls, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return isl_aff_free(aff)); aff = isl_aff_cow(aff); if (!aff) return NULL; aff->ls = isl_local_space_insert_dims(aff->ls, type, first, n); if (!aff->ls) return isl_aff_free(aff); first += 1 + isl_local_space_offset(aff->ls, type); aff->v = isl_vec_insert_zero_els(aff->v, first, n); if (!aff->v) return isl_aff_free(aff); return aff; } __isl_give isl_aff *isl_aff_add_dims(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_aff_dim(aff, type); return isl_aff_insert_dims(aff, type, pos, n); } __isl_give isl_pw_aff *isl_pw_aff_add_dims(__isl_take isl_pw_aff *pwaff, enum isl_dim_type type, unsigned n) { unsigned pos; pos = isl_pw_aff_dim(pwaff, type); return isl_pw_aff_insert_dims(pwaff, type, pos, n); } /* Move the "n" dimensions of "src_type" starting at "src_pos" of "aff" * to dimensions of "dst_type" at "dst_pos". * * We only support moving input dimensions to parameters and vice versa. */ __isl_give isl_aff *isl_aff_move_dims(__isl_take isl_aff *aff, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { unsigned g_dst_pos; unsigned g_src_pos; if (!aff) return NULL; if (n == 0 && !isl_local_space_is_named_or_nested(aff->ls, src_type) && !isl_local_space_is_named_or_nested(aff->ls, dst_type)) return aff; if (dst_type == isl_dim_out || src_type == isl_dim_out) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot move output/set dimension", return isl_aff_free(aff)); if (dst_type == isl_dim_div || src_type == isl_dim_div) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot move divs", return isl_aff_free(aff)); if (dst_type == isl_dim_in) dst_type = isl_dim_set; if (src_type == isl_dim_in) src_type = isl_dim_set; if (src_pos + n > isl_local_space_dim(aff->ls, src_type)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "range out of bounds", return isl_aff_free(aff)); if (dst_type == src_type) isl_die(isl_aff_get_ctx(aff), isl_error_unsupported, "moving dims within the same type not supported", return isl_aff_free(aff)); aff = isl_aff_cow(aff); if (!aff) return NULL; g_src_pos = 1 + isl_local_space_offset(aff->ls, src_type) + src_pos; g_dst_pos = 1 + isl_local_space_offset(aff->ls, dst_type) + dst_pos; if (dst_type > src_type) g_dst_pos -= n; aff->v = isl_vec_move_els(aff->v, g_dst_pos, g_src_pos, n); aff->ls = isl_local_space_move_dims(aff->ls, dst_type, dst_pos, src_type, src_pos, n); if (!aff->v || !aff->ls) return isl_aff_free(aff); aff = sort_divs(aff); return aff; } __isl_give isl_pw_aff *isl_pw_aff_from_aff(__isl_take isl_aff *aff) { isl_set *dom = isl_set_universe(isl_aff_get_domain_space(aff)); return isl_pw_aff_alloc(dom, aff); } #undef PW #define PW isl_pw_aff #undef EL #define EL isl_aff #undef EL_IS_ZERO #define EL_IS_ZERO is_empty #undef ZERO #define ZERO empty #undef IS_ZERO #define IS_ZERO is_empty #undef FIELD #define FIELD aff #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 0 #define NO_EVAL #define NO_OPT #define NO_LIFT #define NO_MORPH #include #undef UNION #define UNION isl_union_pw_aff #undef PART #define PART isl_pw_aff #undef PARTS #define PARTS pw_aff #include #include static __isl_give isl_set *align_params_pw_pw_set_and( __isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2, __isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2)) { if (!pwaff1 || !pwaff2) goto error; if (isl_space_match(pwaff1->dim, isl_dim_param, pwaff2->dim, isl_dim_param)) return fn(pwaff1, pwaff2); if (!isl_space_has_named_params(pwaff1->dim) || !isl_space_has_named_params(pwaff2->dim)) isl_die(isl_pw_aff_get_ctx(pwaff1), isl_error_invalid, "unaligned unnamed parameters", goto error); pwaff1 = isl_pw_aff_align_params(pwaff1, isl_pw_aff_get_space(pwaff2)); pwaff2 = isl_pw_aff_align_params(pwaff2, isl_pw_aff_get_space(pwaff1)); return fn(pwaff1, pwaff2); error: isl_pw_aff_free(pwaff1); isl_pw_aff_free(pwaff2); return NULL; } /* Align the parameters of the to isl_pw_aff arguments and * then apply a function "fn" on them that returns an isl_map. */ static __isl_give isl_map *align_params_pw_pw_map_and( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2, __isl_give isl_map *(*fn)(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2)) { if (!pa1 || !pa2) goto error; if (isl_space_match(pa1->dim, isl_dim_param, pa2->dim, isl_dim_param)) return fn(pa1, pa2); if (!isl_space_has_named_params(pa1->dim) || !isl_space_has_named_params(pa2->dim)) isl_die(isl_pw_aff_get_ctx(pa1), isl_error_invalid, "unaligned unnamed parameters", goto error); pa1 = isl_pw_aff_align_params(pa1, isl_pw_aff_get_space(pa2)); pa2 = isl_pw_aff_align_params(pa2, isl_pw_aff_get_space(pa1)); return fn(pa1, pa2); error: isl_pw_aff_free(pa1); isl_pw_aff_free(pa2); return NULL; } /* Compute a piecewise quasi-affine expression with a domain that * is the union of those of pwaff1 and pwaff2 and such that on each * cell, the quasi-affine expression is the better (according to cmp) * of those of pwaff1 and pwaff2. If only one of pwaff1 or pwaff2 * is defined on a given cell, then the associated expression * is the defined one. */ static __isl_give isl_pw_aff *pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2, __isl_give isl_basic_set *(*cmp)(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2)) { int i, j, n; isl_pw_aff *res; isl_ctx *ctx; isl_set *set; if (!pwaff1 || !pwaff2) goto error; ctx = isl_space_get_ctx(pwaff1->dim); if (!isl_space_is_equal(pwaff1->dim, pwaff2->dim)) isl_die(ctx, isl_error_invalid, "arguments should live in same space", goto error); if (isl_pw_aff_is_empty(pwaff1)) { isl_pw_aff_free(pwaff1); return pwaff2; } if (isl_pw_aff_is_empty(pwaff2)) { isl_pw_aff_free(pwaff2); return pwaff1; } n = 2 * (pwaff1->n + 1) * (pwaff2->n + 1); res = isl_pw_aff_alloc_size(isl_space_copy(pwaff1->dim), n); for (i = 0; i < pwaff1->n; ++i) { set = isl_set_copy(pwaff1->p[i].set); for (j = 0; j < pwaff2->n; ++j) { struct isl_set *common; isl_set *better; common = isl_set_intersect( isl_set_copy(pwaff1->p[i].set), isl_set_copy(pwaff2->p[j].set)); better = isl_set_from_basic_set(cmp( isl_aff_copy(pwaff2->p[j].aff), isl_aff_copy(pwaff1->p[i].aff))); better = isl_set_intersect(common, better); if (isl_set_plain_is_empty(better)) { isl_set_free(better); continue; } set = isl_set_subtract(set, isl_set_copy(better)); res = isl_pw_aff_add_piece(res, better, isl_aff_copy(pwaff2->p[j].aff)); } res = isl_pw_aff_add_piece(res, set, isl_aff_copy(pwaff1->p[i].aff)); } for (j = 0; j < pwaff2->n; ++j) { set = isl_set_copy(pwaff2->p[j].set); for (i = 0; i < pwaff1->n; ++i) set = isl_set_subtract(set, isl_set_copy(pwaff1->p[i].set)); res = isl_pw_aff_add_piece(res, set, isl_aff_copy(pwaff2->p[j].aff)); } isl_pw_aff_free(pwaff1); isl_pw_aff_free(pwaff2); return res; error: isl_pw_aff_free(pwaff1); isl_pw_aff_free(pwaff2); return NULL; } /* Compute a piecewise quasi-affine expression with a domain that * is the union of those of pwaff1 and pwaff2 and such that on each * cell, the quasi-affine expression is the maximum of those of pwaff1 * and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given * cell, then the associated expression is the defined one. */ static __isl_give isl_pw_aff *pw_aff_union_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return pw_aff_union_opt(pwaff1, pwaff2, &isl_aff_ge_basic_set); } __isl_give isl_pw_aff *isl_pw_aff_union_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_union_max); } /* Compute a piecewise quasi-affine expression with a domain that * is the union of those of pwaff1 and pwaff2 and such that on each * cell, the quasi-affine expression is the minimum of those of pwaff1 * and pwaff2. If only one of pwaff1 or pwaff2 is defined on a given * cell, then the associated expression is the defined one. */ static __isl_give isl_pw_aff *pw_aff_union_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return pw_aff_union_opt(pwaff1, pwaff2, &isl_aff_le_basic_set); } __isl_give isl_pw_aff *isl_pw_aff_union_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_union_min); } __isl_give isl_pw_aff *isl_pw_aff_union_opt(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2, int max) { if (max) return isl_pw_aff_union_max(pwaff1, pwaff2); else return isl_pw_aff_union_min(pwaff1, pwaff2); } /* Construct a map with as domain the domain of pwaff and * one-dimensional range corresponding to the affine expressions. */ static __isl_give isl_map *map_from_pw_aff(__isl_take isl_pw_aff *pwaff) { int i; isl_space *dim; isl_map *map; if (!pwaff) return NULL; dim = isl_pw_aff_get_space(pwaff); map = isl_map_empty(dim); for (i = 0; i < pwaff->n; ++i) { isl_basic_map *bmap; isl_map *map_i; bmap = isl_basic_map_from_aff(isl_aff_copy(pwaff->p[i].aff)); map_i = isl_map_from_basic_map(bmap); map_i = isl_map_intersect_domain(map_i, isl_set_copy(pwaff->p[i].set)); map = isl_map_union_disjoint(map, map_i); } isl_pw_aff_free(pwaff); return map; } /* Construct a map with as domain the domain of pwaff and * one-dimensional range corresponding to the affine expressions. */ __isl_give isl_map *isl_map_from_pw_aff(__isl_take isl_pw_aff *pwaff) { if (!pwaff) return NULL; if (isl_space_is_set(pwaff->dim)) isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid, "space of input is not a map", goto error); return map_from_pw_aff(pwaff); error: isl_pw_aff_free(pwaff); return NULL; } /* Construct a one-dimensional set with as parameter domain * the domain of pwaff and the single set dimension * corresponding to the affine expressions. */ __isl_give isl_set *isl_set_from_pw_aff(__isl_take isl_pw_aff *pwaff) { if (!pwaff) return NULL; if (!isl_space_is_set(pwaff->dim)) isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid, "space of input is not a set", goto error); return map_from_pw_aff(pwaff); error: isl_pw_aff_free(pwaff); return NULL; } /* Return a set containing those elements in the domain * of "pwaff" where it satisfies "fn" (if complement is 0) or * does not satisfy "fn" (if complement is 1). * * The pieces with a NaN never belong to the result since * NaN does not satisfy any property. */ static __isl_give isl_set *pw_aff_locus(__isl_take isl_pw_aff *pwaff, __isl_give isl_basic_set *(*fn)(__isl_take isl_aff *aff, int rational), int complement) { int i; isl_set *set; if (!pwaff) return NULL; set = isl_set_empty(isl_pw_aff_get_domain_space(pwaff)); for (i = 0; i < pwaff->n; ++i) { isl_basic_set *bset; isl_set *set_i, *locus; int rational; if (isl_aff_is_nan(pwaff->p[i].aff)) continue; rational = isl_set_has_rational(pwaff->p[i].set); bset = fn(isl_aff_copy(pwaff->p[i].aff), rational); locus = isl_set_from_basic_set(bset); set_i = isl_set_copy(pwaff->p[i].set); if (complement) set_i = isl_set_subtract(set_i, locus); else set_i = isl_set_intersect(set_i, locus); set = isl_set_union_disjoint(set, set_i); } isl_pw_aff_free(pwaff); return set; } /* Return a set containing those elements in the domain * of "pa" where it is positive. */ __isl_give isl_set *isl_pw_aff_pos_set(__isl_take isl_pw_aff *pa) { return pw_aff_locus(pa, &aff_pos_basic_set, 0); } /* Return a set containing those elements in the domain * of pwaff where it is non-negative. */ __isl_give isl_set *isl_pw_aff_nonneg_set(__isl_take isl_pw_aff *pwaff) { return pw_aff_locus(pwaff, &aff_nonneg_basic_set, 0); } /* Return a set containing those elements in the domain * of pwaff where it is zero. */ __isl_give isl_set *isl_pw_aff_zero_set(__isl_take isl_pw_aff *pwaff) { return pw_aff_locus(pwaff, &aff_zero_basic_set, 0); } /* Return a set containing those elements in the domain * of pwaff where it is not zero. */ __isl_give isl_set *isl_pw_aff_non_zero_set(__isl_take isl_pw_aff *pwaff) { return pw_aff_locus(pwaff, &aff_zero_basic_set, 1); } /* Return a set containing those elements in the shared domain * of pwaff1 and pwaff2 where pwaff1 is greater than (or equal) to pwaff2. * * We compute the difference on the shared domain and then construct * the set of values where this difference is non-negative. * If strict is set, we first subtract 1 from the difference. * If equal is set, we only return the elements where pwaff1 and pwaff2 * are equal. */ static __isl_give isl_set *pw_aff_gte_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2, int strict, int equal) { isl_set *set1, *set2; set1 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)); set2 = isl_pw_aff_domain(isl_pw_aff_copy(pwaff2)); set1 = isl_set_intersect(set1, set2); pwaff1 = isl_pw_aff_intersect_domain(pwaff1, isl_set_copy(set1)); pwaff2 = isl_pw_aff_intersect_domain(pwaff2, isl_set_copy(set1)); pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_neg(pwaff2)); if (strict) { isl_space *dim = isl_set_get_space(set1); isl_aff *aff; aff = isl_aff_zero_on_domain(isl_local_space_from_space(dim)); aff = isl_aff_add_constant_si(aff, -1); pwaff1 = isl_pw_aff_add(pwaff1, isl_pw_aff_alloc(set1, aff)); } else isl_set_free(set1); if (equal) return isl_pw_aff_zero_set(pwaff1); return isl_pw_aff_nonneg_set(pwaff1); } /* Return a set containing those elements in the shared domain * of pwaff1 and pwaff2 where pwaff1 is equal to pwaff2. */ static __isl_give isl_set *pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return pw_aff_gte_set(pwaff1, pwaff2, 0, 1); } __isl_give isl_set *isl_pw_aff_eq_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_eq_set); } /* Return a set containing those elements in the shared domain * of pwaff1 and pwaff2 where pwaff1 is greater than or equal to pwaff2. */ static __isl_give isl_set *pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return pw_aff_gte_set(pwaff1, pwaff2, 0, 0); } __isl_give isl_set *isl_pw_aff_ge_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ge_set); } /* Return a set containing those elements in the shared domain * of pwaff1 and pwaff2 where pwaff1 is strictly greater than pwaff2. */ static __isl_give isl_set *pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return pw_aff_gte_set(pwaff1, pwaff2, 1, 0); } __isl_give isl_set *isl_pw_aff_gt_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_gt_set); } __isl_give isl_set *isl_pw_aff_le_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_ge_set(pwaff2, pwaff1); } __isl_give isl_set *isl_pw_aff_lt_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_gt_set(pwaff2, pwaff1); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function values are ordered in the same way as "order", * which returns a set in the shared domain of its two arguments. * The parameters of "pa1" and "pa2" are assumed to have been aligned. * * Let "pa1" and "pa2" be defined on domains A and B respectively. * We first pull back the two functions such that they are defined on * the domain [A -> B]. Then we apply "order", resulting in a set * in the space [A -> B]. Finally, we unwrap this set to obtain * a map in the space A -> B. */ static __isl_give isl_map *isl_pw_aff_order_map_aligned( __isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2, __isl_give isl_set *(*order)(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2)) { isl_space *space1, *space2; isl_multi_aff *ma; isl_set *set; space1 = isl_space_domain(isl_pw_aff_get_space(pa1)); space2 = isl_space_domain(isl_pw_aff_get_space(pa2)); space1 = isl_space_map_from_domain_and_range(space1, space2); ma = isl_multi_aff_domain_map(isl_space_copy(space1)); pa1 = isl_pw_aff_pullback_multi_aff(pa1, ma); ma = isl_multi_aff_range_map(space1); pa2 = isl_pw_aff_pullback_multi_aff(pa2, ma); set = order(pa1, pa2); return isl_set_unwrap(set); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function values are equal. * The parameters of "pa1" and "pa2" are assumed to have been aligned. */ static __isl_give isl_map *isl_pw_aff_eq_map_aligned(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_eq_set); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function values are equal. */ __isl_give isl_map *isl_pw_aff_eq_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_eq_map_aligned); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function value of "pa1" is less than the function value of "pa2". * The parameters of "pa1" and "pa2" are assumed to have been aligned. */ static __isl_give isl_map *isl_pw_aff_lt_map_aligned(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_lt_set); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function value of "pa1" is less than the function value of "pa2". */ __isl_give isl_map *isl_pw_aff_lt_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_lt_map_aligned); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function value of "pa1" is greater than the function value * of "pa2". * The parameters of "pa1" and "pa2" are assumed to have been aligned. */ static __isl_give isl_map *isl_pw_aff_gt_map_aligned(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return isl_pw_aff_order_map_aligned(pa1, pa2, &isl_pw_aff_gt_set); } /* Return a map containing pairs of elements in the domains of "pa1" and "pa2" * where the function value of "pa1" is greater than the function value * of "pa2". */ __isl_give isl_map *isl_pw_aff_gt_map(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return align_params_pw_pw_map_and(pa1, pa2, &isl_pw_aff_gt_map_aligned); } /* Return a set containing those elements in the shared domain * of the elements of list1 and list2 where each element in list1 * has the relation specified by "fn" with each element in list2. */ static __isl_give isl_set *pw_aff_list_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2, __isl_give isl_set *(*fn)(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2)) { int i, j; isl_ctx *ctx; isl_set *set; if (!list1 || !list2) goto error; ctx = isl_pw_aff_list_get_ctx(list1); if (list1->n < 1 || list2->n < 1) isl_die(ctx, isl_error_invalid, "list should contain at least one element", goto error); set = isl_set_universe(isl_pw_aff_get_domain_space(list1->p[0])); for (i = 0; i < list1->n; ++i) for (j = 0; j < list2->n; ++j) { isl_set *set_ij; set_ij = fn(isl_pw_aff_copy(list1->p[i]), isl_pw_aff_copy(list2->p[j])); set = isl_set_intersect(set, set_ij); } isl_pw_aff_list_free(list1); isl_pw_aff_list_free(list2); return set; error: isl_pw_aff_list_free(list1); isl_pw_aff_list_free(list2); return NULL; } /* Return a set containing those elements in the shared domain * of the elements of list1 and list2 where each element in list1 * is equal to each element in list2. */ __isl_give isl_set *isl_pw_aff_list_eq_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_eq_set); } __isl_give isl_set *isl_pw_aff_list_ne_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_ne_set); } /* Return a set containing those elements in the shared domain * of the elements of list1 and list2 where each element in list1 * is less than or equal to each element in list2. */ __isl_give isl_set *isl_pw_aff_list_le_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_le_set); } __isl_give isl_set *isl_pw_aff_list_lt_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_lt_set); } __isl_give isl_set *isl_pw_aff_list_ge_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_ge_set); } __isl_give isl_set *isl_pw_aff_list_gt_set(__isl_take isl_pw_aff_list *list1, __isl_take isl_pw_aff_list *list2) { return pw_aff_list_set(list1, list2, &isl_pw_aff_gt_set); } /* Return a set containing those elements in the shared domain * of pwaff1 and pwaff2 where pwaff1 is not equal to pwaff2. */ static __isl_give isl_set *pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { isl_set *set_lt, *set_gt; set_lt = isl_pw_aff_lt_set(isl_pw_aff_copy(pwaff1), isl_pw_aff_copy(pwaff2)); set_gt = isl_pw_aff_gt_set(pwaff1, pwaff2); return isl_set_union_disjoint(set_lt, set_gt); } __isl_give isl_set *isl_pw_aff_ne_set(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return align_params_pw_pw_set_and(pwaff1, pwaff2, &pw_aff_ne_set); } __isl_give isl_pw_aff *isl_pw_aff_scale_down(__isl_take isl_pw_aff *pwaff, isl_int v) { int i; if (isl_int_is_one(v)) return pwaff; if (!isl_int_is_pos(v)) isl_die(isl_pw_aff_get_ctx(pwaff), isl_error_invalid, "factor needs to be positive", return isl_pw_aff_free(pwaff)); pwaff = isl_pw_aff_cow(pwaff); if (!pwaff) return NULL; if (pwaff->n == 0) return pwaff; for (i = 0; i < pwaff->n; ++i) { pwaff->p[i].aff = isl_aff_scale_down(pwaff->p[i].aff, v); if (!pwaff->p[i].aff) return isl_pw_aff_free(pwaff); } return pwaff; } __isl_give isl_pw_aff *isl_pw_aff_floor(__isl_take isl_pw_aff *pwaff) { int i; pwaff = isl_pw_aff_cow(pwaff); if (!pwaff) return NULL; if (pwaff->n == 0) return pwaff; for (i = 0; i < pwaff->n; ++i) { pwaff->p[i].aff = isl_aff_floor(pwaff->p[i].aff); if (!pwaff->p[i].aff) return isl_pw_aff_free(pwaff); } return pwaff; } __isl_give isl_pw_aff *isl_pw_aff_ceil(__isl_take isl_pw_aff *pwaff) { int i; pwaff = isl_pw_aff_cow(pwaff); if (!pwaff) return NULL; if (pwaff->n == 0) return pwaff; for (i = 0; i < pwaff->n; ++i) { pwaff->p[i].aff = isl_aff_ceil(pwaff->p[i].aff); if (!pwaff->p[i].aff) return isl_pw_aff_free(pwaff); } return pwaff; } /* Assuming that "cond1" and "cond2" are disjoint, * return an affine expression that is equal to pwaff1 on cond1 * and to pwaff2 on cond2. */ static __isl_give isl_pw_aff *isl_pw_aff_select( __isl_take isl_set *cond1, __isl_take isl_pw_aff *pwaff1, __isl_take isl_set *cond2, __isl_take isl_pw_aff *pwaff2) { pwaff1 = isl_pw_aff_intersect_domain(pwaff1, cond1); pwaff2 = isl_pw_aff_intersect_domain(pwaff2, cond2); return isl_pw_aff_add_disjoint(pwaff1, pwaff2); } /* Return an affine expression that is equal to pwaff_true for elements * where "cond" is non-zero and to pwaff_false for elements where "cond" * is zero. * That is, return cond ? pwaff_true : pwaff_false; * * If "cond" involves and NaN, then we conservatively return a NaN * on its entire domain. In principle, we could consider the pieces * where it is NaN separately from those where it is not. */ __isl_give isl_pw_aff *isl_pw_aff_cond(__isl_take isl_pw_aff *cond, __isl_take isl_pw_aff *pwaff_true, __isl_take isl_pw_aff *pwaff_false) { isl_set *cond_true, *cond_false; if (!cond) goto error; if (isl_pw_aff_involves_nan(cond)) { isl_space *space = isl_pw_aff_get_domain_space(cond); isl_local_space *ls = isl_local_space_from_space(space); isl_pw_aff_free(cond); isl_pw_aff_free(pwaff_true); isl_pw_aff_free(pwaff_false); return isl_pw_aff_nan_on_domain(ls); } cond_true = isl_pw_aff_non_zero_set(isl_pw_aff_copy(cond)); cond_false = isl_pw_aff_zero_set(cond); return isl_pw_aff_select(cond_true, pwaff_true, cond_false, pwaff_false); error: isl_pw_aff_free(cond); isl_pw_aff_free(pwaff_true); isl_pw_aff_free(pwaff_false); return NULL; } isl_bool isl_aff_is_cst(__isl_keep isl_aff *aff) { if (!aff) return isl_bool_error; return isl_seq_first_non_zero(aff->v->el + 2, aff->v->size - 2) == -1; } /* Check whether pwaff is a piecewise constant. */ isl_bool isl_pw_aff_is_cst(__isl_keep isl_pw_aff *pwaff) { int i; if (!pwaff) return isl_bool_error; for (i = 0; i < pwaff->n; ++i) { isl_bool is_cst = isl_aff_is_cst(pwaff->p[i].aff); if (is_cst < 0 || !is_cst) return is_cst; } return isl_bool_true; } /* Return the product of "aff1" and "aff2". * * If either of the two is NaN, then the result is NaN. * * Otherwise, at least one of "aff1" or "aff2" needs to be a constant. */ __isl_give isl_aff *isl_aff_mul(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { if (!aff1 || !aff2) goto error; if (isl_aff_is_nan(aff1)) { isl_aff_free(aff2); return aff1; } if (isl_aff_is_nan(aff2)) { isl_aff_free(aff1); return aff2; } if (!isl_aff_is_cst(aff2) && isl_aff_is_cst(aff1)) return isl_aff_mul(aff2, aff1); if (!isl_aff_is_cst(aff2)) isl_die(isl_aff_get_ctx(aff1), isl_error_invalid, "at least one affine expression should be constant", goto error); aff1 = isl_aff_cow(aff1); if (!aff1 || !aff2) goto error; aff1 = isl_aff_scale(aff1, aff2->v->el[1]); aff1 = isl_aff_scale_down(aff1, aff2->v->el[0]); isl_aff_free(aff2); return aff1; error: isl_aff_free(aff1); isl_aff_free(aff2); return NULL; } /* Divide "aff1" by "aff2", assuming "aff2" is a constant. * * If either of the two is NaN, then the result is NaN. */ __isl_give isl_aff *isl_aff_div(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { int is_cst; int neg; if (!aff1 || !aff2) goto error; if (isl_aff_is_nan(aff1)) { isl_aff_free(aff2); return aff1; } if (isl_aff_is_nan(aff2)) { isl_aff_free(aff1); return aff2; } is_cst = isl_aff_is_cst(aff2); if (is_cst < 0) goto error; if (!is_cst) isl_die(isl_aff_get_ctx(aff2), isl_error_invalid, "second argument should be a constant", goto error); if (!aff2) goto error; neg = isl_int_is_neg(aff2->v->el[1]); if (neg) { isl_int_neg(aff2->v->el[0], aff2->v->el[0]); isl_int_neg(aff2->v->el[1], aff2->v->el[1]); } aff1 = isl_aff_scale(aff1, aff2->v->el[0]); aff1 = isl_aff_scale_down(aff1, aff2->v->el[1]); if (neg) { isl_int_neg(aff2->v->el[0], aff2->v->el[0]); isl_int_neg(aff2->v->el[1], aff2->v->el[1]); } isl_aff_free(aff2); return aff1; error: isl_aff_free(aff1); isl_aff_free(aff2); return NULL; } static __isl_give isl_pw_aff *pw_aff_add(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_add); } __isl_give isl_pw_aff *isl_pw_aff_add(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_add); } __isl_give isl_pw_aff *isl_pw_aff_union_add(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_union_add_(pwaff1, pwaff2); } static __isl_give isl_pw_aff *pw_aff_mul(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_on_shared_domain(pwaff1, pwaff2, &isl_aff_mul); } __isl_give isl_pw_aff *isl_pw_aff_mul(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_mul); } static __isl_give isl_pw_aff *pw_aff_div(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { return isl_pw_aff_on_shared_domain(pa1, pa2, &isl_aff_div); } /* Divide "pa1" by "pa2", assuming "pa2" is a piecewise constant. */ __isl_give isl_pw_aff *isl_pw_aff_div(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { int is_cst; is_cst = isl_pw_aff_is_cst(pa2); if (is_cst < 0) goto error; if (!is_cst) isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid, "second argument should be a piecewise constant", goto error); return isl_pw_aff_align_params_pw_pw_and(pa1, pa2, &pw_aff_div); error: isl_pw_aff_free(pa1); isl_pw_aff_free(pa2); return NULL; } /* Compute the quotient of the integer division of "pa1" by "pa2" * with rounding towards zero. * "pa2" is assumed to be a piecewise constant. * * In particular, return * * pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2) * */ __isl_give isl_pw_aff *isl_pw_aff_tdiv_q(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { int is_cst; isl_set *cond; isl_pw_aff *f, *c; is_cst = isl_pw_aff_is_cst(pa2); if (is_cst < 0) goto error; if (!is_cst) isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid, "second argument should be a piecewise constant", goto error); pa1 = isl_pw_aff_div(pa1, pa2); cond = isl_pw_aff_nonneg_set(isl_pw_aff_copy(pa1)); f = isl_pw_aff_floor(isl_pw_aff_copy(pa1)); c = isl_pw_aff_ceil(pa1); return isl_pw_aff_cond(isl_set_indicator_function(cond), f, c); error: isl_pw_aff_free(pa1); isl_pw_aff_free(pa2); return NULL; } /* Compute the remainder of the integer division of "pa1" by "pa2" * with rounding towards zero. * "pa2" is assumed to be a piecewise constant. * * In particular, return * * pa1 - pa2 * (pa1 >= 0 ? floor(pa1/pa2) : ceil(pa1/pa2)) * */ __isl_give isl_pw_aff *isl_pw_aff_tdiv_r(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2) { int is_cst; isl_pw_aff *res; is_cst = isl_pw_aff_is_cst(pa2); if (is_cst < 0) goto error; if (!is_cst) isl_die(isl_pw_aff_get_ctx(pa2), isl_error_invalid, "second argument should be a piecewise constant", goto error); res = isl_pw_aff_tdiv_q(isl_pw_aff_copy(pa1), isl_pw_aff_copy(pa2)); res = isl_pw_aff_mul(pa2, res); res = isl_pw_aff_sub(pa1, res); return res; error: isl_pw_aff_free(pa1); isl_pw_aff_free(pa2); return NULL; } static __isl_give isl_pw_aff *pw_aff_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { isl_set *le; isl_set *dom; dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)), isl_pw_aff_domain(isl_pw_aff_copy(pwaff2))); le = isl_pw_aff_le_set(isl_pw_aff_copy(pwaff1), isl_pw_aff_copy(pwaff2)); dom = isl_set_subtract(dom, isl_set_copy(le)); return isl_pw_aff_select(le, pwaff1, dom, pwaff2); } __isl_give isl_pw_aff *isl_pw_aff_min(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_min); } static __isl_give isl_pw_aff *pw_aff_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { isl_set *ge; isl_set *dom; dom = isl_set_intersect(isl_pw_aff_domain(isl_pw_aff_copy(pwaff1)), isl_pw_aff_domain(isl_pw_aff_copy(pwaff2))); ge = isl_pw_aff_ge_set(isl_pw_aff_copy(pwaff1), isl_pw_aff_copy(pwaff2)); dom = isl_set_subtract(dom, isl_set_copy(ge)); return isl_pw_aff_select(ge, pwaff1, dom, pwaff2); } __isl_give isl_pw_aff *isl_pw_aff_max(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2) { return isl_pw_aff_align_params_pw_pw_and(pwaff1, pwaff2, &pw_aff_max); } static __isl_give isl_pw_aff *pw_aff_list_reduce( __isl_take isl_pw_aff_list *list, __isl_give isl_pw_aff *(*fn)(__isl_take isl_pw_aff *pwaff1, __isl_take isl_pw_aff *pwaff2)) { int i; isl_ctx *ctx; isl_pw_aff *res; if (!list) return NULL; ctx = isl_pw_aff_list_get_ctx(list); if (list->n < 1) isl_die(ctx, isl_error_invalid, "list should contain at least one element", goto error); res = isl_pw_aff_copy(list->p[0]); for (i = 1; i < list->n; ++i) res = fn(res, isl_pw_aff_copy(list->p[i])); isl_pw_aff_list_free(list); return res; error: isl_pw_aff_list_free(list); return NULL; } /* Return an isl_pw_aff that maps each element in the intersection of the * domains of the elements of list to the minimal corresponding affine * expression. */ __isl_give isl_pw_aff *isl_pw_aff_list_min(__isl_take isl_pw_aff_list *list) { return pw_aff_list_reduce(list, &isl_pw_aff_min); } /* Return an isl_pw_aff that maps each element in the intersection of the * domains of the elements of list to the maximal corresponding affine * expression. */ __isl_give isl_pw_aff *isl_pw_aff_list_max(__isl_take isl_pw_aff_list *list) { return pw_aff_list_reduce(list, &isl_pw_aff_max); } /* Mark the domains of "pwaff" as rational. */ __isl_give isl_pw_aff *isl_pw_aff_set_rational(__isl_take isl_pw_aff *pwaff) { int i; pwaff = isl_pw_aff_cow(pwaff); if (!pwaff) return NULL; if (pwaff->n == 0) return pwaff; for (i = 0; i < pwaff->n; ++i) { pwaff->p[i].set = isl_set_set_rational(pwaff->p[i].set); if (!pwaff->p[i].set) return isl_pw_aff_free(pwaff); } return pwaff; } /* Mark the domains of the elements of "list" as rational. */ __isl_give isl_pw_aff_list *isl_pw_aff_list_set_rational( __isl_take isl_pw_aff_list *list) { int i, n; if (!list) return NULL; if (list->n == 0) return list; n = list->n; for (i = 0; i < n; ++i) { isl_pw_aff *pa; pa = isl_pw_aff_list_get_pw_aff(list, i); pa = isl_pw_aff_set_rational(pa); list = isl_pw_aff_list_set_pw_aff(list, i, pa); } return list; } /* Do the parameters of "aff" match those of "space"? */ int isl_aff_matching_params(__isl_keep isl_aff *aff, __isl_keep isl_space *space) { isl_space *aff_space; int match; if (!aff || !space) return -1; aff_space = isl_aff_get_domain_space(aff); match = isl_space_match(space, isl_dim_param, aff_space, isl_dim_param); isl_space_free(aff_space); return match; } /* Check that the domain space of "aff" matches "space". * * Return 0 on success and -1 on error. */ int isl_aff_check_match_domain_space(__isl_keep isl_aff *aff, __isl_keep isl_space *space) { isl_space *aff_space; int match; if (!aff || !space) return -1; aff_space = isl_aff_get_domain_space(aff); match = isl_space_match(space, isl_dim_param, aff_space, isl_dim_param); if (match < 0) goto error; if (!match) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "parameters don't match", goto error); match = isl_space_tuple_is_equal(space, isl_dim_in, aff_space, isl_dim_set); if (match < 0) goto error; if (!match) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "domains don't match", goto error); isl_space_free(aff_space); return 0; error: isl_space_free(aff_space); return -1; } #undef BASE #define BASE aff #undef DOMBASE #define DOMBASE set #define NO_DOMAIN #include #include #include #include #undef NO_DOMAIN /* Remove any internal structure of the domain of "ma". * If there is any such internal structure in the input, * then the name of the corresponding space is also removed. */ __isl_give isl_multi_aff *isl_multi_aff_flatten_domain( __isl_take isl_multi_aff *ma) { isl_space *space; if (!ma) return NULL; if (!ma->space->nested[0]) return ma; space = isl_multi_aff_get_space(ma); space = isl_space_flatten_domain(space); ma = isl_multi_aff_reset_space(ma, space); return ma; } /* Given a map space, return an isl_multi_aff that maps a wrapped copy * of the space to its domain. */ __isl_give isl_multi_aff *isl_multi_aff_domain_map(__isl_take isl_space *space) { int i, n_in; isl_local_space *ls; isl_multi_aff *ma; if (!space) return NULL; if (!isl_space_is_map(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "not a map space", goto error); n_in = isl_space_dim(space, isl_dim_in); space = isl_space_domain_map(space); ma = isl_multi_aff_alloc(isl_space_copy(space)); if (n_in == 0) { isl_space_free(space); return ma; } space = isl_space_domain(space); ls = isl_local_space_from_space(space); for (i = 0; i < n_in; ++i) { isl_aff *aff; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, i); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); return ma; error: isl_space_free(space); return NULL; } /* Given a map space, return an isl_multi_aff that maps a wrapped copy * of the space to its range. */ __isl_give isl_multi_aff *isl_multi_aff_range_map(__isl_take isl_space *space) { int i, n_in, n_out; isl_local_space *ls; isl_multi_aff *ma; if (!space) return NULL; if (!isl_space_is_map(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "not a map space", goto error); n_in = isl_space_dim(space, isl_dim_in); n_out = isl_space_dim(space, isl_dim_out); space = isl_space_range_map(space); ma = isl_multi_aff_alloc(isl_space_copy(space)); if (n_out == 0) { isl_space_free(space); return ma; } space = isl_space_domain(space); ls = isl_local_space_from_space(space); for (i = 0; i < n_out; ++i) { isl_aff *aff; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, n_in + i); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); return ma; error: isl_space_free(space); return NULL; } /* Given a map space, return an isl_pw_multi_aff that maps a wrapped copy * of the space to its range. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_map( __isl_take isl_space *space) { return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_range_map(space)); } /* Given the space of a set and a range of set dimensions, * construct an isl_multi_aff that projects out those dimensions. */ __isl_give isl_multi_aff *isl_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n) { int i, dim; isl_local_space *ls; isl_multi_aff *ma; if (!space) return NULL; if (!isl_space_is_set(space)) isl_die(isl_space_get_ctx(space), isl_error_unsupported, "expecting set space", goto error); if (type != isl_dim_set) isl_die(isl_space_get_ctx(space), isl_error_invalid, "only set dimensions can be projected out", goto error); dim = isl_space_dim(space, isl_dim_set); if (first + n > dim) isl_die(isl_space_get_ctx(space), isl_error_invalid, "range out of bounds", goto error); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, dim - n); if (dim == n) return isl_multi_aff_alloc(space); ma = isl_multi_aff_alloc(isl_space_copy(space)); space = isl_space_domain(space); ls = isl_local_space_from_space(space); for (i = 0; i < first; ++i) { isl_aff *aff; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, i); ma = isl_multi_aff_set_aff(ma, i, aff); } for (i = 0; i < dim - (first + n); ++i) { isl_aff *aff; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, first + n + i); ma = isl_multi_aff_set_aff(ma, first + i, aff); } isl_local_space_free(ls); return ma; error: isl_space_free(space); return NULL; } /* Given the space of a set and a range of set dimensions, * construct an isl_pw_multi_aff that projects out those dimensions. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_project_out_map( __isl_take isl_space *space, enum isl_dim_type type, unsigned first, unsigned n) { isl_multi_aff *ma; ma = isl_multi_aff_project_out_map(space, type, first, n); return isl_pw_multi_aff_from_multi_aff(ma); } /* Create an isl_pw_multi_aff with the given isl_multi_aff on a universe * domain. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_aff( __isl_take isl_multi_aff *ma) { isl_set *dom = isl_set_universe(isl_multi_aff_get_domain_space(ma)); return isl_pw_multi_aff_alloc(dom, ma); } /* Create a piecewise multi-affine expression in the given space that maps each * input dimension to the corresponding output dimension. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_identity( __isl_take isl_space *space) { return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_identity(space)); } /* Exploit the equalities in "eq" to simplify the affine expressions. */ static __isl_give isl_multi_aff *isl_multi_aff_substitute_equalities( __isl_take isl_multi_aff *maff, __isl_take isl_basic_set *eq) { int i; maff = isl_multi_aff_cow(maff); if (!maff || !eq) goto error; for (i = 0; i < maff->n; ++i) { maff->p[i] = isl_aff_substitute_equalities(maff->p[i], isl_basic_set_copy(eq)); if (!maff->p[i]) goto error; } isl_basic_set_free(eq); return maff; error: isl_basic_set_free(eq); isl_multi_aff_free(maff); return NULL; } __isl_give isl_multi_aff *isl_multi_aff_scale(__isl_take isl_multi_aff *maff, isl_int f) { int i; maff = isl_multi_aff_cow(maff); if (!maff) return NULL; for (i = 0; i < maff->n; ++i) { maff->p[i] = isl_aff_scale(maff->p[i], f); if (!maff->p[i]) return isl_multi_aff_free(maff); } return maff; } __isl_give isl_multi_aff *isl_multi_aff_add_on_domain(__isl_keep isl_set *dom, __isl_take isl_multi_aff *maff1, __isl_take isl_multi_aff *maff2) { maff1 = isl_multi_aff_add(maff1, maff2); maff1 = isl_multi_aff_gist(maff1, isl_set_copy(dom)); return maff1; } int isl_multi_aff_is_empty(__isl_keep isl_multi_aff *maff) { if (!maff) return -1; return 0; } /* Return the set of domain elements where "ma1" is lexicographically * smaller than or equal to "ma2". */ __isl_give isl_set *isl_multi_aff_lex_le_set(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2) { return isl_multi_aff_lex_ge_set(ma2, ma1); } /* Return the set of domain elements where "ma1" is lexicographically * greater than or equal to "ma2". */ __isl_give isl_set *isl_multi_aff_lex_ge_set(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2) { isl_space *space; isl_map *map1, *map2; isl_map *map, *ge; map1 = isl_map_from_multi_aff(ma1); map2 = isl_map_from_multi_aff(ma2); map = isl_map_range_product(map1, map2); space = isl_space_range(isl_map_get_space(map)); space = isl_space_domain(isl_space_unwrap(space)); ge = isl_map_lex_ge(space); map = isl_map_intersect_range(map, isl_map_wrap(ge)); return isl_map_domain(map); } #undef PW #define PW isl_pw_multi_aff #undef EL #define EL isl_multi_aff #undef EL_IS_ZERO #define EL_IS_ZERO is_empty #undef ZERO #define ZERO empty #undef IS_ZERO #define IS_ZERO is_empty #undef FIELD #define FIELD maff #undef DEFAULT_IS_ZERO #define DEFAULT_IS_ZERO 0 #define NO_SUB #define NO_EVAL #define NO_OPT #define NO_INVOLVES_DIMS #define NO_INSERT_DIMS #define NO_LIFT #define NO_MORPH #include #undef NO_SUB #undef UNION #define UNION isl_union_pw_multi_aff #undef PART #define PART isl_pw_multi_aff #undef PARTS #define PARTS pw_multi_aff #include #include /* Given a function "cmp" that returns the set of elements where * "ma1" is "better" than "ma2", return the intersection of this * set with "dom1" and "dom2". */ static __isl_give isl_set *shared_and_better(__isl_keep isl_set *dom1, __isl_keep isl_set *dom2, __isl_keep isl_multi_aff *ma1, __isl_keep isl_multi_aff *ma2, __isl_give isl_set *(*cmp)(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)) { isl_set *common; isl_set *better; int is_empty; common = isl_set_intersect(isl_set_copy(dom1), isl_set_copy(dom2)); is_empty = isl_set_plain_is_empty(common); if (is_empty >= 0 && is_empty) return common; if (is_empty < 0) return isl_set_free(common); better = cmp(isl_multi_aff_copy(ma1), isl_multi_aff_copy(ma2)); better = isl_set_intersect(common, better); return better; } /* Given a function "cmp" that returns the set of elements where * "ma1" is "better" than "ma2", return a piecewise multi affine * expression defined on the union of the definition domains * of "pma1" and "pma2" that maps to the "best" of "pma1" and * "pma2" on each cell. If only one of the two input functions * is defined on a given cell, then it is considered the best. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_union_opt( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2, __isl_give isl_set *(*cmp)(__isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2)) { int i, j, n; isl_pw_multi_aff *res = NULL; isl_ctx *ctx; isl_set *set = NULL; if (!pma1 || !pma2) goto error; ctx = isl_space_get_ctx(pma1->dim); if (!isl_space_is_equal(pma1->dim, pma2->dim)) isl_die(ctx, isl_error_invalid, "arguments should live in the same space", goto error); if (isl_pw_multi_aff_is_empty(pma1)) { isl_pw_multi_aff_free(pma1); return pma2; } if (isl_pw_multi_aff_is_empty(pma2)) { isl_pw_multi_aff_free(pma2); return pma1; } n = 2 * (pma1->n + 1) * (pma2->n + 1); res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma1->dim), n); for (i = 0; i < pma1->n; ++i) { set = isl_set_copy(pma1->p[i].set); for (j = 0; j < pma2->n; ++j) { isl_set *better; int is_empty; better = shared_and_better(pma2->p[j].set, pma1->p[i].set, pma2->p[j].maff, pma1->p[i].maff, cmp); is_empty = isl_set_plain_is_empty(better); if (is_empty < 0 || is_empty) { isl_set_free(better); if (is_empty < 0) goto error; continue; } set = isl_set_subtract(set, isl_set_copy(better)); res = isl_pw_multi_aff_add_piece(res, better, isl_multi_aff_copy(pma2->p[j].maff)); } res = isl_pw_multi_aff_add_piece(res, set, isl_multi_aff_copy(pma1->p[i].maff)); } for (j = 0; j < pma2->n; ++j) { set = isl_set_copy(pma2->p[j].set); for (i = 0; i < pma1->n; ++i) set = isl_set_subtract(set, isl_set_copy(pma1->p[i].set)); res = isl_pw_multi_aff_add_piece(res, set, isl_multi_aff_copy(pma2->p[j].maff)); } isl_pw_multi_aff_free(pma1); isl_pw_multi_aff_free(pma2); return res; error: isl_pw_multi_aff_free(pma1); isl_pw_multi_aff_free(pma2); isl_set_free(set); return isl_pw_multi_aff_free(res); } static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmax( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return pw_multi_aff_union_opt(pma1, pma2, &isl_multi_aff_lex_ge_set); } /* Given two piecewise multi affine expressions, return a piecewise * multi-affine expression defined on the union of the definition domains * of the inputs that is equal to the lexicographic maximum of the two * inputs on each cell. If only one of the two inputs is defined on * a given cell, then it is considered to be the maximum. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmax( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_union_lexmax); } static __isl_give isl_pw_multi_aff *pw_multi_aff_union_lexmin( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return pw_multi_aff_union_opt(pma1, pma2, &isl_multi_aff_lex_le_set); } /* Given two piecewise multi affine expressions, return a piecewise * multi-affine expression defined on the union of the definition domains * of the inputs that is equal to the lexicographic minimum of the two * inputs on each cell. If only one of the two inputs is defined on * a given cell, then it is considered to be the minimum. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_lexmin( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_union_lexmin); } static __isl_give isl_pw_multi_aff *pw_multi_aff_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_on_shared_domain(pma1, pma2, &isl_multi_aff_add); } __isl_give isl_pw_multi_aff *isl_pw_multi_aff_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_add); } static __isl_give isl_pw_multi_aff *pw_multi_aff_sub( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_on_shared_domain(pma1, pma2, &isl_multi_aff_sub); } /* Subtract "pma2" from "pma1" and return the result. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_sub( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_sub); } __isl_give isl_pw_multi_aff *isl_pw_multi_aff_union_add( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_union_add_(pma1, pma2); } /* Compute the sum of "upa1" and "upa2" on the union of their domains, * with the actual sum on the shared domain and * the defined expression on the symmetric difference of the domains. */ __isl_give isl_union_pw_aff *isl_union_pw_aff_union_add( __isl_take isl_union_pw_aff *upa1, __isl_take isl_union_pw_aff *upa2) { return isl_union_pw_aff_union_add_(upa1, upa2); } /* Compute the sum of "upma1" and "upma2" on the union of their domains, * with the actual sum on the shared domain and * the defined expression on the symmetric difference of the domains. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_union_add( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2) { return isl_union_pw_multi_aff_union_add_(upma1, upma2); } /* Given two piecewise multi-affine expressions A -> B and C -> D, * construct a piecewise multi-affine expression [A -> C] -> [B -> D]. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { int i, j, n; isl_space *space; isl_pw_multi_aff *res; if (!pma1 || !pma2) goto error; n = pma1->n * pma2->n; space = isl_space_product(isl_space_copy(pma1->dim), isl_space_copy(pma2->dim)); res = isl_pw_multi_aff_alloc_size(space, n); for (i = 0; i < pma1->n; ++i) { for (j = 0; j < pma2->n; ++j) { isl_set *domain; isl_multi_aff *ma; domain = isl_set_product(isl_set_copy(pma1->p[i].set), isl_set_copy(pma2->p[j].set)); ma = isl_multi_aff_product( isl_multi_aff_copy(pma1->p[i].maff), isl_multi_aff_copy(pma2->p[j].maff)); res = isl_pw_multi_aff_add_piece(res, domain, ma); } } isl_pw_multi_aff_free(pma1); isl_pw_multi_aff_free(pma2); return res; error: isl_pw_multi_aff_free(pma1); isl_pw_multi_aff_free(pma2); return NULL; } __isl_give isl_pw_multi_aff *isl_pw_multi_aff_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_product); } /* Construct a map mapping the domain of the piecewise multi-affine expression * to its range, with each dimension in the range equated to the * corresponding affine expression on its cell. */ __isl_give isl_map *isl_map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma) { int i; isl_map *map; if (!pma) return NULL; map = isl_map_empty(isl_pw_multi_aff_get_space(pma)); for (i = 0; i < pma->n; ++i) { isl_multi_aff *maff; isl_basic_map *bmap; isl_map *map_i; maff = isl_multi_aff_copy(pma->p[i].maff); bmap = isl_basic_map_from_multi_aff(maff); map_i = isl_map_from_basic_map(bmap); map_i = isl_map_intersect_domain(map_i, isl_set_copy(pma->p[i].set)); map = isl_map_union_disjoint(map, map_i); } isl_pw_multi_aff_free(pma); return map; } __isl_give isl_set *isl_set_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma) { if (!pma) return NULL; if (!isl_space_is_set(pma->dim)) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "isl_pw_multi_aff cannot be converted into an isl_set", goto error); return isl_map_from_pw_multi_aff(pma); error: isl_pw_multi_aff_free(pma); return NULL; } /* Subtract the initial "n" elements in "ma" with coefficients in "c" and * denominator "denom". * "denom" is allowed to be negative, in which case the actual denominator * is -denom and the expressions are added instead. */ static __isl_give isl_aff *subtract_initial(__isl_take isl_aff *aff, __isl_keep isl_multi_aff *ma, int n, isl_int *c, isl_int denom) { int i, first; int sign; isl_int d; first = isl_seq_first_non_zero(c, n); if (first == -1) return aff; sign = isl_int_sgn(denom); isl_int_init(d); isl_int_abs(d, denom); for (i = first; i < n; ++i) { isl_aff *aff_i; if (isl_int_is_zero(c[i])) continue; aff_i = isl_multi_aff_get_aff(ma, i); aff_i = isl_aff_scale(aff_i, c[i]); aff_i = isl_aff_scale_down(aff_i, d); if (sign >= 0) aff = isl_aff_sub(aff, aff_i); else aff = isl_aff_add(aff, aff_i); } isl_int_clear(d); return aff; } /* Extract an affine expression that expresses the output dimension "pos" * of "bmap" in terms of the parameters and input dimensions from * equality "eq". * Note that this expression may involve integer divisions defined * in terms of parameters and input dimensions. * The equality may also involve references to earlier (but not later) * output dimensions. These are replaced by the corresponding elements * in "ma". * * If the equality is of the form * * f(i) + h(j) + a x + g(i) = 0, * * with f(i) a linear combinations of the parameters and input dimensions, * g(i) a linear combination of integer divisions defined in terms of the same * and h(j) a linear combinations of earlier output dimensions, * then the affine expression is * * (-f(i) - g(i))/a - h(j)/a * * If the equality is of the form * * f(i) + h(j) - a x + g(i) = 0, * * then the affine expression is * * (f(i) + g(i))/a - h(j)/(-a) * * * If "div" refers to an integer division (i.e., it is smaller than * the number of integer divisions), then the equality constraint * does involve an integer division (the one at position "div") that * is defined in terms of output dimensions. However, this integer * division can be eliminated by exploiting a pair of constraints * x >= l and x <= l + n, with n smaller than the coefficient of "div" * in the equality constraint. "ineq" refers to inequality x >= l, i.e., * -l + x >= 0. * In particular, let * * x = e(i) + m floor(...) * * with e(i) the expression derived above and floor(...) the integer * division involving output dimensions. * From * * l <= x <= l + n, * * we have * * 0 <= x - l <= n * * This means * * e(i) + m floor(...) - l = (e(i) + m floor(...) - l) mod m * = (e(i) - l) mod m * * Therefore, * * x - l = (e(i) - l) mod m * * or * * x = ((e(i) - l) mod m) + l * * The variable "shift" below contains the expression -l, which may * also involve a linear combination of earlier output dimensions. */ static __isl_give isl_aff *extract_aff_from_equality( __isl_keep isl_basic_map *bmap, int pos, int eq, int div, int ineq, __isl_keep isl_multi_aff *ma) { unsigned o_out; unsigned n_div, n_out; isl_ctx *ctx; isl_local_space *ls; isl_aff *aff, *shift; isl_val *mod; ctx = isl_basic_map_get_ctx(bmap); ls = isl_basic_map_get_local_space(bmap); ls = isl_local_space_domain(ls); aff = isl_aff_alloc(isl_local_space_copy(ls)); if (!aff) goto error; o_out = isl_basic_map_offset(bmap, isl_dim_out); n_out = isl_basic_map_dim(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); if (isl_int_is_neg(bmap->eq[eq][o_out + pos])) { isl_seq_cpy(aff->v->el + 1, bmap->eq[eq], o_out); isl_seq_cpy(aff->v->el + 1 + o_out, bmap->eq[eq] + o_out + n_out, n_div); } else { isl_seq_neg(aff->v->el + 1, bmap->eq[eq], o_out); isl_seq_neg(aff->v->el + 1 + o_out, bmap->eq[eq] + o_out + n_out, n_div); } if (div < n_div) isl_int_set_si(aff->v->el[1 + o_out + div], 0); isl_int_abs(aff->v->el[0], bmap->eq[eq][o_out + pos]); aff = subtract_initial(aff, ma, pos, bmap->eq[eq] + o_out, bmap->eq[eq][o_out + pos]); if (div < n_div) { shift = isl_aff_alloc(isl_local_space_copy(ls)); if (!shift) goto error; isl_seq_cpy(shift->v->el + 1, bmap->ineq[ineq], o_out); isl_seq_cpy(shift->v->el + 1 + o_out, bmap->ineq[ineq] + o_out + n_out, n_div); isl_int_set_si(shift->v->el[0], 1); shift = subtract_initial(shift, ma, pos, bmap->ineq[ineq] + o_out, ctx->negone); aff = isl_aff_add(aff, isl_aff_copy(shift)); mod = isl_val_int_from_isl_int(ctx, bmap->eq[eq][o_out + n_out + div]); mod = isl_val_abs(mod); aff = isl_aff_mod_val(aff, mod); aff = isl_aff_sub(aff, shift); } isl_local_space_free(ls); return aff; error: isl_local_space_free(ls); isl_aff_free(aff); return NULL; } /* Given a basic map with output dimensions defined * in terms of the parameters input dimensions and earlier * output dimensions using an equality (and possibly a pair on inequalities), * extract an isl_aff that expresses output dimension "pos" in terms * of the parameters and input dimensions. * Note that this expression may involve integer divisions defined * in terms of parameters and input dimensions. * "ma" contains the expressions corresponding to earlier output dimensions. * * This function shares some similarities with * isl_basic_map_has_defining_equality and isl_constraint_get_bound. */ static __isl_give isl_aff *extract_isl_aff_from_basic_map( __isl_keep isl_basic_map *bmap, int pos, __isl_keep isl_multi_aff *ma) { int eq, div, ineq; isl_aff *aff; if (!bmap) return NULL; eq = isl_basic_map_output_defining_equality(bmap, pos, &div, &ineq); if (eq >= bmap->n_eq) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "unable to find suitable equality", return NULL); aff = extract_aff_from_equality(bmap, pos, eq, div, ineq, ma); aff = isl_aff_remove_unused_divs(aff); return aff; } /* Given a basic map where each output dimension is defined * in terms of the parameters and input dimensions using an equality, * extract an isl_multi_aff that expresses the output dimensions in terms * of the parameters and input dimensions. */ static __isl_give isl_multi_aff *extract_isl_multi_aff_from_basic_map( __isl_take isl_basic_map *bmap) { int i; unsigned n_out; isl_multi_aff *ma; if (!bmap) return NULL; ma = isl_multi_aff_alloc(isl_basic_map_get_space(bmap)); n_out = isl_basic_map_dim(bmap, isl_dim_out); for (i = 0; i < n_out; ++i) { isl_aff *aff; aff = extract_isl_aff_from_basic_map(bmap, i, ma); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_basic_map_free(bmap); return ma; } /* Given a basic set where each set dimension is defined * in terms of the parameters using an equality, * extract an isl_multi_aff that expresses the set dimensions in terms * of the parameters. */ __isl_give isl_multi_aff *isl_multi_aff_from_basic_set_equalities( __isl_take isl_basic_set *bset) { return extract_isl_multi_aff_from_basic_map(bset); } /* Create an isl_pw_multi_aff that is equivalent to * isl_map_intersect_domain(isl_map_from_basic_map(bmap), domain). * The given basic map is such that each output dimension is defined * in terms of the parameters and input dimensions using an equality. * * Since some applications expect the result of isl_pw_multi_aff_from_map * to only contain integer affine expressions, we compute the floor * of the expression before returning. * * Remove all constraints involving local variables without * an explicit representation (resulting in the removal of those * local variables) prior to the actual extraction to ensure * that the local spaces in which the resulting affine expressions * are created do not contain any unknown local variables. * Removing such constraints is safe because constraints involving * unknown local variables are not used to determine whether * a basic map is obviously single-valued. */ static __isl_give isl_pw_multi_aff *plain_pw_multi_aff_from_map( __isl_take isl_set *domain, __isl_take isl_basic_map *bmap) { isl_multi_aff *ma; bmap = isl_basic_map_drop_constraint_involving_unknown_divs(bmap); ma = extract_isl_multi_aff_from_basic_map(bmap); ma = isl_multi_aff_floor(ma); return isl_pw_multi_aff_alloc(domain, ma); } /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map. * This obviously only works if the input "map" is single-valued. * If so, we compute the lexicographic minimum of the image in the form * of an isl_pw_multi_aff. Since the image is unique, it is equal * to its lexicographic minimum. * If the input is not single-valued, we produce an error. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_base( __isl_take isl_map *map) { int i; int sv; isl_pw_multi_aff *pma; sv = isl_map_is_single_valued(map); if (sv < 0) goto error; if (!sv) isl_die(isl_map_get_ctx(map), isl_error_invalid, "map is not single-valued", goto error); map = isl_map_make_disjoint(map); if (!map) return NULL; pma = isl_pw_multi_aff_empty(isl_map_get_space(map)); for (i = 0; i < map->n; ++i) { isl_pw_multi_aff *pma_i; isl_basic_map *bmap; bmap = isl_basic_map_copy(map->p[i]); pma_i = isl_basic_map_lexmin_pw_multi_aff(bmap); pma = isl_pw_multi_aff_add_disjoint(pma, pma_i); } isl_map_free(map); return pma; error: isl_map_free(map); return NULL; } /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map, * taking into account that the output dimension at position "d" * can be represented as * * x = floor((e(...) + c1) / m) * * given that constraint "i" is of the form * * e(...) + c1 - m x >= 0 * * * Let "map" be of the form * * A -> B * * We construct a mapping * * A -> [A -> x = floor(...)] * * apply that to the map, obtaining * * [A -> x = floor(...)] -> B * * and equate dimension "d" to x. * We then compute a isl_pw_multi_aff representation of the resulting map * and plug in the mapping above. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_div( __isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i) { isl_ctx *ctx; isl_space *space; isl_local_space *ls; isl_multi_aff *ma; isl_aff *aff; isl_vec *v; isl_map *insert; int offset; int n; int n_in; isl_pw_multi_aff *pma; int is_set; is_set = isl_map_is_set(map); offset = isl_basic_map_offset(hull, isl_dim_out); ctx = isl_map_get_ctx(map); space = isl_space_domain(isl_map_get_space(map)); n_in = isl_space_dim(space, isl_dim_set); n = isl_space_dim(space, isl_dim_all); v = isl_vec_alloc(ctx, 1 + 1 + n); if (v) { isl_int_neg(v->el[0], hull->ineq[i][offset + d]); isl_seq_cpy(v->el + 1, hull->ineq[i], 1 + n); } isl_basic_map_free(hull); ls = isl_local_space_from_space(isl_space_copy(space)); aff = isl_aff_alloc_vec(ls, v); aff = isl_aff_floor(aff); if (is_set) { isl_space_free(space); ma = isl_multi_aff_from_aff(aff); } else { ma = isl_multi_aff_identity(isl_space_map_from_set(space)); ma = isl_multi_aff_range_product(ma, isl_multi_aff_from_aff(aff)); } insert = isl_map_from_multi_aff(isl_multi_aff_copy(ma)); map = isl_map_apply_domain(map, insert); map = isl_map_equate(map, isl_dim_in, n_in, isl_dim_out, d); pma = isl_pw_multi_aff_from_map(map); pma = isl_pw_multi_aff_pullback_multi_aff(pma, ma); return pma; } /* Is constraint "c" of the form * * e(...) + c1 - m x >= 0 * * or * * -e(...) + c2 + m x >= 0 * * where m > 1 and e only depends on parameters and input dimemnsions? * * "offset" is the offset of the output dimensions * "pos" is the position of output dimension x. */ static int is_potential_div_constraint(isl_int *c, int offset, int d, int total) { if (isl_int_is_zero(c[offset + d])) return 0; if (isl_int_is_one(c[offset + d])) return 0; if (isl_int_is_negone(c[offset + d])) return 0; if (isl_seq_first_non_zero(c + offset, d) != -1) return 0; if (isl_seq_first_non_zero(c + offset + d + 1, total - (offset + d + 1)) != -1) return 0; return 1; } /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map. * * As a special case, we first check if there is any pair of constraints, * shared by all the basic maps in "map" that force a given dimension * to be equal to the floor of some affine combination of the input dimensions. * * In particular, if we can find two constraints * * e(...) + c1 - m x >= 0 i.e., m x <= e(...) + c1 * * and * * -e(...) + c2 + m x >= 0 i.e., m x >= e(...) - c2 * * where m > 1 and e only depends on parameters and input dimemnsions, * and such that * * c1 + c2 < m i.e., -c2 >= c1 - (m - 1) * * then we know that we can take * * x = floor((e(...) + c1) / m) * * without having to perform any computation. * * Note that we know that * * c1 + c2 >= 1 * * If c1 + c2 were 0, then we would have detected an equality during * simplification. If c1 + c2 were negative, then we would have detected * a contradiction. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_check_div( __isl_take isl_map *map) { int d, dim; int i, j, n; int offset, total; isl_int sum; isl_basic_map *hull; hull = isl_map_unshifted_simple_hull(isl_map_copy(map)); if (!hull) goto error; isl_int_init(sum); dim = isl_map_dim(map, isl_dim_out); offset = isl_basic_map_offset(hull, isl_dim_out); total = 1 + isl_basic_map_total_dim(hull); n = hull->n_ineq; for (d = 0; d < dim; ++d) { for (i = 0; i < n; ++i) { if (!is_potential_div_constraint(hull->ineq[i], offset, d, total)) continue; for (j = i + 1; j < n; ++j) { if (!isl_seq_is_neg(hull->ineq[i] + 1, hull->ineq[j] + 1, total - 1)) continue; isl_int_add(sum, hull->ineq[i][0], hull->ineq[j][0]); if (isl_int_abs_lt(sum, hull->ineq[i][offset + d])) break; } if (j >= n) continue; isl_int_clear(sum); if (isl_int_is_pos(hull->ineq[j][offset + d])) j = i; return pw_multi_aff_from_map_div(map, hull, d, j); } } isl_int_clear(sum); isl_basic_map_free(hull); return pw_multi_aff_from_map_base(map); error: isl_map_free(map); isl_basic_map_free(hull); return NULL; } /* Given an affine expression * * [A -> B] -> f(A,B) * * construct an isl_multi_aff * * [A -> B] -> B' * * such that dimension "d" in B' is set to "aff" and the remaining * dimensions are set equal to the corresponding dimensions in B. * "n_in" is the dimension of the space A. * "n_out" is the dimension of the space B. * * If "is_set" is set, then the affine expression is of the form * * [B] -> f(B) * * and we construct an isl_multi_aff * * B -> B' */ static __isl_give isl_multi_aff *range_map(__isl_take isl_aff *aff, int d, unsigned n_in, unsigned n_out, int is_set) { int i; isl_multi_aff *ma; isl_space *space, *space2; isl_local_space *ls; space = isl_aff_get_domain_space(aff); ls = isl_local_space_from_space(isl_space_copy(space)); space2 = isl_space_copy(space); if (!is_set) space2 = isl_space_range(isl_space_unwrap(space2)); space = isl_space_map_from_domain_and_range(space, space2); ma = isl_multi_aff_alloc(space); ma = isl_multi_aff_set_aff(ma, d, aff); for (i = 0; i < n_out; ++i) { if (i == d) continue; aff = isl_aff_var_on_domain(isl_local_space_copy(ls), isl_dim_set, n_in + i); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); return ma; } /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map, * taking into account that the dimension at position "d" can be written as * * x = m a + f(..) (1) * * where m is equal to "gcd". * "i" is the index of the equality in "hull" that defines f(..). * In particular, the equality is of the form * * f(..) - x + m g(existentials) = 0 * * or * * -f(..) + x + m g(existentials) = 0 * * We basically plug (1) into "map", resulting in a map with "a" * in the range instead of "x". The corresponding isl_pw_multi_aff * defining "a" is then plugged back into (1) to obtain a definition for "x". * * Specifically, given the input map * * A -> B * * We first wrap it into a set * * [A -> B] * * and define (1) on top of the corresponding space, resulting in "aff". * We use this to create an isl_multi_aff that maps the output position "d" * from "a" to "x", leaving all other (intput and output) dimensions unchanged. * We plug this into the wrapped map, unwrap the result and compute the * corresponding isl_pw_multi_aff. * The result is an expression * * A -> T(A) * * We adjust that to * * A -> [A -> T(A)] * * so that we can plug that into "aff", after extending the latter to * a mapping * * [A -> B] -> B' * * * If "map" is actually a set, then there is no "A" space, meaning * that we do not need to perform any wrapping, and that the result * of the recursive call is of the form * * [T] * * which is plugged into a mapping of the form * * B -> B' */ static __isl_give isl_pw_multi_aff *pw_multi_aff_from_map_stride( __isl_take isl_map *map, __isl_take isl_basic_map *hull, int d, int i, isl_int gcd) { isl_set *set; isl_space *space; isl_local_space *ls; isl_aff *aff; isl_multi_aff *ma; isl_pw_multi_aff *pma, *id; unsigned n_in; unsigned o_out; unsigned n_out; int is_set; is_set = isl_map_is_set(map); n_in = isl_basic_map_dim(hull, isl_dim_in); n_out = isl_basic_map_dim(hull, isl_dim_out); o_out = isl_basic_map_offset(hull, isl_dim_out); if (is_set) set = map; else set = isl_map_wrap(map); space = isl_space_map_from_set(isl_set_get_space(set)); ma = isl_multi_aff_identity(space); ls = isl_local_space_from_space(isl_set_get_space(set)); aff = isl_aff_alloc(ls); if (aff) { isl_int_set_si(aff->v->el[0], 1); if (isl_int_is_one(hull->eq[i][o_out + d])) isl_seq_neg(aff->v->el + 1, hull->eq[i], aff->v->size - 1); else isl_seq_cpy(aff->v->el + 1, hull->eq[i], aff->v->size - 1); isl_int_set(aff->v->el[1 + o_out + d], gcd); } ma = isl_multi_aff_set_aff(ma, n_in + d, isl_aff_copy(aff)); set = isl_set_preimage_multi_aff(set, ma); ma = range_map(aff, d, n_in, n_out, is_set); if (is_set) map = set; else map = isl_set_unwrap(set); pma = isl_pw_multi_aff_from_map(map); if (!is_set) { space = isl_pw_multi_aff_get_domain_space(pma); space = isl_space_map_from_set(space); id = isl_pw_multi_aff_identity(space); pma = isl_pw_multi_aff_range_product(id, pma); } id = isl_pw_multi_aff_from_multi_aff(ma); pma = isl_pw_multi_aff_pullback_pw_multi_aff(id, pma); isl_basic_map_free(hull); return pma; } /* Try and create an isl_pw_multi_aff that is equivalent to the given isl_map. * * As a special case, we first check if all output dimensions are uniquely * defined in terms of the parameters and input dimensions over the entire * domain. If so, we extract the desired isl_pw_multi_aff directly * from the affine hull of "map" and its domain. * * Otherwise, we check if any of the output dimensions is "strided". * That is, we check if can be written as * * x = m a + f(..) * * with m greater than 1, a some combination of existentially quantified * variables and f an expression in the parameters and input dimensions. * If so, we remove the stride in pw_multi_aff_from_map_stride. * * Otherwise, we continue with pw_multi_aff_from_map_check_div for a further * special case. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_map(__isl_take isl_map *map) { int i, j; isl_bool sv; isl_basic_map *hull; unsigned n_out; unsigned o_out; unsigned n_div; unsigned o_div; isl_int gcd; if (!map) return NULL; map = isl_map_detect_equalities(map); hull = isl_map_unshifted_simple_hull(isl_map_copy(map)); sv = isl_basic_map_plain_is_single_valued(hull); if (sv >= 0 && sv) return plain_pw_multi_aff_from_map(isl_map_domain(map), hull); if (sv < 0) hull = isl_basic_map_free(hull); if (!hull) goto error; n_div = isl_basic_map_dim(hull, isl_dim_div); o_div = isl_basic_map_offset(hull, isl_dim_div); if (n_div == 0) { isl_basic_map_free(hull); return pw_multi_aff_from_map_check_div(map); } isl_int_init(gcd); n_out = isl_basic_map_dim(hull, isl_dim_out); o_out = isl_basic_map_offset(hull, isl_dim_out); for (i = 0; i < n_out; ++i) { for (j = 0; j < hull->n_eq; ++j) { isl_int *eq = hull->eq[j]; isl_pw_multi_aff *res; if (!isl_int_is_one(eq[o_out + i]) && !isl_int_is_negone(eq[o_out + i])) continue; if (isl_seq_first_non_zero(eq + o_out, i) != -1) continue; if (isl_seq_first_non_zero(eq + o_out + i + 1, n_out - (i + 1)) != -1) continue; isl_seq_gcd(eq + o_div, n_div, &gcd); if (isl_int_is_zero(gcd)) continue; if (isl_int_is_one(gcd)) continue; res = pw_multi_aff_from_map_stride(map, hull, i, j, gcd); isl_int_clear(gcd); return res; } } isl_int_clear(gcd); isl_basic_map_free(hull); return pw_multi_aff_from_map_check_div(map); error: isl_map_free(map); return NULL; } __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_set(__isl_take isl_set *set) { return isl_pw_multi_aff_from_map(set); } /* Convert "map" into an isl_pw_multi_aff (if possible) and * add it to *user. */ static isl_stat pw_multi_aff_from_map(__isl_take isl_map *map, void *user) { isl_union_pw_multi_aff **upma = user; isl_pw_multi_aff *pma; pma = isl_pw_multi_aff_from_map(map); *upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma); return *upma ? isl_stat_ok : isl_stat_error; } /* Create an isl_union_pw_multi_aff with the given isl_aff on a universe * domain. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_aff( __isl_take isl_aff *aff) { isl_multi_aff *ma; isl_pw_multi_aff *pma; ma = isl_multi_aff_from_aff(aff); pma = isl_pw_multi_aff_from_multi_aff(ma); return isl_union_pw_multi_aff_from_pw_multi_aff(pma); } /* Try and create an isl_union_pw_multi_aff that is equivalent * to the given isl_union_map. * The isl_union_map is required to be single-valued in each space. * Otherwise, an error is produced. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_map( __isl_take isl_union_map *umap) { isl_space *space; isl_union_pw_multi_aff *upma; space = isl_union_map_get_space(umap); upma = isl_union_pw_multi_aff_empty(space); if (isl_union_map_foreach_map(umap, &pw_multi_aff_from_map, &upma) < 0) upma = isl_union_pw_multi_aff_free(upma); isl_union_map_free(umap); return upma; } /* Try and create an isl_union_pw_multi_aff that is equivalent * to the given isl_union_set. * The isl_union_set is required to be a singleton in each space. * Otherwise, an error is produced. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_set( __isl_take isl_union_set *uset) { return isl_union_pw_multi_aff_from_union_map(uset); } /* Return the piecewise affine expression "set ? 1 : 0". */ __isl_give isl_pw_aff *isl_set_indicator_function(__isl_take isl_set *set) { isl_pw_aff *pa; isl_space *space = isl_set_get_space(set); isl_local_space *ls = isl_local_space_from_space(space); isl_aff *zero = isl_aff_zero_on_domain(isl_local_space_copy(ls)); isl_aff *one = isl_aff_zero_on_domain(ls); one = isl_aff_add_constant_si(one, 1); pa = isl_pw_aff_alloc(isl_set_copy(set), one); set = isl_set_complement(set); pa = isl_pw_aff_add_disjoint(pa, isl_pw_aff_alloc(set, zero)); return pa; } /* Plug in "subs" for dimension "type", "pos" of "aff". * * Let i be the dimension to replace and let "subs" be of the form * * f/d * * and "aff" of the form * * (a i + g)/m * * The result is * * (a f + d g')/(m d) * * where g' is the result of plugging in "subs" in each of the integer * divisions in g. */ __isl_give isl_aff *isl_aff_substitute(__isl_take isl_aff *aff, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { isl_ctx *ctx; isl_int v; aff = isl_aff_cow(aff); if (!aff || !subs) return isl_aff_free(aff); ctx = isl_aff_get_ctx(aff); if (!isl_space_is_equal(aff->ls->dim, subs->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", return isl_aff_free(aff)); if (isl_local_space_dim(subs->ls, isl_dim_div) != 0) isl_die(ctx, isl_error_unsupported, "cannot handle divs yet", return isl_aff_free(aff)); aff->ls = isl_local_space_substitute(aff->ls, type, pos, subs); if (!aff->ls) return isl_aff_free(aff); aff->v = isl_vec_cow(aff->v); if (!aff->v) return isl_aff_free(aff); pos += isl_local_space_offset(aff->ls, type); isl_int_init(v); isl_seq_substitute(aff->v->el, pos, subs->v->el, aff->v->size, subs->v->size, v); isl_int_clear(v); return aff; } /* Plug in "subs" for dimension "type", "pos" in each of the affine * expressions in "maff". */ __isl_give isl_multi_aff *isl_multi_aff_substitute( __isl_take isl_multi_aff *maff, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs) { int i; maff = isl_multi_aff_cow(maff); if (!maff || !subs) return isl_multi_aff_free(maff); if (type == isl_dim_in) type = isl_dim_set; for (i = 0; i < maff->n; ++i) { maff->p[i] = isl_aff_substitute(maff->p[i], type, pos, subs); if (!maff->p[i]) return isl_multi_aff_free(maff); } return maff; } /* Plug in "subs" for dimension "type", "pos" of "pma". * * pma is of the form * * A_i(v) -> M_i(v) * * while subs is of the form * * v' = B_j(v) -> S_j * * Each pair i,j such that C_ij = A_i \cap B_i is non-empty * has a contribution in the result, in particular * * C_ij(S_j) -> M_i(S_j) * * Note that plugging in S_j in C_ij may also result in an empty set * and this contribution should simply be discarded. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_substitute( __isl_take isl_pw_multi_aff *pma, enum isl_dim_type type, unsigned pos, __isl_keep isl_pw_aff *subs) { int i, j, n; isl_pw_multi_aff *res; if (!pma || !subs) return isl_pw_multi_aff_free(pma); n = pma->n * subs->n; res = isl_pw_multi_aff_alloc_size(isl_space_copy(pma->dim), n); for (i = 0; i < pma->n; ++i) { for (j = 0; j < subs->n; ++j) { isl_set *common; isl_multi_aff *res_ij; int empty; common = isl_set_intersect( isl_set_copy(pma->p[i].set), isl_set_copy(subs->p[j].set)); common = isl_set_substitute(common, type, pos, subs->p[j].aff); empty = isl_set_plain_is_empty(common); if (empty < 0 || empty) { isl_set_free(common); if (empty < 0) goto error; continue; } res_ij = isl_multi_aff_substitute( isl_multi_aff_copy(pma->p[i].maff), type, pos, subs->p[j].aff); res = isl_pw_multi_aff_add_piece(res, common, res_ij); } } isl_pw_multi_aff_free(pma); return res; error: isl_pw_multi_aff_free(pma); isl_pw_multi_aff_free(res); return NULL; } /* Compute the preimage of a range of dimensions in the affine expression "src" * under "ma" and put the result in "dst". The number of dimensions in "src" * that precede the range is given by "n_before". The number of dimensions * in the range is given by the number of output dimensions of "ma". * The number of dimensions that follow the range is given by "n_after". * If "has_denom" is set (to one), * then "src" and "dst" have an extra initial denominator. * "n_div_ma" is the number of existentials in "ma" * "n_div_bset" is the number of existentials in "src" * The resulting "dst" (which is assumed to have been allocated by * the caller) contains coefficients for both sets of existentials, * first those in "ma" and then those in "src". * f, c1, c2 and g are temporary objects that have been initialized * by the caller. * * Let src represent the expression * * (a(p) + f_u u + b v + f_w w + c(divs))/d * * and let ma represent the expressions * * v_i = (r_i(p) + s_i(y) + t_i(divs'))/m_i * * We start out with the following expression for dst: * * (a(p) + f_u u + 0 y + f_w w + 0 divs' + c(divs) + f \sum_i b_i v_i)/d * * with the multiplication factor f initially equal to 1 * and f \sum_i b_i v_i kept separately. * For each x_i that we substitute, we multiply the numerator * (and denominator) of dst by c_1 = m_i and add the numerator * of the x_i expression multiplied by c_2 = f b_i, * after removing the common factors of c_1 and c_2. * The multiplication factor f also needs to be multiplied by c_1 * for the next x_j, j > i. */ void isl_seq_preimage(isl_int *dst, isl_int *src, __isl_keep isl_multi_aff *ma, int n_before, int n_after, int n_div_ma, int n_div_bmap, isl_int f, isl_int c1, isl_int c2, isl_int g, int has_denom) { int i; int n_param, n_in, n_out; int o_dst, o_src; n_param = isl_multi_aff_dim(ma, isl_dim_param); n_in = isl_multi_aff_dim(ma, isl_dim_in); n_out = isl_multi_aff_dim(ma, isl_dim_out); isl_seq_cpy(dst, src, has_denom + 1 + n_param + n_before); o_dst = o_src = has_denom + 1 + n_param + n_before; isl_seq_clr(dst + o_dst, n_in); o_dst += n_in; o_src += n_out; isl_seq_cpy(dst + o_dst, src + o_src, n_after); o_dst += n_after; o_src += n_after; isl_seq_clr(dst + o_dst, n_div_ma); o_dst += n_div_ma; isl_seq_cpy(dst + o_dst, src + o_src, n_div_bmap); isl_int_set_si(f, 1); for (i = 0; i < n_out; ++i) { int offset = has_denom + 1 + n_param + n_before + i; if (isl_int_is_zero(src[offset])) continue; isl_int_set(c1, ma->p[i]->v->el[0]); isl_int_mul(c2, f, src[offset]); isl_int_gcd(g, c1, c2); isl_int_divexact(c1, c1, g); isl_int_divexact(c2, c2, g); isl_int_mul(f, f, c1); o_dst = has_denom; o_src = 1; isl_seq_combine(dst + o_dst, c1, dst + o_dst, c2, ma->p[i]->v->el + o_src, 1 + n_param); o_dst += 1 + n_param; o_src += 1 + n_param; isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_before); o_dst += n_before; isl_seq_combine(dst + o_dst, c1, dst + o_dst, c2, ma->p[i]->v->el + o_src, n_in); o_dst += n_in; o_src += n_in; isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_after); o_dst += n_after; isl_seq_combine(dst + o_dst, c1, dst + o_dst, c2, ma->p[i]->v->el + o_src, n_div_ma); o_dst += n_div_ma; o_src += n_div_ma; isl_seq_scale(dst + o_dst, dst + o_dst, c1, n_div_bmap); if (has_denom) isl_int_mul(dst[0], dst[0], c1); } } /* Compute the pullback of "aff" by the function represented by "ma". * In other words, plug in "ma" in "aff". The result is an affine expression * defined over the domain space of "ma". * * If "aff" is represented by * * (a(p) + b x + c(divs))/d * * and ma is represented by * * x = D(p) + F(y) + G(divs') * * then the result is * * (a(p) + b D(p) + b F(y) + b G(divs') + c(divs))/d * * The divs in the local space of the input are similarly adjusted * through a call to isl_local_space_preimage_multi_aff. */ __isl_give isl_aff *isl_aff_pullback_multi_aff(__isl_take isl_aff *aff, __isl_take isl_multi_aff *ma) { isl_aff *res = NULL; isl_local_space *ls; int n_div_aff, n_div_ma; isl_int f, c1, c2, g; ma = isl_multi_aff_align_divs(ma); if (!aff || !ma) goto error; n_div_aff = isl_aff_dim(aff, isl_dim_div); n_div_ma = ma->n ? isl_aff_dim(ma->p[0], isl_dim_div) : 0; ls = isl_aff_get_domain_local_space(aff); ls = isl_local_space_preimage_multi_aff(ls, isl_multi_aff_copy(ma)); res = isl_aff_alloc(ls); if (!res) goto error; isl_int_init(f); isl_int_init(c1); isl_int_init(c2); isl_int_init(g); isl_seq_preimage(res->v->el, aff->v->el, ma, 0, 0, n_div_ma, n_div_aff, f, c1, c2, g, 1); isl_int_clear(f); isl_int_clear(c1); isl_int_clear(c2); isl_int_clear(g); isl_aff_free(aff); isl_multi_aff_free(ma); res = isl_aff_normalize(res); return res; error: isl_aff_free(aff); isl_multi_aff_free(ma); isl_aff_free(res); return NULL; } /* Compute the pullback of "aff1" by the function represented by "aff2". * In other words, plug in "aff2" in "aff1". The result is an affine expression * defined over the domain space of "aff1". * * The domain of "aff1" should match the range of "aff2", which means * that it should be single-dimensional. */ __isl_give isl_aff *isl_aff_pullback_aff(__isl_take isl_aff *aff1, __isl_take isl_aff *aff2) { isl_multi_aff *ma; ma = isl_multi_aff_from_aff(aff2); return isl_aff_pullback_multi_aff(aff1, ma); } /* Compute the pullback of "ma1" by the function represented by "ma2". * In other words, plug in "ma2" in "ma1". * * The parameters of "ma1" and "ma2" are assumed to have been aligned. */ static __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff_aligned( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2) { int i; isl_space *space = NULL; ma2 = isl_multi_aff_align_divs(ma2); ma1 = isl_multi_aff_cow(ma1); if (!ma1 || !ma2) goto error; space = isl_space_join(isl_multi_aff_get_space(ma2), isl_multi_aff_get_space(ma1)); for (i = 0; i < ma1->n; ++i) { ma1->p[i] = isl_aff_pullback_multi_aff(ma1->p[i], isl_multi_aff_copy(ma2)); if (!ma1->p[i]) goto error; } ma1 = isl_multi_aff_reset_space(ma1, space); isl_multi_aff_free(ma2); return ma1; error: isl_space_free(space); isl_multi_aff_free(ma2); isl_multi_aff_free(ma1); return NULL; } /* Compute the pullback of "ma1" by the function represented by "ma2". * In other words, plug in "ma2" in "ma1". */ __isl_give isl_multi_aff *isl_multi_aff_pullback_multi_aff( __isl_take isl_multi_aff *ma1, __isl_take isl_multi_aff *ma2) { return isl_multi_aff_align_params_multi_multi_and(ma1, ma2, &isl_multi_aff_pullback_multi_aff_aligned); } /* Extend the local space of "dst" to include the divs * in the local space of "src". */ __isl_give isl_aff *isl_aff_align_divs(__isl_take isl_aff *dst, __isl_keep isl_aff *src) { isl_ctx *ctx; int *exp1 = NULL; int *exp2 = NULL; isl_mat *div; if (!src || !dst) return isl_aff_free(dst); ctx = isl_aff_get_ctx(src); if (!isl_space_is_equal(src->ls->dim, dst->ls->dim)) isl_die(ctx, isl_error_invalid, "spaces don't match", goto error); if (src->ls->div->n_row == 0) return dst; exp1 = isl_alloc_array(ctx, int, src->ls->div->n_row); exp2 = isl_alloc_array(ctx, int, dst->ls->div->n_row); if (!exp1 || (dst->ls->div->n_row && !exp2)) goto error; div = isl_merge_divs(src->ls->div, dst->ls->div, exp1, exp2); dst = isl_aff_expand_divs(dst, div, exp2); free(exp1); free(exp2); return dst; error: free(exp1); free(exp2); return isl_aff_free(dst); } /* Adjust the local spaces of the affine expressions in "maff" * such that they all have the save divs. */ __isl_give isl_multi_aff *isl_multi_aff_align_divs( __isl_take isl_multi_aff *maff) { int i; if (!maff) return NULL; if (maff->n == 0) return maff; maff = isl_multi_aff_cow(maff); if (!maff) return NULL; for (i = 1; i < maff->n; ++i) maff->p[0] = isl_aff_align_divs(maff->p[0], maff->p[i]); for (i = 1; i < maff->n; ++i) { maff->p[i] = isl_aff_align_divs(maff->p[i], maff->p[0]); if (!maff->p[i]) return isl_multi_aff_free(maff); } return maff; } __isl_give isl_aff *isl_aff_lift(__isl_take isl_aff *aff) { aff = isl_aff_cow(aff); if (!aff) return NULL; aff->ls = isl_local_space_lift(aff->ls); if (!aff->ls) return isl_aff_free(aff); return aff; } /* Lift "maff" to a space with extra dimensions such that the result * has no more existentially quantified variables. * If "ls" is not NULL, then *ls is assigned the local space that lies * at the basis of the lifting applied to "maff". */ __isl_give isl_multi_aff *isl_multi_aff_lift(__isl_take isl_multi_aff *maff, __isl_give isl_local_space **ls) { int i; isl_space *space; unsigned n_div; if (ls) *ls = NULL; if (!maff) return NULL; if (maff->n == 0) { if (ls) { isl_space *space = isl_multi_aff_get_domain_space(maff); *ls = isl_local_space_from_space(space); if (!*ls) return isl_multi_aff_free(maff); } return maff; } maff = isl_multi_aff_cow(maff); maff = isl_multi_aff_align_divs(maff); if (!maff) return NULL; n_div = isl_aff_dim(maff->p[0], isl_dim_div); space = isl_multi_aff_get_space(maff); space = isl_space_lift(isl_space_domain(space), n_div); space = isl_space_extend_domain_with_range(space, isl_multi_aff_get_space(maff)); if (!space) return isl_multi_aff_free(maff); isl_space_free(maff->space); maff->space = space; if (ls) { *ls = isl_aff_get_domain_local_space(maff->p[0]); if (!*ls) return isl_multi_aff_free(maff); } for (i = 0; i < maff->n; ++i) { maff->p[i] = isl_aff_lift(maff->p[i]); if (!maff->p[i]) goto error; } return maff; error: if (ls) isl_local_space_free(*ls); return isl_multi_aff_free(maff); } /* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma". */ __isl_give isl_pw_aff *isl_pw_multi_aff_get_pw_aff( __isl_keep isl_pw_multi_aff *pma, int pos) { int i; int n_out; isl_space *space; isl_pw_aff *pa; if (!pma) return NULL; n_out = isl_pw_multi_aff_dim(pma, isl_dim_out); if (pos < 0 || pos >= n_out) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "index out of bounds", return NULL); space = isl_pw_multi_aff_get_space(pma); space = isl_space_drop_dims(space, isl_dim_out, pos + 1, n_out - pos - 1); space = isl_space_drop_dims(space, isl_dim_out, 0, pos); pa = isl_pw_aff_alloc_size(space, pma->n); for (i = 0; i < pma->n; ++i) { isl_aff *aff; aff = isl_multi_aff_get_aff(pma->p[i].maff, pos); pa = isl_pw_aff_add_piece(pa, isl_set_copy(pma->p[i].set), aff); } return pa; } /* Return an isl_pw_multi_aff with the given "set" as domain and * an unnamed zero-dimensional range. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_domain( __isl_take isl_set *set) { isl_multi_aff *ma; isl_space *space; space = isl_set_get_space(set); space = isl_space_from_domain(space); ma = isl_multi_aff_zero(space); return isl_pw_multi_aff_alloc(set, ma); } /* Add an isl_pw_multi_aff with the given "set" as domain and * an unnamed zero-dimensional range to *user. */ static isl_stat add_pw_multi_aff_from_domain(__isl_take isl_set *set, void *user) { isl_union_pw_multi_aff **upma = user; isl_pw_multi_aff *pma; pma = isl_pw_multi_aff_from_domain(set); *upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma); return isl_stat_ok; } /* Return an isl_union_pw_multi_aff with the given "uset" as domain and * an unnamed zero-dimensional range. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_domain( __isl_take isl_union_set *uset) { isl_space *space; isl_union_pw_multi_aff *upma; if (!uset) return NULL; space = isl_union_set_get_space(uset); upma = isl_union_pw_multi_aff_empty(space); if (isl_union_set_foreach_set(uset, &add_pw_multi_aff_from_domain, &upma) < 0) goto error; isl_union_set_free(uset); return upma; error: isl_union_set_free(uset); isl_union_pw_multi_aff_free(upma); return NULL; } /* Convert "pma" to an isl_map and add it to *umap. */ static isl_stat map_from_pw_multi_aff(__isl_take isl_pw_multi_aff *pma, void *user) { isl_union_map **umap = user; isl_map *map; map = isl_map_from_pw_multi_aff(pma); *umap = isl_union_map_add_map(*umap, map); return isl_stat_ok; } /* Construct a union map mapping the domain of the union * piecewise multi-affine expression to its range, with each dimension * in the range equated to the corresponding affine expression on its cell. */ __isl_give isl_union_map *isl_union_map_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma) { isl_space *space; isl_union_map *umap; if (!upma) return NULL; space = isl_union_pw_multi_aff_get_space(upma); umap = isl_union_map_empty(space); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &map_from_pw_multi_aff, &umap) < 0) goto error; isl_union_pw_multi_aff_free(upma); return umap; error: isl_union_pw_multi_aff_free(upma); isl_union_map_free(umap); return NULL; } /* Local data for bin_entry and the callback "fn". */ struct isl_union_pw_multi_aff_bin_data { isl_union_pw_multi_aff *upma2; isl_union_pw_multi_aff *res; isl_pw_multi_aff *pma; isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user); }; /* Given an isl_pw_multi_aff from upma1, store it in data->pma * and call data->fn for each isl_pw_multi_aff in data->upma2. */ static isl_stat bin_entry(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_pw_multi_aff_bin_data *data = user; isl_stat r; data->pma = pma; r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma2, data->fn, data); isl_pw_multi_aff_free(pma); return r; } /* Call "fn" on each pair of isl_pw_multi_affs in "upma1" and "upma2". * The isl_pw_multi_aff from upma1 is stored in data->pma (where data is * passed as user field) and the isl_pw_multi_aff from upma2 is available * as *entry. The callback should adjust data->res if desired. */ static __isl_give isl_union_pw_multi_aff *bin_op( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2, isl_stat (*fn)(__isl_take isl_pw_multi_aff *pma, void *user)) { isl_space *space; struct isl_union_pw_multi_aff_bin_data data = { NULL, NULL, NULL, fn }; space = isl_union_pw_multi_aff_get_space(upma2); upma1 = isl_union_pw_multi_aff_align_params(upma1, space); space = isl_union_pw_multi_aff_get_space(upma1); upma2 = isl_union_pw_multi_aff_align_params(upma2, space); if (!upma1 || !upma2) goto error; data.upma2 = upma2; data.res = isl_union_pw_multi_aff_alloc_same_size(upma1); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma1, &bin_entry, &data) < 0) goto error; isl_union_pw_multi_aff_free(upma1); isl_union_pw_multi_aff_free(upma2); return data.res; error: isl_union_pw_multi_aff_free(upma1); isl_union_pw_multi_aff_free(upma2); isl_union_pw_multi_aff_free(data.res); return NULL; } /* Given two aligned isl_pw_multi_affs A -> B and C -> D, * construct an isl_pw_multi_aff (A * C) -> [B -> D]. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { isl_space *space; space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1), isl_pw_multi_aff_get_space(pma2)); return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space, &isl_multi_aff_range_product); } /* Given two isl_pw_multi_affs A -> B and C -> D, * construct an isl_pw_multi_aff (A * C) -> [B -> D]. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_range_product); } /* Given two aligned isl_pw_multi_affs A -> B and C -> D, * construct an isl_pw_multi_aff (A * C) -> (B, D). */ static __isl_give isl_pw_multi_aff *pw_multi_aff_flat_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { isl_space *space; space = isl_space_range_product(isl_pw_multi_aff_get_space(pma1), isl_pw_multi_aff_get_space(pma2)); space = isl_space_flatten_range(space); return isl_pw_multi_aff_on_shared_domain_in(pma1, pma2, space, &isl_multi_aff_flat_range_product); } /* Given two isl_pw_multi_affs A -> B and C -> D, * construct an isl_pw_multi_aff (A * C) -> (B, D). */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_flat_range_product( __isl_take isl_pw_multi_aff *pma1, __isl_take isl_pw_multi_aff *pma2) { return isl_pw_multi_aff_align_params_pw_pw_and(pma1, pma2, &pw_multi_aff_flat_range_product); } /* If data->pma and "pma2" have the same domain space, then compute * their flat range product and the result to data->res. */ static isl_stat flat_range_product_entry(__isl_take isl_pw_multi_aff *pma2, void *user) { struct isl_union_pw_multi_aff_bin_data *data = user; if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in, pma2->dim, isl_dim_in)) { isl_pw_multi_aff_free(pma2); return isl_stat_ok; } pma2 = isl_pw_multi_aff_flat_range_product( isl_pw_multi_aff_copy(data->pma), pma2); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2); return isl_stat_ok; } /* Given two isl_union_pw_multi_affs A -> B and C -> D, * construct an isl_union_pw_multi_aff (A * C) -> (B, D). */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_flat_range_product( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2) { return bin_op(upma1, upma2, &flat_range_product_entry); } /* Replace the affine expressions at position "pos" in "pma" by "pa". * The parameters are assumed to have been aligned. * * The implementation essentially performs an isl_pw_*_on_shared_domain, * except that it works on two different isl_pw_* types. */ static __isl_give isl_pw_multi_aff *pw_multi_aff_set_pw_aff( __isl_take isl_pw_multi_aff *pma, unsigned pos, __isl_take isl_pw_aff *pa) { int i, j, n; isl_pw_multi_aff *res = NULL; if (!pma || !pa) goto error; if (!isl_space_tuple_is_equal(pma->dim, isl_dim_in, pa->dim, isl_dim_in)) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "domains don't match", goto error); if (pos >= isl_pw_multi_aff_dim(pma, isl_dim_out)) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "index out of bounds", goto error); n = pma->n * pa->n; res = isl_pw_multi_aff_alloc_size(isl_pw_multi_aff_get_space(pma), n); for (i = 0; i < pma->n; ++i) { for (j = 0; j < pa->n; ++j) { isl_set *common; isl_multi_aff *res_ij; int empty; common = isl_set_intersect(isl_set_copy(pma->p[i].set), isl_set_copy(pa->p[j].set)); empty = isl_set_plain_is_empty(common); if (empty < 0 || empty) { isl_set_free(common); if (empty < 0) goto error; continue; } res_ij = isl_multi_aff_set_aff( isl_multi_aff_copy(pma->p[i].maff), pos, isl_aff_copy(pa->p[j].aff)); res_ij = isl_multi_aff_gist(res_ij, isl_set_copy(common)); res = isl_pw_multi_aff_add_piece(res, common, res_ij); } } isl_pw_multi_aff_free(pma); isl_pw_aff_free(pa); return res; error: isl_pw_multi_aff_free(pma); isl_pw_aff_free(pa); return isl_pw_multi_aff_free(res); } /* Replace the affine expressions at position "pos" in "pma" by "pa". */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_set_pw_aff( __isl_take isl_pw_multi_aff *pma, unsigned pos, __isl_take isl_pw_aff *pa) { if (!pma || !pa) goto error; if (isl_space_match(pma->dim, isl_dim_param, pa->dim, isl_dim_param)) return pw_multi_aff_set_pw_aff(pma, pos, pa); if (!isl_space_has_named_params(pma->dim) || !isl_space_has_named_params(pa->dim)) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "unaligned unnamed parameters", goto error); pma = isl_pw_multi_aff_align_params(pma, isl_pw_aff_get_space(pa)); pa = isl_pw_aff_align_params(pa, isl_pw_multi_aff_get_space(pma)); return pw_multi_aff_set_pw_aff(pma, pos, pa); error: isl_pw_multi_aff_free(pma); isl_pw_aff_free(pa); return NULL; } /* Do the parameters of "pa" match those of "space"? */ int isl_pw_aff_matching_params(__isl_keep isl_pw_aff *pa, __isl_keep isl_space *space) { isl_space *pa_space; int match; if (!pa || !space) return -1; pa_space = isl_pw_aff_get_space(pa); match = isl_space_match(space, isl_dim_param, pa_space, isl_dim_param); isl_space_free(pa_space); return match; } /* Check that the domain space of "pa" matches "space". * * Return 0 on success and -1 on error. */ int isl_pw_aff_check_match_domain_space(__isl_keep isl_pw_aff *pa, __isl_keep isl_space *space) { isl_space *pa_space; int match; if (!pa || !space) return -1; pa_space = isl_pw_aff_get_space(pa); match = isl_space_match(space, isl_dim_param, pa_space, isl_dim_param); if (match < 0) goto error; if (!match) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "parameters don't match", goto error); match = isl_space_tuple_is_equal(space, isl_dim_in, pa_space, isl_dim_in); if (match < 0) goto error; if (!match) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "domains don't match", goto error); isl_space_free(pa_space); return 0; error: isl_space_free(pa_space); return -1; } #undef BASE #define BASE pw_aff #undef DOMBASE #define DOMBASE set #include #include #include #include #include /* Scale the elements of "pma" by the corresponding elements of "mv". */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_scale_multi_val( __isl_take isl_pw_multi_aff *pma, __isl_take isl_multi_val *mv) { int i; pma = isl_pw_multi_aff_cow(pma); if (!pma || !mv) goto error; if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out, mv->space, isl_dim_set)) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "spaces don't match", goto error); if (!isl_space_match(pma->dim, isl_dim_param, mv->space, isl_dim_param)) { pma = isl_pw_multi_aff_align_params(pma, isl_multi_val_get_space(mv)); mv = isl_multi_val_align_params(mv, isl_pw_multi_aff_get_space(pma)); if (!pma || !mv) goto error; } for (i = 0; i < pma->n; ++i) { pma->p[i].maff = isl_multi_aff_scale_multi_val(pma->p[i].maff, isl_multi_val_copy(mv)); if (!pma->p[i].maff) goto error; } isl_multi_val_free(mv); return pma; error: isl_multi_val_free(mv); isl_pw_multi_aff_free(pma); return NULL; } /* This function is called for each entry of an isl_union_pw_multi_aff. * If the space of the entry matches that of data->mv, * then apply isl_pw_multi_aff_scale_multi_val and return the result. * Otherwise, return an empty isl_pw_multi_aff. */ static __isl_give isl_pw_multi_aff *union_pw_multi_aff_scale_multi_val_entry( __isl_take isl_pw_multi_aff *pma, void *user) { isl_multi_val *mv = user; if (!pma) return NULL; if (!isl_space_tuple_is_equal(pma->dim, isl_dim_out, mv->space, isl_dim_set)) { isl_space *space = isl_pw_multi_aff_get_space(pma); isl_pw_multi_aff_free(pma); return isl_pw_multi_aff_empty(space); } return isl_pw_multi_aff_scale_multi_val(pma, isl_multi_val_copy(mv)); } /* Scale the elements of "upma" by the corresponding elements of "mv", * for those entries that match the space of "mv". */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_scale_multi_val( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_multi_val *mv) { upma = isl_union_pw_multi_aff_align_params(upma, isl_multi_val_get_space(mv)); mv = isl_multi_val_align_params(mv, isl_union_pw_multi_aff_get_space(upma)); if (!upma || !mv) goto error; return isl_union_pw_multi_aff_transform(upma, &union_pw_multi_aff_scale_multi_val_entry, mv); isl_multi_val_free(mv); return upma; error: isl_multi_val_free(mv); isl_union_pw_multi_aff_free(upma); return NULL; } /* Construct and return a piecewise multi affine expression * in the given space with value zero in each of the output dimensions and * a universe domain. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_zero(__isl_take isl_space *space) { return isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)); } /* Construct and return a piecewise multi affine expression * that is equal to the given piecewise affine expression. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_pw_aff( __isl_take isl_pw_aff *pa) { int i; isl_space *space; isl_pw_multi_aff *pma; if (!pa) return NULL; space = isl_pw_aff_get_space(pa); pma = isl_pw_multi_aff_alloc_size(space, pa->n); for (i = 0; i < pa->n; ++i) { isl_set *set; isl_multi_aff *ma; set = isl_set_copy(pa->p[i].set); ma = isl_multi_aff_from_aff(isl_aff_copy(pa->p[i].aff)); pma = isl_pw_multi_aff_add_piece(pma, set, ma); } isl_pw_aff_free(pa); return pma; } /* Construct a set or map mapping the shared (parameter) domain * of the piecewise affine expressions to the range of "mpa" * with each dimension in the range equated to the * corresponding piecewise affine expression. */ static __isl_give isl_map *map_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa) { int i; isl_space *space; isl_map *map; if (!mpa) return NULL; if (isl_space_dim(mpa->space, isl_dim_out) != mpa->n) isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal, "invalid space", goto error); space = isl_multi_pw_aff_get_domain_space(mpa); map = isl_map_universe(isl_space_from_domain(space)); for (i = 0; i < mpa->n; ++i) { isl_pw_aff *pa; isl_map *map_i; pa = isl_pw_aff_copy(mpa->p[i]); map_i = map_from_pw_aff(pa); map = isl_map_flat_range_product(map, map_i); } map = isl_map_reset_space(map, isl_multi_pw_aff_get_space(mpa)); isl_multi_pw_aff_free(mpa); return map; error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct a map mapping the shared domain * of the piecewise affine expressions to the range of "mpa" * with each dimension in the range equated to the * corresponding piecewise affine expression. */ __isl_give isl_map *isl_map_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa) { if (!mpa) return NULL; if (isl_space_is_set(mpa->space)) isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal, "space of input is not a map", goto error); return map_from_multi_pw_aff(mpa); error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct a set mapping the shared parameter domain * of the piecewise affine expressions to the space of "mpa" * with each dimension in the range equated to the * corresponding piecewise affine expression. */ __isl_give isl_set *isl_set_from_multi_pw_aff(__isl_take isl_multi_pw_aff *mpa) { if (!mpa) return NULL; if (!isl_space_is_set(mpa->space)) isl_die(isl_multi_pw_aff_get_ctx(mpa), isl_error_internal, "space of input is not a set", goto error); return map_from_multi_pw_aff(mpa); error: isl_multi_pw_aff_free(mpa); return NULL; } /* Construct and return a piecewise multi affine expression * that is equal to the given multi piecewise affine expression * on the shared domain of the piecewise affine expressions. */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa) { int i; isl_space *space; isl_pw_aff *pa; isl_pw_multi_aff *pma; if (!mpa) return NULL; space = isl_multi_pw_aff_get_space(mpa); if (mpa->n == 0) { isl_multi_pw_aff_free(mpa); return isl_pw_multi_aff_zero(space); } pa = isl_multi_pw_aff_get_pw_aff(mpa, 0); pma = isl_pw_multi_aff_from_pw_aff(pa); for (i = 1; i < mpa->n; ++i) { isl_pw_multi_aff *pma_i; pa = isl_multi_pw_aff_get_pw_aff(mpa, i); pma_i = isl_pw_multi_aff_from_pw_aff(pa); pma = isl_pw_multi_aff_range_product(pma, pma_i); } pma = isl_pw_multi_aff_reset_space(pma, space); isl_multi_pw_aff_free(mpa); return pma; } /* Construct and return a multi piecewise affine expression * that is equal to the given multi affine expression. */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma) { int i, n; isl_multi_pw_aff *mpa; if (!ma) return NULL; n = isl_multi_aff_dim(ma, isl_dim_out); mpa = isl_multi_pw_aff_alloc(isl_multi_aff_get_space(ma)); for (i = 0; i < n; ++i) { isl_pw_aff *pa; pa = isl_pw_aff_from_aff(isl_multi_aff_get_aff(ma, i)); mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa); } isl_multi_aff_free(ma); return mpa; } /* Construct and return a multi piecewise affine expression * that is equal to the given piecewise multi affine expression. */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_from_pw_multi_aff( __isl_take isl_pw_multi_aff *pma) { int i, n; isl_space *space; isl_multi_pw_aff *mpa; if (!pma) return NULL; n = isl_pw_multi_aff_dim(pma, isl_dim_out); space = isl_pw_multi_aff_get_space(pma); mpa = isl_multi_pw_aff_alloc(space); for (i = 0; i < n; ++i) { isl_pw_aff *pa; pa = isl_pw_multi_aff_get_pw_aff(pma, i); mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa); } isl_pw_multi_aff_free(pma); return mpa; } /* Do "pa1" and "pa2" represent the same function? * * We first check if they are obviously equal. * If not, we convert them to maps and check if those are equal. */ int isl_pw_aff_is_equal(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2) { int equal; isl_map *map1, *map2; if (!pa1 || !pa2) return -1; equal = isl_pw_aff_plain_is_equal(pa1, pa2); if (equal < 0 || equal) return equal; map1 = map_from_pw_aff(isl_pw_aff_copy(pa1)); map2 = map_from_pw_aff(isl_pw_aff_copy(pa2)); equal = isl_map_is_equal(map1, map2); isl_map_free(map1); isl_map_free(map2); return equal; } /* Do "mpa1" and "mpa2" represent the same function? * * Note that we cannot convert the entire isl_multi_pw_aff * to a map because the domains of the piecewise affine expressions * may not be the same. */ isl_bool isl_multi_pw_aff_is_equal(__isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2) { int i; isl_bool equal; if (!mpa1 || !mpa2) return isl_bool_error; if (!isl_space_match(mpa1->space, isl_dim_param, mpa2->space, isl_dim_param)) { if (!isl_space_has_named_params(mpa1->space)) return isl_bool_false; if (!isl_space_has_named_params(mpa2->space)) return isl_bool_false; mpa1 = isl_multi_pw_aff_copy(mpa1); mpa2 = isl_multi_pw_aff_copy(mpa2); mpa1 = isl_multi_pw_aff_align_params(mpa1, isl_multi_pw_aff_get_space(mpa2)); mpa2 = isl_multi_pw_aff_align_params(mpa2, isl_multi_pw_aff_get_space(mpa1)); equal = isl_multi_pw_aff_is_equal(mpa1, mpa2); isl_multi_pw_aff_free(mpa1); isl_multi_pw_aff_free(mpa2); return equal; } equal = isl_space_is_equal(mpa1->space, mpa2->space); if (equal < 0 || !equal) return equal; for (i = 0; i < mpa1->n; ++i) { equal = isl_pw_aff_is_equal(mpa1->p[i], mpa2->p[i]); if (equal < 0 || !equal) return equal; } return isl_bool_true; } /* Compute the pullback of "mpa" by the function represented by "ma". * In other words, plug in "ma" in "mpa". * * The parameters of "mpa" and "ma" are assumed to have been aligned. */ static __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff_aligned( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma) { int i; isl_space *space = NULL; mpa = isl_multi_pw_aff_cow(mpa); if (!mpa || !ma) goto error; space = isl_space_join(isl_multi_aff_get_space(ma), isl_multi_pw_aff_get_space(mpa)); if (!space) goto error; for (i = 0; i < mpa->n; ++i) { mpa->p[i] = isl_pw_aff_pullback_multi_aff(mpa->p[i], isl_multi_aff_copy(ma)); if (!mpa->p[i]) goto error; } isl_multi_aff_free(ma); isl_space_free(mpa->space); mpa->space = space; return mpa; error: isl_space_free(space); isl_multi_pw_aff_free(mpa); isl_multi_aff_free(ma); return NULL; } /* Compute the pullback of "mpa" by the function represented by "ma". * In other words, plug in "ma" in "mpa". */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_multi_aff *ma) { if (!mpa || !ma) goto error; if (isl_space_match(mpa->space, isl_dim_param, ma->space, isl_dim_param)) return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma); mpa = isl_multi_pw_aff_align_params(mpa, isl_multi_aff_get_space(ma)); ma = isl_multi_aff_align_params(ma, isl_multi_pw_aff_get_space(mpa)); return isl_multi_pw_aff_pullback_multi_aff_aligned(mpa, ma); error: isl_multi_pw_aff_free(mpa); isl_multi_aff_free(ma); return NULL; } /* Compute the pullback of "mpa" by the function represented by "pma". * In other words, plug in "pma" in "mpa". * * The parameters of "mpa" and "mpa" are assumed to have been aligned. */ static __isl_give isl_multi_pw_aff * isl_multi_pw_aff_pullback_pw_multi_aff_aligned( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma) { int i; isl_space *space = NULL; mpa = isl_multi_pw_aff_cow(mpa); if (!mpa || !pma) goto error; space = isl_space_join(isl_pw_multi_aff_get_space(pma), isl_multi_pw_aff_get_space(mpa)); for (i = 0; i < mpa->n; ++i) { mpa->p[i] = isl_pw_aff_pullback_pw_multi_aff_aligned(mpa->p[i], isl_pw_multi_aff_copy(pma)); if (!mpa->p[i]) goto error; } isl_pw_multi_aff_free(pma); isl_space_free(mpa->space); mpa->space = space; return mpa; error: isl_space_free(space); isl_multi_pw_aff_free(mpa); isl_pw_multi_aff_free(pma); return NULL; } /* Compute the pullback of "mpa" by the function represented by "pma". * In other words, plug in "pma" in "mpa". */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_pw_multi_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_multi_aff *pma) { if (!mpa || !pma) goto error; if (isl_space_match(mpa->space, isl_dim_param, pma->dim, isl_dim_param)) return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma); mpa = isl_multi_pw_aff_align_params(mpa, isl_pw_multi_aff_get_space(pma)); pma = isl_pw_multi_aff_align_params(pma, isl_multi_pw_aff_get_space(mpa)); return isl_multi_pw_aff_pullback_pw_multi_aff_aligned(mpa, pma); error: isl_multi_pw_aff_free(mpa); isl_pw_multi_aff_free(pma); return NULL; } /* Apply "aff" to "mpa". The range of "mpa" needs to be compatible * with the domain of "aff". The domain of the result is the same * as that of "mpa". * "mpa" and "aff" are assumed to have been aligned. * * We first extract the parametric constant from "aff", defined * over the correct domain. * Then we add the appropriate combinations of the members of "mpa". * Finally, we add the integer divisions through recursive calls. */ static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff_aligned( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff) { int i, n_in, n_div; isl_space *space; isl_val *v; isl_pw_aff *pa; isl_aff *tmp; n_in = isl_aff_dim(aff, isl_dim_in); n_div = isl_aff_dim(aff, isl_dim_div); space = isl_space_domain(isl_multi_pw_aff_get_space(mpa)); tmp = isl_aff_copy(aff); tmp = isl_aff_drop_dims(tmp, isl_dim_div, 0, n_div); tmp = isl_aff_drop_dims(tmp, isl_dim_in, 0, n_in); tmp = isl_aff_add_dims(tmp, isl_dim_in, isl_space_dim(space, isl_dim_set)); tmp = isl_aff_reset_domain_space(tmp, space); pa = isl_pw_aff_from_aff(tmp); for (i = 0; i < n_in; ++i) { isl_pw_aff *pa_i; if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1)) continue; v = isl_aff_get_coefficient_val(aff, isl_dim_in, i); pa_i = isl_multi_pw_aff_get_pw_aff(mpa, i); pa_i = isl_pw_aff_scale_val(pa_i, v); pa = isl_pw_aff_add(pa, pa_i); } for (i = 0; i < n_div; ++i) { isl_aff *div; isl_pw_aff *pa_i; if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1)) continue; div = isl_aff_get_div(aff, i); pa_i = isl_multi_pw_aff_apply_aff_aligned( isl_multi_pw_aff_copy(mpa), div); pa_i = isl_pw_aff_floor(pa_i); v = isl_aff_get_coefficient_val(aff, isl_dim_div, i); pa_i = isl_pw_aff_scale_val(pa_i, v); pa = isl_pw_aff_add(pa, pa_i); } isl_multi_pw_aff_free(mpa); isl_aff_free(aff); return pa; } /* Apply "aff" to "mpa". The range of "mpa" needs to be compatible * with the domain of "aff". The domain of the result is the same * as that of "mpa". */ __isl_give isl_pw_aff *isl_multi_pw_aff_apply_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_aff *aff) { if (!aff || !mpa) goto error; if (isl_space_match(aff->ls->dim, isl_dim_param, mpa->space, isl_dim_param)) return isl_multi_pw_aff_apply_aff_aligned(mpa, aff); aff = isl_aff_align_params(aff, isl_multi_pw_aff_get_space(mpa)); mpa = isl_multi_pw_aff_align_params(mpa, isl_aff_get_space(aff)); return isl_multi_pw_aff_apply_aff_aligned(mpa, aff); error: isl_aff_free(aff); isl_multi_pw_aff_free(mpa); return NULL; } /* Apply "pa" to "mpa". The range of "mpa" needs to be compatible * with the domain of "pa". The domain of the result is the same * as that of "mpa". * "mpa" and "pa" are assumed to have been aligned. * * We consider each piece in turn. Note that the domains of the * pieces are assumed to be disjoint and they remain disjoint * after taking the preimage (over the same function). */ static __isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff_aligned( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa) { isl_space *space; isl_pw_aff *res; int i; if (!mpa || !pa) goto error; space = isl_space_join(isl_multi_pw_aff_get_space(mpa), isl_pw_aff_get_space(pa)); res = isl_pw_aff_empty(space); for (i = 0; i < pa->n; ++i) { isl_pw_aff *pa_i; isl_set *domain; pa_i = isl_multi_pw_aff_apply_aff_aligned( isl_multi_pw_aff_copy(mpa), isl_aff_copy(pa->p[i].aff)); domain = isl_set_copy(pa->p[i].set); domain = isl_set_preimage_multi_pw_aff(domain, isl_multi_pw_aff_copy(mpa)); pa_i = isl_pw_aff_intersect_domain(pa_i, domain); res = isl_pw_aff_add_disjoint(res, pa_i); } isl_pw_aff_free(pa); isl_multi_pw_aff_free(mpa); return res; error: isl_pw_aff_free(pa); isl_multi_pw_aff_free(mpa); return NULL; } /* Apply "pa" to "mpa". The range of "mpa" needs to be compatible * with the domain of "pa". The domain of the result is the same * as that of "mpa". */ __isl_give isl_pw_aff *isl_multi_pw_aff_apply_pw_aff( __isl_take isl_multi_pw_aff *mpa, __isl_take isl_pw_aff *pa) { if (!pa || !mpa) goto error; if (isl_space_match(pa->dim, isl_dim_param, mpa->space, isl_dim_param)) return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa); pa = isl_pw_aff_align_params(pa, isl_multi_pw_aff_get_space(mpa)); mpa = isl_multi_pw_aff_align_params(mpa, isl_pw_aff_get_space(pa)); return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa); error: isl_pw_aff_free(pa); isl_multi_pw_aff_free(mpa); return NULL; } /* Compute the pullback of "pa" by the function represented by "mpa". * In other words, plug in "mpa" in "pa". * "pa" and "mpa" are assumed to have been aligned. * * The pullback is computed by applying "pa" to "mpa". */ static __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff_aligned( __isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa) { return isl_multi_pw_aff_apply_pw_aff_aligned(mpa, pa); } /* Compute the pullback of "pa" by the function represented by "mpa". * In other words, plug in "mpa" in "pa". * * The pullback is computed by applying "pa" to "mpa". */ __isl_give isl_pw_aff *isl_pw_aff_pullback_multi_pw_aff( __isl_take isl_pw_aff *pa, __isl_take isl_multi_pw_aff *mpa) { return isl_multi_pw_aff_apply_pw_aff(mpa, pa); } /* Compute the pullback of "mpa1" by the function represented by "mpa2". * In other words, plug in "mpa2" in "mpa1". * * The parameters of "mpa1" and "mpa2" are assumed to have been aligned. * * We pullback each member of "mpa1" in turn. */ static __isl_give isl_multi_pw_aff * isl_multi_pw_aff_pullback_multi_pw_aff_aligned( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2) { int i; isl_space *space = NULL; mpa1 = isl_multi_pw_aff_cow(mpa1); if (!mpa1 || !mpa2) goto error; space = isl_space_join(isl_multi_pw_aff_get_space(mpa2), isl_multi_pw_aff_get_space(mpa1)); for (i = 0; i < mpa1->n; ++i) { mpa1->p[i] = isl_pw_aff_pullback_multi_pw_aff_aligned( mpa1->p[i], isl_multi_pw_aff_copy(mpa2)); if (!mpa1->p[i]) goto error; } mpa1 = isl_multi_pw_aff_reset_space(mpa1, space); isl_multi_pw_aff_free(mpa2); return mpa1; error: isl_space_free(space); isl_multi_pw_aff_free(mpa1); isl_multi_pw_aff_free(mpa2); return NULL; } /* Compute the pullback of "mpa1" by the function represented by "mpa2". * In other words, plug in "mpa2" in "mpa1". */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_pullback_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2) { return isl_multi_pw_aff_align_params_multi_multi_and(mpa1, mpa2, &isl_multi_pw_aff_pullback_multi_pw_aff_aligned); } /* Align the parameters of "mpa1" and "mpa2", check that the ranges * of "mpa1" and "mpa2" live in the same space, construct map space * between the domain spaces of "mpa1" and "mpa2" and call "order" * with this map space as extract argument. */ static __isl_give isl_map *isl_multi_pw_aff_order_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2, __isl_give isl_map *(*order)(__isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2, __isl_take isl_space *space)) { int match; isl_space *space1, *space2; isl_map *res; mpa1 = isl_multi_pw_aff_align_params(mpa1, isl_multi_pw_aff_get_space(mpa2)); mpa2 = isl_multi_pw_aff_align_params(mpa2, isl_multi_pw_aff_get_space(mpa1)); if (!mpa1 || !mpa2) goto error; match = isl_space_tuple_is_equal(mpa1->space, isl_dim_out, mpa2->space, isl_dim_out); if (match < 0) goto error; if (!match) isl_die(isl_multi_pw_aff_get_ctx(mpa1), isl_error_invalid, "range spaces don't match", goto error); space1 = isl_space_domain(isl_multi_pw_aff_get_space(mpa1)); space2 = isl_space_domain(isl_multi_pw_aff_get_space(mpa2)); space1 = isl_space_map_from_domain_and_range(space1, space2); res = order(mpa1, mpa2, space1); isl_multi_pw_aff_free(mpa1); isl_multi_pw_aff_free(mpa2); return res; error: isl_multi_pw_aff_free(mpa1); isl_multi_pw_aff_free(mpa2); return NULL; } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function values are equal. "space" is the space of the result. * The parameters of "mpa1" and "mpa2" are assumed to have been aligned. * * "mpa1" and "mpa2" are equal when each of the pairs of elements * in the sequences are equal. */ static __isl_give isl_map *isl_multi_pw_aff_eq_map_on_space( __isl_keep isl_multi_pw_aff *mpa1, __isl_keep isl_multi_pw_aff *mpa2, __isl_take isl_space *space) { int i, n; isl_map *res; res = isl_map_universe(space); n = isl_multi_pw_aff_dim(mpa1, isl_dim_out); for (i = 0; i < n; ++i) { isl_pw_aff *pa1, *pa2; isl_map *map; pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i); pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i); map = isl_pw_aff_eq_map(pa1, pa2); res = isl_map_intersect(res, map); } return res; } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function values are equal. */ __isl_give isl_map *isl_multi_pw_aff_eq_map(__isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2) { return isl_multi_pw_aff_order_map(mpa1, mpa2, &isl_multi_pw_aff_eq_map_on_space); } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function values of "mpa1" is lexicographically satisfies "base" * compared to that of "mpa2". "space" is the space of the result. * The parameters of "mpa1" and "mpa2" are assumed to have been aligned. * * "mpa1" lexicographically satisfies "base" compared to "mpa2" * if its i-th element satisfies "base" when compared to * the i-th element of "mpa2" while all previous elements are * pairwise equal. */ static __isl_give isl_map *isl_multi_pw_aff_lex_map_on_space( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2, __isl_give isl_map *(*base)(__isl_take isl_pw_aff *pa1, __isl_take isl_pw_aff *pa2), __isl_take isl_space *space) { int i, n; isl_map *res, *rest; res = isl_map_empty(isl_space_copy(space)); rest = isl_map_universe(space); n = isl_multi_pw_aff_dim(mpa1, isl_dim_out); for (i = 0; i < n; ++i) { isl_pw_aff *pa1, *pa2; isl_map *map; pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i); pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i); map = base(pa1, pa2); map = isl_map_intersect(map, isl_map_copy(rest)); res = isl_map_union(res, map); if (i == n - 1) continue; pa1 = isl_multi_pw_aff_get_pw_aff(mpa1, i); pa2 = isl_multi_pw_aff_get_pw_aff(mpa2, i); map = isl_pw_aff_eq_map(pa1, pa2); rest = isl_map_intersect(rest, map); } isl_map_free(rest); return res; } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function value of "mpa1" is lexicographically less than that * of "mpa2". "space" is the space of the result. * The parameters of "mpa1" and "mpa2" are assumed to have been aligned. * * "mpa1" is less than "mpa2" if its i-th element is smaller * than the i-th element of "mpa2" while all previous elements are * pairwise equal. */ __isl_give isl_map *isl_multi_pw_aff_lex_lt_map_on_space( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2, __isl_take isl_space *space) { return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2, &isl_pw_aff_lt_map, space); } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function value of "mpa1" is lexicographically less than that * of "mpa2". */ __isl_give isl_map *isl_multi_pw_aff_lex_lt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2) { return isl_multi_pw_aff_order_map(mpa1, mpa2, &isl_multi_pw_aff_lex_lt_map_on_space); } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function value of "mpa1" is lexicographically greater than that * of "mpa2". "space" is the space of the result. * The parameters of "mpa1" and "mpa2" are assumed to have been aligned. * * "mpa1" is greater than "mpa2" if its i-th element is greater * than the i-th element of "mpa2" while all previous elements are * pairwise equal. */ __isl_give isl_map *isl_multi_pw_aff_lex_gt_map_on_space( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2, __isl_take isl_space *space) { return isl_multi_pw_aff_lex_map_on_space(mpa1, mpa2, &isl_pw_aff_gt_map, space); } /* Return a map containing pairs of elements in the domains of "mpa1" and "mpa2" * where the function value of "mpa1" is lexicographically greater than that * of "mpa2". */ __isl_give isl_map *isl_multi_pw_aff_lex_gt_map( __isl_take isl_multi_pw_aff *mpa1, __isl_take isl_multi_pw_aff *mpa2) { return isl_multi_pw_aff_order_map(mpa1, mpa2, &isl_multi_pw_aff_lex_gt_map_on_space); } /* Compare two isl_affs. * * Return -1 if "aff1" is "smaller" than "aff2", 1 if "aff1" is "greater" * than "aff2" and 0 if they are equal. * * The order is fairly arbitrary. We do consider expressions that only involve * earlier dimensions as "smaller". */ int isl_aff_plain_cmp(__isl_keep isl_aff *aff1, __isl_keep isl_aff *aff2) { int cmp; int last1, last2; if (aff1 == aff2) return 0; if (!aff1) return -1; if (!aff2) return 1; cmp = isl_local_space_cmp(aff1->ls, aff2->ls); if (cmp != 0) return cmp; last1 = isl_seq_last_non_zero(aff1->v->el + 1, aff1->v->size - 1); last2 = isl_seq_last_non_zero(aff2->v->el + 1, aff1->v->size - 1); if (last1 != last2) return last1 - last2; return isl_seq_cmp(aff1->v->el, aff2->v->el, aff1->v->size); } /* Compare two isl_pw_affs. * * Return -1 if "pa1" is "smaller" than "pa2", 1 if "pa1" is "greater" * than "pa2" and 0 if they are equal. * * The order is fairly arbitrary. We do consider expressions that only involve * earlier dimensions as "smaller". */ int isl_pw_aff_plain_cmp(__isl_keep isl_pw_aff *pa1, __isl_keep isl_pw_aff *pa2) { int i; int cmp; if (pa1 == pa2) return 0; if (!pa1) return -1; if (!pa2) return 1; cmp = isl_space_cmp(pa1->dim, pa2->dim); if (cmp != 0) return cmp; if (pa1->n != pa2->n) return pa1->n - pa2->n; for (i = 0; i < pa1->n; ++i) { cmp = isl_set_plain_cmp(pa1->p[i].set, pa2->p[i].set); if (cmp != 0) return cmp; cmp = isl_aff_plain_cmp(pa1->p[i].aff, pa2->p[i].aff); if (cmp != 0) return cmp; } return 0; } /* Return a piecewise affine expression that is equal to "v" on "domain". */ __isl_give isl_pw_aff *isl_pw_aff_val_on_domain(__isl_take isl_set *domain, __isl_take isl_val *v) { isl_space *space; isl_local_space *ls; isl_aff *aff; space = isl_set_get_space(domain); ls = isl_local_space_from_space(space); aff = isl_aff_val_on_domain(ls, v); return isl_pw_aff_alloc(domain, aff); } /* Return a multi affine expression that is equal to "mv" on domain * space "space". */ __isl_give isl_multi_aff *isl_multi_aff_multi_val_on_space( __isl_take isl_space *space, __isl_take isl_multi_val *mv) { int i, n; isl_space *space2; isl_local_space *ls; isl_multi_aff *ma; if (!space || !mv) goto error; n = isl_multi_val_dim(mv, isl_dim_set); space2 = isl_multi_val_get_space(mv); space2 = isl_space_align_params(space2, isl_space_copy(space)); space = isl_space_align_params(space, isl_space_copy(space2)); space = isl_space_map_from_domain_and_range(space, space2); ma = isl_multi_aff_alloc(isl_space_copy(space)); ls = isl_local_space_from_space(isl_space_domain(space)); for (i = 0; i < n; ++i) { isl_val *v; isl_aff *aff; v = isl_multi_val_get_val(mv, i); aff = isl_aff_val_on_domain(isl_local_space_copy(ls), v); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_local_space_free(ls); isl_multi_val_free(mv); return ma; error: isl_space_free(space); isl_multi_val_free(mv); return NULL; } /* Return a piecewise multi-affine expression * that is equal to "mv" on "domain". */ __isl_give isl_pw_multi_aff *isl_pw_multi_aff_multi_val_on_domain( __isl_take isl_set *domain, __isl_take isl_multi_val *mv) { isl_space *space; isl_multi_aff *ma; space = isl_set_get_space(domain); ma = isl_multi_aff_multi_val_on_space(space, mv); return isl_pw_multi_aff_alloc(domain, ma); } /* Internal data structure for isl_union_pw_multi_aff_multi_val_on_domain. * mv is the value that should be attained on each domain set * res collects the results */ struct isl_union_pw_multi_aff_multi_val_on_domain_data { isl_multi_val *mv; isl_union_pw_multi_aff *res; }; /* Create an isl_pw_multi_aff equal to data->mv on "domain" * and add it to data->res. */ static isl_stat pw_multi_aff_multi_val_on_domain(__isl_take isl_set *domain, void *user) { struct isl_union_pw_multi_aff_multi_val_on_domain_data *data = user; isl_pw_multi_aff *pma; isl_multi_val *mv; mv = isl_multi_val_copy(data->mv); pma = isl_pw_multi_aff_multi_val_on_domain(domain, mv); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma); return data->res ? isl_stat_ok : isl_stat_error; } /* Return a union piecewise multi-affine expression * that is equal to "mv" on "domain". */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv) { struct isl_union_pw_multi_aff_multi_val_on_domain_data data; isl_space *space; space = isl_union_set_get_space(domain); data.res = isl_union_pw_multi_aff_empty(space); data.mv = mv; if (isl_union_set_foreach_set(domain, &pw_multi_aff_multi_val_on_domain, &data) < 0) data.res = isl_union_pw_multi_aff_free(data.res); isl_union_set_free(domain); isl_multi_val_free(mv); return data.res; } /* Compute the pullback of data->pma by the function represented by "pma2", * provided the spaces match, and add the results to data->res. */ static isl_stat pullback_entry(__isl_take isl_pw_multi_aff *pma2, void *user) { struct isl_union_pw_multi_aff_bin_data *data = user; if (!isl_space_tuple_is_equal(data->pma->dim, isl_dim_in, pma2->dim, isl_dim_out)) { isl_pw_multi_aff_free(pma2); return isl_stat_ok; } pma2 = isl_pw_multi_aff_pullback_pw_multi_aff( isl_pw_multi_aff_copy(data->pma), pma2); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma2); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Compute the pullback of "upma1" by the function represented by "upma2". */ __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma1, __isl_take isl_union_pw_multi_aff *upma2) { return bin_op(upma1, upma2, &pullback_entry); } /* Check that the domain space of "upa" matches "space". * * Return 0 on success and -1 on error. * * This function is called from isl_multi_union_pw_aff_set_union_pw_aff and * can in principle never fail since the space "space" is that * of the isl_multi_union_pw_aff and is a set space such that * there is no domain space to match. * * We check the parameters and double-check that "space" is * indeed that of a set. */ static int isl_union_pw_aff_check_match_domain_space( __isl_keep isl_union_pw_aff *upa, __isl_keep isl_space *space) { isl_space *upa_space; int match; if (!upa || !space) return -1; match = isl_space_is_set(space); if (match < 0) return -1; if (!match) isl_die(isl_space_get_ctx(space), isl_error_invalid, "expecting set space", return -1); upa_space = isl_union_pw_aff_get_space(upa); match = isl_space_match(space, isl_dim_param, upa_space, isl_dim_param); if (match < 0) goto error; if (!match) isl_die(isl_space_get_ctx(space), isl_error_invalid, "parameters don't match", goto error); isl_space_free(upa_space); return 0; error: isl_space_free(upa_space); return -1; } /* Do the parameters of "upa" match those of "space"? */ static int isl_union_pw_aff_matching_params(__isl_keep isl_union_pw_aff *upa, __isl_keep isl_space *space) { isl_space *upa_space; int match; if (!upa || !space) return -1; upa_space = isl_union_pw_aff_get_space(upa); match = isl_space_match(space, isl_dim_param, upa_space, isl_dim_param); isl_space_free(upa_space); return match; } /* Internal data structure for isl_union_pw_aff_reset_domain_space. * space represents the new parameters. * res collects the results. */ struct isl_union_pw_aff_reset_params_data { isl_space *space; isl_union_pw_aff *res; }; /* Replace the parameters of "pa" by data->space and * add the result to data->res. */ static isl_stat reset_params(__isl_take isl_pw_aff *pa, void *user) { struct isl_union_pw_aff_reset_params_data *data = user; isl_space *space; space = isl_pw_aff_get_space(pa); space = isl_space_replace(space, isl_dim_param, data->space); pa = isl_pw_aff_reset_space(pa, space); data->res = isl_union_pw_aff_add_pw_aff(data->res, pa); return data->res ? isl_stat_ok : isl_stat_error; } /* Replace the domain space of "upa" by "space". * Since a union expression does not have a (single) domain space, * "space" is necessarily a parameter space. * * Since the order and the names of the parameters determine * the hash value, we need to create a new hash table. */ static __isl_give isl_union_pw_aff *isl_union_pw_aff_reset_domain_space( __isl_take isl_union_pw_aff *upa, __isl_take isl_space *space) { struct isl_union_pw_aff_reset_params_data data = { space }; int match; match = isl_union_pw_aff_matching_params(upa, space); if (match < 0) upa = isl_union_pw_aff_free(upa); else if (match) { isl_space_free(space); return upa; } data.res = isl_union_pw_aff_empty(isl_space_copy(space)); if (isl_union_pw_aff_foreach_pw_aff(upa, &reset_params, &data) < 0) data.res = isl_union_pw_aff_free(data.res); isl_union_pw_aff_free(upa); isl_space_free(space); return data.res; } /* Return the floor of "pa". */ static __isl_give isl_pw_aff *floor_entry(__isl_take isl_pw_aff *pa, void *user) { return isl_pw_aff_floor(pa); } /* Given f, return floor(f). */ __isl_give isl_union_pw_aff *isl_union_pw_aff_floor( __isl_take isl_union_pw_aff *upa) { return isl_union_pw_aff_transform_inplace(upa, &floor_entry, NULL); } /* Compute * * upa mod m = upa - m * floor(upa/m) * * with m an integer value. */ __isl_give isl_union_pw_aff *isl_union_pw_aff_mod_val( __isl_take isl_union_pw_aff *upa, __isl_take isl_val *m) { isl_union_pw_aff *res; if (!upa || !m) goto error; if (!isl_val_is_int(m)) isl_die(isl_val_get_ctx(m), isl_error_invalid, "expecting integer modulo", goto error); if (!isl_val_is_pos(m)) isl_die(isl_val_get_ctx(m), isl_error_invalid, "expecting positive modulo", goto error); res = isl_union_pw_aff_copy(upa); upa = isl_union_pw_aff_scale_down_val(upa, isl_val_copy(m)); upa = isl_union_pw_aff_floor(upa); upa = isl_union_pw_aff_scale_val(upa, m); res = isl_union_pw_aff_sub(res, upa); return res; error: isl_val_free(m); isl_union_pw_aff_free(upa); return NULL; } /* Internal data structure for isl_union_pw_aff_aff_on_domain. * "aff" is the symbolic value that the resulting isl_union_pw_aff * needs to attain. * "res" collects the results. */ struct isl_union_pw_aff_aff_on_domain_data { isl_aff *aff; isl_union_pw_aff *res; }; /* Construct a piecewise affine expression that is equal to data->aff * on "domain" and add the result to data->res. */ static isl_stat pw_aff_aff_on_domain(__isl_take isl_set *domain, void *user) { struct isl_union_pw_aff_aff_on_domain_data *data = user; isl_pw_aff *pa; isl_aff *aff; int dim; aff = isl_aff_copy(data->aff); dim = isl_set_dim(domain, isl_dim_set); aff = isl_aff_add_dims(aff, isl_dim_in, dim); aff = isl_aff_reset_domain_space(aff, isl_set_get_space(domain)); pa = isl_pw_aff_alloc(domain, aff); data->res = isl_union_pw_aff_add_pw_aff(data->res, pa); return data->res ? isl_stat_ok : isl_stat_error; } /* Internal data structure for isl_union_pw_multi_aff_get_union_pw_aff. * pos is the output position that needs to be extracted. * res collects the results. */ struct isl_union_pw_multi_aff_get_union_pw_aff_data { int pos; isl_union_pw_aff *res; }; /* Extract an isl_pw_aff corresponding to output dimension "pos" of "pma" * (assuming it has such a dimension) and add it to data->res. */ static isl_stat get_union_pw_aff(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_pw_multi_aff_get_union_pw_aff_data *data = user; int n_out; isl_pw_aff *pa; if (!pma) return isl_stat_error; n_out = isl_pw_multi_aff_dim(pma, isl_dim_out); if (data->pos >= n_out) { isl_pw_multi_aff_free(pma); return isl_stat_ok; } pa = isl_pw_multi_aff_get_pw_aff(pma, data->pos); isl_pw_multi_aff_free(pma); data->res = isl_union_pw_aff_add_pw_aff(data->res, pa); return data->res ? isl_stat_ok : isl_stat_error; } /* Extract an isl_union_pw_aff corresponding to * output dimension "pos" of "upma". */ __isl_give isl_union_pw_aff *isl_union_pw_multi_aff_get_union_pw_aff( __isl_keep isl_union_pw_multi_aff *upma, int pos) { struct isl_union_pw_multi_aff_get_union_pw_aff_data data; isl_space *space; if (!upma) return NULL; if (pos < 0) isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid, "cannot extract at negative position", return NULL); space = isl_union_pw_multi_aff_get_space(upma); data.res = isl_union_pw_aff_empty(space); data.pos = pos; if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &get_union_pw_aff, &data) < 0) data.res = isl_union_pw_aff_free(data.res); return data.res; } /* Return a union piecewise affine expression * that is equal to "aff" on "domain". * * Construct an isl_pw_aff on each of the sets in "domain" and * collect the results. */ __isl_give isl_union_pw_aff *isl_union_pw_aff_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_aff *aff) { struct isl_union_pw_aff_aff_on_domain_data data; isl_space *space; if (!domain || !aff) goto error; if (!isl_local_space_is_params(aff->ls)) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "expecting parametric expression", goto error); space = isl_union_set_get_space(domain); data.res = isl_union_pw_aff_empty(space); data.aff = aff; if (isl_union_set_foreach_set(domain, &pw_aff_aff_on_domain, &data) < 0) data.res = isl_union_pw_aff_free(data.res); isl_union_set_free(domain); isl_aff_free(aff); return data.res; error: isl_union_set_free(domain); isl_aff_free(aff); return NULL; } /* Internal data structure for isl_union_pw_aff_val_on_domain. * "v" is the value that the resulting isl_union_pw_aff needs to attain. * "res" collects the results. */ struct isl_union_pw_aff_val_on_domain_data { isl_val *v; isl_union_pw_aff *res; }; /* Construct a piecewise affine expression that is equal to data->v * on "domain" and add the result to data->res. */ static isl_stat pw_aff_val_on_domain(__isl_take isl_set *domain, void *user) { struct isl_union_pw_aff_val_on_domain_data *data = user; isl_pw_aff *pa; isl_val *v; v = isl_val_copy(data->v); pa = isl_pw_aff_val_on_domain(domain, v); data->res = isl_union_pw_aff_add_pw_aff(data->res, pa); return data->res ? isl_stat_ok : isl_stat_error; } /* Return a union piecewise affine expression * that is equal to "v" on "domain". * * Construct an isl_pw_aff on each of the sets in "domain" and * collect the results. */ __isl_give isl_union_pw_aff *isl_union_pw_aff_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_val *v) { struct isl_union_pw_aff_val_on_domain_data data; isl_space *space; space = isl_union_set_get_space(domain); data.res = isl_union_pw_aff_empty(space); data.v = v; if (isl_union_set_foreach_set(domain, &pw_aff_val_on_domain, &data) < 0) data.res = isl_union_pw_aff_free(data.res); isl_union_set_free(domain); isl_val_free(v); return data.res; } /* Construct a piecewise multi affine expression * that is equal to "pa" and add it to upma. */ static isl_stat pw_multi_aff_from_pw_aff_entry(__isl_take isl_pw_aff *pa, void *user) { isl_union_pw_multi_aff **upma = user; isl_pw_multi_aff *pma; pma = isl_pw_multi_aff_from_pw_aff(pa); *upma = isl_union_pw_multi_aff_add_pw_multi_aff(*upma, pma); return *upma ? isl_stat_ok : isl_stat_error; } /* Construct and return a union piecewise multi affine expression * that is equal to the given union piecewise affine expression. */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_from_union_pw_aff( __isl_take isl_union_pw_aff *upa) { isl_space *space; isl_union_pw_multi_aff *upma; if (!upa) return NULL; space = isl_union_pw_aff_get_space(upa); upma = isl_union_pw_multi_aff_empty(space); if (isl_union_pw_aff_foreach_pw_aff(upa, &pw_multi_aff_from_pw_aff_entry, &upma) < 0) upma = isl_union_pw_multi_aff_free(upma); isl_union_pw_aff_free(upa); return upma; } /* Compute the set of elements in the domain of "pa" where it is zero and * add this set to "uset". */ static isl_stat zero_union_set(__isl_take isl_pw_aff *pa, void *user) { isl_union_set **uset = (isl_union_set **)user; *uset = isl_union_set_add_set(*uset, isl_pw_aff_zero_set(pa)); return *uset ? isl_stat_ok : isl_stat_error; } /* Return a union set containing those elements in the domain * of "upa" where it is zero. */ __isl_give isl_union_set *isl_union_pw_aff_zero_union_set( __isl_take isl_union_pw_aff *upa) { isl_union_set *zero; zero = isl_union_set_empty(isl_union_pw_aff_get_space(upa)); if (isl_union_pw_aff_foreach_pw_aff(upa, &zero_union_set, &zero) < 0) zero = isl_union_set_free(zero); isl_union_pw_aff_free(upa); return zero; } /* Convert "pa" to an isl_map and add it to *umap. */ static isl_stat map_from_pw_aff_entry(__isl_take isl_pw_aff *pa, void *user) { isl_union_map **umap = user; isl_map *map; map = isl_map_from_pw_aff(pa); *umap = isl_union_map_add_map(*umap, map); return *umap ? isl_stat_ok : isl_stat_error; } /* Construct a union map mapping the domain of the union * piecewise affine expression to its range, with the single output dimension * equated to the corresponding affine expressions on their cells. */ __isl_give isl_union_map *isl_union_map_from_union_pw_aff( __isl_take isl_union_pw_aff *upa) { isl_space *space; isl_union_map *umap; if (!upa) return NULL; space = isl_union_pw_aff_get_space(upa); umap = isl_union_map_empty(space); if (isl_union_pw_aff_foreach_pw_aff(upa, &map_from_pw_aff_entry, &umap) < 0) umap = isl_union_map_free(umap); isl_union_pw_aff_free(upa); return umap; } /* Internal data structure for isl_union_pw_aff_pullback_union_pw_multi_aff. * upma is the function that is plugged in. * pa is the current part of the function in which upma is plugged in. * res collects the results. */ struct isl_union_pw_aff_pullback_upma_data { isl_union_pw_multi_aff *upma; isl_pw_aff *pa; isl_union_pw_aff *res; }; /* Check if "pma" can be plugged into data->pa. * If so, perform the pullback and add the result to data->res. */ static isl_stat pa_pb_pma(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_pw_aff_pullback_upma_data *data = user; isl_pw_aff *pa; if (!isl_space_tuple_is_equal(data->pa->dim, isl_dim_in, pma->dim, isl_dim_out)) { isl_pw_multi_aff_free(pma); return isl_stat_ok; } pa = isl_pw_aff_copy(data->pa); pa = isl_pw_aff_pullback_pw_multi_aff(pa, pma); data->res = isl_union_pw_aff_add_pw_aff(data->res, pa); return data->res ? isl_stat_ok : isl_stat_error; } /* Check if any of the elements of data->upma can be plugged into pa, * add if so add the result to data->res. */ static isl_stat upa_pb_upma(__isl_take isl_pw_aff *pa, void *user) { struct isl_union_pw_aff_pullback_upma_data *data = user; isl_stat r; data->pa = pa; r = isl_union_pw_multi_aff_foreach_pw_multi_aff(data->upma, &pa_pb_pma, data); isl_pw_aff_free(pa); return r; } /* Compute the pullback of "upa" by the function represented by "upma". * In other words, plug in "upma" in "upa". The result contains * expressions defined over the domain space of "upma". * * Run over all pairs of elements in "upa" and "upma", perform * the pullback when appropriate and collect the results. * If the hash value were based on the domain space rather than * the function space, then we could run through all elements * of "upma" and directly pick out the corresponding element of "upa". */ __isl_give isl_union_pw_aff *isl_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_union_pw_aff *upa, __isl_take isl_union_pw_multi_aff *upma) { struct isl_union_pw_aff_pullback_upma_data data = { NULL, NULL }; isl_space *space; space = isl_union_pw_multi_aff_get_space(upma); upa = isl_union_pw_aff_align_params(upa, space); space = isl_union_pw_aff_get_space(upa); upma = isl_union_pw_multi_aff_align_params(upma, space); if (!upa || !upma) goto error; data.upma = upma; data.res = isl_union_pw_aff_alloc_same_size(upa); if (isl_union_pw_aff_foreach_pw_aff(upa, &upa_pb_upma, &data) < 0) data.res = isl_union_pw_aff_free(data.res); isl_union_pw_aff_free(upa); isl_union_pw_multi_aff_free(upma); return data.res; error: isl_union_pw_aff_free(upa); isl_union_pw_multi_aff_free(upma); return NULL; } #undef BASE #define BASE union_pw_aff #undef DOMBASE #define DOMBASE union_set #define NO_MOVE_DIMS #define NO_DIMS #define NO_DOMAIN #define NO_PRODUCT #define NO_SPLICE #define NO_ZERO #define NO_IDENTITY #define NO_GIST #include #include #include #include #include #include #include /* Construct a multiple union piecewise affine expression * in the given space with value zero in each of the output dimensions. * * Since there is no canonical zero value for * a union piecewise affine expression, we can only construct * zero-dimensional "zero" value. */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_zero( __isl_take isl_space *space) { if (!space) return NULL; if (!isl_space_is_set(space)) isl_die(isl_space_get_ctx(space), isl_error_invalid, "expecting set space", goto error); if (isl_space_dim(space , isl_dim_out) != 0) isl_die(isl_space_get_ctx(space), isl_error_invalid, "expecting 0D space", goto error); return isl_multi_union_pw_aff_alloc(space); error: isl_space_free(space); return NULL; } /* Compute the sum of "mupa1" and "mupa2" on the union of their domains, * with the actual sum on the shared domain and * the defined expression on the symmetric difference of the domains. * * We simply iterate over the elements in both arguments and * call isl_union_pw_aff_union_add on each of them. */ static __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_union_add_aligned( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2) { return isl_multi_union_pw_aff_bin_op(mupa1, mupa2, &isl_union_pw_aff_union_add); } /* Compute the sum of "mupa1" and "mupa2" on the union of their domains, * with the actual sum on the shared domain and * the defined expression on the symmetric difference of the domains. */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_union_add( __isl_take isl_multi_union_pw_aff *mupa1, __isl_take isl_multi_union_pw_aff *mupa2) { return isl_multi_union_pw_aff_align_params_multi_multi_and(mupa1, mupa2, &isl_multi_union_pw_aff_union_add_aligned); } /* Construct and return a multi union piecewise affine expression * that is equal to the given multi affine expression. */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_aff( __isl_take isl_multi_aff *ma) { isl_multi_pw_aff *mpa; mpa = isl_multi_pw_aff_from_multi_aff(ma); return isl_multi_union_pw_aff_from_multi_pw_aff(mpa); } /* Construct and return a multi union piecewise affine expression * that is equal to the given multi piecewise affine expression. */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_multi_pw_aff( __isl_take isl_multi_pw_aff *mpa) { int i, n; isl_space *space; isl_multi_union_pw_aff *mupa; if (!mpa) return NULL; space = isl_multi_pw_aff_get_space(mpa); space = isl_space_range(space); mupa = isl_multi_union_pw_aff_alloc(space); n = isl_multi_pw_aff_dim(mpa, isl_dim_out); for (i = 0; i < n; ++i) { isl_pw_aff *pa; isl_union_pw_aff *upa; pa = isl_multi_pw_aff_get_pw_aff(mpa, i); upa = isl_union_pw_aff_from_pw_aff(pa); mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa); } isl_multi_pw_aff_free(mpa); return mupa; } /* Extract the range space of "pma" and assign it to *space. * If *space has already been set (through a previous call to this function), * then check that the range space is the same. */ static isl_stat extract_space(__isl_take isl_pw_multi_aff *pma, void *user) { isl_space **space = user; isl_space *pma_space; isl_bool equal; pma_space = isl_space_range(isl_pw_multi_aff_get_space(pma)); isl_pw_multi_aff_free(pma); if (!pma_space) return isl_stat_error; if (!*space) { *space = pma_space; return isl_stat_ok; } equal = isl_space_is_equal(pma_space, *space); isl_space_free(pma_space); if (equal < 0) return isl_stat_error; if (!equal) isl_die(isl_space_get_ctx(*space), isl_error_invalid, "range spaces not the same", return isl_stat_error); return isl_stat_ok; } /* Construct and return a multi union piecewise affine expression * that is equal to the given union piecewise multi affine expression. * * In order to be able to perform the conversion, the input * needs to be non-empty and may only involve a single range space. */ __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_from_union_pw_multi_aff( __isl_take isl_union_pw_multi_aff *upma) { isl_space *space = NULL; isl_multi_union_pw_aff *mupa; int i, n; if (!upma) return NULL; if (isl_union_pw_multi_aff_n_pw_multi_aff(upma) == 0) isl_die(isl_union_pw_multi_aff_get_ctx(upma), isl_error_invalid, "cannot extract range space from empty input", goto error); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &extract_space, &space) < 0) goto error; if (!space) goto error; n = isl_space_dim(space, isl_dim_set); mupa = isl_multi_union_pw_aff_alloc(space); for (i = 0; i < n; ++i) { isl_union_pw_aff *upa; upa = isl_union_pw_multi_aff_get_union_pw_aff(upma, i); mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa); } isl_union_pw_multi_aff_free(upma); return mupa; error: isl_space_free(space); isl_union_pw_multi_aff_free(upma); return NULL; } /* Try and create an isl_multi_union_pw_aff that is equivalent * to the given isl_union_map. * The isl_union_map is required to be single-valued in each space. * Moreover, it cannot be empty and all range spaces need to be the same. * Otherwise, an error is produced. */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_from_union_map( __isl_take isl_union_map *umap) { isl_union_pw_multi_aff *upma; upma = isl_union_pw_multi_aff_from_union_map(umap); return isl_multi_union_pw_aff_from_union_pw_multi_aff(upma); } /* Return a multiple union piecewise affine expression * that is equal to "mv" on "domain", assuming "domain" and "mv" * have been aligned. */ static __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_multi_val_on_domain_aligned( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv) { int i, n; isl_space *space; isl_multi_union_pw_aff *mupa; if (!domain || !mv) goto error; n = isl_multi_val_dim(mv, isl_dim_set); space = isl_multi_val_get_space(mv); mupa = isl_multi_union_pw_aff_alloc(space); for (i = 0; i < n; ++i) { isl_val *v; isl_union_pw_aff *upa; v = isl_multi_val_get_val(mv, i); upa = isl_union_pw_aff_val_on_domain(isl_union_set_copy(domain), v); mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa); } isl_union_set_free(domain); isl_multi_val_free(mv); return mupa; error: isl_union_set_free(domain); isl_multi_val_free(mv); return NULL; } /* Return a multiple union piecewise affine expression * that is equal to "mv" on "domain". */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_val_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_val *mv) { if (!domain || !mv) goto error; if (isl_space_match(domain->dim, isl_dim_param, mv->space, isl_dim_param)) return isl_multi_union_pw_aff_multi_val_on_domain_aligned( domain, mv); domain = isl_union_set_align_params(domain, isl_multi_val_get_space(mv)); mv = isl_multi_val_align_params(mv, isl_union_set_get_space(domain)); return isl_multi_union_pw_aff_multi_val_on_domain_aligned(domain, mv); error: isl_union_set_free(domain); isl_multi_val_free(mv); return NULL; } /* Return a multiple union piecewise affine expression * that is equal to "ma" on "domain", assuming "domain" and "ma" * have been aligned. */ static __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_multi_aff_on_domain_aligned( __isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma) { int i, n; isl_space *space; isl_multi_union_pw_aff *mupa; if (!domain || !ma) goto error; n = isl_multi_aff_dim(ma, isl_dim_set); space = isl_multi_aff_get_space(ma); mupa = isl_multi_union_pw_aff_alloc(space); for (i = 0; i < n; ++i) { isl_aff *aff; isl_union_pw_aff *upa; aff = isl_multi_aff_get_aff(ma, i); upa = isl_union_pw_aff_aff_on_domain(isl_union_set_copy(domain), aff); mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa); } isl_union_set_free(domain); isl_multi_aff_free(ma); return mupa; error: isl_union_set_free(domain); isl_multi_aff_free(ma); return NULL; } /* Return a multiple union piecewise affine expression * that is equal to "ma" on "domain". */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_multi_aff_on_domain( __isl_take isl_union_set *domain, __isl_take isl_multi_aff *ma) { if (!domain || !ma) goto error; if (isl_space_match(domain->dim, isl_dim_param, ma->space, isl_dim_param)) return isl_multi_union_pw_aff_multi_aff_on_domain_aligned( domain, ma); domain = isl_union_set_align_params(domain, isl_multi_aff_get_space(ma)); ma = isl_multi_aff_align_params(ma, isl_union_set_get_space(domain)); return isl_multi_union_pw_aff_multi_aff_on_domain_aligned(domain, ma); error: isl_union_set_free(domain); isl_multi_aff_free(ma); return NULL; } /* Return a union set containing those elements in the domains * of the elements of "mupa" where they are all zero. */ __isl_give isl_union_set *isl_multi_union_pw_aff_zero_union_set( __isl_take isl_multi_union_pw_aff *mupa) { int i, n; isl_union_pw_aff *upa; isl_union_set *zero; if (!mupa) return NULL; n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); if (n == 0) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "cannot determine zero set " "of zero-dimensional function", goto error); upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0); zero = isl_union_pw_aff_zero_union_set(upa); for (i = 1; i < n; ++i) { isl_union_set *zero_i; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); zero_i = isl_union_pw_aff_zero_union_set(upa); zero = isl_union_set_intersect(zero, zero_i); } isl_multi_union_pw_aff_free(mupa); return zero; error: isl_multi_union_pw_aff_free(mupa); return NULL; } /* Construct a union map mapping the shared domain * of the union piecewise affine expressions to the range of "mupa" * with each dimension in the range equated to the * corresponding union piecewise affine expression. * * The input cannot be zero-dimensional as there is * no way to extract a domain from a zero-dimensional isl_multi_union_pw_aff. */ __isl_give isl_union_map *isl_union_map_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa) { int i, n; isl_space *space; isl_union_map *umap; isl_union_pw_aff *upa; if (!mupa) return NULL; n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); if (n == 0) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "cannot determine domain of zero-dimensional " "isl_multi_union_pw_aff", goto error); upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0); umap = isl_union_map_from_union_pw_aff(upa); for (i = 1; i < n; ++i) { isl_union_map *umap_i; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); umap_i = isl_union_map_from_union_pw_aff(upa); umap = isl_union_map_flat_range_product(umap, umap_i); } space = isl_multi_union_pw_aff_get_space(mupa); umap = isl_union_map_reset_range_space(umap, space); isl_multi_union_pw_aff_free(mupa); return umap; error: isl_multi_union_pw_aff_free(mupa); return NULL; } /* Internal data structure for isl_union_pw_multi_aff_reset_range_space. * "range" is the space from which to set the range space. * "res" collects the results. */ struct isl_union_pw_multi_aff_reset_range_space_data { isl_space *range; isl_union_pw_multi_aff *res; }; /* Replace the range space of "pma" by the range space of data->range and * add the result to data->res. */ static isl_stat reset_range_space(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_pw_multi_aff_reset_range_space_data *data = user; isl_space *space; space = isl_pw_multi_aff_get_space(pma); space = isl_space_domain(space); space = isl_space_extend_domain_with_range(space, isl_space_copy(data->range)); pma = isl_pw_multi_aff_reset_space(pma, space); data->res = isl_union_pw_multi_aff_add_pw_multi_aff(data->res, pma); return data->res ? isl_stat_ok : isl_stat_error; } /* Replace the range space of all the piecewise affine expressions in "upma" by * the range space of "space". * * This assumes that all these expressions have the same output dimension. * * Since the spaces of the expressions change, so do their hash values. * We therefore need to create a new isl_union_pw_multi_aff. * Note that the hash value is currently computed based on the entire * space even though there can only be a single expression with a given * domain space. */ static __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_reset_range_space( __isl_take isl_union_pw_multi_aff *upma, __isl_take isl_space *space) { struct isl_union_pw_multi_aff_reset_range_space_data data = { space }; isl_space *space_upma; space_upma = isl_union_pw_multi_aff_get_space(upma); data.res = isl_union_pw_multi_aff_empty(space_upma); if (isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &reset_range_space, &data) < 0) data.res = isl_union_pw_multi_aff_free(data.res); isl_space_free(space); isl_union_pw_multi_aff_free(upma); return data.res; } /* Construct and return a union piecewise multi affine expression * that is equal to the given multi union piecewise affine expression. * * In order to be able to perform the conversion, the input * needs to have a least one output dimension. */ __isl_give isl_union_pw_multi_aff * isl_union_pw_multi_aff_from_multi_union_pw_aff( __isl_take isl_multi_union_pw_aff *mupa) { int i, n; isl_space *space; isl_union_pw_multi_aff *upma; isl_union_pw_aff *upa; if (!mupa) return NULL; space = isl_multi_union_pw_aff_get_space(mupa); n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); if (n == 0) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "cannot determine domain of zero-dimensional " "isl_multi_union_pw_aff", goto error); upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0); upma = isl_union_pw_multi_aff_from_union_pw_aff(upa); for (i = 1; i < n; ++i) { isl_union_pw_multi_aff *upma_i; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); upma_i = isl_union_pw_multi_aff_from_union_pw_aff(upa); upma = isl_union_pw_multi_aff_flat_range_product(upma, upma_i); } upma = isl_union_pw_multi_aff_reset_range_space(upma, space); isl_multi_union_pw_aff_free(mupa); return upma; error: isl_multi_union_pw_aff_free(mupa); return NULL; } /* Intersect the range of "mupa" with "range". * That is, keep only those domain elements that have a function value * in "range". */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_intersect_range( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_set *range) { isl_union_pw_multi_aff *upma; isl_union_set *domain; isl_space *space; int n; int match; if (!mupa || !range) goto error; space = isl_set_get_space(range); match = isl_space_tuple_is_equal(mupa->space, isl_dim_set, space, isl_dim_set); isl_space_free(space); if (match < 0) goto error; if (!match) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "space don't match", goto error); n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); if (n == 0) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "cannot intersect range of zero-dimensional " "isl_multi_union_pw_aff", goto error); upma = isl_union_pw_multi_aff_from_multi_union_pw_aff( isl_multi_union_pw_aff_copy(mupa)); domain = isl_union_set_from_set(range); domain = isl_union_set_preimage_union_pw_multi_aff(domain, upma); mupa = isl_multi_union_pw_aff_intersect_domain(mupa, domain); return mupa; error: isl_multi_union_pw_aff_free(mupa); isl_set_free(range); return NULL; } /* Return the shared domain of the elements of "mupa". */ __isl_give isl_union_set *isl_multi_union_pw_aff_domain( __isl_take isl_multi_union_pw_aff *mupa) { int i, n; isl_union_pw_aff *upa; isl_union_set *dom; if (!mupa) return NULL; n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); if (n == 0) isl_die(isl_multi_union_pw_aff_get_ctx(mupa), isl_error_invalid, "cannot determine domain", goto error); upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, 0); dom = isl_union_pw_aff_domain(upa); for (i = 1; i < n; ++i) { isl_union_set *dom_i; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); dom_i = isl_union_pw_aff_domain(upa); dom = isl_union_set_intersect(dom, dom_i); } isl_multi_union_pw_aff_free(mupa); return dom; error: isl_multi_union_pw_aff_free(mupa); return NULL; } /* Apply "aff" to "mupa". The space of "mupa" is equal to the domain of "aff". * In particular, the spaces have been aligned. * The result is defined over the shared domain of the elements of "mupa" * * We first extract the parametric constant part of "aff" and * define that over the shared domain. * Then we iterate over all input dimensions of "aff" and add the corresponding * multiples of the elements of "mupa". * Finally, we consider the integer divisions, calling the function * recursively to obtain an isl_union_pw_aff corresponding to the * integer division argument. */ static __isl_give isl_union_pw_aff *multi_union_pw_aff_apply_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff) { int i, n_in, n_div; isl_union_pw_aff *upa; isl_union_set *uset; isl_val *v; isl_aff *cst; n_in = isl_aff_dim(aff, isl_dim_in); n_div = isl_aff_dim(aff, isl_dim_div); uset = isl_multi_union_pw_aff_domain(isl_multi_union_pw_aff_copy(mupa)); cst = isl_aff_copy(aff); cst = isl_aff_drop_dims(cst, isl_dim_div, 0, n_div); cst = isl_aff_drop_dims(cst, isl_dim_in, 0, n_in); cst = isl_aff_project_domain_on_params(cst); upa = isl_union_pw_aff_aff_on_domain(uset, cst); for (i = 0; i < n_in; ++i) { isl_union_pw_aff *upa_i; if (!isl_aff_involves_dims(aff, isl_dim_in, i, 1)) continue; v = isl_aff_get_coefficient_val(aff, isl_dim_in, i); upa_i = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); upa_i = isl_union_pw_aff_scale_val(upa_i, v); upa = isl_union_pw_aff_add(upa, upa_i); } for (i = 0; i < n_div; ++i) { isl_aff *div; isl_union_pw_aff *upa_i; if (!isl_aff_involves_dims(aff, isl_dim_div, i, 1)) continue; div = isl_aff_get_div(aff, i); upa_i = multi_union_pw_aff_apply_aff( isl_multi_union_pw_aff_copy(mupa), div); upa_i = isl_union_pw_aff_floor(upa_i); v = isl_aff_get_coefficient_val(aff, isl_dim_div, i); upa_i = isl_union_pw_aff_scale_val(upa_i, v); upa = isl_union_pw_aff_add(upa, upa_i); } isl_multi_union_pw_aff_free(mupa); isl_aff_free(aff); return upa; } /* Apply "aff" to "mupa". The space of "mupa" needs to be compatible * with the domain of "aff". * Furthermore, the dimension of this space needs to be greater than zero. * The result is defined over the shared domain of the elements of "mupa" * * We perform these checks and then hand over control to * multi_union_pw_aff_apply_aff. */ __isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_aff *aff) { isl_space *space1, *space2; int equal; mupa = isl_multi_union_pw_aff_align_params(mupa, isl_aff_get_space(aff)); aff = isl_aff_align_params(aff, isl_multi_union_pw_aff_get_space(mupa)); if (!mupa || !aff) goto error; space1 = isl_multi_union_pw_aff_get_space(mupa); space2 = isl_aff_get_domain_space(aff); equal = isl_space_is_equal(space1, space2); isl_space_free(space1); isl_space_free(space2); if (equal < 0) goto error; if (!equal) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "spaces don't match", goto error); if (isl_aff_dim(aff, isl_dim_in) == 0) isl_die(isl_aff_get_ctx(aff), isl_error_invalid, "cannot determine domains", goto error); return multi_union_pw_aff_apply_aff(mupa, aff); error: isl_multi_union_pw_aff_free(mupa); isl_aff_free(aff); return NULL; } /* Apply "ma" to "mupa". The space of "mupa" needs to be compatible * with the domain of "ma". * Furthermore, the dimension of this space needs to be greater than zero, * unless the dimension of the target space of "ma" is also zero. * The result is defined over the shared domain of the elements of "mupa" */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_multi_aff *ma) { isl_space *space1, *space2; isl_multi_union_pw_aff *res; int equal; int i, n_out; mupa = isl_multi_union_pw_aff_align_params(mupa, isl_multi_aff_get_space(ma)); ma = isl_multi_aff_align_params(ma, isl_multi_union_pw_aff_get_space(mupa)); if (!mupa || !ma) goto error; space1 = isl_multi_union_pw_aff_get_space(mupa); space2 = isl_multi_aff_get_domain_space(ma); equal = isl_space_is_equal(space1, space2); isl_space_free(space1); isl_space_free(space2); if (equal < 0) goto error; if (!equal) isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid, "spaces don't match", goto error); n_out = isl_multi_aff_dim(ma, isl_dim_out); if (isl_multi_aff_dim(ma, isl_dim_in) == 0 && n_out != 0) isl_die(isl_multi_aff_get_ctx(ma), isl_error_invalid, "cannot determine domains", goto error); space1 = isl_space_range(isl_multi_aff_get_space(ma)); res = isl_multi_union_pw_aff_alloc(space1); for (i = 0; i < n_out; ++i) { isl_aff *aff; isl_union_pw_aff *upa; aff = isl_multi_aff_get_aff(ma, i); upa = multi_union_pw_aff_apply_aff( isl_multi_union_pw_aff_copy(mupa), aff); res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa); } isl_multi_aff_free(ma); isl_multi_union_pw_aff_free(mupa); return res; error: isl_multi_union_pw_aff_free(mupa); isl_multi_aff_free(ma); return NULL; } /* Apply "pa" to "mupa". The space of "mupa" needs to be compatible * with the domain of "pa". * Furthermore, the dimension of this space needs to be greater than zero. * The result is defined over the shared domain of the elements of "mupa" */ __isl_give isl_union_pw_aff *isl_multi_union_pw_aff_apply_pw_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_aff *pa) { int i; int equal; isl_space *space, *space2; isl_union_pw_aff *upa; mupa = isl_multi_union_pw_aff_align_params(mupa, isl_pw_aff_get_space(pa)); pa = isl_pw_aff_align_params(pa, isl_multi_union_pw_aff_get_space(mupa)); if (!mupa || !pa) goto error; space = isl_multi_union_pw_aff_get_space(mupa); space2 = isl_pw_aff_get_domain_space(pa); equal = isl_space_is_equal(space, space2); isl_space_free(space); isl_space_free(space2); if (equal < 0) goto error; if (!equal) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "spaces don't match", goto error); if (isl_pw_aff_dim(pa, isl_dim_in) == 0) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "cannot determine domains", goto error); space = isl_space_params(isl_multi_union_pw_aff_get_space(mupa)); upa = isl_union_pw_aff_empty(space); for (i = 0; i < pa->n; ++i) { isl_aff *aff; isl_set *domain; isl_multi_union_pw_aff *mupa_i; isl_union_pw_aff *upa_i; mupa_i = isl_multi_union_pw_aff_copy(mupa); domain = isl_set_copy(pa->p[i].set); mupa_i = isl_multi_union_pw_aff_intersect_range(mupa_i, domain); aff = isl_aff_copy(pa->p[i].aff); upa_i = multi_union_pw_aff_apply_aff(mupa_i, aff); upa = isl_union_pw_aff_union_add(upa, upa_i); } isl_multi_union_pw_aff_free(mupa); isl_pw_aff_free(pa); return upa; error: isl_multi_union_pw_aff_free(mupa); isl_pw_aff_free(pa); return NULL; } /* Apply "pma" to "mupa". The space of "mupa" needs to be compatible * with the domain of "pma". * Furthermore, the dimension of this space needs to be greater than zero, * unless the dimension of the target space of "pma" is also zero. * The result is defined over the shared domain of the elements of "mupa" */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_apply_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_pw_multi_aff *pma) { isl_space *space1, *space2; isl_multi_union_pw_aff *res; int equal; int i, n_out; mupa = isl_multi_union_pw_aff_align_params(mupa, isl_pw_multi_aff_get_space(pma)); pma = isl_pw_multi_aff_align_params(pma, isl_multi_union_pw_aff_get_space(mupa)); if (!mupa || !pma) goto error; space1 = isl_multi_union_pw_aff_get_space(mupa); space2 = isl_pw_multi_aff_get_domain_space(pma); equal = isl_space_is_equal(space1, space2); isl_space_free(space1); isl_space_free(space2); if (equal < 0) goto error; if (!equal) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "spaces don't match", goto error); n_out = isl_pw_multi_aff_dim(pma, isl_dim_out); if (isl_pw_multi_aff_dim(pma, isl_dim_in) == 0 && n_out != 0) isl_die(isl_pw_multi_aff_get_ctx(pma), isl_error_invalid, "cannot determine domains", goto error); space1 = isl_space_range(isl_pw_multi_aff_get_space(pma)); res = isl_multi_union_pw_aff_alloc(space1); for (i = 0; i < n_out; ++i) { isl_pw_aff *pa; isl_union_pw_aff *upa; pa = isl_pw_multi_aff_get_pw_aff(pma, i); upa = isl_multi_union_pw_aff_apply_pw_aff( isl_multi_union_pw_aff_copy(mupa), pa); res = isl_multi_union_pw_aff_set_union_pw_aff(res, i, upa); } isl_pw_multi_aff_free(pma); isl_multi_union_pw_aff_free(mupa); return res; error: isl_multi_union_pw_aff_free(mupa); isl_pw_multi_aff_free(pma); return NULL; } /* Compute the pullback of "mupa" by the function represented by "upma". * In other words, plug in "upma" in "mupa". The result contains * expressions defined over the domain space of "upma". * * Run over all elements of "mupa" and plug in "upma" in each of them. */ __isl_give isl_multi_union_pw_aff * isl_multi_union_pw_aff_pullback_union_pw_multi_aff( __isl_take isl_multi_union_pw_aff *mupa, __isl_take isl_union_pw_multi_aff *upma) { int i, n; mupa = isl_multi_union_pw_aff_align_params(mupa, isl_union_pw_multi_aff_get_space(upma)); upma = isl_union_pw_multi_aff_align_params(upma, isl_multi_union_pw_aff_get_space(mupa)); if (!mupa || !upma) goto error; n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); for (i = 0; i < n; ++i) { isl_union_pw_aff *upa; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); upa = isl_union_pw_aff_pullback_union_pw_multi_aff(upa, isl_union_pw_multi_aff_copy(upma)); mupa = isl_multi_union_pw_aff_set_union_pw_aff(mupa, i, upa); } isl_union_pw_multi_aff_free(upma); return mupa; error: isl_multi_union_pw_aff_free(mupa); isl_union_pw_multi_aff_free(upma); return NULL; } /* Extract the sequence of elements in "mupa" with domain space "space" * (ignoring parameters). * * For the elements of "mupa" that are not defined on the specified space, * the corresponding element in the result is empty. */ __isl_give isl_multi_pw_aff *isl_multi_union_pw_aff_extract_multi_pw_aff( __isl_keep isl_multi_union_pw_aff *mupa, __isl_take isl_space *space) { int i, n; isl_space *space_mpa = NULL; isl_multi_pw_aff *mpa; if (!mupa || !space) goto error; space_mpa = isl_multi_union_pw_aff_get_space(mupa); if (!isl_space_match(space_mpa, isl_dim_param, space, isl_dim_param)) { space = isl_space_drop_dims(space, isl_dim_param, 0, isl_space_dim(space, isl_dim_param)); space = isl_space_align_params(space, isl_space_copy(space_mpa)); if (!space) goto error; } space_mpa = isl_space_map_from_domain_and_range(isl_space_copy(space), space_mpa); mpa = isl_multi_pw_aff_alloc(space_mpa); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, 1); n = isl_multi_union_pw_aff_dim(mupa, isl_dim_set); for (i = 0; i < n; ++i) { isl_union_pw_aff *upa; isl_pw_aff *pa; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i); pa = isl_union_pw_aff_extract_pw_aff(upa, isl_space_copy(space)); mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa); isl_union_pw_aff_free(upa); } isl_space_free(space); return mpa; error: isl_space_free(space_mpa); isl_space_free(space); return NULL; } isl-0.16.1/LICENSE0000664000175000017500000000202212645737060010324 00000000000000MIT License (MIT) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. isl-0.16.1/isl_ctx.c0000664000175000017500000001573612645737060011150 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #define __isl_calloc(type,size) ((type *)calloc(1, size)) #define __isl_calloc_type(type) __isl_calloc(type,sizeof(type)) /* Check that the result of an allocation ("p") is not NULL and * complain if it is. * The only exception is when allocation size ("size") is equal to zero. */ static void *check_non_null(isl_ctx *ctx, void *p, size_t size) { if (p || size == 0) return p; isl_die(ctx, isl_error_alloc, "allocation failure", return NULL); } /* Prepare for performing the next "operation" in the context. * Return 0 if we are allowed to perform this operation and * return -1 if we should abort the computation. * * In particular, we should stop if the user has explicitly aborted * the computation or if the maximal number of operations has been exceeded. */ int isl_ctx_next_operation(isl_ctx *ctx) { if (!ctx) return -1; if (ctx->abort) { isl_ctx_set_error(ctx, isl_error_abort); return -1; } if (ctx->max_operations && ctx->operations >= ctx->max_operations) isl_die(ctx, isl_error_quota, "maximal number of operations exceeded", return -1); ctx->operations++; return 0; } /* Call malloc and complain if it fails. * If ctx is NULL, then return NULL. */ void *isl_malloc_or_die(isl_ctx *ctx, size_t size) { if (isl_ctx_next_operation(ctx) < 0) return NULL; return ctx ? check_non_null(ctx, malloc(size), size) : NULL; } /* Call calloc and complain if it fails. * If ctx is NULL, then return NULL. */ void *isl_calloc_or_die(isl_ctx *ctx, size_t nmemb, size_t size) { if (isl_ctx_next_operation(ctx) < 0) return NULL; return ctx ? check_non_null(ctx, calloc(nmemb, size), nmemb) : NULL; } /* Call realloc and complain if it fails. * If ctx is NULL, then return NULL. */ void *isl_realloc_or_die(isl_ctx *ctx, void *ptr, size_t size) { if (isl_ctx_next_operation(ctx) < 0) return NULL; return ctx ? check_non_null(ctx, realloc(ptr, size), size) : NULL; } void isl_handle_error(isl_ctx *ctx, enum isl_error error, const char *msg, const char *file, int line) { if (!ctx) return; isl_ctx_set_error(ctx, error); switch (ctx->opt->on_error) { case ISL_ON_ERROR_WARN: fprintf(stderr, "%s:%d: %s\n", file, line, msg); return; case ISL_ON_ERROR_CONTINUE: return; case ISL_ON_ERROR_ABORT: fprintf(stderr, "%s:%d: %s\n", file, line, msg); abort(); return; } } static struct isl_options *find_nested_options(struct isl_args *args, void *opt, struct isl_args *wanted) { int i; struct isl_options *options; if (args == wanted) return opt; for (i = 0; args->args[i].type != isl_arg_end; ++i) { struct isl_arg *arg = &args->args[i]; void *child; if (arg->type != isl_arg_child) continue; if (arg->offset == (size_t) -1) child = opt; else child = *(void **)(((char *)opt) + arg->offset); options = find_nested_options(arg->u.child.child, child, wanted); if (options) return options; } return NULL; } static struct isl_options *find_nested_isl_options(struct isl_args *args, void *opt) { return find_nested_options(args, opt, &isl_options_args); } void *isl_ctx_peek_options(isl_ctx *ctx, struct isl_args *args) { if (!ctx) return NULL; if (args == &isl_options_args) return ctx->opt; return find_nested_options(ctx->user_args, ctx->user_opt, args); } isl_ctx *isl_ctx_alloc_with_options(struct isl_args *args, void *user_opt) { struct isl_ctx *ctx = NULL; struct isl_options *opt = NULL; int opt_allocated = 0; if (!user_opt) return NULL; opt = find_nested_isl_options(args, user_opt); if (!opt) { opt = isl_options_new_with_defaults(); if (!opt) goto error; opt_allocated = 1; } ctx = __isl_calloc_type(struct isl_ctx); if (!ctx) goto error; if (isl_hash_table_init(ctx, &ctx->id_table, 0)) goto error; ctx->stats = isl_calloc_type(ctx, struct isl_stats); if (!ctx->stats) goto error; ctx->user_args = args; ctx->user_opt = user_opt; ctx->opt_allocated = opt_allocated; ctx->opt = opt; ctx->ref = 0; isl_int_init(ctx->zero); isl_int_set_si(ctx->zero, 0); isl_int_init(ctx->one); isl_int_set_si(ctx->one, 1); isl_int_init(ctx->two); isl_int_set_si(ctx->two, 2); isl_int_init(ctx->negone); isl_int_set_si(ctx->negone, -1); isl_int_init(ctx->normalize_gcd); ctx->n_cached = 0; ctx->n_miss = 0; ctx->error = isl_error_none; ctx->operations = 0; isl_ctx_set_max_operations(ctx, ctx->opt->max_operations); return ctx; error: isl_args_free(args, user_opt); if (opt_allocated) isl_options_free(opt); free(ctx); return NULL; } struct isl_ctx *isl_ctx_alloc() { struct isl_options *opt; opt = isl_options_new_with_defaults(); return isl_ctx_alloc_with_options(&isl_options_args, opt); } void isl_ctx_ref(struct isl_ctx *ctx) { ctx->ref++; } void isl_ctx_deref(struct isl_ctx *ctx) { isl_assert(ctx, ctx->ref > 0, return); ctx->ref--; } /* Print statistics on usage. */ static void print_stats(isl_ctx *ctx) { fprintf(stderr, "operations: %lu\n", ctx->operations); } void isl_ctx_free(struct isl_ctx *ctx) { if (!ctx) return; if (ctx->ref != 0) isl_die(ctx, isl_error_invalid, "isl_ctx freed, but some objects still reference it", return); if (ctx->opt->print_stats) print_stats(ctx); isl_hash_table_clear(&ctx->id_table); isl_blk_clear_cache(ctx); isl_int_clear(ctx->zero); isl_int_clear(ctx->one); isl_int_clear(ctx->two); isl_int_clear(ctx->negone); isl_int_clear(ctx->normalize_gcd); isl_args_free(ctx->user_args, ctx->user_opt); if (ctx->opt_allocated) isl_options_free(ctx->opt); free(ctx->stats); free(ctx); } struct isl_options *isl_ctx_options(isl_ctx *ctx) { if (!ctx) return NULL; return ctx->opt; } enum isl_error isl_ctx_last_error(isl_ctx *ctx) { return ctx->error; } void isl_ctx_reset_error(isl_ctx *ctx) { ctx->error = isl_error_none; } void isl_ctx_set_error(isl_ctx *ctx, enum isl_error error) { if (ctx) ctx->error = error; } void isl_ctx_abort(isl_ctx *ctx) { if (ctx) ctx->abort = 1; } void isl_ctx_resume(isl_ctx *ctx) { if (ctx) ctx->abort = 0; } int isl_ctx_aborted(isl_ctx *ctx) { return ctx ? ctx->abort : -1; } int isl_ctx_parse_options(isl_ctx *ctx, int argc, char **argv, unsigned flags) { if (!ctx) return -1; return isl_args_parse(ctx->user_args, argc, argv, ctx->user_opt, flags); } /* Set the maximal number of iterations of "ctx" to "max_operations". */ void isl_ctx_set_max_operations(isl_ctx *ctx, unsigned long max_operations) { if (!ctx) return; ctx->max_operations = max_operations; } /* Return the maximal number of iterations of "ctx". */ unsigned long isl_ctx_get_max_operations(isl_ctx *ctx) { return ctx ? ctx->max_operations : 0; } /* Reset the number of operations performed by "ctx". */ void isl_ctx_reset_operations(isl_ctx *ctx) { if (!ctx) return; ctx->operations = 0; } isl-0.16.1/isl_local_space_private.h0000664000175000017500000000514012645737414014345 00000000000000#ifndef ISL_LOCAL_SPACE_PRIVATE_H #define ISL_LOCAL_SPACE_PRIVATE_H #include #include #include struct isl_local_space { int ref; isl_space *dim; isl_mat *div; }; __isl_give isl_local_space *isl_local_space_alloc(__isl_take isl_space *dim, unsigned n_div); __isl_give isl_local_space *isl_local_space_alloc_div(__isl_take isl_space *dim, __isl_take isl_mat *div); __isl_give isl_local_space *isl_local_space_swap_div( __isl_take isl_local_space *ls, int a, int b); __isl_give isl_local_space *isl_local_space_add_div( __isl_take isl_local_space *ls, __isl_take isl_vec *div); int isl_mat_cmp_div(__isl_keep isl_mat *div, int i, int j); __isl_give isl_mat *isl_merge_divs(__isl_keep isl_mat *div1, __isl_keep isl_mat *div2, int *exp1, int *exp2); unsigned isl_local_space_offset(__isl_keep isl_local_space *ls, enum isl_dim_type type); __isl_give isl_local_space *isl_local_space_replace_divs( __isl_take isl_local_space *ls, __isl_take isl_mat *div); int isl_local_space_div_is_known(__isl_keep isl_local_space *ls, int div); isl_bool isl_local_space_divs_known(__isl_keep isl_local_space *ls); __isl_give isl_local_space *isl_local_space_substitute_equalities( __isl_take isl_local_space *ls, __isl_take isl_basic_set *eq); int isl_local_space_is_named_or_nested(__isl_keep isl_local_space *ls, enum isl_dim_type type); __isl_give isl_local_space *isl_local_space_reset_space( __isl_take isl_local_space *ls, __isl_take isl_space *dim); __isl_give isl_local_space *isl_local_space_realign( __isl_take isl_local_space *ls, __isl_take isl_reordering *r); int isl_local_space_is_div_constraint(__isl_keep isl_local_space *ls, isl_int *constraint, unsigned div); int *isl_local_space_get_active(__isl_keep isl_local_space *ls, isl_int *l); __isl_give isl_local_space *isl_local_space_substitute_seq( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, isl_int *subs, int subs_len, int first, int n); __isl_give isl_local_space *isl_local_space_substitute( __isl_take isl_local_space *ls, enum isl_dim_type type, unsigned pos, __isl_keep isl_aff *subs); __isl_give isl_local_space *isl_local_space_lift( __isl_take isl_local_space *ls); __isl_give isl_local_space *isl_local_space_preimage_multi_aff( __isl_take isl_local_space *ls, __isl_take isl_multi_aff *ma); __isl_give isl_local_space *isl_local_space_move_dims( __isl_take isl_local_space *ls, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n); int isl_local_space_cmp(__isl_keep isl_local_space *ls1, __isl_keep isl_local_space *ls2); #endif isl-0.16.1/isl_point.c0000664000175000017500000003363112645737235011501 00000000000000#include #include #include #include #include #include #include #include #include #include #include #include isl_ctx *isl_point_get_ctx(__isl_keep isl_point *pnt) { return pnt ? isl_space_get_ctx(pnt->dim) : NULL; } __isl_give isl_space *isl_point_get_space(__isl_keep isl_point *pnt) { return pnt ? isl_space_copy(pnt->dim) : NULL; } __isl_give isl_point *isl_point_alloc(__isl_take isl_space *dim, __isl_take isl_vec *vec) { struct isl_point *pnt; if (!dim || !vec) goto error; if (vec->size > 1 + isl_space_dim(dim, isl_dim_all)) { vec = isl_vec_cow(vec); if (!vec) goto error; vec->size = 1 + isl_space_dim(dim, isl_dim_all); } pnt = isl_alloc_type(dim->ctx, struct isl_point); if (!pnt) goto error; pnt->ref = 1; pnt->dim = dim; pnt->vec = vec; return pnt; error: isl_space_free(dim); isl_vec_free(vec); return NULL; } __isl_give isl_point *isl_point_zero(__isl_take isl_space *dim) { isl_vec *vec; if (!dim) return NULL; vec = isl_vec_alloc(dim->ctx, 1 + isl_space_dim(dim, isl_dim_all)); if (!vec) goto error; isl_int_set_si(vec->el[0], 1); isl_seq_clr(vec->el + 1, vec->size - 1); return isl_point_alloc(dim, vec); error: isl_space_free(dim); return NULL; } __isl_give isl_point *isl_point_dup(__isl_keep isl_point *pnt) { struct isl_point *pnt2; if (!pnt) return NULL; pnt2 = isl_point_alloc(isl_space_copy(pnt->dim), isl_vec_copy(pnt->vec)); return pnt2; } __isl_give isl_point *isl_point_cow(__isl_take isl_point *pnt) { struct isl_point *pnt2; if (!pnt) return NULL; if (pnt->ref == 1) return pnt; pnt2 = isl_point_dup(pnt); isl_point_free(pnt); return pnt2; } __isl_give isl_point *isl_point_copy(__isl_keep isl_point *pnt) { if (!pnt) return NULL; pnt->ref++; return pnt; } void isl_point_free(__isl_take isl_point *pnt) { if (!pnt) return; if (--pnt->ref > 0) return; isl_space_free(pnt->dim); isl_vec_free(pnt->vec); free(pnt); } __isl_give isl_point *isl_point_void(__isl_take isl_space *dim) { if (!dim) return NULL; return isl_point_alloc(dim, isl_vec_alloc(dim->ctx, 0)); } isl_bool isl_point_is_void(__isl_keep isl_point *pnt) { if (!pnt) return isl_bool_error; return pnt->vec->size == 0; } int isl_point_get_coordinate(__isl_keep isl_point *pnt, enum isl_dim_type type, int pos, isl_int *v) { if (!pnt || isl_point_is_void(pnt)) return -1; if (pos < 0 || pos >= isl_space_dim(pnt->dim, type)) isl_die(isl_point_get_ctx(pnt), isl_error_invalid, "position out of bounds", return -1); if (type == isl_dim_set) pos += isl_space_dim(pnt->dim, isl_dim_param); isl_int_set(*v, pnt->vec->el[1 + pos]); return 0; } /* Return the value of coordinate "pos" of type "type" of "pnt". */ __isl_give isl_val *isl_point_get_coordinate_val(__isl_keep isl_point *pnt, enum isl_dim_type type, int pos) { isl_ctx *ctx; isl_val *v; if (!pnt) return NULL; ctx = isl_point_get_ctx(pnt); if (isl_point_is_void(pnt)) isl_die(ctx, isl_error_invalid, "void point does not have coordinates", return NULL); if (pos < 0 || pos >= isl_space_dim(pnt->dim, type)) isl_die(ctx, isl_error_invalid, "position out of bounds", return NULL); if (type == isl_dim_set) pos += isl_space_dim(pnt->dim, isl_dim_param); v = isl_val_rat_from_isl_int(ctx, pnt->vec->el[1 + pos], pnt->vec->el[0]); return isl_val_normalize(v); } __isl_give isl_point *isl_point_set_coordinate(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, isl_int v) { if (!pnt || isl_point_is_void(pnt)) return pnt; pnt = isl_point_cow(pnt); if (!pnt) return NULL; pnt->vec = isl_vec_cow(pnt->vec); if (!pnt->vec) goto error; if (type == isl_dim_set) pos += isl_space_dim(pnt->dim, isl_dim_param); isl_int_set(pnt->vec->el[1 + pos], v); return pnt; error: isl_point_free(pnt); return NULL; } /* Replace coordinate "pos" of type "type" of "pnt" by "v". */ __isl_give isl_point *isl_point_set_coordinate_val(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, __isl_take isl_val *v) { if (!pnt || !v) goto error; if (isl_point_is_void(pnt)) isl_die(isl_point_get_ctx(pnt), isl_error_invalid, "void point does not have coordinates", goto error); if (pos < 0 || pos >= isl_space_dim(pnt->dim, type)) isl_die(isl_point_get_ctx(pnt), isl_error_invalid, "position out of bounds", goto error); if (!isl_val_is_rat(v)) isl_die(isl_point_get_ctx(pnt), isl_error_invalid, "expecting rational value", goto error); if (isl_int_eq(pnt->vec->el[1 + pos], v->n) && isl_int_eq(pnt->vec->el[0], v->d)) { isl_val_free(v); return pnt; } pnt = isl_point_cow(pnt); if (!pnt) goto error; pnt->vec = isl_vec_cow(pnt->vec); if (!pnt->vec) goto error; if (isl_int_eq(pnt->vec->el[0], v->d)) { isl_int_set(pnt->vec->el[1 + pos], v->n); } else if (isl_int_is_one(v->d)) { isl_int_mul(pnt->vec->el[1 + pos], pnt->vec->el[0], v->n); } else { isl_seq_scale(pnt->vec->el + 1, pnt->vec->el + 1, v->d, pnt->vec->size - 1); isl_int_mul(pnt->vec->el[1 + pos], pnt->vec->el[0], v->n); isl_int_mul(pnt->vec->el[0], pnt->vec->el[0], v->d); pnt->vec = isl_vec_normalize(pnt->vec); if (!pnt->vec) goto error; } isl_val_free(v); return pnt; error: isl_val_free(v); isl_point_free(pnt); return NULL; } __isl_give isl_point *isl_point_add_ui(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val) { if (!pnt || isl_point_is_void(pnt)) return pnt; pnt = isl_point_cow(pnt); if (!pnt) return NULL; pnt->vec = isl_vec_cow(pnt->vec); if (!pnt->vec) goto error; if (type == isl_dim_set) pos += isl_space_dim(pnt->dim, isl_dim_param); isl_int_add_ui(pnt->vec->el[1 + pos], pnt->vec->el[1 + pos], val); return pnt; error: isl_point_free(pnt); return NULL; } __isl_give isl_point *isl_point_sub_ui(__isl_take isl_point *pnt, enum isl_dim_type type, int pos, unsigned val) { if (!pnt || isl_point_is_void(pnt)) return pnt; pnt = isl_point_cow(pnt); if (!pnt) return NULL; pnt->vec = isl_vec_cow(pnt->vec); if (!pnt->vec) goto error; if (type == isl_dim_set) pos += isl_space_dim(pnt->dim, isl_dim_param); isl_int_sub_ui(pnt->vec->el[1 + pos], pnt->vec->el[1 + pos], val); return pnt; error: isl_point_free(pnt); return NULL; } struct isl_foreach_point { struct isl_scan_callback callback; isl_stat (*fn)(__isl_take isl_point *pnt, void *user); void *user; isl_space *dim; }; static isl_stat foreach_point(struct isl_scan_callback *cb, __isl_take isl_vec *sample) { struct isl_foreach_point *fp = (struct isl_foreach_point *)cb; isl_point *pnt; pnt = isl_point_alloc(isl_space_copy(fp->dim), sample); return fp->fn(pnt, fp->user); } isl_stat isl_set_foreach_point(__isl_keep isl_set *set, isl_stat (*fn)(__isl_take isl_point *pnt, void *user), void *user) { struct isl_foreach_point fp = { { &foreach_point }, fn, user }; int i; if (!set) return isl_stat_error; fp.dim = isl_set_get_space(set); if (!fp.dim) return isl_stat_error; set = isl_set_copy(set); set = isl_set_cow(set); set = isl_set_make_disjoint(set); set = isl_set_compute_divs(set); if (!set) goto error; for (i = 0; i < set->n; ++i) if (isl_basic_set_scan(isl_basic_set_copy(set->p[i]), &fp.callback) < 0) goto error; isl_set_free(set); isl_space_free(fp.dim); return isl_stat_ok; error: isl_set_free(set); isl_space_free(fp.dim); return isl_stat_error; } /* Return 1 if "bmap" contains the point "point". * "bmap" is assumed to have known divs. * The point is first extended with the divs and then passed * to basic_map_contains. */ isl_bool isl_basic_map_contains_point(__isl_keep isl_basic_map *bmap, __isl_keep isl_point *point) { int i; struct isl_vec *vec; unsigned dim; isl_bool contains; if (!bmap || !point) return isl_bool_error; isl_assert(bmap->ctx, isl_space_is_equal(bmap->dim, point->dim), return isl_bool_error); if (bmap->n_div == 0) return isl_basic_map_contains(bmap, point->vec); dim = isl_basic_map_total_dim(bmap) - bmap->n_div; vec = isl_vec_alloc(bmap->ctx, 1 + dim + bmap->n_div); if (!vec) return isl_bool_error; isl_seq_cpy(vec->el, point->vec->el, point->vec->size); for (i = 0; i < bmap->n_div; ++i) { isl_seq_inner_product(bmap->div[i] + 1, vec->el, 1 + dim + i, &vec->el[1+dim+i]); isl_int_fdiv_q(vec->el[1+dim+i], vec->el[1+dim+i], bmap->div[i][0]); } contains = isl_basic_map_contains(bmap, vec); isl_vec_free(vec); return contains; } int isl_map_contains_point(__isl_keep isl_map *map, __isl_keep isl_point *point) { int i; int found = 0; if (!map || !point) return -1; map = isl_map_copy(map); map = isl_map_compute_divs(map); if (!map) return -1; for (i = 0; i < map->n; ++i) { found = isl_basic_map_contains_point(map->p[i], point); if (found < 0) goto error; if (found) break; } isl_map_free(map); return found; error: isl_map_free(map); return -1; } isl_bool isl_set_contains_point(__isl_keep isl_set *set, __isl_keep isl_point *point) { return isl_map_contains_point((isl_map *)set, point); } __isl_give isl_basic_set *isl_basic_set_from_point(__isl_take isl_point *pnt) { isl_basic_set *bset; isl_basic_set *model; if (!pnt) return NULL; model = isl_basic_set_empty(isl_space_copy(pnt->dim)); bset = isl_basic_set_from_vec(isl_vec_copy(pnt->vec)); bset = isl_basic_set_from_underlying_set(bset, model); isl_point_free(pnt); return bset; } __isl_give isl_set *isl_set_from_point(__isl_take isl_point *pnt) { isl_basic_set *bset; bset = isl_basic_set_from_point(pnt); return isl_set_from_basic_set(bset); } /* Construct a union set, containing the single element "pnt". * If "pnt" is void, then return an empty union set. */ __isl_give isl_union_set *isl_union_set_from_point(__isl_take isl_point *pnt) { if (!pnt) return NULL; if (isl_point_is_void(pnt)) { isl_space *space; space = isl_point_get_space(pnt); isl_point_free(pnt); return isl_union_set_empty(space); } return isl_union_set_from_set(isl_set_from_point(pnt)); } __isl_give isl_basic_set *isl_basic_set_box_from_points( __isl_take isl_point *pnt1, __isl_take isl_point *pnt2) { isl_basic_set *bset; unsigned total; int i; int k; isl_int t; isl_int_init(t); if (!pnt1 || !pnt2) goto error; isl_assert(pnt1->dim->ctx, isl_space_is_equal(pnt1->dim, pnt2->dim), goto error); if (isl_point_is_void(pnt1) && isl_point_is_void(pnt2)) { isl_space *dim = isl_space_copy(pnt1->dim); isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return isl_basic_set_empty(dim); } if (isl_point_is_void(pnt1)) { isl_point_free(pnt1); isl_int_clear(t); return isl_basic_set_from_point(pnt2); } if (isl_point_is_void(pnt2)) { isl_point_free(pnt2); isl_int_clear(t); return isl_basic_set_from_point(pnt1); } total = isl_space_dim(pnt1->dim, isl_dim_all); bset = isl_basic_set_alloc_space(isl_space_copy(pnt1->dim), 0, 0, 2 * total); for (i = 0; i < total; ++i) { isl_int_mul(t, pnt1->vec->el[1 + i], pnt2->vec->el[0]); isl_int_submul(t, pnt2->vec->el[1 + i], pnt1->vec->el[0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k] + 1, total); if (isl_int_is_pos(t)) { isl_int_set_si(bset->ineq[k][1 + i], -1); isl_int_set(bset->ineq[k][0], pnt1->vec->el[1 + i]); } else { isl_int_set_si(bset->ineq[k][1 + i], 1); isl_int_neg(bset->ineq[k][0], pnt1->vec->el[1 + i]); } isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt1->vec->el[0]); k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_clr(bset->ineq[k] + 1, total); if (isl_int_is_pos(t)) { isl_int_set_si(bset->ineq[k][1 + i], 1); isl_int_neg(bset->ineq[k][0], pnt2->vec->el[1 + i]); } else { isl_int_set_si(bset->ineq[k][1 + i], -1); isl_int_set(bset->ineq[k][0], pnt2->vec->el[1 + i]); } isl_int_fdiv_q(bset->ineq[k][0], bset->ineq[k][0], pnt2->vec->el[0]); } bset = isl_basic_set_finalize(bset); isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return bset; error: isl_point_free(pnt1); isl_point_free(pnt2); isl_int_clear(t); return NULL; } __isl_give isl_set *isl_set_box_from_points(__isl_take isl_point *pnt1, __isl_take isl_point *pnt2) { isl_basic_set *bset; bset = isl_basic_set_box_from_points(pnt1, pnt2); return isl_set_from_basic_set(bset); } /* Print the coordinate at position "pos" of the point "pnt". */ static __isl_give isl_printer *print_coordinate(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { isl_point *pnt = data->user; p = isl_printer_print_isl_int(p, pnt->vec->el[1 + pos]); if (!isl_int_is_one(pnt->vec->el[0])) { p = isl_printer_print_str(p, "/"); p = isl_printer_print_isl_int(p, pnt->vec->el[0]); } return p; } __isl_give isl_printer *isl_printer_print_point( __isl_take isl_printer *p, __isl_keep isl_point *pnt) { struct isl_print_space_data data = { 0 }; int i; unsigned nparam; unsigned dim; if (!pnt) return p; if (isl_point_is_void(pnt)) { p = isl_printer_print_str(p, "void"); return p; } nparam = isl_space_dim(pnt->dim, isl_dim_param); dim = isl_space_dim(pnt->dim, isl_dim_set); if (nparam > 0) { p = isl_printer_print_str(p, "["); for (i = 0; i < nparam; ++i) { const char *name; if (i) p = isl_printer_print_str(p, ", "); name = isl_space_get_dim_name(pnt->dim, isl_dim_param, i); if (name) { p = isl_printer_print_str(p, name); p = isl_printer_print_str(p, " = "); } p = isl_printer_print_isl_int(p, pnt->vec->el[1 + i]); if (!isl_int_is_one(pnt->vec->el[0])) { p = isl_printer_print_str(p, "/"); p = isl_printer_print_isl_int(p, pnt->vec->el[0]); } } p = isl_printer_print_str(p, "]"); p = isl_printer_print_str(p, " -> "); } data.print_dim = &print_coordinate; data.user = pnt; p = isl_printer_print_str(p, "{ "); p = isl_print_space(pnt->dim, p, 0, &data); p = isl_printer_print_str(p, " }"); return p; } isl-0.16.1/isl_id_to_ast_expr.c0000664000175000017500000000037012645737060013341 00000000000000#include #include #define isl_id_is_equal(id1,id2) id1 == id2 #define KEY_BASE id #define KEY_EQUAL isl_id_is_equal #define VAL_BASE ast_expr #define VAL_EQUAL isl_ast_expr_is_equal #include isl-0.16.1/isl_tab_pip.c0000664000175000017500000046541612645737061011775 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include "isl_map_private.h" #include #include "isl_tab.h" #include "isl_sample.h" #include #include #include #include #include /* * The implementation of parametric integer linear programming in this file * was inspired by the paper "Parametric Integer Programming" and the * report "Solving systems of affine (in)equalities" by Paul Feautrier * (and others). * * The strategy used for obtaining a feasible solution is different * from the one used in isl_tab.c. In particular, in isl_tab.c, * upon finding a constraint that is not yet satisfied, we pivot * in a row that increases the constant term of the row holding the * constraint, making sure the sample solution remains feasible * for all the constraints it already satisfied. * Here, we always pivot in the row holding the constraint, * choosing a column that induces the lexicographically smallest * increment to the sample solution. * * By starting out from a sample value that is lexicographically * smaller than any integer point in the problem space, the first * feasible integer sample point we find will also be the lexicographically * smallest. If all variables can be assumed to be non-negative, * then the initial sample value may be chosen equal to zero. * However, we will not make this assumption. Instead, we apply * the "big parameter" trick. Any variable x is then not directly * used in the tableau, but instead it is represented by another * variable x' = M + x, where M is an arbitrarily large (positive) * value. x' is therefore always non-negative, whatever the value of x. * Taking as initial sample value x' = 0 corresponds to x = -M, * which is always smaller than any possible value of x. * * The big parameter trick is used in the main tableau and * also in the context tableau if isl_context_lex is used. * In this case, each tableaus has its own big parameter. * Before doing any real work, we check if all the parameters * happen to be non-negative. If so, we drop the column corresponding * to M from the initial context tableau. * If isl_context_gbr is used, then the big parameter trick is only * used in the main tableau. */ struct isl_context; struct isl_context_op { /* detect nonnegative parameters in context and mark them in tab */ struct isl_tab *(*detect_nonnegative_parameters)( struct isl_context *context, struct isl_tab *tab); /* return temporary reference to basic set representation of context */ struct isl_basic_set *(*peek_basic_set)(struct isl_context *context); /* return temporary reference to tableau representation of context */ struct isl_tab *(*peek_tab)(struct isl_context *context); /* add equality; check is 1 if eq may not be valid; * update is 1 if we may want to call ineq_sign on context later. */ void (*add_eq)(struct isl_context *context, isl_int *eq, int check, int update); /* add inequality; check is 1 if ineq may not be valid; * update is 1 if we may want to call ineq_sign on context later. */ void (*add_ineq)(struct isl_context *context, isl_int *ineq, int check, int update); /* check sign of ineq based on previous information. * strict is 1 if saturation should be treated as a positive sign. */ enum isl_tab_row_sign (*ineq_sign)(struct isl_context *context, isl_int *ineq, int strict); /* check if inequality maintains feasibility */ int (*test_ineq)(struct isl_context *context, isl_int *ineq); /* return index of a div that corresponds to "div" */ int (*get_div)(struct isl_context *context, struct isl_tab *tab, struct isl_vec *div); /* add div "div" to context and return non-negativity */ int (*add_div)(struct isl_context *context, struct isl_vec *div); int (*detect_equalities)(struct isl_context *context, struct isl_tab *tab); /* return row index of "best" split */ int (*best_split)(struct isl_context *context, struct isl_tab *tab); /* check if context has already been determined to be empty */ int (*is_empty)(struct isl_context *context); /* check if context is still usable */ int (*is_ok)(struct isl_context *context); /* save a copy/snapshot of context */ void *(*save)(struct isl_context *context); /* restore saved context */ void (*restore)(struct isl_context *context, void *); /* discard saved context */ void (*discard)(void *); /* invalidate context */ void (*invalidate)(struct isl_context *context); /* free context */ void (*free)(struct isl_context *context); }; struct isl_context { struct isl_context_op *op; }; struct isl_context_lex { struct isl_context context; struct isl_tab *tab; }; /* A stack (linked list) of solutions of subtrees of the search space. * * "M" describes the solution in terms of the dimensions of "dom". * The number of columns of "M" is one more than the total number * of dimensions of "dom". * * If "M" is NULL, then there is no solution on "dom". */ struct isl_partial_sol { int level; struct isl_basic_set *dom; struct isl_mat *M; struct isl_partial_sol *next; }; struct isl_sol; struct isl_sol_callback { struct isl_tab_callback callback; struct isl_sol *sol; }; /* isl_sol is an interface for constructing a solution to * a parametric integer linear programming problem. * Every time the algorithm reaches a state where a solution * can be read off from the tableau (including cases where the tableau * is empty), the function "add" is called on the isl_sol passed * to find_solutions_main. * * The context tableau is owned by isl_sol and is updated incrementally. * * There are currently two implementations of this interface, * isl_sol_map, which simply collects the solutions in an isl_map * and (optionally) the parts of the context where there is no solution * in an isl_set, and * isl_sol_for, which calls a user-defined function for each part of * the solution. */ struct isl_sol { int error; int rational; int level; int max; int n_out; struct isl_context *context; struct isl_partial_sol *partial; void (*add)(struct isl_sol *sol, struct isl_basic_set *dom, struct isl_mat *M); void (*add_empty)(struct isl_sol *sol, struct isl_basic_set *bset); void (*free)(struct isl_sol *sol); struct isl_sol_callback dec_level; }; static void sol_free(struct isl_sol *sol) { struct isl_partial_sol *partial, *next; if (!sol) return; for (partial = sol->partial; partial; partial = next) { next = partial->next; isl_basic_set_free(partial->dom); isl_mat_free(partial->M); free(partial); } sol->free(sol); } /* Push a partial solution represented by a domain and mapping M * onto the stack of partial solutions. */ static void sol_push_sol(struct isl_sol *sol, struct isl_basic_set *dom, struct isl_mat *M) { struct isl_partial_sol *partial; if (sol->error || !dom) goto error; partial = isl_alloc_type(dom->ctx, struct isl_partial_sol); if (!partial) goto error; partial->level = sol->level; partial->dom = dom; partial->M = M; partial->next = sol->partial; sol->partial = partial; return; error: isl_basic_set_free(dom); isl_mat_free(M); sol->error = 1; } /* Pop one partial solution from the partial solution stack and * pass it on to sol->add or sol->add_empty. */ static void sol_pop_one(struct isl_sol *sol) { struct isl_partial_sol *partial; partial = sol->partial; sol->partial = partial->next; if (partial->M) sol->add(sol, partial->dom, partial->M); else sol->add_empty(sol, partial->dom); free(partial); } /* Return a fresh copy of the domain represented by the context tableau. */ static struct isl_basic_set *sol_domain(struct isl_sol *sol) { struct isl_basic_set *bset; if (sol->error) return NULL; bset = isl_basic_set_dup(sol->context->op->peek_basic_set(sol->context)); bset = isl_basic_set_update_from_tab(bset, sol->context->op->peek_tab(sol->context)); return bset; } /* Check whether two partial solutions have the same mapping, where n_div * is the number of divs that the two partial solutions have in common. */ static int same_solution(struct isl_partial_sol *s1, struct isl_partial_sol *s2, unsigned n_div) { int i; unsigned dim; if (!s1->M != !s2->M) return 0; if (!s1->M) return 1; dim = isl_basic_set_total_dim(s1->dom) - s1->dom->n_div; for (i = 0; i < s1->M->n_row; ++i) { if (isl_seq_first_non_zero(s1->M->row[i]+1+dim+n_div, s1->M->n_col-1-dim-n_div) != -1) return 0; if (isl_seq_first_non_zero(s2->M->row[i]+1+dim+n_div, s2->M->n_col-1-dim-n_div) != -1) return 0; if (!isl_seq_eq(s1->M->row[i], s2->M->row[i], 1+dim+n_div)) return 0; } return 1; } /* Pop all solutions from the partial solution stack that were pushed onto * the stack at levels that are deeper than the current level. * If the two topmost elements on the stack have the same level * and represent the same solution, then their domains are combined. * This combined domain is the same as the current context domain * as sol_pop is called each time we move back to a higher level. */ static void sol_pop(struct isl_sol *sol) { struct isl_partial_sol *partial; unsigned n_div; if (sol->error) return; if (sol->level == 0) { for (partial = sol->partial; partial; partial = sol->partial) sol_pop_one(sol); return; } partial = sol->partial; if (!partial) return; if (partial->level <= sol->level) return; if (partial->next && partial->next->level == partial->level) { n_div = isl_basic_set_dim( sol->context->op->peek_basic_set(sol->context), isl_dim_div); if (!same_solution(partial, partial->next, n_div)) { sol_pop_one(sol); sol_pop_one(sol); } else { struct isl_basic_set *bset; isl_mat *M; unsigned n; n = isl_basic_set_dim(partial->next->dom, isl_dim_div); n -= n_div; bset = sol_domain(sol); isl_basic_set_free(partial->next->dom); partial->next->dom = bset; M = partial->next->M; if (M) { M = isl_mat_drop_cols(M, M->n_col - n, n); partial->next->M = M; if (!M) goto error; } partial->next->level = sol->level; if (!bset) goto error; sol->partial = partial->next; isl_basic_set_free(partial->dom); isl_mat_free(partial->M); free(partial); } } else sol_pop_one(sol); if (0) error: sol->error = 1; } static void sol_dec_level(struct isl_sol *sol) { if (sol->error) return; sol->level--; sol_pop(sol); } static int sol_dec_level_wrap(struct isl_tab_callback *cb) { struct isl_sol_callback *callback = (struct isl_sol_callback *)cb; sol_dec_level(callback->sol); return callback->sol->error ? -1 : 0; } /* Move down to next level and push callback onto context tableau * to decrease the level again when it gets rolled back across * the current state. That is, dec_level will be called with * the context tableau in the same state as it is when inc_level * is called. */ static void sol_inc_level(struct isl_sol *sol) { struct isl_tab *tab; if (sol->error) return; sol->level++; tab = sol->context->op->peek_tab(sol->context); if (isl_tab_push_callback(tab, &sol->dec_level.callback) < 0) sol->error = 1; } static void scale_rows(struct isl_mat *mat, isl_int m, int n_row) { int i; if (isl_int_is_one(m)) return; for (i = 0; i < n_row; ++i) isl_seq_scale(mat->row[i], mat->row[i], m, mat->n_col); } /* Add the solution identified by the tableau and the context tableau. * * The layout of the variables is as follows. * tab->n_var is equal to the total number of variables in the input * map (including divs that were copied from the context) * + the number of extra divs constructed * Of these, the first tab->n_param and the last tab->n_div variables * correspond to the variables in the context, i.e., * tab->n_param + tab->n_div = context_tab->n_var * tab->n_param is equal to the number of parameters and input * dimensions in the input map * tab->n_div is equal to the number of divs in the context * * If there is no solution, then call add_empty with a basic set * that corresponds to the context tableau. (If add_empty is NULL, * then do nothing). * * If there is a solution, then first construct a matrix that maps * all dimensions of the context to the output variables, i.e., * the output dimensions in the input map. * The divs in the input map (if any) that do not correspond to any * div in the context do not appear in the solution. * The algorithm will make sure that they have an integer value, * but these values themselves are of no interest. * We have to be careful not to drop or rearrange any divs in the * context because that would change the meaning of the matrix. * * To extract the value of the output variables, it should be noted * that we always use a big parameter M in the main tableau and so * the variable stored in this tableau is not an output variable x itself, but * x' = M + x (in case of minimization) * or * x' = M - x (in case of maximization) * If x' appears in a column, then its optimal value is zero, * which means that the optimal value of x is an unbounded number * (-M for minimization and M for maximization). * We currently assume that the output dimensions in the original map * are bounded, so this cannot occur. * Similarly, when x' appears in a row, then the coefficient of M in that * row is necessarily 1. * If the row in the tableau represents * d x' = c + d M + e(y) * then, in case of minimization, the corresponding row in the matrix * will be * a c + a e(y) * with a d = m, the (updated) common denominator of the matrix. * In case of maximization, the row will be * -a c - a e(y) */ static void sol_add(struct isl_sol *sol, struct isl_tab *tab) { struct isl_basic_set *bset = NULL; struct isl_mat *mat = NULL; unsigned off; int row; isl_int m; if (sol->error || !tab) goto error; if (tab->empty && !sol->add_empty) return; if (sol->context->op->is_empty(sol->context)) return; bset = sol_domain(sol); if (tab->empty) { sol_push_sol(sol, bset, NULL); return; } off = 2 + tab->M; mat = isl_mat_alloc(tab->mat->ctx, 1 + sol->n_out, 1 + tab->n_param + tab->n_div); if (!mat) goto error; isl_int_init(m); isl_seq_clr(mat->row[0] + 1, mat->n_col - 1); isl_int_set_si(mat->row[0][0], 1); for (row = 0; row < sol->n_out; ++row) { int i = tab->n_param + row; int r, j; isl_seq_clr(mat->row[1 + row], mat->n_col); if (!tab->var[i].is_row) { if (tab->M) isl_die(mat->ctx, isl_error_invalid, "unbounded optimum", goto error2); continue; } r = tab->var[i].index; if (tab->M && isl_int_ne(tab->mat->row[r][2], tab->mat->row[r][0])) isl_die(mat->ctx, isl_error_invalid, "unbounded optimum", goto error2); isl_int_gcd(m, mat->row[0][0], tab->mat->row[r][0]); isl_int_divexact(m, tab->mat->row[r][0], m); scale_rows(mat, m, 1 + row); isl_int_divexact(m, mat->row[0][0], tab->mat->row[r][0]); isl_int_mul(mat->row[1 + row][0], m, tab->mat->row[r][1]); for (j = 0; j < tab->n_param; ++j) { int col; if (tab->var[j].is_row) continue; col = tab->var[j].index; isl_int_mul(mat->row[1 + row][1 + j], m, tab->mat->row[r][off + col]); } for (j = 0; j < tab->n_div; ++j) { int col; if (tab->var[tab->n_var - tab->n_div+j].is_row) continue; col = tab->var[tab->n_var - tab->n_div+j].index; isl_int_mul(mat->row[1 + row][1 + tab->n_param + j], m, tab->mat->row[r][off + col]); } if (sol->max) isl_seq_neg(mat->row[1 + row], mat->row[1 + row], mat->n_col); } isl_int_clear(m); sol_push_sol(sol, bset, mat); return; error2: isl_int_clear(m); error: isl_basic_set_free(bset); isl_mat_free(mat); sol->error = 1; } struct isl_sol_map { struct isl_sol sol; struct isl_map *map; struct isl_set *empty; }; static void sol_map_free(struct isl_sol_map *sol_map) { if (!sol_map) return; if (sol_map->sol.context) sol_map->sol.context->op->free(sol_map->sol.context); isl_map_free(sol_map->map); isl_set_free(sol_map->empty); free(sol_map); } static void sol_map_free_wrap(struct isl_sol *sol) { sol_map_free((struct isl_sol_map *)sol); } /* This function is called for parts of the context where there is * no solution, with "bset" corresponding to the context tableau. * Simply add the basic set to the set "empty". */ static void sol_map_add_empty(struct isl_sol_map *sol, struct isl_basic_set *bset) { if (!bset || !sol->empty) goto error; sol->empty = isl_set_grow(sol->empty, 1); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); sol->empty = isl_set_add_basic_set(sol->empty, isl_basic_set_copy(bset)); if (!sol->empty) goto error; isl_basic_set_free(bset); return; error: isl_basic_set_free(bset); sol->sol.error = 1; } static void sol_map_add_empty_wrap(struct isl_sol *sol, struct isl_basic_set *bset) { sol_map_add_empty((struct isl_sol_map *)sol, bset); } /* Given a basic map "dom" that represents the context and an affine * matrix "M" that maps the dimensions of the context to the * output variables, construct a basic map with the same parameters * and divs as the context, the dimensions of the context as input * dimensions and a number of output dimensions that is equal to * the number of output dimensions in the input map. * * The constraints and divs of the context are simply copied * from "dom". For each row * x = c + e(y) * an equality * c + e(y) - d x = 0 * is added, with d the common denominator of M. */ static void sol_map_add(struct isl_sol_map *sol, struct isl_basic_set *dom, struct isl_mat *M) { int i; struct isl_basic_map *bmap = NULL; unsigned n_eq; unsigned n_ineq; unsigned nparam; unsigned total; unsigned n_div; unsigned n_out; if (sol->sol.error || !dom || !M) goto error; n_out = sol->sol.n_out; n_eq = dom->n_eq + n_out; n_ineq = dom->n_ineq; n_div = dom->n_div; nparam = isl_basic_set_total_dim(dom) - n_div; total = isl_map_dim(sol->map, isl_dim_all); bmap = isl_basic_map_alloc_space(isl_map_get_space(sol->map), n_div, n_eq, 2 * n_div + n_ineq); if (!bmap) goto error; if (sol->sol.rational) ISL_F_SET(bmap, ISL_BASIC_MAP_RATIONAL); for (i = 0; i < dom->n_div; ++i) { int k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->div[k], dom->div[i], 1 + 1 + nparam); isl_seq_clr(bmap->div[k] + 1 + 1 + nparam, total - nparam); isl_seq_cpy(bmap->div[k] + 1 + 1 + total, dom->div[i] + 1 + 1 + nparam, i); } for (i = 0; i < dom->n_eq; ++i) { int k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], dom->eq[i], 1 + nparam); isl_seq_clr(bmap->eq[k] + 1 + nparam, total - nparam); isl_seq_cpy(bmap->eq[k] + 1 + total, dom->eq[i] + 1 + nparam, n_div); } for (i = 0; i < dom->n_ineq; ++i) { int k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->ineq[k], dom->ineq[i], 1 + nparam); isl_seq_clr(bmap->ineq[k] + 1 + nparam, total - nparam); isl_seq_cpy(bmap->ineq[k] + 1 + total, dom->ineq[i] + 1 + nparam, n_div); } for (i = 0; i < M->n_row - 1; ++i) { int k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], M->row[1 + i], 1 + nparam); isl_seq_clr(bmap->eq[k] + 1 + nparam, n_out); isl_int_neg(bmap->eq[k][1 + nparam + i], M->row[0][0]); isl_seq_cpy(bmap->eq[k] + 1 + nparam + n_out, M->row[1 + i] + 1 + nparam, n_div); } bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); sol->map = isl_map_grow(sol->map, 1); sol->map = isl_map_add_basic_map(sol->map, bmap); isl_basic_set_free(dom); isl_mat_free(M); if (!sol->map) sol->sol.error = 1; return; error: isl_basic_set_free(dom); isl_mat_free(M); isl_basic_map_free(bmap); sol->sol.error = 1; } static void sol_map_add_wrap(struct isl_sol *sol, struct isl_basic_set *dom, struct isl_mat *M) { sol_map_add((struct isl_sol_map *)sol, dom, M); } /* Store the "parametric constant" of row "row" of tableau "tab" in "line", * i.e., the constant term and the coefficients of all variables that * appear in the context tableau. * Note that the coefficient of the big parameter M is NOT copied. * The context tableau may not have a big parameter and even when it * does, it is a different big parameter. */ static void get_row_parameter_line(struct isl_tab *tab, int row, isl_int *line) { int i; unsigned off = 2 + tab->M; isl_int_set(line[0], tab->mat->row[row][1]); for (i = 0; i < tab->n_param; ++i) { if (tab->var[i].is_row) isl_int_set_si(line[1 + i], 0); else { int col = tab->var[i].index; isl_int_set(line[1 + i], tab->mat->row[row][off + col]); } } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) isl_int_set_si(line[1 + tab->n_param + i], 0); else { int col = tab->var[tab->n_var - tab->n_div + i].index; isl_int_set(line[1 + tab->n_param + i], tab->mat->row[row][off + col]); } } } /* Check if rows "row1" and "row2" have identical "parametric constants", * as explained above. * In this case, we also insist that the coefficients of the big parameter * be the same as the values of the constants will only be the same * if these coefficients are also the same. */ static int identical_parameter_line(struct isl_tab *tab, int row1, int row2) { int i; unsigned off = 2 + tab->M; if (isl_int_ne(tab->mat->row[row1][1], tab->mat->row[row2][1])) return 0; if (tab->M && isl_int_ne(tab->mat->row[row1][2], tab->mat->row[row2][2])) return 0; for (i = 0; i < tab->n_param + tab->n_div; ++i) { int pos = i < tab->n_param ? i : tab->n_var - tab->n_div + i - tab->n_param; int col; if (tab->var[pos].is_row) continue; col = tab->var[pos].index; if (isl_int_ne(tab->mat->row[row1][off + col], tab->mat->row[row2][off + col])) return 0; } return 1; } /* Return an inequality that expresses that the "parametric constant" * should be non-negative. * This function is only called when the coefficient of the big parameter * is equal to zero. */ static struct isl_vec *get_row_parameter_ineq(struct isl_tab *tab, int row) { struct isl_vec *ineq; ineq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_param + tab->n_div); if (!ineq) return NULL; get_row_parameter_line(tab, row, ineq->el); if (ineq) ineq = isl_vec_normalize(ineq); return ineq; } /* Normalize a div expression of the form * * [(g*f(x) + c)/(g * m)] * * with c the constant term and f(x) the remaining coefficients, to * * [(f(x) + [c/g])/m] */ static void normalize_div(__isl_keep isl_vec *div) { isl_ctx *ctx = isl_vec_get_ctx(div); int len = div->size - 2; isl_seq_gcd(div->el + 2, len, &ctx->normalize_gcd); isl_int_gcd(ctx->normalize_gcd, ctx->normalize_gcd, div->el[0]); if (isl_int_is_one(ctx->normalize_gcd)) return; isl_int_divexact(div->el[0], div->el[0], ctx->normalize_gcd); isl_int_fdiv_q(div->el[1], div->el[1], ctx->normalize_gcd); isl_seq_scale_down(div->el + 2, div->el + 2, ctx->normalize_gcd, len); } /* Return a integer division for use in a parametric cut based on the given row. * In particular, let the parametric constant of the row be * * \sum_i a_i y_i * * where y_0 = 1, but none of the y_i corresponds to the big parameter M. * The div returned is equal to * * floor(\sum_i {-a_i} y_i) = floor((\sum_i (-a_i mod d) y_i)/d) */ static struct isl_vec *get_row_parameter_div(struct isl_tab *tab, int row) { struct isl_vec *div; div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); if (!div) return NULL; isl_int_set(div->el[0], tab->mat->row[row][0]); get_row_parameter_line(tab, row, div->el + 1); isl_seq_neg(div->el + 1, div->el + 1, div->size - 1); normalize_div(div); isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); return div; } /* Return a integer division for use in transferring an integrality constraint * to the context. * In particular, let the parametric constant of the row be * * \sum_i a_i y_i * * where y_0 = 1, but none of the y_i corresponds to the big parameter M. * The the returned div is equal to * * floor(\sum_i {a_i} y_i) = floor((\sum_i (a_i mod d) y_i)/d) */ static struct isl_vec *get_row_split_div(struct isl_tab *tab, int row) { struct isl_vec *div; div = isl_vec_alloc(tab->mat->ctx, 1 + 1 + tab->n_param + tab->n_div); if (!div) return NULL; isl_int_set(div->el[0], tab->mat->row[row][0]); get_row_parameter_line(tab, row, div->el + 1); normalize_div(div); isl_seq_fdiv_r(div->el + 1, div->el + 1, div->el[0], div->size - 1); return div; } /* Construct and return an inequality that expresses an upper bound * on the given div. * In particular, if the div is given by * * d = floor(e/m) * * then the inequality expresses * * m d <= e */ static struct isl_vec *ineq_for_div(struct isl_basic_set *bset, unsigned div) { unsigned total; unsigned div_pos; struct isl_vec *ineq; if (!bset) return NULL; total = isl_basic_set_total_dim(bset); div_pos = 1 + total - bset->n_div + div; ineq = isl_vec_alloc(bset->ctx, 1 + total); if (!ineq) return NULL; isl_seq_cpy(ineq->el, bset->div[div] + 1, 1 + total); isl_int_neg(ineq->el[div_pos], bset->div[div][0]); return ineq; } /* Given a row in the tableau and a div that was created * using get_row_split_div and that has been constrained to equality, i.e., * * d = floor(\sum_i {a_i} y_i) = \sum_i {a_i} y_i * * replace the expression "\sum_i {a_i} y_i" in the row by d, * i.e., we subtract "\sum_i {a_i} y_i" and add 1 d. * The coefficients of the non-parameters in the tableau have been * verified to be integral. We can therefore simply replace coefficient b * by floor(b). For the coefficients of the parameters we have * floor(a_i) = a_i - {a_i}, while for the other coefficients, we have * floor(b) = b. */ static struct isl_tab *set_row_cst_to_div(struct isl_tab *tab, int row, int div) { isl_seq_fdiv_q(tab->mat->row[row] + 1, tab->mat->row[row] + 1, tab->mat->row[row][0], 1 + tab->M + tab->n_col); isl_int_set_si(tab->mat->row[row][0], 1); if (tab->var[tab->n_var - tab->n_div + div].is_row) { int drow = tab->var[tab->n_var - tab->n_div + div].index; isl_assert(tab->mat->ctx, isl_int_is_one(tab->mat->row[drow][0]), goto error); isl_seq_combine(tab->mat->row[row] + 1, tab->mat->ctx->one, tab->mat->row[row] + 1, tab->mat->ctx->one, tab->mat->row[drow] + 1, 1 + tab->M + tab->n_col); } else { int dcol = tab->var[tab->n_var - tab->n_div + div].index; isl_int_add_ui(tab->mat->row[row][2 + tab->M + dcol], tab->mat->row[row][2 + tab->M + dcol], 1); } return tab; error: isl_tab_free(tab); return NULL; } /* Check if the (parametric) constant of the given row is obviously * negative, meaning that we don't need to consult the context tableau. * If there is a big parameter and its coefficient is non-zero, * then this coefficient determines the outcome. * Otherwise, we check whether the constant is negative and * all non-zero coefficients of parameters are negative and * belong to non-negative parameters. */ static int is_obviously_neg(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 0; if (isl_int_is_neg(tab->mat->row[row][2])) return 1; } if (isl_int_is_nonneg(tab->mat->row[row][1])) return 0; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[i].is_nonneg) return 0; if (isl_int_is_pos(tab->mat->row[row][off + col])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) return 0; if (isl_int_is_pos(tab->mat->row[row][off + col])) return 0; } return 1; } /* Check if the (parametric) constant of the given row is obviously * non-negative, meaning that we don't need to consult the context tableau. * If there is a big parameter and its coefficient is non-zero, * then this coefficient determines the outcome. * Otherwise, we check whether the constant is non-negative and * all non-zero coefficients of parameters are positive and * belong to non-negative parameters. */ static int is_obviously_nonneg(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; if (tab->M) { if (isl_int_is_pos(tab->mat->row[row][2])) return 1; if (isl_int_is_neg(tab->mat->row[row][2])) return 0; } if (isl_int_is_neg(tab->mat->row[row][1])) return 0; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[i].is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][off + col])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (!tab->var[tab->n_var - tab->n_div + i].is_nonneg) return 0; if (isl_int_is_neg(tab->mat->row[row][off + col])) return 0; } return 1; } /* Given a row r and two columns, return the column that would * lead to the lexicographically smallest increment in the sample * solution when leaving the basis in favor of the row. * Pivoting with column c will increment the sample value by a non-negative * constant times a_{V,c}/a_{r,c}, with a_{V,c} the elements of column c * corresponding to the non-parametric variables. * If variable v appears in a column c_v, the a_{v,c} = 1 iff c = c_v, * with all other entries in this virtual row equal to zero. * If variable v appears in a row, then a_{v,c} is the element in column c * of that row. * * Let v be the first variable with a_{v,c1}/a_{r,c1} != a_{v,c2}/a_{r,c2}. * Then if a_{v,c1}/a_{r,c1} < a_{v,c2}/a_{r,c2}, i.e., * a_{v,c2} a_{r,c1} - a_{v,c1} a_{r,c2} > 0, c1 results in the minimal * increment. Otherwise, it's c2. */ static int lexmin_col_pair(struct isl_tab *tab, int row, int col1, int col2, isl_int tmp) { int i; isl_int *tr; tr = tab->mat->row[row] + 2 + tab->M; for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { int s1, s2; isl_int *r; if (!tab->var[i].is_row) { if (tab->var[i].index == col1) return col2; if (tab->var[i].index == col2) return col1; continue; } if (tab->var[i].index == row) continue; r = tab->mat->row[tab->var[i].index] + 2 + tab->M; s1 = isl_int_sgn(r[col1]); s2 = isl_int_sgn(r[col2]); if (s1 == 0 && s2 == 0) continue; if (s1 < s2) return col1; if (s2 < s1) return col2; isl_int_mul(tmp, r[col2], tr[col1]); isl_int_submul(tmp, r[col1], tr[col2]); if (isl_int_is_pos(tmp)) return col1; if (isl_int_is_neg(tmp)) return col2; } return -1; } /* Given a row in the tableau, find and return the column that would * result in the lexicographically smallest, but positive, increment * in the sample point. * If there is no such column, then return tab->n_col. * If anything goes wrong, return -1. */ static int lexmin_pivot_col(struct isl_tab *tab, int row) { int j; int col = tab->n_col; isl_int *tr; isl_int tmp; tr = tab->mat->row[row] + 2 + tab->M; isl_int_init(tmp); for (j = tab->n_dead; j < tab->n_col; ++j) { if (tab->col_var[j] >= 0 && (tab->col_var[j] < tab->n_param || tab->col_var[j] >= tab->n_var - tab->n_div)) continue; if (!isl_int_is_pos(tr[j])) continue; if (col == tab->n_col) col = j; else col = lexmin_col_pair(tab, row, col, j, tmp); isl_assert(tab->mat->ctx, col >= 0, goto error); } isl_int_clear(tmp); return col; error: isl_int_clear(tmp); return -1; } /* Return the first known violated constraint, i.e., a non-negative * constraint that currently has an either obviously negative value * or a previously determined to be negative value. * * If any constraint has a negative coefficient for the big parameter, * if any, then we return one of these first. */ static int first_neg(struct isl_tab *tab) { int row; if (tab->M) for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (!isl_int_is_neg(tab->mat->row[row][2])) continue; if (tab->row_sign) tab->row_sign[row] = isl_tab_row_neg; return row; } for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign) { if (tab->row_sign[row] == 0 && is_obviously_neg(tab, row)) tab->row_sign[row] = isl_tab_row_neg; if (tab->row_sign[row] != isl_tab_row_neg) continue; } else if (!is_obviously_neg(tab, row)) continue; return row; } return -1; } /* Check whether the invariant that all columns are lexico-positive * is satisfied. This function is not called from the current code * but is useful during debugging. */ static void check_lexpos(struct isl_tab *tab) __attribute__ ((unused)); static void check_lexpos(struct isl_tab *tab) { unsigned off = 2 + tab->M; int col; int var; int row; for (col = tab->n_dead; col < tab->n_col; ++col) { if (tab->col_var[col] >= 0 && (tab->col_var[col] < tab->n_param || tab->col_var[col] >= tab->n_var - tab->n_div)) continue; for (var = tab->n_param; var < tab->n_var - tab->n_div; ++var) { if (!tab->var[var].is_row) { if (tab->var[var].index == col) break; else continue; } row = tab->var[var].index; if (isl_int_is_zero(tab->mat->row[row][off + col])) continue; if (isl_int_is_pos(tab->mat->row[row][off + col])) break; fprintf(stderr, "lexneg column %d (row %d)\n", col, row); } if (var >= tab->n_var - tab->n_div) fprintf(stderr, "zero column %d\n", col); } } /* Report to the caller that the given constraint is part of an encountered * conflict. */ static int report_conflicting_constraint(struct isl_tab *tab, int con) { return tab->conflict(con, tab->conflict_user); } /* Given a conflicting row in the tableau, report all constraints * involved in the row to the caller. That is, the row itself * (if it represents a constraint) and all constraint columns with * non-zero (and therefore negative) coefficients. */ static int report_conflict(struct isl_tab *tab, int row) { int j; isl_int *tr; if (!tab->conflict) return 0; if (tab->row_var[row] < 0 && report_conflicting_constraint(tab, ~tab->row_var[row]) < 0) return -1; tr = tab->mat->row[row] + 2 + tab->M; for (j = tab->n_dead; j < tab->n_col; ++j) { if (tab->col_var[j] >= 0 && (tab->col_var[j] < tab->n_param || tab->col_var[j] >= tab->n_var - tab->n_div)) continue; if (!isl_int_is_neg(tr[j])) continue; if (tab->col_var[j] < 0 && report_conflicting_constraint(tab, ~tab->col_var[j]) < 0) return -1; } return 0; } /* Resolve all known or obviously violated constraints through pivoting. * In particular, as long as we can find any violated constraint, we * look for a pivoting column that would result in the lexicographically * smallest increment in the sample point. If there is no such column * then the tableau is infeasible. */ static int restore_lexmin(struct isl_tab *tab) WARN_UNUSED; static int restore_lexmin(struct isl_tab *tab) { int row, col; if (!tab) return -1; if (tab->empty) return 0; while ((row = first_neg(tab)) != -1) { col = lexmin_pivot_col(tab, row); if (col >= tab->n_col) { if (report_conflict(tab, row) < 0) return -1; if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } if (col < 0) return -1; if (isl_tab_pivot(tab, row, col) < 0) return -1; } return 0; } /* Given a row that represents an equality, look for an appropriate * pivoting column. * In particular, if there are any non-zero coefficients among * the non-parameter variables, then we take the last of these * variables. Eliminating this variable in terms of the other * variables and/or parameters does not influence the property * that all column in the initial tableau are lexicographically * positive. The row corresponding to the eliminated variable * will only have non-zero entries below the diagonal of the * initial tableau. That is, we transform * * I I * 1 into a * I I * * If there is no such non-parameter variable, then we are dealing with * pure parameter equality and we pick any parameter with coefficient 1 or -1 * for elimination. This will ensure that the eliminated parameter * always has an integer value whenever all the other parameters are integral. * If there is no such parameter then we return -1. */ static int last_var_col_or_int_par_col(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; int i; for (i = tab->n_var - tab->n_div - 1; i >= 0 && i >= tab->n_param; --i) { int col; if (tab->var[i].is_row) continue; col = tab->var[i].index; if (col <= tab->n_dead) continue; if (!isl_int_is_zero(tab->mat->row[row][off + col])) return col; } for (i = tab->n_dead; i < tab->n_col; ++i) { if (isl_int_is_one(tab->mat->row[row][off + i])) return i; if (isl_int_is_negone(tab->mat->row[row][off + i])) return i; } return -1; } /* Add an equality that is known to be valid to the tableau. * We first check if we can eliminate a variable or a parameter. * If not, we add the equality as two inequalities. * In this case, the equality was a pure parameter equality and there * is no need to resolve any constraint violations. */ static struct isl_tab *add_lexmin_valid_eq(struct isl_tab *tab, isl_int *eq) { int i; int r; if (!tab) return NULL; r = isl_tab_add_row(tab, eq); if (r < 0) goto error; r = tab->con[r].index; i = last_var_col_or_int_par_col(tab, r); if (i < 0) { tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) goto error; isl_seq_neg(eq, eq, 1 + tab->n_var); r = isl_tab_add_row(tab, eq); if (r < 0) goto error; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) goto error; } else { if (isl_tab_pivot(tab, r, i) < 0) goto error; if (isl_tab_kill_col(tab, i) < 0) goto error; tab->n_eq++; } return tab; error: isl_tab_free(tab); return NULL; } /* Check if the given row is a pure constant. */ static int is_constant(struct isl_tab *tab, int row) { unsigned off = 2 + tab->M; return isl_seq_first_non_zero(tab->mat->row[row] + off + tab->n_dead, tab->n_col - tab->n_dead) == -1; } /* Add an equality that may or may not be valid to the tableau. * If the resulting row is a pure constant, then it must be zero. * Otherwise, the resulting tableau is empty. * * If the row is not a pure constant, then we add two inequalities, * each time checking that they can be satisfied. * In the end we try to use one of the two constraints to eliminate * a column. */ static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) WARN_UNUSED; static int add_lexmin_eq(struct isl_tab *tab, isl_int *eq) { int r1, r2; int row; struct isl_tab_undo *snap; if (!tab) return -1; snap = isl_tab_snap(tab); r1 = isl_tab_add_row(tab, eq); if (r1 < 0) return -1; tab->con[r1].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r1]) < 0) return -1; row = tab->con[r1].index; if (is_constant(tab, row)) { if (!isl_int_is_zero(tab->mat->row[row][1]) || (tab->M && !isl_int_is_zero(tab->mat->row[row][2]))) { if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } if (isl_tab_rollback(tab, snap) < 0) return -1; return 0; } if (restore_lexmin(tab) < 0) return -1; if (tab->empty) return 0; isl_seq_neg(eq, eq, 1 + tab->n_var); r2 = isl_tab_add_row(tab, eq); if (r2 < 0) return -1; tab->con[r2].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r2]) < 0) return -1; if (restore_lexmin(tab) < 0) return -1; if (tab->empty) return 0; if (!tab->con[r1].is_row) { if (isl_tab_kill_col(tab, tab->con[r1].index) < 0) return -1; } else if (!tab->con[r2].is_row) { if (isl_tab_kill_col(tab, tab->con[r2].index) < 0) return -1; } if (tab->bmap) { tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; isl_seq_neg(eq, eq, 1 + tab->n_var); tab->bmap = isl_basic_map_add_ineq(tab->bmap, eq); isl_seq_neg(eq, eq, 1 + tab->n_var); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) return -1; if (!tab->bmap) return -1; } return 0; } /* Add an inequality to the tableau, resolving violations using * restore_lexmin. */ static struct isl_tab *add_lexmin_ineq(struct isl_tab *tab, isl_int *ineq) { int r; if (!tab) return NULL; if (tab->bmap) { tab->bmap = isl_basic_map_add_ineq(tab->bmap, ineq); if (isl_tab_push(tab, isl_tab_undo_bmap_ineq) < 0) goto error; if (!tab->bmap) goto error; } r = isl_tab_add_row(tab, ineq); if (r < 0) goto error; tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) goto error; if (isl_tab_row_is_redundant(tab, tab->con[r].index)) { if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) goto error; return tab; } if (restore_lexmin(tab) < 0) goto error; if (!tab->empty && tab->con[r].is_row && isl_tab_row_is_redundant(tab, tab->con[r].index)) if (isl_tab_mark_redundant(tab, tab->con[r].index) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } /* Check if the coefficients of the parameters are all integral. */ static int integer_parameter(struct isl_tab *tab, int row) { int i; int col; unsigned off = 2 + tab->M; for (i = 0; i < tab->n_param; ++i) { /* Eliminated parameter */ if (tab->var[i].is_row) continue; col = tab->var[i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], tab->mat->row[row][0])) return 0; } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; if (!isl_int_is_divisible_by(tab->mat->row[row][off + col], tab->mat->row[row][0])) return 0; } return 1; } /* Check if the coefficients of the non-parameter variables are all integral. */ static int integer_variable(struct isl_tab *tab, int row) { int i; unsigned off = 2 + tab->M; for (i = tab->n_dead; i < tab->n_col; ++i) { if (tab->col_var[i] >= 0 && (tab->col_var[i] < tab->n_param || tab->col_var[i] >= tab->n_var - tab->n_div)) continue; if (!isl_int_is_divisible_by(tab->mat->row[row][off + i], tab->mat->row[row][0])) return 0; } return 1; } /* Check if the constant term is integral. */ static int integer_constant(struct isl_tab *tab, int row) { return isl_int_is_divisible_by(tab->mat->row[row][1], tab->mat->row[row][0]); } #define I_CST 1 << 0 #define I_PAR 1 << 1 #define I_VAR 1 << 2 /* Check for next (non-parameter) variable after "var" (first if var == -1) * that is non-integer and therefore requires a cut and return * the index of the variable. * For parametric tableaus, there are three parts in a row, * the constant, the coefficients of the parameters and the rest. * For each part, we check whether the coefficients in that part * are all integral and if so, set the corresponding flag in *f. * If the constant and the parameter part are integral, then the * current sample value is integral and no cut is required * (irrespective of whether the variable part is integral). */ static int next_non_integer_var(struct isl_tab *tab, int var, int *f) { var = var < 0 ? tab->n_param : var + 1; for (; var < tab->n_var - tab->n_div; ++var) { int flags = 0; int row; if (!tab->var[var].is_row) continue; row = tab->var[var].index; if (integer_constant(tab, row)) ISL_FL_SET(flags, I_CST); if (integer_parameter(tab, row)) ISL_FL_SET(flags, I_PAR); if (ISL_FL_ISSET(flags, I_CST) && ISL_FL_ISSET(flags, I_PAR)) continue; if (integer_variable(tab, row)) ISL_FL_SET(flags, I_VAR); *f = flags; return var; } return -1; } /* Check for first (non-parameter) variable that is non-integer and * therefore requires a cut and return the corresponding row. * For parametric tableaus, there are three parts in a row, * the constant, the coefficients of the parameters and the rest. * For each part, we check whether the coefficients in that part * are all integral and if so, set the corresponding flag in *f. * If the constant and the parameter part are integral, then the * current sample value is integral and no cut is required * (irrespective of whether the variable part is integral). */ static int first_non_integer_row(struct isl_tab *tab, int *f) { int var = next_non_integer_var(tab, -1, f); return var < 0 ? -1 : tab->var[var].index; } /* Add a (non-parametric) cut to cut away the non-integral sample * value of the given row. * * If the row is given by * * m r = f + \sum_i a_i y_i * * then the cut is * * c = - {-f/m} + \sum_i {a_i/m} y_i >= 0 * * The big parameter, if any, is ignored, since it is assumed to be big * enough to be divisible by any integer. * If the tableau is actually a parametric tableau, then this function * is only called when all coefficients of the parameters are integral. * The cut therefore has zero coefficients for the parameters. * * The current value is known to be negative, so row_sign, if it * exists, is set accordingly. * * Return the row of the cut or -1. */ static int add_cut(struct isl_tab *tab, int row) { int i; int r; isl_int *r_row; unsigned off = 2 + tab->M; if (isl_tab_extend_cons(tab, 1) < 0) return -1; r = isl_tab_allocate_con(tab); if (r < 0) return -1; r_row = tab->mat->row[tab->con[r].index]; isl_int_set(r_row[0], tab->mat->row[row][0]); isl_int_neg(r_row[1], tab->mat->row[row][1]); isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); isl_int_neg(r_row[1], r_row[1]); if (tab->M) isl_int_set_si(r_row[2], 0); for (i = 0; i < tab->n_col; ++i) isl_int_fdiv_r(r_row[off + i], tab->mat->row[row][off + i], tab->mat->row[row][0]); tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) return -1; if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_neg; return tab->con[r].index; } #define CUT_ALL 1 #define CUT_ONE 0 /* Given a non-parametric tableau, add cuts until an integer * sample point is obtained or until the tableau is determined * to be integer infeasible. * As long as there is any non-integer value in the sample point, * we add appropriate cuts, if possible, for each of these * non-integer values and then resolve the violated * cut constraints using restore_lexmin. * If one of the corresponding rows is equal to an integral * combination of variables/constraints plus a non-integral constant, * then there is no way to obtain an integer point and we return * a tableau that is marked empty. * The parameter cutting_strategy controls the strategy used when adding cuts * to remove non-integer points. CUT_ALL adds all possible cuts * before continuing the search. CUT_ONE adds only one cut at a time. */ static struct isl_tab *cut_to_integer_lexmin(struct isl_tab *tab, int cutting_strategy) { int var; int row; int flags; if (!tab) return NULL; if (tab->empty) return tab; while ((var = next_non_integer_var(tab, -1, &flags)) != -1) { do { if (ISL_FL_ISSET(flags, I_VAR)) { if (isl_tab_mark_empty(tab) < 0) goto error; return tab; } row = tab->var[var].index; row = add_cut(tab, row); if (row < 0) goto error; if (cutting_strategy == CUT_ONE) break; } while ((var = next_non_integer_var(tab, var, &flags)) != -1); if (restore_lexmin(tab) < 0) goto error; if (tab->empty) break; } return tab; error: isl_tab_free(tab); return NULL; } /* Check whether all the currently active samples also satisfy the inequality * "ineq" (treated as an equality if eq is set). * Remove those samples that do not. */ static struct isl_tab *check_samples(struct isl_tab *tab, isl_int *ineq, int eq) { int i; isl_int v; if (!tab) return NULL; isl_assert(tab->mat->ctx, tab->bmap, goto error); isl_assert(tab->mat->ctx, tab->samples, goto error); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); isl_int_init(v); for (i = tab->n_outside; i < tab->n_sample; ++i) { int sgn; isl_seq_inner_product(ineq, tab->samples->row[i], 1 + tab->n_var, &v); sgn = isl_int_sgn(v); if (eq ? (sgn == 0) : (sgn >= 0)) continue; tab = isl_tab_drop_sample(tab, i); if (!tab) break; } isl_int_clear(v); return tab; error: isl_tab_free(tab); return NULL; } /* Check whether the sample value of the tableau is finite, * i.e., either the tableau does not use a big parameter, or * all values of the variables are equal to the big parameter plus * some constant. This constant is the actual sample value. */ static int sample_is_finite(struct isl_tab *tab) { int i; if (!tab->M) return 1; for (i = 0; i < tab->n_var; ++i) { int row; if (!tab->var[i].is_row) return 0; row = tab->var[i].index; if (isl_int_ne(tab->mat->row[row][0], tab->mat->row[row][2])) return 0; } return 1; } /* Check if the context tableau of sol has any integer points. * Leave tab in empty state if no integer point can be found. * If an integer point can be found and if moreover it is finite, * then it is added to the list of sample values. * * This function is only called when none of the currently active sample * values satisfies the most recently added constraint. */ static struct isl_tab *check_integer_feasible(struct isl_tab *tab) { struct isl_tab_undo *snap; if (!tab) return NULL; snap = isl_tab_snap(tab); if (isl_tab_push_basis(tab) < 0) goto error; tab = cut_to_integer_lexmin(tab, CUT_ALL); if (!tab) goto error; if (!tab->empty && sample_is_finite(tab)) { struct isl_vec *sample; sample = isl_tab_get_sample_value(tab); if (isl_tab_add_sample(tab, sample) < 0) goto error; } if (!tab->empty && isl_tab_rollback(tab, snap) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } /* Check if any of the currently active sample values satisfies * the inequality "ineq" (an equality if eq is set). */ static int tab_has_valid_sample(struct isl_tab *tab, isl_int *ineq, int eq) { int i; isl_int v; if (!tab) return -1; isl_assert(tab->mat->ctx, tab->bmap, return -1); isl_assert(tab->mat->ctx, tab->samples, return -1); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return -1); isl_int_init(v); for (i = tab->n_outside; i < tab->n_sample; ++i) { int sgn; isl_seq_inner_product(ineq, tab->samples->row[i], 1 + tab->n_var, &v); sgn = isl_int_sgn(v); if (eq ? (sgn == 0) : (sgn >= 0)) break; } isl_int_clear(v); return i < tab->n_sample; } /* Add a div specified by "div" to the tableau "tab" and return * 1 if the div is obviously non-negative. */ static int context_tab_add_div(struct isl_tab *tab, struct isl_vec *div, int (*add_ineq)(void *user, isl_int *), void *user) { int i; int r; struct isl_mat *samples; int nonneg; r = isl_tab_add_div(tab, div, add_ineq, user); if (r < 0) return -1; nonneg = tab->var[r].is_nonneg; tab->var[r].frozen = 1; samples = isl_mat_extend(tab->samples, tab->n_sample, 1 + tab->n_var); tab->samples = samples; if (!samples) return -1; for (i = tab->n_outside; i < samples->n_row; ++i) { isl_seq_inner_product(div->el + 1, samples->row[i], div->size - 1, &samples->row[i][samples->n_col - 1]); isl_int_fdiv_q(samples->row[i][samples->n_col - 1], samples->row[i][samples->n_col - 1], div->el[0]); } return nonneg; } /* Add a div specified by "div" to both the main tableau and * the context tableau. In case of the main tableau, we only * need to add an extra div. In the context tableau, we also * need to express the meaning of the div. * Return the index of the div or -1 if anything went wrong. */ static int add_div(struct isl_tab *tab, struct isl_context *context, struct isl_vec *div) { int r; int nonneg; if ((nonneg = context->op->add_div(context, div)) < 0) goto error; if (!context->op->is_ok(context)) goto error; if (isl_tab_extend_vars(tab, 1) < 0) goto error; r = isl_tab_allocate_var(tab); if (r < 0) goto error; if (nonneg) tab->var[r].is_nonneg = 1; tab->var[r].frozen = 1; tab->n_div++; return tab->n_div - 1; error: context->op->invalidate(context); return -1; } static int find_div(struct isl_tab *tab, isl_int *div, isl_int denom) { int i; unsigned total = isl_basic_map_total_dim(tab->bmap); for (i = 0; i < tab->bmap->n_div; ++i) { if (isl_int_ne(tab->bmap->div[i][0], denom)) continue; if (!isl_seq_eq(tab->bmap->div[i] + 1, div, 1 + total)) continue; return i; } return -1; } /* Return the index of a div that corresponds to "div". * We first check if we already have such a div and if not, we create one. */ static int get_div(struct isl_tab *tab, struct isl_context *context, struct isl_vec *div) { int d; struct isl_tab *context_tab = context->op->peek_tab(context); if (!context_tab) return -1; d = find_div(context_tab, div->el + 1, div->el[0]); if (d != -1) return d; return add_div(tab, context, div); } /* Add a parametric cut to cut away the non-integral sample value * of the give row. * Let a_i be the coefficients of the constant term and the parameters * and let b_i be the coefficients of the variables or constraints * in basis of the tableau. * Let q be the div q = floor(\sum_i {-a_i} y_i). * * The cut is expressed as * * c = \sum_i -{-a_i} y_i + \sum_i {b_i} x_i + q >= 0 * * If q did not already exist in the context tableau, then it is added first. * If q is in a column of the main tableau then the "+ q" can be accomplished * by setting the corresponding entry to the denominator of the constraint. * If q happens to be in a row of the main tableau, then the corresponding * row needs to be added instead (taking care of the denominators). * Note that this is very unlikely, but perhaps not entirely impossible. * * The current value of the cut is known to be negative (or at least * non-positive), so row_sign is set accordingly. * * Return the row of the cut or -1. */ static int add_parametric_cut(struct isl_tab *tab, int row, struct isl_context *context) { struct isl_vec *div; int d; int i; int r; isl_int *r_row; int col; int n; unsigned off = 2 + tab->M; if (!context) return -1; div = get_row_parameter_div(tab, row); if (!div) return -1; n = tab->n_div; d = context->op->get_div(context, tab, div); isl_vec_free(div); if (d < 0) return -1; if (isl_tab_extend_cons(tab, 1) < 0) return -1; r = isl_tab_allocate_con(tab); if (r < 0) return -1; r_row = tab->mat->row[tab->con[r].index]; isl_int_set(r_row[0], tab->mat->row[row][0]); isl_int_neg(r_row[1], tab->mat->row[row][1]); isl_int_fdiv_r(r_row[1], r_row[1], tab->mat->row[row][0]); isl_int_neg(r_row[1], r_row[1]); if (tab->M) isl_int_set_si(r_row[2], 0); for (i = 0; i < tab->n_param; ++i) { if (tab->var[i].is_row) continue; col = tab->var[i].index; isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); isl_int_fdiv_r(r_row[off + col], r_row[off + col], tab->mat->row[row][0]); isl_int_neg(r_row[off + col], r_row[off + col]); } for (i = 0; i < tab->n_div; ++i) { if (tab->var[tab->n_var - tab->n_div + i].is_row) continue; col = tab->var[tab->n_var - tab->n_div + i].index; isl_int_neg(r_row[off + col], tab->mat->row[row][off + col]); isl_int_fdiv_r(r_row[off + col], r_row[off + col], tab->mat->row[row][0]); isl_int_neg(r_row[off + col], r_row[off + col]); } for (i = 0; i < tab->n_col; ++i) { if (tab->col_var[i] >= 0 && (tab->col_var[i] < tab->n_param || tab->col_var[i] >= tab->n_var - tab->n_div)) continue; isl_int_fdiv_r(r_row[off + i], tab->mat->row[row][off + i], tab->mat->row[row][0]); } if (tab->var[tab->n_var - tab->n_div + d].is_row) { isl_int gcd; int d_row = tab->var[tab->n_var - tab->n_div + d].index; isl_int_init(gcd); isl_int_gcd(gcd, tab->mat->row[d_row][0], r_row[0]); isl_int_divexact(r_row[0], r_row[0], gcd); isl_int_divexact(gcd, tab->mat->row[d_row][0], gcd); isl_seq_combine(r_row + 1, gcd, r_row + 1, r_row[0], tab->mat->row[d_row] + 1, off - 1 + tab->n_col); isl_int_mul(r_row[0], r_row[0], tab->mat->row[d_row][0]); isl_int_clear(gcd); } else { col = tab->var[tab->n_var - tab->n_div + d].index; isl_int_set(r_row[off + col], tab->mat->row[row][0]); } tab->con[r].is_nonneg = 1; if (isl_tab_push_var(tab, isl_tab_undo_nonneg, &tab->con[r]) < 0) return -1; if (tab->row_sign) tab->row_sign[tab->con[r].index] = isl_tab_row_neg; row = tab->con[r].index; if (d >= n && context->op->detect_equalities(context, tab) < 0) return -1; return row; } /* Construct a tableau for bmap that can be used for computing * the lexicographic minimum (or maximum) of bmap. * If not NULL, then dom is the domain where the minimum * should be computed. In this case, we set up a parametric * tableau with row signs (initialized to "unknown"). * If M is set, then the tableau will use a big parameter. * If max is set, then a maximum should be computed instead of a minimum. * This means that for each variable x, the tableau will contain the variable * x' = M - x, rather than x' = M + x. This in turn means that the coefficient * of the variables in all constraints are negated prior to adding them * to the tableau. */ static struct isl_tab *tab_for_lexmin(struct isl_basic_map *bmap, struct isl_basic_set *dom, unsigned M, int max) { int i; struct isl_tab *tab; unsigned n_var; unsigned o_var; tab = isl_tab_alloc(bmap->ctx, 2 * bmap->n_eq + bmap->n_ineq + 1, isl_basic_map_total_dim(bmap), M); if (!tab) return NULL; tab->rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); if (dom) { tab->n_param = isl_basic_set_total_dim(dom) - dom->n_div; tab->n_div = dom->n_div; tab->row_sign = isl_calloc_array(bmap->ctx, enum isl_tab_row_sign, tab->mat->n_row); if (tab->mat->n_row && !tab->row_sign) goto error; } if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) { if (isl_tab_mark_empty(tab) < 0) goto error; return tab; } for (i = tab->n_param; i < tab->n_var - tab->n_div; ++i) { tab->var[i].is_nonneg = 1; tab->var[i].frozen = 1; } o_var = 1 + tab->n_param; n_var = tab->n_var - tab->n_param - tab->n_div; for (i = 0; i < bmap->n_eq; ++i) { if (max) isl_seq_neg(bmap->eq[i] + o_var, bmap->eq[i] + o_var, n_var); tab = add_lexmin_valid_eq(tab, bmap->eq[i]); if (max) isl_seq_neg(bmap->eq[i] + o_var, bmap->eq[i] + o_var, n_var); if (!tab || tab->empty) return tab; } if (bmap->n_eq && restore_lexmin(tab) < 0) goto error; for (i = 0; i < bmap->n_ineq; ++i) { if (max) isl_seq_neg(bmap->ineq[i] + o_var, bmap->ineq[i] + o_var, n_var); tab = add_lexmin_ineq(tab, bmap->ineq[i]); if (max) isl_seq_neg(bmap->ineq[i] + o_var, bmap->ineq[i] + o_var, n_var); if (!tab || tab->empty) return tab; } return tab; error: isl_tab_free(tab); return NULL; } /* Given a main tableau where more than one row requires a split, * determine and return the "best" row to split on. * * Given two rows in the main tableau, if the inequality corresponding * to the first row is redundant with respect to that of the second row * in the current tableau, then it is better to split on the second row, * since in the positive part, both row will be positive. * (In the negative part a pivot will have to be performed and just about * anything can happen to the sign of the other row.) * * As a simple heuristic, we therefore select the row that makes the most * of the other rows redundant. * * Perhaps it would also be useful to look at the number of constraints * that conflict with any given constraint. * * best is the best row so far (-1 when we have not found any row yet). * best_r is the number of other rows made redundant by row best. * When best is still -1, bset_r is meaningless, but it is initialized * to some arbitrary value (0) anyway. Without this redundant initialization * valgrind may warn about uninitialized memory accesses when isl * is compiled with some versions of gcc. */ static int best_split(struct isl_tab *tab, struct isl_tab *context_tab) { struct isl_tab_undo *snap; int split; int row; int best = -1; int best_r = 0; if (isl_tab_extend_cons(context_tab, 2) < 0) return -1; snap = isl_tab_snap(context_tab); for (split = tab->n_redundant; split < tab->n_row; ++split) { struct isl_tab_undo *snap2; struct isl_vec *ineq = NULL; int r = 0; int ok; if (!isl_tab_var_from_row(tab, split)->is_nonneg) continue; if (tab->row_sign[split] != isl_tab_row_any) continue; ineq = get_row_parameter_ineq(tab, split); if (!ineq) return -1; ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; isl_vec_free(ineq); if (!ok) return -1; snap2 = isl_tab_snap(context_tab); for (row = tab->n_redundant; row < tab->n_row; ++row) { struct isl_tab_var *var; if (row == split) continue; if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign[row] != isl_tab_row_any) continue; ineq = get_row_parameter_ineq(tab, row); if (!ineq) return -1; ok = isl_tab_add_ineq(context_tab, ineq->el) >= 0; isl_vec_free(ineq); if (!ok) return -1; var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) r++; if (isl_tab_rollback(context_tab, snap2) < 0) return -1; } if (best == -1 || r > best_r) { best = split; best_r = r; } if (isl_tab_rollback(context_tab, snap) < 0) return -1; } return best; } static struct isl_basic_set *context_lex_peek_basic_set( struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; if (!clex->tab) return NULL; return isl_tab_peek_bset(clex->tab); } static struct isl_tab *context_lex_peek_tab(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; return clex->tab; } static void context_lex_add_eq(struct isl_context *context, isl_int *eq, int check, int update) { struct isl_context_lex *clex = (struct isl_context_lex *)context; if (isl_tab_extend_cons(clex->tab, 2) < 0) goto error; if (add_lexmin_eq(clex->tab, eq) < 0) goto error; if (check) { int v = tab_has_valid_sample(clex->tab, eq, 1); if (v < 0) goto error; if (!v) clex->tab = check_integer_feasible(clex->tab); } if (update) clex->tab = check_samples(clex->tab, eq, 1); return; error: isl_tab_free(clex->tab); clex->tab = NULL; } static void context_lex_add_ineq(struct isl_context *context, isl_int *ineq, int check, int update) { struct isl_context_lex *clex = (struct isl_context_lex *)context; if (isl_tab_extend_cons(clex->tab, 1) < 0) goto error; clex->tab = add_lexmin_ineq(clex->tab, ineq); if (check) { int v = tab_has_valid_sample(clex->tab, ineq, 0); if (v < 0) goto error; if (!v) clex->tab = check_integer_feasible(clex->tab); } if (update) clex->tab = check_samples(clex->tab, ineq, 0); return; error: isl_tab_free(clex->tab); clex->tab = NULL; } static int context_lex_add_ineq_wrap(void *user, isl_int *ineq) { struct isl_context *context = (struct isl_context *)user; context_lex_add_ineq(context, ineq, 0, 0); return context->op->is_ok(context) ? 0 : -1; } /* Check which signs can be obtained by "ineq" on all the currently * active sample values. See row_sign for more information. */ static enum isl_tab_row_sign tab_ineq_sign(struct isl_tab *tab, isl_int *ineq, int strict) { int i; int sgn; isl_int tmp; enum isl_tab_row_sign res = isl_tab_row_unknown; isl_assert(tab->mat->ctx, tab->samples, return isl_tab_row_unknown); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, return isl_tab_row_unknown); isl_int_init(tmp); for (i = tab->n_outside; i < tab->n_sample; ++i) { isl_seq_inner_product(tab->samples->row[i], ineq, 1 + tab->n_var, &tmp); sgn = isl_int_sgn(tmp); if (sgn > 0 || (sgn == 0 && strict)) { if (res == isl_tab_row_unknown) res = isl_tab_row_pos; if (res == isl_tab_row_neg) res = isl_tab_row_any; } if (sgn < 0) { if (res == isl_tab_row_unknown) res = isl_tab_row_neg; if (res == isl_tab_row_pos) res = isl_tab_row_any; } if (res == isl_tab_row_any) break; } isl_int_clear(tmp); return res; } static enum isl_tab_row_sign context_lex_ineq_sign(struct isl_context *context, isl_int *ineq, int strict) { struct isl_context_lex *clex = (struct isl_context_lex *)context; return tab_ineq_sign(clex->tab, ineq, strict); } /* Check whether "ineq" can be added to the tableau without rendering * it infeasible. */ static int context_lex_test_ineq(struct isl_context *context, isl_int *ineq) { struct isl_context_lex *clex = (struct isl_context_lex *)context; struct isl_tab_undo *snap; int feasible; if (!clex->tab) return -1; if (isl_tab_extend_cons(clex->tab, 1) < 0) return -1; snap = isl_tab_snap(clex->tab); if (isl_tab_push_basis(clex->tab) < 0) return -1; clex->tab = add_lexmin_ineq(clex->tab, ineq); clex->tab = check_integer_feasible(clex->tab); if (!clex->tab) return -1; feasible = !clex->tab->empty; if (isl_tab_rollback(clex->tab, snap) < 0) return -1; return feasible; } static int context_lex_get_div(struct isl_context *context, struct isl_tab *tab, struct isl_vec *div) { return get_div(tab, context, div); } /* Add a div specified by "div" to the context tableau and return * 1 if the div is obviously non-negative. * context_tab_add_div will always return 1, because all variables * in a isl_context_lex tableau are non-negative. * However, if we are using a big parameter in the context, then this only * reflects the non-negativity of the variable used to _encode_ the * div, i.e., div' = M + div, so we can't draw any conclusions. */ static int context_lex_add_div(struct isl_context *context, struct isl_vec *div) { struct isl_context_lex *clex = (struct isl_context_lex *)context; int nonneg; nonneg = context_tab_add_div(clex->tab, div, context_lex_add_ineq_wrap, context); if (nonneg < 0) return -1; if (clex->tab->M) return 0; return nonneg; } static int context_lex_detect_equalities(struct isl_context *context, struct isl_tab *tab) { return 0; } static int context_lex_best_split(struct isl_context *context, struct isl_tab *tab) { struct isl_context_lex *clex = (struct isl_context_lex *)context; struct isl_tab_undo *snap; int r; snap = isl_tab_snap(clex->tab); if (isl_tab_push_basis(clex->tab) < 0) return -1; r = best_split(tab, clex->tab); if (r >= 0 && isl_tab_rollback(clex->tab, snap) < 0) return -1; return r; } static int context_lex_is_empty(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; if (!clex->tab) return -1; return clex->tab->empty; } static void *context_lex_save(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; struct isl_tab_undo *snap; snap = isl_tab_snap(clex->tab); if (isl_tab_push_basis(clex->tab) < 0) return NULL; if (isl_tab_save_samples(clex->tab) < 0) return NULL; return snap; } static void context_lex_restore(struct isl_context *context, void *save) { struct isl_context_lex *clex = (struct isl_context_lex *)context; if (isl_tab_rollback(clex->tab, (struct isl_tab_undo *)save) < 0) { isl_tab_free(clex->tab); clex->tab = NULL; } } static void context_lex_discard(void *save) { } static int context_lex_is_ok(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; return !!clex->tab; } /* For each variable in the context tableau, check if the variable can * only attain non-negative values. If so, mark the parameter as non-negative * in the main tableau. This allows for a more direct identification of some * cases of violated constraints. */ static struct isl_tab *tab_detect_nonnegative_parameters(struct isl_tab *tab, struct isl_tab *context_tab) { int i; struct isl_tab_undo *snap; struct isl_vec *ineq = NULL; struct isl_tab_var *var; int n; if (context_tab->n_var == 0) return tab; ineq = isl_vec_alloc(tab->mat->ctx, 1 + context_tab->n_var); if (!ineq) goto error; if (isl_tab_extend_cons(context_tab, 1) < 0) goto error; snap = isl_tab_snap(context_tab); n = 0; isl_seq_clr(ineq->el, ineq->size); for (i = 0; i < context_tab->n_var; ++i) { isl_int_set_si(ineq->el[1 + i], 1); if (isl_tab_add_ineq(context_tab, ineq->el) < 0) goto error; var = &context_tab->con[context_tab->n_con - 1]; if (!context_tab->empty && !isl_tab_min_at_most_neg_one(context_tab, var)) { int j = i; if (i >= tab->n_param) j = i - tab->n_param + tab->n_var - tab->n_div; tab->var[j].is_nonneg = 1; n++; } isl_int_set_si(ineq->el[1 + i], 0); if (isl_tab_rollback(context_tab, snap) < 0) goto error; } if (context_tab->M && n == context_tab->n_var) { context_tab->mat = isl_mat_drop_cols(context_tab->mat, 2, 1); context_tab->M = 0; } isl_vec_free(ineq); return tab; error: isl_vec_free(ineq); isl_tab_free(tab); return NULL; } static struct isl_tab *context_lex_detect_nonnegative_parameters( struct isl_context *context, struct isl_tab *tab) { struct isl_context_lex *clex = (struct isl_context_lex *)context; struct isl_tab_undo *snap; if (!tab) return NULL; snap = isl_tab_snap(clex->tab); if (isl_tab_push_basis(clex->tab) < 0) goto error; tab = tab_detect_nonnegative_parameters(tab, clex->tab); if (isl_tab_rollback(clex->tab, snap) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } static void context_lex_invalidate(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; isl_tab_free(clex->tab); clex->tab = NULL; } static void context_lex_free(struct isl_context *context) { struct isl_context_lex *clex = (struct isl_context_lex *)context; isl_tab_free(clex->tab); free(clex); } struct isl_context_op isl_context_lex_op = { context_lex_detect_nonnegative_parameters, context_lex_peek_basic_set, context_lex_peek_tab, context_lex_add_eq, context_lex_add_ineq, context_lex_ineq_sign, context_lex_test_ineq, context_lex_get_div, context_lex_add_div, context_lex_detect_equalities, context_lex_best_split, context_lex_is_empty, context_lex_is_ok, context_lex_save, context_lex_restore, context_lex_discard, context_lex_invalidate, context_lex_free, }; static struct isl_tab *context_tab_for_lexmin(struct isl_basic_set *bset) { struct isl_tab *tab; if (!bset) return NULL; tab = tab_for_lexmin((struct isl_basic_map *)bset, NULL, 1, 0); if (!tab) goto error; if (isl_tab_track_bset(tab, bset) < 0) goto error; tab = isl_tab_init_samples(tab); return tab; error: isl_basic_set_free(bset); return NULL; } static struct isl_context *isl_context_lex_alloc(struct isl_basic_set *dom) { struct isl_context_lex *clex; if (!dom) return NULL; clex = isl_alloc_type(dom->ctx, struct isl_context_lex); if (!clex) return NULL; clex->context.op = &isl_context_lex_op; clex->tab = context_tab_for_lexmin(isl_basic_set_copy(dom)); if (restore_lexmin(clex->tab) < 0) goto error; clex->tab = check_integer_feasible(clex->tab); if (!clex->tab) goto error; return &clex->context; error: clex->context.op->free(&clex->context); return NULL; } /* Representation of the context when using generalized basis reduction. * * "shifted" contains the offsets of the unit hypercubes that lie inside the * context. Any rational point in "shifted" can therefore be rounded * up to an integer point in the context. * If the context is constrained by any equality, then "shifted" is not used * as it would be empty. */ struct isl_context_gbr { struct isl_context context; struct isl_tab *tab; struct isl_tab *shifted; struct isl_tab *cone; }; static struct isl_tab *context_gbr_detect_nonnegative_parameters( struct isl_context *context, struct isl_tab *tab) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (!tab) return NULL; return tab_detect_nonnegative_parameters(tab, cgbr->tab); } static struct isl_basic_set *context_gbr_peek_basic_set( struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (!cgbr->tab) return NULL; return isl_tab_peek_bset(cgbr->tab); } static struct isl_tab *context_gbr_peek_tab(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; return cgbr->tab; } /* Initialize the "shifted" tableau of the context, which * contains the constraints of the original tableau shifted * by the sum of all negative coefficients. This ensures * that any rational point in the shifted tableau can * be rounded up to yield an integer point in the original tableau. */ static void gbr_init_shifted(struct isl_context_gbr *cgbr) { int i, j; struct isl_vec *cst; struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab); unsigned dim = isl_basic_set_total_dim(bset); cst = isl_vec_alloc(cgbr->tab->mat->ctx, bset->n_ineq); if (!cst) return; for (i = 0; i < bset->n_ineq; ++i) { isl_int_set(cst->el[i], bset->ineq[i][0]); for (j = 0; j < dim; ++j) { if (!isl_int_is_neg(bset->ineq[i][1 + j])) continue; isl_int_add(bset->ineq[i][0], bset->ineq[i][0], bset->ineq[i][1 + j]); } } cgbr->shifted = isl_tab_from_basic_set(bset, 0); for (i = 0; i < bset->n_ineq; ++i) isl_int_set(bset->ineq[i][0], cst->el[i]); isl_vec_free(cst); } /* Check if the shifted tableau is non-empty, and if so * use the sample point to construct an integer point * of the context tableau. */ static struct isl_vec *gbr_get_shifted_sample(struct isl_context_gbr *cgbr) { struct isl_vec *sample; if (!cgbr->shifted) gbr_init_shifted(cgbr); if (!cgbr->shifted) return NULL; if (cgbr->shifted->empty) return isl_vec_alloc(cgbr->tab->mat->ctx, 0); sample = isl_tab_get_sample_value(cgbr->shifted); sample = isl_vec_ceil(sample); return sample; } static struct isl_basic_set *drop_constant_terms(struct isl_basic_set *bset) { int i; if (!bset) return NULL; for (i = 0; i < bset->n_eq; ++i) isl_int_set_si(bset->eq[i][0], 0); for (i = 0; i < bset->n_ineq; ++i) isl_int_set_si(bset->ineq[i][0], 0); return bset; } static int use_shifted(struct isl_context_gbr *cgbr) { if (!cgbr->tab) return 0; return cgbr->tab->bmap->n_eq == 0 && cgbr->tab->bmap->n_div == 0; } static struct isl_vec *gbr_get_sample(struct isl_context_gbr *cgbr) { struct isl_basic_set *bset; struct isl_basic_set *cone; if (isl_tab_sample_is_integer(cgbr->tab)) return isl_tab_get_sample_value(cgbr->tab); if (use_shifted(cgbr)) { struct isl_vec *sample; sample = gbr_get_shifted_sample(cgbr); if (!sample || sample->size > 0) return sample; isl_vec_free(sample); } if (!cgbr->cone) { bset = isl_tab_peek_bset(cgbr->tab); cgbr->cone = isl_tab_from_recession_cone(bset, 0); if (!cgbr->cone) return NULL; if (isl_tab_track_bset(cgbr->cone, isl_basic_set_copy(bset)) < 0) return NULL; } if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) return NULL; if (cgbr->cone->n_dead == cgbr->cone->n_col) { struct isl_vec *sample; struct isl_tab_undo *snap; if (cgbr->tab->basis) { if (cgbr->tab->basis->n_col != 1 + cgbr->tab->n_var) { isl_mat_free(cgbr->tab->basis); cgbr->tab->basis = NULL; } cgbr->tab->n_zero = 0; cgbr->tab->n_unbounded = 0; } snap = isl_tab_snap(cgbr->tab); sample = isl_tab_sample(cgbr->tab); if (!sample || isl_tab_rollback(cgbr->tab, snap) < 0) { isl_vec_free(sample); return NULL; } return sample; } cone = isl_basic_set_dup(isl_tab_peek_bset(cgbr->cone)); cone = drop_constant_terms(cone); cone = isl_basic_set_update_from_tab(cone, cgbr->cone); cone = isl_basic_set_underlying_set(cone); cone = isl_basic_set_gauss(cone, NULL); bset = isl_basic_set_dup(isl_tab_peek_bset(cgbr->tab)); bset = isl_basic_set_update_from_tab(bset, cgbr->tab); bset = isl_basic_set_underlying_set(bset); bset = isl_basic_set_gauss(bset, NULL); return isl_basic_set_sample_with_cone(bset, cone); } static void check_gbr_integer_feasible(struct isl_context_gbr *cgbr) { struct isl_vec *sample; if (!cgbr->tab) return; if (cgbr->tab->empty) return; sample = gbr_get_sample(cgbr); if (!sample) goto error; if (sample->size == 0) { isl_vec_free(sample); if (isl_tab_mark_empty(cgbr->tab) < 0) goto error; return; } if (isl_tab_add_sample(cgbr->tab, sample) < 0) goto error; return; error: isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static struct isl_tab *add_gbr_eq(struct isl_tab *tab, isl_int *eq) { if (!tab) return NULL; if (isl_tab_extend_cons(tab, 2) < 0) goto error; if (isl_tab_add_eq(tab, eq) < 0) goto error; return tab; error: isl_tab_free(tab); return NULL; } /* Add the equality described by "eq" to the context. * If "check" is set, then we check if the context is empty after * adding the equality. * If "update" is set, then we check if the samples are still valid. * * We do not explicitly add shifted copies of the equality to * cgbr->shifted since they would conflict with each other. * Instead, we directly mark cgbr->shifted empty. */ static void context_gbr_add_eq(struct isl_context *context, isl_int *eq, int check, int update) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; cgbr->tab = add_gbr_eq(cgbr->tab, eq); if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { if (isl_tab_mark_empty(cgbr->shifted) < 0) goto error; } if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { if (isl_tab_extend_cons(cgbr->cone, 2) < 0) goto error; if (isl_tab_add_eq(cgbr->cone, eq) < 0) goto error; } if (check) { int v = tab_has_valid_sample(cgbr->tab, eq, 1); if (v < 0) goto error; if (!v) check_gbr_integer_feasible(cgbr); } if (update) cgbr->tab = check_samples(cgbr->tab, eq, 1); return; error: isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static void add_gbr_ineq(struct isl_context_gbr *cgbr, isl_int *ineq) { if (!cgbr->tab) return; if (isl_tab_extend_cons(cgbr->tab, 1) < 0) goto error; if (isl_tab_add_ineq(cgbr->tab, ineq) < 0) goto error; if (cgbr->shifted && !cgbr->shifted->empty && use_shifted(cgbr)) { int i; unsigned dim; dim = isl_basic_map_total_dim(cgbr->tab->bmap); if (isl_tab_extend_cons(cgbr->shifted, 1) < 0) goto error; for (i = 0; i < dim; ++i) { if (!isl_int_is_neg(ineq[1 + i])) continue; isl_int_add(ineq[0], ineq[0], ineq[1 + i]); } if (isl_tab_add_ineq(cgbr->shifted, ineq) < 0) goto error; for (i = 0; i < dim; ++i) { if (!isl_int_is_neg(ineq[1 + i])) continue; isl_int_sub(ineq[0], ineq[0], ineq[1 + i]); } } if (cgbr->cone && cgbr->cone->n_col != cgbr->cone->n_dead) { if (isl_tab_extend_cons(cgbr->cone, 1) < 0) goto error; if (isl_tab_add_ineq(cgbr->cone, ineq) < 0) goto error; } return; error: isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static void context_gbr_add_ineq(struct isl_context *context, isl_int *ineq, int check, int update) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; add_gbr_ineq(cgbr, ineq); if (!cgbr->tab) return; if (check) { int v = tab_has_valid_sample(cgbr->tab, ineq, 0); if (v < 0) goto error; if (!v) check_gbr_integer_feasible(cgbr); } if (update) cgbr->tab = check_samples(cgbr->tab, ineq, 0); return; error: isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static int context_gbr_add_ineq_wrap(void *user, isl_int *ineq) { struct isl_context *context = (struct isl_context *)user; context_gbr_add_ineq(context, ineq, 0, 0); return context->op->is_ok(context) ? 0 : -1; } static enum isl_tab_row_sign context_gbr_ineq_sign(struct isl_context *context, isl_int *ineq, int strict) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; return tab_ineq_sign(cgbr->tab, ineq, strict); } /* Check whether "ineq" can be added to the tableau without rendering * it infeasible. */ static int context_gbr_test_ineq(struct isl_context *context, isl_int *ineq) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; struct isl_tab_undo *snap; struct isl_tab_undo *shifted_snap = NULL; struct isl_tab_undo *cone_snap = NULL; int feasible; if (!cgbr->tab) return -1; if (isl_tab_extend_cons(cgbr->tab, 1) < 0) return -1; snap = isl_tab_snap(cgbr->tab); if (cgbr->shifted) shifted_snap = isl_tab_snap(cgbr->shifted); if (cgbr->cone) cone_snap = isl_tab_snap(cgbr->cone); add_gbr_ineq(cgbr, ineq); check_gbr_integer_feasible(cgbr); if (!cgbr->tab) return -1; feasible = !cgbr->tab->empty; if (isl_tab_rollback(cgbr->tab, snap) < 0) return -1; if (shifted_snap) { if (isl_tab_rollback(cgbr->shifted, shifted_snap)) return -1; } else if (cgbr->shifted) { isl_tab_free(cgbr->shifted); cgbr->shifted = NULL; } if (cone_snap) { if (isl_tab_rollback(cgbr->cone, cone_snap)) return -1; } else if (cgbr->cone) { isl_tab_free(cgbr->cone); cgbr->cone = NULL; } return feasible; } /* Return the column of the last of the variables associated to * a column that has a non-zero coefficient. * This function is called in a context where only coefficients * of parameters or divs can be non-zero. */ static int last_non_zero_var_col(struct isl_tab *tab, isl_int *p) { int i; int col; if (tab->n_var == 0) return -1; for (i = tab->n_var - 1; i >= 0; --i) { if (i >= tab->n_param && i < tab->n_var - tab->n_div) continue; if (tab->var[i].is_row) continue; col = tab->var[i].index; if (!isl_int_is_zero(p[col])) return col; } return -1; } /* Look through all the recently added equalities in the context * to see if we can propagate any of them to the main tableau. * * The newly added equalities in the context are encoded as pairs * of inequalities starting at inequality "first". * * We tentatively add each of these equalities to the main tableau * and if this happens to result in a row with a final coefficient * that is one or negative one, we use it to kill a column * in the main tableau. Otherwise, we discard the tentatively * added row. * * Return 0 on success and -1 on failure. */ static int propagate_equalities(struct isl_context_gbr *cgbr, struct isl_tab *tab, unsigned first) { int i; struct isl_vec *eq = NULL; eq = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!eq) goto error; if (isl_tab_extend_cons(tab, (cgbr->tab->bmap->n_ineq - first)/2) < 0) goto error; isl_seq_clr(eq->el + 1 + tab->n_param, tab->n_var - tab->n_param - tab->n_div); for (i = first; i < cgbr->tab->bmap->n_ineq; i += 2) { int j; int r; struct isl_tab_undo *snap; snap = isl_tab_snap(tab); isl_seq_cpy(eq->el, cgbr->tab->bmap->ineq[i], 1 + tab->n_param); isl_seq_cpy(eq->el + 1 + tab->n_var - tab->n_div, cgbr->tab->bmap->ineq[i] + 1 + tab->n_param, tab->n_div); r = isl_tab_add_row(tab, eq->el); if (r < 0) goto error; r = tab->con[r].index; j = last_non_zero_var_col(tab, tab->mat->row[r] + 2 + tab->M); if (j < 0 || j < tab->n_dead || !isl_int_is_one(tab->mat->row[r][0]) || (!isl_int_is_one(tab->mat->row[r][2 + tab->M + j]) && !isl_int_is_negone(tab->mat->row[r][2 + tab->M + j]))) { if (isl_tab_rollback(tab, snap) < 0) goto error; continue; } if (isl_tab_pivot(tab, r, j) < 0) goto error; if (isl_tab_kill_col(tab, j) < 0) goto error; if (restore_lexmin(tab) < 0) goto error; } isl_vec_free(eq); return 0; error: isl_vec_free(eq); isl_tab_free(cgbr->tab); cgbr->tab = NULL; return -1; } static int context_gbr_detect_equalities(struct isl_context *context, struct isl_tab *tab) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; unsigned n_ineq; if (!cgbr->cone) { struct isl_basic_set *bset = isl_tab_peek_bset(cgbr->tab); cgbr->cone = isl_tab_from_recession_cone(bset, 0); if (!cgbr->cone) goto error; if (isl_tab_track_bset(cgbr->cone, isl_basic_set_copy(bset)) < 0) goto error; } if (isl_tab_detect_implicit_equalities(cgbr->cone) < 0) goto error; n_ineq = cgbr->tab->bmap->n_ineq; cgbr->tab = isl_tab_detect_equalities(cgbr->tab, cgbr->cone); if (!cgbr->tab) return -1; if (cgbr->tab->bmap->n_ineq > n_ineq && propagate_equalities(cgbr, tab, n_ineq) < 0) return -1; return 0; error: isl_tab_free(cgbr->tab); cgbr->tab = NULL; return -1; } static int context_gbr_get_div(struct isl_context *context, struct isl_tab *tab, struct isl_vec *div) { return get_div(tab, context, div); } static int context_gbr_add_div(struct isl_context *context, struct isl_vec *div) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (cgbr->cone) { int k; if (isl_tab_extend_cons(cgbr->cone, 3) < 0) return -1; if (isl_tab_extend_vars(cgbr->cone, 1) < 0) return -1; if (isl_tab_allocate_var(cgbr->cone) <0) return -1; cgbr->cone->bmap = isl_basic_map_extend_space(cgbr->cone->bmap, isl_basic_map_get_space(cgbr->cone->bmap), 1, 0, 2); k = isl_basic_map_alloc_div(cgbr->cone->bmap); if (k < 0) return -1; isl_seq_cpy(cgbr->cone->bmap->div[k], div->el, div->size); if (isl_tab_push(cgbr->cone, isl_tab_undo_bmap_div) < 0) return -1; } return context_tab_add_div(cgbr->tab, div, context_gbr_add_ineq_wrap, context); } static int context_gbr_best_split(struct isl_context *context, struct isl_tab *tab) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; struct isl_tab_undo *snap; int r; snap = isl_tab_snap(cgbr->tab); r = best_split(tab, cgbr->tab); if (r >= 0 && isl_tab_rollback(cgbr->tab, snap) < 0) return -1; return r; } static int context_gbr_is_empty(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; if (!cgbr->tab) return -1; return cgbr->tab->empty; } struct isl_gbr_tab_undo { struct isl_tab_undo *tab_snap; struct isl_tab_undo *shifted_snap; struct isl_tab_undo *cone_snap; }; static void *context_gbr_save(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; struct isl_gbr_tab_undo *snap; if (!cgbr->tab) return NULL; snap = isl_alloc_type(cgbr->tab->mat->ctx, struct isl_gbr_tab_undo); if (!snap) return NULL; snap->tab_snap = isl_tab_snap(cgbr->tab); if (isl_tab_save_samples(cgbr->tab) < 0) goto error; if (cgbr->shifted) snap->shifted_snap = isl_tab_snap(cgbr->shifted); else snap->shifted_snap = NULL; if (cgbr->cone) snap->cone_snap = isl_tab_snap(cgbr->cone); else snap->cone_snap = NULL; return snap; error: free(snap); return NULL; } static void context_gbr_restore(struct isl_context *context, void *save) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; if (!snap) goto error; if (isl_tab_rollback(cgbr->tab, snap->tab_snap) < 0) goto error; if (snap->shifted_snap) { if (isl_tab_rollback(cgbr->shifted, snap->shifted_snap) < 0) goto error; } else if (cgbr->shifted) { isl_tab_free(cgbr->shifted); cgbr->shifted = NULL; } if (snap->cone_snap) { if (isl_tab_rollback(cgbr->cone, snap->cone_snap) < 0) goto error; } else if (cgbr->cone) { isl_tab_free(cgbr->cone); cgbr->cone = NULL; } free(snap); return; error: free(snap); isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static void context_gbr_discard(void *save) { struct isl_gbr_tab_undo *snap = (struct isl_gbr_tab_undo *)save; free(snap); } static int context_gbr_is_ok(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; return !!cgbr->tab; } static void context_gbr_invalidate(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; isl_tab_free(cgbr->tab); cgbr->tab = NULL; } static void context_gbr_free(struct isl_context *context) { struct isl_context_gbr *cgbr = (struct isl_context_gbr *)context; isl_tab_free(cgbr->tab); isl_tab_free(cgbr->shifted); isl_tab_free(cgbr->cone); free(cgbr); } struct isl_context_op isl_context_gbr_op = { context_gbr_detect_nonnegative_parameters, context_gbr_peek_basic_set, context_gbr_peek_tab, context_gbr_add_eq, context_gbr_add_ineq, context_gbr_ineq_sign, context_gbr_test_ineq, context_gbr_get_div, context_gbr_add_div, context_gbr_detect_equalities, context_gbr_best_split, context_gbr_is_empty, context_gbr_is_ok, context_gbr_save, context_gbr_restore, context_gbr_discard, context_gbr_invalidate, context_gbr_free, }; static struct isl_context *isl_context_gbr_alloc(struct isl_basic_set *dom) { struct isl_context_gbr *cgbr; if (!dom) return NULL; cgbr = isl_calloc_type(dom->ctx, struct isl_context_gbr); if (!cgbr) return NULL; cgbr->context.op = &isl_context_gbr_op; cgbr->shifted = NULL; cgbr->cone = NULL; cgbr->tab = isl_tab_from_basic_set(dom, 1); cgbr->tab = isl_tab_init_samples(cgbr->tab); if (!cgbr->tab) goto error; check_gbr_integer_feasible(cgbr); return &cgbr->context; error: cgbr->context.op->free(&cgbr->context); return NULL; } static struct isl_context *isl_context_alloc(struct isl_basic_set *dom) { if (!dom) return NULL; if (dom->ctx->opt->context == ISL_CONTEXT_LEXMIN) return isl_context_lex_alloc(dom); else return isl_context_gbr_alloc(dom); } /* Construct an isl_sol_map structure for accumulating the solution. * If track_empty is set, then we also keep track of the parts * of the context where there is no solution. * If max is set, then we are solving a maximization, rather than * a minimization problem, which means that the variables in the * tableau have value "M - x" rather than "M + x". */ static struct isl_sol *sol_map_init(struct isl_basic_map *bmap, struct isl_basic_set *dom, int track_empty, int max) { struct isl_sol_map *sol_map = NULL; if (!bmap) goto error; sol_map = isl_calloc_type(bmap->ctx, struct isl_sol_map); if (!sol_map) goto error; sol_map->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); sol_map->sol.dec_level.callback.run = &sol_dec_level_wrap; sol_map->sol.dec_level.sol = &sol_map->sol; sol_map->sol.max = max; sol_map->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out); sol_map->sol.add = &sol_map_add_wrap; sol_map->sol.add_empty = track_empty ? &sol_map_add_empty_wrap : NULL; sol_map->sol.free = &sol_map_free_wrap; sol_map->map = isl_map_alloc_space(isl_basic_map_get_space(bmap), 1, ISL_MAP_DISJOINT); if (!sol_map->map) goto error; sol_map->sol.context = isl_context_alloc(dom); if (!sol_map->sol.context) goto error; if (track_empty) { sol_map->empty = isl_set_alloc_space(isl_basic_set_get_space(dom), 1, ISL_SET_DISJOINT); if (!sol_map->empty) goto error; } isl_basic_set_free(dom); return &sol_map->sol; error: isl_basic_set_free(dom); sol_map_free(sol_map); return NULL; } /* Check whether all coefficients of (non-parameter) variables * are non-positive, meaning that no pivots can be performed on the row. */ static int is_critical(struct isl_tab *tab, int row) { int j; unsigned off = 2 + tab->M; for (j = tab->n_dead; j < tab->n_col; ++j) { if (tab->col_var[j] >= 0 && (tab->col_var[j] < tab->n_param || tab->col_var[j] >= tab->n_var - tab->n_div)) continue; if (isl_int_is_pos(tab->mat->row[row][off + j])) return 0; } return 1; } /* Check whether the inequality represented by vec is strict over the integers, * i.e., there are no integer values satisfying the constraint with * equality. This happens if the gcd of the coefficients is not a divisor * of the constant term. If so, scale the constraint down by the gcd * of the coefficients. */ static int is_strict(struct isl_vec *vec) { isl_int gcd; int strict = 0; isl_int_init(gcd); isl_seq_gcd(vec->el + 1, vec->size - 1, &gcd); if (!isl_int_is_one(gcd)) { strict = !isl_int_is_divisible_by(vec->el[0], gcd); isl_int_fdiv_q(vec->el[0], vec->el[0], gcd); isl_seq_scale_down(vec->el + 1, vec->el + 1, gcd, vec->size-1); } isl_int_clear(gcd); return strict; } /* Determine the sign of the given row of the main tableau. * The result is one of * isl_tab_row_pos: always non-negative; no pivot needed * isl_tab_row_neg: always non-positive; pivot * isl_tab_row_any: can be both positive and negative; split * * We first handle some simple cases * - the row sign may be known already * - the row may be obviously non-negative * - the parametric constant may be equal to that of another row * for which we know the sign. This sign will be either "pos" or * "any". If it had been "neg" then we would have pivoted before. * * If none of these cases hold, we check the value of the row for each * of the currently active samples. Based on the signs of these values * we make an initial determination of the sign of the row. * * all zero -> unk(nown) * all non-negative -> pos * all non-positive -> neg * both negative and positive -> all * * If we end up with "all", we are done. * Otherwise, we perform a check for positive and/or negative * values as follows. * * samples neg unk pos * <0 ? Y N Y N * pos any pos * >0 ? Y N Y N * any neg any neg * * There is no special sign for "zero", because we can usually treat zero * as either non-negative or non-positive, whatever works out best. * However, if the row is "critical", meaning that pivoting is impossible * then we don't want to limp zero with the non-positive case, because * then we we would lose the solution for those values of the parameters * where the value of the row is zero. Instead, we treat 0 as non-negative * ensuring a split if the row can attain both zero and negative values. * The same happens when the original constraint was one that could not * be satisfied with equality by any integer values of the parameters. * In this case, we normalize the constraint, but then a value of zero * for the normalized constraint is actually a positive value for the * original constraint, so again we need to treat zero as non-negative. * In both these cases, we have the following decision tree instead: * * all non-negative -> pos * all negative -> neg * both negative and non-negative -> all * * samples neg pos * <0 ? Y N * any pos * >=0 ? Y N * any neg */ static enum isl_tab_row_sign row_sign(struct isl_tab *tab, struct isl_sol *sol, int row) { struct isl_vec *ineq = NULL; enum isl_tab_row_sign res = isl_tab_row_unknown; int critical; int strict; int row2; if (tab->row_sign[row] != isl_tab_row_unknown) return tab->row_sign[row]; if (is_obviously_nonneg(tab, row)) return isl_tab_row_pos; for (row2 = tab->n_redundant; row2 < tab->n_row; ++row2) { if (tab->row_sign[row2] == isl_tab_row_unknown) continue; if (identical_parameter_line(tab, row, row2)) return tab->row_sign[row2]; } critical = is_critical(tab, row); ineq = get_row_parameter_ineq(tab, row); if (!ineq) goto error; strict = is_strict(ineq); res = sol->context->op->ineq_sign(sol->context, ineq->el, critical || strict); if (res == isl_tab_row_unknown || res == isl_tab_row_pos) { /* test for negative values */ int feasible; isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); feasible = sol->context->op->test_ineq(sol->context, ineq->el); if (feasible < 0) goto error; if (!feasible) res = isl_tab_row_pos; else res = (res == isl_tab_row_unknown) ? isl_tab_row_neg : isl_tab_row_any; if (res == isl_tab_row_neg) { isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); } } if (res == isl_tab_row_neg) { /* test for positive values */ int feasible; if (!critical && !strict) isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); feasible = sol->context->op->test_ineq(sol->context, ineq->el); if (feasible < 0) goto error; if (feasible) res = isl_tab_row_any; } isl_vec_free(ineq); return res; error: isl_vec_free(ineq); return isl_tab_row_unknown; } static void find_solutions(struct isl_sol *sol, struct isl_tab *tab); /* Find solutions for values of the parameters that satisfy the given * inequality. * * We currently take a snapshot of the context tableau that is reset * when we return from this function, while we make a copy of the main * tableau, leaving the original main tableau untouched. * These are fairly arbitrary choices. Making a copy also of the context * tableau would obviate the need to undo any changes made to it later, * while taking a snapshot of the main tableau could reduce memory usage. * If we were to switch to taking a snapshot of the main tableau, * we would have to keep in mind that we need to save the row signs * and that we need to do this before saving the current basis * such that the basis has been restore before we restore the row signs. */ static void find_in_pos(struct isl_sol *sol, struct isl_tab *tab, isl_int *ineq) { void *saved; if (!sol->context) goto error; saved = sol->context->op->save(sol->context); tab = isl_tab_dup(tab); if (!tab) goto error; sol->context->op->add_ineq(sol->context, ineq, 0, 1); find_solutions(sol, tab); if (!sol->error) sol->context->op->restore(sol->context, saved); else sol->context->op->discard(saved); return; error: sol->error = 1; } /* Record the absence of solutions for those values of the parameters * that do not satisfy the given inequality with equality. */ static void no_sol_in_strict(struct isl_sol *sol, struct isl_tab *tab, struct isl_vec *ineq) { int empty; void *saved; if (!sol->context || sol->error) goto error; saved = sol->context->op->save(sol->context); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); sol->context->op->add_ineq(sol->context, ineq->el, 1, 0); if (!sol->context) goto error; empty = tab->empty; tab->empty = 1; sol_add(sol, tab); tab->empty = empty; isl_int_add_ui(ineq->el[0], ineq->el[0], 1); sol->context->op->restore(sol->context, saved); return; error: sol->error = 1; } /* Compute the lexicographic minimum of the set represented by the main * tableau "tab" within the context "sol->context_tab". * On entry the sample value of the main tableau is lexicographically * less than or equal to this lexicographic minimum. * Pivots are performed until a feasible point is found, which is then * necessarily equal to the minimum, or until the tableau is found to * be infeasible. Some pivots may need to be performed for only some * feasible values of the context tableau. If so, the context tableau * is split into a part where the pivot is needed and a part where it is not. * * Whenever we enter the main loop, the main tableau is such that no * "obvious" pivots need to be performed on it, where "obvious" means * that the given row can be seen to be negative without looking at * the context tableau. In particular, for non-parametric problems, * no pivots need to be performed on the main tableau. * The caller of find_solutions is responsible for making this property * hold prior to the first iteration of the loop, while restore_lexmin * is called before every other iteration. * * Inside the main loop, we first examine the signs of the rows of * the main tableau within the context of the context tableau. * If we find a row that is always non-positive for all values of * the parameters satisfying the context tableau and negative for at * least one value of the parameters, we perform the appropriate pivot * and start over. An exception is the case where no pivot can be * performed on the row. In this case, we require that the sign of * the row is negative for all values of the parameters (rather than just * non-positive). This special case is handled inside row_sign, which * will say that the row can have any sign if it determines that it can * attain both negative and zero values. * * If we can't find a row that always requires a pivot, but we can find * one or more rows that require a pivot for some values of the parameters * (i.e., the row can attain both positive and negative signs), then we split * the context tableau into two parts, one where we force the sign to be * non-negative and one where we force is to be negative. * The non-negative part is handled by a recursive call (through find_in_pos). * Upon returning from this call, we continue with the negative part and * perform the required pivot. * * If no such rows can be found, all rows are non-negative and we have * found a (rational) feasible point. If we only wanted a rational point * then we are done. * Otherwise, we check if all values of the sample point of the tableau * are integral for the variables. If so, we have found the minimal * integral point and we are done. * If the sample point is not integral, then we need to make a distinction * based on whether the constant term is non-integral or the coefficients * of the parameters. Furthermore, in order to decide how to handle * the non-integrality, we also need to know whether the coefficients * of the other columns in the tableau are integral. This leads * to the following table. The first two rows do not correspond * to a non-integral sample point and are only mentioned for completeness. * * constant parameters other * * int int int | * int int rat | -> no problem * * rat int int -> fail * * rat int rat -> cut * * int rat rat | * rat rat rat | -> parametric cut * * int rat int | * rat rat int | -> split context * * If the parametric constant is completely integral, then there is nothing * to be done. If the constant term is non-integral, but all the other * coefficient are integral, then there is nothing that can be done * and the tableau has no integral solution. * If, on the other hand, one or more of the other columns have rational * coefficients, but the parameter coefficients are all integral, then * we can perform a regular (non-parametric) cut. * Finally, if there is any parameter coefficient that is non-integral, * then we need to involve the context tableau. There are two cases here. * If at least one other column has a rational coefficient, then we * can perform a parametric cut in the main tableau by adding a new * integer division in the context tableau. * If all other columns have integral coefficients, then we need to * enforce that the rational combination of parameters (c + \sum a_i y_i)/m * is always integral. We do this by introducing an integer division * q = floor((c + \sum a_i y_i)/m) and stipulating that its argument should * always be integral in the context tableau, i.e., m q = c + \sum a_i y_i. * Since q is expressed in the tableau as * c + \sum a_i y_i - m q >= 0 * -c - \sum a_i y_i + m q + m - 1 >= 0 * it is sufficient to add the inequality * -c - \sum a_i y_i + m q >= 0 * In the part of the context where this inequality does not hold, the * main tableau is marked as being empty. */ static void find_solutions(struct isl_sol *sol, struct isl_tab *tab) { struct isl_context *context; int r; if (!tab || sol->error) goto error; context = sol->context; if (tab->empty) goto done; if (context->op->is_empty(context)) goto done; for (r = 0; r >= 0 && tab && !tab->empty; r = restore_lexmin(tab)) { int flags; int row; enum isl_tab_row_sign sgn; int split = -1; int n_split = 0; for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; sgn = row_sign(tab, sol, row); if (!sgn) goto error; tab->row_sign[row] = sgn; if (sgn == isl_tab_row_any) n_split++; if (sgn == isl_tab_row_any && split == -1) split = row; if (sgn == isl_tab_row_neg) break; } if (row < tab->n_row) continue; if (split != -1) { struct isl_vec *ineq; if (n_split != 1) split = context->op->best_split(context, tab); if (split < 0) goto error; ineq = get_row_parameter_ineq(tab, split); if (!ineq) goto error; is_strict(ineq); for (row = tab->n_redundant; row < tab->n_row; ++row) { if (!isl_tab_var_from_row(tab, row)->is_nonneg) continue; if (tab->row_sign[row] == isl_tab_row_any) tab->row_sign[row] = isl_tab_row_unknown; } tab->row_sign[split] = isl_tab_row_pos; sol_inc_level(sol); find_in_pos(sol, tab, ineq->el); tab->row_sign[split] = isl_tab_row_neg; isl_seq_neg(ineq->el, ineq->el, ineq->size); isl_int_sub_ui(ineq->el[0], ineq->el[0], 1); if (!sol->error) context->op->add_ineq(context, ineq->el, 0, 1); isl_vec_free(ineq); if (sol->error) goto error; continue; } if (tab->rational) break; row = first_non_integer_row(tab, &flags); if (row < 0) break; if (ISL_FL_ISSET(flags, I_PAR)) { if (ISL_FL_ISSET(flags, I_VAR)) { if (isl_tab_mark_empty(tab) < 0) goto error; break; } row = add_cut(tab, row); } else if (ISL_FL_ISSET(flags, I_VAR)) { struct isl_vec *div; struct isl_vec *ineq; int d; div = get_row_split_div(tab, row); if (!div) goto error; d = context->op->get_div(context, tab, div); isl_vec_free(div); if (d < 0) goto error; ineq = ineq_for_div(context->op->peek_basic_set(context), d); if (!ineq) goto error; sol_inc_level(sol); no_sol_in_strict(sol, tab, ineq); isl_seq_neg(ineq->el, ineq->el, ineq->size); context->op->add_ineq(context, ineq->el, 1, 1); isl_vec_free(ineq); if (sol->error || !context->op->is_ok(context)) goto error; tab = set_row_cst_to_div(tab, row, d); if (context->op->is_empty(context)) break; } else row = add_parametric_cut(tab, row, context); if (row < 0) goto error; } if (r < 0) goto error; done: sol_add(sol, tab); isl_tab_free(tab); return; error: isl_tab_free(tab); sol->error = 1; } /* Does "sol" contain a pair of partial solutions that could potentially * be merged? * * We currently only check that "sol" is not in an error state * and that there are at least two partial solutions of which the final two * are defined at the same level. */ static int sol_has_mergeable_solutions(struct isl_sol *sol) { if (sol->error) return 0; if (!sol->partial) return 0; if (!sol->partial->next) return 0; return sol->partial->level == sol->partial->next->level; } /* Compute the lexicographic minimum of the set represented by the main * tableau "tab" within the context "sol->context_tab". * * As a preprocessing step, we first transfer all the purely parametric * equalities from the main tableau to the context tableau, i.e., * parameters that have been pivoted to a row. * These equalities are ignored by the main algorithm, because the * corresponding rows may not be marked as being non-negative. * In parts of the context where the added equality does not hold, * the main tableau is marked as being empty. * * Before we embark on the actual computation, we save a copy * of the context. When we return, we check if there are any * partial solutions that can potentially be merged. If so, * we perform a rollback to the initial state of the context. * The merging of partial solutions happens inside calls to * sol_dec_level that are pushed onto the undo stack of the context. * If there are no partial solutions that can potentially be merged * then the rollback is skipped as it would just be wasted effort. */ static void find_solutions_main(struct isl_sol *sol, struct isl_tab *tab) { int row; void *saved; if (!tab) goto error; sol->level = 0; for (row = tab->n_redundant; row < tab->n_row; ++row) { int p; struct isl_vec *eq; if (tab->row_var[row] < 0) continue; if (tab->row_var[row] >= tab->n_param && tab->row_var[row] < tab->n_var - tab->n_div) continue; if (tab->row_var[row] < tab->n_param) p = tab->row_var[row]; else p = tab->row_var[row] + tab->n_param - (tab->n_var - tab->n_div); eq = isl_vec_alloc(tab->mat->ctx, 1+tab->n_param+tab->n_div); if (!eq) goto error; get_row_parameter_line(tab, row, eq->el); isl_int_neg(eq->el[1 + p], tab->mat->row[row][0]); eq = isl_vec_normalize(eq); sol_inc_level(sol); no_sol_in_strict(sol, tab, eq); isl_seq_neg(eq->el, eq->el, eq->size); sol_inc_level(sol); no_sol_in_strict(sol, tab, eq); isl_seq_neg(eq->el, eq->el, eq->size); sol->context->op->add_eq(sol->context, eq->el, 1, 1); isl_vec_free(eq); if (isl_tab_mark_redundant(tab, row) < 0) goto error; if (sol->context->op->is_empty(sol->context)) break; row = tab->n_redundant - 1; } saved = sol->context->op->save(sol->context); find_solutions(sol, tab); if (sol_has_mergeable_solutions(sol)) sol->context->op->restore(sol->context, saved); else sol->context->op->discard(saved); sol->level = 0; sol_pop(sol); return; error: isl_tab_free(tab); sol->error = 1; } /* Check if integer division "div" of "dom" also occurs in "bmap". * If so, return its position within the divs. * If not, return -1. */ static int find_context_div(struct isl_basic_map *bmap, struct isl_basic_set *dom, unsigned div) { int i; unsigned b_dim = isl_space_dim(bmap->dim, isl_dim_all); unsigned d_dim = isl_space_dim(dom->dim, isl_dim_all); if (isl_int_is_zero(dom->div[div][0])) return -1; if (isl_seq_first_non_zero(dom->div[div] + 2 + d_dim, dom->n_div) != -1) return -1; for (i = 0; i < bmap->n_div; ++i) { if (isl_int_is_zero(bmap->div[i][0])) continue; if (isl_seq_first_non_zero(bmap->div[i] + 2 + d_dim, (b_dim - d_dim) + bmap->n_div) != -1) continue; if (isl_seq_eq(bmap->div[i], dom->div[div], 2 + d_dim)) return i; } return -1; } /* The correspondence between the variables in the main tableau, * the context tableau, and the input map and domain is as follows. * The first n_param and the last n_div variables of the main tableau * form the variables of the context tableau. * In the basic map, these n_param variables correspond to the * parameters and the input dimensions. In the domain, they correspond * to the parameters and the set dimensions. * The n_div variables correspond to the integer divisions in the domain. * To ensure that everything lines up, we may need to copy some of the * integer divisions of the domain to the map. These have to be placed * in the same order as those in the context and they have to be placed * after any other integer divisions that the map may have. * This function performs the required reordering. */ static struct isl_basic_map *align_context_divs(struct isl_basic_map *bmap, struct isl_basic_set *dom) { int i; int common = 0; int other; for (i = 0; i < dom->n_div; ++i) if (find_context_div(bmap, dom, i) != -1) common++; other = bmap->n_div - common; if (dom->n_div - common > 0) { bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), dom->n_div - common, 0, 0); if (!bmap) return NULL; } for (i = 0; i < dom->n_div; ++i) { int pos = find_context_div(bmap, dom, i); if (pos < 0) { pos = isl_basic_map_alloc_div(bmap); if (pos < 0) goto error; isl_int_set_si(bmap->div[pos][0], 0); } if (pos != other + i) isl_basic_map_swap_div(bmap, pos, other + i); } return bmap; error: isl_basic_map_free(bmap); return NULL; } /* Base case of isl_tab_basic_map_partial_lexopt, after removing * some obvious symmetries. * * We make sure the divs in the domain are properly ordered, * because they will be added one by one in the given order * during the construction of the solution map. */ static struct isl_sol *basic_map_partial_lexopt_base( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, struct isl_sol *(*init)(__isl_keep isl_basic_map *bmap, __isl_take isl_basic_set *dom, int track_empty, int max)) { struct isl_tab *tab; struct isl_sol *sol = NULL; struct isl_context *context; if (dom->n_div) { dom = isl_basic_set_order_divs(dom); bmap = align_context_divs(bmap, dom); } sol = init(bmap, dom, !!empty, max); if (!sol) goto error; context = sol->context; if (isl_basic_set_plain_is_empty(context->op->peek_basic_set(context))) /* nothing */; else if (isl_basic_map_plain_is_empty(bmap)) { if (sol->add_empty) sol->add_empty(sol, isl_basic_set_copy(context->op->peek_basic_set(context))); } else { tab = tab_for_lexmin(bmap, context->op->peek_basic_set(context), 1, max); tab = context->op->detect_nonnegative_parameters(context, tab); find_solutions_main(sol, tab); } if (sol->error) goto error; isl_basic_map_free(bmap); return sol; error: sol_free(sol); isl_basic_map_free(bmap); return NULL; } /* Base case of isl_tab_basic_map_partial_lexopt, after removing * some obvious symmetries. * * We call basic_map_partial_lexopt_base and extract the results. */ static __isl_give isl_map *basic_map_partial_lexopt_base_map( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { isl_map *result = NULL; struct isl_sol *sol; struct isl_sol_map *sol_map; sol = basic_map_partial_lexopt_base(bmap, dom, empty, max, &sol_map_init); if (!sol) return NULL; sol_map = (struct isl_sol_map *) sol; result = isl_map_copy(sol_map->map); if (empty) *empty = isl_set_copy(sol_map->empty); sol_free(&sol_map->sol); return result; } /* Structure used during detection of parallel constraints. * n_in: number of "input" variables: isl_dim_param + isl_dim_in * n_out: number of "output" variables: isl_dim_out + isl_dim_div * val: the coefficients of the output variables */ struct isl_constraint_equal_info { isl_basic_map *bmap; unsigned n_in; unsigned n_out; isl_int *val; }; /* Check whether the coefficients of the output variables * of the constraint in "entry" are equal to info->val. */ static int constraint_equal(const void *entry, const void *val) { isl_int **row = (isl_int **)entry; const struct isl_constraint_equal_info *info = val; return isl_seq_eq((*row) + 1 + info->n_in, info->val, info->n_out); } /* Check whether "bmap" has a pair of constraints that have * the same coefficients for the output variables. * Note that the coefficients of the existentially quantified * variables need to be zero since the existentially quantified * of the result are usually not the same as those of the input. * the isl_dim_out and isl_dim_div dimensions. * If so, return 1 and return the row indices of the two constraints * in *first and *second. */ static int parallel_constraints(__isl_keep isl_basic_map *bmap, int *first, int *second) { int i; isl_ctx *ctx; struct isl_hash_table *table = NULL; struct isl_hash_table_entry *entry; struct isl_constraint_equal_info info; unsigned n_out; unsigned n_div; ctx = isl_basic_map_get_ctx(bmap); table = isl_hash_table_alloc(ctx, bmap->n_ineq); if (!table) goto error; info.n_in = isl_basic_map_dim(bmap, isl_dim_param) + isl_basic_map_dim(bmap, isl_dim_in); info.bmap = bmap; n_out = isl_basic_map_dim(bmap, isl_dim_out); n_div = isl_basic_map_dim(bmap, isl_dim_div); info.n_out = n_out + n_div; for (i = 0; i < bmap->n_ineq; ++i) { uint32_t hash; info.val = bmap->ineq[i] + 1 + info.n_in; if (isl_seq_first_non_zero(info.val, n_out) < 0) continue; if (isl_seq_first_non_zero(info.val + n_out, n_div) >= 0) continue; hash = isl_seq_get_hash(info.val, info.n_out); entry = isl_hash_table_find(ctx, table, hash, constraint_equal, &info, 1); if (!entry) goto error; if (entry->data) break; entry->data = &bmap->ineq[i]; } if (i < bmap->n_ineq) { *first = ((isl_int **)entry->data) - bmap->ineq; *second = i; } isl_hash_table_free(ctx, table); return i < bmap->n_ineq; error: isl_hash_table_free(ctx, table); return -1; } /* Given a set of upper bounds in "var", add constraints to "bset" * that make the i-th bound smallest. * * In particular, if there are n bounds b_i, then add the constraints * * b_i <= b_j for j > i * b_i < b_j for j < i */ static __isl_give isl_basic_set *select_minimum(__isl_take isl_basic_set *bset, __isl_keep isl_mat *var, int i) { isl_ctx *ctx; int j, k; ctx = isl_mat_get_ctx(var); for (j = 0; j < var->n_row; ++j) { if (j == i) continue; k = isl_basic_set_alloc_inequality(bset); if (k < 0) goto error; isl_seq_combine(bset->ineq[k], ctx->one, var->row[j], ctx->negone, var->row[i], var->n_col); isl_int_set_si(bset->ineq[k][var->n_col], 0); if (j < i) isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1); } bset = isl_basic_set_finalize(bset); return bset; error: isl_basic_set_free(bset); return NULL; } /* Given a set of upper bounds on the last "input" variable m, * construct a set that assigns the minimal upper bound to m, i.e., * construct a set that divides the space into cells where one * of the upper bounds is smaller than all the others and assign * this upper bound to m. * * In particular, if there are n bounds b_i, then the result * consists of n basic sets, each one of the form * * m = b_i * b_i <= b_j for j > i * b_i < b_j for j < i */ static __isl_give isl_set *set_minimum(__isl_take isl_space *dim, __isl_take isl_mat *var) { int i, k; isl_basic_set *bset = NULL; isl_set *set = NULL; if (!dim || !var) goto error; set = isl_set_alloc_space(isl_space_copy(dim), var->n_row, ISL_SET_DISJOINT); for (i = 0; i < var->n_row; ++i) { bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 1, var->n_row - 1); k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k], var->row[i], var->n_col); isl_int_set_si(bset->eq[k][var->n_col], -1); bset = select_minimum(bset, var, i); set = isl_set_add_basic_set(set, bset); } isl_space_free(dim); isl_mat_free(var); return set; error: isl_basic_set_free(bset); isl_set_free(set); isl_space_free(dim); isl_mat_free(var); return NULL; } /* Given that the last input variable of "bmap" represents the minimum * of the bounds in "cst", check whether we need to split the domain * based on which bound attains the minimum. * * A split is needed when the minimum appears in an integer division * or in an equality. Otherwise, it is only needed if it appears in * an upper bound that is different from the upper bounds on which it * is defined. */ static int need_split_basic_map(__isl_keep isl_basic_map *bmap, __isl_keep isl_mat *cst) { int i, j; unsigned total; unsigned pos; pos = cst->n_col - 1; total = isl_basic_map_dim(bmap, isl_dim_all); for (i = 0; i < bmap->n_div; ++i) if (!isl_int_is_zero(bmap->div[i][2 + pos])) return 1; for (i = 0; i < bmap->n_eq; ++i) if (!isl_int_is_zero(bmap->eq[i][1 + pos])) return 1; for (i = 0; i < bmap->n_ineq; ++i) { if (isl_int_is_nonneg(bmap->ineq[i][1 + pos])) continue; if (!isl_int_is_negone(bmap->ineq[i][1 + pos])) return 1; if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + pos + 1, total - pos - 1) >= 0) return 1; for (j = 0; j < cst->n_row; ++j) if (isl_seq_eq(bmap->ineq[i], cst->row[j], cst->n_col)) break; if (j >= cst->n_row) return 1; } return 0; } /* Given that the last set variable of "bset" represents the minimum * of the bounds in "cst", check whether we need to split the domain * based on which bound attains the minimum. * * We simply call need_split_basic_map here. This is safe because * the position of the minimum is computed from "cst" and not * from "bmap". */ static int need_split_basic_set(__isl_keep isl_basic_set *bset, __isl_keep isl_mat *cst) { return need_split_basic_map((isl_basic_map *)bset, cst); } /* Given that the last set variable of "set" represents the minimum * of the bounds in "cst", check whether we need to split the domain * based on which bound attains the minimum. */ static int need_split_set(__isl_keep isl_set *set, __isl_keep isl_mat *cst) { int i; for (i = 0; i < set->n; ++i) if (need_split_basic_set(set->p[i], cst)) return 1; return 0; } /* Given a set of which the last set variable is the minimum * of the bounds in "cst", split each basic set in the set * in pieces where one of the bounds is (strictly) smaller than the others. * This subdivision is given in "min_expr". * The variable is subsequently projected out. * * We only do the split when it is needed. * For example if the last input variable m = min(a,b) and the only * constraints in the given basic set are lower bounds on m, * i.e., l <= m = min(a,b), then we can simply project out m * to obtain l <= a and l <= b, without having to split on whether * m is equal to a or b. */ static __isl_give isl_set *split(__isl_take isl_set *empty, __isl_take isl_set *min_expr, __isl_take isl_mat *cst) { int n_in; int i; isl_space *dim; isl_set *res; if (!empty || !min_expr || !cst) goto error; n_in = isl_set_dim(empty, isl_dim_set); dim = isl_set_get_space(empty); dim = isl_space_drop_dims(dim, isl_dim_set, n_in - 1, 1); res = isl_set_empty(dim); for (i = 0; i < empty->n; ++i) { isl_set *set; set = isl_set_from_basic_set(isl_basic_set_copy(empty->p[i])); if (need_split_basic_set(empty->p[i], cst)) set = isl_set_intersect(set, isl_set_copy(min_expr)); set = isl_set_remove_dims(set, isl_dim_set, n_in - 1, 1); res = isl_set_union_disjoint(res, set); } isl_set_free(empty); isl_set_free(min_expr); isl_mat_free(cst); return res; error: isl_set_free(empty); isl_set_free(min_expr); isl_mat_free(cst); return NULL; } /* Given a map of which the last input variable is the minimum * of the bounds in "cst", split each basic set in the set * in pieces where one of the bounds is (strictly) smaller than the others. * This subdivision is given in "min_expr". * The variable is subsequently projected out. * * The implementation is essentially the same as that of "split". */ static __isl_give isl_map *split_domain(__isl_take isl_map *opt, __isl_take isl_set *min_expr, __isl_take isl_mat *cst) { int n_in; int i; isl_space *dim; isl_map *res; if (!opt || !min_expr || !cst) goto error; n_in = isl_map_dim(opt, isl_dim_in); dim = isl_map_get_space(opt); dim = isl_space_drop_dims(dim, isl_dim_in, n_in - 1, 1); res = isl_map_empty(dim); for (i = 0; i < opt->n; ++i) { isl_map *map; map = isl_map_from_basic_map(isl_basic_map_copy(opt->p[i])); if (need_split_basic_map(opt->p[i], cst)) map = isl_map_intersect_domain(map, isl_set_copy(min_expr)); map = isl_map_remove_dims(map, isl_dim_in, n_in - 1, 1); res = isl_map_union_disjoint(res, map); } isl_map_free(opt); isl_set_free(min_expr); isl_mat_free(cst); return res; error: isl_map_free(opt); isl_set_free(min_expr); isl_mat_free(cst); return NULL; } static __isl_give isl_map *basic_map_partial_lexopt( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max); union isl_lex_res { void *p; isl_map *map; isl_pw_multi_aff *pma; }; /* This function is called from basic_map_partial_lexopt_symm. * The last variable of "bmap" and "dom" corresponds to the minimum * of the bounds in "cst". "map_space" is the space of the original * input relation (of basic_map_partial_lexopt_symm) and "set_space" * is the space of the original domain. * * We recursively call basic_map_partial_lexopt and then plug in * the definition of the minimum in the result. */ static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_map_core( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, __isl_take isl_space *map_space, __isl_take isl_space *set_space) { isl_map *opt; isl_set *min_expr; union isl_lex_res res; min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst)); opt = basic_map_partial_lexopt(bmap, dom, empty, max); if (empty) { *empty = split(*empty, isl_set_copy(min_expr), isl_mat_copy(cst)); *empty = isl_set_reset_space(*empty, set_space); } opt = split_domain(opt, min_expr, cst); opt = isl_map_reset_space(opt, map_space); res.map = opt; return res; } /* Given a basic map with at least two parallel constraints (as found * by the function parallel_constraints), first look for more constraints * parallel to the two constraint and replace the found list of parallel * constraints by a single constraint with as "input" part the minimum * of the input parts of the list of constraints. Then, recursively call * basic_map_partial_lexopt (possibly finding more parallel constraints) * and plug in the definition of the minimum in the result. * * More specifically, given a set of constraints * * a x + b_i(p) >= 0 * * Replace this set by a single constraint * * a x + u >= 0 * * with u a new parameter with constraints * * u <= b_i(p) * * Any solution to the new system is also a solution for the original system * since * * a x >= -u >= -b_i(p) * * Moreover, m = min_i(b_i(p)) satisfies the constraints on u and can * therefore be plugged into the solution. */ static union isl_lex_res basic_map_partial_lexopt_symm( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, int first, int second, __isl_give union isl_lex_res (*core)(__isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, __isl_take isl_space *map_space, __isl_take isl_space *set_space)) { int i, n, k; int *list = NULL; unsigned n_in, n_out, n_div; isl_ctx *ctx; isl_vec *var = NULL; isl_mat *cst = NULL; isl_space *map_space, *set_space; union isl_lex_res res; map_space = isl_basic_map_get_space(bmap); set_space = empty ? isl_basic_set_get_space(dom) : NULL; n_in = isl_basic_map_dim(bmap, isl_dim_param) + isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_all) - n_in; ctx = isl_basic_map_get_ctx(bmap); list = isl_alloc_array(ctx, int, bmap->n_ineq); var = isl_vec_alloc(ctx, n_out); if ((bmap->n_ineq && !list) || (n_out && !var)) goto error; list[0] = first; list[1] = second; isl_seq_cpy(var->el, bmap->ineq[first] + 1 + n_in, n_out); for (i = second + 1, n = 2; i < bmap->n_ineq; ++i) { if (isl_seq_eq(var->el, bmap->ineq[i] + 1 + n_in, n_out)) list[n++] = i; } cst = isl_mat_alloc(ctx, n, 1 + n_in); if (!cst) goto error; for (i = 0; i < n; ++i) isl_seq_cpy(cst->row[i], bmap->ineq[list[i]], 1 + n_in); bmap = isl_basic_map_cow(bmap); if (!bmap) goto error; for (i = n - 1; i >= 0; --i) if (isl_basic_map_drop_inequality(bmap, list[i]) < 0) goto error; bmap = isl_basic_map_add_dims(bmap, isl_dim_in, 1); bmap = isl_basic_map_extend_constraints(bmap, 0, 1); k = isl_basic_map_alloc_inequality(bmap); if (k < 0) goto error; isl_seq_clr(bmap->ineq[k], 1 + n_in); isl_int_set_si(bmap->ineq[k][1 + n_in], 1); isl_seq_cpy(bmap->ineq[k] + 1 + n_in + 1, var->el, n_out); bmap = isl_basic_map_finalize(bmap); n_div = isl_basic_set_dim(dom, isl_dim_div); dom = isl_basic_set_add_dims(dom, isl_dim_set, 1); dom = isl_basic_set_extend_constraints(dom, 0, n); for (i = 0; i < n; ++i) { k = isl_basic_set_alloc_inequality(dom); if (k < 0) goto error; isl_seq_cpy(dom->ineq[k], cst->row[i], 1 + n_in); isl_int_set_si(dom->ineq[k][1 + n_in], -1); isl_seq_clr(dom->ineq[k] + 1 + n_in + 1, n_div); } isl_vec_free(var); free(list); return core(bmap, dom, empty, max, cst, map_space, set_space); error: isl_space_free(map_space); isl_space_free(set_space); isl_mat_free(cst); isl_vec_free(var); free(list); isl_basic_set_free(dom); isl_basic_map_free(bmap); res.p = NULL; return res; } static __isl_give isl_map *basic_map_partial_lexopt_symm_map( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, int first, int second) { return basic_map_partial_lexopt_symm(bmap, dom, empty, max, first, second, &basic_map_partial_lexopt_symm_map_core).map; } /* Recursive part of isl_tab_basic_map_partial_lexopt, after detecting * equalities and removing redundant constraints. * * We first check if there are any parallel constraints (left). * If not, we are in the base case. * If there are parallel constraints, we replace them by a single * constraint in basic_map_partial_lexopt_symm and then call * this function recursively to look for more parallel constraints. */ static __isl_give isl_map *basic_map_partial_lexopt( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { int par = 0; int first, second; if (!bmap) goto error; if (bmap->ctx->opt->pip_symmetry) par = parallel_constraints(bmap, &first, &second); if (par < 0) goto error; if (!par) return basic_map_partial_lexopt_base_map(bmap, dom, empty, max); return basic_map_partial_lexopt_symm_map(bmap, dom, empty, max, first, second); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } /* Compute the lexicographic minimum (or maximum if "max" is set) * of "bmap" over the domain "dom" and return the result as a map. * If "empty" is not NULL, then *empty is assigned a set that * contains those parts of the domain where there is no solution. * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), * then we compute the rational optimum. Otherwise, we compute * the integral optimum. * * We perform some preprocessing. As the PILP solver does not * handle implicit equalities very well, we first make sure all * the equalities are explicitly available. * * We also add context constraints to the basic map and remove * redundant constraints. This is only needed because of the * way we handle simple symmetries. In particular, we currently look * for symmetries on the constraints, before we set up the main tableau. * It is then no good to look for symmetries on possibly redundant constraints. */ struct isl_map *isl_tab_basic_map_partial_lexopt( struct isl_basic_map *bmap, struct isl_basic_set *dom, struct isl_set **empty, int max) { if (empty) *empty = NULL; if (!bmap || !dom) goto error; isl_assert(bmap->ctx, isl_basic_map_compatible_domain(bmap, dom), goto error); if (isl_basic_set_dim(dom, isl_dim_all) == 0) return basic_map_partial_lexopt(bmap, dom, empty, max); bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom)); bmap = isl_basic_map_detect_equalities(bmap); bmap = isl_basic_map_remove_redundancies(bmap); return basic_map_partial_lexopt(bmap, dom, empty, max); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } struct isl_sol_for { struct isl_sol sol; int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user); void *user; }; static void sol_for_free(struct isl_sol_for *sol_for) { if (!sol_for) return; if (sol_for->sol.context) sol_for->sol.context->op->free(sol_for->sol.context); free(sol_for); } static void sol_for_free_wrap(struct isl_sol *sol) { sol_for_free((struct isl_sol_for *)sol); } /* Add the solution identified by the tableau and the context tableau. * * See documentation of sol_add for more details. * * Instead of constructing a basic map, this function calls a user * defined function with the current context as a basic set and * a list of affine expressions representing the relation between * the input and output. The space over which the affine expressions * are defined is the same as that of the domain. The number of * affine expressions in the list is equal to the number of output variables. */ static void sol_for_add(struct isl_sol_for *sol, struct isl_basic_set *dom, struct isl_mat *M) { int i; isl_ctx *ctx; isl_local_space *ls; isl_aff *aff; isl_aff_list *list; if (sol->sol.error || !dom || !M) goto error; ctx = isl_basic_set_get_ctx(dom); ls = isl_basic_set_get_local_space(dom); list = isl_aff_list_alloc(ctx, M->n_row - 1); for (i = 1; i < M->n_row; ++i) { aff = isl_aff_alloc(isl_local_space_copy(ls)); if (aff) { isl_int_set(aff->v->el[0], M->row[0][0]); isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col); } aff = isl_aff_normalize(aff); list = isl_aff_list_add(list, aff); } isl_local_space_free(ls); dom = isl_basic_set_finalize(dom); if (sol->fn(isl_basic_set_copy(dom), list, sol->user) < 0) goto error; isl_basic_set_free(dom); isl_mat_free(M); return; error: isl_basic_set_free(dom); isl_mat_free(M); sol->sol.error = 1; } static void sol_for_add_wrap(struct isl_sol *sol, struct isl_basic_set *dom, struct isl_mat *M) { sol_for_add((struct isl_sol_for *)sol, dom, M); } static struct isl_sol_for *sol_for_init(struct isl_basic_map *bmap, int max, int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user), void *user) { struct isl_sol_for *sol_for = NULL; isl_space *dom_dim; struct isl_basic_set *dom = NULL; sol_for = isl_calloc_type(bmap->ctx, struct isl_sol_for); if (!sol_for) goto error; dom_dim = isl_space_domain(isl_space_copy(bmap->dim)); dom = isl_basic_set_universe(dom_dim); sol_for->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); sol_for->sol.dec_level.callback.run = &sol_dec_level_wrap; sol_for->sol.dec_level.sol = &sol_for->sol; sol_for->fn = fn; sol_for->user = user; sol_for->sol.max = max; sol_for->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out); sol_for->sol.add = &sol_for_add_wrap; sol_for->sol.add_empty = NULL; sol_for->sol.free = &sol_for_free_wrap; sol_for->sol.context = isl_context_alloc(dom); if (!sol_for->sol.context) goto error; isl_basic_set_free(dom); return sol_for; error: isl_basic_set_free(dom); sol_for_free(sol_for); return NULL; } static void sol_for_find_solutions(struct isl_sol_for *sol_for, struct isl_tab *tab) { find_solutions_main(&sol_for->sol, tab); } int isl_basic_map_foreach_lexopt(__isl_keep isl_basic_map *bmap, int max, int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user), void *user) { struct isl_sol_for *sol_for = NULL; bmap = isl_basic_map_copy(bmap); bmap = isl_basic_map_detect_equalities(bmap); if (!bmap) return -1; sol_for = sol_for_init(bmap, max, fn, user); if (!sol_for) goto error; if (isl_basic_map_plain_is_empty(bmap)) /* nothing */; else { struct isl_tab *tab; struct isl_context *context = sol_for->sol.context; tab = tab_for_lexmin(bmap, context->op->peek_basic_set(context), 1, max); tab = context->op->detect_nonnegative_parameters(context, tab); sol_for_find_solutions(sol_for, tab); if (sol_for->sol.error) goto error; } sol_free(&sol_for->sol); isl_basic_map_free(bmap); return 0; error: sol_free(&sol_for->sol); isl_basic_map_free(bmap); return -1; } int isl_basic_set_foreach_lexopt(__isl_keep isl_basic_set *bset, int max, int (*fn)(__isl_take isl_basic_set *dom, __isl_take isl_aff_list *list, void *user), void *user) { return isl_basic_map_foreach_lexopt(bset, max, fn, user); } /* Check if the given sequence of len variables starting at pos * represents a trivial (i.e., zero) solution. * The variables are assumed to be non-negative and to come in pairs, * with each pair representing a variable of unrestricted sign. * The solution is trivial if each such pair in the sequence consists * of two identical values, meaning that the variable being represented * has value zero. */ static int region_is_trivial(struct isl_tab *tab, int pos, int len) { int i; if (len == 0) return 0; for (i = 0; i < len; i += 2) { int neg_row; int pos_row; neg_row = tab->var[pos + i].is_row ? tab->var[pos + i].index : -1; pos_row = tab->var[pos + i + 1].is_row ? tab->var[pos + i + 1].index : -1; if ((neg_row < 0 || isl_int_is_zero(tab->mat->row[neg_row][1])) && (pos_row < 0 || isl_int_is_zero(tab->mat->row[pos_row][1]))) continue; if (neg_row < 0 || pos_row < 0) return 0; if (isl_int_ne(tab->mat->row[neg_row][1], tab->mat->row[pos_row][1])) return 0; } return 1; } /* Return the index of the first trivial region or -1 if all regions * are non-trivial. */ static int first_trivial_region(struct isl_tab *tab, int n_region, struct isl_region *region) { int i; for (i = 0; i < n_region; ++i) { if (region_is_trivial(tab, region[i].pos, region[i].len)) return i; } return -1; } /* Check if the solution is optimal, i.e., whether the first * n_op entries are zero. */ static int is_optimal(__isl_keep isl_vec *sol, int n_op) { int i; for (i = 0; i < n_op; ++i) if (!isl_int_is_zero(sol->el[1 + i])) return 0; return 1; } /* Add constraints to "tab" that ensure that any solution is significantly * better that that represented by "sol". That is, find the first * relevant (within first n_op) non-zero coefficient and force it (along * with all previous coefficients) to be zero. * If the solution is already optimal (all relevant coefficients are zero), * then just mark the table as empty. */ static int force_better_solution(struct isl_tab *tab, __isl_keep isl_vec *sol, int n_op) { int i; isl_ctx *ctx; isl_vec *v = NULL; if (!sol) return -1; for (i = 0; i < n_op; ++i) if (!isl_int_is_zero(sol->el[1 + i])) break; if (i == n_op) { if (isl_tab_mark_empty(tab) < 0) return -1; return 0; } ctx = isl_vec_get_ctx(sol); v = isl_vec_alloc(ctx, 1 + tab->n_var); if (!v) return -1; for (; i >= 0; --i) { v = isl_vec_clr(v); isl_int_set_si(v->el[1 + i], -1); if (add_lexmin_eq(tab, v->el) < 0) goto error; } isl_vec_free(v); return 0; error: isl_vec_free(v); return -1; } struct isl_trivial { int update; int region; int side; struct isl_tab_undo *snap; }; /* Return the lexicographically smallest non-trivial solution of the * given ILP problem. * * All variables are assumed to be non-negative. * * n_op is the number of initial coordinates to optimize. * That is, once a solution has been found, we will only continue looking * for solution that result in significantly better values for those * initial coordinates. That is, we only continue looking for solutions * that increase the number of initial zeros in this sequence. * * A solution is non-trivial, if it is non-trivial on each of the * specified regions. Each region represents a sequence of pairs * of variables. A solution is non-trivial on such a region if * at least one of these pairs consists of different values, i.e., * such that the non-negative variable represented by the pair is non-zero. * * Whenever a conflict is encountered, all constraints involved are * reported to the caller through a call to "conflict". * * We perform a simple branch-and-bound backtracking search. * Each level in the search represents initially trivial region that is forced * to be non-trivial. * At each level we consider n cases, where n is the length of the region. * In terms of the n/2 variables of unrestricted signs being encoded by * the region, we consider the cases * x_0 >= 1 * x_0 <= -1 * x_0 = 0 and x_1 >= 1 * x_0 = 0 and x_1 <= -1 * x_0 = 0 and x_1 = 0 and x_2 >= 1 * x_0 = 0 and x_1 = 0 and x_2 <= -1 * ... * The cases are considered in this order, assuming that each pair * x_i_a x_i_b represents the value x_i_b - x_i_a. * That is, x_0 >= 1 is enforced by adding the constraint * x_0_b - x_0_a >= 1 */ __isl_give isl_vec *isl_tab_basic_set_non_trivial_lexmin( __isl_take isl_basic_set *bset, int n_op, int n_region, struct isl_region *region, int (*conflict)(int con, void *user), void *user) { int i, j; int r; isl_ctx *ctx; isl_vec *v = NULL; isl_vec *sol = NULL; struct isl_tab *tab; struct isl_trivial *triv = NULL; int level, init; if (!bset) return NULL; ctx = isl_basic_set_get_ctx(bset); sol = isl_vec_alloc(ctx, 0); tab = tab_for_lexmin(bset, NULL, 0, 0); if (!tab) goto error; tab->conflict = conflict; tab->conflict_user = user; v = isl_vec_alloc(ctx, 1 + tab->n_var); triv = isl_calloc_array(ctx, struct isl_trivial, n_region); if (!v || (n_region && !triv)) goto error; level = 0; init = 1; while (level >= 0) { int side, base; if (init) { tab = cut_to_integer_lexmin(tab, CUT_ONE); if (!tab) goto error; if (tab->empty) goto backtrack; r = first_trivial_region(tab, n_region, region); if (r < 0) { for (i = 0; i < level; ++i) triv[i].update = 1; isl_vec_free(sol); sol = isl_tab_get_sample_value(tab); if (!sol) goto error; if (is_optimal(sol, n_op)) break; goto backtrack; } if (level >= n_region) isl_die(ctx, isl_error_internal, "nesting level too deep", goto error); if (isl_tab_extend_cons(tab, 2 * region[r].len + 2 * n_op) < 0) goto error; triv[level].region = r; triv[level].side = 0; } r = triv[level].region; side = triv[level].side; base = 2 * (side/2); if (side >= region[r].len) { backtrack: level--; init = 0; if (level >= 0) if (isl_tab_rollback(tab, triv[level].snap) < 0) goto error; continue; } if (triv[level].update) { if (force_better_solution(tab, sol, n_op) < 0) goto error; triv[level].update = 0; } if (side == base && base >= 2) { for (j = base - 2; j < base; ++j) { v = isl_vec_clr(v); isl_int_set_si(v->el[1 + region[r].pos + j], 1); if (add_lexmin_eq(tab, v->el) < 0) goto error; } } triv[level].snap = isl_tab_snap(tab); if (isl_tab_push_basis(tab) < 0) goto error; v = isl_vec_clr(v); isl_int_set_si(v->el[0], -1); isl_int_set_si(v->el[1 + region[r].pos + side], -1); isl_int_set_si(v->el[1 + region[r].pos + (side ^ 1)], 1); tab = add_lexmin_ineq(tab, v->el); triv[level].side++; level++; init = 1; } free(triv); isl_vec_free(v); isl_tab_free(tab); isl_basic_set_free(bset); return sol; error: free(triv); isl_vec_free(v); isl_tab_free(tab); isl_basic_set_free(bset); isl_vec_free(sol); return NULL; } /* Return the lexicographically smallest rational point in "bset", * assuming that all variables are non-negative. * If "bset" is empty, then return a zero-length vector. */ __isl_give isl_vec *isl_tab_basic_set_non_neg_lexmin( __isl_take isl_basic_set *bset) { struct isl_tab *tab; isl_ctx *ctx = isl_basic_set_get_ctx(bset); isl_vec *sol; if (!bset) return NULL; tab = tab_for_lexmin(bset, NULL, 0, 0); if (!tab) goto error; if (tab->empty) sol = isl_vec_alloc(ctx, 0); else sol = isl_tab_get_sample_value(tab); isl_tab_free(tab); isl_basic_set_free(bset); return sol; error: isl_tab_free(tab); isl_basic_set_free(bset); return NULL; } struct isl_sol_pma { struct isl_sol sol; isl_pw_multi_aff *pma; isl_set *empty; }; static void sol_pma_free(struct isl_sol_pma *sol_pma) { if (!sol_pma) return; if (sol_pma->sol.context) sol_pma->sol.context->op->free(sol_pma->sol.context); isl_pw_multi_aff_free(sol_pma->pma); isl_set_free(sol_pma->empty); free(sol_pma); } /* This function is called for parts of the context where there is * no solution, with "bset" corresponding to the context tableau. * Simply add the basic set to the set "empty". */ static void sol_pma_add_empty(struct isl_sol_pma *sol, __isl_take isl_basic_set *bset) { if (!bset || !sol->empty) goto error; sol->empty = isl_set_grow(sol->empty, 1); bset = isl_basic_set_simplify(bset); bset = isl_basic_set_finalize(bset); sol->empty = isl_set_add_basic_set(sol->empty, bset); if (!sol->empty) sol->sol.error = 1; return; error: isl_basic_set_free(bset); sol->sol.error = 1; } /* Given a basic map "dom" that represents the context and an affine * matrix "M" that maps the dimensions of the context to the * output variables, construct an isl_pw_multi_aff with a single * cell corresponding to "dom" and affine expressions copied from "M". */ static void sol_pma_add(struct isl_sol_pma *sol, __isl_take isl_basic_set *dom, __isl_take isl_mat *M) { int i; isl_local_space *ls; isl_aff *aff; isl_multi_aff *maff; isl_pw_multi_aff *pma; maff = isl_multi_aff_alloc(isl_pw_multi_aff_get_space(sol->pma)); ls = isl_basic_set_get_local_space(dom); for (i = 1; i < M->n_row; ++i) { aff = isl_aff_alloc(isl_local_space_copy(ls)); if (aff) { isl_int_set(aff->v->el[0], M->row[0][0]); isl_seq_cpy(aff->v->el + 1, M->row[i], M->n_col); } aff = isl_aff_normalize(aff); maff = isl_multi_aff_set_aff(maff, i - 1, aff); } isl_local_space_free(ls); isl_mat_free(M); dom = isl_basic_set_simplify(dom); dom = isl_basic_set_finalize(dom); pma = isl_pw_multi_aff_alloc(isl_set_from_basic_set(dom), maff); sol->pma = isl_pw_multi_aff_add_disjoint(sol->pma, pma); if (!sol->pma) sol->sol.error = 1; } static void sol_pma_free_wrap(struct isl_sol *sol) { sol_pma_free((struct isl_sol_pma *)sol); } static void sol_pma_add_empty_wrap(struct isl_sol *sol, __isl_take isl_basic_set *bset) { sol_pma_add_empty((struct isl_sol_pma *)sol, bset); } static void sol_pma_add_wrap(struct isl_sol *sol, __isl_take isl_basic_set *dom, __isl_take isl_mat *M) { sol_pma_add((struct isl_sol_pma *)sol, dom, M); } /* Construct an isl_sol_pma structure for accumulating the solution. * If track_empty is set, then we also keep track of the parts * of the context where there is no solution. * If max is set, then we are solving a maximization, rather than * a minimization problem, which means that the variables in the * tableau have value "M - x" rather than "M + x". */ static struct isl_sol *sol_pma_init(__isl_keep isl_basic_map *bmap, __isl_take isl_basic_set *dom, int track_empty, int max) { struct isl_sol_pma *sol_pma = NULL; if (!bmap) goto error; sol_pma = isl_calloc_type(bmap->ctx, struct isl_sol_pma); if (!sol_pma) goto error; sol_pma->sol.rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); sol_pma->sol.dec_level.callback.run = &sol_dec_level_wrap; sol_pma->sol.dec_level.sol = &sol_pma->sol; sol_pma->sol.max = max; sol_pma->sol.n_out = isl_basic_map_dim(bmap, isl_dim_out); sol_pma->sol.add = &sol_pma_add_wrap; sol_pma->sol.add_empty = track_empty ? &sol_pma_add_empty_wrap : NULL; sol_pma->sol.free = &sol_pma_free_wrap; sol_pma->pma = isl_pw_multi_aff_empty(isl_basic_map_get_space(bmap)); if (!sol_pma->pma) goto error; sol_pma->sol.context = isl_context_alloc(dom); if (!sol_pma->sol.context) goto error; if (track_empty) { sol_pma->empty = isl_set_alloc_space(isl_basic_set_get_space(dom), 1, ISL_SET_DISJOINT); if (!sol_pma->empty) goto error; } isl_basic_set_free(dom); return &sol_pma->sol; error: isl_basic_set_free(dom); sol_pma_free(sol_pma); return NULL; } /* Base case of isl_tab_basic_map_partial_lexopt, after removing * some obvious symmetries. * * We call basic_map_partial_lexopt_base and extract the results. */ static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_base_pma( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { isl_pw_multi_aff *result = NULL; struct isl_sol *sol; struct isl_sol_pma *sol_pma; sol = basic_map_partial_lexopt_base(bmap, dom, empty, max, &sol_pma_init); if (!sol) return NULL; sol_pma = (struct isl_sol_pma *) sol; result = isl_pw_multi_aff_copy(sol_pma->pma); if (empty) *empty = isl_set_copy(sol_pma->empty); sol_free(&sol_pma->sol); return result; } /* Given that the last input variable of "maff" represents the minimum * of some bounds, check whether we need to plug in the expression * of the minimum. * * In particular, check if the last input variable appears in any * of the expressions in "maff". */ static int need_substitution(__isl_keep isl_multi_aff *maff) { int i; unsigned pos; pos = isl_multi_aff_dim(maff, isl_dim_in) - 1; for (i = 0; i < maff->n; ++i) if (isl_aff_involves_dims(maff->p[i], isl_dim_in, pos, 1)) return 1; return 0; } /* Given a set of upper bounds on the last "input" variable m, * construct a piecewise affine expression that selects * the minimal upper bound to m, i.e., * divide the space into cells where one * of the upper bounds is smaller than all the others and select * this upper bound on that cell. * * In particular, if there are n bounds b_i, then the result * consists of n cell, each one of the form * * b_i <= b_j for j > i * b_i < b_j for j < i * * The affine expression on this cell is * * b_i */ static __isl_give isl_pw_aff *set_minimum_pa(__isl_take isl_space *space, __isl_take isl_mat *var) { int i; isl_aff *aff = NULL; isl_basic_set *bset = NULL; isl_pw_aff *paff = NULL; isl_space *pw_space; isl_local_space *ls = NULL; if (!space || !var) goto error; ls = isl_local_space_from_space(isl_space_copy(space)); pw_space = isl_space_copy(space); pw_space = isl_space_from_domain(pw_space); pw_space = isl_space_add_dims(pw_space, isl_dim_out, 1); paff = isl_pw_aff_alloc_size(pw_space, var->n_row); for (i = 0; i < var->n_row; ++i) { isl_pw_aff *paff_i; aff = isl_aff_alloc(isl_local_space_copy(ls)); bset = isl_basic_set_alloc_space(isl_space_copy(space), 0, 0, var->n_row - 1); if (!aff || !bset) goto error; isl_int_set_si(aff->v->el[0], 1); isl_seq_cpy(aff->v->el + 1, var->row[i], var->n_col); isl_int_set_si(aff->v->el[1 + var->n_col], 0); bset = select_minimum(bset, var, i); paff_i = isl_pw_aff_alloc(isl_set_from_basic_set(bset), aff); paff = isl_pw_aff_add_disjoint(paff, paff_i); } isl_local_space_free(ls); isl_space_free(space); isl_mat_free(var); return paff; error: isl_aff_free(aff); isl_basic_set_free(bset); isl_pw_aff_free(paff); isl_local_space_free(ls); isl_space_free(space); isl_mat_free(var); return NULL; } /* Given a piecewise multi-affine expression of which the last input variable * is the minimum of the bounds in "cst", plug in the value of the minimum. * This minimum expression is given in "min_expr_pa". * The set "min_expr" contains the same information, but in the form of a set. * The variable is subsequently projected out. * * The implementation is similar to those of "split" and "split_domain". * If the variable appears in a given expression, then minimum expression * is plugged in. Otherwise, if the variable appears in the constraints * and a split is required, then the domain is split. Otherwise, no split * is performed. */ static __isl_give isl_pw_multi_aff *split_domain_pma( __isl_take isl_pw_multi_aff *opt, __isl_take isl_pw_aff *min_expr_pa, __isl_take isl_set *min_expr, __isl_take isl_mat *cst) { int n_in; int i; isl_space *space; isl_pw_multi_aff *res; if (!opt || !min_expr || !cst) goto error; n_in = isl_pw_multi_aff_dim(opt, isl_dim_in); space = isl_pw_multi_aff_get_space(opt); space = isl_space_drop_dims(space, isl_dim_in, n_in - 1, 1); res = isl_pw_multi_aff_empty(space); for (i = 0; i < opt->n; ++i) { isl_pw_multi_aff *pma; pma = isl_pw_multi_aff_alloc(isl_set_copy(opt->p[i].set), isl_multi_aff_copy(opt->p[i].maff)); if (need_substitution(opt->p[i].maff)) pma = isl_pw_multi_aff_substitute(pma, isl_dim_in, n_in - 1, min_expr_pa); else if (need_split_set(opt->p[i].set, cst)) pma = isl_pw_multi_aff_intersect_domain(pma, isl_set_copy(min_expr)); pma = isl_pw_multi_aff_project_out(pma, isl_dim_in, n_in - 1, 1); res = isl_pw_multi_aff_add_disjoint(res, pma); } isl_pw_multi_aff_free(opt); isl_pw_aff_free(min_expr_pa); isl_set_free(min_expr); isl_mat_free(cst); return res; error: isl_pw_multi_aff_free(opt); isl_pw_aff_free(min_expr_pa); isl_set_free(min_expr); isl_mat_free(cst); return NULL; } static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max); /* This function is called from basic_map_partial_lexopt_symm. * The last variable of "bmap" and "dom" corresponds to the minimum * of the bounds in "cst". "map_space" is the space of the original * input relation (of basic_map_partial_lexopt_symm) and "set_space" * is the space of the original domain. * * We recursively call basic_map_partial_lexopt and then plug in * the definition of the minimum in the result. */ static __isl_give union isl_lex_res basic_map_partial_lexopt_symm_pma_core( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, __isl_take isl_mat *cst, __isl_take isl_space *map_space, __isl_take isl_space *set_space) { isl_pw_multi_aff *opt; isl_pw_aff *min_expr_pa; isl_set *min_expr; union isl_lex_res res; min_expr = set_minimum(isl_basic_set_get_space(dom), isl_mat_copy(cst)); min_expr_pa = set_minimum_pa(isl_basic_set_get_space(dom), isl_mat_copy(cst)); opt = basic_map_partial_lexopt_pma(bmap, dom, empty, max); if (empty) { *empty = split(*empty, isl_set_copy(min_expr), isl_mat_copy(cst)); *empty = isl_set_reset_space(*empty, set_space); } opt = split_domain_pma(opt, min_expr_pa, min_expr, cst); opt = isl_pw_multi_aff_reset_space(opt, map_space); res.pma = opt; return res; } static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_symm_pma( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max, int first, int second) { return basic_map_partial_lexopt_symm(bmap, dom, empty, max, first, second, &basic_map_partial_lexopt_symm_pma_core).pma; } /* Recursive part of isl_basic_map_partial_lexopt_pw_multi_aff, after detecting * equalities and removing redundant constraints. * * We first check if there are any parallel constraints (left). * If not, we are in the base case. * If there are parallel constraints, we replace them by a single * constraint in basic_map_partial_lexopt_symm_pma and then call * this function recursively to look for more parallel constraints. */ static __isl_give isl_pw_multi_aff *basic_map_partial_lexopt_pma( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { int par = 0; int first, second; if (!bmap) goto error; if (bmap->ctx->opt->pip_symmetry) par = parallel_constraints(bmap, &first, &second); if (par < 0) goto error; if (!par) return basic_map_partial_lexopt_base_pma(bmap, dom, empty, max); return basic_map_partial_lexopt_symm_pma(bmap, dom, empty, max, first, second); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } /* Compute the lexicographic minimum (or maximum if "max" is set) * of "bmap" over the domain "dom" and return the result as a piecewise * multi-affine expression. * If "empty" is not NULL, then *empty is assigned a set that * contains those parts of the domain where there is no solution. * If "bmap" is marked as rational (ISL_BASIC_MAP_RATIONAL), * then we compute the rational optimum. Otherwise, we compute * the integral optimum. * * We perform some preprocessing. As the PILP solver does not * handle implicit equalities very well, we first make sure all * the equalities are explicitly available. * * We also add context constraints to the basic map and remove * redundant constraints. This is only needed because of the * way we handle simple symmetries. In particular, we currently look * for symmetries on the constraints, before we set up the main tableau. * It is then no good to look for symmetries on possibly redundant constraints. */ __isl_give isl_pw_multi_aff *isl_basic_map_partial_lexopt_pw_multi_aff( __isl_take isl_basic_map *bmap, __isl_take isl_basic_set *dom, __isl_give isl_set **empty, int max) { if (empty) *empty = NULL; if (!bmap || !dom) goto error; isl_assert(bmap->ctx, isl_basic_map_compatible_domain(bmap, dom), goto error); if (isl_basic_set_dim(dom, isl_dim_all) == 0) return basic_map_partial_lexopt_pma(bmap, dom, empty, max); bmap = isl_basic_map_intersect_domain(bmap, isl_basic_set_copy(dom)); bmap = isl_basic_map_detect_equalities(bmap); bmap = isl_basic_map_remove_redundancies(bmap); return basic_map_partial_lexopt_pma(bmap, dom, empty, max); error: isl_basic_set_free(dom); isl_basic_map_free(bmap); return NULL; } isl-0.16.1/isl_ast_graft_private.h0000664000175000017500000000747012645737060014057 00000000000000#ifndef ISL_AST_GRAFT_PRIVATE_H #define ISL_AST_GRAFT_PRIVATE_H #include #include #include #include struct isl_ast_graft; typedef struct isl_ast_graft isl_ast_graft; /* Representation of part of an AST ("node") with some additional polyhedral * information about the tree. * * "guard" contains conditions that should still be enforced by * some ancestor of the current tree. In particular, the already * generated tree assumes that these conditions hold, but may not * have enforced them itself. * The guard should not contain any unknown divs as it will be used * to generate an if condition. * * "enforced" expresses constraints that are already enforced by the for * nodes in the current tree and that therefore do not need to be enforced * by any ancestor. * The constraints only involve outer loop iterators. */ struct isl_ast_graft { int ref; isl_ast_node *node; isl_set *guard; isl_basic_set *enforced; }; ISL_DECLARE_LIST(ast_graft) #undef EL #define EL isl_ast_graft #include isl_ctx *isl_ast_graft_get_ctx(__isl_keep isl_ast_graft *graft); __isl_give isl_ast_graft *isl_ast_graft_alloc( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build); __isl_give isl_ast_graft *isl_ast_graft_alloc_from_children( __isl_take isl_ast_graft_list *list, __isl_take isl_set *guard, __isl_take isl_basic_set *enforced, __isl_keep isl_ast_build *build, __isl_keep isl_ast_build *sub_build); __isl_give isl_ast_graft_list *isl_ast_graft_list_fuse( __isl_take isl_ast_graft_list *children, __isl_keep isl_ast_build *build); __isl_give isl_ast_graft *isl_ast_graft_alloc_domain( __isl_take isl_map *schedule, __isl_keep isl_ast_build *build); void *isl_ast_graft_free(__isl_take isl_ast_graft *graft); __isl_give isl_ast_graft_list *isl_ast_graft_list_sort_guard( __isl_take isl_ast_graft_list *list); __isl_give isl_ast_graft_list *isl_ast_graft_list_merge( __isl_take isl_ast_graft_list *list1, __isl_take isl_ast_graft_list *list2, __isl_keep isl_ast_build *build); __isl_give isl_ast_node *isl_ast_graft_get_node( __isl_keep isl_ast_graft *graft); __isl_give isl_basic_set *isl_ast_graft_get_enforced( __isl_keep isl_ast_graft *graft); __isl_give isl_set *isl_ast_graft_get_guard(__isl_keep isl_ast_graft *graft); __isl_give isl_ast_graft *isl_ast_graft_insert_for( __isl_take isl_ast_graft *graft, __isl_take isl_ast_node *node); __isl_give isl_ast_graft *isl_ast_graft_add_guard( __isl_take isl_ast_graft *graft, __isl_take isl_set *guard, __isl_keep isl_ast_build *build); __isl_give isl_ast_graft *isl_ast_graft_enforce( __isl_take isl_ast_graft *graft, __isl_take isl_basic_set *enforced); __isl_give isl_ast_graft *isl_ast_graft_insert_mark( __isl_take isl_ast_graft *graft, __isl_take isl_id *mark); __isl_give isl_ast_graft_list *isl_ast_graft_list_unembed( __isl_take isl_ast_graft_list *list, int product); __isl_give isl_ast_graft_list *isl_ast_graft_list_preimage_multi_aff( __isl_take isl_ast_graft_list *list, __isl_take isl_multi_aff *ma); __isl_give isl_ast_graft_list *isl_ast_graft_list_insert_pending_guard_nodes( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build); __isl_give isl_ast_node *isl_ast_node_from_graft_list( __isl_take isl_ast_graft_list *list, __isl_keep isl_ast_build *build); __isl_give isl_basic_set *isl_ast_graft_list_extract_shared_enforced( __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_graft_list_extract_hoistable_guard( __isl_keep isl_ast_graft_list *list, __isl_keep isl_ast_build *build); __isl_give isl_ast_graft_list *isl_ast_graft_list_gist_guards( __isl_take isl_ast_graft_list *list, __isl_take isl_set *context); __isl_give isl_printer *isl_printer_print_ast_graft(__isl_take isl_printer *p, __isl_keep isl_ast_graft *graft); #endif isl-0.16.1/isl_seq.c0000664000175000017500000001430312645737061011130 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include void isl_seq_clr(isl_int *p, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_set_si(p[i], 0); } void isl_seq_set_si(isl_int *p, int v, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_set_si(p[i], v); } void isl_seq_set(isl_int *p, isl_int v, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_set(p[i], v); } void isl_seq_neg(isl_int *dst, isl_int *src, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_neg(dst[i], src[i]); } void isl_seq_cpy(isl_int *dst, isl_int *src, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_set(dst[i], src[i]); } void isl_seq_submul(isl_int *dst, isl_int f, isl_int *src, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_submul(dst[i], f, src[i]); } void isl_seq_addmul(isl_int *dst, isl_int f, isl_int *src, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_addmul(dst[i], f, src[i]); } void isl_seq_swp_or_cpy(isl_int *dst, isl_int *src, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_swap_or_set(dst[i], src[i]); } void isl_seq_scale(isl_int *dst, isl_int *src, isl_int m, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_mul(dst[i], src[i], m); } void isl_seq_scale_down(isl_int *dst, isl_int *src, isl_int m, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_divexact(dst[i], src[i], m); } void isl_seq_cdiv_q(isl_int *dst, isl_int *src, isl_int m, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_cdiv_q(dst[i], src[i], m); } void isl_seq_fdiv_q(isl_int *dst, isl_int *src, isl_int m, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_fdiv_q(dst[i], src[i], m); } void isl_seq_fdiv_r(isl_int *dst, isl_int *src, isl_int m, unsigned len) { int i; for (i = 0; i < len; ++i) isl_int_fdiv_r(dst[i], src[i], m); } void isl_seq_combine(isl_int *dst, isl_int m1, isl_int *src1, isl_int m2, isl_int *src2, unsigned len) { int i; isl_int tmp; if (dst == src1 && isl_int_is_one(m1)) { if (isl_int_is_zero(m2)) return; for (i = 0; i < len; ++i) isl_int_addmul(src1[i], m2, src2[i]); return; } isl_int_init(tmp); for (i = 0; i < len; ++i) { isl_int_mul(tmp, m1, src1[i]); isl_int_addmul(tmp, m2, src2[i]); isl_int_set(dst[i], tmp); } isl_int_clear(tmp); } /* * Let d = dst[pos] and s = src[pos] * dst is replaced by |s| dst - sgn(s)d src */ void isl_seq_elim(isl_int *dst, isl_int *src, unsigned pos, unsigned len, isl_int *m) { isl_int a; isl_int b; if (isl_int_is_zero(dst[pos])) return; isl_int_init(a); isl_int_init(b); isl_int_gcd(a, src[pos], dst[pos]); isl_int_divexact(b, dst[pos], a); if (isl_int_is_pos(src[pos])) isl_int_neg(b, b); isl_int_divexact(a, src[pos], a); isl_int_abs(a, a); isl_seq_combine(dst, a, dst, b, src, len); if (m) isl_int_mul(*m, *m, a); isl_int_clear(a); isl_int_clear(b); } int isl_seq_eq(isl_int *p1, isl_int *p2, unsigned len) { int i; for (i = 0; i < len; ++i) if (isl_int_ne(p1[i], p2[i])) return 0; return 1; } int isl_seq_cmp(isl_int *p1, isl_int *p2, unsigned len) { int i; int cmp; for (i = 0; i < len; ++i) if ((cmp = isl_int_cmp(p1[i], p2[i])) != 0) return cmp; return 0; } int isl_seq_is_neg(isl_int *p1, isl_int *p2, unsigned len) { int i; for (i = 0; i < len; ++i) { if (isl_int_abs_ne(p1[i], p2[i])) return 0; if (isl_int_is_zero(p1[i])) continue; if (isl_int_eq(p1[i], p2[i])) return 0; } return 1; } int isl_seq_first_non_zero(isl_int *p, unsigned len) { int i; for (i = 0; i < len; ++i) if (!isl_int_is_zero(p[i])) return i; return -1; } int isl_seq_last_non_zero(isl_int *p, unsigned len) { int i; for (i = len - 1; i >= 0; --i) if (!isl_int_is_zero(p[i])) return i; return -1; } void isl_seq_abs_max(isl_int *p, unsigned len, isl_int *max) { int i; isl_int_set_si(*max, 0); for (i = 0; i < len; ++i) if (isl_int_abs_gt(p[i], *max)) isl_int_abs(*max, p[i]); } int isl_seq_abs_min_non_zero(isl_int *p, unsigned len) { int i, min = isl_seq_first_non_zero(p, len); if (min < 0) return -1; for (i = min + 1; i < len; ++i) { if (isl_int_is_zero(p[i])) continue; if (isl_int_abs_lt(p[i], p[min])) min = i; } return min; } void isl_seq_gcd(isl_int *p, unsigned len, isl_int *gcd) { int i, min = isl_seq_abs_min_non_zero(p, len); if (min < 0) { isl_int_set_si(*gcd, 0); return; } isl_int_abs(*gcd, p[min]); for (i = 0; isl_int_cmp_si(*gcd, 1) > 0 && i < len; ++i) { if (i == min) continue; if (isl_int_is_zero(p[i])) continue; isl_int_gcd(*gcd, *gcd, p[i]); } } void isl_seq_normalize(struct isl_ctx *ctx, isl_int *p, unsigned len) { if (len == 0) return; isl_seq_gcd(p, len, &ctx->normalize_gcd); if (!isl_int_is_zero(ctx->normalize_gcd) && !isl_int_is_one(ctx->normalize_gcd)) isl_seq_scale_down(p, p, ctx->normalize_gcd, len); } void isl_seq_lcm(isl_int *p, unsigned len, isl_int *lcm) { int i; if (len == 0) { isl_int_set_si(*lcm, 1); return; } isl_int_set(*lcm, p[0]); for (i = 1; i < len; ++i) isl_int_lcm(*lcm, *lcm, p[i]); } void isl_seq_inner_product(isl_int *p1, isl_int *p2, unsigned len, isl_int *prod) { int i; if (len == 0) { isl_int_set_si(*prod, 0); return; } isl_int_mul(*prod, p1[0], p2[0]); for (i = 1; i < len; ++i) isl_int_addmul(*prod, p1[i], p2[i]); } uint32_t isl_seq_hash(isl_int *p, unsigned len, uint32_t hash) { int i; for (i = 0; i < len; ++i) { if (isl_int_is_zero(p[i])) continue; hash *= 16777619; hash ^= (i & 0xFF); hash = isl_int_hash(p[i], hash); } return hash; } uint32_t isl_seq_get_hash(isl_int *p, unsigned len) { uint32_t hash = isl_hash_init(); return isl_seq_hash(p, len, hash); } uint32_t isl_seq_get_hash_bits(isl_int *p, unsigned len, unsigned bits) { uint32_t hash; hash = isl_seq_get_hash(p, len); return isl_hash_bits(hash, bits); } void isl_seq_dump(isl_int *p, unsigned len) { int i; for (i = 0; i < len; ++i) { if (i) fprintf(stderr, " "); isl_int_print(stderr, p[i], 0); } fprintf(stderr, "\n"); } isl-0.16.1/isl_schedule_tree.h0000664000175000017500000002725512645737061013172 00000000000000#ifndef ISL_SCHEDLUE_TREE_H #define ISL_SCHEDLUE_TREE_H #include #include #include #include struct isl_schedule_tree; typedef struct isl_schedule_tree isl_schedule_tree; ISL_DECLARE_LIST(schedule_tree) /* A schedule (sub)tree. * * The leaves of a tree are not explicitly represented inside * the isl_schedule_tree. If a tree consists of only a leaf, * then it is equal to the static object isl_schedule_tree_empty. * * ctx may be NULL if type is isl_schedule_node_leaf. * In this case, ref has a negative value. * * The "band" field is valid when type is isl_schedule_node_band. * The "context" field is valid when type is isl_schedule_node_context * and represents constraints on the flat product of the outer band nodes, * possibly introducing additional parameters. * The "domain" field is valid when type is isl_schedule_node_domain * and introduces the statement instances scheduled by the tree. * * The "contraction" and "expansion" fields are valid when type * is isl_schedule_node_expansion. * "expansion" expands the reaching domain elements to one or more * domain elements for the subtree. * "contraction" maps these elements back to the corresponding * reaching domain element. It does not involve any domain constraints. * * The "extension" field is valid when the is isl_schedule_node_extension * maps outer schedule dimenions (the flat product of the outer band nodes) * to additional iteration domains. * * The "filter" field is valid when type is isl_schedule_node_filter * and represents the statement instances selected by the node. * * The "guard" field is valid when type is isl_schedule_node_guard * and represents constraints on the flat product of the outer band nodes * that need to be enforced by the outer nodes in the generated AST. * * The "mark" field is valid when type is isl_schedule_node_mark and * identifies the mark. * * The "children" field is valid for all types except * isl_schedule_node_leaf. This field is NULL if there are * no children (except for the implicit leaves). * * anchored is set if the node or any of its descendants depends * on its position in the schedule tree. */ struct isl_schedule_tree { int ref; isl_ctx *ctx; int anchored; enum isl_schedule_node_type type; union { isl_schedule_band *band; isl_set *context; isl_union_set *domain; struct { isl_union_pw_multi_aff *contraction; isl_union_map *expansion; }; isl_union_map *extension; isl_union_set *filter; isl_set *guard; isl_id *mark; }; isl_schedule_tree_list *children; }; isl_ctx *isl_schedule_tree_get_ctx(__isl_keep isl_schedule_tree *tree); enum isl_schedule_node_type isl_schedule_tree_get_type( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_leaf(isl_ctx *ctx); int isl_schedule_tree_is_leaf(__isl_keep isl_schedule_tree *tree); isl_bool isl_schedule_tree_plain_is_equal(__isl_keep isl_schedule_tree *tree1, __isl_keep isl_schedule_tree *tree2); __isl_give isl_schedule_tree *isl_schedule_tree_copy( __isl_keep isl_schedule_tree *tree); __isl_null isl_schedule_tree *isl_schedule_tree_free( __isl_take isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_from_band( __isl_take isl_schedule_band *band); __isl_give isl_schedule_tree *isl_schedule_tree_from_context( __isl_take isl_set *context); __isl_give isl_schedule_tree *isl_schedule_tree_from_domain( __isl_take isl_union_set *domain); __isl_give isl_schedule_tree *isl_schedule_tree_from_expansion( __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion); __isl_give isl_schedule_tree *isl_schedule_tree_from_extension( __isl_take isl_union_map *extension); __isl_give isl_schedule_tree *isl_schedule_tree_from_filter( __isl_take isl_union_set *filter); __isl_give isl_schedule_tree *isl_schedule_tree_from_guard( __isl_take isl_set *guard); __isl_give isl_schedule_tree *isl_schedule_tree_from_children( enum isl_schedule_node_type type, __isl_take isl_schedule_tree_list *list); __isl_give isl_schedule_tree *isl_schedule_tree_from_pair( enum isl_schedule_node_type type, __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2); __isl_give isl_schedule_tree *isl_schedule_tree_sequence_pair( __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2); isl_bool isl_schedule_tree_is_subtree_anchored( __isl_keep isl_schedule_tree *tree); __isl_give isl_space *isl_schedule_tree_band_get_space( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_band_intersect_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain); __isl_give isl_multi_union_pw_aff *isl_schedule_tree_band_get_partial_schedule( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_band_set_partial_schedule( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_union_pw_aff *schedule); enum isl_ast_loop_type isl_schedule_tree_band_member_get_ast_loop_type( __isl_keep isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_band_member_set_ast_loop_type( __isl_take isl_schedule_tree *tree, int pos, enum isl_ast_loop_type type); enum isl_ast_loop_type isl_schedule_tree_band_member_get_isolate_ast_loop_type( __isl_keep isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree * isl_schedule_tree_band_member_set_isolate_ast_loop_type( __isl_take isl_schedule_tree *tree, int pos, enum isl_ast_loop_type type); __isl_give isl_union_set *isl_schedule_tree_band_get_ast_build_options( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_band_set_ast_build_options( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *options); __isl_give isl_set *isl_schedule_tree_context_get_context( __isl_keep isl_schedule_tree *tree); __isl_give isl_union_set *isl_schedule_tree_domain_get_domain( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_domain_set_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain); __isl_give isl_union_pw_multi_aff *isl_schedule_tree_expansion_get_contraction( __isl_keep isl_schedule_tree *tree); __isl_give isl_union_map *isl_schedule_tree_expansion_get_expansion( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree * isl_schedule_tree_expansion_set_contraction_and_expansion( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion); __isl_give isl_union_map *isl_schedule_tree_extension_get_extension( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_extension_set_extension( __isl_take isl_schedule_tree *tree, __isl_take isl_union_map *extension); __isl_give isl_union_set *isl_schedule_tree_filter_get_filter( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_filter_set_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter); __isl_give isl_set *isl_schedule_tree_guard_get_guard( __isl_keep isl_schedule_tree *tree); __isl_give isl_id *isl_schedule_tree_mark_get_id( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_first_schedule_descendant( __isl_take isl_schedule_tree *tree, __isl_keep isl_schedule_tree *leaf); __isl_give isl_union_map *isl_schedule_tree_get_subtree_schedule_union_map( __isl_keep isl_schedule_tree *tree); unsigned isl_schedule_tree_band_n_member(__isl_keep isl_schedule_tree *tree); isl_bool isl_schedule_tree_band_member_get_coincident( __isl_keep isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_band_member_set_coincident( __isl_take isl_schedule_tree *tree, int pos, int coincident); isl_bool isl_schedule_tree_band_get_permutable( __isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_band_set_permutable( __isl_take isl_schedule_tree *tree, int permutable); int isl_schedule_tree_has_children(__isl_keep isl_schedule_tree *tree); int isl_schedule_tree_n_children(__isl_keep isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_get_child( __isl_keep isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_insert_band( __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_band *band); __isl_give isl_schedule_tree *isl_schedule_tree_insert_context( __isl_take isl_schedule_tree *tree, __isl_take isl_set *context); __isl_give isl_schedule_tree *isl_schedule_tree_insert_domain( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *domain); __isl_give isl_schedule_tree *isl_schedule_tree_insert_expansion( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion); __isl_give isl_schedule_tree *isl_schedule_tree_insert_extension( __isl_take isl_schedule_tree *tree, __isl_take isl_union_map *extension); __isl_give isl_schedule_tree *isl_schedule_tree_insert_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter); __isl_give isl_schedule_tree *isl_schedule_tree_children_insert_filter( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter); __isl_give isl_schedule_tree *isl_schedule_tree_insert_guard( __isl_take isl_schedule_tree *tree, __isl_take isl_set *guard); __isl_give isl_schedule_tree *isl_schedule_tree_insert_mark( __isl_take isl_schedule_tree *tree, __isl_take isl_id *mark); __isl_give isl_schedule_tree *isl_schedule_tree_append_to_leaves( __isl_take isl_schedule_tree *tree1, __isl_take isl_schedule_tree *tree2); __isl_give isl_schedule_tree *isl_schedule_tree_band_scale( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv); __isl_give isl_schedule_tree *isl_schedule_tree_band_scale_down( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv); __isl_give isl_schedule_tree *isl_schedule_tree_band_mod( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *mv); __isl_give isl_schedule_tree *isl_schedule_tree_band_tile( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_val *sizes); __isl_give isl_schedule_tree *isl_schedule_tree_band_shift( __isl_take isl_schedule_tree *tree, __isl_take isl_multi_union_pw_aff *shift); __isl_give isl_schedule_tree *isl_schedule_tree_band_split( __isl_take isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_band_gist( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *context); __isl_give isl_schedule_tree *isl_schedule_tree_child( __isl_take isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_reset_children( __isl_take isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_drop_child( __isl_take isl_schedule_tree *tree, int pos); __isl_give isl_schedule_tree *isl_schedule_tree_replace_child( __isl_take isl_schedule_tree *tree, int pos, __isl_take isl_schedule_tree *new_child); __isl_give isl_schedule_tree *isl_schedule_tree_sequence_splice( __isl_take isl_schedule_tree *tree, int pos, __isl_take isl_schedule_tree *child); __isl_give isl_schedule_tree *isl_schedule_tree_reset_user( __isl_take isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_tree_align_params( __isl_take isl_schedule_tree *tree, __isl_take isl_space *space); __isl_give isl_schedule_tree *isl_schedule_tree_pullback_union_pw_multi_aff( __isl_take isl_schedule_tree *tree, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_printer *isl_printer_print_schedule_tree( __isl_take isl_printer *p, __isl_keep isl_schedule_tree *tree); __isl_give isl_printer *isl_printer_print_schedule_tree_mark( __isl_take isl_printer *p, __isl_keep isl_schedule_tree *tree, int n_ancestor, int *child_pos); #endif isl-0.16.1/isl_arg.c0000664000175000017500000006606712645737060011126 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include #include #include static struct isl_arg help_arg[] = { ISL_ARG_PHANTOM_BOOL('h', "help", NULL, "print this help, then exit") }; static void set_default_choice(struct isl_arg *arg, void *opt) { if (arg->offset == (size_t) -1) return; *(unsigned *)(((char *)opt) + arg->offset) = arg->u.choice.default_value; } static void set_default_flags(struct isl_arg *arg, void *opt) { *(unsigned *)(((char *)opt) + arg->offset) = arg->u.flags.default_value; } static void set_default_bool(struct isl_arg *arg, void *opt) { if (arg->offset == (size_t) -1) return; *(unsigned *)(((char *)opt) + arg->offset) = arg->u.b.default_value; } static void set_default_child(struct isl_arg *arg, void *opt) { void *child; if (arg->offset == (size_t) -1) child = opt; else { child = calloc(1, arg->u.child.child->options_size); *(void **)(((char *)opt) + arg->offset) = child; } if (child) isl_args_set_defaults(arg->u.child.child, child); } static void set_default_user(struct isl_arg *arg, void *opt) { arg->u.user.init(((char *)opt) + arg->offset); } static void set_default_int(struct isl_arg *arg, void *opt) { *(int *)(((char *)opt) + arg->offset) = arg->u.i.default_value; } static void set_default_long(struct isl_arg *arg, void *opt) { *(long *)(((char *)opt) + arg->offset) = arg->u.l.default_value; } static void set_default_ulong(struct isl_arg *arg, void *opt) { *(unsigned long *)(((char *)opt) + arg->offset) = arg->u.ul.default_value; } static void set_default_str(struct isl_arg *arg, void *opt) { const char *str = NULL; if (arg->u.str.default_value) str = strdup(arg->u.str.default_value); *(const char **)(((char *)opt) + arg->offset) = str; } static void set_default_str_list(struct isl_arg *arg, void *opt) { *(const char ***)(((char *) opt) + arg->offset) = NULL; *(int *)(((char *) opt) + arg->u.str_list.offset_n) = 0; } void isl_args_set_defaults(struct isl_args *args, void *opt) { int i; for (i = 0; args->args[i].type != isl_arg_end; ++i) { switch (args->args[i].type) { case isl_arg_choice: set_default_choice(&args->args[i], opt); break; case isl_arg_flags: set_default_flags(&args->args[i], opt); break; case isl_arg_bool: set_default_bool(&args->args[i], opt); break; case isl_arg_child: set_default_child(&args->args[i], opt); break; case isl_arg_user: set_default_user(&args->args[i], opt); break; case isl_arg_int: set_default_int(&args->args[i], opt); break; case isl_arg_long: set_default_long(&args->args[i], opt); break; case isl_arg_ulong: set_default_ulong(&args->args[i], opt); break; case isl_arg_arg: case isl_arg_str: set_default_str(&args->args[i], opt); break; case isl_arg_str_list: set_default_str_list(&args->args[i], opt); break; case isl_arg_alias: case isl_arg_footer: case isl_arg_version: case isl_arg_end: break; } } } static void free_args(struct isl_arg *arg, void *opt); static void free_child(struct isl_arg *arg, void *opt) { if (arg->offset == (size_t) -1) free_args(arg->u.child.child->args, opt); else isl_args_free(arg->u.child.child, *(void **)(((char *)opt) + arg->offset)); } static void free_str_list(struct isl_arg *arg, void *opt) { int i; int n = *(int *)(((char *) opt) + arg->u.str_list.offset_n); char **list = *(char ***)(((char *) opt) + arg->offset); for (i = 0; i < n; ++i) free(list[i]); free(list); } static void free_user(struct isl_arg *arg, void *opt) { if (arg->u.user.clear) arg->u.user.clear(((char *)opt) + arg->offset); } static void free_args(struct isl_arg *arg, void *opt) { int i; for (i = 0; arg[i].type != isl_arg_end; ++i) { switch (arg[i].type) { case isl_arg_child: free_child(&arg[i], opt); break; case isl_arg_arg: case isl_arg_str: free(*(char **)(((char *)opt) + arg[i].offset)); break; case isl_arg_str_list: free_str_list(&arg[i], opt); break; case isl_arg_user: free_user(&arg[i], opt); break; case isl_arg_alias: case isl_arg_bool: case isl_arg_choice: case isl_arg_flags: case isl_arg_int: case isl_arg_long: case isl_arg_ulong: case isl_arg_version: case isl_arg_footer: case isl_arg_end: break; } } } void isl_args_free(struct isl_args *args, void *opt) { if (!opt) return; free_args(args->args, opt); free(opt); } /* Data structure for collecting the prefixes of ancestor nodes. * * n is the number of prefixes. * prefix[i] for i < n is a prefix of an ancestor. * len[i] for i < n is the length of prefix[i]. */ struct isl_prefixes { int n; const char *prefix[10]; size_t len[10]; }; /* Add "prefix" to the list of prefixes and return the updated * number of prefixes. */ static int add_prefix(struct isl_prefixes *prefixes, const char *prefix) { int n = prefixes->n; if (!prefix) return n; if (prefixes->n >= 10) { fprintf(stderr, "too many prefixes\n"); exit(EXIT_FAILURE); } prefixes->len[prefixes->n] = strlen(prefix); prefixes->prefix[prefixes->n] = prefix; prefixes->n++; return n; } /* Drop all prefixes starting at "first". */ static void drop_prefix(struct isl_prefixes *prefixes, int first) { prefixes->n = first; } /* Print the prefixes in "prefixes". */ static int print_prefixes(struct isl_prefixes *prefixes) { int i; int len = 0; if (!prefixes) return 0; for (i = 0; i < prefixes->n; ++i) { printf("%s-", prefixes->prefix[i]); len += strlen(prefixes->prefix[i]) + 1; } return len; } /* Check if "name" starts with one or more of the prefixes in "prefixes", * starting at *first. If so, advance the pointer beyond the prefixes * and return the updated pointer. Additionally, update *first to * the index after the last prefix found. */ static const char *skip_prefixes(const char *name, struct isl_prefixes *prefixes, int *first) { int i; for (i = first ? *first : 0; i < prefixes->n; ++i) { size_t len = prefixes->len[i]; const char *prefix = prefixes->prefix[i]; if (strncmp(name, prefix, len) == 0 && name[len] == '-') { name += len + 1; if (first) *first = i + 1; } } return name; } static int print_arg_help(struct isl_arg *decl, struct isl_prefixes *prefixes, int no) { int len = 0; if (!decl->long_name) { printf(" -%c", decl->short_name); return 4; } if (decl->short_name) { printf(" -%c, --", decl->short_name); len += 8; } else if (decl->flags & ISL_ARG_SINGLE_DASH) { printf(" -"); len += 3; } else { printf(" --"); len += 8; } if (no) { printf("no-"); len += 3; } len += print_prefixes(prefixes); printf("%s", decl->long_name); len += strlen(decl->long_name); while ((++decl)->type == isl_arg_alias) { printf(", --"); len += 4; if (no) { printf("no-"); len += 3; } printf("%s", decl->long_name); len += strlen(decl->long_name); } return len; } const void *isl_memrchr(const void *s, int c, size_t n) { const char *p = s; while (n-- > 0) if (p[n] == c) return p + n; return NULL; } static int wrap_msg(const char *s, int indent, int pos) { int len; int wrap_len = 75 - indent; if (pos + 1 >= indent) printf("\n%*s", indent, ""); else printf("%*s", indent - pos, ""); len = strlen(s); while (len > wrap_len) { const char *space = isl_memrchr(s, ' ', wrap_len); int l; if (!space) space = strchr(s + wrap_len, ' '); if (!space) break; l = space - s; printf("%.*s", l, s); s = space + 1; len -= l + 1; printf("\n%*s", indent, ""); } printf("%s", s); return len; } static int print_help_msg(struct isl_arg *decl, int pos) { if (!decl->help_msg) return pos; return wrap_msg(decl->help_msg, 30, pos); } static void print_default(struct isl_arg *decl, const char *def, int pos) { const char *default_prefix = "[default: "; const char *default_suffix = "]"; int len; len = strlen(default_prefix) + strlen(def) + strlen(default_suffix); if (!decl->help_msg) { if (pos >= 29) printf("\n%30s", ""); else printf("%*s", 30 - pos, ""); } else { if (pos + len >= 48) printf("\n%30s", ""); else printf(" "); } printf("%s%s%s", default_prefix, def, default_suffix); } static void print_default_choice(struct isl_arg *decl, void *opt, int pos) { int i; const char *s = "none"; unsigned *p; p = (unsigned *)(((char *) opt) + decl->offset); for (i = 0; decl->u.choice.choice[i].name; ++i) if (decl->u.choice.choice[i].value == *p) { s = decl->u.choice.choice[i].name; break; } print_default(decl, s, pos); } static void print_choice_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int i; int pos; pos = print_arg_help(decl, prefixes, 0); printf("="); pos++; for (i = 0; decl->u.choice.choice[i].name; ++i) { if (i) { printf("|"); pos++; } printf("%s", decl->u.choice.choice[i].name); pos += strlen(decl->u.choice.choice[i].name); } pos = print_help_msg(decl, pos); print_default_choice(decl, opt, pos); printf("\n"); } static void print_default_flags(struct isl_arg *decl, void *opt, int pos) { int i, first; const char *default_prefix = "[default: "; const char *default_suffix = "]"; int len = strlen(default_prefix) + strlen(default_suffix); unsigned *p; p = (unsigned *)(((char *) opt) + decl->offset); for (i = 0; decl->u.flags.flags[i].name; ++i) if ((*p & decl->u.flags.flags[i].mask) == decl->u.flags.flags[i].value) len += strlen(decl->u.flags.flags[i].name); if (!decl->help_msg) { if (pos >= 29) printf("\n%30s", ""); else printf("%*s", 30 - pos, ""); } else { if (pos + len >= 48) printf("\n%30s", ""); else printf(" "); } printf("%s", default_prefix); for (first = 1, i = 0; decl->u.flags.flags[i].name; ++i) if ((*p & decl->u.flags.flags[i].mask) == decl->u.flags.flags[i].value) { if (!first) printf(","); printf("%s", decl->u.flags.flags[i].name); first = 0; } printf("%s", default_suffix); } static void print_flags_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int i, j; int pos; pos = print_arg_help(decl, prefixes, 0); printf("="); pos++; for (i = 0; decl->u.flags.flags[i].name; ++i) { if (i) { printf(","); pos++; } for (j = i; decl->u.flags.flags[j].mask == decl->u.flags.flags[i].mask; ++j) { if (j != i) { printf("|"); pos++; } printf("%s", decl->u.flags.flags[j].name); pos += strlen(decl->u.flags.flags[j].name); } i = j - 1; } pos = print_help_msg(decl, pos); print_default_flags(decl, opt, pos); printf("\n"); } static void print_bool_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int pos; unsigned *p = opt ? (unsigned *)(((char *) opt) + decl->offset) : NULL; int no = p ? *p == 1 : 0; pos = print_arg_help(decl, prefixes, no); pos = print_help_msg(decl, pos); if (decl->offset != (size_t) -1) print_default(decl, no ? "yes" : "no", pos); printf("\n"); } static int print_argument_name(struct isl_arg *decl, const char *name, int pos) { printf("%c<%s>", decl->long_name ? '=' : ' ', name); return pos + 3 + strlen(name); } static void print_int_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int pos; char val[20]; int *p = (int *)(((char *) opt) + decl->offset); pos = print_arg_help(decl, prefixes, 0); pos = print_argument_name(decl, decl->argument_name, pos); pos = print_help_msg(decl, pos); snprintf(val, sizeof(val), "%d", *p); print_default(decl, val, pos); printf("\n"); } static void print_long_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int pos; long *p = (long *)(((char *) opt) + decl->offset); pos = print_arg_help(decl, prefixes, 0); if (*p != decl->u.l.default_selected) { printf("["); pos++; } printf("=long"); pos += 5; if (*p != decl->u.l.default_selected) { printf("]"); pos++; } print_help_msg(decl, pos); printf("\n"); } static void print_ulong_help(struct isl_arg *decl, struct isl_prefixes *prefixes) { int pos; pos = print_arg_help(decl, prefixes, 0); printf("=ulong"); pos += 6; print_help_msg(decl, pos); printf("\n"); } static void print_str_help(struct isl_arg *decl, struct isl_prefixes *prefixes, void *opt) { int pos; const char *a = decl->argument_name ? decl->argument_name : "string"; const char **p = (const char **)(((char *) opt) + decl->offset); pos = print_arg_help(decl, prefixes, 0); pos = print_argument_name(decl, a, pos); pos = print_help_msg(decl, pos); if (*p) print_default(decl, *p, pos); printf("\n"); } static void print_str_list_help(struct isl_arg *decl, struct isl_prefixes *prefixes) { int pos; const char *a = decl->argument_name ? decl->argument_name : "string"; pos = print_arg_help(decl, prefixes, 0); pos = print_argument_name(decl, a, pos); pos = print_help_msg(decl, pos); printf("\n"); } static void print_help(struct isl_arg *arg, struct isl_prefixes *prefixes, void *opt) { int i; int any = 0; for (i = 0; arg[i].type != isl_arg_end; ++i) { if (arg[i].flags & ISL_ARG_HIDDEN) continue; switch (arg[i].type) { case isl_arg_flags: print_flags_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_choice: print_choice_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_bool: print_bool_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_int: print_int_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_long: print_long_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_ulong: print_ulong_help(&arg[i], prefixes); any = 1; break; case isl_arg_str: print_str_help(&arg[i], prefixes, opt); any = 1; break; case isl_arg_str_list: print_str_list_help(&arg[i], prefixes); any = 1; break; case isl_arg_alias: case isl_arg_version: case isl_arg_arg: case isl_arg_footer: case isl_arg_child: case isl_arg_user: case isl_arg_end: break; } } for (i = 0; arg[i].type != isl_arg_end; ++i) { void *child; int first; if (arg[i].type != isl_arg_child) continue; if (arg[i].flags & ISL_ARG_HIDDEN) continue; if (any) printf("\n"); if (arg[i].help_msg) printf(" %s\n", arg[i].help_msg); if (arg[i].offset == (size_t) -1) child = opt; else child = *(void **)(((char *) opt) + arg[i].offset); first = add_prefix(prefixes, arg[i].long_name); print_help(arg[i].u.child.child->args, prefixes, child); drop_prefix(prefixes, first); any = 1; } } static const char *prog_name(const char *prog) { const char *slash; slash = strrchr(prog, '/'); if (slash) prog = slash + 1; if (strncmp(prog, "lt-", 3) == 0) prog += 3; return prog; } static int any_version(struct isl_arg *decl) { int i; for (i = 0; decl[i].type != isl_arg_end; ++i) { switch (decl[i].type) { case isl_arg_version: return 1; case isl_arg_child: if (any_version(decl[i].u.child.child->args)) return 1; break; default: break; } } return 0; } static void print_help_and_exit(struct isl_arg *arg, const char *prog, void *opt) { int i; struct isl_prefixes prefixes = { 0 }; printf("Usage: %s [OPTION...]", prog_name(prog)); for (i = 0; arg[i].type != isl_arg_end; ++i) if (arg[i].type == isl_arg_arg) printf(" %s", arg[i].argument_name); printf("\n\n"); print_help(arg, &prefixes, opt); printf("\n"); if (any_version(arg)) printf(" -V, --version\n"); print_bool_help(help_arg, NULL, NULL); for (i = 0; arg[i].type != isl_arg_end; ++i) { if (arg[i].type != isl_arg_footer) continue; wrap_msg(arg[i].help_msg, 0, 0); printf("\n"); } exit(0); } static int match_long_name(struct isl_arg *decl, const char *start, const char *end) { do { if (end - start == strlen(decl->long_name) && !strncmp(start, decl->long_name, end - start)) return 1; } while ((++decl)->type == isl_arg_alias); return 0; } static const char *skip_dash_dash(struct isl_arg *decl, const char *arg) { if (!strncmp(arg, "--", 2)) return arg + 2; if ((decl->flags & ISL_ARG_SINGLE_DASH) && arg[0] == '-') return arg + 1; return NULL; } static const char *skip_name(struct isl_arg *decl, const char *arg, struct isl_prefixes *prefixes, int need_argument, int *has_argument) { const char *equal; const char *name; const char *end; if (arg[0] == '-' && arg[1] && arg[1] == decl->short_name) { if (need_argument && !arg[2]) return NULL; if (has_argument) *has_argument = arg[2] != '\0'; return arg + 2; } if (!decl->long_name) return NULL; name = skip_dash_dash(decl, arg); if (!name) return NULL; equal = strchr(name, '='); if (need_argument && !equal) return NULL; if (has_argument) *has_argument = !!equal; end = equal ? equal : name + strlen(name); name = skip_prefixes(name, prefixes, NULL); if (!match_long_name(decl, name, end)) return NULL; return equal ? equal + 1 : end; } static int parse_choice_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int i; int has_argument; const char *choice; choice = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!choice) return 0; if (!has_argument && (!arg[1] || arg[1][0] == '-')) { unsigned u = decl->u.choice.default_selected; if (decl->offset != (size_t) -1) *(unsigned *)(((char *)opt) + decl->offset) = u; if (decl->u.choice.set) decl->u.choice.set(opt, u); return 1; } if (!has_argument) choice = arg[1]; for (i = 0; decl->u.choice.choice[i].name; ++i) { unsigned u; if (strcmp(choice, decl->u.choice.choice[i].name)) continue; u = decl->u.choice.choice[i].value; if (decl->offset != (size_t) -1) *(unsigned *)(((char *)opt) + decl->offset) = u; if (decl->u.choice.set) decl->u.choice.set(opt, u); return has_argument ? 1 : 2; } return 0; } static int set_flag(struct isl_arg *decl, unsigned *val, const char *flag, size_t len) { int i; for (i = 0; decl->u.flags.flags[i].name; ++i) { if (strncmp(flag, decl->u.flags.flags[i].name, len)) continue; *val &= ~decl->u.flags.flags[i].mask; *val |= decl->u.flags.flags[i].value; return 1; } return 0; } static int parse_flags_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *flags; const char *comma; unsigned val; flags = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!flags) return 0; if (!has_argument && !arg[1]) return 0; if (!has_argument) flags = arg[1]; val = 0; while ((comma = strchr(flags, ',')) != NULL) { if (!set_flag(decl, &val, flags, comma - flags)) return 0; flags = comma + 1; } if (!set_flag(decl, &val, flags, strlen(flags))) return 0; *(unsigned *)(((char *)opt) + decl->offset) = val; return has_argument ? 1 : 2; } static int parse_bool_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { const char *name; unsigned *p = (unsigned *)(((char *)opt) + decl->offset); int next_prefix; if (skip_name(decl, arg[0], prefixes, 0, NULL)) { if ((decl->flags & ISL_ARG_BOOL_ARG) && arg[1]) { char *endptr; int val = strtol(arg[1], &endptr, 0); if (*endptr == '\0' && (val == 0 || val == 1)) { if (decl->offset != (size_t) -1) *p = val; if (decl->u.b.set) decl->u.b.set(opt, val); return 2; } } if (decl->offset != (size_t) -1) *p = 1; if (decl->u.b.set) decl->u.b.set(opt, 1); return 1; } if (!decl->long_name) return 0; name = skip_dash_dash(decl, arg[0]); if (!name) return 0; next_prefix = 0; name = skip_prefixes(name, prefixes, &next_prefix); if (strncmp(name, "no-", 3)) return 0; name += 3; name = skip_prefixes(name, prefixes, &next_prefix); if (match_long_name(decl, name, name + strlen(name))) { if (decl->offset != (size_t) -1) *p = 0; if (decl->u.b.set) decl->u.b.set(opt, 0); return 1; } return 0; } static int parse_str_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *s; char **p = (char **)(((char *)opt) + decl->offset); s = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!s) return 0; if (has_argument) { free(*p); *p = strdup(s); return 1; } if (arg[1]) { free(*p); *p = strdup(arg[1]); return 2; } return 0; } static int isl_arg_str_list_append(struct isl_arg *decl, void *opt, const char *s) { int *n = (int *)(((char *) opt) + decl->u.str_list.offset_n); char **list = *(char ***)(((char *) opt) + decl->offset); list = realloc(list, (*n + 1) * sizeof(char *)); if (!list) return -1; *(char ***)(((char *) opt) + decl->offset) = list; list[*n] = strdup(s); (*n)++; return 0; } static int parse_str_list_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *s; s = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!s) return 0; if (has_argument) { isl_arg_str_list_append(decl, opt, s); return 1; } if (arg[1]) { isl_arg_str_list_append(decl, opt, arg[1]); return 2; } return 0; } static int parse_int_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *val; char *endptr; int *p = (int *)(((char *)opt) + decl->offset); val = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!val) return 0; if (has_argument) { *p = atoi(val); return 1; } if (arg[1]) { int i = strtol(arg[1], &endptr, 0); if (*endptr == '\0') { *p = i; return 2; } } return 0; } static int parse_long_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *val; char *endptr; long *p = (long *)(((char *)opt) + decl->offset); val = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!val) return 0; if (has_argument) { long l = strtol(val, NULL, 0); *p = l; if (decl->u.l.set) decl->u.l.set(opt, l); return 1; } if (arg[1]) { long l = strtol(arg[1], &endptr, 0); if (*endptr == '\0') { *p = l; if (decl->u.l.set) decl->u.l.set(opt, l); return 2; } } if (decl->u.l.default_value != decl->u.l.default_selected) { *p = decl->u.l.default_selected; if (decl->u.l.set) decl->u.l.set(opt, decl->u.l.default_selected); return 1; } return 0; } static int parse_ulong_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int has_argument; const char *val; char *endptr; unsigned long *p = (unsigned long *)(((char *)opt) + decl->offset); val = skip_name(decl, arg[0], prefixes, 0, &has_argument); if (!val) return 0; if (has_argument) { *p = strtoul(val, NULL, 0); return 1; } if (arg[1]) { unsigned long ul = strtoul(arg[1], &endptr, 0); if (*endptr == '\0') { *p = ul; return 2; } } return 0; } static int parse_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt); static int parse_child_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { void *child; int first, parsed; if (decl->offset == (size_t) -1) child = opt; else child = *(void **)(((char *)opt) + decl->offset); first = add_prefix(prefixes, decl->long_name); parsed = parse_option(decl->u.child.child->args, arg, prefixes, child); drop_prefix(prefixes, first); return parsed; } static int parse_option(struct isl_arg *decl, char **arg, struct isl_prefixes *prefixes, void *opt) { int i; for (i = 0; decl[i].type != isl_arg_end; ++i) { int parsed = 0; switch (decl[i].type) { case isl_arg_choice: parsed = parse_choice_option(&decl[i], arg, prefixes, opt); break; case isl_arg_flags: parsed = parse_flags_option(&decl[i], arg, prefixes, opt); break; case isl_arg_int: parsed = parse_int_option(&decl[i], arg, prefixes, opt); break; case isl_arg_long: parsed = parse_long_option(&decl[i], arg, prefixes, opt); break; case isl_arg_ulong: parsed = parse_ulong_option(&decl[i], arg, prefixes, opt); break; case isl_arg_bool: parsed = parse_bool_option(&decl[i], arg, prefixes, opt); break; case isl_arg_str: parsed = parse_str_option(&decl[i], arg, prefixes, opt); break; case isl_arg_str_list: parsed = parse_str_list_option(&decl[i], arg, prefixes, opt); break; case isl_arg_child: parsed = parse_child_option(&decl[i], arg, prefixes, opt); break; case isl_arg_alias: case isl_arg_arg: case isl_arg_footer: case isl_arg_user: case isl_arg_version: case isl_arg_end: break; } if (parsed) return parsed; } return 0; } static void print_version(struct isl_arg *decl) { int i; for (i = 0; decl[i].type != isl_arg_end; ++i) { switch (decl[i].type) { case isl_arg_version: decl[i].u.version.print_version(); break; case isl_arg_child: print_version(decl[i].u.child.child->args); break; default: break; } } } static void print_version_and_exit(struct isl_arg *decl) { print_version(decl); exit(0); } static int drop_argument(int argc, char **argv, int drop, int n) { for (; drop + n < argc; ++drop) argv[drop] = argv[drop + n]; return argc - n; } static int n_arg(struct isl_arg *arg) { int i; int n_arg = 0; for (i = 0; arg[i].type != isl_arg_end; ++i) if (arg[i].type == isl_arg_arg) n_arg++; return n_arg; } static int next_arg(struct isl_arg *arg, int a) { for (++a; arg[a].type != isl_arg_end; ++a) if (arg[a].type == isl_arg_arg) return a; return -1; } /* Unless ISL_ARG_SKIP_HELP is set, check if "arg" is * equal to "--help" and if so call print_help_and_exit. */ static void check_help(struct isl_args *args, char *arg, char *prog, void *opt, unsigned flags) { if (ISL_FL_ISSET(flags, ISL_ARG_SKIP_HELP)) return; if (strcmp(arg, "--help") == 0) print_help_and_exit(args->args, prog, opt); } int isl_args_parse(struct isl_args *args, int argc, char **argv, void *opt, unsigned flags) { int a = -1; int skip = 0; int i; int n; struct isl_prefixes prefixes = { 0 }; n = n_arg(args->args); for (i = 1; i < argc; ++i) { if ((strcmp(argv[i], "--version") == 0 || strcmp(argv[i], "-V") == 0) && any_version(args->args)) print_version_and_exit(args->args); } while (argc > 1 + skip) { int parsed; if (argv[1 + skip][0] != '-') { a = next_arg(args->args, a); if (a >= 0) { char **p; p = (char **)(((char *)opt)+args->args[a].offset); free(*p); *p = strdup(argv[1 + skip]); argc = drop_argument(argc, argv, 1 + skip, 1); --n; } else if (ISL_FL_ISSET(flags, ISL_ARG_ALL)) { fprintf(stderr, "%s: extra argument: %s\n", prog_name(argv[0]), argv[1 + skip]); exit(-1); } else ++skip; continue; } check_help(args, argv[1 + skip], argv[0], opt, flags); parsed = parse_option(args->args, &argv[1 + skip], &prefixes, opt); if (parsed) argc = drop_argument(argc, argv, 1 + skip, parsed); else if (ISL_FL_ISSET(flags, ISL_ARG_ALL)) { fprintf(stderr, "%s: unrecognized option: %s\n", prog_name(argv[0]), argv[1 + skip]); exit(-1); } else ++skip; } if (n > 0) { fprintf(stderr, "%s: expecting %d more argument(s)\n", prog_name(argv[0]), n); exit(-1); } return argc; } isl-0.16.1/isl_input.c0000664000175000017500000030014312645737414011501 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include #include "isl_polynomial_private.h" #include #include #include #include #include #include #include struct variable { char *name; int pos; struct variable *next; }; struct vars { struct isl_ctx *ctx; int n; struct variable *v; }; static struct vars *vars_new(struct isl_ctx *ctx) { struct vars *v; v = isl_alloc_type(ctx, struct vars); if (!v) return NULL; v->ctx = ctx; v->n = 0; v->v = NULL; return v; } static void variable_free(struct variable *var) { while (var) { struct variable *next = var->next; free(var->name); free(var); var = next; } } static void vars_free(struct vars *v) { if (!v) return; variable_free(v->v); free(v); } static void vars_drop(struct vars *v, int n) { struct variable *var; if (!v || !v->v) return; v->n -= n; var = v->v; while (--n >= 0) { struct variable *next = var->next; free(var->name); free(var); var = next; } v->v = var; } static struct variable *variable_new(struct vars *v, const char *name, int len, int pos) { struct variable *var; var = isl_calloc_type(v->ctx, struct variable); if (!var) goto error; var->name = strdup(name); var->name[len] = '\0'; var->pos = pos; var->next = v->v; return var; error: variable_free(v->v); return NULL; } static int vars_pos(struct vars *v, const char *s, int len) { int pos; struct variable *q; if (len == -1) len = strlen(s); for (q = v->v; q; q = q->next) { if (strncmp(q->name, s, len) == 0 && q->name[len] == '\0') break; } if (q) pos = q->pos; else { pos = v->n; v->v = variable_new(v, s, len, v->n); if (!v->v) return -1; v->n++; } return pos; } static int vars_add_anon(struct vars *v) { v->v = variable_new(v, "", 0, v->n); if (!v->v) return -1; v->n++; return 0; } /* Obtain next token, with some preprocessing. * In particular, evaluate expressions of the form x^y, * with x and y values. */ static struct isl_token *next_token(__isl_keep isl_stream *s) { struct isl_token *tok, *tok2; tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) return tok; if (!isl_stream_eat_if_available(s, '^')) return tok; tok2 = isl_stream_next_token(s); if (!tok2 || tok2->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok2, "expecting constant value"); goto error; } isl_int_pow_ui(tok->u.v, tok->u.v, isl_int_get_ui(tok2->u.v)); isl_token_free(tok2); return tok; error: isl_token_free(tok); isl_token_free(tok2); return NULL; } /* Read an isl_val from "s". * * The following token sequences are recognized * * "infty" -> infty * "-" "infty" -> -infty * "NaN" -> NaN * n "/" d -> n/d * v -> v * * where n, d and v are integer constants. */ __isl_give isl_val *isl_stream_read_val(__isl_keep isl_stream *s) { struct isl_token *tok = NULL; struct isl_token *tok2 = NULL; isl_val *val; tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type == ISL_TOKEN_INFTY) { isl_token_free(tok); return isl_val_infty(s->ctx); } if (tok->type == '-' && isl_stream_eat_if_available(s, ISL_TOKEN_INFTY)) { isl_token_free(tok); return isl_val_neginfty(s->ctx); } if (tok->type == ISL_TOKEN_NAN) { isl_token_free(tok); return isl_val_nan(s->ctx); } if (tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting value"); goto error; } if (isl_stream_eat_if_available(s, '/')) { tok2 = next_token(s); if (!tok2) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok2->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok2, "expecting value"); goto error; } val = isl_val_rat_from_isl_int(s->ctx, tok->u.v, tok2->u.v); val = isl_val_normalize(val); } else { val = isl_val_int_from_isl_int(s->ctx, tok->u.v); } isl_token_free(tok); isl_token_free(tok2); return val; error: isl_token_free(tok); isl_token_free(tok2); return NULL; } /* Read an isl_val from "str". */ struct isl_val *isl_val_read_from_str(struct isl_ctx *ctx, const char *str) { isl_val *val; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; val = isl_stream_read_val(s); isl_stream_free(s); return val; } static int accept_cst_factor(__isl_keep isl_stream *s, isl_int *f) { struct isl_token *tok; tok = next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting constant value"); goto error; } isl_int_mul(*f, *f, tok->u.v); isl_token_free(tok); if (isl_stream_eat_if_available(s, '*')) return accept_cst_factor(s, f); return 0; error: isl_token_free(tok); return -1; } /* Given an affine expression aff, return an affine expression * for aff % d, with d the next token on the stream, which is * assumed to be a constant. * * We introduce an integer division q = [aff/d] and the result * is set to aff - d q. */ static __isl_give isl_pw_aff *affine_mod(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_pw_aff *aff) { struct isl_token *tok; isl_pw_aff *q; tok = next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting constant value"); goto error; } q = isl_pw_aff_copy(aff); q = isl_pw_aff_scale_down(q, tok->u.v); q = isl_pw_aff_floor(q); q = isl_pw_aff_scale(q, tok->u.v); aff = isl_pw_aff_sub(aff, q); isl_token_free(tok); return aff; error: isl_pw_aff_free(aff); isl_token_free(tok); return NULL; } static __isl_give isl_pw_aff *accept_affine(__isl_keep isl_stream *s, __isl_take isl_space *space, struct vars *v); static __isl_give isl_pw_aff_list *accept_affine_list(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v); static __isl_give isl_pw_aff *accept_minmax(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v) { struct isl_token *tok; isl_pw_aff_list *list = NULL; int min; tok = isl_stream_next_token(s); if (!tok) goto error; min = tok->type == ISL_TOKEN_MIN; isl_token_free(tok); if (isl_stream_eat(s, '(')) goto error; list = accept_affine_list(s, isl_space_copy(dim), v); if (!list) goto error; if (isl_stream_eat(s, ')')) goto error; isl_space_free(dim); return min ? isl_pw_aff_list_min(list) : isl_pw_aff_list_max(list); error: isl_space_free(dim); isl_pw_aff_list_free(list); return NULL; } /* Is "tok" the start of an integer division? */ static int is_start_of_div(struct isl_token *tok) { if (!tok) return 0; if (tok->type == '[') return 1; if (tok->type == ISL_TOKEN_FLOOR) return 1; if (tok->type == ISL_TOKEN_CEIL) return 1; if (tok->type == ISL_TOKEN_FLOORD) return 1; if (tok->type == ISL_TOKEN_CEILD) return 1; return 0; } /* Read an integer division from "s" and return it as an isl_pw_aff. * * The integer division can be of the form * * [] * floor() * ceil() * floord(,) * ceild(,) */ static __isl_give isl_pw_aff *accept_div(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v) { struct isl_token *tok; int f = 0; int c = 0; int extra = 0; isl_pw_aff *pwaff = NULL; if (isl_stream_eat_if_available(s, ISL_TOKEN_FLOORD)) extra = f = 1; else if (isl_stream_eat_if_available(s, ISL_TOKEN_CEILD)) extra = c = 1; else if (isl_stream_eat_if_available(s, ISL_TOKEN_FLOOR)) f = 1; else if (isl_stream_eat_if_available(s, ISL_TOKEN_CEIL)) c = 1; if (f || c) { if (isl_stream_eat(s, '(')) goto error; } else { if (isl_stream_eat(s, '[')) goto error; } pwaff = accept_affine(s, isl_space_copy(dim), v); if (extra) { if (isl_stream_eat(s, ',')) goto error; tok = next_token(s); if (!tok) goto error; if (tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expected denominator"); isl_stream_push_token(s, tok); goto error; } isl_pw_aff_scale_down(pwaff, tok->u.v); isl_token_free(tok); } if (c) pwaff = isl_pw_aff_ceil(pwaff); else pwaff = isl_pw_aff_floor(pwaff); if (f || c) { if (isl_stream_eat(s, ')')) goto error; } else { if (isl_stream_eat(s, ']')) goto error; } isl_space_free(dim); return pwaff; error: isl_space_free(dim); isl_pw_aff_free(pwaff); return NULL; } static __isl_give isl_pw_aff *accept_affine_factor(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v) { struct isl_token *tok = NULL; isl_pw_aff *res = NULL; tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type == ISL_TOKEN_AFF) { res = isl_pw_aff_copy(tok->u.pwaff); isl_token_free(tok); } else if (tok->type == ISL_TOKEN_IDENT) { int n = v->n; int pos = vars_pos(v, tok->u.s, -1); isl_aff *aff; if (pos < 0) goto error; if (pos >= n) { vars_drop(v, v->n - n); isl_stream_error(s, tok, "unknown identifier"); goto error; } aff = isl_aff_zero_on_domain(isl_local_space_from_space(isl_space_copy(dim))); if (!aff) goto error; isl_int_set_si(aff->v->el[2 + pos], 1); res = isl_pw_aff_from_aff(aff); isl_token_free(tok); } else if (tok->type == ISL_TOKEN_VALUE) { if (isl_stream_eat_if_available(s, '*')) { res = accept_affine_factor(s, isl_space_copy(dim), v); res = isl_pw_aff_scale(res, tok->u.v); } else { isl_local_space *ls; isl_aff *aff; ls = isl_local_space_from_space(isl_space_copy(dim)); aff = isl_aff_zero_on_domain(ls); aff = isl_aff_add_constant(aff, tok->u.v); res = isl_pw_aff_from_aff(aff); } isl_token_free(tok); } else if (tok->type == '(') { isl_token_free(tok); tok = NULL; res = accept_affine(s, isl_space_copy(dim), v); if (!res) goto error; if (isl_stream_eat(s, ')')) goto error; } else if (is_start_of_div(tok)) { isl_stream_push_token(s, tok); tok = NULL; res = accept_div(s, isl_space_copy(dim), v); } else if (tok->type == ISL_TOKEN_MIN || tok->type == ISL_TOKEN_MAX) { isl_stream_push_token(s, tok); tok = NULL; res = accept_minmax(s, isl_space_copy(dim), v); } else { isl_stream_error(s, tok, "expecting factor"); goto error; } if (isl_stream_eat_if_available(s, '%') || isl_stream_eat_if_available(s, ISL_TOKEN_MOD)) { isl_space_free(dim); return affine_mod(s, v, res); } if (isl_stream_eat_if_available(s, '*')) { isl_int f; isl_int_init(f); isl_int_set_si(f, 1); if (accept_cst_factor(s, &f) < 0) { isl_int_clear(f); goto error2; } res = isl_pw_aff_scale(res, f); isl_int_clear(f); } if (isl_stream_eat_if_available(s, '/')) { isl_int f; isl_int_init(f); isl_int_set_si(f, 1); if (accept_cst_factor(s, &f) < 0) { isl_int_clear(f); goto error2; } res = isl_pw_aff_scale_down(res, f); isl_int_clear(f); } isl_space_free(dim); return res; error: isl_token_free(tok); error2: isl_pw_aff_free(res); isl_space_free(dim); return NULL; } static __isl_give isl_pw_aff *add_cst(__isl_take isl_pw_aff *pwaff, isl_int v) { isl_aff *aff; isl_space *space; space = isl_pw_aff_get_domain_space(pwaff); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_add_constant(aff, v); return isl_pw_aff_add(pwaff, isl_pw_aff_from_aff(aff)); } /* Return a piecewise affine expression defined on the specified domain * that represents NaN. */ static __isl_give isl_pw_aff *nan_on_domain(__isl_keep isl_space *space) { isl_local_space *ls; ls = isl_local_space_from_space(isl_space_copy(space)); return isl_pw_aff_nan_on_domain(ls); } static __isl_give isl_pw_aff *accept_affine(__isl_keep isl_stream *s, __isl_take isl_space *space, struct vars *v) { struct isl_token *tok = NULL; isl_local_space *ls; isl_pw_aff *res; int sign = 1; ls = isl_local_space_from_space(isl_space_copy(space)); res = isl_pw_aff_from_aff(isl_aff_zero_on_domain(ls)); if (!res) goto error; for (;;) { tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type == '-') { sign = -sign; isl_token_free(tok); continue; } if (tok->type == '(' || is_start_of_div(tok) || tok->type == ISL_TOKEN_MIN || tok->type == ISL_TOKEN_MAX || tok->type == ISL_TOKEN_IDENT || tok->type == ISL_TOKEN_AFF) { isl_pw_aff *term; isl_stream_push_token(s, tok); tok = NULL; term = accept_affine_factor(s, isl_space_copy(space), v); if (sign < 0) res = isl_pw_aff_sub(res, term); else res = isl_pw_aff_add(res, term); if (!res) goto error; sign = 1; } else if (tok->type == ISL_TOKEN_VALUE) { if (sign < 0) isl_int_neg(tok->u.v, tok->u.v); if (isl_stream_eat_if_available(s, '*') || isl_stream_next_token_is(s, ISL_TOKEN_IDENT)) { isl_pw_aff *term; term = accept_affine_factor(s, isl_space_copy(space), v); term = isl_pw_aff_scale(term, tok->u.v); res = isl_pw_aff_add(res, term); if (!res) goto error; } else { res = add_cst(res, tok->u.v); } sign = 1; } else if (tok->type == ISL_TOKEN_NAN) { res = isl_pw_aff_add(res, nan_on_domain(space)); } else { isl_stream_error(s, tok, "unexpected isl_token"); isl_stream_push_token(s, tok); isl_pw_aff_free(res); isl_space_free(space); return NULL; } isl_token_free(tok); tok = next_token(s); if (tok && tok->type == '-') { sign = -sign; isl_token_free(tok); } else if (tok && tok->type == '+') { /* nothing */ isl_token_free(tok); } else if (tok && tok->type == ISL_TOKEN_VALUE && isl_int_is_neg(tok->u.v)) { isl_stream_push_token(s, tok); } else { if (tok) isl_stream_push_token(s, tok); break; } } isl_space_free(space); return res; error: isl_space_free(space); isl_token_free(tok); isl_pw_aff_free(res); return NULL; } /* Is "type" the type of a comparison operator between lists * of affine expressions? */ static int is_list_comparator_type(int type) { switch (type) { case ISL_TOKEN_LEX_LT: case ISL_TOKEN_LEX_GT: case ISL_TOKEN_LEX_LE: case ISL_TOKEN_LEX_GE: return 1; default: return 0; } } static int is_comparator(struct isl_token *tok) { if (!tok) return 0; if (is_list_comparator_type(tok->type)) return 1; switch (tok->type) { case ISL_TOKEN_LT: case ISL_TOKEN_GT: case ISL_TOKEN_LE: case ISL_TOKEN_GE: case ISL_TOKEN_NE: case '=': return 1; default: return 0; } } static __isl_give isl_map *read_formula(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational); static __isl_give isl_pw_aff *accept_extended_affine(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v, int rational); /* Accept a ternary operator, given the first argument. */ static __isl_give isl_pw_aff *accept_ternary(__isl_keep isl_stream *s, __isl_take isl_map *cond, struct vars *v, int rational) { isl_space *dim; isl_pw_aff *pwaff1 = NULL, *pwaff2 = NULL, *pa_cond; if (!cond) return NULL; if (isl_stream_eat(s, '?')) goto error; dim = isl_space_wrap(isl_map_get_space(cond)); pwaff1 = accept_extended_affine(s, dim, v, rational); if (!pwaff1) goto error; if (isl_stream_eat(s, ':')) goto error; dim = isl_pw_aff_get_domain_space(pwaff1); pwaff2 = accept_extended_affine(s, dim, v, rational); if (!pwaff1) goto error; pa_cond = isl_set_indicator_function(isl_map_wrap(cond)); return isl_pw_aff_cond(pa_cond, pwaff1, pwaff2); error: isl_map_free(cond); isl_pw_aff_free(pwaff1); isl_pw_aff_free(pwaff2); return NULL; } /* Set *line and *col to those of the next token, if any. */ static void set_current_line_col(__isl_keep isl_stream *s, int *line, int *col) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return; *line = tok->line; *col = tok->col; isl_stream_push_token(s, tok); } /* Push a token encapsulating "pa" onto "s", with the given * line and column. */ static int push_aff(__isl_keep isl_stream *s, int line, int col, __isl_take isl_pw_aff *pa) { struct isl_token *tok; tok = isl_token_new(s->ctx, line, col, 0); if (!tok) goto error; tok->type = ISL_TOKEN_AFF; tok->u.pwaff = pa; isl_stream_push_token(s, tok); return 0; error: isl_pw_aff_free(pa); return -1; } /* Accept an affine expression that may involve ternary operators. * We first read an affine expression. * If it is not followed by a comparison operator, we simply return it. * Otherwise, we assume the affine expression is part of the first * argument of a ternary operator and try to parse that. */ static __isl_give isl_pw_aff *accept_extended_affine(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v, int rational) { isl_space *space; isl_map *cond; isl_pw_aff *pwaff; struct isl_token *tok; int line = -1, col = -1; int is_comp; set_current_line_col(s, &line, &col); pwaff = accept_affine(s, dim, v); if (rational) pwaff = isl_pw_aff_set_rational(pwaff); if (!pwaff) return NULL; tok = isl_stream_next_token(s); if (!tok) return isl_pw_aff_free(pwaff); is_comp = is_comparator(tok); isl_stream_push_token(s, tok); if (!is_comp) return pwaff; space = isl_pw_aff_get_domain_space(pwaff); cond = isl_map_universe(isl_space_unwrap(space)); if (push_aff(s, line, col, pwaff) < 0) cond = isl_map_free(cond); if (!cond) return NULL; cond = read_formula(s, v, cond, rational); return accept_ternary(s, cond, v, rational); } static __isl_give isl_map *read_var_def(__isl_keep isl_stream *s, __isl_take isl_map *map, enum isl_dim_type type, struct vars *v, int rational) { isl_pw_aff *def; int pos; isl_map *def_map; if (type == isl_dim_param) pos = isl_map_dim(map, isl_dim_param); else { pos = isl_map_dim(map, isl_dim_in); if (type == isl_dim_out) pos += isl_map_dim(map, isl_dim_out); type = isl_dim_in; } --pos; def = accept_extended_affine(s, isl_space_wrap(isl_map_get_space(map)), v, rational); def_map = isl_map_from_pw_aff(def); def_map = isl_map_equate(def_map, type, pos, isl_dim_out, 0); def_map = isl_set_unwrap(isl_map_domain(def_map)); map = isl_map_intersect(map, def_map); return map; } static __isl_give isl_pw_aff_list *accept_affine_list(__isl_keep isl_stream *s, __isl_take isl_space *dim, struct vars *v) { isl_pw_aff *pwaff; isl_pw_aff_list *list; struct isl_token *tok = NULL; pwaff = accept_affine(s, isl_space_copy(dim), v); list = isl_pw_aff_list_from_pw_aff(pwaff); if (!list) goto error; for (;;) { tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type != ',') { isl_stream_push_token(s, tok); break; } isl_token_free(tok); pwaff = accept_affine(s, isl_space_copy(dim), v); list = isl_pw_aff_list_concat(list, isl_pw_aff_list_from_pw_aff(pwaff)); if (!list) goto error; } isl_space_free(dim); return list; error: isl_space_free(dim); isl_pw_aff_list_free(list); return NULL; } static __isl_give isl_map *read_defined_var_list(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { struct isl_token *tok; while ((tok = isl_stream_next_token(s)) != NULL) { int p; int n = v->n; if (tok->type != ISL_TOKEN_IDENT) break; p = vars_pos(v, tok->u.s, -1); if (p < 0) goto error; if (p < n) { isl_stream_error(s, tok, "expecting unique identifier"); goto error; } map = isl_map_add_dims(map, isl_dim_out, 1); isl_token_free(tok); tok = isl_stream_next_token(s); if (tok && tok->type == '=') { isl_token_free(tok); map = read_var_def(s, map, isl_dim_out, v, rational); tok = isl_stream_next_token(s); } if (!tok || tok->type != ',') break; isl_token_free(tok); } if (tok) isl_stream_push_token(s, tok); return map; error: isl_token_free(tok); isl_map_free(map); return NULL; } static int next_is_tuple(__isl_keep isl_stream *s) { struct isl_token *tok; int is_tuple; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type == '[') { isl_stream_push_token(s, tok); return 1; } if (tok->type != ISL_TOKEN_IDENT && !tok->is_keyword) { isl_stream_push_token(s, tok); return 0; } is_tuple = isl_stream_next_token_is(s, '['); isl_stream_push_token(s, tok); return is_tuple; } /* Is "pa" an expression in term of earlier dimensions? * The alternative is that the dimension is defined to be equal to itself, * meaning that it has a universe domain and an expression that depends * on itself. "i" is the position of the expression in a sequence * of "n" expressions. The final dimensions of "pa" correspond to * these "n" expressions. */ static int pw_aff_is_expr(__isl_keep isl_pw_aff *pa, int i, int n) { isl_aff *aff; if (!pa) return -1; if (pa->n != 1) return 1; if (!isl_set_plain_is_universe(pa->p[0].set)) return 1; aff = pa->p[0].aff; if (isl_int_is_zero(aff->v->el[aff->v->size - n + i])) return 1; return 0; } /* Does the tuple contain any dimensions that are defined * in terms of earlier dimensions? */ static int tuple_has_expr(__isl_keep isl_multi_pw_aff *tuple) { int i, n; int has_expr = 0; isl_pw_aff *pa; if (!tuple) return -1; n = isl_multi_pw_aff_dim(tuple, isl_dim_out); for (i = 0; i < n; ++i) { pa = isl_multi_pw_aff_get_pw_aff(tuple, i); has_expr = pw_aff_is_expr(pa, i, n); isl_pw_aff_free(pa); if (has_expr < 0 || has_expr) break; } return has_expr; } /* Set the name of dimension "pos" in "space" to "name". * During printing, we add primes if the same name appears more than once * to distinguish the occurrences. Here, we remove those primes from "name" * before setting the name of the dimension. */ static __isl_give isl_space *space_set_dim_name(__isl_take isl_space *space, int pos, char *name) { char *prime; if (!name) return space; prime = strchr(name, '\''); if (prime) *prime = '\0'; space = isl_space_set_dim_name(space, isl_dim_out, pos, name); if (prime) *prime = '\''; return space; } /* Accept a piecewise affine expression. * * At the outer level, the piecewise affine expression may be of the form * * aff1 : condition1; aff2 : conditions2; ... * * or simply * * aff * * each of the affine expressions may in turn include ternary operators. * * There may be parentheses around some subexpression of "aff1" * around "aff1" itself, around "aff1 : condition1" and/or * around the entire piecewise affine expression. * We therefore remove the opening parenthesis (if any) from the stream * in case the closing parenthesis follows the colon, but if the closing * parenthesis is the first thing in the stream after the parsed affine * expression, we push the parsed expression onto the stream and parse * again in case the parentheses enclose some subexpression of "aff1". */ static __isl_give isl_pw_aff *accept_piecewise_affine(__isl_keep isl_stream *s, __isl_take isl_space *space, struct vars *v, int rational) { isl_pw_aff *res; isl_space *res_space; res_space = isl_space_from_domain(isl_space_copy(space)); res_space = isl_space_add_dims(res_space, isl_dim_out, 1); res = isl_pw_aff_empty(res_space); do { isl_pw_aff *pa; int seen_paren; int line = -1, col = -1; set_current_line_col(s, &line, &col); seen_paren = isl_stream_eat_if_available(s, '('); if (seen_paren) pa = accept_piecewise_affine(s, isl_space_copy(space), v, rational); else pa = accept_extended_affine(s, isl_space_copy(space), v, rational); if (seen_paren && isl_stream_eat_if_available(s, ')')) { seen_paren = 0; if (push_aff(s, line, col, pa) < 0) goto error; pa = accept_extended_affine(s, isl_space_copy(space), v, rational); } if (isl_stream_eat_if_available(s, ':')) { isl_space *dom_space; isl_set *dom; dom_space = isl_pw_aff_get_domain_space(pa); dom = isl_set_universe(dom_space); dom = read_formula(s, v, dom, rational); pa = isl_pw_aff_intersect_domain(pa, dom); } res = isl_pw_aff_union_add(res, pa); if (seen_paren && isl_stream_eat(s, ')')) goto error; } while (isl_stream_eat_if_available(s, ';')); isl_space_free(space); return res; error: isl_space_free(space); return isl_pw_aff_free(res); } /* Read an affine expression from "s" for use in read_tuple. * * accept_extended_affine requires a wrapped space as input. * read_tuple on the other hand expects each isl_pw_aff * to have an anonymous space. We therefore adjust the space * of the isl_pw_aff before returning it. */ static __isl_give isl_pw_aff *read_tuple_var_def(__isl_keep isl_stream *s, struct vars *v, int rational) { isl_space *space; isl_pw_aff *def; space = isl_space_wrap(isl_space_alloc(s->ctx, 0, v->n, 0)); def = accept_piecewise_affine(s, space, v, rational); space = isl_space_set_alloc(s->ctx, 0, v->n); def = isl_pw_aff_reset_domain_space(def, space); return def; } /* Read a list of tuple elements by calling "read_el" on each of them and * return a space with the same number of set dimensions derived from * the parameter space "space" and possibly updated by "read_el". * The elements in the list are separated by either "," or "][". * If "comma" is set then only "," is allowed. */ static __isl_give isl_space *read_tuple_list(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, int comma, __isl_give isl_space *(*read_el)(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, void *user), void *user) { if (!space) return NULL; space = isl_space_set_from_params(space); if (isl_stream_next_token_is(s, ']')) return space; for (;;) { struct isl_token *tok; space = isl_space_add_dims(space, isl_dim_set, 1); space = read_el(s, v, space, rational, user); if (!space) return NULL; tok = isl_stream_next_token(s); if (!comma && tok && tok->type == ']' && isl_stream_next_token_is(s, '[')) { isl_token_free(tok); tok = isl_stream_next_token(s); } else if (!tok || tok->type != ',') { if (tok) isl_stream_push_token(s, tok); break; } isl_token_free(tok); } return space; } /* Read a tuple space from "s" derived from the parameter space "space". * Call "read_el" on each element in the tuples. */ static __isl_give isl_space *read_tuple_space(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, int comma, __isl_give isl_space *(*read_el)(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, void *user), void *user) { struct isl_token *tok; char *name = NULL; isl_space *res = NULL; tok = isl_stream_next_token(s); if (!tok) goto error; if (tok->type == ISL_TOKEN_IDENT || tok->is_keyword) { name = strdup(tok->u.s); isl_token_free(tok); if (!name) goto error; } else isl_stream_push_token(s, tok); if (isl_stream_eat(s, '[')) goto error; if (next_is_tuple(s)) { isl_space *out; res = read_tuple_space(s, v, isl_space_copy(space), rational, comma, read_el, user); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; out = read_tuple_space(s, v, isl_space_copy(space), rational, comma, read_el, user); res = isl_space_range_product(res, out); } else res = read_tuple_list(s, v, isl_space_copy(space), rational, comma, read_el, user); if (isl_stream_eat(s, ']')) goto error; if (name) { res = isl_space_set_tuple_name(res, isl_dim_set, name); free(name); } isl_space_free(space); return res; error: free(name); isl_space_free(res); isl_space_free(space); return NULL; } /* Construct an isl_pw_aff defined on a space with v->n variables * that is equal to the last of those variables. */ static __isl_give isl_pw_aff *identity_tuple_el(struct vars *v) { isl_space *space; isl_aff *aff; space = isl_space_set_alloc(v->ctx, 0, v->n); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, v->n - 1, 1); return isl_pw_aff_from_aff(aff); } /* This function is called for each element in a tuple inside read_tuple. * Add a new variable to "v" and construct a corresponding isl_pw_aff defined * over a space containing all variables in "v" defined so far. * The isl_pw_aff expresses the new variable in terms of earlier variables * if a definition is provided. Otherwise, it is represented as being * equal to itself. * Add the isl_pw_aff to *list. * If the new variable was named, then adjust "space" accordingly and * return the updated space. */ static __isl_give isl_space *read_tuple_pw_aff_el(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, void *user) { isl_pw_aff_list **list = (isl_pw_aff_list **) user; isl_pw_aff *pa; struct isl_token *tok; int new_name = 0; tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return isl_space_free(space); } if (tok->type == ISL_TOKEN_IDENT) { int n = v->n; int p = vars_pos(v, tok->u.s, -1); if (p < 0) goto error; new_name = p >= n; } if (tok->type == '*') { if (vars_add_anon(v) < 0) goto error; isl_token_free(tok); pa = identity_tuple_el(v); } else if (new_name) { int pos = isl_space_dim(space, isl_dim_out) - 1; space = space_set_dim_name(space, pos, v->v->name); isl_token_free(tok); if (isl_stream_eat_if_available(s, '=')) pa = read_tuple_var_def(s, v, rational); else pa = identity_tuple_el(v); } else { isl_stream_push_token(s, tok); tok = NULL; if (vars_add_anon(v) < 0) goto error; pa = read_tuple_var_def(s, v, rational); } *list = isl_pw_aff_list_add(*list, pa); if (!*list) return isl_space_free(space); return space; error: isl_token_free(tok); return isl_space_free(space); } /* Read a tuple and represent it as an isl_multi_pw_aff. * The range space of the isl_multi_pw_aff is the space of the tuple. * The domain space is an anonymous space * with a dimension for each variable in the set of variables in "v", * including the variables in the range. * If a given dimension is not defined in terms of earlier dimensions in * the input, then the corresponding isl_pw_aff is set equal to one time * the variable corresponding to the dimension being defined. * * The elements in the tuple are collected in a list by read_tuple_pw_aff_el. * Each element in this list is defined over a space representing * the variables defined so far. We need to adjust the earlier * elements to have as many variables in the domain as the final * element in the list. */ static __isl_give isl_multi_pw_aff *read_tuple(__isl_keep isl_stream *s, struct vars *v, int rational, int comma) { int i, n; isl_space *space; isl_pw_aff_list *list; space = isl_space_params_alloc(v->ctx, 0); list = isl_pw_aff_list_alloc(s->ctx, 0); space = read_tuple_space(s, v, space, rational, comma, &read_tuple_pw_aff_el, &list); n = isl_space_dim(space, isl_dim_set); for (i = 0; i + 1 < n; ++i) { isl_pw_aff *pa; pa = isl_pw_aff_list_get_pw_aff(list, i); pa = isl_pw_aff_add_dims(pa, isl_dim_in, n - (i + 1)); list = isl_pw_aff_list_set_pw_aff(list, i, pa); } space = isl_space_from_range(space); space = isl_space_add_dims(space, isl_dim_in, v->n); return isl_multi_pw_aff_from_pw_aff_list(space, list); } /* Add the tuple represented by the isl_multi_pw_aff "tuple" to "map". * We first create the appropriate space in "map" based on the range * space of this isl_multi_pw_aff. Then, we add equalities based * on the affine expressions. These live in an anonymous space, * however, so we first need to reset the space to that of "map". */ static __isl_give isl_map *map_from_tuple(__isl_take isl_multi_pw_aff *tuple, __isl_take isl_map *map, enum isl_dim_type type, struct vars *v, int rational) { int i, n; isl_ctx *ctx; isl_space *space = NULL; if (!map || !tuple) goto error; ctx = isl_multi_pw_aff_get_ctx(tuple); n = isl_multi_pw_aff_dim(tuple, isl_dim_out); space = isl_space_range(isl_multi_pw_aff_get_space(tuple)); if (!space) goto error; if (type == isl_dim_param) { if (isl_space_has_tuple_name(space, isl_dim_set) || isl_space_is_wrapping(space)) { isl_die(ctx, isl_error_invalid, "parameter tuples cannot be named or nested", goto error); } map = isl_map_add_dims(map, type, n); for (i = 0; i < n; ++i) { isl_id *id; if (!isl_space_has_dim_name(space, isl_dim_set, i)) isl_die(ctx, isl_error_invalid, "parameters must be named", goto error); id = isl_space_get_dim_id(space, isl_dim_set, i); map = isl_map_set_dim_id(map, isl_dim_param, i, id); } } else if (type == isl_dim_in) { isl_set *set; set = isl_set_universe(isl_space_copy(space)); if (rational) set = isl_set_set_rational(set); set = isl_set_intersect_params(set, isl_map_params(map)); map = isl_map_from_domain(set); } else { isl_set *set; set = isl_set_universe(isl_space_copy(space)); if (rational) set = isl_set_set_rational(set); map = isl_map_from_domain_and_range(isl_map_domain(map), set); } for (i = 0; i < n; ++i) { isl_pw_aff *pa; isl_space *space; isl_aff *aff; isl_set *set; isl_map *map_i; pa = isl_multi_pw_aff_get_pw_aff(tuple, i); space = isl_pw_aff_get_domain_space(pa); aff = isl_aff_zero_on_domain(isl_local_space_from_space(space)); aff = isl_aff_add_coefficient_si(aff, isl_dim_in, v->n - n + i, -1); pa = isl_pw_aff_add(pa, isl_pw_aff_from_aff(aff)); if (rational) pa = isl_pw_aff_set_rational(pa); set = isl_pw_aff_zero_set(pa); map_i = isl_map_from_range(set); map_i = isl_map_reset_space(map_i, isl_map_get_space(map)); map = isl_map_intersect(map, map_i); } isl_space_free(space); isl_multi_pw_aff_free(tuple); return map; error: isl_space_free(space); isl_multi_pw_aff_free(tuple); isl_map_free(map); return NULL; } /* Read a tuple from "s" and add it to "map". * The tuple is initially represented as an isl_multi_pw_aff and * then added to "map". */ static __isl_give isl_map *read_map_tuple(__isl_keep isl_stream *s, __isl_take isl_map *map, enum isl_dim_type type, struct vars *v, int rational, int comma) { isl_multi_pw_aff *tuple; tuple = read_tuple(s, v, rational, comma); if (!tuple) return isl_map_free(map); return map_from_tuple(tuple, map, type, v, rational); } /* Given two equal-length lists of piecewise affine expression with the space * of "set" as domain, construct a set in the same space that expresses * that "left" and "right" satisfy the comparison "type". * * A space is constructed of the same dimension as the number of elements * in the two lists. The comparison is then expressed in a map from * this space to itself and wrapped into a set. Finally the two lists * of piecewise affine expressions are plugged into this set. * * Let S be the space of "set" and T the constructed space. * The lists are first changed into two isl_multi_pw_affs in S -> T and * then combined into an isl_multi_pw_aff in S -> [T -> T], * while the comparison is first expressed in T -> T, then [T -> T] * and finally in S. */ static __isl_give isl_set *list_cmp(__isl_keep isl_set *set, int type, __isl_take isl_pw_aff_list *left, __isl_take isl_pw_aff_list *right) { isl_space *space; int n; isl_multi_pw_aff *mpa1, *mpa2; if (!set || !left || !right) goto error; space = isl_set_get_space(set); n = isl_pw_aff_list_n_pw_aff(left); space = isl_space_from_domain(space); space = isl_space_add_dims(space, isl_dim_out, n); mpa1 = isl_multi_pw_aff_from_pw_aff_list(isl_space_copy(space), left); mpa2 = isl_multi_pw_aff_from_pw_aff_list(isl_space_copy(space), right); mpa1 = isl_multi_pw_aff_range_product(mpa1, mpa2); space = isl_space_range(space); switch (type) { case ISL_TOKEN_LEX_LT: set = isl_map_wrap(isl_map_lex_lt(space)); break; case ISL_TOKEN_LEX_GT: set = isl_map_wrap(isl_map_lex_gt(space)); break; case ISL_TOKEN_LEX_LE: set = isl_map_wrap(isl_map_lex_le(space)); break; case ISL_TOKEN_LEX_GE: set = isl_map_wrap(isl_map_lex_ge(space)); break; default: isl_multi_pw_aff_free(mpa1); isl_space_free(space); isl_die(isl_set_get_ctx(set), isl_error_internal, "unhandled list comparison type", return NULL); } set = isl_set_preimage_multi_pw_aff(set, mpa1); return set; error: isl_pw_aff_list_free(left); isl_pw_aff_list_free(right); return NULL; } /* Construct constraints of the form * * a op b * * where a is an element in "left", op is an operator of type "type" and * b is an element in "right", add the constraints to "set" and return * the result. * "rational" is set if the constraints should be treated as * a rational constraints. * * If "type" is the type of a comparison operator between lists * of affine expressions, then a single (compound) constraint * is constructed by list_cmp instead. */ static __isl_give isl_set *construct_constraints( __isl_take isl_set *set, int type, __isl_keep isl_pw_aff_list *left, __isl_keep isl_pw_aff_list *right, int rational) { isl_set *cond; left = isl_pw_aff_list_copy(left); right = isl_pw_aff_list_copy(right); if (rational) { left = isl_pw_aff_list_set_rational(left); right = isl_pw_aff_list_set_rational(right); } if (is_list_comparator_type(type)) cond = list_cmp(set, type, left, right); else if (type == ISL_TOKEN_LE) cond = isl_pw_aff_list_le_set(left, right); else if (type == ISL_TOKEN_GE) cond = isl_pw_aff_list_ge_set(left, right); else if (type == ISL_TOKEN_LT) cond = isl_pw_aff_list_lt_set(left, right); else if (type == ISL_TOKEN_GT) cond = isl_pw_aff_list_gt_set(left, right); else if (type == ISL_TOKEN_NE) cond = isl_pw_aff_list_ne_set(left, right); else cond = isl_pw_aff_list_eq_set(left, right); return isl_set_intersect(set, cond); } /* Read a constraint from "s", add it to "map" and return the result. * "v" contains a description of the identifiers parsed so far. * "rational" is set if the constraint should be treated as * a rational constraint. * The constraint read from "s" may be applied to multiple pairs * of affine expressions and may be chained. * In particular, a list of affine expressions is read, followed * by a comparison operator and another list of affine expressions. * The comparison operator is then applied to each pair of elements * in the two lists and the results are added to "map". * However, if the operator expects two lists of affine expressions, * then it is applied directly to those lists and the two lists * are required to have the same length. * If the next token is another comparison operator, then another * list of affine expressions is read and the process repeats. * * The processing is performed on a wrapped copy of "map" because * an affine expression cannot have a binary relation as domain. */ static __isl_give isl_map *add_constraint(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { struct isl_token *tok; int type; isl_pw_aff_list *list1 = NULL, *list2 = NULL; int n1, n2; isl_set *set; set = isl_map_wrap(map); list1 = accept_affine_list(s, isl_set_get_space(set), v); if (!list1) goto error; tok = isl_stream_next_token(s); if (!is_comparator(tok)) { isl_stream_error(s, tok, "missing operator"); if (tok) isl_stream_push_token(s, tok); goto error; } type = tok->type; isl_token_free(tok); for (;;) { list2 = accept_affine_list(s, isl_set_get_space(set), v); if (!list2) goto error; n1 = isl_pw_aff_list_n_pw_aff(list1); n2 = isl_pw_aff_list_n_pw_aff(list2); if (is_list_comparator_type(type) && n1 != n2) { isl_stream_error(s, NULL, "list arguments not of same size"); goto error; } set = construct_constraints(set, type, list1, list2, rational); isl_pw_aff_list_free(list1); list1 = list2; tok = isl_stream_next_token(s); if (!is_comparator(tok)) { if (tok) isl_stream_push_token(s, tok); break; } type = tok->type; isl_token_free(tok); } isl_pw_aff_list_free(list1); return isl_set_unwrap(set); error: isl_pw_aff_list_free(list1); isl_pw_aff_list_free(list2); isl_set_free(set); return NULL; } static __isl_give isl_map *read_exists(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { int n = v->n; int seen_paren = isl_stream_eat_if_available(s, '('); map = isl_map_from_domain(isl_map_wrap(map)); map = read_defined_var_list(s, v, map, rational); if (isl_stream_eat(s, ':')) goto error; map = read_formula(s, v, map, rational); map = isl_set_unwrap(isl_map_domain(map)); vars_drop(v, v->n - n); if (seen_paren && isl_stream_eat(s, ')')) goto error; return map; error: isl_map_free(map); return NULL; } /* Parse an expression between parentheses and push the result * back on the stream. * * The parsed expression may be either an affine expression * or a condition. The first type is pushed onto the stream * as an isl_pw_aff, while the second is pushed as an isl_map. * * If the initial token indicates the start of a condition, * we parse it as such. * Otherwise, we first parse an affine expression and push * that onto the stream. If the affine expression covers the * entire expression between parentheses, we return. * Otherwise, we assume that the affine expression is the * start of a condition and continue parsing. */ static int resolve_paren_expr(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { struct isl_token *tok, *tok2; int line, col; isl_pw_aff *pwaff; tok = isl_stream_next_token(s); if (!tok || tok->type != '(') goto error; if (isl_stream_next_token_is(s, '(')) if (resolve_paren_expr(s, v, isl_map_copy(map), rational)) goto error; if (isl_stream_next_token_is(s, ISL_TOKEN_EXISTS) || isl_stream_next_token_is(s, ISL_TOKEN_NOT) || isl_stream_next_token_is(s, ISL_TOKEN_TRUE) || isl_stream_next_token_is(s, ISL_TOKEN_FALSE) || isl_stream_next_token_is(s, ISL_TOKEN_MAP)) { map = read_formula(s, v, map, rational); if (isl_stream_eat(s, ')')) goto error; tok->type = ISL_TOKEN_MAP; tok->u.map = map; isl_stream_push_token(s, tok); return 0; } tok2 = isl_stream_next_token(s); if (!tok2) goto error; line = tok2->line; col = tok2->col; isl_stream_push_token(s, tok2); pwaff = accept_affine(s, isl_space_wrap(isl_map_get_space(map)), v); if (!pwaff) goto error; tok2 = isl_token_new(s->ctx, line, col, 0); if (!tok2) goto error2; tok2->type = ISL_TOKEN_AFF; tok2->u.pwaff = pwaff; if (isl_stream_eat_if_available(s, ')')) { isl_stream_push_token(s, tok2); isl_token_free(tok); isl_map_free(map); return 0; } isl_stream_push_token(s, tok2); map = read_formula(s, v, map, rational); if (isl_stream_eat(s, ')')) goto error; tok->type = ISL_TOKEN_MAP; tok->u.map = map; isl_stream_push_token(s, tok); return 0; error2: isl_pw_aff_free(pwaff); error: isl_token_free(tok); isl_map_free(map); return -1; } static __isl_give isl_map *read_conjunct(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { if (isl_stream_next_token_is(s, '(')) if (resolve_paren_expr(s, v, isl_map_copy(map), rational)) goto error; if (isl_stream_next_token_is(s, ISL_TOKEN_MAP)) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) goto error; isl_map_free(map); map = isl_map_copy(tok->u.map); isl_token_free(tok); return map; } if (isl_stream_eat_if_available(s, ISL_TOKEN_EXISTS)) return read_exists(s, v, map, rational); if (isl_stream_eat_if_available(s, ISL_TOKEN_TRUE)) return map; if (isl_stream_eat_if_available(s, ISL_TOKEN_FALSE)) { isl_space *dim = isl_map_get_space(map); isl_map_free(map); return isl_map_empty(dim); } return add_constraint(s, v, map, rational); error: isl_map_free(map); return NULL; } static __isl_give isl_map *read_conjuncts(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { isl_map *res; int negate; negate = isl_stream_eat_if_available(s, ISL_TOKEN_NOT); res = read_conjunct(s, v, isl_map_copy(map), rational); if (negate) res = isl_map_subtract(isl_map_copy(map), res); while (res && isl_stream_eat_if_available(s, ISL_TOKEN_AND)) { isl_map *res_i; negate = isl_stream_eat_if_available(s, ISL_TOKEN_NOT); res_i = read_conjunct(s, v, isl_map_copy(map), rational); if (negate) res = isl_map_subtract(res, res_i); else res = isl_map_intersect(res, res_i); } isl_map_free(map); return res; } static struct isl_map *read_disjuncts(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { isl_map *res; if (isl_stream_next_token_is(s, '}')) { isl_space *dim = isl_map_get_space(map); isl_map_free(map); return isl_map_universe(dim); } res = read_conjuncts(s, v, isl_map_copy(map), rational); while (isl_stream_eat_if_available(s, ISL_TOKEN_OR)) { isl_map *res_i; res_i = read_conjuncts(s, v, isl_map_copy(map), rational); res = isl_map_union(res, res_i); } isl_map_free(map); return res; } /* Read a first order formula from "s", add the corresponding * constraints to "map" and return the result. * * In particular, read a formula of the form * * a * * or * * a implies b * * where a and b are disjunctions. * * In the first case, map is replaced by * * map \cap { [..] : a } * * In the second case, it is replaced by * * (map \setminus { [..] : a}) \cup (map \cap { [..] : b }) */ static __isl_give isl_map *read_formula(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_map *map, int rational) { isl_map *res; res = read_disjuncts(s, v, isl_map_copy(map), rational); if (isl_stream_eat_if_available(s, ISL_TOKEN_IMPLIES)) { isl_map *res2; res = isl_map_subtract(isl_map_copy(map), res); res2 = read_disjuncts(s, v, map, rational); res = isl_map_union(res, res2); } else isl_map_free(map); return res; } static int polylib_pos_to_isl_pos(__isl_keep isl_basic_map *bmap, int pos) { if (pos < isl_basic_map_dim(bmap, isl_dim_out)) return 1 + isl_basic_map_dim(bmap, isl_dim_param) + isl_basic_map_dim(bmap, isl_dim_in) + pos; pos -= isl_basic_map_dim(bmap, isl_dim_out); if (pos < isl_basic_map_dim(bmap, isl_dim_in)) return 1 + isl_basic_map_dim(bmap, isl_dim_param) + pos; pos -= isl_basic_map_dim(bmap, isl_dim_in); if (pos < isl_basic_map_dim(bmap, isl_dim_div)) return 1 + isl_basic_map_dim(bmap, isl_dim_param) + isl_basic_map_dim(bmap, isl_dim_in) + isl_basic_map_dim(bmap, isl_dim_out) + pos; pos -= isl_basic_map_dim(bmap, isl_dim_div); if (pos < isl_basic_map_dim(bmap, isl_dim_param)) return 1 + pos; return 0; } static __isl_give isl_basic_map *basic_map_read_polylib_constraint( __isl_keep isl_stream *s, __isl_take isl_basic_map *bmap) { int j; struct isl_token *tok; int type; int k; isl_int *c; if (!bmap) return NULL; tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting coefficient"); if (tok) isl_stream_push_token(s, tok); goto error; } if (!tok->on_new_line) { isl_stream_error(s, tok, "coefficient should appear on new line"); isl_stream_push_token(s, tok); goto error; } type = isl_int_get_si(tok->u.v); isl_token_free(tok); isl_assert(s->ctx, type == 0 || type == 1, goto error); if (type == 0) { k = isl_basic_map_alloc_equality(bmap); c = bmap->eq[k]; } else { k = isl_basic_map_alloc_inequality(bmap); c = bmap->ineq[k]; } if (k < 0) goto error; for (j = 0; j < 1 + isl_basic_map_total_dim(bmap); ++j) { int pos; tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting coefficient"); if (tok) isl_stream_push_token(s, tok); goto error; } if (tok->on_new_line) { isl_stream_error(s, tok, "coefficient should not appear on new line"); isl_stream_push_token(s, tok); goto error; } pos = polylib_pos_to_isl_pos(bmap, j); isl_int_set(c[pos], tok->u.v); isl_token_free(tok); } return bmap; error: isl_basic_map_free(bmap); return NULL; } static __isl_give isl_basic_map *basic_map_read_polylib( __isl_keep isl_stream *s) { int i; struct isl_token *tok; struct isl_token *tok2; int n_row, n_col; int on_new_line; unsigned in = 0, out, local = 0; struct isl_basic_map *bmap = NULL; int nparam = 0; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } tok2 = isl_stream_next_token(s); if (!tok2) { isl_token_free(tok); isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } if (tok->type != ISL_TOKEN_VALUE || tok2->type != ISL_TOKEN_VALUE) { isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); isl_stream_error(s, NULL, "expecting constraint matrix dimensions"); return NULL; } n_row = isl_int_get_si(tok->u.v); n_col = isl_int_get_si(tok2->u.v); on_new_line = tok2->on_new_line; isl_token_free(tok2); isl_token_free(tok); isl_assert(s->ctx, !on_new_line, return NULL); isl_assert(s->ctx, n_row >= 0, return NULL); isl_assert(s->ctx, n_col >= 2 + nparam, return NULL); tok = isl_stream_next_token_on_same_line(s); if (tok) { if (tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting number of output dimensions"); isl_stream_push_token(s, tok); goto error; } out = isl_int_get_si(tok->u.v); isl_token_free(tok); tok = isl_stream_next_token_on_same_line(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting number of input dimensions"); if (tok) isl_stream_push_token(s, tok); goto error; } in = isl_int_get_si(tok->u.v); isl_token_free(tok); tok = isl_stream_next_token_on_same_line(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting number of existentials"); if (tok) isl_stream_push_token(s, tok); goto error; } local = isl_int_get_si(tok->u.v); isl_token_free(tok); tok = isl_stream_next_token_on_same_line(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting number of parameters"); if (tok) isl_stream_push_token(s, tok); goto error; } nparam = isl_int_get_si(tok->u.v); isl_token_free(tok); if (n_col != 1 + out + in + local + nparam + 1) { isl_stream_error(s, NULL, "dimensions don't match"); goto error; } } else out = n_col - 2 - nparam; bmap = isl_basic_map_alloc(s->ctx, nparam, in, out, local, n_row, n_row); if (!bmap) return NULL; for (i = 0; i < local; ++i) { int k = isl_basic_map_alloc_div(bmap); if (k < 0) goto error; isl_seq_clr(bmap->div[k], 1 + 1 + nparam + in + out + local); } for (i = 0; i < n_row; ++i) bmap = basic_map_read_polylib_constraint(s, bmap); tok = isl_stream_next_token_on_same_line(s); if (tok) { isl_stream_error(s, tok, "unexpected extra token on line"); isl_stream_push_token(s, tok); goto error; } bmap = isl_basic_map_simplify(bmap); bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } static struct isl_map *map_read_polylib(__isl_keep isl_stream *s) { struct isl_token *tok; struct isl_token *tok2; int i, n; struct isl_map *map; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } tok2 = isl_stream_next_token_on_same_line(s); if (tok2 && tok2->type == ISL_TOKEN_VALUE) { isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); return isl_map_from_basic_map(basic_map_read_polylib(s)); } if (tok2) { isl_stream_error(s, tok2, "unexpected token"); isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); return NULL; } n = isl_int_get_si(tok->u.v); isl_token_free(tok); isl_assert(s->ctx, n >= 1, return NULL); map = isl_map_from_basic_map(basic_map_read_polylib(s)); for (i = 1; map && i < n; ++i) map = isl_map_union(map, isl_map_from_basic_map(basic_map_read_polylib(s))); return map; } static int optional_power(__isl_keep isl_stream *s) { int pow; struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return 1; if (tok->type != '^') { isl_stream_push_token(s, tok); return 1; } isl_token_free(tok); tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting exponent"); if (tok) isl_stream_push_token(s, tok); return 1; } pow = isl_int_get_si(tok->u.v); isl_token_free(tok); return pow; } static __isl_give isl_pw_qpolynomial *read_term(__isl_keep isl_stream *s, __isl_keep isl_map *map, struct vars *v); static __isl_give isl_pw_qpolynomial *read_factor(__isl_keep isl_stream *s, __isl_keep isl_map *map, struct vars *v) { isl_pw_qpolynomial *pwqp; struct isl_token *tok; tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); return NULL; } if (tok->type == '(') { int pow; isl_token_free(tok); pwqp = read_term(s, map, v); if (!pwqp) return NULL; if (isl_stream_eat(s, ')')) goto error; pow = optional_power(s); pwqp = isl_pw_qpolynomial_pow(pwqp, pow); } else if (tok->type == ISL_TOKEN_VALUE) { struct isl_token *tok2; isl_qpolynomial *qp; tok2 = isl_stream_next_token(s); if (tok2 && tok2->type == '/') { isl_token_free(tok2); tok2 = next_token(s); if (!tok2 || tok2->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok2, "expected denominator"); isl_token_free(tok); isl_token_free(tok2); return NULL; } qp = isl_qpolynomial_rat_cst_on_domain(isl_map_get_space(map), tok->u.v, tok2->u.v); isl_token_free(tok2); } else { isl_stream_push_token(s, tok2); qp = isl_qpolynomial_cst_on_domain(isl_map_get_space(map), tok->u.v); } isl_token_free(tok); pwqp = isl_pw_qpolynomial_from_qpolynomial(qp); } else if (tok->type == ISL_TOKEN_INFTY) { isl_qpolynomial *qp; isl_token_free(tok); qp = isl_qpolynomial_infty_on_domain(isl_map_get_space(map)); pwqp = isl_pw_qpolynomial_from_qpolynomial(qp); } else if (tok->type == ISL_TOKEN_NAN) { isl_qpolynomial *qp; isl_token_free(tok); qp = isl_qpolynomial_nan_on_domain(isl_map_get_space(map)); pwqp = isl_pw_qpolynomial_from_qpolynomial(qp); } else if (tok->type == ISL_TOKEN_IDENT) { int n = v->n; int pos = vars_pos(v, tok->u.s, -1); int pow; isl_qpolynomial *qp; if (pos < 0) { isl_token_free(tok); return NULL; } if (pos >= n) { vars_drop(v, v->n - n); isl_stream_error(s, tok, "unknown identifier"); isl_token_free(tok); return NULL; } isl_token_free(tok); pow = optional_power(s); qp = isl_qpolynomial_var_pow_on_domain(isl_map_get_space(map), pos, pow); pwqp = isl_pw_qpolynomial_from_qpolynomial(qp); } else if (is_start_of_div(tok)) { isl_pw_aff *pwaff; int pow; isl_stream_push_token(s, tok); pwaff = accept_div(s, isl_map_get_space(map), v); pow = optional_power(s); pwqp = isl_pw_qpolynomial_from_pw_aff(pwaff); pwqp = isl_pw_qpolynomial_pow(pwqp, pow); } else if (tok->type == '-') { isl_token_free(tok); pwqp = read_factor(s, map, v); pwqp = isl_pw_qpolynomial_neg(pwqp); } else { isl_stream_error(s, tok, "unexpected isl_token"); isl_stream_push_token(s, tok); return NULL; } if (isl_stream_eat_if_available(s, '*') || isl_stream_next_token_is(s, ISL_TOKEN_IDENT)) { isl_pw_qpolynomial *pwqp2; pwqp2 = read_factor(s, map, v); pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp2); } return pwqp; error: isl_pw_qpolynomial_free(pwqp); return NULL; } static __isl_give isl_pw_qpolynomial *read_term(__isl_keep isl_stream *s, __isl_keep isl_map *map, struct vars *v) { struct isl_token *tok; isl_pw_qpolynomial *pwqp; pwqp = read_factor(s, map, v); for (;;) { tok = next_token(s); if (!tok) return pwqp; if (tok->type == '+') { isl_pw_qpolynomial *pwqp2; isl_token_free(tok); pwqp2 = read_factor(s, map, v); pwqp = isl_pw_qpolynomial_add(pwqp, pwqp2); } else if (tok->type == '-') { isl_pw_qpolynomial *pwqp2; isl_token_free(tok); pwqp2 = read_factor(s, map, v); pwqp = isl_pw_qpolynomial_sub(pwqp, pwqp2); } else if (tok->type == ISL_TOKEN_VALUE && isl_int_is_neg(tok->u.v)) { isl_pw_qpolynomial *pwqp2; isl_stream_push_token(s, tok); pwqp2 = read_factor(s, map, v); pwqp = isl_pw_qpolynomial_add(pwqp, pwqp2); } else { isl_stream_push_token(s, tok); break; } } return pwqp; } static __isl_give isl_map *read_optional_formula(__isl_keep isl_stream *s, __isl_take isl_map *map, struct vars *v, int rational) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type == ':' || (tok->type == ISL_TOKEN_OR && !strcmp(tok->u.s, "|"))) { isl_token_free(tok); map = read_formula(s, v, map, rational); } else isl_stream_push_token(s, tok); return map; error: isl_map_free(map); return NULL; } static struct isl_obj obj_read_poly(__isl_keep isl_stream *s, __isl_take isl_map *map, struct vars *v, int n) { struct isl_obj obj = { isl_obj_pw_qpolynomial, NULL }; isl_pw_qpolynomial *pwqp; struct isl_set *set; pwqp = read_term(s, map, v); map = read_optional_formula(s, map, v, 0); set = isl_map_range(map); pwqp = isl_pw_qpolynomial_intersect_domain(pwqp, set); vars_drop(v, v->n - n); obj.v = pwqp; return obj; } static struct isl_obj obj_read_poly_or_fold(__isl_keep isl_stream *s, __isl_take isl_set *set, struct vars *v, int n) { struct isl_obj obj = { isl_obj_pw_qpolynomial_fold, NULL }; isl_pw_qpolynomial *pwqp; isl_pw_qpolynomial_fold *pwf = NULL; if (!isl_stream_eat_if_available(s, ISL_TOKEN_MAX)) return obj_read_poly(s, set, v, n); if (isl_stream_eat(s, '(')) goto error; pwqp = read_term(s, set, v); pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(isl_fold_max, pwqp); while (isl_stream_eat_if_available(s, ',')) { isl_pw_qpolynomial_fold *pwf_i; pwqp = read_term(s, set, v); pwf_i = isl_pw_qpolynomial_fold_from_pw_qpolynomial(isl_fold_max, pwqp); pwf = isl_pw_qpolynomial_fold_fold(pwf, pwf_i); } if (isl_stream_eat(s, ')')) goto error; set = read_optional_formula(s, set, v, 0); pwf = isl_pw_qpolynomial_fold_intersect_domain(pwf, set); vars_drop(v, v->n - n); obj.v = pwf; return obj; error: isl_set_free(set); isl_pw_qpolynomial_fold_free(pwf); obj.type = isl_obj_none; return obj; } static int is_rational(__isl_keep isl_stream *s) { struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type == ISL_TOKEN_RAT && isl_stream_next_token_is(s, ':')) { isl_token_free(tok); isl_stream_eat(s, ':'); return 1; } isl_stream_push_token(s, tok); return 0; } static struct isl_obj obj_read_body(__isl_keep isl_stream *s, __isl_take isl_map *map, struct vars *v) { struct isl_token *tok; struct isl_obj obj = { isl_obj_set, NULL }; int n = v->n; int rational; rational = is_rational(s); if (rational) map = isl_map_set_rational(map); if (isl_stream_next_token_is(s, ':')) { obj.type = isl_obj_set; obj.v = read_optional_formula(s, map, v, rational); return obj; } if (!next_is_tuple(s)) return obj_read_poly_or_fold(s, map, v, n); map = read_map_tuple(s, map, isl_dim_in, v, rational, 0); if (!map) goto error; tok = isl_stream_next_token(s); if (!tok) goto error; if (tok->type == ISL_TOKEN_TO) { obj.type = isl_obj_map; isl_token_free(tok); if (!next_is_tuple(s)) { isl_set *set = isl_map_domain(map); return obj_read_poly_or_fold(s, set, v, n); } map = read_map_tuple(s, map, isl_dim_out, v, rational, 0); if (!map) goto error; } else { map = isl_map_domain(map); isl_stream_push_token(s, tok); } map = read_optional_formula(s, map, v, rational); vars_drop(v, v->n - n); obj.v = map; return obj; error: isl_map_free(map); obj.type = isl_obj_none; return obj; } static struct isl_obj to_union(isl_ctx *ctx, struct isl_obj obj) { if (obj.type == isl_obj_map) { obj.v = isl_union_map_from_map(obj.v); obj.type = isl_obj_union_map; } else if (obj.type == isl_obj_set) { obj.v = isl_union_set_from_set(obj.v); obj.type = isl_obj_union_set; } else if (obj.type == isl_obj_pw_qpolynomial) { obj.v = isl_union_pw_qpolynomial_from_pw_qpolynomial(obj.v); obj.type = isl_obj_union_pw_qpolynomial; } else if (obj.type == isl_obj_pw_qpolynomial_fold) { obj.v = isl_union_pw_qpolynomial_fold_from_pw_qpolynomial_fold(obj.v); obj.type = isl_obj_union_pw_qpolynomial_fold; } else isl_assert(ctx, 0, goto error); return obj; error: obj.type->free(obj.v); obj.type = isl_obj_none; return obj; } static struct isl_obj obj_add(__isl_keep isl_stream *s, struct isl_obj obj1, struct isl_obj obj2) { if (obj1.type == isl_obj_set && obj2.type == isl_obj_union_set) obj1 = to_union(s->ctx, obj1); if (obj1.type == isl_obj_union_set && obj2.type == isl_obj_set) obj2 = to_union(s->ctx, obj2); if (obj1.type == isl_obj_map && obj2.type == isl_obj_union_map) obj1 = to_union(s->ctx, obj1); if (obj1.type == isl_obj_union_map && obj2.type == isl_obj_map) obj2 = to_union(s->ctx, obj2); if (obj1.type == isl_obj_pw_qpolynomial && obj2.type == isl_obj_union_pw_qpolynomial) obj1 = to_union(s->ctx, obj1); if (obj1.type == isl_obj_union_pw_qpolynomial && obj2.type == isl_obj_pw_qpolynomial) obj2 = to_union(s->ctx, obj2); if (obj1.type == isl_obj_pw_qpolynomial_fold && obj2.type == isl_obj_union_pw_qpolynomial_fold) obj1 = to_union(s->ctx, obj1); if (obj1.type == isl_obj_union_pw_qpolynomial_fold && obj2.type == isl_obj_pw_qpolynomial_fold) obj2 = to_union(s->ctx, obj2); if (obj1.type != obj2.type) { isl_stream_error(s, NULL, "attempt to combine incompatible objects"); goto error; } if (!obj1.type->add) isl_die(s->ctx, isl_error_internal, "combination not supported on object type", goto error); if (obj1.type == isl_obj_map && !isl_map_has_equal_space(obj1.v, obj2.v)) { obj1 = to_union(s->ctx, obj1); obj2 = to_union(s->ctx, obj2); } if (obj1.type == isl_obj_set && !isl_set_has_equal_space(obj1.v, obj2.v)) { obj1 = to_union(s->ctx, obj1); obj2 = to_union(s->ctx, obj2); } if (obj1.type == isl_obj_pw_qpolynomial && !isl_pw_qpolynomial_has_equal_space(obj1.v, obj2.v)) { obj1 = to_union(s->ctx, obj1); obj2 = to_union(s->ctx, obj2); } if (obj1.type == isl_obj_pw_qpolynomial_fold && !isl_pw_qpolynomial_fold_has_equal_space(obj1.v, obj2.v)) { obj1 = to_union(s->ctx, obj1); obj2 = to_union(s->ctx, obj2); } obj1.v = obj1.type->add(obj1.v, obj2.v); return obj1; error: obj1.type->free(obj1.v); obj2.type->free(obj2.v); obj1.type = isl_obj_none; obj1.v = NULL; return obj1; } /* Are the first two tokens on "s", "domain" (either as a string * or as an identifier) followed by ":"? */ static int next_is_domain_colon(__isl_keep isl_stream *s) { struct isl_token *tok; char *name; int res; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type != ISL_TOKEN_IDENT && tok->type != ISL_TOKEN_STRING) { isl_stream_push_token(s, tok); return 0; } name = isl_token_get_str(s->ctx, tok); res = !strcmp(name, "domain") && isl_stream_next_token_is(s, ':'); free(name); isl_stream_push_token(s, tok); return res; } /* Do the first tokens on "s" look like a schedule? * * The root of a schedule is always a domain node, so the first thing * we expect in the stream is a domain key, i.e., "domain" followed * by ":". If the schedule was printed in YAML flow style, then * we additionally expect a "{" to open the outer mapping. */ static int next_is_schedule(__isl_keep isl_stream *s) { struct isl_token *tok; int is_schedule; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type != '{') { isl_stream_push_token(s, tok); return next_is_domain_colon(s); } is_schedule = next_is_domain_colon(s); isl_stream_push_token(s, tok); return is_schedule; } /* Read an isl_schedule from "s" and store it in an isl_obj. */ static struct isl_obj schedule_read(__isl_keep isl_stream *s) { struct isl_obj obj; obj.type = isl_obj_schedule; obj.v = isl_stream_read_schedule(s); return obj; } static struct isl_obj obj_read(__isl_keep isl_stream *s) { isl_map *map = NULL; struct isl_token *tok; struct vars *v = NULL; struct isl_obj obj = { isl_obj_set, NULL }; if (next_is_schedule(s)) return schedule_read(s); tok = next_token(s); if (!tok) { isl_stream_error(s, NULL, "unexpected EOF"); goto error; } if (tok->type == ISL_TOKEN_VALUE) { struct isl_token *tok2; struct isl_map *map; tok2 = isl_stream_next_token(s); if (!tok2 || tok2->type != ISL_TOKEN_VALUE || isl_int_is_neg(tok2->u.v)) { if (tok2) isl_stream_push_token(s, tok2); obj.type = isl_obj_val; obj.v = isl_val_int_from_isl_int(s->ctx, tok->u.v); isl_token_free(tok); return obj; } isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); map = map_read_polylib(s); if (!map) goto error; if (isl_map_may_be_set(map)) obj.v = isl_map_range(map); else { obj.type = isl_obj_map; obj.v = map; } return obj; } v = vars_new(s->ctx); if (!v) { isl_stream_push_token(s, tok); goto error; } map = isl_map_universe(isl_space_params_alloc(s->ctx, 0)); if (tok->type == '[') { isl_stream_push_token(s, tok); map = read_map_tuple(s, map, isl_dim_param, v, 0, 0); if (!map) goto error; tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_TO) { isl_stream_error(s, tok, "expecting '->'"); if (tok) isl_stream_push_token(s, tok); goto error; } isl_token_free(tok); tok = isl_stream_next_token(s); } if (!tok || tok->type != '{') { isl_stream_error(s, tok, "expecting '{'"); if (tok) isl_stream_push_token(s, tok); goto error; } isl_token_free(tok); tok = isl_stream_next_token(s); if (!tok) ; else if (tok->type == ISL_TOKEN_IDENT && !strcmp(tok->u.s, "Sym")) { isl_token_free(tok); if (isl_stream_eat(s, '=')) goto error; map = read_map_tuple(s, map, isl_dim_param, v, 0, 1); if (!map) goto error; } else if (tok->type == '}') { obj.type = isl_obj_union_set; obj.v = isl_union_set_empty(isl_map_get_space(map)); isl_token_free(tok); goto done; } else isl_stream_push_token(s, tok); for (;;) { struct isl_obj o; tok = NULL; o = obj_read_body(s, isl_map_copy(map), v); if (o.type == isl_obj_none || !o.v) goto error; if (!obj.v) obj = o; else { obj = obj_add(s, obj, o); if (obj.type == isl_obj_none || !obj.v) goto error; } tok = isl_stream_next_token(s); if (!tok || tok->type != ';') break; isl_token_free(tok); if (isl_stream_next_token_is(s, '}')) { tok = isl_stream_next_token(s); break; } } if (tok && tok->type == '}') { isl_token_free(tok); } else { isl_stream_error(s, tok, "unexpected isl_token"); if (tok) isl_token_free(tok); goto error; } done: vars_free(v); isl_map_free(map); return obj; error: isl_map_free(map); obj.type->free(obj.v); if (v) vars_free(v); obj.v = NULL; return obj; } struct isl_obj isl_stream_read_obj(__isl_keep isl_stream *s) { return obj_read(s); } __isl_give isl_map *isl_stream_read_map(__isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.v) isl_assert(s->ctx, obj.type == isl_obj_map || obj.type == isl_obj_set, goto error); if (obj.type == isl_obj_set) obj.v = isl_map_from_range(obj.v); return obj.v; error: obj.type->free(obj.v); return NULL; } __isl_give isl_set *isl_stream_read_set(__isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.v) { if (obj.type == isl_obj_map && isl_map_may_be_set(obj.v)) { obj.v = isl_map_range(obj.v); obj.type = isl_obj_set; } isl_assert(s->ctx, obj.type == isl_obj_set, goto error); } return obj.v; error: obj.type->free(obj.v); return NULL; } __isl_give isl_union_map *isl_stream_read_union_map(__isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.type == isl_obj_map) { obj.type = isl_obj_union_map; obj.v = isl_union_map_from_map(obj.v); } if (obj.type == isl_obj_set) { obj.type = isl_obj_union_set; obj.v = isl_union_set_from_set(obj.v); } if (obj.v && obj.type == isl_obj_union_set && isl_union_set_is_empty(obj.v)) obj.type = isl_obj_union_map; if (obj.v && obj.type != isl_obj_union_map) isl_die(s->ctx, isl_error_invalid, "invalid input", goto error); return obj.v; error: obj.type->free(obj.v); return NULL; } __isl_give isl_union_set *isl_stream_read_union_set(__isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.type == isl_obj_set) { obj.type = isl_obj_union_set; obj.v = isl_union_set_from_set(obj.v); } if (obj.v) isl_assert(s->ctx, obj.type == isl_obj_union_set, goto error); return obj.v; error: obj.type->free(obj.v); return NULL; } static __isl_give isl_basic_map *basic_map_read(__isl_keep isl_stream *s) { struct isl_obj obj; struct isl_map *map; struct isl_basic_map *bmap; obj = obj_read(s); if (obj.v && (obj.type != isl_obj_map && obj.type != isl_obj_set)) isl_die(s->ctx, isl_error_invalid, "not a (basic) set or map", goto error); map = obj.v; if (!map) return NULL; if (map->n > 1) isl_die(s->ctx, isl_error_invalid, "set or map description involves " "more than one disjunct", goto error); if (map->n == 0) bmap = isl_basic_map_empty(isl_map_get_space(map)); else bmap = isl_basic_map_copy(map->p[0]); isl_map_free(map); return bmap; error: obj.type->free(obj.v); return NULL; } static __isl_give isl_basic_set *basic_set_read(__isl_keep isl_stream *s) { isl_basic_map *bmap; bmap = basic_map_read(s); if (!bmap) return NULL; if (!isl_basic_map_may_be_set(bmap)) isl_die(s->ctx, isl_error_invalid, "input is not a set", goto error); return isl_basic_map_range(bmap); error: isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_map *isl_basic_map_read_from_file(isl_ctx *ctx, FILE *input) { struct isl_basic_map *bmap; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; bmap = basic_map_read(s); isl_stream_free(s); return bmap; } __isl_give isl_basic_set *isl_basic_set_read_from_file(isl_ctx *ctx, FILE *input) { isl_basic_set *bset; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; bset = basic_set_read(s); isl_stream_free(s); return bset; } struct isl_basic_map *isl_basic_map_read_from_str(struct isl_ctx *ctx, const char *str) { struct isl_basic_map *bmap; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; bmap = basic_map_read(s); isl_stream_free(s); return bmap; } struct isl_basic_set *isl_basic_set_read_from_str(struct isl_ctx *ctx, const char *str) { isl_basic_set *bset; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; bset = basic_set_read(s); isl_stream_free(s); return bset; } __isl_give isl_map *isl_map_read_from_file(struct isl_ctx *ctx, FILE *input) { struct isl_map *map; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; map = isl_stream_read_map(s); isl_stream_free(s); return map; } __isl_give isl_map *isl_map_read_from_str(struct isl_ctx *ctx, const char *str) { struct isl_map *map; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; map = isl_stream_read_map(s); isl_stream_free(s); return map; } __isl_give isl_set *isl_set_read_from_file(struct isl_ctx *ctx, FILE *input) { isl_set *set; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; set = isl_stream_read_set(s); isl_stream_free(s); return set; } struct isl_set *isl_set_read_from_str(struct isl_ctx *ctx, const char *str) { isl_set *set; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; set = isl_stream_read_set(s); isl_stream_free(s); return set; } __isl_give isl_union_map *isl_union_map_read_from_file(isl_ctx *ctx, FILE *input) { isl_union_map *umap; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; umap = isl_stream_read_union_map(s); isl_stream_free(s); return umap; } __isl_give isl_union_map *isl_union_map_read_from_str(struct isl_ctx *ctx, const char *str) { isl_union_map *umap; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; umap = isl_stream_read_union_map(s); isl_stream_free(s); return umap; } __isl_give isl_union_set *isl_union_set_read_from_file(isl_ctx *ctx, FILE *input) { isl_union_set *uset; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; uset = isl_stream_read_union_set(s); isl_stream_free(s); return uset; } __isl_give isl_union_set *isl_union_set_read_from_str(struct isl_ctx *ctx, const char *str) { isl_union_set *uset; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; uset = isl_stream_read_union_set(s); isl_stream_free(s); return uset; } static __isl_give isl_vec *isl_vec_read_polylib(__isl_keep isl_stream *s) { struct isl_vec *vec = NULL; struct isl_token *tok; unsigned size; int j; tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting vector length"); goto error; } size = isl_int_get_si(tok->u.v); isl_token_free(tok); vec = isl_vec_alloc(s->ctx, size); for (j = 0; j < size; ++j) { tok = isl_stream_next_token(s); if (!tok || tok->type != ISL_TOKEN_VALUE) { isl_stream_error(s, tok, "expecting constant value"); goto error; } isl_int_set(vec->el[j], tok->u.v); isl_token_free(tok); } return vec; error: isl_token_free(tok); isl_vec_free(vec); return NULL; } static __isl_give isl_vec *vec_read(__isl_keep isl_stream *s) { return isl_vec_read_polylib(s); } __isl_give isl_vec *isl_vec_read_from_file(isl_ctx *ctx, FILE *input) { isl_vec *v; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; v = vec_read(s); isl_stream_free(s); return v; } __isl_give isl_pw_qpolynomial *isl_stream_read_pw_qpolynomial( __isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.v) isl_assert(s->ctx, obj.type == isl_obj_pw_qpolynomial, goto error); return obj.v; error: obj.type->free(obj.v); return NULL; } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_read_from_str(isl_ctx *ctx, const char *str) { isl_pw_qpolynomial *pwqp; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; pwqp = isl_stream_read_pw_qpolynomial(s); isl_stream_free(s); return pwqp; } __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_read_from_file(isl_ctx *ctx, FILE *input) { isl_pw_qpolynomial *pwqp; isl_stream *s = isl_stream_new_file(ctx, input); if (!s) return NULL; pwqp = isl_stream_read_pw_qpolynomial(s); isl_stream_free(s); return pwqp; } /* Is the next token an identifer not in "v"? */ static int next_is_fresh_ident(__isl_keep isl_stream *s, struct vars *v) { int n = v->n; int fresh; struct isl_token *tok; tok = isl_stream_next_token(s); if (!tok) return 0; fresh = tok->type == ISL_TOKEN_IDENT && vars_pos(v, tok->u.s, -1) >= n; isl_stream_push_token(s, tok); vars_drop(v, v->n - n); return fresh; } /* First read the domain of the affine expression, which may be * a parameter space or a set. * The tricky part is that we don't know if the domain is a set or not, * so when we are trying to read the domain, we may actually be reading * the affine expression itself (defined on a parameter domains) * If the tuple we are reading is named, we assume it's the domain. * Also, if inside the tuple, the first thing we find is a nested tuple * or a new identifier, we again assume it's the domain. * Otherwise, we assume we are reading an affine expression. */ static __isl_give isl_set *read_aff_domain(__isl_keep isl_stream *s, __isl_take isl_set *dom, struct vars *v) { struct isl_token *tok; tok = isl_stream_next_token(s); if (tok && (tok->type == ISL_TOKEN_IDENT || tok->is_keyword)) { isl_stream_push_token(s, tok); return read_map_tuple(s, dom, isl_dim_set, v, 1, 0); } if (!tok || tok->type != '[') { isl_stream_error(s, tok, "expecting '['"); goto error; } if (next_is_tuple(s) || next_is_fresh_ident(s, v)) { isl_stream_push_token(s, tok); dom = read_map_tuple(s, dom, isl_dim_set, v, 1, 0); } else isl_stream_push_token(s, tok); return dom; error: if (tok) isl_stream_push_token(s, tok); isl_set_free(dom); return NULL; } /* Read an affine expression from "s". */ __isl_give isl_aff *isl_stream_read_aff(__isl_keep isl_stream *s) { isl_aff *aff; isl_multi_aff *ma; ma = isl_stream_read_multi_aff(s); if (!ma) return NULL; if (isl_multi_aff_dim(ma, isl_dim_out) != 1) isl_die(s->ctx, isl_error_invalid, "expecting single affine expression", goto error); aff = isl_multi_aff_get_aff(ma, 0); isl_multi_aff_free(ma); return aff; error: isl_multi_aff_free(ma); return NULL; } /* Read a piecewise affine expression from "s" with domain (space) "dom". */ static __isl_give isl_pw_aff *read_pw_aff_with_dom(__isl_keep isl_stream *s, __isl_take isl_set *dom, struct vars *v) { isl_pw_aff *pwaff = NULL; if (!isl_set_is_params(dom) && isl_stream_eat(s, ISL_TOKEN_TO)) goto error; if (isl_stream_eat(s, '[')) goto error; pwaff = accept_affine(s, isl_set_get_space(dom), v); if (isl_stream_eat(s, ']')) goto error; dom = read_optional_formula(s, dom, v, 0); pwaff = isl_pw_aff_intersect_domain(pwaff, dom); return pwaff; error: isl_set_free(dom); isl_pw_aff_free(pwaff); return NULL; } __isl_give isl_pw_aff *isl_stream_read_pw_aff(__isl_keep isl_stream *s) { struct vars *v; isl_set *dom = NULL; isl_set *aff_dom; isl_pw_aff *pa = NULL; int n; v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } if (isl_stream_eat(s, '{')) goto error; n = v->n; aff_dom = read_aff_domain(s, isl_set_copy(dom), v); pa = read_pw_aff_with_dom(s, aff_dom, v); vars_drop(v, v->n - n); while (isl_stream_eat_if_available(s, ';')) { isl_pw_aff *pa_i; n = v->n; aff_dom = read_aff_domain(s, isl_set_copy(dom), v); pa_i = read_pw_aff_with_dom(s, aff_dom, v); vars_drop(v, v->n - n); pa = isl_pw_aff_union_add(pa, pa_i); } if (isl_stream_eat(s, '}')) goto error; vars_free(v); isl_set_free(dom); return pa; error: vars_free(v); isl_set_free(dom); isl_pw_aff_free(pa); return NULL; } __isl_give isl_aff *isl_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_aff *aff; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; aff = isl_stream_read_aff(s); isl_stream_free(s); return aff; } __isl_give isl_pw_aff *isl_pw_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_pw_aff *pa; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; pa = isl_stream_read_pw_aff(s); isl_stream_free(s); return pa; } /* Read an isl_pw_multi_aff from "s". * We currently read a generic object and if it turns out to be a set or * a map, we convert that to an isl_pw_multi_aff. * It would be more efficient if we were to construct the isl_pw_multi_aff * directly. */ __isl_give isl_pw_multi_aff *isl_stream_read_pw_multi_aff( __isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (!obj.v) return NULL; if (obj.type == isl_obj_map) return isl_pw_multi_aff_from_map(obj.v); if (obj.type == isl_obj_set) return isl_pw_multi_aff_from_set(obj.v); obj.type->free(obj.v); isl_die(s->ctx, isl_error_invalid, "unexpected object type", return NULL); } __isl_give isl_pw_multi_aff *isl_pw_multi_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_pw_multi_aff *pma; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; pma = isl_stream_read_pw_multi_aff(s); isl_stream_free(s); return pma; } /* Read an isl_union_pw_multi_aff from "s". * We currently read a generic object and if it turns out to be a set or * a map, we convert that to an isl_union_pw_multi_aff. * It would be more efficient if we were to construct * the isl_union_pw_multi_aff directly. */ __isl_give isl_union_pw_multi_aff *isl_stream_read_union_pw_multi_aff( __isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (!obj.v) return NULL; if (obj.type == isl_obj_map || obj.type == isl_obj_set) obj = to_union(s->ctx, obj); if (obj.type == isl_obj_union_map) return isl_union_pw_multi_aff_from_union_map(obj.v); if (obj.type == isl_obj_union_set) return isl_union_pw_multi_aff_from_union_set(obj.v); obj.type->free(obj.v); isl_die(s->ctx, isl_error_invalid, "unexpected object type", return NULL); } /* Read an isl_union_pw_multi_aff from "str". */ __isl_give isl_union_pw_multi_aff *isl_union_pw_multi_aff_read_from_str( isl_ctx *ctx, const char *str) { isl_union_pw_multi_aff *upma; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; upma = isl_stream_read_union_pw_multi_aff(s); isl_stream_free(s); return upma; } /* Assuming "pa" represents a single affine expression defined on a universe * domain, extract this affine expression. */ static __isl_give isl_aff *aff_from_pw_aff(__isl_take isl_pw_aff *pa) { isl_aff *aff; if (!pa) return NULL; if (pa->n != 1) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "expecting single affine expression", goto error); if (!isl_set_plain_is_universe(pa->p[0].set)) isl_die(isl_pw_aff_get_ctx(pa), isl_error_invalid, "expecting universe domain", goto error); aff = isl_aff_copy(pa->p[0].aff); isl_pw_aff_free(pa); return aff; error: isl_pw_aff_free(pa); return NULL; } /* This function is called for each element in a tuple inside * isl_stream_read_multi_val. * Read an isl_val from "s" and add it to *list. */ static __isl_give isl_space *read_val_el(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, void *user) { isl_val_list **list = (isl_val_list **) user; isl_val *val; val = isl_stream_read_val(s); *list = isl_val_list_add(*list, val); if (!*list) return isl_space_free(space); return space; } /* Read an isl_multi_val from "s". * * We first read a tuple space, collecting the element values in a list. * Then we create an isl_multi_val from the space and the isl_val_list. */ __isl_give isl_multi_val *isl_stream_read_multi_val(__isl_keep isl_stream *s) { struct vars *v; isl_set *dom = NULL; isl_space *space; isl_multi_val *mv = NULL; isl_val_list *list; v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } if (!isl_set_plain_is_universe(dom)) isl_die(s->ctx, isl_error_invalid, "expecting universe parameter domain", goto error); if (isl_stream_eat(s, '{')) goto error; space = isl_set_get_space(dom); list = isl_val_list_alloc(s->ctx, 0); space = read_tuple_space(s, v, space, 1, 0, &read_val_el, &list); mv = isl_multi_val_from_val_list(space, list); if (isl_stream_eat(s, '}')) goto error; vars_free(v); isl_set_free(dom); return mv; error: vars_free(v); isl_set_free(dom); isl_multi_val_free(mv); return NULL; } /* Read an isl_multi_val from "str". */ __isl_give isl_multi_val *isl_multi_val_read_from_str(isl_ctx *ctx, const char *str) { isl_multi_val *mv; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; mv = isl_stream_read_multi_val(s); isl_stream_free(s); return mv; } /* Read a multi-affine expression from "s". * If the multi-affine expression has a domain, then the tuple * representing this domain cannot involve any affine expressions. * The tuple representing the actual expressions needs to consist * of only affine expressions. Moreover, these expressions can * only depend on parameters and input dimensions and not on other * output dimensions. */ __isl_give isl_multi_aff *isl_stream_read_multi_aff(__isl_keep isl_stream *s) { struct vars *v; isl_set *dom = NULL; isl_multi_pw_aff *tuple = NULL; int dim, i, n; isl_space *space, *dom_space; isl_multi_aff *ma = NULL; v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } if (!isl_set_plain_is_universe(dom)) isl_die(s->ctx, isl_error_invalid, "expecting universe parameter domain", goto error); if (isl_stream_eat(s, '{')) goto error; tuple = read_tuple(s, v, 0, 0); if (!tuple) goto error; if (isl_stream_eat_if_available(s, ISL_TOKEN_TO)) { isl_set *set; isl_space *space; int has_expr; has_expr = tuple_has_expr(tuple); if (has_expr < 0) goto error; if (has_expr) isl_die(s->ctx, isl_error_invalid, "expecting universe domain", goto error); space = isl_space_range(isl_multi_pw_aff_get_space(tuple)); set = isl_set_universe(space); dom = isl_set_intersect_params(set, dom); isl_multi_pw_aff_free(tuple); tuple = read_tuple(s, v, 0, 0); if (!tuple) goto error; } if (isl_stream_eat(s, '}')) goto error; n = isl_multi_pw_aff_dim(tuple, isl_dim_out); dim = isl_set_dim(dom, isl_dim_all); dom_space = isl_set_get_space(dom); space = isl_space_range(isl_multi_pw_aff_get_space(tuple)); space = isl_space_align_params(space, isl_space_copy(dom_space)); if (!isl_space_is_params(dom_space)) space = isl_space_map_from_domain_and_range( isl_space_copy(dom_space), space); isl_space_free(dom_space); ma = isl_multi_aff_alloc(space); for (i = 0; i < n; ++i) { isl_pw_aff *pa; isl_aff *aff; pa = isl_multi_pw_aff_get_pw_aff(tuple, i); aff = aff_from_pw_aff(pa); if (!aff) goto error; if (isl_aff_involves_dims(aff, isl_dim_in, dim, i + 1)) { isl_aff_free(aff); isl_die(s->ctx, isl_error_invalid, "not an affine expression", goto error); } aff = isl_aff_drop_dims(aff, isl_dim_in, dim, n); space = isl_multi_aff_get_domain_space(ma); aff = isl_aff_reset_domain_space(aff, space); ma = isl_multi_aff_set_aff(ma, i, aff); } isl_multi_pw_aff_free(tuple); vars_free(v); isl_set_free(dom); return ma; error: isl_multi_pw_aff_free(tuple); vars_free(v); isl_set_free(dom); isl_multi_aff_free(ma); return NULL; } __isl_give isl_multi_aff *isl_multi_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_multi_aff *maff; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; maff = isl_stream_read_multi_aff(s); isl_stream_free(s); return maff; } /* Read an isl_multi_pw_aff from "s". * * The input format is similar to that of map, except that any conditions * on the domains should be specified inside the tuple since each * piecewise affine expression may have a different domain. * * Since we do not know in advance if the isl_multi_pw_aff lives * in a set or a map space, we first read the first tuple and check * if it is followed by a "->". If so, we convert the tuple into * the domain of the isl_multi_pw_aff and read in the next tuple. * This tuple (or the first tuple if it was not followed by a "->") * is then converted into the isl_multi_pw_aff. * * Note that the function read_tuple accepts tuples where some output or * set dimensions are defined in terms of other output or set dimensions * since this function is also used to read maps. As a special case, * read_tuple also accept dimensions that are defined in terms of themselves * (i.e., that are not defined). * These cases are not allowed when reading am isl_multi_pw_aff so we check * that the definition of the output/set dimensions does not involve any * output/set dimensions. * We then drop the output dimensions from the domain of the result * of read_tuple (which is of the form [input, output] -> [output], * with anonymous domain) and reset the space. */ __isl_give isl_multi_pw_aff *isl_stream_read_multi_pw_aff( __isl_keep isl_stream *s) { struct vars *v; isl_set *dom = NULL; isl_multi_pw_aff *tuple = NULL; int dim, i, n; isl_space *space, *dom_space; isl_multi_pw_aff *mpa = NULL; v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } if (isl_stream_eat(s, '{')) goto error; tuple = read_tuple(s, v, 0, 0); if (!tuple) goto error; if (isl_stream_eat_if_available(s, ISL_TOKEN_TO)) { isl_map *map = map_from_tuple(tuple, dom, isl_dim_in, v, 0); dom = isl_map_domain(map); tuple = read_tuple(s, v, 0, 0); if (!tuple) goto error; } if (isl_stream_eat(s, '}')) goto error; n = isl_multi_pw_aff_dim(tuple, isl_dim_out); dim = isl_set_dim(dom, isl_dim_all); dom_space = isl_set_get_space(dom); space = isl_space_range(isl_multi_pw_aff_get_space(tuple)); space = isl_space_align_params(space, isl_space_copy(dom_space)); if (!isl_space_is_params(dom_space)) space = isl_space_map_from_domain_and_range( isl_space_copy(dom_space), space); isl_space_free(dom_space); mpa = isl_multi_pw_aff_alloc(space); for (i = 0; i < n; ++i) { isl_pw_aff *pa; pa = isl_multi_pw_aff_get_pw_aff(tuple, i); if (!pa) goto error; if (isl_pw_aff_involves_dims(pa, isl_dim_in, dim, i + 1)) { isl_pw_aff_free(pa); isl_die(s->ctx, isl_error_invalid, "not an affine expression", goto error); } pa = isl_pw_aff_drop_dims(pa, isl_dim_in, dim, n); space = isl_multi_pw_aff_get_domain_space(mpa); pa = isl_pw_aff_reset_domain_space(pa, space); mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, pa); } isl_multi_pw_aff_free(tuple); vars_free(v); mpa = isl_multi_pw_aff_intersect_domain(mpa, dom); return mpa; error: isl_multi_pw_aff_free(tuple); vars_free(v); isl_set_free(dom); isl_multi_pw_aff_free(mpa); return NULL; } /* Read an isl_multi_pw_aff from "str". */ __isl_give isl_multi_pw_aff *isl_multi_pw_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_multi_pw_aff *mpa; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; mpa = isl_stream_read_multi_pw_aff(s); isl_stream_free(s); return mpa; } /* Read the body of an isl_union_pw_aff from "s" with parameter domain "dom". */ static __isl_give isl_union_pw_aff *read_union_pw_aff_with_dom( __isl_keep isl_stream *s, __isl_take isl_set *dom, struct vars *v) { isl_pw_aff *pa; isl_union_pw_aff *upa = NULL; isl_set *aff_dom; int n; n = v->n; aff_dom = read_aff_domain(s, isl_set_copy(dom), v); pa = read_pw_aff_with_dom(s, aff_dom, v); vars_drop(v, v->n - n); upa = isl_union_pw_aff_from_pw_aff(pa); while (isl_stream_eat_if_available(s, ';')) { isl_pw_aff *pa_i; isl_union_pw_aff *upa_i; n = v->n; aff_dom = read_aff_domain(s, isl_set_copy(dom), v); pa_i = read_pw_aff_with_dom(s, aff_dom, v); vars_drop(v, v->n - n); upa_i = isl_union_pw_aff_from_pw_aff(pa_i); upa = isl_union_pw_aff_union_add(upa, upa_i); } isl_set_free(dom); return upa; } /* Read an isl_union_pw_aff from "s". * * First check if there are any paramters, then read in the opening brace * and use read_union_pw_aff_with_dom to read in the body of * the isl_union_pw_aff. Finally, read the closing brace. */ __isl_give isl_union_pw_aff *isl_stream_read_union_pw_aff( __isl_keep isl_stream *s) { struct vars *v; isl_set *dom; isl_union_pw_aff *upa = NULL; v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } if (isl_stream_eat(s, '{')) goto error; upa = read_union_pw_aff_with_dom(s, isl_set_copy(dom), v); if (isl_stream_eat(s, '}')) goto error; vars_free(v); isl_set_free(dom); return upa; error: vars_free(v); isl_set_free(dom); isl_union_pw_aff_free(upa); return NULL; } /* Read an isl_union_pw_aff from "str". */ __isl_give isl_union_pw_aff *isl_union_pw_aff_read_from_str(isl_ctx *ctx, const char *str) { isl_union_pw_aff *upa; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; upa = isl_stream_read_union_pw_aff(s); isl_stream_free(s); return upa; } /* This function is called for each element in a tuple inside * isl_stream_read_multi_union_pw_aff. * * Read a '{', the union piecewise affine expression body and a '}' and * add the isl_union_pw_aff to *list. */ static __isl_give isl_space *read_union_pw_aff_el(__isl_keep isl_stream *s, struct vars *v, __isl_take isl_space *space, int rational, void *user) { isl_set *dom; isl_union_pw_aff *upa; isl_union_pw_aff_list **list = (isl_union_pw_aff_list **) user; dom = isl_set_universe(isl_space_params(isl_space_copy(space))); if (isl_stream_eat(s, '{')) goto error; upa = read_union_pw_aff_with_dom(s, dom, v); *list = isl_union_pw_aff_list_add(*list, upa); if (isl_stream_eat(s, '}')) return isl_space_free(space); if (!*list) return isl_space_free(space); return space; error: isl_set_free(dom); return isl_space_free(space); } /* Do the next tokens in "s" correspond to an empty tuple? * In particular, does the stream start with a '[', followed by a ']', * not followed by a "->"? */ static int next_is_empty_tuple(__isl_keep isl_stream *s) { struct isl_token *tok, *tok2, *tok3; int is_empty_tuple = 0; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type != '[') { isl_stream_push_token(s, tok); return 0; } tok2 = isl_stream_next_token(s); if (tok2 && tok2->type == ']') { tok3 = isl_stream_next_token(s); is_empty_tuple = !tok || tok->type != ISL_TOKEN_TO; if (tok3) isl_stream_push_token(s, tok3); } if (tok2) isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); return is_empty_tuple; } /* Do the next tokens in "s" correspond to a tuple of parameters? * In particular, does the stream start with a '[' that is not * followed by a '{' or a nested tuple? */ static int next_is_param_tuple(__isl_keep isl_stream *s) { struct isl_token *tok, *tok2; int is_tuple; tok = isl_stream_next_token(s); if (!tok) return 0; if (tok->type != '[' || next_is_tuple(s)) { isl_stream_push_token(s, tok); return 0; } tok2 = isl_stream_next_token(s); is_tuple = tok2 && tok2->type != '{'; if (tok2) isl_stream_push_token(s, tok2); isl_stream_push_token(s, tok); return is_tuple; } /* Read an isl_multi_union_pw_aff from "s". * * The input has the form * * [{ [..] : ... ; [..] : ... }, { [..] : ... ; [..] : ... }] * * or * * [..] -> [{ [..] : ... ; [..] : ... }, { [..] : ... ; [..] : ... }] * * We first check for the special case of an empty tuple "[]". * Then we check if there are any parameters. * Finally, we read the tuple, collecting the individual isl_union_pw_aff * elements in a list and construct the result from the tuple space and * the list. */ __isl_give isl_multi_union_pw_aff *isl_stream_read_multi_union_pw_aff( __isl_keep isl_stream *s) { struct vars *v; isl_set *dom = NULL; isl_space *space; isl_multi_union_pw_aff *mupa = NULL; isl_union_pw_aff_list *list; if (next_is_empty_tuple(s)) { if (isl_stream_eat(s, '[')) return NULL; if (isl_stream_eat(s, ']')) return NULL; space = isl_space_set_alloc(s->ctx, 0, 0); return isl_multi_union_pw_aff_zero(space); } v = vars_new(s->ctx); if (!v) return NULL; dom = isl_set_universe(isl_space_params_alloc(s->ctx, 0)); if (next_is_param_tuple(s)) { dom = read_map_tuple(s, dom, isl_dim_param, v, 1, 0); if (isl_stream_eat(s, ISL_TOKEN_TO)) goto error; } space = isl_set_get_space(dom); isl_set_free(dom); list = isl_union_pw_aff_list_alloc(s->ctx, 0); space = read_tuple_space(s, v, space, 1, 0, &read_union_pw_aff_el, &list); mupa = isl_multi_union_pw_aff_from_union_pw_aff_list(space, list); vars_free(v); return mupa; error: vars_free(v); isl_set_free(dom); isl_multi_union_pw_aff_free(mupa); return NULL; } /* Read an isl_multi_union_pw_aff from "str". */ __isl_give isl_multi_union_pw_aff *isl_multi_union_pw_aff_read_from_str( isl_ctx *ctx, const char *str) { isl_multi_union_pw_aff *mupa; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; mupa = isl_stream_read_multi_union_pw_aff(s); isl_stream_free(s); return mupa; } __isl_give isl_union_pw_qpolynomial *isl_stream_read_union_pw_qpolynomial( __isl_keep isl_stream *s) { struct isl_obj obj; obj = obj_read(s); if (obj.type == isl_obj_pw_qpolynomial) { obj.type = isl_obj_union_pw_qpolynomial; obj.v = isl_union_pw_qpolynomial_from_pw_qpolynomial(obj.v); } if (obj.v) isl_assert(s->ctx, obj.type == isl_obj_union_pw_qpolynomial, goto error); return obj.v; error: obj.type->free(obj.v); return NULL; } __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_read_from_str( isl_ctx *ctx, const char *str) { isl_union_pw_qpolynomial *upwqp; isl_stream *s = isl_stream_new_str(ctx, str); if (!s) return NULL; upwqp = isl_stream_read_union_pw_qpolynomial(s); isl_stream_free(s); return upwqp; } isl-0.16.1/isl_ast_build_private.h0000664000175000017500000003246312645737060014053 00000000000000#ifndef ISL_AST_BUILD_PRIVATE_H #define ISL_AST_BUILD_PRIVATE_H #include #include #include #include #include #include /* An isl_ast_build represents the context in which AST is being * generated. That is, it (mostly) contains information about outer * loops that can be used to simplify inner loops. * * "domain" represents constraints on the internal schedule domain, * corresponding to the context of the AST generation and the constraints * implied by the loops that have already been generated. * When an isl_ast_build is first created, outside any AST generation, * the domain is typically a parameter set. It is only when a AST * generation phase is initiated that the domain of the isl_ast_build * is changed to refer to the internal schedule domain. * The domain then lives in a space of the form * * S * * or * * [O -> S] * * O represents the loops generated in outer AST generations. * S represents the loops (both generated and to be generated) * of the current AST generation. * Both include eliminated loops. * "domain" is expected not to have any unknown divs because * it is used as the context argument in a call to isl_basic_set_gist * in isl_ast_build_compute_gist_basic_set. * * "depth" is equal to the number of loops that have already * been generated (including those in outer AST generations). * "outer_pos" is equal to the number of loops in outer AST generations. * * "generated" is a superset of "domain" corresponding to those * constraints that were either given by the user or that have * effectively been generated (as bounds on a for loop). * * "pending" is a superset of "domain" corresponding to the constraints * that still need to be generated (as guards), but that may end up * not getting generated if they are implied by any constraints * enforced by inner loops. * * "strides" contains the stride of each loop. The number of elements * is equal to the number of dimensions in "domain". * "offsets" constains the offsets of strided loops. If s is the stride * for a given dimension and f is the corresponding offset, then the * dimension takes on values * * f + s a * * with a an integer. For non-strided loops, the offset is zero. * * "iterators" contains the loop iterators of both generated and * to be generated loops. The number of elements is at least as * large as the dimension of the internal schedule domain. The * number may be larger, in which case the additional ids can be * used in a nested AST generation should the schedule be non-injective. * * "values" lives in the space * * [O -> S] -> [O -> S] (or S -> S) * * and expresses (if possible) loop iterators in terms of parameters * and outer loop iterators. If the value of a given loop iterator * cannot be expressed as an affine expression (either because the iterator * attains multiple values or because the single value is a piecewise * affine expression), then it is expressed in "values" as being equal * to itself. * * "value" is the value of the loop iterator at the current depth. * It is NULL if it has not been computed yet or if the value of the * given loop iterator cannot be expressed as a piecewise affine expression * (because the iterator attains multiple values). * * "schedule_map" maps the internal schedule domain to the external schedule * domain. It may be NULL if it hasn't been computed yet. * See isl_ast_build_get_schedule_map_multi_aff. * * "internal2input" maps the internal schedule domain to the original * input schedule domain. In case of a schedule tree input, the original * input schedule domain consist of the flat product of all outer * band node spaces, including the current band node. * It may be NULL if there no longer is such a uniform mapping * (because different iterations have been rescheduled differently). * * "options" contains the AST build options in case we are generating * an AST from a flat schedule map. When creating an AST from a schedule * tree, this field is ignored. * * The "create_leaf" callback is called for every leaf in the generated AST. * The callback is responsible for creating the node to be placed at those * leaves. If this callback is not set, then isl will generated user * nodes with call expressions corresponding to an element of the domain. * * The "at_each_domain" callback is called on every node created to represent * an element of the domain. Each of these nodes is a user node * with as expression a call expression. * * The "before_each_for" callback is called on each for node before * its children have been created. * * The "after_each_for" callback is called on each for node after * its children have been created. * * The "before_each_mark" callback is called before we handle the subtree * of an isl_schedule_node_mark node. * * The "after_each_mark" callback is called after we have handled the subtree * of an isl_schedule_node_mark node. * * "executed" contains the inverse schedule at this point * of the AST generation. * It is currently only used in isl_ast_build_get_schedule, which is * in turn only used by user code from within a callback. * The value is set right before we may be calling such a callback. * * "single_valued" is set if the current inverse schedule (which may or may * not be stored in "executed") is known to be single valued, specifically * an inverse schedule that was not (appeared not to be) single valued * is extended to a single valued inverse schedule. This is mainly used * to avoid an infinite recursion when we fail to detect later on that * the extended inverse schedule is single valued. * * "node" points to the current band node in case we are generating * an AST from a schedule tree. It may be NULL if we are not generating * an AST from a schedule tree or if we are not inside a band node. * * "loop_type" originally constains loop AST generation types for * the "n" members of "node" and it is updated (along with "n") when * a schedule dimension is inserted. * It is NULL if "node" is NULL. * * "isolated" is the piece of the schedule domain isolated by the isolate * option on the current band. This set may be NULL if we have not checked * for the isolate option yet. */ struct isl_ast_build { int ref; int outer_pos; int depth; isl_id_list *iterators; isl_set *domain; isl_set *generated; isl_set *pending; isl_multi_aff *values; isl_pw_aff *value; isl_vec *strides; isl_multi_aff *offsets; isl_multi_aff *schedule_map; isl_multi_aff *internal2input; isl_union_map *options; __isl_give isl_ast_node *(*at_each_domain)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *build, void *user); void *at_each_domain_user; __isl_give isl_id *(*before_each_for)( __isl_keep isl_ast_build *context, void *user); void *before_each_for_user; __isl_give isl_ast_node *(*after_each_for)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *context, void *user); void *after_each_for_user; isl_stat (*before_each_mark)(__isl_keep isl_id *mark, __isl_keep isl_ast_build *build, void *user); void *before_each_mark_user; __isl_give isl_ast_node *(*after_each_mark)( __isl_take isl_ast_node *node, __isl_keep isl_ast_build *context, void *user); void *after_each_mark_user; __isl_give isl_ast_node *(*create_leaf)( __isl_take isl_ast_build *build, void *user); void *create_leaf_user; isl_union_map *executed; int single_valued; isl_schedule_node *node; int n; enum isl_ast_loop_type *loop_type; isl_set *isolated; }; __isl_give isl_ast_build *isl_ast_build_clear_local_info( __isl_take isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_increase_depth( __isl_take isl_ast_build *build); int isl_ast_build_get_depth(__isl_keep isl_ast_build *build); unsigned isl_ast_build_dim(__isl_keep isl_ast_build *build, enum isl_dim_type type); __isl_give isl_space *isl_ast_build_get_space( __isl_keep isl_ast_build *build, int internal); __isl_give isl_ast_build *isl_ast_build_align_params( __isl_take isl_ast_build *build, __isl_take isl_space *model); __isl_give isl_ast_build *isl_ast_build_cow( __isl_take isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_insert_dim( __isl_take isl_ast_build *build, int pos); __isl_give isl_ast_build *isl_ast_build_scale_down( __isl_take isl_ast_build *build, __isl_take isl_val *m, __isl_take isl_union_map *umap); __isl_give isl_ast_build *isl_ast_build_product( __isl_take isl_ast_build *build, __isl_take isl_space *embedding); __isl_give isl_ast_build *isl_ast_build_set_loop_bounds( __isl_take isl_ast_build *build, __isl_take isl_basic_set *bounds); __isl_give isl_ast_build *isl_ast_build_set_pending_generated( __isl_take isl_ast_build *build, __isl_take isl_basic_set *bounds); __isl_give isl_ast_build *isl_ast_build_detect_strides( __isl_take isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_build *isl_ast_build_include_stride( __isl_take isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_set_executed( __isl_take isl_ast_build *build, __isl_take isl_union_map *executed); __isl_give isl_ast_build *isl_ast_build_set_single_valued( __isl_take isl_ast_build *build, int sv); __isl_give isl_multi_aff *isl_ast_build_get_internal2input( __isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_get_domain( __isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_get_pending( __isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_get_generated( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_restrict_generated( __isl_take isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_ast_build *isl_ast_build_replace_pending_by_guard( __isl_take isl_ast_build *build, __isl_take isl_set *guard); __isl_give int isl_ast_build_need_schedule_map( __isl_keep isl_ast_build *build); __isl_give isl_multi_aff *isl_ast_build_get_schedule_map_multi_aff( __isl_keep isl_ast_build *build); __isl_give isl_map *isl_ast_build_get_schedule_map( __isl_keep isl_ast_build *build); int isl_ast_build_has_affine_value(__isl_keep isl_ast_build *build, int pos); int isl_ast_build_has_value(__isl_keep isl_ast_build *build); __isl_give isl_id *isl_ast_build_get_iterator_id( __isl_keep isl_ast_build *build, int pos); int isl_ast_build_has_schedule_node(__isl_keep isl_ast_build *build); __isl_give isl_schedule_node *isl_ast_build_get_schedule_node( __isl_keep isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_set_schedule_node( __isl_take isl_ast_build *build, __isl_take isl_schedule_node *node); __isl_give isl_ast_build *isl_ast_build_reset_schedule_node( __isl_take isl_ast_build *build); __isl_give isl_ast_build *isl_ast_build_extract_isolated( __isl_take isl_ast_build *build); int isl_ast_build_has_isolated(__isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_get_isolated( __isl_keep isl_ast_build *build); __isl_give isl_basic_set *isl_ast_build_specialize_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset); __isl_give isl_basic_set *isl_ast_build_compute_gist_basic_set( __isl_keep isl_ast_build *build, __isl_take isl_basic_set *bset); __isl_give isl_set *isl_ast_build_specialize(__isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_set *isl_ast_build_compute_gist( __isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_map *isl_ast_build_compute_gist_map_domain( __isl_keep isl_ast_build *build, __isl_take isl_map *map); __isl_give isl_aff *isl_ast_build_compute_gist_aff( __isl_keep isl_ast_build *build, __isl_take isl_aff *aff); __isl_give isl_pw_aff *isl_ast_build_compute_gist_pw_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_aff *pa); __isl_give isl_pw_multi_aff *isl_ast_build_compute_gist_pw_multi_aff( __isl_keep isl_ast_build *build, __isl_take isl_pw_multi_aff *pma); __isl_give isl_union_map *isl_ast_build_substitute_values_union_map_domain( __isl_keep isl_ast_build *build, __isl_take isl_union_map *umap); int isl_ast_build_aff_is_nonneg(__isl_keep isl_ast_build *build, __isl_keep isl_aff *aff); int isl_ast_build_has_stride(__isl_keep isl_ast_build *build, int pos); __isl_give isl_aff *isl_ast_build_get_offset(__isl_keep isl_ast_build *build, int pos); __isl_give isl_val *isl_ast_build_get_stride(__isl_keep isl_ast_build *build, int pos); __isl_give isl_set *isl_ast_build_get_stride_constraint( __isl_keep isl_ast_build *build); __isl_give isl_multi_aff *isl_ast_build_get_stride_expansion( __isl_keep isl_ast_build *build); void isl_ast_build_dump(__isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_get_option_domain( __isl_keep isl_ast_build *build, enum isl_ast_loop_type type); __isl_give isl_map *isl_ast_build_get_separation_class( __isl_keep isl_ast_build *build); __isl_give isl_set *isl_ast_build_eliminate( __isl_keep isl_ast_build *build, __isl_take isl_set *domain); __isl_give isl_set *isl_ast_build_eliminate_inner( __isl_keep isl_ast_build *build, __isl_take isl_set *set); __isl_give isl_set *isl_ast_build_eliminate_divs( __isl_keep isl_ast_build *build, __isl_take isl_set *set); enum isl_ast_loop_type isl_ast_build_get_loop_type( __isl_keep isl_ast_build *build, int isolated); __isl_give isl_map *isl_ast_build_map_to_iterator( __isl_keep isl_ast_build *build, __isl_take isl_set *set); int isl_ast_build_options_involve_depth(__isl_keep isl_ast_build *build); #endif isl-0.16.1/isl_union_eval.c0000664000175000017500000000246512645737061012505 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #include /* Is the domain space of "entry" equal to "space"? */ static int FN(UNION,has_domain_space)(const void *entry, const void *val) { PART *part = (PART *)entry; isl_space *space = (isl_space *) val; if (isl_space_is_params(space)) return isl_space_is_set(part->dim); return isl_space_tuple_is_equal(part->dim, isl_dim_in, space, isl_dim_set); } __isl_give isl_val *FN(UNION,eval)(__isl_take UNION *u, __isl_take isl_point *pnt) { uint32_t hash; struct isl_hash_table_entry *entry; isl_space *space; isl_val *v; if (!u || !pnt) goto error; space = isl_space_copy(pnt->dim); if (!space) goto error; hash = isl_space_get_hash(space); entry = isl_hash_table_find(u->space->ctx, &u->table, hash, &FN(UNION,has_domain_space), space, 0); isl_space_free(space); if (!entry) { v = isl_val_zero(isl_point_get_ctx(pnt)); isl_point_free(pnt); } else { v = FN(PART,eval)(FN(PART,copy)(entry->data), pnt); } FN(UNION,free)(u); return v; error: FN(UNION,free)(u); isl_point_free(pnt); return NULL; } isl-0.16.1/isl_multi_apply_set.c0000664000175000017500000000017712645737061013556 00000000000000#define APPLY_DOMBASE set #define APPLY_DOM isl_set #include #undef APPLY_DOMBASE #undef APPLY_DOM isl-0.16.1/bound.c0000664000175000017500000001520012645737060010574 00000000000000#include #include #include #include #include #include #include #include struct bound_options { struct isl_options *isl; unsigned verify; int print_all; int continue_on_error; }; ISL_ARGS_START(struct bound_options, bound_options_args) ISL_ARG_CHILD(struct bound_options, isl, "isl", &isl_options_args, "isl options") ISL_ARG_BOOL(struct bound_options, verify, 'T', "verify", 0, NULL) ISL_ARG_BOOL(struct bound_options, print_all, 'A', "print-all", 0, NULL) ISL_ARG_BOOL(struct bound_options, continue_on_error, '\0', "continue-on-error", 0, NULL) ISL_ARGS_END ISL_ARG_DEF(bound_options, struct bound_options, bound_options_args) static __isl_give isl_set *set_bounds(__isl_take isl_set *set) { unsigned nparam; int i, r; isl_point *pt, *pt2; isl_set *box; nparam = isl_set_dim(set, isl_dim_param); r = nparam >= 8 ? 5 : nparam >= 5 ? 15 : 50; pt = isl_set_sample_point(isl_set_copy(set)); pt2 = isl_point_copy(pt); for (i = 0; i < nparam; ++i) { pt = isl_point_add_ui(pt, isl_dim_param, i, r); pt2 = isl_point_sub_ui(pt2, isl_dim_param, i, r); } box = isl_set_box_from_points(pt, pt2); return isl_set_intersect(set, box); } struct verify_point_bound { struct bound_options *options; int stride; int n; int exact; int error; isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *bound; }; static isl_stat verify_point(__isl_take isl_point *pnt, void *user) { int i; unsigned nvar; unsigned nparam; struct verify_point_bound *vpb = (struct verify_point_bound *) user; isl_int t; isl_ctx *ctx; isl_pw_qpolynomial_fold *pwf; isl_val *bound = NULL; isl_val *opt = NULL; isl_set *dom = NULL; isl_printer *p; const char *minmax; int bounded; int sign; int ok; FILE *out = vpb->options->print_all ? stdout : stderr; vpb->n--; if (1) { minmax = "ub"; sign = 1; } else { minmax = "lb"; sign = -1; } ctx = isl_point_get_ctx(pnt); p = isl_printer_to_file(ctx, out); isl_int_init(t); pwf = isl_pw_qpolynomial_fold_copy(vpb->pwf); nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param); for (i = 0; i < nparam; ++i) { isl_point_get_coordinate(pnt, isl_dim_param, i, &t); pwf = isl_pw_qpolynomial_fold_fix_dim(pwf, isl_dim_param, i, t); } bound = isl_pw_qpolynomial_fold_eval( isl_pw_qpolynomial_fold_copy(vpb->bound), isl_point_copy(pnt)); dom = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf)); bounded = isl_set_is_bounded(dom); if (bounded < 0) goto error; if (!bounded) opt = isl_pw_qpolynomial_fold_eval( isl_pw_qpolynomial_fold_copy(pwf), isl_set_sample_point(isl_set_copy(dom))); else if (sign > 0) opt = isl_pw_qpolynomial_fold_max(isl_pw_qpolynomial_fold_copy(pwf)); else opt = isl_pw_qpolynomial_fold_min(isl_pw_qpolynomial_fold_copy(pwf)); nvar = isl_set_dim(dom, isl_dim_set); if (vpb->exact && bounded) ok = isl_val_eq(opt, bound); else if (sign > 0) ok = isl_val_le(opt, bound); else ok = isl_val_le(bound, opt); if (ok < 0) goto error; if (vpb->options->print_all || !ok) { p = isl_printer_print_str(p, minmax); p = isl_printer_print_str(p, "("); for (i = 0; i < nparam; ++i) { if (i) p = isl_printer_print_str(p, ", "); isl_point_get_coordinate(pnt, isl_dim_param, i, &t); p = isl_printer_print_isl_int(p, t); } p = isl_printer_print_str(p, ") = "); p = isl_printer_print_val(p, bound); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, bounded ? "opt" : "sample"); p = isl_printer_print_str(p, " = "); p = isl_printer_print_val(p, opt); if (ok) p = isl_printer_print_str(p, ". OK"); else p = isl_printer_print_str(p, ". NOT OK"); p = isl_printer_end_line(p); } else if ((vpb->n % vpb->stride) == 0) { p = isl_printer_print_str(p, "o"); p = isl_printer_flush(p); } if (0) { error: ok = 0; } isl_pw_qpolynomial_fold_free(pwf); isl_val_free(bound); isl_val_free(opt); isl_point_free(pnt); isl_set_free(dom); isl_int_clear(t); isl_printer_free(p); if (!ok) vpb->error = 1; if (vpb->options->continue_on_error) ok = 1; return (vpb->n >= 1 && ok) ? isl_stat_ok : isl_stat_error; } static int check_solution(__isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_pw_qpolynomial_fold *bound, int exact, struct bound_options *options) { struct verify_point_bound vpb; isl_int count, max; isl_set *dom; isl_set *context; int i, r, n; dom = isl_pw_qpolynomial_fold_domain(isl_pw_qpolynomial_fold_copy(pwf)); context = isl_set_params(isl_set_copy(dom)); context = isl_set_remove_divs(context); context = set_bounds(context); isl_int_init(count); isl_int_init(max); isl_int_set_si(max, 200); r = isl_set_count_upto(context, max, &count); assert(r >= 0); n = isl_int_get_si(count); isl_int_clear(max); isl_int_clear(count); vpb.options = options; vpb.pwf = pwf; vpb.bound = bound; vpb.n = n; vpb.stride = n > 70 ? 1 + (n + 1)/70 : 1; vpb.error = 0; vpb.exact = exact; if (!options->print_all) { for (i = 0; i < vpb.n; i += vpb.stride) printf("."); printf("\r"); fflush(stdout); } isl_set_foreach_point(context, verify_point, &vpb); isl_set_free(context); isl_set_free(dom); isl_pw_qpolynomial_fold_free(pwf); isl_pw_qpolynomial_fold_free(bound); if (!options->print_all) printf("\n"); if (vpb.error) { fprintf(stderr, "Check failed !\n"); return -1; } return 0; } int main(int argc, char **argv) { isl_ctx *ctx; isl_pw_qpolynomial_fold *copy; isl_pw_qpolynomial_fold *pwf; isl_stream *s; struct isl_obj obj; struct bound_options *options; int exact; int r = 0; options = bound_options_new_with_defaults(); assert(options); argc = bound_options_parse(options, argc, argv, ISL_ARG_ALL); ctx = isl_ctx_alloc_with_options(&bound_options_args, options); s = isl_stream_new_file(ctx, stdin); obj = isl_stream_read_obj(s); if (obj.type == isl_obj_pw_qpolynomial) pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(isl_fold_max, obj.v); else if (obj.type == isl_obj_pw_qpolynomial_fold) pwf = obj.v; else { obj.type->free(obj.v); isl_die(ctx, isl_error_invalid, "invalid input", goto error); } if (options->verify) copy = isl_pw_qpolynomial_fold_copy(pwf); pwf = isl_pw_qpolynomial_fold_bound(pwf, &exact); pwf = isl_pw_qpolynomial_fold_coalesce(pwf); if (options->verify) { r = check_solution(copy, pwf, exact, options); } else { if (!exact) printf("# NOT exact\n"); isl_pw_qpolynomial_fold_print(pwf, stdout, 0); fprintf(stdout, "\n"); isl_pw_qpolynomial_fold_free(pwf); } error: isl_stream_free(s); isl_ctx_free(ctx); return r; } isl-0.16.1/AUTHORS0000664000175000017500000000202312645744226010372 00000000000000isl was written by Sven Verdoolaege 2006-2007 Leiden Institute of Advanced Computer Science Universiteit Leiden Niels Bohrweg 1 2333 CA Leiden The Netherlands 2008-2009 K.U.Leuven Departement Computerwetenschappen Celestijnenlaan 200A B-3001 Leuven Belgium 2010-2011 INRIA Saclay - Ile-de-France Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod 91893 Orsay France 2011-2012 consultant for Leiden Institute of Advanced Computer Science 2012-2014 Ecole Normale Superieure 45 rue d'Ulm, 75230 Paris France 2014-2015 INRIA Rocquencourt Domaine de Voluceau - Rocquencourt, B.P. 105 78153 Le Chesnay France 2015 Polly Labs Contributions by Mythri Alle Riyadh Baghdadi Serge Belyshev Ray Donnelly Johannes Doerfert Tobias Grosser Alexandre Isoard Andreas Kloeckner Michael Kruse Sebastian Pop Louis-Noel Pouchet Uday Kumar Reddy Andreas Simbuerger Sven van Haastregt The merge sort implementation was written by Jeffrey Stedfast. isl-0.16.1/isl_affine_hull.c0000664000175000017500000011425312645737234012623 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include "isl_equalities.h" #include "isl_sample.h" #include "isl_tab.h" #include #include struct isl_basic_map *isl_basic_map_implicit_equalities( struct isl_basic_map *bmap) { struct isl_tab *tab; if (!bmap) return bmap; bmap = isl_basic_map_gauss(bmap, NULL); if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT)) return bmap; if (bmap->n_ineq <= 1) return bmap; tab = isl_tab_from_basic_map(bmap, 0); if (isl_tab_detect_implicit_equalities(tab) < 0) goto error; bmap = isl_basic_map_update_from_tab(bmap, tab); isl_tab_free(tab); bmap = isl_basic_map_gauss(bmap, NULL); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT); return bmap; error: isl_tab_free(tab); isl_basic_map_free(bmap); return NULL; } struct isl_basic_set *isl_basic_set_implicit_equalities( struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_implicit_equalities((struct isl_basic_map*)bset); } struct isl_map *isl_map_implicit_equalities(struct isl_map *map) { int i; if (!map) return map; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_implicit_equalities(map->p[i]); if (!map->p[i]) goto error; } return map; error: isl_map_free(map); return NULL; } /* Make eq[row][col] of both bmaps equal so we can add the row * add the column to the common matrix. * Note that because of the echelon form, the columns of row row * after column col are zero. */ static void set_common_multiple( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { isl_int m, c; if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col])) return; isl_int_init(c); isl_int_init(m); isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]); isl_int_divexact(c, m, bset1->eq[row][col]); isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1); isl_int_divexact(c, m, bset2->eq[row][col]); isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1); isl_int_clear(c); isl_int_clear(m); } /* Delete a given equality, moving all the following equalities one up. */ static void delete_row(struct isl_basic_set *bset, unsigned row) { isl_int *t; int r; t = bset->eq[row]; bset->n_eq--; for (r = row; r < bset->n_eq; ++r) bset->eq[r] = bset->eq[r+1]; bset->eq[bset->n_eq] = t; } /* Make first row entries in column col of bset1 identical to * those of bset2, using the fact that entry bset1->eq[row][col]=a * is non-zero. Initially, these elements of bset1 are all zero. * For each row i < row, we set * A[i] = a * A[i] + B[i][col] * A[row] * B[i] = a * B[i] * so that * A[i][col] = B[i][col] = a * old(B[i][col]) */ static void construct_column( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { int r; isl_int a; isl_int b; unsigned total; isl_int_init(a); isl_int_init(b); total = 1 + isl_basic_set_n_dim(bset1); for (r = 0; r < row; ++r) { if (isl_int_is_zero(bset2->eq[r][col])) continue; isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]); isl_int_divexact(a, bset1->eq[row][col], b); isl_int_divexact(b, bset2->eq[r][col], b); isl_seq_combine(bset1->eq[r], a, bset1->eq[r], b, bset1->eq[row], total); isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total); } isl_int_clear(a); isl_int_clear(b); delete_row(bset1, row); } /* Make first row entries in column col of bset1 identical to * those of bset2, using only these entries of the two matrices. * Let t be the last row with different entries. * For each row i < t, we set * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t] * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t] * so that * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col]) */ static int transform_column( struct isl_basic_set *bset1, struct isl_basic_set *bset2, unsigned row, unsigned col) { int i, t; isl_int a, b, g; unsigned total; for (t = row-1; t >= 0; --t) if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col])) break; if (t < 0) return 0; total = 1 + isl_basic_set_n_dim(bset1); isl_int_init(a); isl_int_init(b); isl_int_init(g); isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]); for (i = 0; i < t; ++i) { isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]); isl_int_gcd(g, a, b); isl_int_divexact(a, a, g); isl_int_divexact(g, b, g); isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t], total); isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t], total); } isl_int_clear(a); isl_int_clear(b); isl_int_clear(g); delete_row(bset1, t); delete_row(bset2, t); return 1; } /* The implementation is based on Section 5.2 of Michael Karr, * "Affine Relationships Among Variables of a Program", * except that the echelon form we use starts from the last column * and that we are dealing with integer coefficients. */ static struct isl_basic_set *affine_hull( struct isl_basic_set *bset1, struct isl_basic_set *bset2) { unsigned total; int col; int row; if (!bset1 || !bset2) goto error; total = 1 + isl_basic_set_n_dim(bset1); row = 0; for (col = total-1; col >= 0; --col) { int is_zero1 = row >= bset1->n_eq || isl_int_is_zero(bset1->eq[row][col]); int is_zero2 = row >= bset2->n_eq || isl_int_is_zero(bset2->eq[row][col]); if (!is_zero1 && !is_zero2) { set_common_multiple(bset1, bset2, row, col); ++row; } else if (!is_zero1 && is_zero2) { construct_column(bset1, bset2, row, col); } else if (is_zero1 && !is_zero2) { construct_column(bset2, bset1, row, col); } else { if (transform_column(bset1, bset2, row, col)) --row; } } isl_assert(bset1->ctx, row == bset1->n_eq, goto error); isl_basic_set_free(bset2); bset1 = isl_basic_set_normalize_constraints(bset1); return bset1; error: isl_basic_set_free(bset1); isl_basic_set_free(bset2); return NULL; } /* Find an integer point in the set represented by "tab" * that lies outside of the equality "eq" e(x) = 0. * If "up" is true, look for a point satisfying e(x) - 1 >= 0. * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1). * The point, if found, is returned. * If no point can be found, a zero-length vector is returned. * * Before solving an ILP problem, we first check if simply * adding the normal of the constraint to one of the known * integer points in the basic set represented by "tab" * yields another point inside the basic set. * * The caller of this function ensures that the tableau is bounded or * that tab->basis and tab->n_unbounded have been set appropriately. */ static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up) { struct isl_ctx *ctx; struct isl_vec *sample = NULL; struct isl_tab_undo *snap; unsigned dim; if (!tab) return NULL; ctx = tab->mat->ctx; dim = tab->n_var; sample = isl_vec_alloc(ctx, 1 + dim); if (!sample) return NULL; isl_int_set_si(sample->el[0], 1); isl_seq_combine(sample->el + 1, ctx->one, tab->bmap->sample->el + 1, up ? ctx->one : ctx->negone, eq + 1, dim); if (isl_basic_map_contains(tab->bmap, sample)) return sample; isl_vec_free(sample); sample = NULL; snap = isl_tab_snap(tab); if (!up) isl_seq_neg(eq, eq, 1 + dim); isl_int_sub_ui(eq[0], eq[0], 1); if (isl_tab_extend_cons(tab, 1) < 0) goto error; if (isl_tab_add_ineq(tab, eq) < 0) goto error; sample = isl_tab_sample(tab); isl_int_add_ui(eq[0], eq[0], 1); if (!up) isl_seq_neg(eq, eq, 1 + dim); if (sample && isl_tab_rollback(tab, snap) < 0) goto error; return sample; error: isl_vec_free(sample); return NULL; } struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset) { int i; bset = isl_basic_set_cow(bset); if (!bset) return NULL; isl_assert(bset->ctx, bset->n_div == 0, goto error); for (i = 0; i < bset->n_eq; ++i) isl_int_set_si(bset->eq[i][0], 0); for (i = 0; i < bset->n_ineq; ++i) isl_int_set_si(bset->ineq[i][0], 0); ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT); return isl_basic_set_implicit_equalities(bset); error: isl_basic_set_free(bset); return NULL; } __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set) { int i; if (!set) return NULL; if (set->n == 0) return set; set = isl_set_remove_divs(set); set = isl_set_cow(set); if (!set) return NULL; for (i = 0; i < set->n; ++i) { set->p[i] = isl_basic_set_recession_cone(set->p[i]); if (!set->p[i]) goto error; } return set; error: isl_set_free(set); return NULL; } /* Move "sample" to a point that is one up (or down) from the original * point in dimension "pos". */ static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up) { if (up) isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1); else isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1); } /* Check if any points that are adjacent to "sample" also belong to "bset". * If so, add them to "hull" and return the updated hull. * * Before checking whether and adjacent point belongs to "bset", we first * check whether it already belongs to "hull" as this test is typically * much cheaper. */ static __isl_give isl_basic_set *add_adjacent_points( __isl_take isl_basic_set *hull, __isl_take isl_vec *sample, __isl_keep isl_basic_set *bset) { int i, up; int dim; if (!sample) goto error; dim = isl_basic_set_dim(hull, isl_dim_set); for (i = 0; i < dim; ++i) { for (up = 0; up <= 1; ++up) { int contains; isl_basic_set *point; adjacent_point(sample, i, up); contains = isl_basic_set_contains(hull, sample); if (contains < 0) goto error; if (contains) { adjacent_point(sample, i, !up); continue; } contains = isl_basic_set_contains(bset, sample); if (contains < 0) goto error; if (contains) { point = isl_basic_set_from_vec( isl_vec_copy(sample)); hull = affine_hull(hull, point); } adjacent_point(sample, i, !up); if (contains) break; } } isl_vec_free(sample); return hull; error: isl_vec_free(sample); isl_basic_set_free(hull); return NULL; } /* Extend an initial (under-)approximation of the affine hull of basic * set represented by the tableau "tab" * by looking for points that do not satisfy one of the equalities * in the current approximation and adding them to that approximation * until no such points can be found any more. * * The caller of this function ensures that "tab" is bounded or * that tab->basis and tab->n_unbounded have been set appropriately. * * "bset" may be either NULL or the basic set represented by "tab". * If "bset" is not NULL, we check for any point we find if any * of its adjacent points also belong to "bset". */ static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab, __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset) { int i, j; unsigned dim; if (!tab || !hull) goto error; dim = tab->n_var; if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0) goto error; for (i = 0; i < dim; ++i) { struct isl_vec *sample; struct isl_basic_set *point; for (j = 0; j < hull->n_eq; ++j) { sample = outside_point(tab, hull->eq[j], 1); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); sample = outside_point(tab, hull->eq[j], 0); if (!sample) goto error; if (sample->size > 0) break; isl_vec_free(sample); if (isl_tab_add_eq(tab, hull->eq[j]) < 0) goto error; } if (j == hull->n_eq) break; if (tab->samples && isl_tab_add_sample(tab, isl_vec_copy(sample)) < 0) hull = isl_basic_set_free(hull); if (bset) hull = add_adjacent_points(hull, isl_vec_copy(sample), bset); point = isl_basic_set_from_vec(sample); hull = affine_hull(hull, point); if (!hull) return NULL; } return hull; error: isl_basic_set_free(hull); return NULL; } /* Drop all constraints in bmap that involve any of the dimensions * first to first+n-1. */ static __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving( __isl_take isl_basic_map *bmap, unsigned first, unsigned n) { int i; if (n == 0) return bmap; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; for (i = bmap->n_eq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) == -1) continue; isl_basic_map_drop_equality(bmap, i); } for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) == -1) continue; isl_basic_map_drop_inequality(bmap, i); } bmap = isl_basic_map_add_known_div_constraints(bmap); return bmap; } /* Drop all constraints in bset that involve any of the dimensions * first to first+n-1. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving( __isl_take isl_basic_set *bset, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_involving(bset, first, n); } /* Drop all constraints in bmap that do not involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_map *isl_basic_map_drop_constraints_not_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; if (n == 0) { isl_space *space = isl_basic_map_get_space(bmap); isl_basic_map_free(bmap); return isl_basic_map_universe(space); } bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; dim = isl_basic_map_dim(bmap, type); if (first + n > dim || first + n < first) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", return isl_basic_map_free(bmap)); first += isl_basic_map_offset(bmap, type) - 1; for (i = bmap->n_eq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->eq[i] + 1 + first, n) != -1) continue; isl_basic_map_drop_equality(bmap, i); } for (i = bmap->n_ineq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->ineq[i] + 1 + first, n) != -1) continue; isl_basic_map_drop_inequality(bmap, i); } bmap = isl_basic_map_add_known_div_constraints(bmap); return bmap; } /* Drop all constraints in bset that do not involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_not_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_not_involving_dims(bset, type, first, n); } /* Drop all constraints in bmap that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_map *isl_basic_map_drop_constraints_involving_dims( __isl_take isl_basic_map *bmap, enum isl_dim_type type, unsigned first, unsigned n) { unsigned dim; if (!bmap) return NULL; if (n == 0) return bmap; dim = isl_basic_map_dim(bmap, type); if (first + n > dim || first + n < first) isl_die(isl_basic_map_get_ctx(bmap), isl_error_invalid, "index out of bounds", return isl_basic_map_free(bmap)); bmap = isl_basic_map_remove_divs_involving_dims(bmap, type, first, n); first += isl_basic_map_offset(bmap, type) - 1; return isl_basic_map_drop_constraints_involving(bmap, first, n); } /* Drop all constraints in bset that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving_dims( __isl_take isl_basic_set *bset, enum isl_dim_type type, unsigned first, unsigned n) { return isl_basic_map_drop_constraints_involving_dims(bset, type, first, n); } /* Drop all constraints in map that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_map *isl_map_drop_constraints_involving_dims( __isl_take isl_map *map, enum isl_dim_type type, unsigned first, unsigned n) { int i; unsigned dim; if (!map) return NULL; if (n == 0) return map; dim = isl_map_dim(map, type); if (first + n > dim || first + n < first) isl_die(isl_map_get_ctx(map), isl_error_invalid, "index out of bounds", return isl_map_free(map)); map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_drop_constraints_involving_dims( map->p[i], type, first, n); if (!map->p[i]) return isl_map_free(map); } if (map->n > 1) ISL_F_CLR(map, ISL_MAP_DISJOINT); return map; } /* Drop all constraints in set that involve any of the dimensions * first to first + n - 1 of the given type. */ __isl_give isl_set *isl_set_drop_constraints_involving_dims( __isl_take isl_set *set, enum isl_dim_type type, unsigned first, unsigned n) { return isl_map_drop_constraints_involving_dims(set, type, first, n); } /* Construct an initial underapproximatino of the hull of "bset" * from "sample" and any of its adjacent points that also belong to "bset". */ static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset, __isl_take isl_vec *sample) { isl_basic_set *hull; hull = isl_basic_set_from_vec(isl_vec_copy(sample)); hull = add_adjacent_points(hull, sample, bset); return hull; } /* Look for all equalities satisfied by the integer points in bset, * which is assumed to be bounded. * * The equalities are obtained by successively looking for * a point that is affinely independent of the points found so far. * In particular, for each equality satisfied by the points so far, * we check if there is any point on a hyperplane parallel to the * corresponding hyperplane shifted by at least one (in either direction). */ static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset) { struct isl_vec *sample = NULL; struct isl_basic_set *hull; struct isl_tab *tab = NULL; unsigned dim; if (isl_basic_set_plain_is_empty(bset)) return bset; dim = isl_basic_set_n_dim(bset); if (bset->sample && bset->sample->size == 1 + dim) { int contains = isl_basic_set_contains(bset, bset->sample); if (contains < 0) goto error; if (contains) { if (dim == 0) return bset; sample = isl_vec_copy(bset->sample); } else { isl_vec_free(bset->sample); bset->sample = NULL; } } tab = isl_tab_from_basic_set(bset, 1); if (!tab) goto error; if (tab->empty) { isl_tab_free(tab); isl_vec_free(sample); return isl_basic_set_set_to_empty(bset); } if (!sample) { struct isl_tab_undo *snap; snap = isl_tab_snap(tab); sample = isl_tab_sample(tab); if (isl_tab_rollback(tab, snap) < 0) goto error; isl_vec_free(tab->bmap->sample); tab->bmap->sample = isl_vec_copy(sample); } if (!sample) goto error; if (sample->size == 0) { isl_tab_free(tab); isl_vec_free(sample); return isl_basic_set_set_to_empty(bset); } hull = initialize_hull(bset, sample); hull = extend_affine_hull(tab, hull, bset); isl_basic_set_free(bset); isl_tab_free(tab); return hull; error: isl_vec_free(sample); isl_tab_free(tab); isl_basic_set_free(bset); return NULL; } /* Given an unbounded tableau and an integer point satisfying the tableau, * construct an initial affine hull containing the recession cone * shifted to the given point. * * The unbounded directions are taken from the last rows of the basis, * which is assumed to have been initialized appropriately. */ static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab, __isl_take isl_vec *vec) { int i; int k; struct isl_basic_set *bset = NULL; struct isl_ctx *ctx; unsigned dim; if (!vec || !tab) return NULL; ctx = vec->ctx; isl_assert(ctx, vec->size != 0, goto error); bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0); if (!bset) goto error; dim = isl_basic_set_n_dim(bset) - tab->n_unbounded; for (i = 0; i < dim; ++i) { k = isl_basic_set_alloc_equality(bset); if (k < 0) goto error; isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1, vec->size - 1); isl_seq_inner_product(bset->eq[k] + 1, vec->el +1, vec->size - 1, &bset->eq[k][0]); isl_int_neg(bset->eq[k][0], bset->eq[k][0]); } bset->sample = vec; bset = isl_basic_set_gauss(bset, NULL); return bset; error: isl_basic_set_free(bset); isl_vec_free(vec); return NULL; } /* Given a tableau of a set and a tableau of the corresponding * recession cone, detect and add all equalities to the tableau. * If the tableau is bounded, then we can simply keep the * tableau in its state after the return from extend_affine_hull. * However, if the tableau is unbounded, then * isl_tab_set_initial_basis_with_cone will add some additional * constraints to the tableau that have to be removed again. * In this case, we therefore rollback to the state before * any constraints were added and then add the equalities back in. */ struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab, struct isl_tab *tab_cone) { int j; struct isl_vec *sample; struct isl_basic_set *hull = NULL; struct isl_tab_undo *snap; if (!tab || !tab_cone) goto error; snap = isl_tab_snap(tab); isl_mat_free(tab->basis); tab->basis = NULL; isl_assert(tab->mat->ctx, tab->bmap, goto error); isl_assert(tab->mat->ctx, tab->samples, goto error); isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error); isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error); if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0) goto error; sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var); if (!sample) goto error; isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size); isl_vec_free(tab->bmap->sample); tab->bmap->sample = isl_vec_copy(sample); if (tab->n_unbounded == 0) hull = isl_basic_set_from_vec(isl_vec_copy(sample)); else hull = initial_hull(tab, isl_vec_copy(sample)); for (j = tab->n_outside + 1; j < tab->n_sample; ++j) { isl_seq_cpy(sample->el, tab->samples->row[j], sample->size); hull = affine_hull(hull, isl_basic_set_from_vec(isl_vec_copy(sample))); } isl_vec_free(sample); hull = extend_affine_hull(tab, hull, NULL); if (!hull) goto error; if (tab->n_unbounded == 0) { isl_basic_set_free(hull); return tab; } if (isl_tab_rollback(tab, snap) < 0) goto error; if (hull->n_eq > tab->n_zero) { for (j = 0; j < hull->n_eq; ++j) { isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var); if (isl_tab_add_eq(tab, hull->eq[j]) < 0) goto error; } } isl_basic_set_free(hull); return tab; error: isl_basic_set_free(hull); isl_tab_free(tab); return NULL; } /* Compute the affine hull of "bset", where "cone" is the recession cone * of "bset". * * We first compute a unimodular transformation that puts the unbounded * directions in the last dimensions. In particular, we take a transformation * that maps all equalities to equalities (in HNF) on the first dimensions. * Let x be the original dimensions and y the transformed, with y_1 bounded * and y_2 unbounded. * * [ y_1 ] [ y_1 ] [ Q_1 ] * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x * * Let's call the input basic set S. We compute S' = preimage(S, U) * and drop the final dimensions including any constraints involving them. * This results in set S''. * Then we compute the affine hull A'' of S''. * Let F y_1 >= g be the constraint system of A''. In the transformed * space the y_2 are unbounded, so we can add them back without any constraints, * resulting in * * [ y_1 ] * [ F 0 ] [ y_2 ] >= g * or * [ Q_1 ] * [ F 0 ] [ Q_2 ] x >= g * or * F Q_1 x >= g * * The affine hull in the original space is then obtained as * A = preimage(A'', Q_1). */ static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset, struct isl_basic_set *cone) { unsigned total; unsigned cone_dim; struct isl_basic_set *hull; struct isl_mat *M, *U, *Q; if (!bset || !cone) goto error; total = isl_basic_set_total_dim(cone); cone_dim = total - cone->n_eq; M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total); M = isl_mat_left_hermite(M, 0, &U, &Q); if (!M) goto error; isl_mat_free(M); U = isl_mat_lin_to_aff(U); bset = isl_basic_set_preimage(bset, isl_mat_copy(U)); bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim, cone_dim); bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim); Q = isl_mat_lin_to_aff(Q); Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim); if (bset && bset->sample && bset->sample->size == 1 + total) bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample); hull = uset_affine_hull_bounded(bset); if (!hull) { isl_mat_free(Q); isl_mat_free(U); } else { struct isl_vec *sample = isl_vec_copy(hull->sample); U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim); if (sample && sample->size > 0) sample = isl_mat_vec_product(U, sample); else isl_mat_free(U); hull = isl_basic_set_preimage(hull, Q); if (hull) { isl_vec_free(hull->sample); hull->sample = sample; } else isl_vec_free(sample); } isl_basic_set_free(cone); return hull; error: isl_basic_set_free(bset); isl_basic_set_free(cone); return NULL; } /* Look for all equalities satisfied by the integer points in bset, * which is assumed not to have any explicit equalities. * * The equalities are obtained by successively looking for * a point that is affinely independent of the points found so far. * In particular, for each equality satisfied by the points so far, * we check if there is any point on a hyperplane parallel to the * corresponding hyperplane shifted by at least one (in either direction). * * Before looking for any outside points, we first compute the recession * cone. The directions of this recession cone will always be part * of the affine hull, so there is no need for looking for any points * in these directions. * In particular, if the recession cone is full-dimensional, then * the affine hull is simply the whole universe. */ static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset) { struct isl_basic_set *cone; if (isl_basic_set_plain_is_empty(bset)) return bset; cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset)); if (!cone) goto error; if (cone->n_eq == 0) { isl_space *space; space = isl_basic_set_get_space(bset); isl_basic_set_free(cone); isl_basic_set_free(bset); return isl_basic_set_universe(space); } if (cone->n_eq < isl_basic_set_total_dim(cone)) return affine_hull_with_cone(bset, cone); isl_basic_set_free(cone); return uset_affine_hull_bounded(bset); error: isl_basic_set_free(bset); return NULL; } /* Look for all equalities satisfied by the integer points in bmap * that are independent of the equalities already explicitly available * in bmap. * * We first remove all equalities already explicitly available, * then look for additional equalities in the reduced space * and then transform the result to the original space. * The original equalities are _not_ added to this set. This is * the responsibility of the calling function. * The resulting basic set has all meaning about the dimensions removed. * In particular, dimensions that correspond to existential variables * in bmap and that are found to be fixed are not removed. */ static struct isl_basic_set *equalities_in_underlying_set( struct isl_basic_map *bmap) { struct isl_mat *T1 = NULL; struct isl_mat *T2 = NULL; struct isl_basic_set *bset = NULL; struct isl_basic_set *hull = NULL; bset = isl_basic_map_underlying_set(bmap); if (!bset) return NULL; if (bset->n_eq) bset = isl_basic_set_remove_equalities(bset, &T1, &T2); if (!bset) goto error; hull = uset_affine_hull(bset); if (!T2) return hull; if (!hull) { isl_mat_free(T1); isl_mat_free(T2); } else { struct isl_vec *sample = isl_vec_copy(hull->sample); if (sample && sample->size > 0) sample = isl_mat_vec_product(T1, sample); else isl_mat_free(T1); hull = isl_basic_set_preimage(hull, T2); if (hull) { isl_vec_free(hull->sample); hull->sample = sample; } else isl_vec_free(sample); } return hull; error: isl_mat_free(T1); isl_mat_free(T2); isl_basic_set_free(bset); isl_basic_set_free(hull); return NULL; } /* Detect and make explicit all equalities satisfied by the (integer) * points in bmap. */ struct isl_basic_map *isl_basic_map_detect_equalities( struct isl_basic_map *bmap) { int i, j; struct isl_basic_set *hull = NULL; if (!bmap) return NULL; if (bmap->n_ineq == 0) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES)) return bmap; if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL)) return isl_basic_map_implicit_equalities(bmap); hull = equalities_in_underlying_set(isl_basic_map_copy(bmap)); if (!hull) goto error; if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) { isl_basic_set_free(hull); return isl_basic_map_set_to_empty(bmap); } bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0, hull->n_eq, 0); for (i = 0; i < hull->n_eq; ++i) { j = isl_basic_map_alloc_equality(bmap); if (j < 0) goto error; isl_seq_cpy(bmap->eq[j], hull->eq[i], 1 + isl_basic_set_total_dim(hull)); } isl_vec_free(bmap->sample); bmap->sample = isl_vec_copy(hull->sample); isl_basic_set_free(hull); ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES); bmap = isl_basic_map_simplify(bmap); return isl_basic_map_finalize(bmap); error: isl_basic_set_free(hull); isl_basic_map_free(bmap); return NULL; } __isl_give isl_basic_set *isl_basic_set_detect_equalities( __isl_take isl_basic_set *bset) { return (isl_basic_set *) isl_basic_map_detect_equalities((isl_basic_map *)bset); } __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map) { return isl_map_inline_foreach_basic_map(map, &isl_basic_map_detect_equalities); } __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set) { return (isl_set *)isl_map_detect_equalities((isl_map *)set); } /* Return the superset of "bmap" described by the equalities * satisfied by "bmap" that are already known. */ __isl_give isl_basic_map *isl_basic_map_plain_affine_hull( __isl_take isl_basic_map *bmap) { bmap = isl_basic_map_cow(bmap); if (bmap) isl_basic_map_free_inequality(bmap, bmap->n_ineq); bmap = isl_basic_map_finalize(bmap); return bmap; } /* Return the superset of "bset" described by the equalities * satisfied by "bset" that are already known. */ __isl_give isl_basic_set *isl_basic_set_plain_affine_hull( __isl_take isl_basic_set *bset) { return isl_basic_map_plain_affine_hull(bset); } /* After computing the rational affine hull (by detecting the implicit * equalities), we compute the additional equalities satisfied by * the integer points (if any) and add the original equalities back in. */ struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap) { bmap = isl_basic_map_detect_equalities(bmap); bmap = isl_basic_map_plain_affine_hull(bmap); return bmap; } struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset) { return (struct isl_basic_set *) isl_basic_map_affine_hull((struct isl_basic_map *)bset); } /* Given a rational affine matrix "M", add stride constraints to "bmap" * that ensure that * * M(x) * * is an integer vector. The variables x include all the variables * of "bmap" except the unknown divs. * * If d is the common denominator of M, then we need to impose that * * d M(x) = 0 mod d * * or * * exists alpha : d M(x) = d alpha * * This function is similar to add_strides in isl_morph.c */ static __isl_give isl_basic_map *add_strides(__isl_take isl_basic_map *bmap, __isl_keep isl_mat *M, int n_known) { int i, div, k; isl_int gcd; if (isl_int_is_one(M->row[0][0])) return bmap; bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), M->n_row - 1, M->n_row - 1, 0); isl_int_init(gcd); for (i = 1; i < M->n_row; ++i) { isl_seq_gcd(M->row[i], M->n_col, &gcd); if (isl_int_is_divisible_by(gcd, M->row[0][0])) continue; div = isl_basic_map_alloc_div(bmap); if (div < 0) goto error; isl_int_set_si(bmap->div[div][0], 0); k = isl_basic_map_alloc_equality(bmap); if (k < 0) goto error; isl_seq_cpy(bmap->eq[k], M->row[i], M->n_col); isl_seq_clr(bmap->eq[k] + M->n_col, bmap->n_div - n_known); isl_int_set(bmap->eq[k][M->n_col - n_known + div], M->row[0][0]); } isl_int_clear(gcd); return bmap; error: isl_int_clear(gcd); isl_basic_map_free(bmap); return NULL; } /* If there are any equalities that involve (multiple) unknown divs, * then extract the stride information encoded by those equalities * and make it explicitly available in "bmap". * * We first sort the divs so that the unknown divs appear last and * then we count how many equalities involve these divs. * * Let these equalities be of the form * * A(x) + B y = 0 * * where y represents the unknown divs and x the remaining variables. * Let [H 0] be the Hermite Normal Form of B, i.e., * * B = [H 0] Q * * Then x is a solution of the equalities iff * * H^-1 A(x) (= - [I 0] Q y) * * is an integer vector. Let d be the common denominator of H^-1. * We impose * * d H^-1 A(x) = d alpha * * in add_strides, with alpha fresh existentially quantified variables. */ static __isl_give isl_basic_map *isl_basic_map_make_strides_explicit( __isl_take isl_basic_map *bmap) { int known; int n_known; int n, n_col; int total; isl_ctx *ctx; isl_mat *A, *B, *M; known = isl_basic_map_divs_known(bmap); if (known < 0) return isl_basic_map_free(bmap); if (known) return bmap; bmap = isl_basic_map_sort_divs(bmap); bmap = isl_basic_map_gauss(bmap, NULL); if (!bmap) return NULL; for (n_known = 0; n_known < bmap->n_div; ++n_known) if (isl_int_is_zero(bmap->div[n_known][0])) break; ctx = isl_basic_map_get_ctx(bmap); total = isl_space_dim(bmap->dim, isl_dim_all); for (n = 0; n < bmap->n_eq; ++n) if (isl_seq_first_non_zero(bmap->eq[n] + 1 + total + n_known, bmap->n_div - n_known) == -1) break; if (n == 0) return bmap; B = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 0, 1 + total + n_known); n_col = bmap->n_div - n_known; A = isl_mat_sub_alloc6(ctx, bmap->eq, 0, n, 1 + total + n_known, n_col); A = isl_mat_left_hermite(A, 0, NULL, NULL); A = isl_mat_drop_cols(A, n, n_col - n); A = isl_mat_lin_to_aff(A); A = isl_mat_right_inverse(A); B = isl_mat_insert_zero_rows(B, 0, 1); B = isl_mat_set_element_si(B, 0, 0, 1); M = isl_mat_product(A, B); if (!M) return isl_basic_map_free(bmap); bmap = add_strides(bmap, M, n_known); bmap = isl_basic_map_gauss(bmap, NULL); isl_mat_free(M); return bmap; } /* Compute the affine hull of each basic map in "map" separately * and make all stride information explicit so that we can remove * all unknown divs without losing this information. * The result is also guaranteed to be gaussed. * * In simple cases where a div is determined by an equality, * calling isl_basic_map_gauss is enough to make the stride information * explicit, as it will derive an explicit representation for the div * from the equality. If, however, the stride information * is encoded through multiple unknown divs then we need to make * some extra effort in isl_basic_map_make_strides_explicit. */ static __isl_give isl_map *isl_map_local_affine_hull(__isl_take isl_map *map) { int i; map = isl_map_cow(map); if (!map) return NULL; for (i = 0; i < map->n; ++i) { map->p[i] = isl_basic_map_affine_hull(map->p[i]); map->p[i] = isl_basic_map_gauss(map->p[i], NULL); map->p[i] = isl_basic_map_make_strides_explicit(map->p[i]); if (!map->p[i]) return isl_map_free(map); } return map; } static __isl_give isl_set *isl_set_local_affine_hull(__isl_take isl_set *set) { return isl_map_local_affine_hull(set); } /* Return an empty basic map living in the same space as "map". */ static __isl_give isl_basic_map *replace_map_by_empty_basic_map( __isl_take isl_map *map) { isl_space *space; space = isl_map_get_space(map); isl_map_free(map); return isl_basic_map_empty(space); } /* Compute the affine hull of "map". * * We first compute the affine hull of each basic map separately. * Then we align the divs and recompute the affine hulls of the basic * maps since some of them may now have extra divs. * In order to avoid performing parametric integer programming to * compute explicit expressions for the divs, possible leading to * an explosion in the number of basic maps, we first drop all unknown * divs before aligning the divs. Note that isl_map_local_affine_hull tries * to make sure that all stride information is explicitly available * in terms of known divs. This involves calling isl_basic_set_gauss, * which is also needed because affine_hull assumes its input has been gaussed, * while isl_map_affine_hull may be called on input that has not been gaussed, * in particular from initial_facet_constraint. * Similarly, align_divs may reorder some divs so that we need to * gauss the result again. * Finally, we combine the individual affine hulls into a single * affine hull. */ __isl_give isl_basic_map *isl_map_affine_hull(__isl_take isl_map *map) { struct isl_basic_map *model = NULL; struct isl_basic_map *hull = NULL; struct isl_set *set; isl_basic_set *bset; map = isl_map_detect_equalities(map); map = isl_map_local_affine_hull(map); map = isl_map_remove_empty_parts(map); map = isl_map_remove_unknown_divs(map); map = isl_map_align_divs(map); if (!map) return NULL; if (map->n == 0) return replace_map_by_empty_basic_map(map); model = isl_basic_map_copy(map->p[0]); set = isl_map_underlying_set(map); set = isl_set_cow(set); set = isl_set_local_affine_hull(set); if (!set) goto error; while (set->n > 1) set->p[0] = affine_hull(set->p[0], set->p[--set->n]); bset = isl_basic_set_copy(set->p[0]); hull = isl_basic_map_overlying_set(bset, model); isl_set_free(set); hull = isl_basic_map_simplify(hull); return isl_basic_map_finalize(hull); error: isl_basic_map_free(model); isl_set_free(set); return NULL; } struct isl_basic_set *isl_set_affine_hull(struct isl_set *set) { return (struct isl_basic_set *) isl_map_affine_hull((struct isl_map *)set); } isl-0.16.1/isl_range.c0000664000175000017500000003422712645737061011443 00000000000000#include #include #include #include #include #include struct range_data { struct isl_bound *bound; int *signs; int sign; int test_monotonicity; int monotonicity; int tight; isl_qpolynomial *poly; isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *pwf_tight; }; static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data); /* Check whether the polynomial "poly" has sign "sign" over "bset", * i.e., if sign == 1, check that the lower bound on the polynomial * is non-negative and if sign == -1, check that the upper bound on * the polynomial is non-positive. */ static int has_sign(__isl_keep isl_basic_set *bset, __isl_keep isl_qpolynomial *poly, int sign, int *signs) { struct range_data data_m; unsigned nparam; isl_space *dim; isl_val *opt; int r; enum isl_fold type; nparam = isl_basic_set_dim(bset, isl_dim_param); bset = isl_basic_set_copy(bset); poly = isl_qpolynomial_copy(poly); bset = isl_basic_set_move_dims(bset, isl_dim_set, 0, isl_dim_param, 0, nparam); poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0, isl_dim_param, 0, nparam); dim = isl_qpolynomial_get_space(poly); dim = isl_space_params(dim); dim = isl_space_from_domain(dim); dim = isl_space_add_dims(dim, isl_dim_out, 1); data_m.test_monotonicity = 0; data_m.signs = signs; data_m.sign = -sign; type = data_m.sign < 0 ? isl_fold_min : isl_fold_max; data_m.pwf = isl_pw_qpolynomial_fold_zero(dim, type); data_m.tight = 0; data_m.pwf_tight = NULL; if (propagate_on_domain(bset, poly, &data_m) < 0) goto error; if (sign > 0) opt = isl_pw_qpolynomial_fold_min(data_m.pwf); else opt = isl_pw_qpolynomial_fold_max(data_m.pwf); if (!opt) r = -1; else if (isl_val_is_nan(opt) || isl_val_is_infty(opt) || isl_val_is_neginfty(opt)) r = 0; else r = sign * isl_val_sgn(opt) >= 0; isl_val_free(opt); return r; error: isl_pw_qpolynomial_fold_free(data_m.pwf); return -1; } /* Return 1 if poly is monotonically increasing in the last set variable, * -1 if poly is monotonically decreasing in the last set variable, * 0 if no conclusion, * -2 on error. * * We simply check the sign of p(x+1)-p(x) */ static int monotonicity(__isl_keep isl_basic_set *bset, __isl_keep isl_qpolynomial *poly, struct range_data *data) { isl_ctx *ctx; isl_space *dim; isl_qpolynomial *sub = NULL; isl_qpolynomial *diff = NULL; int result = 0; int s; unsigned nvar; ctx = isl_qpolynomial_get_ctx(poly); dim = isl_qpolynomial_get_domain_space(poly); nvar = isl_basic_set_dim(bset, isl_dim_set); sub = isl_qpolynomial_var_on_domain(isl_space_copy(dim), isl_dim_set, nvar - 1); sub = isl_qpolynomial_add(sub, isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, ctx->one)); diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly), isl_dim_in, nvar - 1, 1, &sub); diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly)); s = has_sign(bset, diff, 1, data->signs); if (s < 0) goto error; if (s) result = 1; else { s = has_sign(bset, diff, -1, data->signs); if (s < 0) goto error; if (s) result = -1; } isl_qpolynomial_free(diff); isl_qpolynomial_free(sub); return result; error: isl_qpolynomial_free(diff); isl_qpolynomial_free(sub); return -2; } /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial * with domain space "space". */ static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space, int sign) { if (sign > 0) return isl_qpolynomial_infty_on_domain(space); else return isl_qpolynomial_neginfty_on_domain(space); } static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound, __isl_take isl_space *space, unsigned pos, int sign) { if (!bound) return signed_infty(space, sign); isl_space_free(space); return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos); } static int bound_is_integer(__isl_take isl_constraint *bound, unsigned pos) { isl_int c; int is_int; if (!bound) return 1; isl_int_init(c); isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c); is_int = isl_int_is_one(c) || isl_int_is_negone(c); isl_int_clear(c); return is_int; } struct isl_fixed_sign_data { int *signs; int sign; isl_qpolynomial *poly; }; /* Add term "term" to data->poly if it has sign data->sign. * The sign is determined based on the signs of the parameters * and variables in data->signs. The integer divisions, if * any, are assumed to be non-negative. */ static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user) { struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user; isl_int n; int i; int sign; unsigned nparam; unsigned nvar; if (!term) return isl_stat_error; nparam = isl_term_dim(term, isl_dim_param); nvar = isl_term_dim(term, isl_dim_set); isl_int_init(n); isl_term_get_num(term, &n); sign = isl_int_sgn(n); for (i = 0; i < nparam; ++i) { if (data->signs[i] > 0) continue; if (isl_term_get_exp(term, isl_dim_param, i) % 2) sign = -sign; } for (i = 0; i < nvar; ++i) { if (data->signs[nparam + i] > 0) continue; if (isl_term_get_exp(term, isl_dim_set, i) % 2) sign = -sign; } if (sign == data->sign) { isl_qpolynomial *t = isl_qpolynomial_from_term(term); data->poly = isl_qpolynomial_add(data->poly, t); } else isl_term_free(term); isl_int_clear(n); return isl_stat_ok; } /* Construct and return a polynomial that consists of the terms * in "poly" that have sign "sign". The integer divisions, if * any, are assumed to be non-negative. */ __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign( __isl_keep isl_qpolynomial *poly, int *signs, int sign) { isl_space *space; struct isl_fixed_sign_data data = { signs, sign }; space = isl_qpolynomial_get_domain_space(poly); data.poly = isl_qpolynomial_zero_on_domain(space); if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0) goto error; return data.poly; error: isl_qpolynomial_free(data.poly); return NULL; } /* Helper function to add a guarded polynomial to either pwf_tight or pwf, * depending on whether the result has been determined to be tight. */ static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max; isl_set *set; isl_qpolynomial_fold *fold; isl_pw_qpolynomial_fold *pwf; bset = isl_basic_set_params(bset); poly = isl_qpolynomial_project_domain_on_params(poly); fold = isl_qpolynomial_fold_alloc(type, poly); set = isl_set_from_basic_set(bset); pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold); if (data->tight) data->pwf_tight = isl_pw_qpolynomial_fold_fold( data->pwf_tight, pwf); else data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); return isl_stat_ok; } /* Plug in "sub" for the variable at position "pos" in "poly". * * If "sub" is an infinite polynomial and if the variable actually * appears in "poly", then calling isl_qpolynomial_substitute * to perform the substitution may result in a NaN result. * In such cases, return positive or negative infinity instead, * depending on whether an upper bound or a lower bound is being computed, * and mark the result as not being tight. */ static __isl_give isl_qpolynomial *plug_in_at_pos( __isl_take isl_qpolynomial *poly, int pos, __isl_take isl_qpolynomial *sub, struct range_data *data) { isl_bool involves, infty; involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1); if (involves < 0) goto error; if (!involves) { isl_qpolynomial_free(sub); return poly; } infty = isl_qpolynomial_is_infty(sub); if (infty >= 0 && !infty) infty = isl_qpolynomial_is_neginfty(sub); if (infty < 0) goto error; if (infty) { isl_space *space = isl_qpolynomial_get_domain_space(poly); data->tight = 0; isl_qpolynomial_free(poly); isl_qpolynomial_free(sub); return signed_infty(space, data->sign); } poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub); isl_qpolynomial_free(sub); return poly; error: isl_qpolynomial_free(poly); isl_qpolynomial_free(sub); return NULL; } /* Given a lower and upper bound on the final variable and constraints * on the remaining variables where these bounds are active, * eliminate the variable from data->poly based on these bounds. * If the polynomial has been determined to be monotonic * in the variable, then simply plug in the appropriate bound. * If the current polynomial is tight and if this bound is integer, * then the result is still tight. In all other cases, the results * may not be tight. * Otherwise, plug in the largest bound (in absolute value) in * the positive terms (if an upper bound is wanted) or the negative terms * (if a lower bounded is wanted) and the other bound in the other terms. * * If all variables have been eliminated, then record the result. * Ohterwise, recurse on the next variable. */ static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower, __isl_take isl_constraint *upper, __isl_take isl_basic_set *bset, void *user) { struct range_data *data = (struct range_data *)user; int save_tight = data->tight; isl_qpolynomial *poly; isl_stat r; unsigned nvar; nvar = isl_basic_set_dim(bset, isl_dim_set); if (data->monotonicity) { isl_qpolynomial *sub; isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); if (data->monotonicity * data->sign > 0) { if (data->tight) data->tight = bound_is_integer(upper, nvar); sub = bound2poly(upper, dim, nvar, 1); isl_constraint_free(lower); } else { if (data->tight) data->tight = bound_is_integer(lower, nvar); sub = bound2poly(lower, dim, nvar, -1); isl_constraint_free(upper); } poly = isl_qpolynomial_copy(data->poly); poly = plug_in_at_pos(poly, nvar, sub, data); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); } else { isl_qpolynomial *l, *u; isl_qpolynomial *pos, *neg; isl_space *dim = isl_qpolynomial_get_domain_space(data->poly); unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); int sign = data->sign * data->signs[nparam + nvar]; data->tight = 0; u = bound2poly(upper, isl_space_copy(dim), nvar, 1); l = bound2poly(lower, dim, nvar, -1); pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign); neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign); pos = plug_in_at_pos(pos, nvar, u, data); neg = plug_in_at_pos(neg, nvar, l, data); poly = isl_qpolynomial_add(pos, neg); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1); } if (isl_basic_set_dim(bset, isl_dim_set) == 0) r = add_guarded_poly(bset, poly, data); else r = propagate_on_domain(bset, poly, data); data->tight = save_tight; return r; } /* Recursively perform range propagation on the polynomial "poly" * defined over the basic set "bset" and collect the results in "data". */ static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { isl_ctx *ctx; isl_qpolynomial *save_poly = data->poly; int save_monotonicity = data->monotonicity; unsigned d; if (!bset || !poly) goto error; ctx = isl_basic_set_get_ctx(bset); d = isl_basic_set_dim(bset, isl_dim_set); isl_assert(ctx, d >= 1, goto error); if (isl_qpolynomial_is_cst(poly, NULL, NULL)) { bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d); return add_guarded_poly(bset, poly, data); } if (data->test_monotonicity) data->monotonicity = monotonicity(bset, poly, data); else data->monotonicity = 0; if (data->monotonicity < -1) goto error; data->poly = poly; if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1, &propagate_on_bound_pair, data) < 0) goto error; isl_basic_set_free(bset); isl_qpolynomial_free(poly); data->monotonicity = save_monotonicity; data->poly = save_poly; return isl_stat_ok; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); data->monotonicity = save_monotonicity; data->poly = save_poly; return isl_stat_error; } static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset, void *user) { struct range_data *data = (struct range_data *)user; isl_ctx *ctx; unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); unsigned dim = isl_basic_set_dim(bset, isl_dim_set); isl_stat r; data->signs = NULL; ctx = isl_basic_set_get_ctx(bset); data->signs = isl_alloc_array(ctx, int, isl_basic_set_dim(bset, isl_dim_all)); if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim, data->signs + nparam) < 0) goto error; if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam, data->signs) < 0) goto error; r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data); free(data->signs); return r; error: free(data->signs); isl_basic_set_free(bset); return isl_stat_error; } static int qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct range_data *data) { unsigned nparam = isl_basic_set_dim(bset, isl_dim_param); unsigned nvar = isl_basic_set_dim(bset, isl_dim_set); isl_set *set = NULL; if (!bset) goto error; if (nvar == 0) return add_guarded_poly(bset, poly, data); set = isl_set_from_basic_set(bset); set = isl_set_split_dims(set, isl_dim_param, 0, nparam); set = isl_set_split_dims(set, isl_dim_set, 0, nvar); data->poly = poly; data->test_monotonicity = 1; if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0) goto error; isl_set_free(set); isl_qpolynomial_free(poly); return 0; error: isl_set_free(set); isl_qpolynomial_free(poly); return -1; } int isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound) { struct range_data data; int r; data.pwf = bound->pwf; data.pwf_tight = bound->pwf_tight; data.tight = bound->check_tight; if (bound->type == isl_fold_min) data.sign = -1; else data.sign = 1; r = qpolynomial_bound_on_domain_range(bset, poly, &data); bound->pwf = data.pwf; bound->pwf_tight = data.pwf_tight; return r; } isl-0.16.1/print.c0000664000175000017500000000421412645737061010625 00000000000000#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef BASE #define BASE id #include #undef BASE #define BASE val #include #undef BASE #define BASE multi_val #include #undef BASE #define BASE space #include #undef BASE #define BASE local_space #include #undef BASE #define BASE basic_set #include #undef BASE #define BASE basic_map #include #undef BASE #define BASE set #include #undef BASE #define BASE map #include #undef BASE #define BASE union_set #include #undef BASE #define BASE union_map #include #undef BASE #define BASE qpolynomial #include #undef BASE #define BASE qpolynomial_fold #include #undef BASE #define BASE pw_qpolynomial #include #undef BASE #define BASE pw_qpolynomial_fold #include #undef BASE #define BASE union_pw_qpolynomial #include #undef BASE #define BASE union_pw_qpolynomial_fold #include #undef BASE #define BASE band #include #undef BASE #define BASE constraint #include #undef BASE #define BASE aff #include #undef BASE #define BASE pw_aff #include #undef BASE #define BASE multi_aff #include #undef BASE #define BASE pw_multi_aff #include #undef BASE #define BASE union_pw_multi_aff #include #undef BASE #define BASE multi_pw_aff #include #undef BASE #define BASE union_pw_aff #include #undef BASE #define BASE multi_union_pw_aff #include #undef BASE #define BASE point #include #undef BASE #define BASE ast_expr #include #undef BASE #define BASE ast_node #include isl-0.16.1/isl_pw_templ.c0000664000175000017500000013430112645737061012170 00000000000000/* * Copyright 2010-2011 INRIA Saclay * Copyright 2011 Sven Verdoolaege * Copyright 2012-2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xS(TYPE,NAME) struct TYPE ## _ ## NAME #define S(TYPE,NAME) xS(TYPE,NAME) #ifdef HAS_TYPE __isl_give PW *FN(PW,alloc_size)(__isl_take isl_space *dim, enum isl_fold type, int n) #else __isl_give PW *FN(PW,alloc_size)(__isl_take isl_space *dim, int n) #endif { isl_ctx *ctx; struct PW *pw; if (!dim) return NULL; ctx = isl_space_get_ctx(dim); isl_assert(ctx, n >= 0, goto error); pw = isl_alloc(ctx, struct PW, sizeof(struct PW) + (n - 1) * sizeof(S(PW,piece))); if (!pw) goto error; pw->ref = 1; #ifdef HAS_TYPE pw->type = type; #endif pw->size = n; pw->n = 0; pw->dim = dim; return pw; error: isl_space_free(dim); return NULL; } #ifdef HAS_TYPE __isl_give PW *FN(PW,ZERO)(__isl_take isl_space *dim, enum isl_fold type) { return FN(PW,alloc_size)(dim, type, 0); } #else __isl_give PW *FN(PW,ZERO)(__isl_take isl_space *dim) { return FN(PW,alloc_size)(dim, 0); } #endif __isl_give PW *FN(PW,add_piece)(__isl_take PW *pw, __isl_take isl_set *set, __isl_take EL *el) { isl_ctx *ctx; isl_space *el_dim = NULL; if (!pw || !set || !el) goto error; if (isl_set_plain_is_empty(set) || FN(EL,EL_IS_ZERO)(el)) { isl_set_free(set); FN(EL,free)(el); return pw; } ctx = isl_set_get_ctx(set); #ifdef HAS_TYPE if (pw->type != el->type) isl_die(ctx, isl_error_invalid, "fold types don't match", goto error); #endif el_dim = FN(EL,get_space(el)); isl_assert(ctx, isl_space_is_equal(pw->dim, el_dim), goto error); isl_assert(ctx, pw->n < pw->size, goto error); pw->p[pw->n].set = set; pw->p[pw->n].FIELD = el; pw->n++; isl_space_free(el_dim); return pw; error: isl_space_free(el_dim); FN(PW,free)(pw); isl_set_free(set); FN(EL,free)(el); return NULL; } #ifdef HAS_TYPE __isl_give PW *FN(PW,alloc)(enum isl_fold type, __isl_take isl_set *set, __isl_take EL *el) #else __isl_give PW *FN(PW,alloc)(__isl_take isl_set *set, __isl_take EL *el) #endif { PW *pw; if (!set || !el) goto error; #ifdef HAS_TYPE pw = FN(PW,alloc_size)(FN(EL,get_space)(el), type, 1); #else pw = FN(PW,alloc_size)(FN(EL,get_space)(el), 1); #endif return FN(PW,add_piece)(pw, set, el); error: isl_set_free(set); FN(EL,free)(el); return NULL; } __isl_give PW *FN(PW,dup)(__isl_keep PW *pw) { int i; PW *dup; if (!pw) return NULL; #ifdef HAS_TYPE dup = FN(PW,alloc_size)(isl_space_copy(pw->dim), pw->type, pw->n); #else dup = FN(PW,alloc_size)(isl_space_copy(pw->dim), pw->n); #endif if (!dup) return NULL; for (i = 0; i < pw->n; ++i) dup = FN(PW,add_piece)(dup, isl_set_copy(pw->p[i].set), FN(EL,copy)(pw->p[i].FIELD)); return dup; } __isl_give PW *FN(PW,cow)(__isl_take PW *pw) { if (!pw) return NULL; if (pw->ref == 1) return pw; pw->ref--; return FN(PW,dup)(pw); } __isl_give PW *FN(PW,copy)(__isl_keep PW *pw) { if (!pw) return NULL; pw->ref++; return pw; } __isl_null PW *FN(PW,free)(__isl_take PW *pw) { int i; if (!pw) return NULL; if (--pw->ref > 0) return NULL; for (i = 0; i < pw->n; ++i) { isl_set_free(pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); } isl_space_free(pw->dim); free(pw); return NULL; } const char *FN(PW,get_dim_name)(__isl_keep PW *pw, enum isl_dim_type type, unsigned pos) { return pw ? isl_space_get_dim_name(pw->dim, type, pos) : NULL; } isl_bool FN(PW,has_dim_id)(__isl_keep PW *pw, enum isl_dim_type type, unsigned pos) { return pw ? isl_space_has_dim_id(pw->dim, type, pos) : isl_bool_error; } __isl_give isl_id *FN(PW,get_dim_id)(__isl_keep PW *pw, enum isl_dim_type type, unsigned pos) { return pw ? isl_space_get_dim_id(pw->dim, type, pos) : NULL; } isl_bool FN(PW,has_tuple_name)(__isl_keep PW *pw, enum isl_dim_type type) { return pw ? isl_space_has_tuple_name(pw->dim, type) : isl_bool_error; } const char *FN(PW,get_tuple_name)(__isl_keep PW *pw, enum isl_dim_type type) { return pw ? isl_space_get_tuple_name(pw->dim, type) : NULL; } isl_bool FN(PW,has_tuple_id)(__isl_keep PW *pw, enum isl_dim_type type) { return pw ? isl_space_has_tuple_id(pw->dim, type) : isl_bool_error; } __isl_give isl_id *FN(PW,get_tuple_id)(__isl_keep PW *pw, enum isl_dim_type type) { return pw ? isl_space_get_tuple_id(pw->dim, type) : NULL; } isl_bool FN(PW,IS_ZERO)(__isl_keep PW *pw) { if (!pw) return isl_bool_error; return pw->n == 0; } #ifndef NO_REALIGN __isl_give PW *FN(PW,realign_domain)(__isl_take PW *pw, __isl_take isl_reordering *exp) { int i; pw = FN(PW,cow)(pw); if (!pw || !exp) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_realign(pw->p[i].set, isl_reordering_copy(exp)); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,realign_domain)(pw->p[i].FIELD, isl_reordering_copy(exp)); if (!pw->p[i].FIELD) goto error; } pw = FN(PW,reset_domain_space)(pw, isl_space_copy(exp->dim)); isl_reordering_free(exp); return pw; error: isl_reordering_free(exp); FN(PW,free)(pw); return NULL; } /* Align the parameters of "pw" to those of "model". */ __isl_give PW *FN(PW,align_params)(__isl_take PW *pw, __isl_take isl_space *model) { isl_ctx *ctx; if (!pw || !model) goto error; ctx = isl_space_get_ctx(model); if (!isl_space_has_named_params(model)) isl_die(ctx, isl_error_invalid, "model has unnamed parameters", goto error); if (!isl_space_has_named_params(pw->dim)) isl_die(ctx, isl_error_invalid, "input has unnamed parameters", goto error); if (!isl_space_match(pw->dim, isl_dim_param, model, isl_dim_param)) { isl_reordering *exp; model = isl_space_drop_dims(model, isl_dim_in, 0, isl_space_dim(model, isl_dim_in)); model = isl_space_drop_dims(model, isl_dim_out, 0, isl_space_dim(model, isl_dim_out)); exp = isl_parameter_alignment_reordering(pw->dim, model); exp = isl_reordering_extend_space(exp, FN(PW,get_domain_space)(pw)); pw = FN(PW,realign_domain)(pw, exp); } isl_space_free(model); return pw; error: isl_space_free(model); FN(PW,free)(pw); return NULL; } static __isl_give PW *FN(PW,align_params_pw_pw_and)(__isl_take PW *pw1, __isl_take PW *pw2, __isl_give PW *(*fn)(__isl_take PW *pw1, __isl_take PW *pw2)) { isl_ctx *ctx; if (!pw1 || !pw2) goto error; if (isl_space_match(pw1->dim, isl_dim_param, pw2->dim, isl_dim_param)) return fn(pw1, pw2); ctx = FN(PW,get_ctx)(pw1); if (!isl_space_has_named_params(pw1->dim) || !isl_space_has_named_params(pw2->dim)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); pw1 = FN(PW,align_params)(pw1, FN(PW,get_space)(pw2)); pw2 = FN(PW,align_params)(pw2, FN(PW,get_space)(pw1)); return fn(pw1, pw2); error: FN(PW,free)(pw1); FN(PW,free)(pw2); return NULL; } static __isl_give PW *FN(PW,align_params_pw_set_and)(__isl_take PW *pw, __isl_take isl_set *set, __isl_give PW *(*fn)(__isl_take PW *pw, __isl_take isl_set *set)) { isl_ctx *ctx; if (!pw || !set) goto error; if (isl_space_match(pw->dim, isl_dim_param, set->dim, isl_dim_param)) return fn(pw, set); ctx = FN(PW,get_ctx)(pw); if (!isl_space_has_named_params(pw->dim) || !isl_space_has_named_params(set->dim)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); pw = FN(PW,align_params)(pw, isl_set_get_space(set)); set = isl_set_align_params(set, FN(PW,get_space)(pw)); return fn(pw, set); error: FN(PW,free)(pw); isl_set_free(set); return NULL; } #endif static __isl_give PW *FN(PW,union_add_aligned)(__isl_take PW *pw1, __isl_take PW *pw2) { int i, j, n; struct PW *res; isl_ctx *ctx; isl_set *set; if (!pw1 || !pw2) goto error; ctx = isl_space_get_ctx(pw1->dim); #ifdef HAS_TYPE if (pw1->type != pw2->type) isl_die(ctx, isl_error_invalid, "fold types don't match", goto error); #endif isl_assert(ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error); if (FN(PW,IS_ZERO)(pw1)) { FN(PW,free)(pw1); return pw2; } if (FN(PW,IS_ZERO)(pw2)) { FN(PW,free)(pw2); return pw1; } n = (pw1->n + 1) * (pw2->n + 1); #ifdef HAS_TYPE res = FN(PW,alloc_size)(isl_space_copy(pw1->dim), pw1->type, n); #else res = FN(PW,alloc_size)(isl_space_copy(pw1->dim), n); #endif for (i = 0; i < pw1->n; ++i) { set = isl_set_copy(pw1->p[i].set); for (j = 0; j < pw2->n; ++j) { struct isl_set *common; EL *sum; common = isl_set_intersect(isl_set_copy(pw1->p[i].set), isl_set_copy(pw2->p[j].set)); if (isl_set_plain_is_empty(common)) { isl_set_free(common); continue; } set = isl_set_subtract(set, isl_set_copy(pw2->p[j].set)); sum = FN(EL,add_on_domain)(common, FN(EL,copy)(pw1->p[i].FIELD), FN(EL,copy)(pw2->p[j].FIELD)); res = FN(PW,add_piece)(res, common, sum); } res = FN(PW,add_piece)(res, set, FN(EL,copy)(pw1->p[i].FIELD)); } for (j = 0; j < pw2->n; ++j) { set = isl_set_copy(pw2->p[j].set); for (i = 0; i < pw1->n; ++i) set = isl_set_subtract(set, isl_set_copy(pw1->p[i].set)); res = FN(PW,add_piece)(res, set, FN(EL,copy)(pw2->p[j].FIELD)); } FN(PW,free)(pw1); FN(PW,free)(pw2); return res; error: FN(PW,free)(pw1); FN(PW,free)(pw2); return NULL; } /* Private version of "union_add". For isl_pw_qpolynomial and * isl_pw_qpolynomial_fold, we prefer to simply call it "add". */ static __isl_give PW *FN(PW,union_add_)(__isl_take PW *pw1, __isl_take PW *pw2) { return FN(PW,align_params_pw_pw_and)(pw1, pw2, &FN(PW,union_add_aligned)); } /* Make sure "pw" has room for at least "n" more pieces. * * If there is only one reference to pw, we extend it in place. * Otherwise, we create a new PW and copy the pieces. */ static __isl_give PW *FN(PW,grow)(__isl_take PW *pw, int n) { int i; isl_ctx *ctx; PW *res; if (!pw) return NULL; if (pw->n + n <= pw->size) return pw; ctx = FN(PW,get_ctx)(pw); n += pw->n; if (pw->ref == 1) { res = isl_realloc(ctx, pw, struct PW, sizeof(struct PW) + (n - 1) * sizeof(S(PW,piece))); if (!res) return FN(PW,free)(pw); res->size = n; return res; } #ifdef HAS_TYPE res = FN(PW,alloc_size)(isl_space_copy(pw->dim), pw->type, n); #else res = FN(PW,alloc_size)(isl_space_copy(pw->dim), n); #endif if (!res) return FN(PW,free)(pw); for (i = 0; i < pw->n; ++i) res = FN(PW,add_piece)(res, isl_set_copy(pw->p[i].set), FN(EL,copy)(pw->p[i].FIELD)); FN(PW,free)(pw); return res; } static __isl_give PW *FN(PW,add_disjoint_aligned)(__isl_take PW *pw1, __isl_take PW *pw2) { int i; isl_ctx *ctx; if (!pw1 || !pw2) goto error; if (pw1->size < pw1->n + pw2->n && pw1->n < pw2->n) return FN(PW,add_disjoint_aligned)(pw2, pw1); ctx = isl_space_get_ctx(pw1->dim); #ifdef HAS_TYPE if (pw1->type != pw2->type) isl_die(ctx, isl_error_invalid, "fold types don't match", goto error); #endif isl_assert(ctx, isl_space_is_equal(pw1->dim, pw2->dim), goto error); if (FN(PW,IS_ZERO)(pw1)) { FN(PW,free)(pw1); return pw2; } if (FN(PW,IS_ZERO)(pw2)) { FN(PW,free)(pw2); return pw1; } pw1 = FN(PW,grow)(pw1, pw2->n); if (!pw1) goto error; for (i = 0; i < pw2->n; ++i) pw1 = FN(PW,add_piece)(pw1, isl_set_copy(pw2->p[i].set), FN(EL,copy)(pw2->p[i].FIELD)); FN(PW,free)(pw2); return pw1; error: FN(PW,free)(pw1); FN(PW,free)(pw2); return NULL; } __isl_give PW *FN(PW,add_disjoint)(__isl_take PW *pw1, __isl_take PW *pw2) { return FN(PW,align_params_pw_pw_and)(pw1, pw2, &FN(PW,add_disjoint_aligned)); } /* This function is currently only used from isl_aff.c */ static __isl_give PW *FN(PW,on_shared_domain_in)(__isl_take PW *pw1, __isl_take PW *pw2, __isl_take isl_space *space, __isl_give EL *(*fn)(__isl_take EL *el1, __isl_take EL *el2)) __attribute__ ((unused)); /* Apply "fn" to pairs of elements from pw1 and pw2 on shared domains. * The result of "fn" (and therefore also of this function) lives in "space". */ static __isl_give PW *FN(PW,on_shared_domain_in)(__isl_take PW *pw1, __isl_take PW *pw2, __isl_take isl_space *space, __isl_give EL *(*fn)(__isl_take EL *el1, __isl_take EL *el2)) { int i, j, n; PW *res = NULL; if (!pw1 || !pw2) goto error; n = pw1->n * pw2->n; #ifdef HAS_TYPE res = FN(PW,alloc_size)(isl_space_copy(space), pw1->type, n); #else res = FN(PW,alloc_size)(isl_space_copy(space), n); #endif for (i = 0; i < pw1->n; ++i) { for (j = 0; j < pw2->n; ++j) { isl_set *common; EL *res_ij; int empty; common = isl_set_intersect( isl_set_copy(pw1->p[i].set), isl_set_copy(pw2->p[j].set)); empty = isl_set_plain_is_empty(common); if (empty < 0 || empty) { isl_set_free(common); if (empty < 0) goto error; continue; } res_ij = fn(FN(EL,copy)(pw1->p[i].FIELD), FN(EL,copy)(pw2->p[j].FIELD)); res_ij = FN(EL,gist)(res_ij, isl_set_copy(common)); res = FN(PW,add_piece)(res, common, res_ij); } } isl_space_free(space); FN(PW,free)(pw1); FN(PW,free)(pw2); return res; error: isl_space_free(space); FN(PW,free)(pw1); FN(PW,free)(pw2); FN(PW,free)(res); return NULL; } /* This function is currently only used from isl_aff.c */ static __isl_give PW *FN(PW,on_shared_domain)(__isl_take PW *pw1, __isl_take PW *pw2, __isl_give EL *(*fn)(__isl_take EL *el1, __isl_take EL *el2)) __attribute__ ((unused)); /* Apply "fn" to pairs of elements from pw1 and pw2 on shared domains. * The result of "fn" is assumed to live in the same space as "pw1" and "pw2". */ static __isl_give PW *FN(PW,on_shared_domain)(__isl_take PW *pw1, __isl_take PW *pw2, __isl_give EL *(*fn)(__isl_take EL *el1, __isl_take EL *el2)) { isl_space *space; if (!pw1 || !pw2) goto error; space = isl_space_copy(pw1->dim); return FN(PW,on_shared_domain_in)(pw1, pw2, space, fn); error: FN(PW,free)(pw1); FN(PW,free)(pw2); return NULL; } #ifndef NO_NEG __isl_give PW *FN(PW,neg)(__isl_take PW *pw) { int i; if (!pw) return NULL; if (FN(PW,IS_ZERO)(pw)) return pw; pw = FN(PW,cow)(pw); if (!pw) return NULL; for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,neg)(pw->p[i].FIELD); if (!pw->p[i].FIELD) return FN(PW,free)(pw); } return pw; } #endif #ifndef NO_SUB __isl_give PW *FN(PW,sub)(__isl_take PW *pw1, __isl_take PW *pw2) { return FN(PW,add)(pw1, FN(PW,neg)(pw2)); } #endif #ifndef NO_EVAL __isl_give isl_val *FN(PW,eval)(__isl_take PW *pw, __isl_take isl_point *pnt) { int i; int found = 0; isl_ctx *ctx; isl_space *pnt_dim = NULL; isl_val *v; if (!pw || !pnt) goto error; ctx = isl_point_get_ctx(pnt); pnt_dim = isl_point_get_space(pnt); isl_assert(ctx, isl_space_is_domain_internal(pnt_dim, pw->dim), goto error); for (i = 0; i < pw->n; ++i) { found = isl_set_contains_point(pw->p[i].set, pnt); if (found < 0) goto error; if (found) break; } if (found) v = FN(EL,eval)(FN(EL,copy)(pw->p[i].FIELD), isl_point_copy(pnt)); else v = isl_val_zero(ctx); FN(PW,free)(pw); isl_space_free(pnt_dim); isl_point_free(pnt); return v; error: FN(PW,free)(pw); isl_space_free(pnt_dim); isl_point_free(pnt); return NULL; } #endif /* Return the parameter domain of "pw". */ __isl_give isl_set *FN(PW,params)(__isl_take PW *pw) { return isl_set_params(FN(PW,domain)(pw)); } __isl_give isl_set *FN(PW,domain)(__isl_take PW *pw) { int i; isl_set *dom; if (!pw) return NULL; dom = isl_set_empty(FN(PW,get_domain_space)(pw)); for (i = 0; i < pw->n; ++i) dom = isl_set_union_disjoint(dom, isl_set_copy(pw->p[i].set)); FN(PW,free)(pw); return dom; } /* Exploit the equalities in the domain of piece "i" of "pw" * to simplify the associated function. * If the domain of piece "i" is empty, then remove it entirely, * replacing it with the final piece. */ static int FN(PW,exploit_equalities_and_remove_if_empty)(__isl_keep PW *pw, int i) { isl_basic_set *aff; int empty = isl_set_plain_is_empty(pw->p[i].set); if (empty < 0) return -1; if (empty) { isl_set_free(pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); if (i != pw->n - 1) pw->p[i] = pw->p[pw->n - 1]; pw->n--; return 0; } aff = isl_set_affine_hull(isl_set_copy(pw->p[i].set)); pw->p[i].FIELD = FN(EL,substitute_equalities)(pw->p[i].FIELD, aff); if (!pw->p[i].FIELD) return -1; return 0; } /* Convert a piecewise expression defined over a parameter domain * into one that is defined over a zero-dimensional set. */ __isl_give PW *FN(PW,from_range)(__isl_take PW *pw) { isl_space *space; if (!pw) return NULL; if (!isl_space_is_set(pw->dim)) isl_die(FN(PW,get_ctx)(pw), isl_error_invalid, "not living in a set space", return FN(PW,free)(pw)); space = FN(PW,get_space)(pw); space = isl_space_from_range(space); pw = FN(PW,reset_space)(pw, space); return pw; } /* Fix the value of the given parameter or domain dimension of "pw" * to be equal to "value". */ __isl_give PW *FN(PW,fix_si)(__isl_take PW *pw, enum isl_dim_type type, unsigned pos, int value) { int i; if (!pw) return NULL; if (type == isl_dim_out) isl_die(FN(PW,get_ctx)(pw), isl_error_invalid, "cannot fix output dimension", return FN(PW,free)(pw)); if (pw->n == 0) return pw; if (type == isl_dim_in) type = isl_dim_set; pw = FN(PW,cow)(pw); if (!pw) return FN(PW,free)(pw); for (i = pw->n - 1; i >= 0; --i) { pw->p[i].set = isl_set_fix_si(pw->p[i].set, type, pos, value); if (FN(PW,exploit_equalities_and_remove_if_empty)(pw, i) < 0) return FN(PW,free)(pw); } return pw; } /* Restrict the domain of "pw" by combining each cell * with "set" through a call to "fn", where "fn" may be * isl_set_intersect, isl_set_intersect_params or isl_set_subtract. */ static __isl_give PW *FN(PW,restrict_domain_aligned)(__isl_take PW *pw, __isl_take isl_set *set, __isl_give isl_set *(*fn)(__isl_take isl_set *set1, __isl_take isl_set *set2)) { int i; if (!pw || !set) goto error; if (pw->n == 0) { isl_set_free(set); return pw; } pw = FN(PW,cow)(pw); if (!pw) goto error; for (i = pw->n - 1; i >= 0; --i) { pw->p[i].set = fn(pw->p[i].set, isl_set_copy(set)); if (FN(PW,exploit_equalities_and_remove_if_empty)(pw, i) < 0) goto error; } isl_set_free(set); return pw; error: isl_set_free(set); FN(PW,free)(pw); return NULL; } static __isl_give PW *FN(PW,intersect_domain_aligned)(__isl_take PW *pw, __isl_take isl_set *set) { return FN(PW,restrict_domain_aligned)(pw, set, &isl_set_intersect); } __isl_give PW *FN(PW,intersect_domain)(__isl_take PW *pw, __isl_take isl_set *context) { return FN(PW,align_params_pw_set_and)(pw, context, &FN(PW,intersect_domain_aligned)); } static __isl_give PW *FN(PW,intersect_params_aligned)(__isl_take PW *pw, __isl_take isl_set *set) { return FN(PW,restrict_domain_aligned)(pw, set, &isl_set_intersect_params); } /* Intersect the domain of "pw" with the parameter domain "context". */ __isl_give PW *FN(PW,intersect_params)(__isl_take PW *pw, __isl_take isl_set *context) { return FN(PW,align_params_pw_set_and)(pw, context, &FN(PW,intersect_params_aligned)); } /* Subtract "domain' from the domain of "pw", assuming their * parameters have been aligned. */ static __isl_give PW *FN(PW,subtract_domain_aligned)(__isl_take PW *pw, __isl_take isl_set *domain) { return FN(PW,restrict_domain_aligned)(pw, domain, &isl_set_subtract); } /* Subtract "domain' from the domain of "pw". */ __isl_give PW *FN(PW,subtract_domain)(__isl_take PW *pw, __isl_take isl_set *domain) { return FN(PW,align_params_pw_set_and)(pw, domain, &FN(PW,subtract_domain_aligned)); } /* Compute the gist of "pw" with respect to the domain constraints * of "context" for the case where the domain of the last element * of "pw" is equal to "context". * Call "fn_el" to compute the gist of this element, replace * its domain by the universe and drop all other elements * as their domains are necessarily disjoint from "context". */ static __isl_give PW *FN(PW,gist_last)(__isl_take PW *pw, __isl_take isl_set *context, __isl_give EL *(*fn_el)(__isl_take EL *el, __isl_take isl_set *set)) { int i; isl_space *space; for (i = 0; i < pw->n - 1; ++i) { isl_set_free(pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); } pw->p[0].FIELD = pw->p[pw->n - 1].FIELD; pw->p[0].set = pw->p[pw->n - 1].set; pw->n = 1; space = isl_set_get_space(context); pw->p[0].FIELD = fn_el(pw->p[0].FIELD, context); context = isl_set_universe(space); isl_set_free(pw->p[0].set); pw->p[0].set = context; if (!pw->p[0].FIELD || !pw->p[0].set) return FN(PW,free)(pw); return pw; } /* Compute the gist of "pw" with respect to the domain constraints * of "context". Call "fn_el" to compute the gist of the elements * and "fn_dom" to compute the gist of the domains. * * If the piecewise expression is empty or the context is the universe, * then nothing can be simplified. */ static __isl_give PW *FN(PW,gist_aligned)(__isl_take PW *pw, __isl_take isl_set *context, __isl_give EL *(*fn_el)(__isl_take EL *el, __isl_take isl_set *set), __isl_give isl_set *(*fn_dom)(__isl_take isl_set *set, __isl_take isl_basic_set *bset)) { int i; int is_universe; isl_basic_set *hull = NULL; if (!pw || !context) goto error; if (pw->n == 0) { isl_set_free(context); return pw; } is_universe = isl_set_plain_is_universe(context); if (is_universe < 0) goto error; if (is_universe) { isl_set_free(context); return pw; } if (!isl_space_match(pw->dim, isl_dim_param, context->dim, isl_dim_param)) { pw = FN(PW,align_params)(pw, isl_set_get_space(context)); context = isl_set_align_params(context, FN(PW,get_space)(pw)); } pw = FN(PW,cow)(pw); if (!pw) goto error; if (pw->n == 1) { int equal; equal = isl_set_plain_is_equal(pw->p[0].set, context); if (equal < 0) goto error; if (equal) return FN(PW,gist_last)(pw, context, fn_el); } context = isl_set_compute_divs(context); hull = isl_set_simple_hull(isl_set_copy(context)); for (i = pw->n - 1; i >= 0; --i) { isl_set *set_i; int empty; if (i == pw->n - 1) { int equal; equal = isl_set_plain_is_equal(pw->p[i].set, context); if (equal < 0) goto error; if (equal) { isl_basic_set_free(hull); return FN(PW,gist_last)(pw, context, fn_el); } } set_i = isl_set_intersect(isl_set_copy(pw->p[i].set), isl_set_copy(context)); empty = isl_set_plain_is_empty(set_i); pw->p[i].FIELD = fn_el(pw->p[i].FIELD, set_i); pw->p[i].set = fn_dom(pw->p[i].set, isl_basic_set_copy(hull)); if (empty < 0 || !pw->p[i].FIELD || !pw->p[i].set) goto error; if (empty) { isl_set_free(pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); if (i != pw->n - 1) pw->p[i] = pw->p[pw->n - 1]; pw->n--; } } isl_basic_set_free(hull); isl_set_free(context); return pw; error: FN(PW,free)(pw); isl_basic_set_free(hull); isl_set_free(context); return NULL; } static __isl_give PW *FN(PW,gist_domain_aligned)(__isl_take PW *pw, __isl_take isl_set *set) { return FN(PW,gist_aligned)(pw, set, &FN(EL,gist), &isl_set_gist_basic_set); } __isl_give PW *FN(PW,gist)(__isl_take PW *pw, __isl_take isl_set *context) { return FN(PW,align_params_pw_set_and)(pw, context, &FN(PW,gist_domain_aligned)); } static __isl_give PW *FN(PW,gist_params_aligned)(__isl_take PW *pw, __isl_take isl_set *set) { return FN(PW,gist_aligned)(pw, set, &FN(EL,gist_params), &isl_set_gist_params_basic_set); } __isl_give PW *FN(PW,gist_params)(__isl_take PW *pw, __isl_take isl_set *context) { return FN(PW,align_params_pw_set_and)(pw, context, &FN(PW,gist_params_aligned)); } __isl_give PW *FN(PW,coalesce)(__isl_take PW *pw) { int i, j; if (!pw) return NULL; if (pw->n == 0) return pw; for (i = pw->n - 1; i >= 0; --i) { for (j = i - 1; j >= 0; --j) { if (!FN(EL,plain_is_equal)(pw->p[i].FIELD, pw->p[j].FIELD)) continue; pw->p[j].set = isl_set_union(pw->p[j].set, pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); if (i != pw->n - 1) pw->p[i] = pw->p[pw->n - 1]; pw->n--; break; } if (j >= 0) continue; pw->p[i].set = isl_set_coalesce(pw->p[i].set); if (!pw->p[i].set) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } isl_ctx *FN(PW,get_ctx)(__isl_keep PW *pw) { return pw ? isl_space_get_ctx(pw->dim) : NULL; } #ifndef NO_INVOLVES_DIMS isl_bool FN(PW,involves_dims)(__isl_keep PW *pw, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!pw) return isl_bool_error; if (pw->n == 0 || n == 0) return isl_bool_false; set_type = type == isl_dim_in ? isl_dim_set : type; for (i = 0; i < pw->n; ++i) { isl_bool involves = FN(EL,involves_dims)(pw->p[i].FIELD, type, first, n); if (involves < 0 || involves) return involves; involves = isl_set_involves_dims(pw->p[i].set, set_type, first, n); if (involves < 0 || involves) return involves; } return isl_bool_false; } #endif __isl_give PW *FN(PW,set_dim_name)(__isl_take PW *pw, enum isl_dim_type type, unsigned pos, const char *s) { int i; enum isl_dim_type set_type; pw = FN(PW,cow)(pw); if (!pw) return NULL; set_type = type == isl_dim_in ? isl_dim_set : type; pw->dim = isl_space_set_dim_name(pw->dim, type, pos, s); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_set_dim_name(pw->p[i].set, set_type, pos, s); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,set_dim_name)(pw->p[i].FIELD, type, pos, s); if (!pw->p[i].FIELD) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } #ifndef NO_DROP_DIMS __isl_give PW *FN(PW,drop_dims)(__isl_take PW *pw, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!pw) return NULL; if (n == 0 && !isl_space_get_tuple_name(pw->dim, type)) return pw; set_type = type == isl_dim_in ? isl_dim_set : type; pw = FN(PW,cow)(pw); if (!pw) return NULL; pw->dim = isl_space_drop_dims(pw->dim, type, first, n); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,drop_dims)(pw->p[i].FIELD, type, first, n); if (!pw->p[i].FIELD) goto error; if (type == isl_dim_out) continue; pw->p[i].set = isl_set_drop(pw->p[i].set, set_type, first, n); if (!pw->p[i].set) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } /* This function is very similar to drop_dims. * The only difference is that the cells may still involve * the specified dimensions. They are removed using * isl_set_project_out instead of isl_set_drop. */ __isl_give PW *FN(PW,project_out)(__isl_take PW *pw, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!pw) return NULL; if (n == 0 && !isl_space_get_tuple_name(pw->dim, type)) return pw; set_type = type == isl_dim_in ? isl_dim_set : type; pw = FN(PW,cow)(pw); if (!pw) return NULL; pw->dim = isl_space_drop_dims(pw->dim, type, first, n); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_project_out(pw->p[i].set, set_type, first, n); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,drop_dims)(pw->p[i].FIELD, type, first, n); if (!pw->p[i].FIELD) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } /* Project the domain of pw onto its parameter space. */ __isl_give PW *FN(PW,project_domain_on_params)(__isl_take PW *pw) { isl_space *space; unsigned n; n = FN(PW,dim)(pw, isl_dim_in); pw = FN(PW,project_out)(pw, isl_dim_in, 0, n); space = FN(PW,get_domain_space)(pw); space = isl_space_params(space); pw = FN(PW,reset_domain_space)(pw, space); return pw; } #endif #ifndef NO_INSERT_DIMS __isl_give PW *FN(PW,insert_dims)(__isl_take PW *pw, enum isl_dim_type type, unsigned first, unsigned n) { int i; enum isl_dim_type set_type; if (!pw) return NULL; if (n == 0 && !isl_space_is_named_or_nested(pw->dim, type)) return pw; set_type = type == isl_dim_in ? isl_dim_set : type; pw = FN(PW,cow)(pw); if (!pw) return NULL; pw->dim = isl_space_insert_dims(pw->dim, type, first, n); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_insert_dims(pw->p[i].set, set_type, first, n); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,insert_dims)(pw->p[i].FIELD, type, first, n); if (!pw->p[i].FIELD) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } #endif __isl_give PW *FN(PW,fix_dim)(__isl_take PW *pw, enum isl_dim_type type, unsigned pos, isl_int v) { int i; if (!pw) return NULL; if (type == isl_dim_in) type = isl_dim_set; pw = FN(PW,cow)(pw); if (!pw) return NULL; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_fix(pw->p[i].set, type, pos, v); if (FN(PW,exploit_equalities_and_remove_if_empty)(pw, i) < 0) return FN(PW,free)(pw); } return pw; } /* Fix the value of the variable at position "pos" of type "type" of "pw" * to be equal to "v". */ __isl_give PW *FN(PW,fix_val)(__isl_take PW *pw, enum isl_dim_type type, unsigned pos, __isl_take isl_val *v) { if (!v) return FN(PW,free)(pw); if (!isl_val_is_int(v)) isl_die(FN(PW,get_ctx)(pw), isl_error_invalid, "expecting integer value", goto error); pw = FN(PW,fix_dim)(pw, type, pos, v->n); isl_val_free(v); return pw; error: isl_val_free(v); return FN(PW,free)(pw); } unsigned FN(PW,dim)(__isl_keep PW *pw, enum isl_dim_type type) { return pw ? isl_space_dim(pw->dim, type) : 0; } __isl_give PW *FN(PW,split_dims)(__isl_take PW *pw, enum isl_dim_type type, unsigned first, unsigned n) { int i; if (!pw) return NULL; if (n == 0) return pw; if (type == isl_dim_in) type = isl_dim_set; pw = FN(PW,cow)(pw); if (!pw) return NULL; if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_split_dims(pw->p[i].set, type, first, n); if (!pw->p[i].set) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } #ifndef NO_OPT /* Compute the maximal value attained by the piecewise quasipolynomial * on its domain or zero if the domain is empty. * In the worst case, the domain is scanned completely, * so the domain is assumed to be bounded. */ __isl_give isl_val *FN(PW,opt)(__isl_take PW *pw, int max) { int i; isl_val *opt; if (!pw) return NULL; if (pw->n == 0) { opt = isl_val_zero(FN(PW,get_ctx)(pw)); FN(PW,free)(pw); return opt; } opt = FN(EL,opt_on_domain)(FN(EL,copy)(pw->p[0].FIELD), isl_set_copy(pw->p[0].set), max); for (i = 1; i < pw->n; ++i) { isl_val *opt_i; opt_i = FN(EL,opt_on_domain)(FN(EL,copy)(pw->p[i].FIELD), isl_set_copy(pw->p[i].set), max); if (max) opt = isl_val_max(opt, opt_i); else opt = isl_val_min(opt, opt_i); } FN(PW,free)(pw); return opt; } __isl_give isl_val *FN(PW,max)(__isl_take PW *pw) { return FN(PW,opt)(pw, 1); } __isl_give isl_val *FN(PW,min)(__isl_take PW *pw) { return FN(PW,opt)(pw, 0); } #endif __isl_give isl_space *FN(PW,get_space)(__isl_keep PW *pw) { return pw ? isl_space_copy(pw->dim) : NULL; } __isl_give isl_space *FN(PW,get_domain_space)(__isl_keep PW *pw) { return pw ? isl_space_domain(isl_space_copy(pw->dim)) : NULL; } /* Return the position of the dimension of the given type and name * in "pw". * Return -1 if no such dimension can be found. */ int FN(PW,find_dim_by_name)(__isl_keep PW *pw, enum isl_dim_type type, const char *name) { if (!pw) return -1; return isl_space_find_dim_by_name(pw->dim, type, name); } #ifndef NO_RESET_DIM /* Reset the space of "pw". Since we don't know if the elements * represent the spaces themselves or their domains, we pass along * both when we call their reset_space_and_domain. */ static __isl_give PW *FN(PW,reset_space_and_domain)(__isl_take PW *pw, __isl_take isl_space *space, __isl_take isl_space *domain) { int i; pw = FN(PW,cow)(pw); if (!pw || !space || !domain) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_reset_space(pw->p[i].set, isl_space_copy(domain)); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,reset_space_and_domain)(pw->p[i].FIELD, isl_space_copy(space), isl_space_copy(domain)); if (!pw->p[i].FIELD) goto error; } isl_space_free(domain); isl_space_free(pw->dim); pw->dim = space; return pw; error: isl_space_free(domain); isl_space_free(space); FN(PW,free)(pw); return NULL; } __isl_give PW *FN(PW,reset_domain_space)(__isl_take PW *pw, __isl_take isl_space *domain) { isl_space *space; space = isl_space_extend_domain_with_range(isl_space_copy(domain), FN(PW,get_space)(pw)); return FN(PW,reset_space_and_domain)(pw, space, domain); } __isl_give PW *FN(PW,reset_space)(__isl_take PW *pw, __isl_take isl_space *dim) { isl_space *domain; domain = isl_space_domain(isl_space_copy(dim)); return FN(PW,reset_space_and_domain)(pw, dim, domain); } __isl_give PW *FN(PW,set_tuple_id)(__isl_take PW *pw, enum isl_dim_type type, __isl_take isl_id *id) { isl_space *space; pw = FN(PW,cow)(pw); if (!pw) goto error; space = FN(PW,get_space)(pw); space = isl_space_set_tuple_id(space, type, id); return FN(PW,reset_space)(pw, space); error: isl_id_free(id); return FN(PW,free)(pw); } /* Drop the id on the specified tuple. */ __isl_give PW *FN(PW,reset_tuple_id)(__isl_take PW *pw, enum isl_dim_type type) { isl_space *space; if (!pw) return NULL; if (!FN(PW,has_tuple_id)(pw, type)) return pw; pw = FN(PW,cow)(pw); if (!pw) return NULL; space = FN(PW,get_space)(pw); space = isl_space_reset_tuple_id(space, type); return FN(PW,reset_space)(pw, space); } __isl_give PW *FN(PW,set_dim_id)(__isl_take PW *pw, enum isl_dim_type type, unsigned pos, __isl_take isl_id *id) { pw = FN(PW,cow)(pw); if (!pw) goto error; pw->dim = isl_space_set_dim_id(pw->dim, type, pos, id); return FN(PW,reset_space)(pw, isl_space_copy(pw->dim)); error: isl_id_free(id); return FN(PW,free)(pw); } #endif /* Reset the user pointer on all identifiers of parameters and tuples * of the space of "pw". */ __isl_give PW *FN(PW,reset_user)(__isl_take PW *pw) { isl_space *space; space = FN(PW,get_space)(pw); space = isl_space_reset_user(space); return FN(PW,reset_space)(pw, space); } int FN(PW,has_equal_space)(__isl_keep PW *pw1, __isl_keep PW *pw2) { if (!pw1 || !pw2) return -1; return isl_space_is_equal(pw1->dim, pw2->dim); } #ifndef NO_MORPH __isl_give PW *FN(PW,morph_domain)(__isl_take PW *pw, __isl_take isl_morph *morph) { int i; isl_ctx *ctx; if (!pw || !morph) goto error; ctx = isl_space_get_ctx(pw->dim); isl_assert(ctx, isl_space_is_domain_internal(morph->dom->dim, pw->dim), goto error); pw = FN(PW,cow)(pw); if (!pw) goto error; pw->dim = isl_space_extend_domain_with_range( isl_space_copy(morph->ran->dim), pw->dim); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_morph_set(isl_morph_copy(morph), pw->p[i].set); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,morph_domain)(pw->p[i].FIELD, isl_morph_copy(morph)); if (!pw->p[i].FIELD) goto error; } isl_morph_free(morph); return pw; error: FN(PW,free)(pw); isl_morph_free(morph); return NULL; } #endif int FN(PW,n_piece)(__isl_keep PW *pw) { return pw ? pw->n : 0; } isl_stat FN(PW,foreach_piece)(__isl_keep PW *pw, isl_stat (*fn)(__isl_take isl_set *set, __isl_take EL *el, void *user), void *user) { int i; if (!pw) return isl_stat_error; for (i = 0; i < pw->n; ++i) if (fn(isl_set_copy(pw->p[i].set), FN(EL,copy)(pw->p[i].FIELD), user) < 0) return isl_stat_error; return isl_stat_ok; } #ifndef NO_LIFT static int any_divs(__isl_keep isl_set *set) { int i; if (!set) return -1; for (i = 0; i < set->n; ++i) if (set->p[i]->n_div > 0) return 1; return 0; } static isl_stat foreach_lifted_subset(__isl_take isl_set *set, __isl_take EL *el, isl_stat (*fn)(__isl_take isl_set *set, __isl_take EL *el, void *user), void *user) { int i; if (!set || !el) goto error; for (i = 0; i < set->n; ++i) { isl_set *lift; EL *copy; lift = isl_set_from_basic_set(isl_basic_set_copy(set->p[i])); lift = isl_set_lift(lift); copy = FN(EL,copy)(el); copy = FN(EL,lift)(copy, isl_set_get_space(lift)); if (fn(lift, copy, user) < 0) goto error; } isl_set_free(set); FN(EL,free)(el); return isl_stat_ok; error: isl_set_free(set); FN(EL,free)(el); return isl_stat_error; } isl_stat FN(PW,foreach_lifted_piece)(__isl_keep PW *pw, isl_stat (*fn)(__isl_take isl_set *set, __isl_take EL *el, void *user), void *user) { int i; if (!pw) return isl_stat_error; for (i = 0; i < pw->n; ++i) { isl_set *set; EL *el; set = isl_set_copy(pw->p[i].set); el = FN(EL,copy)(pw->p[i].FIELD); if (!any_divs(set)) { if (fn(set, el, user) < 0) return isl_stat_error; continue; } if (foreach_lifted_subset(set, el, fn, user) < 0) return isl_stat_error; } return isl_stat_ok; } #endif #ifndef NO_MOVE_DIMS __isl_give PW *FN(PW,move_dims)(__isl_take PW *pw, enum isl_dim_type dst_type, unsigned dst_pos, enum isl_dim_type src_type, unsigned src_pos, unsigned n) { int i; pw = FN(PW,cow)(pw); if (!pw) return NULL; pw->dim = isl_space_move_dims(pw->dim, dst_type, dst_pos, src_type, src_pos, n); if (!pw->dim) goto error; for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,move_dims)(pw->p[i].FIELD, dst_type, dst_pos, src_type, src_pos, n); if (!pw->p[i].FIELD) goto error; } if (dst_type == isl_dim_in) dst_type = isl_dim_set; if (src_type == isl_dim_in) src_type = isl_dim_set; for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_move_dims(pw->p[i].set, dst_type, dst_pos, src_type, src_pos, n); if (!pw->p[i].set) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } #endif __isl_give PW *FN(PW,mul_isl_int)(__isl_take PW *pw, isl_int v) { int i; if (isl_int_is_one(v)) return pw; if (pw && DEFAULT_IS_ZERO && isl_int_is_zero(v)) { PW *zero; isl_space *dim = FN(PW,get_space)(pw); #ifdef HAS_TYPE zero = FN(PW,ZERO)(dim, pw->type); #else zero = FN(PW,ZERO)(dim); #endif FN(PW,free)(pw); return zero; } pw = FN(PW,cow)(pw); if (!pw) return NULL; if (pw->n == 0) return pw; #ifdef HAS_TYPE if (isl_int_is_neg(v)) pw->type = isl_fold_type_negate(pw->type); #endif for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,scale)(pw->p[i].FIELD, v); if (!pw->p[i].FIELD) goto error; } return pw; error: FN(PW,free)(pw); return NULL; } /* Multiply the pieces of "pw" by "v" and return the result. */ __isl_give PW *FN(PW,scale_val)(__isl_take PW *pw, __isl_take isl_val *v) { int i; if (!pw || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return pw; } if (pw && DEFAULT_IS_ZERO && isl_val_is_zero(v)) { PW *zero; isl_space *space = FN(PW,get_space)(pw); #ifdef HAS_TYPE zero = FN(PW,ZERO)(space, pw->type); #else zero = FN(PW,ZERO)(space); #endif FN(PW,free)(pw); isl_val_free(v); return zero; } if (pw->n == 0) { isl_val_free(v); return pw; } pw = FN(PW,cow)(pw); if (!pw) goto error; #ifdef HAS_TYPE if (isl_val_is_neg(v)) pw->type = isl_fold_type_negate(pw->type); #endif for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,scale_val)(pw->p[i].FIELD, isl_val_copy(v)); if (!pw->p[i].FIELD) goto error; } isl_val_free(v); return pw; error: isl_val_free(v); FN(PW,free)(pw); return NULL; } /* Divide the pieces of "pw" by "v" and return the result. */ __isl_give PW *FN(PW,scale_down_val)(__isl_take PW *pw, __isl_take isl_val *v) { int i; if (!pw || !v) goto error; if (isl_val_is_one(v)) { isl_val_free(v); return pw; } if (!isl_val_is_rat(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting rational factor", goto error); if (isl_val_is_zero(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "cannot scale down by zero", goto error); if (pw->n == 0) { isl_val_free(v); return pw; } pw = FN(PW,cow)(pw); if (!pw) goto error; #ifdef HAS_TYPE if (isl_val_is_neg(v)) pw->type = isl_fold_type_negate(pw->type); #endif for (i = 0; i < pw->n; ++i) { pw->p[i].FIELD = FN(EL,scale_down_val)(pw->p[i].FIELD, isl_val_copy(v)); if (!pw->p[i].FIELD) goto error; } isl_val_free(v); return pw; error: isl_val_free(v); FN(PW,free)(pw); return NULL; } __isl_give PW *FN(PW,scale)(__isl_take PW *pw, isl_int v) { return FN(PW,mul_isl_int)(pw, v); } static int FN(PW,qsort_set_cmp)(const void *p1, const void *p2) { isl_set *set1 = *(isl_set * const *)p1; isl_set *set2 = *(isl_set * const *)p2; return isl_set_plain_cmp(set1, set2); } /* We normalize in place, but if anything goes wrong we need * to return NULL, so we need to make sure we don't change the * meaning of any possible other copies of map. */ __isl_give PW *FN(PW,normalize)(__isl_take PW *pw) { int i, j; isl_set *set; if (!pw) return NULL; for (i = 0; i < pw->n; ++i) { set = isl_set_normalize(isl_set_copy(pw->p[i].set)); if (!set) return FN(PW,free)(pw); isl_set_free(pw->p[i].set); pw->p[i].set = set; } qsort(pw->p, pw->n, sizeof(pw->p[0]), &FN(PW,qsort_set_cmp)); for (i = pw->n - 1; i >= 1; --i) { if (!isl_set_plain_is_equal(pw->p[i - 1].set, pw->p[i].set)) continue; if (!FN(EL,plain_is_equal)(pw->p[i - 1].FIELD, pw->p[i].FIELD)) continue; set = isl_set_union(isl_set_copy(pw->p[i - 1].set), isl_set_copy(pw->p[i].set)); if (!set) return FN(PW,free)(pw); isl_set_free(pw->p[i].set); FN(EL,free)(pw->p[i].FIELD); isl_set_free(pw->p[i - 1].set); pw->p[i - 1].set = set; for (j = i + 1; j < pw->n; ++j) pw->p[j - 1] = pw->p[j]; pw->n--; } return pw; } /* Is pw1 obviously equal to pw2? * That is, do they have obviously identical cells and obviously identical * elements on each cell? */ isl_bool FN(PW,plain_is_equal)(__isl_keep PW *pw1, __isl_keep PW *pw2) { int i; isl_bool equal; if (!pw1 || !pw2) return isl_bool_error; if (pw1 == pw2) return isl_bool_true; if (!isl_space_is_equal(pw1->dim, pw2->dim)) return isl_bool_false; pw1 = FN(PW,copy)(pw1); pw2 = FN(PW,copy)(pw2); pw1 = FN(PW,normalize)(pw1); pw2 = FN(PW,normalize)(pw2); if (!pw1 || !pw2) goto error; equal = pw1->n == pw2->n; for (i = 0; equal && i < pw1->n; ++i) { equal = isl_set_plain_is_equal(pw1->p[i].set, pw2->p[i].set); if (equal < 0) goto error; if (!equal) break; equal = FN(EL,plain_is_equal)(pw1->p[i].FIELD, pw2->p[i].FIELD); if (equal < 0) goto error; } FN(PW,free)(pw1); FN(PW,free)(pw2); return equal; error: FN(PW,free)(pw1); FN(PW,free)(pw2); return isl_bool_error; } #ifndef NO_PULLBACK static __isl_give PW *FN(PW,align_params_pw_multi_aff_and)(__isl_take PW *pw, __isl_take isl_multi_aff *ma, __isl_give PW *(*fn)(__isl_take PW *pw, __isl_take isl_multi_aff *ma)) { isl_ctx *ctx; isl_space *ma_space; ma_space = isl_multi_aff_get_space(ma); if (!pw || !ma || !ma_space) goto error; if (isl_space_match(pw->dim, isl_dim_param, ma_space, isl_dim_param)) { isl_space_free(ma_space); return fn(pw, ma); } ctx = FN(PW,get_ctx)(pw); if (!isl_space_has_named_params(pw->dim) || !isl_space_has_named_params(ma_space)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); pw = FN(PW,align_params)(pw, ma_space); ma = isl_multi_aff_align_params(ma, FN(PW,get_space)(pw)); return fn(pw, ma); error: isl_space_free(ma_space); FN(PW,free)(pw); isl_multi_aff_free(ma); return NULL; } static __isl_give PW *FN(PW,align_params_pw_pw_multi_aff_and)(__isl_take PW *pw, __isl_take isl_pw_multi_aff *pma, __isl_give PW *(*fn)(__isl_take PW *pw, __isl_take isl_pw_multi_aff *ma)) { isl_ctx *ctx; isl_space *pma_space; pma_space = isl_pw_multi_aff_get_space(pma); if (!pw || !pma || !pma_space) goto error; if (isl_space_match(pw->dim, isl_dim_param, pma_space, isl_dim_param)) { isl_space_free(pma_space); return fn(pw, pma); } ctx = FN(PW,get_ctx)(pw); if (!isl_space_has_named_params(pw->dim) || !isl_space_has_named_params(pma_space)) isl_die(ctx, isl_error_invalid, "unaligned unnamed parameters", goto error); pw = FN(PW,align_params)(pw, pma_space); pma = isl_pw_multi_aff_align_params(pma, FN(PW,get_space)(pw)); return fn(pw, pma); error: isl_space_free(pma_space); FN(PW,free)(pw); isl_pw_multi_aff_free(pma); return NULL; } /* Compute the pullback of "pw" by the function represented by "ma". * In other words, plug in "ma" in "pw". */ static __isl_give PW *FN(PW,pullback_multi_aff_aligned)(__isl_take PW *pw, __isl_take isl_multi_aff *ma) { int i; isl_space *space = NULL; ma = isl_multi_aff_align_divs(ma); pw = FN(PW,cow)(pw); if (!pw || !ma) goto error; space = isl_space_join(isl_multi_aff_get_space(ma), FN(PW,get_space)(pw)); for (i = 0; i < pw->n; ++i) { pw->p[i].set = isl_set_preimage_multi_aff(pw->p[i].set, isl_multi_aff_copy(ma)); if (!pw->p[i].set) goto error; pw->p[i].FIELD = FN(EL,pullback_multi_aff)(pw->p[i].FIELD, isl_multi_aff_copy(ma)); if (!pw->p[i].FIELD) goto error; } pw = FN(PW,reset_space)(pw, space); isl_multi_aff_free(ma); return pw; error: isl_space_free(space); isl_multi_aff_free(ma); FN(PW,free)(pw); return NULL; } __isl_give PW *FN(PW,pullback_multi_aff)(__isl_take PW *pw, __isl_take isl_multi_aff *ma) { return FN(PW,align_params_pw_multi_aff_and)(pw, ma, &FN(PW,pullback_multi_aff_aligned)); } /* Compute the pullback of "pw" by the function represented by "pma". * In other words, plug in "pma" in "pw". */ static __isl_give PW *FN(PW,pullback_pw_multi_aff_aligned)(__isl_take PW *pw, __isl_take isl_pw_multi_aff *pma) { int i; PW *res; if (!pma) goto error; if (pma->n == 0) { isl_space *space; space = isl_space_join(isl_pw_multi_aff_get_space(pma), FN(PW,get_space)(pw)); isl_pw_multi_aff_free(pma); res = FN(PW,empty)(space); FN(PW,free)(pw); return res; } res = FN(PW,pullback_multi_aff)(FN(PW,copy)(pw), isl_multi_aff_copy(pma->p[0].maff)); res = FN(PW,intersect_domain)(res, isl_set_copy(pma->p[0].set)); for (i = 1; i < pma->n; ++i) { PW *res_i; res_i = FN(PW,pullback_multi_aff)(FN(PW,copy)(pw), isl_multi_aff_copy(pma->p[i].maff)); res_i = FN(PW,intersect_domain)(res_i, isl_set_copy(pma->p[i].set)); res = FN(PW,add_disjoint)(res, res_i); } isl_pw_multi_aff_free(pma); FN(PW,free)(pw); return res; error: isl_pw_multi_aff_free(pma); FN(PW,free)(pw); return NULL; } __isl_give PW *FN(PW,pullback_pw_multi_aff)(__isl_take PW *pw, __isl_take isl_pw_multi_aff *pma) { return FN(PW,align_params_pw_pw_multi_aff_and)(pw, pma, &FN(PW,pullback_pw_multi_aff_aligned)); } #endif isl-0.16.1/isl_ast_private.h0000664000175000017500000000603712645737060012672 00000000000000#ifndef ISL_AST_PRIVATE_H #define ISL_AST_PRIVATE_H #include #include #include #include #include #include /* An expression is either an integer, an identifier or an operation * with zero or more arguments. */ struct isl_ast_expr { int ref; isl_ctx *ctx; enum isl_ast_expr_type type; union { isl_val *v; isl_id *id; struct { enum isl_ast_op_type op; unsigned n_arg; isl_ast_expr **args; } op; } u; }; #undef EL #define EL isl_ast_expr #include __isl_give isl_ast_expr *isl_ast_expr_alloc_int_si(isl_ctx *ctx, int i); __isl_give isl_ast_expr *isl_ast_expr_alloc_op(isl_ctx *ctx, enum isl_ast_op_type op, int n_arg); __isl_give isl_ast_expr *isl_ast_expr_alloc_binary(enum isl_ast_op_type type, __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2); #undef EL #define EL isl_ast_node #include /* A node is either a block, an if, a for, a user node or a mark node. * "else_node" is NULL if the if node does not have an else branch. * "cond" and "inc" are NULL for degenerate for nodes. * In case of a mark node, "mark" is the mark and "node" is the marked node. */ struct isl_ast_node { int ref; isl_ctx *ctx; enum isl_ast_node_type type; union { struct { isl_ast_node_list *children; } b; struct { isl_ast_expr *guard; isl_ast_node *then; isl_ast_node *else_node; } i; struct { unsigned degenerate : 1; isl_ast_expr *iterator; isl_ast_expr *init; isl_ast_expr *cond; isl_ast_expr *inc; isl_ast_node *body; } f; struct { isl_ast_expr *expr; } e; struct { isl_id *mark; isl_ast_node *node; } m; } u; isl_id *annotation; }; __isl_give isl_ast_node *isl_ast_node_alloc_for(__isl_take isl_id *id); __isl_give isl_ast_node *isl_ast_node_for_mark_degenerate( __isl_take isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_alloc_if(__isl_take isl_ast_expr *guard); __isl_give isl_ast_node *isl_ast_node_alloc_block( __isl_take isl_ast_node_list *list); __isl_give isl_ast_node *isl_ast_node_alloc_mark(__isl_take isl_id *id, __isl_take isl_ast_node *node); __isl_give isl_ast_node *isl_ast_node_from_ast_node_list( __isl_take isl_ast_node_list *list); __isl_give isl_ast_node *isl_ast_node_for_set_body( __isl_take isl_ast_node *node, __isl_take isl_ast_node *body); __isl_give isl_ast_node *isl_ast_node_if_set_then( __isl_take isl_ast_node *node, __isl_take isl_ast_node *child); struct isl_ast_print_options { int ref; isl_ctx *ctx; __isl_give isl_printer *(*print_for)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user); void *print_for_user; __isl_give isl_printer *(*print_user)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user); void *print_user_user; }; __isl_give isl_printer *isl_ast_node_list_print( __isl_keep isl_ast_node_list *list, __isl_take isl_printer *p, __isl_keep isl_ast_print_options *options); #endif isl-0.16.1/isl_output.c0000664000175000017500000024312112645737514011705 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const char *s_to[2] = { " -> ", " \\to " }; static const char *s_and[2] = { " and ", " \\wedge " }; static const char *s_or[2] = { " or ", " \\vee " }; static const char *s_le[2] = { "<=", "\\le" }; static const char *s_ge[2] = { ">=", "\\ge" }; static const char *s_open_set[2] = { "{ ", "\\{\\, " }; static const char *s_close_set[2] = { " }", " \\,\\}" }; static const char *s_open_list[2] = { "[", "(" }; static const char *s_close_list[2] = { "]", ")" }; static const char *s_such_that[2] = { " : ", " \\mid " }; static const char *s_open_exists[2] = { "exists (", "\\exists \\, " }; static const char *s_close_exists[2] = { ")", "" }; static const char *s_div_prefix[2] = { "e", "\\alpha_" }; static const char *s_param_prefix[2] = { "p", "p_" }; static const char *s_input_prefix[2] = { "i", "i_" }; static const char *s_output_prefix[2] = { "o", "o_" }; static __isl_give isl_printer *print_constraint_polylib( struct isl_basic_map *bmap, int ineq, int n, __isl_take isl_printer *p) { int i; unsigned n_in = isl_basic_map_dim(bmap, isl_dim_in); unsigned n_out = isl_basic_map_dim(bmap, isl_dim_out); unsigned nparam = isl_basic_map_dim(bmap, isl_dim_param); isl_int *c = ineq ? bmap->ineq[n] : bmap->eq[n]; p = isl_printer_start_line(p); p = isl_printer_print_int(p, ineq); for (i = 0; i < n_out; ++i) { p = isl_printer_print_str(p, " "); p = isl_printer_print_isl_int(p, c[1+nparam+n_in+i]); } for (i = 0; i < n_in; ++i) { p = isl_printer_print_str(p, " "); p = isl_printer_print_isl_int(p, c[1+nparam+i]); } for (i = 0; i < bmap->n_div; ++i) { p = isl_printer_print_str(p, " "); p = isl_printer_print_isl_int(p, c[1+nparam+n_in+n_out+i]); } for (i = 0; i < nparam; ++i) { p = isl_printer_print_str(p, " "); p = isl_printer_print_isl_int(p, c[1+i]); } p = isl_printer_print_str(p, " "); p = isl_printer_print_isl_int(p, c[0]); p = isl_printer_end_line(p); return p; } static __isl_give isl_printer *print_constraints_polylib( struct isl_basic_map *bmap, __isl_take isl_printer *p) { int i; p = isl_printer_set_isl_int_width(p, 5); for (i = 0; i < bmap->n_eq; ++i) p = print_constraint_polylib(bmap, 0, i, p); for (i = 0; i < bmap->n_ineq; ++i) p = print_constraint_polylib(bmap, 1, i, p); return p; } static __isl_give isl_printer *bset_print_constraints_polylib( struct isl_basic_set *bset, __isl_take isl_printer *p) { return print_constraints_polylib((struct isl_basic_map *)bset, p); } static __isl_give isl_printer *isl_basic_map_print_polylib( __isl_keep isl_basic_map *bmap, __isl_take isl_printer *p, int ext) { unsigned total = isl_basic_map_total_dim(bmap); p = isl_printer_start_line(p); p = isl_printer_print_int(p, bmap->n_eq + bmap->n_ineq); p = isl_printer_print_str(p, " "); p = isl_printer_print_int(p, 1 + total + 1); if (ext) { p = isl_printer_print_str(p, " "); p = isl_printer_print_int(p, isl_basic_map_dim(bmap, isl_dim_out)); p = isl_printer_print_str(p, " "); p = isl_printer_print_int(p, isl_basic_map_dim(bmap, isl_dim_in)); p = isl_printer_print_str(p, " "); p = isl_printer_print_int(p, isl_basic_map_dim(bmap, isl_dim_div)); p = isl_printer_print_str(p, " "); p = isl_printer_print_int(p, isl_basic_map_dim(bmap, isl_dim_param)); } p = isl_printer_end_line(p); return print_constraints_polylib(bmap, p); } static __isl_give isl_printer *isl_basic_set_print_polylib( __isl_keep isl_basic_set *bset, __isl_take isl_printer *p, int ext) { return isl_basic_map_print_polylib((struct isl_basic_map *)bset, p, ext); } static __isl_give isl_printer *isl_map_print_polylib(__isl_keep isl_map *map, __isl_take isl_printer *p, int ext) { int i; p = isl_printer_start_line(p); p = isl_printer_print_int(p, map->n); p = isl_printer_end_line(p); for (i = 0; i < map->n; ++i) { p = isl_printer_start_line(p); p = isl_printer_end_line(p); p = isl_basic_map_print_polylib(map->p[i], p, ext); } return p; } static __isl_give isl_printer *isl_set_print_polylib(__isl_keep isl_set *set, __isl_take isl_printer *p, int ext) { return isl_map_print_polylib((struct isl_map *)set, p, ext); } static int count_same_name(__isl_keep isl_space *dim, enum isl_dim_type type, unsigned pos, const char *name) { enum isl_dim_type t; unsigned p, s; int count = 0; for (t = isl_dim_param; t <= type && t <= isl_dim_out; ++t) { s = t == type ? pos : isl_space_dim(dim, t); for (p = 0; p < s; ++p) { const char *n = isl_space_get_dim_name(dim, t, p); if (n && !strcmp(n, name)) count++; } } return count; } /* Print the name of the variable of type "type" and position "pos" * in "space" to "p". */ static __isl_give isl_printer *print_name(__isl_keep isl_space *space, __isl_take isl_printer *p, enum isl_dim_type type, unsigned pos, int latex) { const char *name; char buffer[20]; int primes; name = type == isl_dim_div ? NULL : isl_space_get_dim_name(space, type, pos); if (!name) { const char *prefix; if (type == isl_dim_param) prefix = s_param_prefix[latex]; else if (type == isl_dim_div) prefix = s_div_prefix[latex]; else if (isl_space_is_set(space) || type == isl_dim_in) prefix = s_input_prefix[latex]; else prefix = s_output_prefix[latex]; snprintf(buffer, sizeof(buffer), "%s%d", prefix, pos); name = buffer; } primes = count_same_name(space, name == buffer ? isl_dim_div : type, pos, name); p = isl_printer_print_str(p, name); while (primes-- > 0) p = isl_printer_print_str(p, "'"); return p; } static enum isl_dim_type pos2type(__isl_keep isl_space *dim, unsigned *pos) { enum isl_dim_type type; unsigned n_in = isl_space_dim(dim, isl_dim_in); unsigned n_out = isl_space_dim(dim, isl_dim_out); unsigned nparam = isl_space_dim(dim, isl_dim_param); if (*pos < 1 + nparam) { type = isl_dim_param; *pos -= 1; } else if (*pos < 1 + nparam + n_in) { type = isl_dim_in; *pos -= 1 + nparam; } else if (*pos < 1 + nparam + n_in + n_out) { type = isl_dim_out; *pos -= 1 + nparam + n_in; } else { type = isl_dim_div; *pos -= 1 + nparam + n_in + n_out; } return type; } /* Can the div expression of the integer division at position "row" of "div" * be printed? * In particular, are the div expressions available and does the selected * variable have a known explicit representation? * Furthermore, the Omega format does not allow and div expressions * to be printed. */ static isl_bool can_print_div_expr(__isl_keep isl_printer *p, __isl_keep isl_mat *div, int pos) { if (p->output_format == ISL_FORMAT_OMEGA) return isl_bool_false; if (!div) return isl_bool_false; return !isl_int_is_zero(div->row[pos][0]); } static __isl_give isl_printer *print_div(__isl_keep isl_space *dim, __isl_keep isl_mat *div, int pos, __isl_take isl_printer *p); static __isl_give isl_printer *print_term(__isl_keep isl_space *space, __isl_keep isl_mat *div, isl_int c, unsigned pos, __isl_take isl_printer *p, int latex) { enum isl_dim_type type; int print_div_def; if (pos == 0) return isl_printer_print_isl_int(p, c); type = pos2type(space, &pos); print_div_def = type == isl_dim_div && can_print_div_expr(p, div, pos); if (isl_int_is_one(c)) ; else if (isl_int_is_negone(c)) p = isl_printer_print_str(p, "-"); else { p = isl_printer_print_isl_int(p, c); if (p->output_format == ISL_FORMAT_C || print_div_def) p = isl_printer_print_str(p, "*"); } if (print_div_def) p = print_div(space, div, pos, p); else p = print_name(space, p, type, pos, latex); return p; } static __isl_give isl_printer *print_affine_of_len(__isl_keep isl_space *dim, __isl_keep isl_mat *div, __isl_take isl_printer *p, isl_int *c, int len) { int i; int first; for (i = 0, first = 1; i < len; ++i) { int flip = 0; if (isl_int_is_zero(c[i])) continue; if (!first) { if (isl_int_is_neg(c[i])) { flip = 1; isl_int_neg(c[i], c[i]); p = isl_printer_print_str(p, " - "); } else p = isl_printer_print_str(p, " + "); } first = 0; p = print_term(dim, div, c[i], i, p, 0); if (flip) isl_int_neg(c[i], c[i]); } if (first) p = isl_printer_print_str(p, "0"); return p; } /* Print an affine expression "c" corresponding to a constraint in "bmap" * to "p", with the variable names taken from "space" and * the integer division definitions taken from "div". */ static __isl_give isl_printer *print_affine(__isl_keep isl_basic_map *bmap, __isl_keep isl_space *space, __isl_keep isl_mat *div, __isl_take isl_printer *p, isl_int *c) { unsigned len = 1 + isl_basic_map_total_dim(bmap); return print_affine_of_len(space, div, p, c, len); } /* offset is the offset of local_dim inside data->type of data->space. */ static __isl_give isl_printer *print_nested_var_list(__isl_take isl_printer *p, __isl_keep isl_space *local_dim, enum isl_dim_type local_type, struct isl_print_space_data *data, int offset) { int i; if (data->space != local_dim && local_type == isl_dim_out) offset += local_dim->n_in; for (i = 0; i < isl_space_dim(local_dim, local_type); ++i) { if (i) p = isl_printer_print_str(p, ", "); if (data->print_dim) p = data->print_dim(p, data, offset + i); else p = print_name(data->space, p, data->type, offset + i, data->latex); } return p; } static __isl_give isl_printer *print_var_list(__isl_take isl_printer *p, __isl_keep isl_space *space, enum isl_dim_type type) { struct isl_print_space_data data = { .space = space, .type = type }; return print_nested_var_list(p, space, type, &data, 0); } static __isl_give isl_printer *print_nested_map_dim(__isl_take isl_printer *p, __isl_keep isl_space *local_dim, struct isl_print_space_data *data, int offset); static __isl_give isl_printer *print_nested_tuple(__isl_take isl_printer *p, __isl_keep isl_space *local_dim, enum isl_dim_type local_type, struct isl_print_space_data *data, int offset) { const char *name = NULL; unsigned n = isl_space_dim(local_dim, local_type); if ((local_type == isl_dim_in || local_type == isl_dim_out)) { name = isl_space_get_tuple_name(local_dim, local_type); if (name) { if (data->latex) p = isl_printer_print_str(p, "\\mathrm{"); p = isl_printer_print_str(p, name); if (data->latex) p = isl_printer_print_str(p, "}"); } } if (!data->latex || n != 1 || name) p = isl_printer_print_str(p, s_open_list[data->latex]); if ((local_type == isl_dim_in || local_type == isl_dim_out) && local_dim->nested[local_type - isl_dim_in]) { if (data->space != local_dim && local_type == isl_dim_out) offset += local_dim->n_in; p = print_nested_map_dim(p, local_dim->nested[local_type - isl_dim_in], data, offset); } else p = print_nested_var_list(p, local_dim, local_type, data, offset); if (!data->latex || n != 1 || name) p = isl_printer_print_str(p, s_close_list[data->latex]); return p; } static __isl_give isl_printer *print_tuple(__isl_keep isl_space *dim, __isl_take isl_printer *p, enum isl_dim_type type, struct isl_print_space_data *data) { data->space = dim; data->type = type; return print_nested_tuple(p, dim, type, data, 0); } static __isl_give isl_printer *print_nested_map_dim(__isl_take isl_printer *p, __isl_keep isl_space *local_dim, struct isl_print_space_data *data, int offset) { p = print_nested_tuple(p, local_dim, isl_dim_in, data, offset); p = isl_printer_print_str(p, s_to[data->latex]); p = print_nested_tuple(p, local_dim, isl_dim_out, data, offset); return p; } __isl_give isl_printer *isl_print_space(__isl_keep isl_space *space, __isl_take isl_printer *p, int rational, struct isl_print_space_data *data) { if (rational && !data->latex) p = isl_printer_print_str(p, "rat: "); if (isl_space_is_params(space)) ; else if (isl_space_is_set(space)) p = print_tuple(space, p, isl_dim_set, data); else { p = print_tuple(space, p, isl_dim_in, data); p = isl_printer_print_str(p, s_to[data->latex]); p = print_tuple(space, p, isl_dim_out, data); } return p; } static __isl_give isl_printer *print_omega_parameters(__isl_keep isl_space *dim, __isl_take isl_printer *p) { if (isl_space_dim(dim, isl_dim_param) == 0) return p; p = isl_printer_start_line(p); p = isl_printer_print_str(p, "symbolic "); p = print_var_list(p, dim, isl_dim_param); p = isl_printer_print_str(p, ";"); p = isl_printer_end_line(p); return p; } /* Does the inequality constraint following "i" in "bmap" * have an opposite value for the same last coefficient? * "last" is the position of the last coefficient of inequality "i". * If the next constraint is a div constraint, then it is ignored * since div constraints are not printed. */ static int next_is_opposite(__isl_keep isl_basic_map *bmap, int i, int last) { unsigned total = isl_basic_map_total_dim(bmap); unsigned o_div = isl_basic_map_offset(bmap, isl_dim_div); if (i + 1 >= bmap->n_ineq) return 0; if (isl_seq_last_non_zero(bmap->ineq[i + 1], 1 + total) != last) return 0; if (last >= o_div && isl_basic_map_is_div_constraint(bmap, bmap->ineq[i + 1], last - o_div)) return 0; return isl_int_abs_eq(bmap->ineq[i][last], bmap->ineq[i + 1][last]) && !isl_int_eq(bmap->ineq[i][last], bmap->ineq[i + 1][last]); } /* Return a string representation of the operator used when * printing a constraint where the LHS is greater than or equal to the LHS * (sign > 0) or smaller than or equal to the LHS (sign < 0). * If "strict" is set, then return the strict version of the comparison * operator. */ static const char *constraint_op(int sign, int strict, int latex) { if (strict) return sign < 0 ? "<" : ">"; if (sign < 0) return s_le[latex]; else return s_ge[latex]; } /* Print one side of a constraint "c" from "bmap" to "p", with * the variable names taken from "space" and the integer division definitions * taken from "div". * "last" is the position of the last non-zero coefficient. * Let c' be the result of zeroing out this coefficient, then * the partial constraint * * c' op * * is printed. * "first_constraint" is set if this is the first constraint * in the conjunction. */ static __isl_give isl_printer *print_half_constraint(struct isl_basic_map *bmap, __isl_keep isl_space *space, __isl_keep isl_mat *div, __isl_take isl_printer *p, isl_int *c, int last, const char *op, int first_constraint, int latex) { if (!first_constraint) p = isl_printer_print_str(p, s_and[latex]); isl_int_set_si(c[last], 0); p = print_affine(bmap, space, div, p, c); p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, op); p = isl_printer_print_str(p, " "); return p; } /* Print a constraint "c" from "bmap" to "p", with the variable names * taken from "space" and the integer division definitions taken from "div". * "last" is the position of the last non-zero coefficient, which is * moreover assumed to be negative. * Let c' be the result of zeroing out this coefficient, then * the constraint is printed in the form * * -c[last] op c' * * "first_constraint" is set if this is the first constraint * in the conjunction. */ static __isl_give isl_printer *print_constraint(struct isl_basic_map *bmap, __isl_keep isl_space *space, __isl_keep isl_mat *div, __isl_take isl_printer *p, isl_int *c, int last, const char *op, int first_constraint, int latex) { if (!first_constraint) p = isl_printer_print_str(p, s_and[latex]); isl_int_abs(c[last], c[last]); p = print_term(space, div, c[last], last, p, latex); p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, op); p = isl_printer_print_str(p, " "); isl_int_set_si(c[last], 0); p = print_affine(bmap, space, div, p, c); return p; } /* Print the constraints of "bmap" to "p". * The names of the variables are taken from "space" and * the integer division definitions are taken from "div". * Div constraints are only printed in "dump" mode. * The constraints are sorted prior to printing (except in "dump" mode). * * If x is the last variable with a non-zero coefficient, * then a lower bound * * f - a x >= 0 * * is printed as * * a x <= f * * while an upper bound * * f + a x >= 0 * * is printed as * * a x >= -f * * If the next constraint has an opposite sign for the same last coefficient, * then it is printed as * * f >= a x * * or * * -f <= a x * * instead. In fact, the "a x" part is not printed explicitly, but * reused from the next constraint, which is therefore treated as * a first constraint in the conjunction. * * If the constant term of "f" is -1, then "f" is replaced by "f + 1" and * the comparison operator is replaced by the strict variant. * Essentially, ">= 1" is replaced by "> 0". */ static __isl_give isl_printer *print_constraints(__isl_keep isl_basic_map *bmap, __isl_keep isl_space *space, __isl_keep isl_mat *div, __isl_take isl_printer *p, int latex) { int i; isl_vec *c = NULL; int rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); unsigned total = isl_basic_map_total_dim(bmap); unsigned o_div = isl_basic_map_offset(bmap, isl_dim_div); int first = 1; bmap = isl_basic_map_copy(bmap); if (!p->dump) bmap = isl_basic_map_sort_constraints(bmap); if (!bmap) goto error; c = isl_vec_alloc(bmap->ctx, 1 + total); if (!c) goto error; for (i = bmap->n_eq - 1; i >= 0; --i) { int l = isl_seq_last_non_zero(bmap->eq[i], 1 + total); if (l < 0) { if (i != bmap->n_eq - 1) p = isl_printer_print_str(p, s_and[latex]); p = isl_printer_print_str(p, "0 = 0"); continue; } if (isl_int_is_neg(bmap->eq[i][l])) isl_seq_cpy(c->el, bmap->eq[i], 1 + total); else isl_seq_neg(c->el, bmap->eq[i], 1 + total); p = print_constraint(bmap, space, div, p, c->el, l, "=", first, latex); first = 0; } for (i = 0; i < bmap->n_ineq; ++i) { int l = isl_seq_last_non_zero(bmap->ineq[i], 1 + total); int strict; int s; const char *op; if (l < 0) continue; if (!p->dump && l >= o_div && isl_basic_map_is_div_constraint(bmap, bmap->ineq[i], l - o_div)) continue; s = isl_int_sgn(bmap->ineq[i][l]); strict = !rational && isl_int_is_negone(bmap->ineq[i][0]); if (s < 0) isl_seq_cpy(c->el, bmap->ineq[i], 1 + total); else isl_seq_neg(c->el, bmap->ineq[i], 1 + total); if (strict) isl_int_set_si(c->el[0], 0); if (!p->dump && next_is_opposite(bmap, i, l)) { op = constraint_op(-s, strict, latex); p = print_half_constraint(bmap, space, div, p, c->el, l, op, first, latex); first = 1; } else { op = constraint_op(s, strict, latex); p = print_constraint(bmap, space, div, p, c->el, l, op, first, latex); first = 0; } } isl_basic_map_free(bmap); isl_vec_free(c); return p; error: isl_basic_map_free(bmap); isl_vec_free(c); isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_div(__isl_keep isl_space *dim, __isl_keep isl_mat *div, int pos, __isl_take isl_printer *p) { int c; if (!p || !div) return isl_printer_free(p); c = p->output_format == ISL_FORMAT_C; p = isl_printer_print_str(p, c ? "floord(" : "floor(("); p = print_affine_of_len(dim, div, p, div->row[pos] + 1, div->n_col - 1); p = isl_printer_print_str(p, c ? ", " : ")/"); p = isl_printer_print_isl_int(p, div->row[pos][0]); p = isl_printer_print_str(p, ")"); return p; } /* Print a comma separated list of div names, except those that have * a definition that can be printed. * If "print_defined_divs" is set, then those div names are printed * as well, along with their definitions. */ static __isl_give isl_printer *print_div_list(__isl_take isl_printer *p, __isl_keep isl_space *space, __isl_keep isl_mat *div, int latex, int print_defined_divs) { int i; int first = 1; unsigned n_div; if (!p || !space || !div) return isl_printer_free(p); n_div = isl_mat_rows(div); for (i = 0; i < n_div; ++i) { if (!print_defined_divs && can_print_div_expr(p, div, i)) continue; if (!first) p = isl_printer_print_str(p, ", "); p = print_name(space, p, isl_dim_div, i, latex); first = 0; if (!can_print_div_expr(p, div, i)) continue; p = isl_printer_print_str(p, " = "); p = print_div(space, div, i, p); } return p; } /* Does printing "bmap" require an "exists" clause? * That is, are there any local variables without an explicit representation? */ static isl_bool need_exists(__isl_keep isl_printer *p, __isl_keep isl_basic_map *bmap, __isl_keep isl_mat *div) { int i; if (!p || !bmap) return isl_bool_error; if (bmap->n_div == 0) return isl_bool_false; for (i = 0; i < bmap->n_div; ++i) if (!can_print_div_expr(p, div, i)) return isl_bool_true; return isl_bool_false; } /* Print the constraints of "bmap" to "p". * The names of the variables are taken from "space". * "latex" is set if the constraints should be printed in LaTeX format. * Do not print inline explicit div representations in "dump" mode. */ static __isl_give isl_printer *print_disjunct(__isl_keep isl_basic_map *bmap, __isl_keep isl_space *space, __isl_take isl_printer *p, int latex) { isl_mat *div; isl_bool exists; div = isl_basic_map_get_divs(bmap); if (p->dump) exists = bmap->n_div > 0; else exists = need_exists(p, bmap, div); if (exists >= 0 && exists) { p = isl_printer_print_str(p, s_open_exists[latex]); p = print_div_list(p, space, div, latex, p->dump); p = isl_printer_print_str(p, ": "); } if (p->dump) div = isl_mat_free(div); p = print_constraints(bmap, space, div, p, latex); isl_mat_free(div); if (exists >= 0 && exists) p = isl_printer_print_str(p, s_close_exists[latex]); return p; } /* Print a colon followed by the constraints of "bmap" * to "p", provided there are any constraints. * The names of the variables are taken from "space". * "latex" is set if the constraints should be printed in LaTeX format. */ static __isl_give isl_printer *print_optional_disjunct( __isl_keep isl_basic_map *bmap, __isl_keep isl_space *space, __isl_take isl_printer *p, int latex) { if (isl_basic_map_is_universe(bmap)) return p; p = isl_printer_print_str(p, ": "); p = print_disjunct(bmap, space, p, latex); return p; } static __isl_give isl_printer *basic_map_print_omega( __isl_keep isl_basic_map *bmap, __isl_take isl_printer *p) { p = isl_printer_print_str(p, "{ ["); p = print_var_list(p, bmap->dim, isl_dim_in); p = isl_printer_print_str(p, "] -> ["); p = print_var_list(p, bmap->dim, isl_dim_out); p = isl_printer_print_str(p, "] "); p = print_optional_disjunct(bmap, bmap->dim, p, 0); p = isl_printer_print_str(p, " }"); return p; } static __isl_give isl_printer *basic_set_print_omega( __isl_keep isl_basic_set *bset, __isl_take isl_printer *p) { p = isl_printer_print_str(p, "{ ["); p = print_var_list(p, bset->dim, isl_dim_set); p = isl_printer_print_str(p, "] "); p = print_optional_disjunct(bset, bset->dim, p, 0); p = isl_printer_print_str(p, " }"); return p; } static __isl_give isl_printer *isl_map_print_omega(__isl_keep isl_map *map, __isl_take isl_printer *p) { int i; for (i = 0; i < map->n; ++i) { if (i) p = isl_printer_print_str(p, " union "); p = basic_map_print_omega(map->p[i], p); } return p; } static __isl_give isl_printer *isl_set_print_omega(__isl_keep isl_set *set, __isl_take isl_printer *p) { int i; for (i = 0; i < set->n; ++i) { if (i) p = isl_printer_print_str(p, " union "); p = basic_set_print_omega(set->p[i], p); } return p; } static __isl_give isl_printer *isl_basic_map_print_isl( __isl_keep isl_basic_map *bmap, __isl_take isl_printer *p, int latex) { struct isl_print_space_data data = { .latex = latex }; int rational = ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL); if (isl_basic_map_dim(bmap, isl_dim_param) > 0) { p = print_tuple(bmap->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = isl_print_space(bmap->dim, p, rational, &data); p = isl_printer_print_str(p, " : "); p = print_disjunct(bmap, bmap->dim, p, latex); p = isl_printer_print_str(p, " }"); return p; } /* Print the disjuncts of a map (or set) "map" to "p". * The names of the variables are taken from "space". * "latex" is set if the constraints should be printed in LaTeX format. */ static __isl_give isl_printer *print_disjuncts_core(__isl_keep isl_map *map, __isl_keep isl_space *space, __isl_take isl_printer *p, int latex) { int i; if (map->n == 0) p = isl_printer_print_str(p, "1 = 0"); for (i = 0; i < map->n; ++i) { if (i) p = isl_printer_print_str(p, s_or[latex]); if (map->n > 1 && map->p[i]->n_eq + map->p[i]->n_ineq > 1) p = isl_printer_print_str(p, "("); p = print_disjunct(map->p[i], space, p, latex); if (map->n > 1 && map->p[i]->n_eq + map->p[i]->n_ineq > 1) p = isl_printer_print_str(p, ")"); } return p; } /* Print the disjuncts of a map (or set) "map" to "p". * The names of the variables are taken from "space". * "hull" describes constraints shared by all disjuncts of "map". * "latex" is set if the constraints should be printed in LaTeX format. * * Print the disjuncts as a conjunction of "hull" and * the result of removing the constraints of "hull" from "map". * If this result turns out to be the universe, then simply print "hull". */ static __isl_give isl_printer *print_disjuncts_in_hull(__isl_keep isl_map *map, __isl_keep isl_space *space, __isl_take isl_basic_map *hull, __isl_take isl_printer *p, int latex) { isl_bool is_universe; p = print_disjunct(hull, space, p, latex); map = isl_map_plain_gist_basic_map(isl_map_copy(map), hull); is_universe = isl_map_plain_is_universe(map); if (is_universe < 0) goto error; if (!is_universe) { p = isl_printer_print_str(p, s_and[latex]); p = isl_printer_print_str(p, "("); p = print_disjuncts_core(map, space, p, latex); p = isl_printer_print_str(p, ")"); } isl_map_free(map); return p; error: isl_map_free(map); isl_printer_free(p); return NULL; } /* Print the disjuncts of a map (or set) "map" to "p". * The names of the variables are taken from "space". * "latex" is set if the constraints should be printed in LaTeX format. * * If there are at least two disjuncts and "dump" mode is not turned out, * check for any shared constraints among all disjuncts. * If there are any, then print them separately in print_disjuncts_in_hull. */ static __isl_give isl_printer *print_disjuncts(__isl_keep isl_map *map, __isl_keep isl_space *space, __isl_take isl_printer *p, int latex) { if (isl_map_plain_is_universe(map)) return p; p = isl_printer_print_str(p, s_such_that[latex]); if (!p->dump && map->n >= 2) { isl_basic_map *hull; isl_bool is_universe; hull = isl_map_plain_unshifted_simple_hull(isl_map_copy(map)); is_universe = isl_basic_map_is_universe(hull); if (is_universe < 0) p = isl_printer_free(p); else if (!is_universe) return print_disjuncts_in_hull(map, space, hull, p, latex); isl_basic_map_free(hull); } return print_disjuncts_core(map, space, p, latex); } /* Print the disjuncts of a map (or set). * The names of the variables are taken from "space". * "latex" is set if the constraints should be printed in LaTeX format. * * If the map turns out to be a universal parameter domain, then * we need to print the colon. Otherwise, the output looks identical * to the empty set. */ static __isl_give isl_printer *print_disjuncts_map(__isl_keep isl_map *map, __isl_keep isl_space *space, __isl_take isl_printer *p, int latex) { if (isl_map_plain_is_universe(map) && isl_space_is_params(map->dim)) return isl_printer_print_str(p, s_such_that[latex]); else return print_disjuncts(map, space, p, latex); } struct isl_aff_split { isl_basic_map *aff; isl_map *map; }; static void free_split(__isl_take struct isl_aff_split *split, int n) { int i; if (!split) return; for (i = 0; i < n; ++i) { isl_basic_map_free(split[i].aff); isl_map_free(split[i].map); } free(split); } static __isl_give isl_basic_map *get_aff(__isl_take isl_basic_map *bmap) { int i, j; unsigned nparam, n_in, n_out, total; bmap = isl_basic_map_cow(bmap); if (!bmap) return NULL; if (isl_basic_map_free_inequality(bmap, bmap->n_ineq) < 0) goto error; nparam = isl_basic_map_dim(bmap, isl_dim_param); n_in = isl_basic_map_dim(bmap, isl_dim_in); n_out = isl_basic_map_dim(bmap, isl_dim_out); total = isl_basic_map_dim(bmap, isl_dim_all); for (i = bmap->n_eq - 1; i >= 0; --i) { j = isl_seq_last_non_zero(bmap->eq[i] + 1, total); if (j >= nparam && j < nparam + n_in + n_out && (isl_int_is_one(bmap->eq[i][1 + j]) || isl_int_is_negone(bmap->eq[i][1 + j]))) continue; if (isl_basic_map_drop_equality(bmap, i) < 0) goto error; } bmap = isl_basic_map_finalize(bmap); return bmap; error: isl_basic_map_free(bmap); return NULL; } static int aff_split_cmp(const void *p1, const void *p2, void *user) { const struct isl_aff_split *s1, *s2; s1 = (const struct isl_aff_split *) p1; s2 = (const struct isl_aff_split *) p2; return isl_basic_map_plain_cmp(s1->aff, s2->aff); } static __isl_give isl_basic_map *drop_aff(__isl_take isl_basic_map *bmap, __isl_keep isl_basic_map *aff) { int i, j; unsigned total; if (!bmap || !aff) goto error; total = isl_space_dim(bmap->dim, isl_dim_all); for (i = bmap->n_eq - 1; i >= 0; --i) { if (isl_seq_first_non_zero(bmap->eq[i] + 1 + total, bmap->n_div) != -1) continue; for (j = 0; j < aff->n_eq; ++j) { if (!isl_seq_eq(bmap->eq[i], aff->eq[j], 1 + total) && !isl_seq_is_neg(bmap->eq[i], aff->eq[j], 1 + total)) continue; if (isl_basic_map_drop_equality(bmap, i) < 0) goto error; break; } } return bmap; error: isl_basic_map_free(bmap); return NULL; } static __isl_give struct isl_aff_split *split_aff(__isl_keep isl_map *map) { int i, n; struct isl_aff_split *split; isl_ctx *ctx; ctx = isl_map_get_ctx(map); split = isl_calloc_array(ctx, struct isl_aff_split, map->n); if (!split) return NULL; for (i = 0; i < map->n; ++i) { isl_basic_map *bmap; split[i].aff = get_aff(isl_basic_map_copy(map->p[i])); bmap = isl_basic_map_copy(map->p[i]); bmap = isl_basic_map_cow(bmap); bmap = drop_aff(bmap, split[i].aff); split[i].map = isl_map_from_basic_map(bmap); if (!split[i].aff || !split[i].map) goto error; } if (isl_sort(split, map->n, sizeof(struct isl_aff_split), &aff_split_cmp, NULL) < 0) goto error; n = map->n; for (i = n - 1; i >= 1; --i) { if (!isl_basic_map_plain_is_equal(split[i - 1].aff, split[i].aff)) continue; isl_basic_map_free(split[i].aff); split[i - 1].map = isl_map_union(split[i - 1].map, split[i].map); if (i != n - 1) split[i] = split[n - 1]; split[n - 1].aff = NULL; split[n - 1].map = NULL; --n; } return split; error: free_split(split, map->n); return NULL; } static int defining_equality(__isl_keep isl_basic_map *eq, __isl_keep isl_space *dim, enum isl_dim_type type, int pos) { int i; unsigned total; if (!eq) return -1; pos += isl_space_offset(dim, type); total = isl_basic_map_total_dim(eq); for (i = 0; i < eq->n_eq; ++i) { if (isl_seq_last_non_zero(eq->eq[i] + 1, total) != pos) continue; if (isl_int_is_one(eq->eq[i][1 + pos])) isl_seq_neg(eq->eq[i], eq->eq[i], 1 + total); return i; } return -1; } /* Print dimension "pos" of data->space to "p". * * data->user is assumed to be an isl_basic_map keeping track of equalities. * * If the current dimension is defined by these equalities, then print * the corresponding expression. Otherwise, print the name of the dimension. */ static __isl_give isl_printer *print_dim_eq(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { isl_basic_map *eq = data->user; int j; j = defining_equality(eq, data->space, data->type, pos); if (j >= 0) { pos += 1 + isl_space_offset(data->space, data->type); p = print_affine_of_len(eq->dim, NULL, p, eq->eq[j], pos); } else { p = print_name(data->space, p, data->type, pos, data->latex); } return p; } static __isl_give isl_printer *print_split_map(__isl_take isl_printer *p, struct isl_aff_split *split, int n, __isl_keep isl_space *space) { struct isl_print_space_data data = { 0 }; int i; int rational; data.print_dim = &print_dim_eq; for (i = 0; i < n; ++i) { if (!split[i].map) break; rational = split[i].map->n > 0 && ISL_F_ISSET(split[i].map->p[0], ISL_BASIC_MAP_RATIONAL); if (i) p = isl_printer_print_str(p, "; "); data.user = split[i].aff; p = isl_print_space(space, p, rational, &data); p = print_disjuncts_map(split[i].map, space, p, 0); } return p; } static __isl_give isl_printer *isl_map_print_isl_body(__isl_keep isl_map *map, __isl_take isl_printer *p) { struct isl_print_space_data data = { 0 }; struct isl_aff_split *split = NULL; int rational; if (!p->dump && map->n > 0) split = split_aff(map); if (split) { p = print_split_map(p, split, map->n, map->dim); } else { rational = map->n > 0 && ISL_F_ISSET(map->p[0], ISL_BASIC_MAP_RATIONAL); p = isl_print_space(map->dim, p, rational, &data); p = print_disjuncts_map(map, map->dim, p, 0); } free_split(split, map->n); return p; } static __isl_give isl_printer *isl_map_print_isl(__isl_keep isl_map *map, __isl_take isl_printer *p) { struct isl_print_space_data data = { 0 }; if (isl_map_dim(map, isl_dim_param) > 0) { p = print_tuple(map->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, s_to[0]); } p = isl_printer_print_str(p, s_open_set[0]); p = isl_map_print_isl_body(map, p); p = isl_printer_print_str(p, s_close_set[0]); return p; } static __isl_give isl_printer *print_latex_map(__isl_keep isl_map *map, __isl_take isl_printer *p, __isl_keep isl_basic_map *aff) { struct isl_print_space_data data = { 0 }; data.latex = 1; if (isl_map_dim(map, isl_dim_param) > 0) { p = print_tuple(map->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, s_to[1]); } p = isl_printer_print_str(p, s_open_set[1]); data.print_dim = &print_dim_eq; data.user = aff; p = isl_print_space(map->dim, p, 0, &data); p = print_disjuncts_map(map, map->dim, p, 1); p = isl_printer_print_str(p, s_close_set[1]); return p; } static __isl_give isl_printer *isl_map_print_latex(__isl_keep isl_map *map, __isl_take isl_printer *p) { int i; struct isl_aff_split *split = NULL; if (map->n > 0) split = split_aff(map); if (!split) return print_latex_map(map, p, NULL); for (i = 0; i < map->n; ++i) { if (!split[i].map) break; if (i) p = isl_printer_print_str(p, " \\cup "); p = print_latex_map(split[i].map, p, split[i].aff); } free_split(split, map->n); return p; } __isl_give isl_printer *isl_printer_print_basic_map(__isl_take isl_printer *p, __isl_keep isl_basic_map *bmap) { if (!p || !bmap) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_basic_map_print_isl(bmap, p, 0); else if (p->output_format == ISL_FORMAT_OMEGA) return basic_map_print_omega(bmap, p); isl_assert(bmap->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_basic_set(__isl_take isl_printer *p, __isl_keep isl_basic_set *bset) { if (!p || !bset) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_basic_map_print_isl(bset, p, 0); else if (p->output_format == ISL_FORMAT_POLYLIB) return isl_basic_set_print_polylib(bset, p, 0); else if (p->output_format == ISL_FORMAT_EXT_POLYLIB) return isl_basic_set_print_polylib(bset, p, 1); else if (p->output_format == ISL_FORMAT_POLYLIB_CONSTRAINTS) return bset_print_constraints_polylib(bset, p); else if (p->output_format == ISL_FORMAT_OMEGA) return basic_set_print_omega(bset, p); isl_assert(p->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_set(__isl_take isl_printer *p, __isl_keep isl_set *set) { if (!p || !set) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_map_print_isl((isl_map *)set, p); else if (p->output_format == ISL_FORMAT_POLYLIB) return isl_set_print_polylib(set, p, 0); else if (p->output_format == ISL_FORMAT_EXT_POLYLIB) return isl_set_print_polylib(set, p, 1); else if (p->output_format == ISL_FORMAT_OMEGA) return isl_set_print_omega(set, p); else if (p->output_format == ISL_FORMAT_LATEX) return isl_map_print_latex((isl_map *)set, p); isl_assert(set->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_map(__isl_take isl_printer *p, __isl_keep isl_map *map) { if (!p || !map) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_map_print_isl(map, p); else if (p->output_format == ISL_FORMAT_POLYLIB) return isl_map_print_polylib(map, p, 0); else if (p->output_format == ISL_FORMAT_EXT_POLYLIB) return isl_map_print_polylib(map, p, 1); else if (p->output_format == ISL_FORMAT_OMEGA) return isl_map_print_omega(map, p); else if (p->output_format == ISL_FORMAT_LATEX) return isl_map_print_latex(map, p); isl_assert(map->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } struct isl_union_print_data { isl_printer *p; int first; }; static isl_stat print_map_body(__isl_take isl_map *map, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *)user; if (!data->first) data->p = isl_printer_print_str(data->p, "; "); data->first = 0; data->p = isl_map_print_isl_body(map, data->p); isl_map_free(map); return isl_stat_ok; } static __isl_give isl_printer *isl_union_map_print_isl( __isl_keep isl_union_map *umap, __isl_take isl_printer *p) { struct isl_union_print_data data; struct isl_print_space_data space_data = { 0 }; isl_space *dim; dim = isl_union_map_get_space(umap); if (isl_space_dim(dim, isl_dim_param) > 0) { p = print_tuple(dim, p, isl_dim_param, &space_data); p = isl_printer_print_str(p, s_to[0]); } isl_space_free(dim); p = isl_printer_print_str(p, s_open_set[0]); data.p = p; data.first = 1; isl_union_map_foreach_map(umap, &print_map_body, &data); p = data.p; p = isl_printer_print_str(p, s_close_set[0]); return p; } static isl_stat print_latex_map_body(__isl_take isl_map *map, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *)user; if (!data->first) data->p = isl_printer_print_str(data->p, " \\cup "); data->first = 0; data->p = isl_map_print_latex(map, data->p); isl_map_free(map); return isl_stat_ok; } static __isl_give isl_printer *isl_union_map_print_latex( __isl_keep isl_union_map *umap, __isl_take isl_printer *p) { struct isl_union_print_data data = { p, 1 }; isl_union_map_foreach_map(umap, &print_latex_map_body, &data); p = data.p; return p; } __isl_give isl_printer *isl_printer_print_union_map(__isl_take isl_printer *p, __isl_keep isl_union_map *umap) { if (!p || !umap) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_union_map_print_isl(umap, p); if (p->output_format == ISL_FORMAT_LATEX) return isl_union_map_print_latex(umap, p); isl_die(p->ctx, isl_error_invalid, "invalid output format for isl_union_map", goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_union_set(__isl_take isl_printer *p, __isl_keep isl_union_set *uset) { if (!p || !uset) goto error; if (p->output_format == ISL_FORMAT_ISL) return isl_union_map_print_isl((isl_union_map *)uset, p); if (p->output_format == ISL_FORMAT_LATEX) return isl_union_map_print_latex((isl_union_map *)uset, p); isl_die(p->ctx, isl_error_invalid, "invalid output format for isl_union_set", goto error); error: isl_printer_free(p); return NULL; } static int upoly_rec_n_non_zero(__isl_keep struct isl_upoly_rec *rec) { int i; int n; for (i = 0, n = 0; i < rec->n; ++i) if (!isl_upoly_is_zero(rec->p[i])) ++n; return n; } static __isl_give isl_printer *upoly_print_cst(__isl_keep struct isl_upoly *up, __isl_take isl_printer *p, int first) { struct isl_upoly_cst *cst; int neg; cst = isl_upoly_as_cst(up); if (!cst) goto error; neg = !first && isl_int_is_neg(cst->n); if (!first) p = isl_printer_print_str(p, neg ? " - " : " + "); if (neg) isl_int_neg(cst->n, cst->n); if (isl_int_is_zero(cst->d)) { int sgn = isl_int_sgn(cst->n); p = isl_printer_print_str(p, sgn < 0 ? "-infty" : sgn == 0 ? "NaN" : "infty"); } else p = isl_printer_print_isl_int(p, cst->n); if (neg) isl_int_neg(cst->n, cst->n); if (!isl_int_is_zero(cst->d) && !isl_int_is_one(cst->d)) { p = isl_printer_print_str(p, "/"); p = isl_printer_print_isl_int(p, cst->d); } return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_base(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_mat *div, int var) { unsigned total; total = isl_space_dim(dim, isl_dim_all); if (var < total) p = print_term(dim, NULL, dim->ctx->one, 1 + var, p, 0); else p = print_div(dim, div, var - total, p); return p; } static __isl_give isl_printer *print_pow(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_mat *div, int var, int exp) { p = print_base(p, dim, div, var); if (exp == 1) return p; if (p->output_format == ISL_FORMAT_C) { int i; for (i = 1; i < exp; ++i) { p = isl_printer_print_str(p, "*"); p = print_base(p, dim, div, var); } } else { p = isl_printer_print_str(p, "^"); p = isl_printer_print_int(p, exp); } return p; } static __isl_give isl_printer *upoly_print(__isl_keep struct isl_upoly *up, __isl_keep isl_space *dim, __isl_keep isl_mat *div, __isl_take isl_printer *p, int outer) { int i, n, first, print_parens; struct isl_upoly_rec *rec; if (!p || !up || !dim || !div) goto error; if (isl_upoly_is_cst(up)) return upoly_print_cst(up, p, 1); rec = isl_upoly_as_rec(up); if (!rec) goto error; n = upoly_rec_n_non_zero(rec); print_parens = n > 1 || (outer && rec->up.var >= isl_space_dim(dim, isl_dim_all)); if (print_parens) p = isl_printer_print_str(p, "("); for (i = 0, first = 1; i < rec->n; ++i) { if (isl_upoly_is_zero(rec->p[i])) continue; if (isl_upoly_is_negone(rec->p[i])) { if (!i) p = isl_printer_print_str(p, "-1"); else if (first) p = isl_printer_print_str(p, "-"); else p = isl_printer_print_str(p, " - "); } else if (isl_upoly_is_cst(rec->p[i]) && !isl_upoly_is_one(rec->p[i])) p = upoly_print_cst(rec->p[i], p, first); else { if (!first) p = isl_printer_print_str(p, " + "); if (i == 0 || !isl_upoly_is_one(rec->p[i])) p = upoly_print(rec->p[i], dim, div, p, 0); } first = 0; if (i == 0) continue; if (!isl_upoly_is_one(rec->p[i]) && !isl_upoly_is_negone(rec->p[i])) p = isl_printer_print_str(p, " * "); p = print_pow(p, dim, div, rec->up.var, i); } if (print_parens) p = isl_printer_print_str(p, ")"); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_qpolynomial(__isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp) { if (!p || !qp) goto error; p = upoly_print(qp->upoly, qp->dim, qp->div, p, 1); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_qpolynomial_isl(__isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp) { struct isl_print_space_data data = { 0 }; if (!p || !qp) goto error; if (isl_space_dim(qp->dim, isl_dim_param) > 0) { p = print_tuple(qp->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); if (!isl_space_is_params(qp->dim)) { p = isl_print_space(qp->dim, p, 0, &data); p = isl_printer_print_str(p, " -> "); } p = print_qpolynomial(p, qp); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_qpolynomial_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_qpolynomial *qp) { isl_int den; isl_int_init(den); isl_qpolynomial_get_den(qp, &den); if (!isl_int_is_one(den)) { isl_qpolynomial *f; p = isl_printer_print_str(p, "("); qp = isl_qpolynomial_copy(qp); f = isl_qpolynomial_rat_cst_on_domain(isl_space_copy(qp->dim), den, qp->dim->ctx->one); qp = isl_qpolynomial_mul(qp, f); } if (qp) p = upoly_print(qp->upoly, dim, qp->div, p, 0); else p = isl_printer_free(p); if (!isl_int_is_one(den)) { p = isl_printer_print_str(p, ")/"); p = isl_printer_print_isl_int(p, den); isl_qpolynomial_free(qp); } isl_int_clear(den); return p; } __isl_give isl_printer *isl_printer_print_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_qpolynomial *qp) { if (!p || !qp) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_qpolynomial_isl(p, qp); else if (p->output_format == ISL_FORMAT_C) return print_qpolynomial_c(p, qp->dim, qp); else isl_die(qp->dim->ctx, isl_error_unsupported, "output format not supported for isl_qpolynomials", goto error); error: isl_printer_free(p); return NULL; } void isl_qpolynomial_print(__isl_keep isl_qpolynomial *qp, FILE *out, unsigned output_format) { isl_printer *p; if (!qp) return; isl_assert(qp->dim->ctx, output_format == ISL_FORMAT_ISL, return); p = isl_printer_to_file(qp->dim->ctx, out); p = isl_printer_print_qpolynomial(p, qp); isl_printer_free(p); } static __isl_give isl_printer *qpolynomial_fold_print( __isl_keep isl_qpolynomial_fold *fold, __isl_take isl_printer *p) { int i; if (fold->type == isl_fold_min) p = isl_printer_print_str(p, "min"); else if (fold->type == isl_fold_max) p = isl_printer_print_str(p, "max"); p = isl_printer_print_str(p, "("); for (i = 0; i < fold->n; ++i) { if (i) p = isl_printer_print_str(p, ", "); p = print_qpolynomial(p, fold->qp[i]); } p = isl_printer_print_str(p, ")"); return p; } void isl_qpolynomial_fold_print(__isl_keep isl_qpolynomial_fold *fold, FILE *out, unsigned output_format) { isl_printer *p; if (!fold) return; isl_assert(fold->dim->ctx, output_format == ISL_FORMAT_ISL, return); p = isl_printer_to_file(fold->dim->ctx, out); p = isl_printer_print_qpolynomial_fold(p, fold); isl_printer_free(p); } static __isl_give isl_printer *isl_pwqp_print_isl_body( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp) { struct isl_print_space_data data = { 0 }; int i = 0; for (i = 0; i < pwqp->n; ++i) { isl_space *space; if (i) p = isl_printer_print_str(p, "; "); space = isl_qpolynomial_get_domain_space(pwqp->p[i].qp); if (!isl_space_is_params(space)) { p = isl_print_space(space, p, 0, &data); p = isl_printer_print_str(p, " -> "); } p = print_qpolynomial(p, pwqp->p[i].qp); p = print_disjuncts((isl_map *)pwqp->p[i].set, space, p, 0); isl_space_free(space); } return p; } static __isl_give isl_printer *print_pw_qpolynomial_isl( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp) { struct isl_print_space_data data = { 0 }; if (!p || !pwqp) goto error; if (isl_space_dim(pwqp->dim, isl_dim_param) > 0) { p = print_tuple(pwqp->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); if (pwqp->n == 0) { if (!isl_space_is_set(pwqp->dim)) { p = print_tuple(pwqp->dim, p, isl_dim_in, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "0"); } p = isl_pwqp_print_isl_body(p, pwqp); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } void isl_pw_qpolynomial_print(__isl_keep isl_pw_qpolynomial *pwqp, FILE *out, unsigned output_format) { isl_printer *p; if (!pwqp) return; p = isl_printer_to_file(pwqp->dim->ctx, out); p = isl_printer_set_output_format(p, output_format); p = isl_printer_print_pw_qpolynomial(p, pwqp); isl_printer_free(p); } static __isl_give isl_printer *isl_pwf_print_isl_body( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf) { struct isl_print_space_data data = { 0 }; int i = 0; for (i = 0; i < pwf->n; ++i) { isl_space *space; if (i) p = isl_printer_print_str(p, "; "); space = isl_qpolynomial_fold_get_domain_space(pwf->p[i].fold); if (!isl_space_is_params(space)) { p = isl_print_space(space, p, 0, &data); p = isl_printer_print_str(p, " -> "); } p = qpolynomial_fold_print(pwf->p[i].fold, p); p = print_disjuncts((isl_map *)pwf->p[i].set, space, p, 0); isl_space_free(space); } return p; } static __isl_give isl_printer *print_pw_qpolynomial_fold_isl( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf) { struct isl_print_space_data data = { 0 }; if (isl_space_dim(pwf->dim, isl_dim_param) > 0) { p = print_tuple(pwf->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); if (pwf->n == 0) { if (!isl_space_is_set(pwf->dim)) { p = print_tuple(pwf->dim, p, isl_dim_in, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "0"); } p = isl_pwf_print_isl_body(p, pwf); p = isl_printer_print_str(p, " }"); return p; } static __isl_give isl_printer *print_affine_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, isl_int *c); static __isl_give isl_printer *print_name_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, enum isl_dim_type type, unsigned pos) { if (type == isl_dim_div) { p = isl_printer_print_str(p, "floord("); p = print_affine_c(p, dim, bset, bset->div[pos] + 1); p = isl_printer_print_str(p, ", "); p = isl_printer_print_isl_int(p, bset->div[pos][0]); p = isl_printer_print_str(p, ")"); } else { const char *name; name = isl_space_get_dim_name(dim, type, pos); if (!name) name = "UNNAMED"; p = isl_printer_print_str(p, name); } return p; } static __isl_give isl_printer *print_term_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, isl_int c, unsigned pos) { enum isl_dim_type type; if (pos == 0) return isl_printer_print_isl_int(p, c); if (isl_int_is_one(c)) ; else if (isl_int_is_negone(c)) p = isl_printer_print_str(p, "-"); else { p = isl_printer_print_isl_int(p, c); p = isl_printer_print_str(p, "*"); } type = pos2type(dim, &pos); p = print_name_c(p, dim, bset, type, pos); return p; } static __isl_give isl_printer *print_partial_affine_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, isl_int *c, unsigned len) { int i; int first; for (i = 0, first = 1; i < len; ++i) { int flip = 0; if (isl_int_is_zero(c[i])) continue; if (!first) { if (isl_int_is_neg(c[i])) { flip = 1; isl_int_neg(c[i], c[i]); p = isl_printer_print_str(p, " - "); } else p = isl_printer_print_str(p, " + "); } first = 0; p = print_term_c(p, dim, bset, c[i], i); if (flip) isl_int_neg(c[i], c[i]); } if (first) p = isl_printer_print_str(p, "0"); return p; } static __isl_give isl_printer *print_affine_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, isl_int *c) { unsigned len = 1 + isl_basic_set_total_dim(bset); return print_partial_affine_c(p, dim, bset, c, len); } /* We skip the constraint if it is implied by the div expression. * * *first indicates whether this is the first constraint in the conjunction and * is updated if the constraint is actually printed. */ static __isl_give isl_printer *print_constraint_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset, isl_int *c, const char *op, int *first) { unsigned o_div; unsigned n_div; int div; o_div = isl_basic_set_offset(bset, isl_dim_div); n_div = isl_basic_set_dim(bset, isl_dim_div); div = isl_seq_last_non_zero(c + o_div, n_div); if (div >= 0 && isl_basic_set_is_div_constraint(bset, c, div)) return p; if (!*first) p = isl_printer_print_str(p, " && "); p = print_affine_c(p, dim, bset, c); p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, op); p = isl_printer_print_str(p, " 0"); *first = 0; return p; } static __isl_give isl_printer *print_basic_set_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_basic_set *bset) { int i, j; int first = 1; unsigned n_div = isl_basic_set_dim(bset, isl_dim_div); unsigned total = isl_basic_set_total_dim(bset) - n_div; for (i = 0; i < bset->n_eq; ++i) { j = isl_seq_last_non_zero(bset->eq[i] + 1 + total, n_div); if (j < 0) p = print_constraint_c(p, dim, bset, bset->eq[i], "==", &first); else { if (i) p = isl_printer_print_str(p, " && "); p = isl_printer_print_str(p, "("); p = print_partial_affine_c(p, dim, bset, bset->eq[i], 1 + total + j); p = isl_printer_print_str(p, ") % "); p = isl_printer_print_isl_int(p, bset->eq[i][1 + total + j]); p = isl_printer_print_str(p, " == 0"); first = 0; } } for (i = 0; i < bset->n_ineq; ++i) p = print_constraint_c(p, dim, bset, bset->ineq[i], ">=", &first); return p; } static __isl_give isl_printer *print_set_c(__isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_set *set) { int i; if (!set) return isl_printer_free(p); if (set->n == 0) p = isl_printer_print_str(p, "0"); for (i = 0; i < set->n; ++i) { if (i) p = isl_printer_print_str(p, " || "); if (set->n > 1) p = isl_printer_print_str(p, "("); p = print_basic_set_c(p, dim, set->p[i]); if (set->n > 1) p = isl_printer_print_str(p, ")"); } return p; } static __isl_give isl_printer *print_pw_qpolynomial_c( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp) { int i; if (pwqp->n == 1 && isl_set_plain_is_universe(pwqp->p[0].set)) return print_qpolynomial_c(p, pwqp->dim, pwqp->p[0].qp); for (i = 0; i < pwqp->n; ++i) { p = isl_printer_print_str(p, "("); p = print_set_c(p, pwqp->dim, pwqp->p[i].set); p = isl_printer_print_str(p, ") ? ("); p = print_qpolynomial_c(p, pwqp->dim, pwqp->p[i].qp); p = isl_printer_print_str(p, ") : "); } p = isl_printer_print_str(p, "0"); return p; } __isl_give isl_printer *isl_printer_print_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial *pwqp) { if (!p || !pwqp) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_pw_qpolynomial_isl(p, pwqp); else if (p->output_format == ISL_FORMAT_C) return print_pw_qpolynomial_c(p, pwqp); isl_assert(p->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } static isl_stat print_pwqp_body(__isl_take isl_pw_qpolynomial *pwqp, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *)user; if (!data->first) data->p = isl_printer_print_str(data->p, "; "); data->first = 0; data->p = isl_pwqp_print_isl_body(data->p, pwqp); isl_pw_qpolynomial_free(pwqp); return isl_stat_ok; } static __isl_give isl_printer *print_union_pw_qpolynomial_isl( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial *upwqp) { struct isl_union_print_data data; struct isl_print_space_data space_data = { 0 }; isl_space *dim; dim = isl_union_pw_qpolynomial_get_space(upwqp); if (isl_space_dim(dim, isl_dim_param) > 0) { p = print_tuple(dim, p, isl_dim_param, &space_data); p = isl_printer_print_str(p, " -> "); } isl_space_free(dim); p = isl_printer_print_str(p, "{ "); data.p = p; data.first = 1; isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp, &print_pwqp_body, &data); p = data.p; p = isl_printer_print_str(p, " }"); return p; } __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial *upwqp) { if (!p || !upwqp) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_union_pw_qpolynomial_isl(p, upwqp); isl_die(p->ctx, isl_error_invalid, "invalid output format for isl_union_pw_qpolynomial", goto error); error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_qpolynomial_fold_c( __isl_take isl_printer *p, __isl_keep isl_space *dim, __isl_keep isl_qpolynomial_fold *fold) { int i; for (i = 0; i < fold->n - 1; ++i) if (fold->type == isl_fold_min) p = isl_printer_print_str(p, "min("); else if (fold->type == isl_fold_max) p = isl_printer_print_str(p, "max("); for (i = 0; i < fold->n; ++i) { if (i) p = isl_printer_print_str(p, ", "); p = print_qpolynomial_c(p, dim, fold->qp[i]); if (i) p = isl_printer_print_str(p, ")"); } return p; } __isl_give isl_printer *isl_printer_print_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_qpolynomial_fold *fold) { if (!p || !fold) goto error; if (p->output_format == ISL_FORMAT_ISL) return qpolynomial_fold_print(fold, p); else if (p->output_format == ISL_FORMAT_C) return print_qpolynomial_fold_c(p, fold->dim, fold); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_pw_qpolynomial_fold_c( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf) { int i; if (pwf->n == 1 && isl_set_plain_is_universe(pwf->p[0].set)) return print_qpolynomial_fold_c(p, pwf->dim, pwf->p[0].fold); for (i = 0; i < pwf->n; ++i) { p = isl_printer_print_str(p, "("); p = print_set_c(p, pwf->dim, pwf->p[i].set); p = isl_printer_print_str(p, ") ? ("); p = print_qpolynomial_fold_c(p, pwf->dim, pwf->p[i].fold); p = isl_printer_print_str(p, ") : "); } p = isl_printer_print_str(p, "0"); return p; } __isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_pw_qpolynomial_fold *pwf) { if (!p || !pwf) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_pw_qpolynomial_fold_isl(p, pwf); else if (p->output_format == ISL_FORMAT_C) return print_pw_qpolynomial_fold_c(p, pwf); isl_assert(p->ctx, 0, goto error); error: isl_printer_free(p); return NULL; } void isl_pw_qpolynomial_fold_print(__isl_keep isl_pw_qpolynomial_fold *pwf, FILE *out, unsigned output_format) { isl_printer *p; if (!pwf) return; p = isl_printer_to_file(pwf->dim->ctx, out); p = isl_printer_set_output_format(p, output_format); p = isl_printer_print_pw_qpolynomial_fold(p, pwf); isl_printer_free(p); } static isl_stat print_pwf_body(__isl_take isl_pw_qpolynomial_fold *pwf, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *)user; if (!data->first) data->p = isl_printer_print_str(data->p, "; "); data->first = 0; data->p = isl_pwf_print_isl_body(data->p, pwf); isl_pw_qpolynomial_fold_free(pwf); return isl_stat_ok; } static __isl_give isl_printer *print_union_pw_qpolynomial_fold_isl( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial_fold *upwf) { struct isl_union_print_data data; struct isl_print_space_data space_data = { 0 }; isl_space *dim; dim = isl_union_pw_qpolynomial_fold_get_space(upwf); if (isl_space_dim(dim, isl_dim_param) > 0) { p = print_tuple(dim, p, isl_dim_param, &space_data); p = isl_printer_print_str(p, " -> "); } isl_space_free(dim); p = isl_printer_print_str(p, "{ "); data.p = p; data.first = 1; isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(upwf, &print_pwf_body, &data); p = data.p; p = isl_printer_print_str(p, " }"); return p; } __isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold( __isl_take isl_printer *p, __isl_keep isl_union_pw_qpolynomial_fold *upwf) { if (!p || !upwf) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_union_pw_qpolynomial_fold_isl(p, upwf); isl_die(p->ctx, isl_error_invalid, "invalid output format for isl_union_pw_qpolynomial_fold", goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_constraint(__isl_take isl_printer *p, __isl_keep isl_constraint *c) { isl_basic_map *bmap; if (!p || !c) goto error; bmap = isl_basic_map_from_constraint(isl_constraint_copy(c)); p = isl_printer_print_basic_map(p, bmap); isl_basic_map_free(bmap); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *isl_printer_print_space_isl( __isl_take isl_printer *p, __isl_keep isl_space *space) { struct isl_print_space_data data = { 0 }; if (!space) goto error; if (isl_space_dim(space, isl_dim_param) > 0) { p = print_tuple(space, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); if (isl_space_is_params(space)) p = isl_printer_print_str(p, s_such_that[0]); else p = isl_print_space(space, p, 0, &data); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_space(__isl_take isl_printer *p, __isl_keep isl_space *space) { if (!p || !space) return isl_printer_free(p); if (p->output_format == ISL_FORMAT_ISL) return isl_printer_print_space_isl(p, space); else if (p->output_format == ISL_FORMAT_OMEGA) return print_omega_parameters(space, p); isl_die(isl_space_get_ctx(space), isl_error_unsupported, "output format not supported for space", return isl_printer_free(p)); } __isl_give isl_printer *isl_printer_print_local_space(__isl_take isl_printer *p, __isl_keep isl_local_space *ls) { struct isl_print_space_data data = { 0 }; unsigned n_div; if (!ls) goto error; if (isl_local_space_dim(ls, isl_dim_param) > 0) { p = print_tuple(ls->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = isl_print_space(ls->dim, p, 0, &data); n_div = isl_local_space_dim(ls, isl_dim_div); if (n_div > 0) { p = isl_printer_print_str(p, " : "); p = isl_printer_print_str(p, s_open_exists[0]); p = print_div_list(p, ls->dim, ls->div, 0, 1); p = isl_printer_print_str(p, s_close_exists[0]); } else if (isl_space_is_params(ls->dim)) p = isl_printer_print_str(p, s_such_that[0]); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_aff_body(__isl_take isl_printer *p, __isl_keep isl_aff *aff) { unsigned total; if (isl_aff_is_nan(aff)) return isl_printer_print_str(p, "NaN"); total = isl_local_space_dim(aff->ls, isl_dim_all); p = isl_printer_print_str(p, "("); p = print_affine_of_len(aff->ls->dim, aff->ls->div, p, aff->v->el + 1, 1 + total); if (isl_int_is_one(aff->v->el[0])) p = isl_printer_print_str(p, ")"); else { p = isl_printer_print_str(p, ")/"); p = isl_printer_print_isl_int(p, aff->v->el[0]); } return p; } static __isl_give isl_printer *print_aff(__isl_take isl_printer *p, __isl_keep isl_aff *aff) { struct isl_print_space_data data = { 0 }; if (isl_space_is_params(aff->ls->dim)) ; else { p = print_tuple(aff->ls->dim, p, isl_dim_set, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "["); p = print_aff_body(p, aff); p = isl_printer_print_str(p, "]"); return p; } static __isl_give isl_printer *print_aff_isl(__isl_take isl_printer *p, __isl_keep isl_aff *aff) { struct isl_print_space_data data = { 0 }; if (!aff) goto error; if (isl_local_space_dim(aff->ls, isl_dim_param) > 0) { p = print_tuple(aff->ls->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = print_aff(p, aff); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } /* Print the body of an isl_pw_aff, i.e., a semicolon delimited * sequence of affine expressions, each followed by constraints. */ static __isl_give isl_printer *print_pw_aff_body( __isl_take isl_printer *p, __isl_keep isl_pw_aff *pa) { int i; if (!pa) return isl_printer_free(p); for (i = 0; i < pa->n; ++i) { isl_space *space; if (i) p = isl_printer_print_str(p, "; "); p = print_aff(p, pa->p[i].aff); space = isl_aff_get_domain_space(pa->p[i].aff); p = print_disjuncts((isl_map *)pa->p[i].set, space, p, 0); isl_space_free(space); } return p; } static __isl_give isl_printer *print_pw_aff_isl(__isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff) { struct isl_print_space_data data = { 0 }; if (!pwaff) goto error; if (isl_space_dim(pwaff->dim, isl_dim_param) > 0) { p = print_tuple(pwaff->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = print_pw_aff_body(p, pwaff); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_ls_affine_c(__isl_take isl_printer *p, __isl_keep isl_local_space *ls, isl_int *c); static __isl_give isl_printer *print_ls_name_c(__isl_take isl_printer *p, __isl_keep isl_local_space *ls, enum isl_dim_type type, unsigned pos) { if (type == isl_dim_div) { p = isl_printer_print_str(p, "floord("); p = print_ls_affine_c(p, ls, ls->div->row[pos] + 1); p = isl_printer_print_str(p, ", "); p = isl_printer_print_isl_int(p, ls->div->row[pos][0]); p = isl_printer_print_str(p, ")"); } else { const char *name; name = isl_space_get_dim_name(ls->dim, type, pos); if (!name) name = "UNNAMED"; p = isl_printer_print_str(p, name); } return p; } static __isl_give isl_printer *print_ls_term_c(__isl_take isl_printer *p, __isl_keep isl_local_space *ls, isl_int c, unsigned pos) { enum isl_dim_type type; if (pos == 0) return isl_printer_print_isl_int(p, c); if (isl_int_is_one(c)) ; else if (isl_int_is_negone(c)) p = isl_printer_print_str(p, "-"); else { p = isl_printer_print_isl_int(p, c); p = isl_printer_print_str(p, "*"); } type = pos2type(ls->dim, &pos); p = print_ls_name_c(p, ls, type, pos); return p; } static __isl_give isl_printer *print_ls_partial_affine_c( __isl_take isl_printer *p, __isl_keep isl_local_space *ls, isl_int *c, unsigned len) { int i; int first; for (i = 0, first = 1; i < len; ++i) { int flip = 0; if (isl_int_is_zero(c[i])) continue; if (!first) { if (isl_int_is_neg(c[i])) { flip = 1; isl_int_neg(c[i], c[i]); p = isl_printer_print_str(p, " - "); } else p = isl_printer_print_str(p, " + "); } first = 0; p = print_ls_term_c(p, ls, c[i], i); if (flip) isl_int_neg(c[i], c[i]); } if (first) p = isl_printer_print_str(p, "0"); return p; } static __isl_give isl_printer *print_ls_affine_c(__isl_take isl_printer *p, __isl_keep isl_local_space *ls, isl_int *c) { unsigned len = 1 + isl_local_space_dim(ls, isl_dim_all); return print_ls_partial_affine_c(p, ls, c, len); } static __isl_give isl_printer *print_aff_c(__isl_take isl_printer *p, __isl_keep isl_aff *aff) { unsigned total; total = isl_local_space_dim(aff->ls, isl_dim_all); if (!isl_int_is_one(aff->v->el[0])) p = isl_printer_print_str(p, "("); p = print_ls_partial_affine_c(p, aff->ls, aff->v->el + 1, 1 + total); if (!isl_int_is_one(aff->v->el[0])) { p = isl_printer_print_str(p, ")/"); p = isl_printer_print_isl_int(p, aff->v->el[0]); } return p; } /* In the C format, we cannot express that "pwaff" may be undefined * on parts of the domain space. We therefore assume that the expression * will only be evaluated on its definition domain and compute the gist * of each cell with respect to this domain. */ static __isl_give isl_printer *print_pw_aff_c(__isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff) { isl_set *domain; isl_ast_build *build; isl_ast_expr *expr; if (pwaff->n < 1) isl_die(p->ctx, isl_error_unsupported, "cannot print empty isl_pw_aff in C format", return isl_printer_free(p)); domain = isl_pw_aff_domain(isl_pw_aff_copy(pwaff)); build = isl_ast_build_from_context(domain); expr = isl_ast_build_expr_from_pw_aff(build, isl_pw_aff_copy(pwaff)); p = isl_printer_print_ast_expr(p, expr); isl_ast_expr_free(expr); isl_ast_build_free(build); return p; } __isl_give isl_printer *isl_printer_print_aff(__isl_take isl_printer *p, __isl_keep isl_aff *aff) { if (!p || !aff) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_aff_isl(p, aff); else if (p->output_format == ISL_FORMAT_C) return print_aff_c(p, aff); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_pw_aff(__isl_take isl_printer *p, __isl_keep isl_pw_aff *pwaff) { if (!p || !pwaff) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_pw_aff_isl(p, pwaff); else if (p->output_format == ISL_FORMAT_C) return print_pw_aff_c(p, pwaff); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } /* Print "pa" in a sequence of isl_pw_affs delimited by semicolons. * Each isl_pw_aff itself is also printed as semicolon delimited * sequence of pieces. * If data->first = 1, then this is the first in the sequence. * Update data->first to tell the next element that it is not the first. */ static isl_stat print_pw_aff_body_wrap(__isl_take isl_pw_aff *pa, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *) user; if (!data->first) data->p = isl_printer_print_str(data->p, "; "); data->first = 0; data->p = print_pw_aff_body(data->p, pa); isl_pw_aff_free(pa); return data->p ? isl_stat_ok : isl_stat_error; } /* Print the body of an isl_union_pw_aff, i.e., a semicolon delimited * sequence of affine expressions, each followed by constraints, * with the sequence enclosed in braces. */ static __isl_give isl_printer *print_union_pw_aff_body( __isl_take isl_printer *p, __isl_keep isl_union_pw_aff *upa) { struct isl_union_print_data data = { p, 1 }; p = isl_printer_print_str(p, s_open_set[0]); data.p = p; if (isl_union_pw_aff_foreach_pw_aff(upa, &print_pw_aff_body_wrap, &data) < 0) data.p = isl_printer_free(p); p = data.p; p = isl_printer_print_str(p, s_close_set[0]); return p; } /* Print the isl_union_pw_aff "upa" to "p" in isl format. * * The individual isl_pw_affs are delimited by a semicolon. */ static __isl_give isl_printer *print_union_pw_aff_isl( __isl_take isl_printer *p, __isl_keep isl_union_pw_aff *upa) { struct isl_print_space_data data = { 0 }; isl_space *space; space = isl_union_pw_aff_get_space(upa); if (isl_space_dim(space, isl_dim_param) > 0) { p = print_tuple(space, p, isl_dim_param, &data); p = isl_printer_print_str(p, s_to[0]); } isl_space_free(space); p = print_union_pw_aff_body(p, upa); return p; } /* Print the isl_union_pw_aff "upa" to "p". * * We currently only support an isl format. */ __isl_give isl_printer *isl_printer_print_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_aff *upa) { if (!p || !upa) return isl_printer_free(p); if (p->output_format == ISL_FORMAT_ISL) return print_union_pw_aff_isl(p, upa); isl_die(isl_printer_get_ctx(p), isl_error_unsupported, "unsupported output format", return isl_printer_free(p)); } /* Print dimension "pos" of data->space to "p". * * data->user is assumed to be an isl_multi_aff. * * If the current dimension is an output dimension, then print * the corresponding expression. Otherwise, print the name of the dimension. */ static __isl_give isl_printer *print_dim_ma(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { isl_multi_aff *ma = data->user; if (data->type == isl_dim_out) p = print_aff_body(p, ma->p[pos]); else p = print_name(data->space, p, data->type, pos, data->latex); return p; } static __isl_give isl_printer *print_multi_aff(__isl_take isl_printer *p, __isl_keep isl_multi_aff *maff) { struct isl_print_space_data data = { 0 }; data.print_dim = &print_dim_ma; data.user = maff; return isl_print_space(maff->space, p, 0, &data); } static __isl_give isl_printer *print_multi_aff_isl(__isl_take isl_printer *p, __isl_keep isl_multi_aff *maff) { struct isl_print_space_data data = { 0 }; if (!maff) goto error; if (isl_space_dim(maff->space, isl_dim_param) > 0) { p = print_tuple(maff->space, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = print_multi_aff(p, maff); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_multi_aff(__isl_take isl_printer *p, __isl_keep isl_multi_aff *maff) { if (!p || !maff) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_multi_aff_isl(p, maff); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_pw_multi_aff_body( __isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma) { int i; if (!pma) goto error; for (i = 0; i < pma->n; ++i) { isl_space *space; if (i) p = isl_printer_print_str(p, "; "); p = print_multi_aff(p, pma->p[i].maff); space = isl_multi_aff_get_domain_space(pma->p[i].maff); p = print_disjuncts((isl_map *)pma->p[i].set, space, p, 0); isl_space_free(space); } return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_pw_multi_aff_isl(__isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma) { struct isl_print_space_data data = { 0 }; if (!pma) goto error; if (isl_space_dim(pma->dim, isl_dim_param) > 0) { p = print_tuple(pma->dim, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); p = print_pw_multi_aff_body(p, pma); p = isl_printer_print_str(p, " }"); return p; error: isl_printer_free(p); return NULL; } static __isl_give isl_printer *print_unnamed_pw_multi_aff_c( __isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma) { int i; for (i = 0; i < pma->n - 1; ++i) { p = isl_printer_print_str(p, "("); p = print_set_c(p, pma->dim, pma->p[i].set); p = isl_printer_print_str(p, ") ? ("); p = print_aff_c(p, pma->p[i].maff->p[0]); p = isl_printer_print_str(p, ") : "); } return print_aff_c(p, pma->p[pma->n - 1].maff->p[0]); } static __isl_give isl_printer *print_pw_multi_aff_c(__isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma) { int n; const char *name; if (!pma) goto error; if (pma->n < 1) isl_die(p->ctx, isl_error_unsupported, "cannot print empty isl_pw_multi_aff in C format", goto error); name = isl_pw_multi_aff_get_tuple_name(pma, isl_dim_out); if (!name && isl_pw_multi_aff_dim(pma, isl_dim_out) == 1) return print_unnamed_pw_multi_aff_c(p, pma); if (!name) isl_die(p->ctx, isl_error_unsupported, "cannot print unnamed isl_pw_multi_aff in C format", goto error); p = isl_printer_print_str(p, name); n = isl_pw_multi_aff_dim(pma, isl_dim_out); if (n != 0) isl_die(p->ctx, isl_error_unsupported, "not supported yet", goto error); return p; error: isl_printer_free(p); return NULL; } __isl_give isl_printer *isl_printer_print_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_pw_multi_aff *pma) { if (!p || !pma) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_pw_multi_aff_isl(p, pma); if (p->output_format == ISL_FORMAT_C) return print_pw_multi_aff_c(p, pma); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } static isl_stat print_pw_multi_aff_body_wrap(__isl_take isl_pw_multi_aff *pma, void *user) { struct isl_union_print_data *data; data = (struct isl_union_print_data *) user; if (!data->first) data->p = isl_printer_print_str(data->p, "; "); data->first = 0; data->p = print_pw_multi_aff_body(data->p, pma); isl_pw_multi_aff_free(pma); return isl_stat_ok; } static __isl_give isl_printer *print_union_pw_multi_aff_isl( __isl_take isl_printer *p, __isl_keep isl_union_pw_multi_aff *upma) { struct isl_union_print_data data; struct isl_print_space_data space_data = { 0 }; isl_space *space; space = isl_union_pw_multi_aff_get_space(upma); if (isl_space_dim(space, isl_dim_param) > 0) { p = print_tuple(space, p, isl_dim_param, &space_data); p = isl_printer_print_str(p, s_to[0]); } isl_space_free(space); p = isl_printer_print_str(p, s_open_set[0]); data.p = p; data.first = 1; isl_union_pw_multi_aff_foreach_pw_multi_aff(upma, &print_pw_multi_aff_body_wrap, &data); p = data.p; p = isl_printer_print_str(p, s_close_set[0]); return p; } __isl_give isl_printer *isl_printer_print_union_pw_multi_aff( __isl_take isl_printer *p, __isl_keep isl_union_pw_multi_aff *upma) { if (!p || !upma) goto error; if (p->output_format == ISL_FORMAT_ISL) return print_union_pw_multi_aff_isl(p, upma); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", goto error); error: isl_printer_free(p); return NULL; } /* Print dimension "pos" of data->space to "p". * * data->user is assumed to be an isl_multi_pw_aff. * * If the current dimension is an output dimension, then print * the corresponding piecewise affine expression. * Otherwise, print the name of the dimension. */ static __isl_give isl_printer *print_dim_mpa(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { int i; int need_parens; isl_multi_pw_aff *mpa = data->user; isl_pw_aff *pa; if (data->type != isl_dim_out) return print_name(data->space, p, data->type, pos, data->latex); pa = mpa->p[pos]; if (pa->n == 0) return isl_printer_print_str(p, "(0 : 1 = 0)"); need_parens = pa->n != 1 || !isl_set_plain_is_universe(pa->p[0].set); if (need_parens) p = isl_printer_print_str(p, "("); for (i = 0; i < pa->n; ++i) { isl_space *space; if (i) p = isl_printer_print_str(p, "; "); p = print_aff_body(p, pa->p[i].aff); space = isl_aff_get_domain_space(pa->p[i].aff); p = print_disjuncts(pa->p[i].set, space, p, 0); isl_space_free(space); } if (need_parens) p = isl_printer_print_str(p, ")"); return p; } /* Print "mpa" to "p" in isl format. */ static __isl_give isl_printer *print_multi_pw_aff_isl(__isl_take isl_printer *p, __isl_keep isl_multi_pw_aff *mpa) { struct isl_print_space_data data = { 0 }; if (!mpa) return isl_printer_free(p); if (isl_space_dim(mpa->space, isl_dim_param) > 0) { p = print_tuple(mpa->space, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); data.print_dim = &print_dim_mpa; data.user = mpa; p = isl_print_space(mpa->space, p, 0, &data); p = isl_printer_print_str(p, " }"); return p; } __isl_give isl_printer *isl_printer_print_multi_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_pw_aff *mpa) { if (!p || !mpa) return isl_printer_free(p); if (p->output_format == ISL_FORMAT_ISL) return print_multi_pw_aff_isl(p, mpa); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", return isl_printer_free(p)); } /* Print dimension "pos" of data->space to "p". * * data->user is assumed to be an isl_multi_val. * * If the current dimension is an output dimension, then print * the corresponding value. Otherwise, print the name of the dimension. */ static __isl_give isl_printer *print_dim_mv(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { isl_multi_val *mv = data->user; if (data->type == isl_dim_out) return isl_printer_print_val(p, mv->p[pos]); else return print_name(data->space, p, data->type, pos, data->latex); } /* Print the isl_multi_val "mv" to "p" in isl format. */ static __isl_give isl_printer *print_multi_val_isl(__isl_take isl_printer *p, __isl_keep isl_multi_val *mv) { struct isl_print_space_data data = { 0 }; if (!mv) return isl_printer_free(p); if (isl_space_dim(mv->space, isl_dim_param) > 0) { p = print_tuple(mv->space, p, isl_dim_param, &data); p = isl_printer_print_str(p, " -> "); } p = isl_printer_print_str(p, "{ "); data.print_dim = &print_dim_mv; data.user = mv; p = isl_print_space(mv->space, p, 0, &data); p = isl_printer_print_str(p, " }"); return p; } /* Print the isl_multi_val "mv" to "p". * * Currently only supported in isl format. */ __isl_give isl_printer *isl_printer_print_multi_val( __isl_take isl_printer *p, __isl_keep isl_multi_val *mv) { if (!p || !mv) return isl_printer_free(p); if (p->output_format == ISL_FORMAT_ISL) return print_multi_val_isl(p, mv); isl_die(p->ctx, isl_error_unsupported, "unsupported output format", return isl_printer_free(p)); } /* Print dimension "pos" of data->space to "p". * * data->user is assumed to be an isl_multi_union_pw_aff. * * The current dimension is necessarily a set dimension, so * we print the corresponding isl_union_pw_aff, including * the braces. */ static __isl_give isl_printer *print_union_pw_aff_dim(__isl_take isl_printer *p, struct isl_print_space_data *data, unsigned pos) { isl_multi_union_pw_aff *mupa = data->user; isl_union_pw_aff *upa; upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, pos); p = print_union_pw_aff_body(p, upa); isl_union_pw_aff_free(upa); return p; } /* Print the isl_multi_union_pw_aff "mupa" to "p" in isl format. */ static __isl_give isl_printer *print_multi_union_pw_aff_isl( __isl_take isl_printer *p, __isl_keep isl_multi_union_pw_aff *mupa) { struct isl_print_space_data data = { 0 }; isl_space *space; space = isl_multi_union_pw_aff_get_space(mupa); if (isl_space_dim(space, isl_dim_param) > 0) { struct isl_print_space_data space_data = { 0 }; p = print_tuple(space, p, isl_dim_param, &space_data); p = isl_printer_print_str(p, s_to[0]); } data.print_dim = &print_union_pw_aff_dim; data.user = mupa; p = isl_print_space(space, p, 0, &data); isl_space_free(space); return p; } /* Print the isl_multi_union_pw_aff "mupa" to "p" in isl format. * * We currently only support an isl format. */ __isl_give isl_printer *isl_printer_print_multi_union_pw_aff( __isl_take isl_printer *p, __isl_keep isl_multi_union_pw_aff *mupa) { if (!p || !mupa) return isl_printer_free(p); if (p->output_format == ISL_FORMAT_ISL) return print_multi_union_pw_aff_isl(p, mupa); isl_die(isl_printer_get_ctx(p), isl_error_unsupported, "unsupported output format", return isl_printer_free(p)); } isl-0.16.1/isl_morph.h0000664000175000017500000000544512645737061011501 00000000000000/* * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France */ #ifndef ISL_MORHP_H #define ISL_MORHP_H #include #include #include #include #if defined(__cplusplus) extern "C" { #endif /* An isl_morph is a "morphism" on (basic) sets. * "map" is an affine mapping from "dom" to "ran" * and "inv" is the inverse mapping. */ struct isl_morph { int ref; isl_basic_set *dom; isl_basic_set *ran; isl_mat *map; isl_mat *inv; }; typedef struct isl_morph isl_morph; isl_ctx *isl_morph_get_ctx(__isl_keep isl_morph *morph); __isl_give isl_morph *isl_morph_alloc( __isl_take isl_basic_set *dom, __isl_take isl_basic_set *ran, __isl_take isl_mat *map, __isl_take isl_mat *inv); __isl_give isl_morph *isl_morph_copy(__isl_keep isl_morph *morph); __isl_give isl_morph *isl_morph_identity(__isl_keep isl_basic_set *bset); void isl_morph_free(__isl_take isl_morph *morph); __isl_give isl_space *isl_morph_get_dom_space(__isl_keep isl_morph *morph); __isl_give isl_space *isl_morph_get_ran_space(__isl_keep isl_morph *morph); __isl_give isl_multi_aff *isl_morph_get_var_multi_aff( __isl_keep isl_morph *morph); unsigned isl_morph_dom_dim(__isl_keep isl_morph *morph, enum isl_dim_type type); unsigned isl_morph_ran_dim(__isl_keep isl_morph *morph, enum isl_dim_type type); __isl_give isl_morph *isl_morph_remove_dom_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_morph *isl_morph_remove_ran_dims(__isl_take isl_morph *morph, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_morph *isl_morph_dom_params(__isl_take isl_morph *morph); __isl_give isl_morph *isl_morph_ran_params(__isl_take isl_morph *morph); __isl_give isl_morph *isl_morph_compose(__isl_take isl_morph *morph1, __isl_take isl_morph *morph2); __isl_give isl_morph *isl_morph_inverse(__isl_take isl_morph *morph); void isl_morph_print_internal(__isl_take isl_morph *morph, FILE *out); void isl_morph_dump(__isl_take isl_morph *morph); __isl_give isl_morph *isl_basic_set_variable_compression( __isl_keep isl_basic_set *bset, enum isl_dim_type type); __isl_give isl_morph *isl_basic_set_parameter_compression( __isl_keep isl_basic_set *bset); __isl_give isl_morph *isl_basic_set_full_compression( __isl_keep isl_basic_set *bset); __isl_give isl_basic_set *isl_morph_basic_set(__isl_take isl_morph *morph, __isl_take isl_basic_set *bset); __isl_give isl_set *isl_morph_set(__isl_take isl_morph *morph, __isl_take isl_set *set); __isl_give isl_vec *isl_morph_vec(__isl_take isl_morph *morph, __isl_take isl_vec *vec); #if defined(__cplusplus) } #endif #endif isl-0.16.1/isl_int_sioimath.c0000664000175000017500000001751112645737060013032 00000000000000#include #include #include extern int isl_sioimath_decode(isl_sioimath val, int32_t *small, mp_int *big); extern int isl_sioimath_decode_big(isl_sioimath val, mp_int *big); extern int isl_sioimath_decode_small(isl_sioimath val, int32_t *small); extern isl_sioimath isl_sioimath_encode_small(int32_t val); extern isl_sioimath isl_sioimath_encode_big(mp_int val); extern int isl_sioimath_is_small(isl_sioimath val); extern int isl_sioimath_is_big(isl_sioimath val); extern int32_t isl_sioimath_get_small(isl_sioimath val); extern mp_int isl_sioimath_get_big(isl_sioimath val); extern void isl_siomath_uint32_to_digits(uint32_t num, mp_digit *digits, mp_size *used); extern void isl_siomath_ulong_to_digits(unsigned long num, mp_digit *digits, mp_size *used); extern void isl_siomath_uint64_to_digits(uint64_t num, mp_digit *digits, mp_size *used); extern mp_int isl_sioimath_bigarg_src(isl_sioimath arg, isl_sioimath_scratchspace_t *scratch); extern mp_int isl_sioimath_siarg_src(signed long arg, isl_sioimath_scratchspace_t *scratch); extern mp_int isl_sioimath_si64arg_src(int64_t arg, isl_sioimath_scratchspace_t *scratch); extern mp_int isl_sioimath_uiarg_src(unsigned long arg, isl_sioimath_scratchspace_t *scratch); extern mp_int isl_sioimath_reinit_big(isl_sioimath_ptr ptr); extern void isl_sioimath_set_small(isl_sioimath_ptr ptr, int32_t val); extern void isl_sioimath_set_int32(isl_sioimath_ptr ptr, int32_t val); extern void isl_sioimath_set_int64(isl_sioimath_ptr ptr, int64_t val); extern void isl_sioimath_promote(isl_sioimath_ptr dst); extern void isl_sioimath_try_demote(isl_sioimath_ptr dst); extern void isl_sioimath_init(isl_sioimath_ptr dst); extern void isl_sioimath_clear(isl_sioimath_ptr dst); extern void isl_sioimath_set(isl_sioimath_ptr dst, isl_sioimath_src val); extern void isl_sioimath_set_si(isl_sioimath_ptr dst, long val); extern void isl_sioimath_set_ui(isl_sioimath_ptr dst, unsigned long val); extern int isl_sioimath_fits_slong(isl_sioimath_src val); extern long isl_sioimath_get_si(isl_sioimath_src val); extern int isl_sioimath_fits_ulong(isl_sioimath_src val); extern unsigned long isl_sioimath_get_ui(isl_sioimath_src val); extern double isl_sioimath_get_d(isl_sioimath_src val); extern char *isl_sioimath_get_str(isl_sioimath_src val); extern void isl_sioimath_abs(isl_sioimath_ptr dst, isl_sioimath_src arg); extern void isl_sioimath_neg(isl_sioimath_ptr dst, isl_sioimath_src arg); extern void isl_sioimath_swap(isl_sioimath_ptr lhs, isl_sioimath_ptr rhs); extern void isl_sioimath_add_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs); extern void isl_sioimath_sub_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs); extern void isl_sioimath_add(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_sub(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_mul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_mul_2exp(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs); extern void isl_sioimath_mul_si(isl_sioimath_ptr dst, isl_sioimath lhs, signed long rhs); extern void isl_sioimath_mul_ui(isl_sioimath_ptr dst, isl_sioimath lhs, unsigned long rhs); extern void isl_sioimath_pow_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs); extern void isl_sioimath_addmul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_addmul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs); extern void isl_sioimath_submul(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_submul_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs); /* Implements the Euclidean algorithm to compute the greatest common divisor of * two values in small representation. */ static uint32_t isl_sioimath_smallgcd(int32_t lhs, int32_t rhs) { uint32_t dividend, divisor, remainder; dividend = labs(lhs); divisor = labs(rhs); while (divisor) { remainder = dividend % divisor; dividend = divisor; divisor = remainder; } return dividend; } /* Compute the greatest common divisor. * * Per GMP convention, gcd(0,0)==0 and otherwise always positive. */ void isl_sioimath_gcd(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { int32_t lhssmall, rhssmall; uint32_t smallgcd; isl_sioimath_scratchspace_t scratchlhs, scratchrhs; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { smallgcd = isl_sioimath_smallgcd(lhssmall, rhssmall); isl_sioimath_set_small(dst, smallgcd); return; } impz_gcd(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_bigarg_src(rhs, &scratchrhs)); isl_sioimath_try_demote(dst); } /* Compute the lowest common multiple of two numbers. */ void isl_sioimath_lcm(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs) { int32_t lhssmall, rhssmall; uint32_t smallgcd; uint64_t multiple; isl_sioimath_scratchspace_t scratchlhs, scratchrhs; if (isl_sioimath_decode_small(lhs, &lhssmall) && isl_sioimath_decode_small(rhs, &rhssmall)) { if (lhssmall == 0 || rhssmall == 0) { isl_sioimath_set_small(dst, 0); return; } smallgcd = isl_sioimath_smallgcd(lhssmall, rhssmall); multiple = (uint64_t) abs(lhssmall) * (uint64_t) abs(rhssmall); isl_sioimath_set_int64(dst, multiple / smallgcd); return; } impz_lcm(isl_sioimath_reinit_big(dst), isl_sioimath_bigarg_src(lhs, &scratchlhs), isl_sioimath_bigarg_src(rhs, &scratchrhs)); isl_sioimath_try_demote(dst); } extern void isl_sioimath_tdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_tdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs); extern void isl_sioimath_cdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_fdiv_q(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); extern void isl_sioimath_fdiv_q_ui(isl_sioimath_ptr dst, isl_sioimath_src lhs, unsigned long rhs); extern void isl_sioimath_fdiv_r(isl_sioimath_ptr dst, isl_sioimath_src lhs, isl_sioimath_src rhs); /* Parse a number from a string. * If it has less than 10 characters then it will fit into the small * representation (i.e. strlen("2147483647")). Otherwise, let IMath parse it. */ void isl_sioimath_read(isl_sioimath_ptr dst, const char *str) { int32_t small; if (strlen(str) < 10) { small = strtol(str, NULL, 10); isl_sioimath_set_small(dst, small); return; } mp_int_read_string(isl_sioimath_reinit_big(dst), 10, str); isl_sioimath_try_demote(dst); } extern int isl_sioimath_sgn(isl_sioimath_src arg); extern int isl_sioimath_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs); extern int isl_sioimath_cmp_si(isl_sioimath_src lhs, signed long rhs); extern int isl_sioimath_abs_cmp(isl_sioimath_src lhs, isl_sioimath_src rhs); extern int isl_sioimath_is_divisible_by(isl_sioimath_src lhs, isl_sioimath_src rhs); extern uint32_t isl_sioimath_hash(isl_sioimath_src arg, uint32_t hash); extern size_t isl_sioimath_sizeinbase(isl_sioimath_src arg, int base); extern void isl_sioimath_print(FILE *out, isl_sioimath_src i, int width); /* Print an isl_int to FILE*. Adds space padding to the left until at least * width characters are printed. */ void isl_sioimath_print(FILE *out, isl_sioimath_src i, int width) { size_t len; int32_t small; mp_int big; char *buf; if (isl_sioimath_decode_small(i, &small)) { fprintf(out, "%*" PRIi32, width, small); return; } big = isl_sioimath_get_big(i); len = mp_int_string_len(big, 10); buf = malloc(len); mp_int_to_string(big, 10, buf, len); fprintf(out, "%*s", width, buf); free(buf); } /* Print a number to stdout. Meant for debugging. */ void isl_sioimath_dump(isl_sioimath_src arg) { isl_sioimath_print(stdout, arg, 0); } isl-0.16.1/codegen_test.sh.in0000664000175000017500000000123212645737060012725 00000000000000#!/bin/sh EXEEXT=@EXEEXT@ srcdir=@srcdir@ failed=0 for i in $srcdir/test_inputs/codegen/*.st \ $srcdir/test_inputs/codegen/cloog/*.st; do echo $i; base=`basename $i .st` test=test-$base.c dir=`dirname $i` ref=$dir/$base.c (./isl_codegen$EXEEXT < $i > $test && diff -uw $ref $test && rm $test) || failed=1 done for i in $srcdir/test_inputs/codegen/*.in \ $srcdir/test_inputs/codegen/omega/*.in \ $srcdir/test_inputs/codegen/pldi2012/*.in; do echo $i; base=`basename $i .in` test=test-$base.c dir=`dirname $i` ref=$dir/$base.c (./isl_codegen$EXEEXT < $i > $test && diff -uw $ref $test && rm $test) || failed=1 done test $failed -eq 0 || exit isl-0.16.1/isl_ast.c0000664000175000017500000015623112645737060011135 00000000000000/* * Copyright 2012-2013 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, * Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France */ #include #undef BASE #define BASE ast_expr #include #undef BASE #define BASE ast_node #include isl_ctx *isl_ast_print_options_get_ctx( __isl_keep isl_ast_print_options *options) { return options ? options->ctx : NULL; } __isl_give isl_ast_print_options *isl_ast_print_options_alloc(isl_ctx *ctx) { isl_ast_print_options *options; options = isl_calloc_type(ctx, isl_ast_print_options); if (!options) return NULL; options->ctx = ctx; isl_ctx_ref(ctx); options->ref = 1; return options; } __isl_give isl_ast_print_options *isl_ast_print_options_dup( __isl_keep isl_ast_print_options *options) { isl_ctx *ctx; isl_ast_print_options *dup; if (!options) return NULL; ctx = isl_ast_print_options_get_ctx(options); dup = isl_ast_print_options_alloc(ctx); if (!dup) return NULL; dup->print_for = options->print_for; dup->print_for_user = options->print_for_user; dup->print_user = options->print_user; dup->print_user_user = options->print_user_user; return dup; } __isl_give isl_ast_print_options *isl_ast_print_options_cow( __isl_take isl_ast_print_options *options) { if (!options) return NULL; if (options->ref == 1) return options; options->ref--; return isl_ast_print_options_dup(options); } __isl_give isl_ast_print_options *isl_ast_print_options_copy( __isl_keep isl_ast_print_options *options) { if (!options) return NULL; options->ref++; return options; } __isl_null isl_ast_print_options *isl_ast_print_options_free( __isl_take isl_ast_print_options *options) { if (!options) return NULL; if (--options->ref > 0) return NULL; isl_ctx_deref(options->ctx); free(options); return NULL; } /* Set the print_user callback of "options" to "print_user". * * If this callback is set, then it used to print user nodes in the AST. * Otherwise, the expression associated to the user node is printed. */ __isl_give isl_ast_print_options *isl_ast_print_options_set_print_user( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_user)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user) { options = isl_ast_print_options_cow(options); if (!options) return NULL; options->print_user = print_user; options->print_user_user = user; return options; } /* Set the print_for callback of "options" to "print_for". * * If this callback is set, then it used to print for nodes in the AST. */ __isl_give isl_ast_print_options *isl_ast_print_options_set_print_for( __isl_take isl_ast_print_options *options, __isl_give isl_printer *(*print_for)(__isl_take isl_printer *p, __isl_take isl_ast_print_options *options, __isl_keep isl_ast_node *node, void *user), void *user) { options = isl_ast_print_options_cow(options); if (!options) return NULL; options->print_for = print_for; options->print_for_user = user; return options; } __isl_give isl_ast_expr *isl_ast_expr_copy(__isl_keep isl_ast_expr *expr) { if (!expr) return NULL; expr->ref++; return expr; } __isl_give isl_ast_expr *isl_ast_expr_dup(__isl_keep isl_ast_expr *expr) { int i; isl_ctx *ctx; isl_ast_expr *dup; if (!expr) return NULL; ctx = isl_ast_expr_get_ctx(expr); switch (expr->type) { case isl_ast_expr_int: dup = isl_ast_expr_from_val(isl_val_copy(expr->u.v)); break; case isl_ast_expr_id: dup = isl_ast_expr_from_id(isl_id_copy(expr->u.id)); break; case isl_ast_expr_op: dup = isl_ast_expr_alloc_op(ctx, expr->u.op.op, expr->u.op.n_arg); if (!dup) return NULL; for (i = 0; i < expr->u.op.n_arg; ++i) dup->u.op.args[i] = isl_ast_expr_copy(expr->u.op.args[i]); break; case isl_ast_expr_error: dup = NULL; } if (!dup) return NULL; return dup; } __isl_give isl_ast_expr *isl_ast_expr_cow(__isl_take isl_ast_expr *expr) { if (!expr) return NULL; if (expr->ref == 1) return expr; expr->ref--; return isl_ast_expr_dup(expr); } __isl_null isl_ast_expr *isl_ast_expr_free(__isl_take isl_ast_expr *expr) { int i; if (!expr) return NULL; if (--expr->ref > 0) return NULL; isl_ctx_deref(expr->ctx); switch (expr->type) { case isl_ast_expr_int: isl_val_free(expr->u.v); break; case isl_ast_expr_id: isl_id_free(expr->u.id); break; case isl_ast_expr_op: if (expr->u.op.args) for (i = 0; i < expr->u.op.n_arg; ++i) isl_ast_expr_free(expr->u.op.args[i]); free(expr->u.op.args); break; case isl_ast_expr_error: break; } free(expr); return NULL; } isl_ctx *isl_ast_expr_get_ctx(__isl_keep isl_ast_expr *expr) { return expr ? expr->ctx : NULL; } enum isl_ast_expr_type isl_ast_expr_get_type(__isl_keep isl_ast_expr *expr) { return expr ? expr->type : isl_ast_expr_error; } /* Return the integer value represented by "expr". */ __isl_give isl_val *isl_ast_expr_get_val(__isl_keep isl_ast_expr *expr) { if (!expr) return NULL; if (expr->type != isl_ast_expr_int) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an int", return NULL); return isl_val_copy(expr->u.v); } __isl_give isl_id *isl_ast_expr_get_id(__isl_keep isl_ast_expr *expr) { if (!expr) return NULL; if (expr->type != isl_ast_expr_id) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an identifier", return NULL); return isl_id_copy(expr->u.id); } enum isl_ast_op_type isl_ast_expr_get_op_type(__isl_keep isl_ast_expr *expr) { if (!expr) return isl_ast_op_error; if (expr->type != isl_ast_expr_op) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an operation", return isl_ast_op_error); return expr->u.op.op; } int isl_ast_expr_get_op_n_arg(__isl_keep isl_ast_expr *expr) { if (!expr) return -1; if (expr->type != isl_ast_expr_op) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an operation", return -1); return expr->u.op.n_arg; } __isl_give isl_ast_expr *isl_ast_expr_get_op_arg(__isl_keep isl_ast_expr *expr, int pos) { if (!expr) return NULL; if (expr->type != isl_ast_expr_op) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an operation", return NULL); if (pos < 0 || pos >= expr->u.op.n_arg) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "index out of bounds", return NULL); return isl_ast_expr_copy(expr->u.op.args[pos]); } /* Replace the argument at position "pos" of "expr" by "arg". */ __isl_give isl_ast_expr *isl_ast_expr_set_op_arg(__isl_take isl_ast_expr *expr, int pos, __isl_take isl_ast_expr *arg) { expr = isl_ast_expr_cow(expr); if (!expr || !arg) goto error; if (expr->type != isl_ast_expr_op) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "expression not an operation", goto error); if (pos < 0 || pos >= expr->u.op.n_arg) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "index out of bounds", goto error); isl_ast_expr_free(expr->u.op.args[pos]); expr->u.op.args[pos] = arg; return expr; error: isl_ast_expr_free(arg); return isl_ast_expr_free(expr); } /* Is "expr1" equal to "expr2"? */ isl_bool isl_ast_expr_is_equal(__isl_keep isl_ast_expr *expr1, __isl_keep isl_ast_expr *expr2) { int i; if (!expr1 || !expr2) return isl_bool_error; if (expr1 == expr2) return isl_bool_true; if (expr1->type != expr2->type) return isl_bool_false; switch (expr1->type) { case isl_ast_expr_int: return isl_val_eq(expr1->u.v, expr2->u.v); case isl_ast_expr_id: return expr1->u.id == expr2->u.id; case isl_ast_expr_op: if (expr1->u.op.op != expr2->u.op.op) return isl_bool_false; if (expr1->u.op.n_arg != expr2->u.op.n_arg) return isl_bool_false; for (i = 0; i < expr1->u.op.n_arg; ++i) { isl_bool equal; equal = isl_ast_expr_is_equal(expr1->u.op.args[i], expr2->u.op.args[i]); if (equal < 0 || !equal) return equal; } return 1; case isl_ast_expr_error: return isl_bool_error; } isl_die(isl_ast_expr_get_ctx(expr1), isl_error_internal, "unhandled case", return isl_bool_error); } /* Create a new operation expression of operation type "op", * with "n_arg" as yet unspecified arguments. */ __isl_give isl_ast_expr *isl_ast_expr_alloc_op(isl_ctx *ctx, enum isl_ast_op_type op, int n_arg) { isl_ast_expr *expr; expr = isl_calloc_type(ctx, isl_ast_expr); if (!expr) return NULL; expr->ctx = ctx; isl_ctx_ref(ctx); expr->ref = 1; expr->type = isl_ast_expr_op; expr->u.op.op = op; expr->u.op.n_arg = n_arg; expr->u.op.args = isl_calloc_array(ctx, isl_ast_expr *, n_arg); if (n_arg && !expr->u.op.args) return isl_ast_expr_free(expr); return expr; } /* Create a new id expression representing "id". */ __isl_give isl_ast_expr *isl_ast_expr_from_id(__isl_take isl_id *id) { isl_ctx *ctx; isl_ast_expr *expr; if (!id) return NULL; ctx = isl_id_get_ctx(id); expr = isl_calloc_type(ctx, isl_ast_expr); if (!expr) goto error; expr->ctx = ctx; isl_ctx_ref(ctx); expr->ref = 1; expr->type = isl_ast_expr_id; expr->u.id = id; return expr; error: isl_id_free(id); return NULL; } /* Create a new integer expression representing "i". */ __isl_give isl_ast_expr *isl_ast_expr_alloc_int_si(isl_ctx *ctx, int i) { isl_ast_expr *expr; expr = isl_calloc_type(ctx, isl_ast_expr); if (!expr) return NULL; expr->ctx = ctx; isl_ctx_ref(ctx); expr->ref = 1; expr->type = isl_ast_expr_int; expr->u.v = isl_val_int_from_si(ctx, i); if (!expr->u.v) return isl_ast_expr_free(expr); return expr; } /* Create a new integer expression representing "v". */ __isl_give isl_ast_expr *isl_ast_expr_from_val(__isl_take isl_val *v) { isl_ctx *ctx; isl_ast_expr *expr; if (!v) return NULL; if (!isl_val_is_int(v)) isl_die(isl_val_get_ctx(v), isl_error_invalid, "expecting integer value", goto error); ctx = isl_val_get_ctx(v); expr = isl_calloc_type(ctx, isl_ast_expr); if (!expr) goto error; expr->ctx = ctx; isl_ctx_ref(ctx); expr->ref = 1; expr->type = isl_ast_expr_int; expr->u.v = v; return expr; error: isl_val_free(v); return NULL; } /* Create an expression representing the unary operation "type" applied to * "arg". */ __isl_give isl_ast_expr *isl_ast_expr_alloc_unary(enum isl_ast_op_type type, __isl_take isl_ast_expr *arg) { isl_ctx *ctx; isl_ast_expr *expr = NULL; if (!arg) return NULL; ctx = isl_ast_expr_get_ctx(arg); expr = isl_ast_expr_alloc_op(ctx, type, 1); if (!expr) goto error; expr->u.op.args[0] = arg; return expr; error: isl_ast_expr_free(arg); return NULL; } /* Create an expression representing the negation of "arg". */ __isl_give isl_ast_expr *isl_ast_expr_neg(__isl_take isl_ast_expr *arg) { return isl_ast_expr_alloc_unary(isl_ast_op_minus, arg); } /* Create an expression representing the address of "expr". */ __isl_give isl_ast_expr *isl_ast_expr_address_of(__isl_take isl_ast_expr *expr) { if (!expr) return NULL; if (isl_ast_expr_get_type(expr) != isl_ast_expr_op || isl_ast_expr_get_op_type(expr) != isl_ast_op_access) isl_die(isl_ast_expr_get_ctx(expr), isl_error_invalid, "can only take address of access expressions", return isl_ast_expr_free(expr)); return isl_ast_expr_alloc_unary(isl_ast_op_address_of, expr); } /* Create an expression representing the binary operation "type" * applied to "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_alloc_binary(enum isl_ast_op_type type, __isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { isl_ctx *ctx; isl_ast_expr *expr = NULL; if (!expr1 || !expr2) goto error; ctx = isl_ast_expr_get_ctx(expr1); expr = isl_ast_expr_alloc_op(ctx, type, 2); if (!expr) goto error; expr->u.op.args[0] = expr1; expr->u.op.args[1] = expr2; return expr; error: isl_ast_expr_free(expr1); isl_ast_expr_free(expr2); return NULL; } /* Create an expression representing the sum of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_add(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_add, expr1, expr2); } /* Create an expression representing the difference of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_sub(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_sub, expr1, expr2); } /* Create an expression representing the product of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_mul(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_mul, expr1, expr2); } /* Create an expression representing the quotient of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_div(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_div, expr1, expr2); } /* Create an expression representing the quotient of the integer * division of "expr1" by "expr2", where "expr1" is known to be * non-negative. */ __isl_give isl_ast_expr *isl_ast_expr_pdiv_q(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_pdiv_q, expr1, expr2); } /* Create an expression representing the remainder of the integer * division of "expr1" by "expr2", where "expr1" is known to be * non-negative. */ __isl_give isl_ast_expr *isl_ast_expr_pdiv_r(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_pdiv_r, expr1, expr2); } /* Create an expression representing the conjunction of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_and(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_and, expr1, expr2); } /* Create an expression representing the conjunction of "expr1" and "expr2", * where "expr2" is evaluated only if "expr1" is evaluated to true. */ __isl_give isl_ast_expr *isl_ast_expr_and_then(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_and_then, expr1, expr2); } /* Create an expression representing the disjunction of "expr1" and "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_or(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_or, expr1, expr2); } /* Create an expression representing the disjunction of "expr1" and "expr2", * where "expr2" is evaluated only if "expr1" is evaluated to false. */ __isl_give isl_ast_expr *isl_ast_expr_or_else(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_or_else, expr1, expr2); } /* Create an expression representing "expr1" less than or equal to "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_le(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_le, expr1, expr2); } /* Create an expression representing "expr1" less than "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_lt(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_lt, expr1, expr2); } /* Create an expression representing "expr1" greater than or equal to "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_ge(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_ge, expr1, expr2); } /* Create an expression representing "expr1" greater than "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_gt(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_gt, expr1, expr2); } /* Create an expression representing "expr1" equal to "expr2". */ __isl_give isl_ast_expr *isl_ast_expr_eq(__isl_take isl_ast_expr *expr1, __isl_take isl_ast_expr *expr2) { return isl_ast_expr_alloc_binary(isl_ast_op_eq, expr1, expr2); } /* Create an expression of type "type" with as arguments "arg0" followed * by "arguments". */ static __isl_give isl_ast_expr *ast_expr_with_arguments( enum isl_ast_op_type type, __isl_take isl_ast_expr *arg0, __isl_take isl_ast_expr_list *arguments) { int i, n; isl_ctx *ctx; isl_ast_expr *res = NULL; if (!arg0 || !arguments) goto error; ctx = isl_ast_expr_get_ctx(arg0); n = isl_ast_expr_list_n_ast_expr(arguments); res = isl_ast_expr_alloc_op(ctx, type, 1 + n); if (!res) goto error; for (i = 0; i < n; ++i) { isl_ast_expr *arg; arg = isl_ast_expr_list_get_ast_expr(arguments, i); res->u.op.args[1 + i] = arg; if (!arg) goto error; } res->u.op.args[0] = arg0; isl_ast_expr_list_free(arguments); return res; error: isl_ast_expr_free(arg0); isl_ast_expr_list_free(arguments); isl_ast_expr_free(res); return NULL; } /* Create an expression representing an access to "array" with index * expressions "indices". */ __isl_give isl_ast_expr *isl_ast_expr_access(__isl_take isl_ast_expr *array, __isl_take isl_ast_expr_list *indices) { return ast_expr_with_arguments(isl_ast_op_access, array, indices); } /* Create an expression representing a call to "function" with argument * expressions "arguments". */ __isl_give isl_ast_expr *isl_ast_expr_call(__isl_take isl_ast_expr *function, __isl_take isl_ast_expr_list *arguments) { return ast_expr_with_arguments(isl_ast_op_call, function, arguments); } /* For each subexpression of "expr" of type isl_ast_expr_id, * if it appears in "id2expr", then replace it by the corresponding * expression. */ __isl_give isl_ast_expr *isl_ast_expr_substitute_ids( __isl_take isl_ast_expr *expr, __isl_take isl_id_to_ast_expr *id2expr) { int i; isl_id *id; if (!expr || !id2expr) goto error; switch (expr->type) { case isl_ast_expr_int: break; case isl_ast_expr_id: if (!isl_id_to_ast_expr_has(id2expr, expr->u.id)) break; id = isl_id_copy(expr->u.id); isl_ast_expr_free(expr); expr = isl_id_to_ast_expr_get(id2expr, id); break; case isl_ast_expr_op: for (i = 0; i < expr->u.op.n_arg; ++i) { isl_ast_expr *arg; arg = isl_ast_expr_copy(expr->u.op.args[i]); arg = isl_ast_expr_substitute_ids(arg, isl_id_to_ast_expr_copy(id2expr)); if (arg == expr->u.op.args[i]) { isl_ast_expr_free(arg); continue; } if (!arg) expr = isl_ast_expr_free(expr); expr = isl_ast_expr_cow(expr); if (!expr) { isl_ast_expr_free(arg); break; } isl_ast_expr_free(expr->u.op.args[i]); expr->u.op.args[i] = arg; } break; case isl_ast_expr_error: expr = isl_ast_expr_free(expr); break; } isl_id_to_ast_expr_free(id2expr); return expr; error: isl_ast_expr_free(expr); isl_id_to_ast_expr_free(id2expr); return NULL; } isl_ctx *isl_ast_node_get_ctx(__isl_keep isl_ast_node *node) { return node ? node->ctx : NULL; } enum isl_ast_node_type isl_ast_node_get_type(__isl_keep isl_ast_node *node) { return node ? node->type : isl_ast_node_error; } __isl_give isl_ast_node *isl_ast_node_alloc(isl_ctx *ctx, enum isl_ast_node_type type) { isl_ast_node *node; node = isl_calloc_type(ctx, isl_ast_node); if (!node) return NULL; node->ctx = ctx; isl_ctx_ref(ctx); node->ref = 1; node->type = type; return node; } /* Create an if node with the given guard. * * The then body needs to be filled in later. */ __isl_give isl_ast_node *isl_ast_node_alloc_if(__isl_take isl_ast_expr *guard) { isl_ast_node *node; if (!guard) return NULL; node = isl_ast_node_alloc(isl_ast_expr_get_ctx(guard), isl_ast_node_if); if (!node) goto error; node->u.i.guard = guard; return node; error: isl_ast_expr_free(guard); return NULL; } /* Create a for node with the given iterator. * * The remaining fields need to be filled in later. */ __isl_give isl_ast_node *isl_ast_node_alloc_for(__isl_take isl_id *id) { isl_ast_node *node; isl_ctx *ctx; if (!id) return NULL; ctx = isl_id_get_ctx(id); node = isl_ast_node_alloc(ctx, isl_ast_node_for); if (!node) goto error; node->u.f.iterator = isl_ast_expr_from_id(id); if (!node->u.f.iterator) return isl_ast_node_free(node); return node; error: isl_id_free(id); return NULL; } /* Create a mark node, marking "node" with "id". */ __isl_give isl_ast_node *isl_ast_node_alloc_mark(__isl_take isl_id *id, __isl_take isl_ast_node *node) { isl_ctx *ctx; isl_ast_node *mark; if (!id || !node) goto error; ctx = isl_id_get_ctx(id); mark = isl_ast_node_alloc(ctx, isl_ast_node_mark); if (!mark) goto error; mark->u.m.mark = id; mark->u.m.node = node; return mark; error: isl_id_free(id); isl_ast_node_free(node); return NULL; } /* Create a user node evaluating "expr". */ __isl_give isl_ast_node *isl_ast_node_alloc_user(__isl_take isl_ast_expr *expr) { isl_ctx *ctx; isl_ast_node *node; if (!expr) return NULL; ctx = isl_ast_expr_get_ctx(expr); node = isl_ast_node_alloc(ctx, isl_ast_node_user); if (!node) goto error; node->u.e.expr = expr; return node; error: isl_ast_expr_free(expr); return NULL; } /* Create a block node with the given children. */ __isl_give isl_ast_node *isl_ast_node_alloc_block( __isl_take isl_ast_node_list *list) { isl_ast_node *node; isl_ctx *ctx; if (!list) return NULL; ctx = isl_ast_node_list_get_ctx(list); node = isl_ast_node_alloc(ctx, isl_ast_node_block); if (!node) goto error; node->u.b.children = list; return node; error: isl_ast_node_list_free(list); return NULL; } /* Represent the given list of nodes as a single node, either by * extract the node from a single element list or by creating * a block node with the list of nodes as children. */ __isl_give isl_ast_node *isl_ast_node_from_ast_node_list( __isl_take isl_ast_node_list *list) { isl_ast_node *node; if (isl_ast_node_list_n_ast_node(list) != 1) return isl_ast_node_alloc_block(list); node = isl_ast_node_list_get_ast_node(list, 0); isl_ast_node_list_free(list); return node; } __isl_give isl_ast_node *isl_ast_node_copy(__isl_keep isl_ast_node *node) { if (!node) return NULL; node->ref++; return node; } __isl_give isl_ast_node *isl_ast_node_dup(__isl_keep isl_ast_node *node) { isl_ast_node *dup; if (!node) return NULL; dup = isl_ast_node_alloc(isl_ast_node_get_ctx(node), node->type); if (!dup) return NULL; switch (node->type) { case isl_ast_node_if: dup->u.i.guard = isl_ast_expr_copy(node->u.i.guard); dup->u.i.then = isl_ast_node_copy(node->u.i.then); dup->u.i.else_node = isl_ast_node_copy(node->u.i.else_node); if (!dup->u.i.guard || !dup->u.i.then || (node->u.i.else_node && !dup->u.i.else_node)) return isl_ast_node_free(dup); break; case isl_ast_node_for: dup->u.f.iterator = isl_ast_expr_copy(node->u.f.iterator); dup->u.f.init = isl_ast_expr_copy(node->u.f.init); dup->u.f.cond = isl_ast_expr_copy(node->u.f.cond); dup->u.f.inc = isl_ast_expr_copy(node->u.f.inc); dup->u.f.body = isl_ast_node_copy(node->u.f.body); if (!dup->u.f.iterator || !dup->u.f.init || !dup->u.f.cond || !dup->u.f.inc || !dup->u.f.body) return isl_ast_node_free(dup); break; case isl_ast_node_block: dup->u.b.children = isl_ast_node_list_copy(node->u.b.children); if (!dup->u.b.children) return isl_ast_node_free(dup); break; case isl_ast_node_mark: dup->u.m.mark = isl_id_copy(node->u.m.mark); dup->u.m.node = isl_ast_node_copy(node->u.m.node); if (!dup->u.m.mark || !dup->u.m.node) return isl_ast_node_free(dup); break; case isl_ast_node_user: dup->u.e.expr = isl_ast_expr_copy(node->u.e.expr); if (!dup->u.e.expr) return isl_ast_node_free(dup); break; case isl_ast_node_error: break; } return dup; } __isl_give isl_ast_node *isl_ast_node_cow(__isl_take isl_ast_node *node) { if (!node) return NULL; if (node->ref == 1) return node; node->ref--; return isl_ast_node_dup(node); } __isl_null isl_ast_node *isl_ast_node_free(__isl_take isl_ast_node *node) { if (!node) return NULL; if (--node->ref > 0) return NULL; switch (node->type) { case isl_ast_node_if: isl_ast_expr_free(node->u.i.guard); isl_ast_node_free(node->u.i.then); isl_ast_node_free(node->u.i.else_node); break; case isl_ast_node_for: isl_ast_expr_free(node->u.f.iterator); isl_ast_expr_free(node->u.f.init); isl_ast_expr_free(node->u.f.cond); isl_ast_expr_free(node->u.f.inc); isl_ast_node_free(node->u.f.body); break; case isl_ast_node_block: isl_ast_node_list_free(node->u.b.children); break; case isl_ast_node_mark: isl_id_free(node->u.m.mark); isl_ast_node_free(node->u.m.node); break; case isl_ast_node_user: isl_ast_expr_free(node->u.e.expr); break; case isl_ast_node_error: break; } isl_id_free(node->annotation); isl_ctx_deref(node->ctx); free(node); return NULL; } /* Replace the body of the for node "node" by "body". */ __isl_give isl_ast_node *isl_ast_node_for_set_body( __isl_take isl_ast_node *node, __isl_take isl_ast_node *body) { node = isl_ast_node_cow(node); if (!node || !body) goto error; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", goto error); isl_ast_node_free(node->u.f.body); node->u.f.body = body; return node; error: isl_ast_node_free(node); isl_ast_node_free(body); return NULL; } __isl_give isl_ast_node *isl_ast_node_for_get_body( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return NULL); return isl_ast_node_copy(node->u.f.body); } /* Mark the given for node as being degenerate. */ __isl_give isl_ast_node *isl_ast_node_for_mark_degenerate( __isl_take isl_ast_node *node) { node = isl_ast_node_cow(node); if (!node) return NULL; node->u.f.degenerate = 1; return node; } isl_bool isl_ast_node_for_is_degenerate(__isl_keep isl_ast_node *node) { if (!node) return isl_bool_error; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return isl_bool_error); return node->u.f.degenerate; } __isl_give isl_ast_expr *isl_ast_node_for_get_iterator( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return NULL); return isl_ast_expr_copy(node->u.f.iterator); } __isl_give isl_ast_expr *isl_ast_node_for_get_init( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return NULL); return isl_ast_expr_copy(node->u.f.init); } /* Return the condition expression of the given for node. * * If the for node is degenerate, then the condition is not explicitly * stored in the node. Instead, it is constructed as * * iterator <= init */ __isl_give isl_ast_expr *isl_ast_node_for_get_cond( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return NULL); if (!node->u.f.degenerate) return isl_ast_expr_copy(node->u.f.cond); return isl_ast_expr_alloc_binary(isl_ast_op_le, isl_ast_expr_copy(node->u.f.iterator), isl_ast_expr_copy(node->u.f.init)); } /* Return the increment of the given for node. * * If the for node is degenerate, then the increment is not explicitly * stored in the node. We simply return "1". */ __isl_give isl_ast_expr *isl_ast_node_for_get_inc( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", return NULL); if (!node->u.f.degenerate) return isl_ast_expr_copy(node->u.f.inc); return isl_ast_expr_alloc_int_si(isl_ast_node_get_ctx(node), 1); } /* Replace the then branch of the if node "node" by "child". */ __isl_give isl_ast_node *isl_ast_node_if_set_then( __isl_take isl_ast_node *node, __isl_take isl_ast_node *child) { node = isl_ast_node_cow(node); if (!node || !child) goto error; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not an if node", goto error); isl_ast_node_free(node->u.i.then); node->u.i.then = child; return node; error: isl_ast_node_free(node); isl_ast_node_free(child); return NULL; } __isl_give isl_ast_node *isl_ast_node_if_get_then( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not an if node", return NULL); return isl_ast_node_copy(node->u.i.then); } isl_bool isl_ast_node_if_has_else( __isl_keep isl_ast_node *node) { if (!node) return isl_bool_error; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not an if node", return isl_bool_error); return node->u.i.else_node != NULL; } __isl_give isl_ast_node *isl_ast_node_if_get_else( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not an if node", return NULL); return isl_ast_node_copy(node->u.i.else_node); } __isl_give isl_ast_expr *isl_ast_node_if_get_cond( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a guard node", return NULL); return isl_ast_expr_copy(node->u.i.guard); } __isl_give isl_ast_node_list *isl_ast_node_block_get_children( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_block) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a block node", return NULL); return isl_ast_node_list_copy(node->u.b.children); } __isl_give isl_ast_expr *isl_ast_node_user_get_expr( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_user) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a user node", return NULL); return isl_ast_expr_copy(node->u.e.expr); } /* Return the mark identifier of the mark node "node". */ __isl_give isl_id *isl_ast_node_mark_get_id(__isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_mark) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a mark node", return NULL); return isl_id_copy(node->u.m.mark); } /* Return the node marked by mark node "node". */ __isl_give isl_ast_node *isl_ast_node_mark_get_node( __isl_keep isl_ast_node *node) { if (!node) return NULL; if (node->type != isl_ast_node_mark) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a mark node", return NULL); return isl_ast_node_copy(node->u.m.node); } __isl_give isl_id *isl_ast_node_get_annotation(__isl_keep isl_ast_node *node) { return node ? isl_id_copy(node->annotation) : NULL; } /* Replace node->annotation by "annotation". */ __isl_give isl_ast_node *isl_ast_node_set_annotation( __isl_take isl_ast_node *node, __isl_take isl_id *annotation) { node = isl_ast_node_cow(node); if (!node || !annotation) goto error; isl_id_free(node->annotation); node->annotation = annotation; return node; error: isl_id_free(annotation); return isl_ast_node_free(node); } /* Textual C representation of the various operators. */ static char *op_str[] = { [isl_ast_op_and] = "&&", [isl_ast_op_and_then] = "&&", [isl_ast_op_or] = "||", [isl_ast_op_or_else] = "||", [isl_ast_op_max] = "max", [isl_ast_op_min] = "min", [isl_ast_op_minus] = "-", [isl_ast_op_add] = "+", [isl_ast_op_sub] = "-", [isl_ast_op_mul] = "*", [isl_ast_op_pdiv_q] = "/", [isl_ast_op_pdiv_r] = "%", [isl_ast_op_zdiv_r] = "%", [isl_ast_op_div] = "/", [isl_ast_op_eq] = "==", [isl_ast_op_le] = "<=", [isl_ast_op_ge] = ">=", [isl_ast_op_lt] = "<", [isl_ast_op_gt] = ">", [isl_ast_op_member] = ".", [isl_ast_op_address_of] = "&" }; /* Precedence in C of the various operators. * Based on http://en.wikipedia.org/wiki/Operators_in_C_and_C++ * Lowest value means highest precedence. */ static int op_prec[] = { [isl_ast_op_and] = 13, [isl_ast_op_and_then] = 13, [isl_ast_op_or] = 14, [isl_ast_op_or_else] = 14, [isl_ast_op_max] = 2, [isl_ast_op_min] = 2, [isl_ast_op_minus] = 3, [isl_ast_op_add] = 6, [isl_ast_op_sub] = 6, [isl_ast_op_mul] = 5, [isl_ast_op_div] = 5, [isl_ast_op_fdiv_q] = 2, [isl_ast_op_pdiv_q] = 5, [isl_ast_op_pdiv_r] = 5, [isl_ast_op_zdiv_r] = 5, [isl_ast_op_cond] = 15, [isl_ast_op_select] = 15, [isl_ast_op_eq] = 9, [isl_ast_op_le] = 8, [isl_ast_op_ge] = 8, [isl_ast_op_lt] = 8, [isl_ast_op_gt] = 8, [isl_ast_op_call] = 2, [isl_ast_op_access] = 2, [isl_ast_op_member] = 2, [isl_ast_op_address_of] = 3 }; /* Is the operator left-to-right associative? */ static int op_left[] = { [isl_ast_op_and] = 1, [isl_ast_op_and_then] = 1, [isl_ast_op_or] = 1, [isl_ast_op_or_else] = 1, [isl_ast_op_max] = 1, [isl_ast_op_min] = 1, [isl_ast_op_minus] = 0, [isl_ast_op_add] = 1, [isl_ast_op_sub] = 1, [isl_ast_op_mul] = 1, [isl_ast_op_div] = 1, [isl_ast_op_fdiv_q] = 1, [isl_ast_op_pdiv_q] = 1, [isl_ast_op_pdiv_r] = 1, [isl_ast_op_zdiv_r] = 1, [isl_ast_op_cond] = 0, [isl_ast_op_select] = 0, [isl_ast_op_eq] = 1, [isl_ast_op_le] = 1, [isl_ast_op_ge] = 1, [isl_ast_op_lt] = 1, [isl_ast_op_gt] = 1, [isl_ast_op_call] = 1, [isl_ast_op_access] = 1, [isl_ast_op_member] = 1, [isl_ast_op_address_of] = 0 }; static int is_and(enum isl_ast_op_type op) { return op == isl_ast_op_and || op == isl_ast_op_and_then; } static int is_or(enum isl_ast_op_type op) { return op == isl_ast_op_or || op == isl_ast_op_or_else; } static int is_add_sub(enum isl_ast_op_type op) { return op == isl_ast_op_add || op == isl_ast_op_sub; } static int is_div_mod(enum isl_ast_op_type op) { return op == isl_ast_op_div || op == isl_ast_op_pdiv_r || op == isl_ast_op_zdiv_r; } /* Do we need/want parentheses around "expr" as a subexpression of * an "op" operation? If "left" is set, then "expr" is the left-most * operand. * * We only need parentheses if "expr" represents an operation. * * If op has a higher precedence than expr->u.op.op, then we need * parentheses. * If op and expr->u.op.op have the same precedence, but the operations * are performed in an order that is different from the associativity, * then we need parentheses. * * An and inside an or technically does not require parentheses, * but some compilers complain about that, so we add them anyway. * * Computations such as "a / b * c" and "a % b + c" can be somewhat * difficult to read, so we add parentheses for those as well. */ static int sub_expr_need_parens(enum isl_ast_op_type op, __isl_keep isl_ast_expr *expr, int left) { if (expr->type != isl_ast_expr_op) return 0; if (op_prec[expr->u.op.op] > op_prec[op]) return 1; if (op_prec[expr->u.op.op] == op_prec[op] && left != op_left[op]) return 1; if (is_or(op) && is_and(expr->u.op.op)) return 1; if (op == isl_ast_op_mul && expr->u.op.op != isl_ast_op_mul && op_prec[expr->u.op.op] == op_prec[op]) return 1; if (is_add_sub(op) && is_div_mod(expr->u.op.op)) return 1; return 0; } /* Print "expr" as a subexpression of an "op" operation. * If "left" is set, then "expr" is the left-most operand. */ static __isl_give isl_printer *print_sub_expr(__isl_take isl_printer *p, enum isl_ast_op_type op, __isl_keep isl_ast_expr *expr, int left) { int need_parens; need_parens = sub_expr_need_parens(op, expr, left); if (need_parens) p = isl_printer_print_str(p, "("); p = isl_printer_print_ast_expr(p, expr); if (need_parens) p = isl_printer_print_str(p, ")"); return p; } /* Print a min or max reduction "expr". */ static __isl_give isl_printer *print_min_max(__isl_take isl_printer *p, __isl_keep isl_ast_expr *expr) { int i = 0; for (i = 1; i < expr->u.op.n_arg; ++i) { p = isl_printer_print_str(p, op_str[expr->u.op.op]); p = isl_printer_print_str(p, "("); } p = isl_printer_print_ast_expr(p, expr->u.op.args[0]); for (i = 1; i < expr->u.op.n_arg; ++i) { p = isl_printer_print_str(p, ", "); p = isl_printer_print_ast_expr(p, expr->u.op.args[i]); p = isl_printer_print_str(p, ")"); } return p; } /* Print a function call "expr". * * The first argument represents the function to be called. */ static __isl_give isl_printer *print_call(__isl_take isl_printer *p, __isl_keep isl_ast_expr *expr) { int i = 0; p = isl_printer_print_ast_expr(p, expr->u.op.args[0]); p = isl_printer_print_str(p, "("); for (i = 1; i < expr->u.op.n_arg; ++i) { if (i != 1) p = isl_printer_print_str(p, ", "); p = isl_printer_print_ast_expr(p, expr->u.op.args[i]); } p = isl_printer_print_str(p, ")"); return p; } /* Print an array access "expr". * * The first argument represents the array being accessed. */ static __isl_give isl_printer *print_access(__isl_take isl_printer *p, __isl_keep isl_ast_expr *expr) { int i = 0; p = isl_printer_print_ast_expr(p, expr->u.op.args[0]); for (i = 1; i < expr->u.op.n_arg; ++i) { p = isl_printer_print_str(p, "["); p = isl_printer_print_ast_expr(p, expr->u.op.args[i]); p = isl_printer_print_str(p, "]"); } return p; } /* Print "expr" to "p". * * If we are printing in isl format, then we also print an indication * of the size of the expression (if it was computed). */ __isl_give isl_printer *isl_printer_print_ast_expr(__isl_take isl_printer *p, __isl_keep isl_ast_expr *expr) { if (!p) return NULL; if (!expr) return isl_printer_free(p); switch (expr->type) { case isl_ast_expr_op: if (expr->u.op.op == isl_ast_op_call) { p = print_call(p, expr); break; } if (expr->u.op.op == isl_ast_op_access) { p = print_access(p, expr); break; } if (expr->u.op.n_arg == 1) { p = isl_printer_print_str(p, op_str[expr->u.op.op]); p = print_sub_expr(p, expr->u.op.op, expr->u.op.args[0], 0); break; } if (expr->u.op.op == isl_ast_op_fdiv_q) { p = isl_printer_print_str(p, "floord("); p = isl_printer_print_ast_expr(p, expr->u.op.args[0]); p = isl_printer_print_str(p, ", "); p = isl_printer_print_ast_expr(p, expr->u.op.args[1]); p = isl_printer_print_str(p, ")"); break; } if (expr->u.op.op == isl_ast_op_max || expr->u.op.op == isl_ast_op_min) { p = print_min_max(p, expr); break; } if (expr->u.op.op == isl_ast_op_cond || expr->u.op.op == isl_ast_op_select) { p = isl_printer_print_ast_expr(p, expr->u.op.args[0]); p = isl_printer_print_str(p, " ? "); p = isl_printer_print_ast_expr(p, expr->u.op.args[1]); p = isl_printer_print_str(p, " : "); p = isl_printer_print_ast_expr(p, expr->u.op.args[2]); break; } if (expr->u.op.n_arg != 2) isl_die(isl_printer_get_ctx(p), isl_error_internal, "operation should have two arguments", goto error); p = print_sub_expr(p, expr->u.op.op, expr->u.op.args[0], 1); if (expr->u.op.op != isl_ast_op_member) p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, op_str[expr->u.op.op]); if (expr->u.op.op != isl_ast_op_member) p = isl_printer_print_str(p, " "); p = print_sub_expr(p, expr->u.op.op, expr->u.op.args[1], 0); break; case isl_ast_expr_id: p = isl_printer_print_str(p, isl_id_get_name(expr->u.id)); break; case isl_ast_expr_int: p = isl_printer_print_val(p, expr->u.v); break; case isl_ast_expr_error: break; } return p; error: isl_printer_free(p); return NULL; } /* Print "node" to "p" in "isl format". */ static __isl_give isl_printer *print_ast_node_isl(__isl_take isl_printer *p, __isl_keep isl_ast_node *node) { p = isl_printer_print_str(p, "("); switch (node->type) { case isl_ast_node_for: if (node->u.f.degenerate) { p = isl_printer_print_ast_expr(p, node->u.f.init); } else { p = isl_printer_print_str(p, "init: "); p = isl_printer_print_ast_expr(p, node->u.f.init); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "cond: "); p = isl_printer_print_ast_expr(p, node->u.f.cond); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "inc: "); p = isl_printer_print_ast_expr(p, node->u.f.inc); } if (node->u.f.body) { p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "body: "); p = isl_printer_print_ast_node(p, node->u.f.body); } break; case isl_ast_node_mark: p = isl_printer_print_str(p, "mark: "); p = isl_printer_print_id(p, node->u.m.mark); p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "node: "); p = isl_printer_print_ast_node(p, node->u.m.node); case isl_ast_node_user: p = isl_printer_print_ast_expr(p, node->u.e.expr); break; case isl_ast_node_if: p = isl_printer_print_str(p, "guard: "); p = isl_printer_print_ast_expr(p, node->u.i.guard); if (node->u.i.then) { p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "then: "); p = isl_printer_print_ast_node(p, node->u.i.then); } if (node->u.i.else_node) { p = isl_printer_print_str(p, ", "); p = isl_printer_print_str(p, "else: "); p = isl_printer_print_ast_node(p, node->u.i.else_node); } break; case isl_ast_node_block: p = isl_printer_print_ast_node_list(p, node->u.b.children); break; case isl_ast_node_error: break; } p = isl_printer_print_str(p, ")"); return p; } /* Do we need to print a block around the body "node" of a for or if node? * * If the node is a block, then we need to print a block. * Also if the node is a degenerate for then we will print it as * an assignment followed by the body of the for loop, so we need a block * as well. * If the node is an if node with an else, then we print a block * to avoid spurious dangling else warnings emitted by some compilers. * If the node is a mark, then in principle, we would have to check * the child of the mark node. However, even if the child would not * require us to print a block, for readability it is probably best * to print a block anyway. * If the ast_always_print_block option has been set, then we print a block. */ static int need_block(__isl_keep isl_ast_node *node) { isl_ctx *ctx; if (node->type == isl_ast_node_block) return 1; if (node->type == isl_ast_node_for && node->u.f.degenerate) return 1; if (node->type == isl_ast_node_if && node->u.i.else_node) return 1; if (node->type == isl_ast_node_mark) return 1; ctx = isl_ast_node_get_ctx(node); return isl_options_get_ast_always_print_block(ctx); } static __isl_give isl_printer *print_ast_node_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_print_options *options, int in_block, int in_list); static __isl_give isl_printer *print_if_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_print_options *options, int new_line); /* Print the body "node" of a for or if node. * If "else_node" is set, then it is printed as well. * * We first check if we need to print out a block. * We always print out a block if there is an else node to make * sure that the else node is matched to the correct if node. * * If the else node is itself an if, then we print it as * * } else if (..) * * Otherwise the else node is printed as * * } else * node */ static __isl_give isl_printer *print_body_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_node *else_node, __isl_keep isl_ast_print_options *options) { if (!node) return isl_printer_free(p); if (!else_node && !need_block(node)) { p = isl_printer_end_line(p); p = isl_printer_indent(p, 2); p = isl_ast_node_print(node, p, isl_ast_print_options_copy(options)); p = isl_printer_indent(p, -2); return p; } p = isl_printer_print_str(p, " {"); p = isl_printer_end_line(p); p = isl_printer_indent(p, 2); p = print_ast_node_c(p, node, options, 1, 0); p = isl_printer_indent(p, -2); p = isl_printer_start_line(p); p = isl_printer_print_str(p, "}"); if (else_node) { if (else_node->type == isl_ast_node_if) { p = isl_printer_print_str(p, " else "); p = print_if_c(p, else_node, options, 0); } else { p = isl_printer_print_str(p, " else"); p = print_body_c(p, else_node, NULL, options); } } else p = isl_printer_end_line(p); return p; } /* Print the start of a compound statement. */ static __isl_give isl_printer *start_block(__isl_take isl_printer *p) { p = isl_printer_start_line(p); p = isl_printer_print_str(p, "{"); p = isl_printer_end_line(p); p = isl_printer_indent(p, 2); return p; } /* Print the end of a compound statement. */ static __isl_give isl_printer *end_block(__isl_take isl_printer *p) { p = isl_printer_indent(p, -2); p = isl_printer_start_line(p); p = isl_printer_print_str(p, "}"); p = isl_printer_end_line(p); return p; } /* Print the for node "node". * * If the for node is degenerate, it is printed as * * type iterator = init; * body * * Otherwise, it is printed as * * for (type iterator = init; cond; iterator += inc) * body * * "in_block" is set if we are currently inside a block. * "in_list" is set if the current node is not alone in the block. * If we are not in a block or if the current not is not alone in the block * then we print a block around a degenerate for loop such that the variable * declaration will not conflict with any potential other declaration * of the same variable. */ static __isl_give isl_printer *print_for_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_print_options *options, int in_block, int in_list) { isl_id *id; const char *name; const char *type; type = isl_options_get_ast_iterator_type(isl_printer_get_ctx(p)); if (!node->u.f.degenerate) { id = isl_ast_expr_get_id(node->u.f.iterator); name = isl_id_get_name(id); isl_id_free(id); p = isl_printer_start_line(p); p = isl_printer_print_str(p, "for ("); p = isl_printer_print_str(p, type); p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, name); p = isl_printer_print_str(p, " = "); p = isl_printer_print_ast_expr(p, node->u.f.init); p = isl_printer_print_str(p, "; "); p = isl_printer_print_ast_expr(p, node->u.f.cond); p = isl_printer_print_str(p, "; "); p = isl_printer_print_str(p, name); p = isl_printer_print_str(p, " += "); p = isl_printer_print_ast_expr(p, node->u.f.inc); p = isl_printer_print_str(p, ")"); p = print_body_c(p, node->u.f.body, NULL, options); } else { id = isl_ast_expr_get_id(node->u.f.iterator); name = isl_id_get_name(id); isl_id_free(id); if (!in_block || in_list) p = start_block(p); p = isl_printer_start_line(p); p = isl_printer_print_str(p, type); p = isl_printer_print_str(p, " "); p = isl_printer_print_str(p, name); p = isl_printer_print_str(p, " = "); p = isl_printer_print_ast_expr(p, node->u.f.init); p = isl_printer_print_str(p, ";"); p = isl_printer_end_line(p); p = print_ast_node_c(p, node->u.f.body, options, 1, 0); if (!in_block || in_list) p = end_block(p); } return p; } /* Print the if node "node". * If "new_line" is set then the if node should be printed on a new line. */ static __isl_give isl_printer *print_if_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_print_options *options, int new_line) { if (new_line) p = isl_printer_start_line(p); p = isl_printer_print_str(p, "if ("); p = isl_printer_print_ast_expr(p, node->u.i.guard); p = isl_printer_print_str(p, ")"); p = print_body_c(p, node->u.i.then, node->u.i.else_node, options); return p; } /* Print the "node" to "p". * * "in_block" is set if we are currently inside a block. * If so, we do not print a block around the children of a block node. * We do this to avoid an extra block around the body of a degenerate * for node. * * "in_list" is set if the current node is not alone in the block. */ static __isl_give isl_printer *print_ast_node_c(__isl_take isl_printer *p, __isl_keep isl_ast_node *node, __isl_keep isl_ast_print_options *options, int in_block, int in_list) { switch (node->type) { case isl_ast_node_for: if (options->print_for) return options->print_for(p, isl_ast_print_options_copy(options), node, options->print_for_user); p = print_for_c(p, node, options, in_block, in_list); break; case isl_ast_node_if: p = print_if_c(p, node, options, 1); break; case isl_ast_node_block: if (!in_block) p = start_block(p); p = isl_ast_node_list_print(node->u.b.children, p, options); if (!in_block) p = end_block(p); break; case isl_ast_node_mark: p = isl_printer_start_line(p); p = isl_printer_print_str(p, "// "); p = isl_printer_print_str(p, isl_id_get_name(node->u.m.mark)); p = isl_printer_end_line(p); p = print_ast_node_c(p, node->u.m.node, options, 0, in_list); break; case isl_ast_node_user: if (options->print_user) return options->print_user(p, isl_ast_print_options_copy(options), node, options->print_user_user); p = isl_printer_start_line(p); p = isl_printer_print_ast_expr(p, node->u.e.expr); p = isl_printer_print_str(p, ";"); p = isl_printer_end_line(p); break; case isl_ast_node_error: break; } return p; } /* Print the for node "node" to "p". */ __isl_give isl_printer *isl_ast_node_for_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options) { if (!node || !options) goto error; if (node->type != isl_ast_node_for) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not a for node", goto error); p = print_for_c(p, node, options, 0, 0); isl_ast_print_options_free(options); return p; error: isl_ast_print_options_free(options); isl_printer_free(p); return NULL; } /* Print the if node "node" to "p". */ __isl_give isl_printer *isl_ast_node_if_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options) { if (!node || !options) goto error; if (node->type != isl_ast_node_if) isl_die(isl_ast_node_get_ctx(node), isl_error_invalid, "not an if node", goto error); p = print_if_c(p, node, options, 1); isl_ast_print_options_free(options); return p; error: isl_ast_print_options_free(options); isl_printer_free(p); return NULL; } /* Print "node" to "p". */ __isl_give isl_printer *isl_ast_node_print(__isl_keep isl_ast_node *node, __isl_take isl_printer *p, __isl_take isl_ast_print_options *options) { if (!options || !node) goto error; p = print_ast_node_c(p, node, options, 0, 0); isl_ast_print_options_free(options); return p; error: isl_ast_print_options_free(options); isl_printer_free(p); return NULL; } /* Print "node" to "p". */ __isl_give isl_printer *isl_printer_print_ast_node(__isl_take isl_printer *p, __isl_keep isl_ast_node *node) { int format; isl_ast_print_options *options; if (!p) return NULL; format = isl_printer_get_output_format(p); switch (format) { case ISL_FORMAT_ISL: p = print_ast_node_isl(p, node); break; case ISL_FORMAT_C: options = isl_ast_print_options_alloc(isl_printer_get_ctx(p)); p = isl_ast_node_print(node, p, options); break; default: isl_die(isl_printer_get_ctx(p), isl_error_unsupported, "output format not supported for ast_node", return isl_printer_free(p)); } return p; } /* Print the list of nodes "list" to "p". */ __isl_give isl_printer *isl_ast_node_list_print( __isl_keep isl_ast_node_list *list, __isl_take isl_printer *p, __isl_keep isl_ast_print_options *options) { int i; if (!p || !list || !options) return isl_printer_free(p); for (i = 0; i < list->n; ++i) p = print_ast_node_c(p, list->p[i], options, 1, 1); return p; } #define ISL_AST_MACRO_FLOORD (1 << 0) #define ISL_AST_MACRO_MIN (1 << 1) #define ISL_AST_MACRO_MAX (1 << 2) #define ISL_AST_MACRO_ALL (ISL_AST_MACRO_FLOORD | \ ISL_AST_MACRO_MIN | \ ISL_AST_MACRO_MAX) /* If "expr" contains an isl_ast_op_min, isl_ast_op_max or isl_ast_op_fdiv_q * then set the corresponding bit in "macros". */ static int ast_expr_required_macros(__isl_keep isl_ast_expr *expr, int macros) { int i; if (macros == ISL_AST_MACRO_ALL) return macros; if (expr->type != isl_ast_expr_op) return macros; if (expr->u.op.op == isl_ast_op_min) macros |= ISL_AST_MACRO_MIN; if (expr->u.op.op == isl_ast_op_max) macros |= ISL_AST_MACRO_MAX; if (expr->u.op.op == isl_ast_op_fdiv_q) macros |= ISL_AST_MACRO_FLOORD; for (i = 0; i < expr->u.op.n_arg; ++i) macros = ast_expr_required_macros(expr->u.op.args[i], macros); return macros; } static int ast_node_list_required_macros(__isl_keep isl_ast_node_list *list, int macros); /* If "node" contains an isl_ast_op_min, isl_ast_op_max or isl_ast_op_fdiv_q * then set the corresponding bit in "macros". */ static int ast_node_required_macros(__isl_keep isl_ast_node *node, int macros) { if (macros == ISL_AST_MACRO_ALL) return macros; switch (node->type) { case isl_ast_node_for: macros = ast_expr_required_macros(node->u.f.init, macros); if (!node->u.f.degenerate) { macros = ast_expr_required_macros(node->u.f.cond, macros); macros = ast_expr_required_macros(node->u.f.inc, macros); } macros = ast_node_required_macros(node->u.f.body, macros); break; case isl_ast_node_if: macros = ast_expr_required_macros(node->u.i.guard, macros); macros = ast_node_required_macros(node->u.i.then, macros); if (node->u.i.else_node) macros = ast_node_required_macros(node->u.i.else_node, macros); break; case isl_ast_node_block: macros = ast_node_list_required_macros(node->u.b.children, macros); break; case isl_ast_node_mark: macros = ast_node_required_macros(node->u.m.node, macros); break; case isl_ast_node_user: macros = ast_expr_required_macros(node->u.e.expr, macros); break; case isl_ast_node_error: break; } return macros; } /* If "list" contains an isl_ast_op_min, isl_ast_op_max or isl_ast_op_fdiv_q * then set the corresponding bit in "macros". */ static int ast_node_list_required_macros(__isl_keep isl_ast_node_list *list, int macros) { int i; for (i = 0; i < list->n; ++i) macros = ast_node_required_macros(list->p[i], macros); return macros; } /* Print a macro definition for the operator "type". */ __isl_give isl_printer *isl_ast_op_type_print_macro( enum isl_ast_op_type type, __isl_take isl_printer *p) { switch (type) { case isl_ast_op_min: p = isl_printer_start_line(p); p = isl_printer_print_str(p, "#define min(x,y) ((x) < (y) ? (x) : (y))"); p = isl_printer_end_line(p); break; case isl_ast_op_max: p = isl_printer_start_line(p); p = isl_printer_print_str(p, "#define max(x,y) ((x) > (y) ? (x) : (y))"); p = isl_printer_end_line(p); break; case isl_ast_op_fdiv_q: p = isl_printer_start_line(p); p = isl_printer_print_str(p, "#define floord(n,d) " "(((n)<0) ? -((-(n)+(d)-1)/(d)) : (n)/(d))"); p = isl_printer_end_line(p); break; default: break; } return p; } /* Call "fn" for each type of operation that appears in "node" * and that requires a macro definition. */ isl_stat isl_ast_node_foreach_ast_op_type(__isl_keep isl_ast_node *node, isl_stat (*fn)(enum isl_ast_op_type type, void *user), void *user) { int macros; if (!node) return isl_stat_error; macros = ast_node_required_macros(node, 0); if (macros & ISL_AST_MACRO_MIN && fn(isl_ast_op_min, user) < 0) return isl_stat_error; if (macros & ISL_AST_MACRO_MAX && fn(isl_ast_op_max, user) < 0) return isl_stat_error; if (macros & ISL_AST_MACRO_FLOORD && fn(isl_ast_op_fdiv_q, user) < 0) return isl_stat_error; return isl_stat_ok; } static isl_stat ast_op_type_print_macro(enum isl_ast_op_type type, void *user) { isl_printer **p = user; *p = isl_ast_op_type_print_macro(type, *p); return isl_stat_ok; } /* Print macro definitions for all the macros used in the result * of printing "node. */ __isl_give isl_printer *isl_ast_node_print_macros( __isl_keep isl_ast_node *node, __isl_take isl_printer *p) { if (isl_ast_node_foreach_ast_op_type(node, &ast_op_type_print_macro, &p) < 0) return isl_printer_free(p); return p; } isl-0.16.1/isl_bernstein.h0000664000175000017500000000024312645737060012333 00000000000000#include int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound); isl-0.16.1/m4/0000775000175000017500000000000012645755104007722 500000000000000isl-0.16.1/m4/ax_c___attribute__.m40000664000175000017500000000476712645737061013715 00000000000000# =========================================================================== # http://www.gnu.org/software/autoconf-archive/ax_c___attribute__.html # =========================================================================== # # SYNOPSIS # # AX_C___ATTRIBUTE__ # # DESCRIPTION # # Provides a test for the compiler support of __attribute__ extensions. # Defines HAVE___ATTRIBUTE__ if it is found. # # LICENSE # # Copyright (c) 2008 Stepan Kasal # Copyright (c) 2008 Christian Haggstrom # Copyright (c) 2008 Ryan McCabe # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. #serial 8 AC_DEFUN([AX_C___ATTRIBUTE__], [ AC_CACHE_CHECK([for __attribute__], [ax_cv___attribute__], [AC_COMPILE_IFELSE( [AC_LANG_PROGRAM( [[#include static void foo(void) __attribute__ ((unused)); static void foo(void) { exit(1); } ]], [])], [ax_cv___attribute__=yes], [ax_cv___attribute__=no] ) ]) if test "$ax_cv___attribute__" = "yes"; then AC_DEFINE([HAVE___ATTRIBUTE__], 1, [define if your compiler has __attribute__]) fi ]) isl-0.16.1/m4/ax_compiler_vendor.m40000664000175000017500000000604612645737061013773 00000000000000# =========================================================================== # http://www.gnu.org/software/autoconf-archive/ax_compiler_vendor.html # =========================================================================== # # SYNOPSIS # # AX_COMPILER_VENDOR # # DESCRIPTION # # Determine the vendor of the C/C++ compiler, e.g., gnu, intel, ibm, sun, # hp, borland, comeau, dec, cray, kai, lcc, metrowerks, sgi, microsoft, # watcom, etc. The vendor is returned in the cache variable # $ax_cv_c_compiler_vendor for C and $ax_cv_cxx_compiler_vendor for C++. # # LICENSE # # Copyright (c) 2008 Steven G. Johnson # Copyright (c) 2008 Matteo Frigo # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. #serial 9 AC_DEFUN([AX_COMPILER_VENDOR], [ AC_CACHE_CHECK([for _AC_LANG compiler vendor], ax_cv_[]_AC_LANG_ABBREV[]_compiler_vendor, [ax_cv_[]_AC_LANG_ABBREV[]_compiler_vendor=unknown # note: don't check for gcc first since some other compilers define __GNUC__ for ventest in intel:__ICC,__ECC,__INTEL_COMPILER ibm:__xlc__,__xlC__,__IBMC__,__IBMCPP__ pathscale:__PATHCC__,__PATHSCALE__ clang:__clang__ gnu:__GNUC__ sun:__SUNPRO_C,__SUNPRO_CC hp:__HP_cc,__HP_aCC dec:__DECC,__DECCXX,__DECC_VER,__DECCXX_VER borland:__BORLANDC__,__TURBOC__ comeau:__COMO__ cray:_CRAYC kai:__KCC lcc:__LCC__ metrowerks:__MWERKS__ sgi:__sgi,sgi microsoft:_MSC_VER watcom:__WATCOMC__ portland:__PGI; do vencpp="defined("`echo $ventest | cut -d: -f2 | sed 's/,/) || defined(/g'`")" AC_COMPILE_IFELSE([AC_LANG_PROGRAM(,[ #if !($vencpp) thisisanerror; #endif ])], [ax_cv_]_AC_LANG_ABBREV[_compiler_vendor=`echo $ventest | cut -d: -f1`; break]) done ]) ]) isl-0.16.1/m4/ax_check_compiler_flags.m40000644000175000017500000000632311250757011014707 00000000000000# =========================================================================== # http://www.nongnu.org/autoconf-archive/ax_check_compiler_flags.html # =========================================================================== # # SYNOPSIS # # AX_CHECK_COMPILER_FLAGS(FLAGS, [ACTION-SUCCESS], [ACTION-FAILURE]) # # DESCRIPTION # # Check whether the given compiler FLAGS work with the current language's # compiler, or whether they give an error. (Warnings, however, are # ignored.) # # ACTION-SUCCESS/ACTION-FAILURE are shell commands to execute on # success/failure. # # LICENSE # # Copyright (c) 2009 Steven G. Johnson # Copyright (c) 2009 Matteo Frigo # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_CHECK_COMPILER_FLAGS], [AC_PREREQ(2.59) dnl for _AC_LANG_PREFIX AC_MSG_CHECKING([whether _AC_LANG compiler accepts $1]) dnl Some hackery here since AC_CACHE_VAL can't handle a non-literal varname: AS_LITERAL_IF([$1], [AC_CACHE_VAL(AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1]), [ ax_save_FLAGS=$[]_AC_LANG_PREFIX[]FLAGS _AC_LANG_PREFIX[]FLAGS="$1" AC_COMPILE_IFELSE([AC_LANG_PROGRAM()], AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1])=yes, AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1])=no) _AC_LANG_PREFIX[]FLAGS=$ax_save_FLAGS])], [ax_save_FLAGS=$[]_AC_LANG_PREFIX[]FLAGS _AC_LANG_PREFIX[]FLAGS="$1" AC_COMPILE_IFELSE([AC_LANG_PROGRAM()], eval AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1])=yes, eval AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1])=no) _AC_LANG_PREFIX[]FLAGS=$ax_save_FLAGS]) eval ax_check_compiler_flags=$AS_TR_SH(ax_cv_[]_AC_LANG_ABBREV[]_flags_[$1]) AC_MSG_RESULT($ax_check_compiler_flags) if test "x$ax_check_compiler_flags" = xyes; then m4_default([$2], :) else m4_default([$3], :) fi ])dnl AX_CHECK_COMPILER_FLAGS isl-0.16.1/m4/ltsugar.m40000644000175000017500000001044012423122120011536 00000000000000# ltsugar.m4 -- libtool m4 base layer. -*-Autoconf-*- # # Copyright (C) 2004-2005, 2007-2008, 2011-2013 Free Software # Foundation, Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 6 ltsugar.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTSUGAR_VERSION], [m4_if([0.1])]) # lt_join(SEP, ARG1, [ARG2...]) # ----------------------------- # Produce ARG1SEPARG2...SEPARGn, omitting [] arguments and their # associated separator. # Needed until we can rely on m4_join from Autoconf 2.62, since all earlier # versions in m4sugar had bugs. m4_define([lt_join], [m4_if([$#], [1], [], [$#], [2], [[$2]], [m4_if([$2], [], [], [[$2]_])$0([$1], m4_shift(m4_shift($@)))])]) m4_define([_lt_join], [m4_if([$#$2], [2], [], [m4_if([$2], [], [], [[$1$2]])$0([$1], m4_shift(m4_shift($@)))])]) # lt_car(LIST) # lt_cdr(LIST) # ------------ # Manipulate m4 lists. # These macros are necessary as long as will still need to support # Autoconf-2.59, which quotes differently. m4_define([lt_car], [[$1]]) m4_define([lt_cdr], [m4_if([$#], 0, [m4_fatal([$0: cannot be called without arguments])], [$#], 1, [], [m4_dquote(m4_shift($@))])]) m4_define([lt_unquote], $1) # lt_append(MACRO-NAME, STRING, [SEPARATOR]) # ------------------------------------------ # Redefine MACRO-NAME to hold its former content plus 'SEPARATOR''STRING'. # Note that neither SEPARATOR nor STRING are expanded; they are appended # to MACRO-NAME as is (leaving the expansion for when MACRO-NAME is invoked). # No SEPARATOR is output if MACRO-NAME was previously undefined (different # than defined and empty). # # This macro is needed until we can rely on Autoconf 2.62, since earlier # versions of m4sugar mistakenly expanded SEPARATOR but not STRING. m4_define([lt_append], [m4_define([$1], m4_ifdef([$1], [m4_defn([$1])[$3]])[$2])]) # lt_combine(SEP, PREFIX-LIST, INFIX, SUFFIX1, [SUFFIX2...]) # ---------------------------------------------------------- # Produce a SEP delimited list of all paired combinations of elements of # PREFIX-LIST with SUFFIX1 through SUFFIXn. Each element of the list # has the form PREFIXmINFIXSUFFIXn. # Needed until we can rely on m4_combine added in Autoconf 2.62. m4_define([lt_combine], [m4_if(m4_eval([$# > 3]), [1], [m4_pushdef([_Lt_sep], [m4_define([_Lt_sep], m4_defn([lt_car]))])]]dnl [[m4_foreach([_Lt_prefix], [$2], [m4_foreach([_Lt_suffix], ]m4_dquote(m4_dquote(m4_shift(m4_shift(m4_shift($@)))))[, [_Lt_sep([$1])[]m4_defn([_Lt_prefix])[$3]m4_defn([_Lt_suffix])])])])]) # lt_if_append_uniq(MACRO-NAME, VARNAME, [SEPARATOR], [UNIQ], [NOT-UNIQ]) # ----------------------------------------------------------------------- # Iff MACRO-NAME does not yet contain VARNAME, then append it (delimited # by SEPARATOR if supplied) and expand UNIQ, else NOT-UNIQ. m4_define([lt_if_append_uniq], [m4_ifdef([$1], [m4_if(m4_index([$3]m4_defn([$1])[$3], [$3$2$3]), [-1], [lt_append([$1], [$2], [$3])$4], [$5])], [lt_append([$1], [$2], [$3])$4])]) # lt_dict_add(DICT, KEY, VALUE) # ----------------------------- m4_define([lt_dict_add], [m4_define([$1($2)], [$3])]) # lt_dict_add_subkey(DICT, KEY, SUBKEY, VALUE) # -------------------------------------------- m4_define([lt_dict_add_subkey], [m4_define([$1($2:$3)], [$4])]) # lt_dict_fetch(DICT, KEY, [SUBKEY]) # ---------------------------------- m4_define([lt_dict_fetch], [m4_ifval([$3], m4_ifdef([$1($2:$3)], [m4_defn([$1($2:$3)])]), m4_ifdef([$1($2)], [m4_defn([$1($2)])]))]) # lt_if_dict_fetch(DICT, KEY, [SUBKEY], VALUE, IF-TRUE, [IF-FALSE]) # ----------------------------------------------------------------- m4_define([lt_if_dict_fetch], [m4_if(lt_dict_fetch([$1], [$2], [$3]), [$4], [$5], [$6])]) # lt_dict_filter(DICT, [SUBKEY], VALUE, [SEPARATOR], KEY, [...]) # -------------------------------------------------------------- m4_define([lt_dict_filter], [m4_if([$5], [], [], [lt_join(m4_quote(m4_default([$4], [[, ]])), lt_unquote(m4_split(m4_normalize(m4_foreach(_Lt_key, lt_car([m4_shiftn(4, $@)]), [lt_if_dict_fetch([$1], _Lt_key, [$2], [$3], [_Lt_key ])])))))])[]dnl ]) isl-0.16.1/m4/ax_detect_git_head.m40000664000175000017500000000175112645737061013676 00000000000000AC_DEFUN([AX_DETECT_GIT_HEAD], [ AC_SUBST(GIT_HEAD_ID) AC_SUBST(GIT_HEAD) AC_SUBST(GIT_HEAD_VERSION) if test -f $srcdir/.git; then gitdir=`GIT_DIR=$srcdir/.git git rev-parse --git-dir` GIT_HEAD="$gitdir/index" GIT_REPO="$gitdir" GIT_HEAD_ID=`GIT_DIR=$GIT_REPO git describe --always` elif test -f $srcdir/.git/HEAD; then GIT_HEAD="$srcdir/.git/index" GIT_REPO="$srcdir/.git" GIT_HEAD_ID=`GIT_DIR=$GIT_REPO git describe --always` elif test -f $srcdir/GIT_HEAD_ID; then GIT_HEAD_ID=`cat $srcdir/GIT_HEAD_ID` else mysrcdir=`(cd $srcdir; pwd)` head=`basename $mysrcdir | sed -e 's/.*-//'` head2=`echo $head | sed -e 's/[^0-9a-f]//'` head3=`echo $head2 | sed -e 's/........................................//'` if test "x$head3" = "x" -a "x$head" = "x$head2"; then GIT_HEAD_ID="$head" else GIT_HEAD_ID="UNKNOWN" fi fi if test -z "$GIT_REPO" ; then GIT_HEAD_VERSION="$GIT_HEAD_ID" else GIT_HEAD_VERSION="\`GIT_DIR=$GIT_REPO git describe --always\`" fi ]) isl-0.16.1/m4/ax_detect_gmp.m40000664000175000017500000000267312645737061012721 00000000000000AC_DEFUN([AX_DETECT_GMP], [ AC_DEFINE([USE_GMP_FOR_MP], [], [use gmp to implement isl_int]) AX_SUBMODULE(gmp,system|build,system) case "$with_gmp" in system) if test "x$with_gmp_prefix" != "x"; then isl_configure_args="$isl_configure_args --with-gmp=$with_gmp_prefix" MP_CPPFLAGS="-I$with_gmp_prefix/include" MP_LDFLAGS="-L$with_gmp_prefix/lib" fi MP_LIBS=-lgmp SAVE_CPPFLAGS="$CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" SAVE_LIBS="$LIBS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" LDFLAGS="$MP_LDFLAGS $LDFLAGS" LIBS="$MP_LIBS $LIBS" AC_CHECK_HEADER([gmp.h], [], [AC_ERROR([gmp.h header not found])]) AC_CHECK_LIB([gmp], [main], [], [AC_ERROR([gmp library not found])]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[#include ]], [[ mpz_t n, d; if (mpz_divisible_p(n, d)) mpz_divexact_ui(n, n, 4); ]])], [], [AC_ERROR([gmp library too old])]) CPPFLAGS="$SAVE_CPPFLAGS" LDFLAGS="$SAVE_LDFLAGS" LIBS="$SAVE_LIBS" ;; build) MP_CPPFLAGS="-I$gmp_srcdir -I$with_gmp_builddir" MP_LIBS="$with_gmp_builddir/libgmp.la" ;; esac SAVE_CPPFLAGS="$CPPFLAGS" SAVE_LDFLAGS="$LDFLAGS" SAVE_LIBS="$LIBS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" LDFLAGS="$MP_LDFLAGS $LDFLAGS" LIBS="$MP_LIBS $LIBS" need_get_memory_functions=false AC_CHECK_DECLS(mp_get_memory_functions,[],[ need_get_memory_functions=true ],[#include ]) CPPFLAGS="$SAVE_CPPFLAGS" LDFLAGS="$SAVE_LDFLAGS" LIBS="$SAVE_LIBS" AM_CONDITIONAL(NEED_GET_MEMORY_FUNCTIONS, test x$need_get_memory_functions = xtrue) ]) isl-0.16.1/m4/ax_create_stdint_h.m40000644000175000017500000006202011250757011013717 00000000000000# =========================================================================== # http://autoconf-archive.cryp.to/ax_create_stdint_h.html # =========================================================================== # # SYNOPSIS # # AX_CREATE_STDINT_H [( HEADER-TO-GENERATE [, HEDERS-TO-CHECK])] # # DESCRIPTION # # the "ISO C9X: 7.18 Integer types " section requires the # existence of an include file that defines a set of typedefs, # especially uint8_t,int32_t,uintptr_t. Many older installations will not # provide this file, but some will have the very same definitions in # . In other enviroments we can use the inet-types in # which would define the typedefs int8_t and u_int8_t # respectivly. # # This macros will create a local "_stdint.h" or the headerfile given as # an argument. In many cases that file will just "#include " or # "#include ", while in other environments it will provide the # set of basic 'stdint's definitions/typedefs: # # int8_t,uint8_t,int16_t,uint16_t,int32_t,uint32_t,intptr_t,uintptr_t # int_least32_t.. int_fast32_t.. intmax_t # # which may or may not rely on the definitions of other files, or using # the AC_CHECK_SIZEOF macro to determine the actual sizeof each type. # # if your header files require the stdint-types you will want to create an # installable file mylib-int.h that all your other installable header may # include. So if you have a library package named "mylib", just use # # AX_CREATE_STDINT_H(mylib-int.h) # # in configure.ac and go to install that very header file in Makefile.am # along with the other headers (mylib.h) - and the mylib-specific headers # can simply use "#include " to obtain the stdint-types. # # Remember, if the system already had a valid , the generated # file will include it directly. No need for fuzzy HAVE_STDINT_H things... # (oops, GCC 4.2.x has deliberatly disabled its stdint.h for non-c99 # compilation and the c99-mode is not the default. Therefore this macro # will not use the compiler's stdint.h - please complain to the GCC # developers). # # LAST MODIFICATION # # 2008-04-12 # # COPYLEFT # # Copyright (c) 2008 Guido U. Draheim # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Macro Archive. When you make and # distribute a modified version of the Autoconf Macro, you may extend this # special exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_CHECK_DATA_MODEL],[ AC_CHECK_SIZEOF(char) AC_CHECK_SIZEOF(short) AC_CHECK_SIZEOF(int) AC_CHECK_SIZEOF(long) AC_CHECK_SIZEOF(void*) ac_cv_char_data_model="" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_char" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_short" ac_cv_char_data_model="$ac_cv_char_data_model$ac_cv_sizeof_int" ac_cv_long_data_model="" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_int" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_long" ac_cv_long_data_model="$ac_cv_long_data_model$ac_cv_sizeof_voidp" AC_MSG_CHECKING([data model]) case "$ac_cv_char_data_model/$ac_cv_long_data_model" in 122/242) ac_cv_data_model="IP16" ; n="standard 16bit machine" ;; 122/244) ac_cv_data_model="LP32" ; n="standard 32bit machine" ;; 122/*) ac_cv_data_model="i16" ; n="unusual int16 model" ;; 124/444) ac_cv_data_model="ILP32" ; n="standard 32bit unixish" ;; 124/488) ac_cv_data_model="LP64" ; n="standard 64bit unixish" ;; 124/448) ac_cv_data_model="LLP64" ; n="unusual 64bit unixish" ;; 124/*) ac_cv_data_model="i32" ; n="unusual int32 model" ;; 128/888) ac_cv_data_model="ILP64" ; n="unusual 64bit numeric" ;; 128/*) ac_cv_data_model="i64" ; n="unusual int64 model" ;; 222/*2) ac_cv_data_model="DSP16" ; n="strict 16bit dsptype" ;; 333/*3) ac_cv_data_model="DSP24" ; n="strict 24bit dsptype" ;; 444/*4) ac_cv_data_model="DSP32" ; n="strict 32bit dsptype" ;; 666/*6) ac_cv_data_model="DSP48" ; n="strict 48bit dsptype" ;; 888/*8) ac_cv_data_model="DSP64" ; n="strict 64bit dsptype" ;; 222/*|333/*|444/*|666/*|888/*) : ac_cv_data_model="iDSP" ; n="unusual dsptype" ;; *) ac_cv_data_model="none" ; n="very unusual model" ;; esac AC_MSG_RESULT([$ac_cv_data_model ($ac_cv_long_data_model, $n)]) ]) dnl AX_CHECK_HEADER_STDINT_X([HEADERLIST][,ACTION-IF]) AC_DEFUN([AX_CHECK_HEADER_STDINT_X],[ AC_CACHE_CHECK([for stdint uintptr_t], [ac_cv_header_stdint_x],[ ac_cv_header_stdint_x="" # the 1997 typedefs (inttypes.h) AC_MSG_RESULT([(..)]) for i in m4_ifval([$1],[$1],[stdint.h inttypes.h sys/inttypes.h sys/types.h]) do unset ac_cv_type_uintptr_t unset ac_cv_type_uint64_t AC_CHECK_TYPE(uintptr_t,[ac_cv_header_stdint_x=$i],continue,[#include <$i>]) AC_CHECK_TYPE(uint64_t,[and64="/uint64_t"],[and64=""],[#include<$i>]) m4_ifvaln([$2],[$2]) break done AC_MSG_CHECKING([for stdint uintptr_t]) ]) ]) AC_DEFUN([AX_CHECK_HEADER_STDINT_O],[ AC_CACHE_CHECK([for stdint uint32_t], [ac_cv_header_stdint_o],[ ac_cv_header_stdint_o="" # the 1995 typedefs (sys/inttypes.h) AC_MSG_RESULT([(..)]) for i in m4_ifval([$1],[$1],[inttypes.h sys/inttypes.h sys/types.h stdint.h]) do unset ac_cv_type_uint32_t unset ac_cv_type_uint64_t AC_CHECK_TYPE(uint32_t,[ac_cv_header_stdint_o=$i],continue,[#include <$i>]) AC_CHECK_TYPE(uint64_t,[and64="/uint64_t"],[and64=""],[#include<$i>]) m4_ifvaln([$2],[$2]) break break; done AC_MSG_CHECKING([for stdint uint32_t]) ]) ]) AC_DEFUN([AX_CHECK_HEADER_STDINT_U],[ AC_CACHE_CHECK([for stdint u_int32_t], [ac_cv_header_stdint_u],[ ac_cv_header_stdint_u="" # the BSD typedefs (sys/types.h) AC_MSG_RESULT([(..)]) for i in m4_ifval([$1],[$1],[sys/types.h inttypes.h sys/inttypes.h]) ; do unset ac_cv_type_u_int32_t unset ac_cv_type_u_int64_t AC_CHECK_TYPE(u_int32_t,[ac_cv_header_stdint_u=$i],continue,[#include <$i>]) AC_CHECK_TYPE(u_int64_t,[and64="/u_int64_t"],[and64=""],[#include<$i>]) m4_ifvaln([$2],[$2]) break break; done AC_MSG_CHECKING([for stdint u_int32_t]) ]) ]) AC_DEFUN([AX_CREATE_STDINT_H], [# ------ AX CREATE STDINT H ------------------------------------- AC_MSG_CHECKING([for stdint types]) ac_stdint_h=`echo ifelse($1, , _stdint.h, $1)` # try to shortcircuit - if the default include path of the compiler # can find a "stdint.h" header then we assume that all compilers can. AC_CACHE_VAL([ac_cv_header_stdint_t],[ old_CXXFLAGS="$CXXFLAGS" ; CXXFLAGS="" old_CPPFLAGS="$CPPFLAGS" ; CPPFLAGS="" old_CFLAGS="$CFLAGS" ; CFLAGS="" AC_TRY_COMPILE([#include ],[int_least32_t v = 0;], [ac_cv_stdint_result="(assuming C99 compatible system)" ac_cv_header_stdint_t="stdint.h"; ], [ac_cv_header_stdint_t=""]) if test "$GCC" = "yes" && test ".$ac_cv_header_stdint_t" = "."; then CFLAGS="-std=c99" AC_TRY_COMPILE([#include ],[int_least32_t v = 0;], [AC_MSG_WARN(your GCC compiler has a defunct stdint.h for its default-mode)]) fi CXXFLAGS="$old_CXXFLAGS" CPPFLAGS="$old_CPPFLAGS" CFLAGS="$old_CFLAGS" ]) v="... $ac_cv_header_stdint_h" if test "$ac_stdint_h" = "stdint.h" ; then AC_MSG_RESULT([(are you sure you want them in ./stdint.h?)]) elif test "$ac_stdint_h" = "inttypes.h" ; then AC_MSG_RESULT([(are you sure you want them in ./inttypes.h?)]) elif test "_$ac_cv_header_stdint_t" = "_" ; then AC_MSG_RESULT([(putting them into $ac_stdint_h)$v]) else ac_cv_header_stdint="$ac_cv_header_stdint_t" AC_MSG_RESULT([$ac_cv_header_stdint (shortcircuit)]) fi if test "_$ac_cv_header_stdint_t" = "_" ; then # can not shortcircuit.. dnl .....intro message done, now do a few system checks..... dnl btw, all old CHECK_TYPE macros do automatically "DEFINE" a type, dnl therefore we use the autoconf implementation detail CHECK_TYPE_NEW dnl instead that is triggered with 3 or more arguments (see types.m4) inttype_headers=`echo $2 | sed -e 's/,/ /g'` ac_cv_stdint_result="(no helpful system typedefs seen)" AX_CHECK_HEADER_STDINT_X(dnl stdint.h inttypes.h sys/inttypes.h $inttype_headers, ac_cv_stdint_result="(seen uintptr_t$and64 in $i)") if test "_$ac_cv_header_stdint_x" = "_" ; then AX_CHECK_HEADER_STDINT_O(dnl, inttypes.h sys/inttypes.h stdint.h $inttype_headers, ac_cv_stdint_result="(seen uint32_t$and64 in $i)") fi if test "_$ac_cv_header_stdint_x" = "_" ; then if test "_$ac_cv_header_stdint_o" = "_" ; then AX_CHECK_HEADER_STDINT_U(dnl, sys/types.h inttypes.h sys/inttypes.h $inttype_headers, ac_cv_stdint_result="(seen u_int32_t$and64 in $i)") fi fi dnl if there was no good C99 header file, do some typedef checks... if test "_$ac_cv_header_stdint_x" = "_" ; then AC_MSG_CHECKING([for stdint datatype model]) AC_MSG_RESULT([(..)]) AX_CHECK_DATA_MODEL fi if test "_$ac_cv_header_stdint_x" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_x" elif test "_$ac_cv_header_stdint_o" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_o" elif test "_$ac_cv_header_stdint_u" != "_" ; then ac_cv_header_stdint="$ac_cv_header_stdint_u" else ac_cv_header_stdint="stddef.h" fi AC_MSG_CHECKING([for extra inttypes in chosen header]) AC_MSG_RESULT([($ac_cv_header_stdint)]) dnl see if int_least and int_fast types are present in _this_ header. unset ac_cv_type_int_least32_t unset ac_cv_type_int_fast32_t AC_CHECK_TYPE(int_least32_t,,,[#include <$ac_cv_header_stdint>]) AC_CHECK_TYPE(int_fast32_t,,,[#include<$ac_cv_header_stdint>]) AC_CHECK_TYPE(intmax_t,,,[#include <$ac_cv_header_stdint>]) fi # shortcircut to system "stdint.h" # ------------------ PREPARE VARIABLES ------------------------------ if test "$GCC" = "yes" ; then ac_cv_stdint_message="using gnu compiler "`$CC --version | head -1` else ac_cv_stdint_message="using $CC" fi AC_MSG_RESULT([make use of $ac_cv_header_stdint in $ac_stdint_h dnl $ac_cv_stdint_result]) dnl ----------------------------------------------------------------- # ----------------- DONE inttypes.h checks START header ------------- AC_CONFIG_COMMANDS([$ac_stdint_h],[ AC_MSG_NOTICE(creating $ac_stdint_h : $_ac_stdint_h) ac_stdint=$tmp/_stdint.h echo "#ifndef" $_ac_stdint_h >$ac_stdint echo "#define" $_ac_stdint_h "1" >>$ac_stdint echo "#ifndef" _GENERATED_STDINT_H >>$ac_stdint echo "#define" _GENERATED_STDINT_H '"'$PACKAGE $VERSION'"' >>$ac_stdint echo "/* generated $ac_cv_stdint_message */" >>$ac_stdint if test "_$ac_cv_header_stdint_t" != "_" ; then echo "#define _STDINT_HAVE_STDINT_H" "1" >>$ac_stdint echo "#include " >>$ac_stdint echo "#endif" >>$ac_stdint echo "#endif" >>$ac_stdint else cat >>$ac_stdint < #else #include /* .................... configured part ............................ */ STDINT_EOF echo "/* whether we have a C99 compatible stdint header file */" >>$ac_stdint if test "_$ac_cv_header_stdint_x" != "_" ; then ac_header="$ac_cv_header_stdint_x" echo "#define _STDINT_HEADER_INTPTR" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_INTPTR */" >>$ac_stdint fi echo "/* whether we have a C96 compatible inttypes header file */" >>$ac_stdint if test "_$ac_cv_header_stdint_o" != "_" ; then ac_header="$ac_cv_header_stdint_o" echo "#define _STDINT_HEADER_UINT32" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_UINT32 */" >>$ac_stdint fi echo "/* whether we have a BSD compatible inet types header */" >>$ac_stdint if test "_$ac_cv_header_stdint_u" != "_" ; then ac_header="$ac_cv_header_stdint_u" echo "#define _STDINT_HEADER_U_INT32" '"'"$ac_header"'"' >>$ac_stdint else echo "/* #undef _STDINT_HEADER_U_INT32 */" >>$ac_stdint fi echo "" >>$ac_stdint if test "_$ac_header" != "_" ; then if test "$ac_header" != "stddef.h" ; then echo "#include <$ac_header>" >>$ac_stdint echo "" >>$ac_stdint fi fi echo "/* which 64bit typedef has been found */" >>$ac_stdint if test "$ac_cv_type_uint64_t" = "yes" ; then echo "#define _STDINT_HAVE_UINT64_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_UINT64_T */" >>$ac_stdint fi if test "$ac_cv_type_u_int64_t" = "yes" ; then echo "#define _STDINT_HAVE_U_INT64_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_U_INT64_T */" >>$ac_stdint fi echo "" >>$ac_stdint echo "/* which type model has been detected */" >>$ac_stdint if test "_$ac_cv_char_data_model" != "_" ; then echo "#define _STDINT_CHAR_MODEL" "$ac_cv_char_data_model" >>$ac_stdint echo "#define _STDINT_LONG_MODEL" "$ac_cv_long_data_model" >>$ac_stdint else echo "/* #undef _STDINT_CHAR_MODEL // skipped */" >>$ac_stdint echo "/* #undef _STDINT_LONG_MODEL // skipped */" >>$ac_stdint fi echo "" >>$ac_stdint echo "/* whether int_least types were detected */" >>$ac_stdint if test "$ac_cv_type_int_least32_t" = "yes"; then echo "#define _STDINT_HAVE_INT_LEAST32_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INT_LEAST32_T */" >>$ac_stdint fi echo "/* whether int_fast types were detected */" >>$ac_stdint if test "$ac_cv_type_int_fast32_t" = "yes"; then echo "#define _STDINT_HAVE_INT_FAST32_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INT_FAST32_T */" >>$ac_stdint fi echo "/* whether intmax_t type was detected */" >>$ac_stdint if test "$ac_cv_type_intmax_t" = "yes"; then echo "#define _STDINT_HAVE_INTMAX_T" "1" >>$ac_stdint else echo "/* #undef _STDINT_HAVE_INTMAX_T */" >>$ac_stdint fi echo "" >>$ac_stdint cat >>$ac_stdint <= 199901L #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef long long int64_t; typedef unsigned long long uint64_t; #elif !defined __STRICT_ANSI__ #if defined _MSC_VER || defined __WATCOMC__ || defined __BORLANDC__ #define _HAVE_UINT64_T typedef __int64 int64_t; typedef unsigned __int64 uint64_t; #elif defined __GNUC__ || defined __MWERKS__ || defined __ELF__ /* note: all ELF-systems seem to have loff-support which needs 64-bit */ #if !defined _NO_LONGLONG #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef long long int64_t; typedef unsigned long long uint64_t; #endif #elif defined __alpha || (defined __mips && defined _ABIN32) #if !defined _NO_LONGLONG typedef long int64_t; typedef unsigned long uint64_t; #endif /* compiler/cpu type to define int64_t */ #endif #endif #endif #if defined _STDINT_HAVE_U_INT_TYPES /* int8_t int16_t int32_t defined by inet code, redeclare the u_intXX types */ typedef u_int8_t uint8_t; typedef u_int16_t uint16_t; typedef u_int32_t uint32_t; /* glibc compatibility */ #ifndef __int8_t_defined #define __int8_t_defined #endif #endif #ifdef _STDINT_NEED_INT_MODEL_T /* we must guess all the basic types. Apart from byte-adressable system, */ /* there a few 32-bit-only dsp-systems that we guard with BYTE_MODEL 8-} */ /* (btw, those nibble-addressable systems are way off, or so we assume) */ dnl /* have a look at "64bit and data size neutrality" at */ dnl /* http://unix.org/version2/whatsnew/login_64bit.html */ dnl /* (the shorthand "ILP" types always have a "P" part) */ #if defined _STDINT_BYTE_MODEL #if _STDINT_LONG_MODEL+0 == 242 /* 2:4:2 = IP16 = a normal 16-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned long uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef long int32_t; #endif #elif _STDINT_LONG_MODEL+0 == 244 || _STDINT_LONG_MODEL == 444 /* 2:4:4 = LP32 = a 32-bit system derived from a 16-bit */ /* 4:4:4 = ILP32 = a normal 32-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif #elif _STDINT_LONG_MODEL+0 == 484 || _STDINT_LONG_MODEL+0 == 488 /* 4:8:4 = IP32 = a 32-bit system prepared for 64-bit */ /* 4:8:8 = LP64 = a normal 64-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif /* this system has a "long" of 64bit */ #ifndef _HAVE_UINT64_T #define _HAVE_UINT64_T typedef unsigned long uint64_t; typedef long int64_t; #endif #elif _STDINT_LONG_MODEL+0 == 448 /* LLP64 a 64-bit system derived from a 32-bit system */ typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int uint32_t; #ifndef __int8_t_defined #define __int8_t_defined typedef char int8_t; typedef short int16_t; typedef int int32_t; #endif /* assuming the system has a "long long" */ #ifndef _HAVE_UINT64_T #define _HAVE_UINT64_T #define _HAVE_LONGLONG_UINT64_T typedef unsigned long long uint64_t; typedef long long int64_t; #endif #else #define _STDINT_NO_INT32_T #endif #else #define _STDINT_NO_INT8_T #define _STDINT_NO_INT32_T #endif #endif /* * quote from SunOS-5.8 sys/inttypes.h: * Use at your own risk. As of February 1996, the committee is squarely * behind the fixed sized types; the "least" and "fast" types are still being * discussed. The probability that the "fast" types may be removed before * the standard is finalized is high enough that they are not currently * implemented. */ #if defined _STDINT_NEED_INT_LEAST_T typedef int8_t int_least8_t; typedef int16_t int_least16_t; typedef int32_t int_least32_t; #ifdef _HAVE_UINT64_T typedef int64_t int_least64_t; #endif typedef uint8_t uint_least8_t; typedef uint16_t uint_least16_t; typedef uint32_t uint_least32_t; #ifdef _HAVE_UINT64_T typedef uint64_t uint_least64_t; #endif /* least types */ #endif #if defined _STDINT_NEED_INT_FAST_T typedef int8_t int_fast8_t; typedef int int_fast16_t; typedef int32_t int_fast32_t; #ifdef _HAVE_UINT64_T typedef int64_t int_fast64_t; #endif typedef uint8_t uint_fast8_t; typedef unsigned uint_fast16_t; typedef uint32_t uint_fast32_t; #ifdef _HAVE_UINT64_T typedef uint64_t uint_fast64_t; #endif /* fast types */ #endif #ifdef _STDINT_NEED_INTMAX_T #ifdef _HAVE_UINT64_T typedef int64_t intmax_t; typedef uint64_t uintmax_t; #else typedef long intmax_t; typedef unsigned long uintmax_t; #endif #endif #ifdef _STDINT_NEED_INTPTR_T #ifndef __intptr_t_defined #define __intptr_t_defined /* we encourage using "long" to store pointer values, never use "int" ! */ #if _STDINT_LONG_MODEL+0 == 242 || _STDINT_LONG_MODEL+0 == 484 typedef unsigned int uintptr_t; typedef int intptr_t; #elif _STDINT_LONG_MODEL+0 == 244 || _STDINT_LONG_MODEL+0 == 444 typedef unsigned long uintptr_t; typedef long intptr_t; #elif _STDINT_LONG_MODEL+0 == 448 && defined _HAVE_UINT64_T typedef uint64_t uintptr_t; typedef int64_t intptr_t; #else /* matches typical system types ILP32 and LP64 - but not IP16 or LLP64 */ typedef unsigned long uintptr_t; typedef long intptr_t; #endif #endif #endif /* The ISO C99 standard specifies that in C++ implementations these should only be defined if explicitly requested. */ #if !defined __cplusplus || defined __STDC_CONSTANT_MACROS #ifndef UINT32_C /* Signed. */ # define INT8_C(c) c # define INT16_C(c) c # define INT32_C(c) c # ifdef _HAVE_LONGLONG_UINT64_T # define INT64_C(c) c ## L # else # define INT64_C(c) c ## LL # endif /* Unsigned. */ # define UINT8_C(c) c ## U # define UINT16_C(c) c ## U # define UINT32_C(c) c ## U # ifdef _HAVE_LONGLONG_UINT64_T # define UINT64_C(c) c ## UL # else # define UINT64_C(c) c ## ULL # endif /* Maximal type. */ # ifdef _HAVE_LONGLONG_UINT64_T # define INTMAX_C(c) c ## L # define UINTMAX_C(c) c ## UL # else # define INTMAX_C(c) c ## LL # define UINTMAX_C(c) c ## ULL # endif /* literalnumbers */ #endif #endif /* These limits are merily those of a two complement byte-oriented system */ /* Minimum of signed integral types. */ # define INT8_MIN (-128) # define INT16_MIN (-32767-1) # define INT32_MIN (-2147483647-1) #ifndef INT64_MIN # define INT64_MIN (-__INT64_C(9223372036854775807)-1) #endif /* Maximum of signed integral types. */ # define INT8_MAX (127) # define INT16_MAX (32767) # define INT32_MAX (2147483647) #ifndef INT64_MAX # define INT64_MAX (__INT64_C(9223372036854775807)) #endif /* Maximum of unsigned integral types. */ #ifndef UINT8_MAX # define UINT8_MAX (255) #endif #ifndef UINT16_MAX # define UINT16_MAX (65535) #endif # define UINT32_MAX (4294967295U) #ifndef UINT64_MAX # define UINT64_MAX (__UINT64_C(18446744073709551615)) #endif /* Minimum of signed integral types having a minimum size. */ # define INT_LEAST8_MIN INT8_MIN # define INT_LEAST16_MIN INT16_MIN # define INT_LEAST32_MIN INT32_MIN # define INT_LEAST64_MIN INT64_MIN /* Maximum of signed integral types having a minimum size. */ # define INT_LEAST8_MAX INT8_MAX # define INT_LEAST16_MAX INT16_MAX # define INT_LEAST32_MAX INT32_MAX # define INT_LEAST64_MAX INT64_MAX /* Maximum of unsigned integral types having a minimum size. */ # define UINT_LEAST8_MAX UINT8_MAX # define UINT_LEAST16_MAX UINT16_MAX # define UINT_LEAST32_MAX UINT32_MAX # define UINT_LEAST64_MAX UINT64_MAX /* shortcircuit*/ #endif /* once */ #endif #endif STDINT_EOF fi if cmp -s $ac_stdint_h $ac_stdint 2>/dev/null; then AC_MSG_NOTICE([$ac_stdint_h is unchanged]) else ac_dir=`AS_DIRNAME(["$ac_stdint_h"])` AS_MKDIR_P(["$ac_dir"]) rm -f $ac_stdint_h mv $ac_stdint $ac_stdint_h fi ],[# variables for create stdint.h replacement PACKAGE="$PACKAGE" VERSION="$VERSION" ac_stdint_h="$ac_stdint_h" _ac_stdint_h=AS_TR_CPP(_$PACKAGE-$ac_stdint_h) ac_cv_stdint_message="$ac_cv_stdint_message" ac_cv_header_stdint_t="$ac_cv_header_stdint_t" ac_cv_header_stdint_x="$ac_cv_header_stdint_x" ac_cv_header_stdint_o="$ac_cv_header_stdint_o" ac_cv_header_stdint_u="$ac_cv_header_stdint_u" ac_cv_type_uint64_t="$ac_cv_type_uint64_t" ac_cv_type_u_int64_t="$ac_cv_type_u_int64_t" ac_cv_char_data_model="$ac_cv_char_data_model" ac_cv_long_data_model="$ac_cv_long_data_model" ac_cv_type_int_least32_t="$ac_cv_type_int_least32_t" ac_cv_type_int_fast32_t="$ac_cv_type_int_fast32_t" ac_cv_type_intmax_t="$ac_cv_type_intmax_t" ]) ]) isl-0.16.1/m4/libtool.m40000644000175000017500000105432112423122120011530 00000000000000# libtool.m4 - Configure libtool for the host system. -*-Autoconf-*- # # Copyright (C) 1996-2001, 2003-2013 Free Software Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. m4_define([_LT_COPYING], [dnl # Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, # 2006, 2007, 2008, 2009, 2010, 2011 Free Software # Foundation, Inc. # Written by Gordon Matzigkeit, 1996 # # This file is part of GNU Libtool. # # GNU Libtool is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # # As a special exception to the GNU General Public License, # if you distribute this file as part of a program or library that # is built using GNU Libtool, you may include this file under the # same distribution terms that you use for the rest of that program. # # GNU Libtool is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Libtool; see the file COPYING. If not, a copy # can be downloaded from http://www.gnu.org/licenses/gpl.html, or # obtained by writing to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. ]) # serial 58 LT_INIT # LT_PREREQ(VERSION) # ------------------ # Complain and exit if this libtool version is less that VERSION. m4_defun([LT_PREREQ], [m4_if(m4_version_compare(m4_defn([LT_PACKAGE_VERSION]), [$1]), -1, [m4_default([$3], [m4_fatal([Libtool version $1 or higher is required], 63)])], [$2])]) # _LT_CHECK_BUILDDIR # ------------------ # Complain if the absolute build directory name contains unusual characters m4_defun([_LT_CHECK_BUILDDIR], [case `pwd` in *\ * | *\ *) AC_MSG_WARN([Libtool does not cope well with whitespace in `pwd`]) ;; esac ]) # LT_INIT([OPTIONS]) # ------------------ AC_DEFUN([LT_INIT], [AC_PREREQ([2.58])dnl We use AC_INCLUDES_DEFAULT AC_REQUIRE([AC_CONFIG_AUX_DIR_DEFAULT])dnl AC_BEFORE([$0], [LT_LANG])dnl AC_BEFORE([$0], [LT_OUTPUT])dnl AC_BEFORE([$0], [LTDL_INIT])dnl m4_require([_LT_CHECK_BUILDDIR])dnl dnl Autoconf doesn't catch unexpanded LT_ macros by default: m4_pattern_forbid([^_?LT_[A-Z_]+$])dnl m4_pattern_allow([^(_LT_EOF|LT_DLGLOBAL|LT_DLLAZY_OR_NOW|LT_MULTI_MODULE)$])dnl dnl aclocal doesn't pull ltoptions.m4, ltsugar.m4, or ltversion.m4 dnl unless we require an AC_DEFUNed macro: AC_REQUIRE([LTOPTIONS_VERSION])dnl AC_REQUIRE([LTSUGAR_VERSION])dnl AC_REQUIRE([LTVERSION_VERSION])dnl AC_REQUIRE([LTOBSOLETE_VERSION])dnl m4_require([_LT_PROG_LTMAIN])dnl _LT_SHELL_INIT([SHELL=${CONFIG_SHELL-/bin/sh}]) dnl Parse OPTIONS _LT_SET_OPTIONS([$0], [$1]) # This can be used to rebuild libtool when needed LIBTOOL_DEPS=$ltmain # Always use our own libtool. LIBTOOL='$(SHELL) $(top_builddir)/libtool' AC_SUBST(LIBTOOL)dnl _LT_SETUP # Only expand once: m4_define([LT_INIT]) ])# LT_INIT # Old names: AU_ALIAS([AC_PROG_LIBTOOL], [LT_INIT]) AU_ALIAS([AM_PROG_LIBTOOL], [LT_INIT]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PROG_LIBTOOL], []) dnl AC_DEFUN([AM_PROG_LIBTOOL], []) # _LT_CC_BASENAME(CC) # ------------------- # Calculate cc_basename. Skip known compiler wrappers and cross-prefix. m4_defun([_LT_CC_BASENAME], [for cc_temp in $1""; do case $cc_temp in compile | *[[\\/]]compile | ccache | *[[\\/]]ccache ) ;; distcc | *[[\\/]]distcc | purify | *[[\\/]]purify ) ;; \-*) ;; *) break;; esac done cc_basename=`$ECHO "$cc_temp" | $SED "s%.*/%%; s%^$host_alias-%%"` ]) # _LT_FILEUTILS_DEFAULTS # ---------------------- # It is okay to use these file commands and assume they have been set # sensibly after 'm4_require([_LT_FILEUTILS_DEFAULTS])'. m4_defun([_LT_FILEUTILS_DEFAULTS], [: ${CP="cp -f"} : ${MV="mv -f"} : ${RM="rm -f"} ])# _LT_FILEUTILS_DEFAULTS # _LT_SETUP # --------- m4_defun([_LT_SETUP], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_REQUIRE([_LT_PREPARE_SED_QUOTE_VARS])dnl AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH])dnl _LT_DECL([], [PATH_SEPARATOR], [1], [The PATH separator for the build system])dnl dnl _LT_DECL([], [host_alias], [0], [The host system])dnl _LT_DECL([], [host], [0])dnl _LT_DECL([], [host_os], [0])dnl dnl _LT_DECL([], [build_alias], [0], [The build system])dnl _LT_DECL([], [build], [0])dnl _LT_DECL([], [build_os], [0])dnl dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl dnl AC_REQUIRE([AC_PROG_LN_S])dnl test -z "$LN_S" && LN_S="ln -s" _LT_DECL([], [LN_S], [1], [Whether we need soft or hard links])dnl dnl AC_REQUIRE([LT_CMD_MAX_LEN])dnl _LT_DECL([objext], [ac_objext], [0], [Object file suffix (normally "o")])dnl _LT_DECL([], [exeext], [0], [Executable file suffix (normally "")])dnl dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl m4_require([_LT_PATH_CONVERSION_FUNCTIONS])dnl m4_require([_LT_CMD_RELOAD])dnl m4_require([_LT_CHECK_MAGIC_METHOD])dnl m4_require([_LT_CHECK_SHAREDLIB_FROM_LINKLIB])dnl m4_require([_LT_CMD_OLD_ARCHIVE])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_WITH_SYSROOT])dnl _LT_CONFIG_LIBTOOL_INIT([ # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes INIT. if test -n "\${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi ]) if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi _LT_CHECK_OBJDIR m4_require([_LT_TAG_COMPILER])dnl case $host_os in aix3*) # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi ;; esac # Global variables: ofile=libtool can_build_shared=yes # All known linkers require a '.a' archive for static linking (except MSVC, # which needs '.lib'). libext=a with_gnu_ld=$lt_cv_prog_gnu_ld old_CC=$CC old_CFLAGS=$CFLAGS # Set sane defaults for various variables test -z "$CC" && CC=cc test -z "$LTCC" && LTCC=$CC test -z "$LTCFLAGS" && LTCFLAGS=$CFLAGS test -z "$LD" && LD=ld test -z "$ac_objext" && ac_objext=o _LT_CC_BASENAME([$compiler]) # Only perform the check for file, if the check method requires it test -z "$MAGIC_CMD" && MAGIC_CMD=file case $deplibs_check_method in file_magic*) if test "$file_magic_cmd" = '$MAGIC_CMD'; then _LT_PATH_MAGIC fi ;; esac # Use C for the default configuration in the libtool script LT_SUPPORTED_TAG([CC]) _LT_LANG_C_CONFIG _LT_LANG_DEFAULT_CONFIG _LT_CONFIG_COMMANDS ])# _LT_SETUP # _LT_PREPARE_SED_QUOTE_VARS # -------------------------- # Define a few sed substitution that help us do robust quoting. m4_defun([_LT_PREPARE_SED_QUOTE_VARS], [# Backslashify metacharacters that are still active within # double-quoted strings. sed_quote_subst='s/\([["`$\\]]\)/\\\1/g' # Same as above, but do not quote variable references. double_quote_subst='s/\([["`\\]]\)/\\\1/g' # Sed substitution to delay expansion of an escaped shell variable in a # double_quote_subst'ed string. delay_variable_subst='s/\\\\\\\\\\\$/\\\\\\$/g' # Sed substitution to delay expansion of an escaped single quote. delay_single_quote_subst='s/'\''/'\'\\\\\\\'\''/g' # Sed substitution to avoid accidental globbing in evaled expressions no_glob_subst='s/\*/\\\*/g' ]) # _LT_PROG_LTMAIN # --------------- # Note that this code is called both from 'configure', and 'config.status' # now that we use AC_CONFIG_COMMANDS to generate libtool. Notably, # 'config.status' has no value for ac_aux_dir unless we are using Automake, # so we pass a copy along to make sure it has a sensible value anyway. m4_defun([_LT_PROG_LTMAIN], [m4_ifdef([AC_REQUIRE_AUX_FILE], [AC_REQUIRE_AUX_FILE([ltmain.sh])])dnl _LT_CONFIG_LIBTOOL_INIT([ac_aux_dir='$ac_aux_dir']) ltmain=$ac_aux_dir/ltmain.sh ])# _LT_PROG_LTMAIN ## ------------------------------------- ## ## Accumulate code for creating libtool. ## ## ------------------------------------- ## # So that we can recreate a full libtool script including additional # tags, we accumulate the chunks of code to send to AC_CONFIG_COMMANDS # in macros and then make a single call at the end using the 'libtool' # label. # _LT_CONFIG_LIBTOOL_INIT([INIT-COMMANDS]) # ---------------------------------------- # Register INIT-COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL_INIT], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_INIT], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_INIT]) # _LT_CONFIG_LIBTOOL([COMMANDS]) # ------------------------------ # Register COMMANDS to be passed to AC_CONFIG_COMMANDS later. m4_define([_LT_CONFIG_LIBTOOL], [m4_ifval([$1], [m4_append([_LT_OUTPUT_LIBTOOL_COMMANDS], [$1 ])])]) # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS]) # _LT_CONFIG_SAVE_COMMANDS([COMMANDS], [INIT_COMMANDS]) # ----------------------------------------------------- m4_defun([_LT_CONFIG_SAVE_COMMANDS], [_LT_CONFIG_LIBTOOL([$1]) _LT_CONFIG_LIBTOOL_INIT([$2]) ]) # _LT_FORMAT_COMMENT([COMMENT]) # ----------------------------- # Add leading comment marks to the start of each line, and a trailing # full-stop to the whole comment if one is not present already. m4_define([_LT_FORMAT_COMMENT], [m4_ifval([$1], [ m4_bpatsubst([m4_bpatsubst([$1], [^ *], [# ])], [['`$\]], [\\\&])]m4_bmatch([$1], [[!?.]$], [], [.]) )]) ## ------------------------ ## ## FIXME: Eliminate VARNAME ## ## ------------------------ ## # _LT_DECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION], [IS-TAGGED?]) # ------------------------------------------------------------------- # CONFIGNAME is the name given to the value in the libtool script. # VARNAME is the (base) name used in the configure script. # VALUE may be 0, 1 or 2 for a computed quote escaped value based on # VARNAME. Any other value will be used directly. m4_define([_LT_DECL], [lt_if_append_uniq([lt_decl_varnames], [$2], [, ], [lt_dict_add_subkey([lt_decl_dict], [$2], [libtool_name], [m4_ifval([$1], [$1], [$2])]) lt_dict_add_subkey([lt_decl_dict], [$2], [value], [$3]) m4_ifval([$4], [lt_dict_add_subkey([lt_decl_dict], [$2], [description], [$4])]) lt_dict_add_subkey([lt_decl_dict], [$2], [tagged?], [m4_ifval([$5], [yes], [no])])]) ]) # _LT_TAGDECL([CONFIGNAME], VARNAME, VALUE, [DESCRIPTION]) # -------------------------------------------------------- m4_define([_LT_TAGDECL], [_LT_DECL([$1], [$2], [$3], [$4], [yes])]) # lt_decl_tag_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_tag_varnames], [_lt_decl_filter([tagged?], [yes], $@)]) # _lt_decl_filter(SUBKEY, VALUE, [SEPARATOR], [VARNAME1..]) # --------------------------------------------------------- m4_define([_lt_decl_filter], [m4_case([$#], [0], [m4_fatal([$0: too few arguments: $#])], [1], [m4_fatal([$0: too few arguments: $#: $1])], [2], [lt_dict_filter([lt_decl_dict], [$1], [$2], [], lt_decl_varnames)], [3], [lt_dict_filter([lt_decl_dict], [$1], [$2], [$3], lt_decl_varnames)], [lt_dict_filter([lt_decl_dict], $@)])[]dnl ]) # lt_decl_quote_varnames([SEPARATOR], [VARNAME1...]) # -------------------------------------------------- m4_define([lt_decl_quote_varnames], [_lt_decl_filter([value], [1], $@)]) # lt_decl_dquote_varnames([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_dquote_varnames], [_lt_decl_filter([value], [2], $@)]) # lt_decl_varnames_tagged([SEPARATOR], [VARNAME1...]) # --------------------------------------------------- m4_define([lt_decl_varnames_tagged], [m4_assert([$# <= 2])dnl _$0(m4_quote(m4_default([$1], [[, ]])), m4_ifval([$2], [[$2]], [m4_dquote(lt_decl_tag_varnames)]), m4_split(m4_normalize(m4_quote(_LT_TAGS)), [ ]))]) m4_define([_lt_decl_varnames_tagged], [m4_ifval([$3], [lt_combine([$1], [$2], [_], $3)])]) # lt_decl_all_varnames([SEPARATOR], [VARNAME1...]) # ------------------------------------------------ m4_define([lt_decl_all_varnames], [_$0(m4_quote(m4_default([$1], [[, ]])), m4_if([$2], [], m4_quote(lt_decl_varnames), m4_quote(m4_shift($@))))[]dnl ]) m4_define([_lt_decl_all_varnames], [lt_join($@, lt_decl_varnames_tagged([$1], lt_decl_tag_varnames([[, ]], m4_shift($@))))dnl ]) # _LT_CONFIG_STATUS_DECLARE([VARNAME]) # ------------------------------------ # Quote a variable value, and forward it to 'config.status' so that its # declaration there will have the same value as in 'configure'. VARNAME # must have a single quote delimited value for this to work. m4_define([_LT_CONFIG_STATUS_DECLARE], [$1='`$ECHO "$][$1" | $SED "$delay_single_quote_subst"`']) # _LT_CONFIG_STATUS_DECLARATIONS # ------------------------------ # We delimit libtool config variables with single quotes, so when # we write them to config.status, we have to be sure to quote all # embedded single quotes properly. In configure, this macro expands # each variable declared with _LT_DECL (and _LT_TAGDECL) into: # # ='`$ECHO "$" | $SED "$delay_single_quote_subst"`' m4_defun([_LT_CONFIG_STATUS_DECLARATIONS], [m4_foreach([_lt_var], m4_quote(lt_decl_all_varnames), [m4_n([_LT_CONFIG_STATUS_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAGS # ---------------- # Output comment and list of tags supported by the script m4_defun([_LT_LIBTOOL_TAGS], [_LT_FORMAT_COMMENT([The names of the tagged configurations supported by this script])dnl available_tags='_LT_TAGS'dnl ]) # _LT_LIBTOOL_DECLARE(VARNAME, [TAG]) # ----------------------------------- # Extract the dictionary values for VARNAME (optionally with TAG) and # expand to a commented shell variable setting: # # # Some comment about what VAR is for. # visible_name=$lt_internal_name m4_define([_LT_LIBTOOL_DECLARE], [_LT_FORMAT_COMMENT(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [description])))[]dnl m4_pushdef([_libtool_name], m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [libtool_name])))[]dnl m4_case(m4_quote(lt_dict_fetch([lt_decl_dict], [$1], [value])), [0], [_libtool_name=[$]$1], [1], [_libtool_name=$lt_[]$1], [2], [_libtool_name=$lt_[]$1], [_libtool_name=lt_dict_fetch([lt_decl_dict], [$1], [value])])[]dnl m4_ifval([$2], [_$2])[]m4_popdef([_libtool_name])[]dnl ]) # _LT_LIBTOOL_CONFIG_VARS # ----------------------- # Produce commented declarations of non-tagged libtool config variables # suitable for insertion in the LIBTOOL CONFIG section of the 'libtool' # script. Tagged libtool config variables (even for the LIBTOOL CONFIG # section) are produced by _LT_LIBTOOL_TAG_VARS. m4_defun([_LT_LIBTOOL_CONFIG_VARS], [m4_foreach([_lt_var], m4_quote(_lt_decl_filter([tagged?], [no], [], lt_decl_varnames)), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var)])])]) # _LT_LIBTOOL_TAG_VARS(TAG) # ------------------------- m4_define([_LT_LIBTOOL_TAG_VARS], [m4_foreach([_lt_var], m4_quote(lt_decl_tag_varnames), [m4_n([_LT_LIBTOOL_DECLARE(_lt_var, [$1])])])]) # _LT_TAGVAR(VARNAME, [TAGNAME]) # ------------------------------ m4_define([_LT_TAGVAR], [m4_ifval([$2], [$1_$2], [$1])]) # _LT_CONFIG_COMMANDS # ------------------- # Send accumulated output to $CONFIG_STATUS. Thanks to the lists of # variables for single and double quote escaping we saved from calls # to _LT_DECL, we can put quote escaped variables declarations # into 'config.status', and then the shell code to quote escape them in # for loops in 'config.status'. Finally, any additional code accumulated # from calls to _LT_CONFIG_LIBTOOL_INIT is expanded. m4_defun([_LT_CONFIG_COMMANDS], [AC_PROVIDE_IFELSE([LT_OUTPUT], dnl If the libtool generation code has been placed in $CONFIG_LT, dnl instead of duplicating it all over again into config.status, dnl then we will have config.status run $CONFIG_LT later, so it dnl needs to know what name is stored there: [AC_CONFIG_COMMANDS([libtool], [$SHELL $CONFIG_LT || AS_EXIT(1)], [CONFIG_LT='$CONFIG_LT'])], dnl If the libtool generation code is destined for config.status, dnl expand the accumulated commands and init code now: [AC_CONFIG_COMMANDS([libtool], [_LT_OUTPUT_LIBTOOL_COMMANDS], [_LT_OUTPUT_LIBTOOL_COMMANDS_INIT])]) ])#_LT_CONFIG_COMMANDS # Initialize. m4_define([_LT_OUTPUT_LIBTOOL_COMMANDS_INIT], [ # The HP-UX ksh and POSIX shell print the target directory to stdout # if CDPATH is set. (unset CDPATH) >/dev/null 2>&1 && unset CDPATH sed_quote_subst='$sed_quote_subst' double_quote_subst='$double_quote_subst' delay_variable_subst='$delay_variable_subst' _LT_CONFIG_STATUS_DECLARATIONS LTCC='$LTCC' LTCFLAGS='$LTCFLAGS' compiler='$compiler_DEFAULT' # A function that is used when there is no print builtin or printf. func_fallback_echo () { eval 'cat <<_LTECHO_EOF \$[]1 _LTECHO_EOF' } # Quote evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_quote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED \\"\\\$sed_quote_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done # Double-quote double-evaled strings. for var in lt_decl_all_varnames([[ \ ]], lt_decl_dquote_varnames); do case \`eval \\\\\$ECHO \\\\""\\\\\$\$var"\\\\"\` in *[[\\\\\\\`\\"\\\$]]*) eval "lt_\$var=\\\\\\"\\\`\\\$ECHO \\"\\\$\$var\\" | \\\$SED -e \\"\\\$double_quote_subst\\" -e \\"\\\$sed_quote_subst\\" -e \\"\\\$delay_variable_subst\\"\\\`\\\\\\"" ## exclude from sc_prohibit_nested_quotes ;; *) eval "lt_\$var=\\\\\\"\\\$\$var\\\\\\"" ;; esac done _LT_OUTPUT_LIBTOOL_INIT ]) # _LT_GENERATED_FILE_INIT(FILE, [COMMENT]) # ------------------------------------ # Generate a child script FILE with all initialization necessary to # reuse the environment learned by the parent script, and make the # file executable. If COMMENT is supplied, it is inserted after the # '#!' sequence but before initialization text begins. After this # macro, additional text can be appended to FILE to form the body of # the child script. The macro ends with non-zero status if the # file could not be fully written (such as if the disk is full). m4_ifdef([AS_INIT_GENERATED], [m4_defun([_LT_GENERATED_FILE_INIT],[AS_INIT_GENERATED($@)])], [m4_defun([_LT_GENERATED_FILE_INIT], [m4_require([AS_PREPARE])]dnl [m4_pushdef([AS_MESSAGE_LOG_FD])]dnl [lt_write_fail=0 cat >$1 <<_ASEOF || lt_write_fail=1 #! $SHELL # Generated by $as_me. $2 SHELL=\${CONFIG_SHELL-$SHELL} export SHELL _ASEOF cat >>$1 <<\_ASEOF || lt_write_fail=1 AS_SHELL_SANITIZE _AS_PREPARE exec AS_MESSAGE_FD>&1 _ASEOF test 0 = "$lt_write_fail" && chmod +x $1[]dnl m4_popdef([AS_MESSAGE_LOG_FD])])])# _LT_GENERATED_FILE_INIT # LT_OUTPUT # --------- # This macro allows early generation of the libtool script (before # AC_OUTPUT is called), incase it is used in configure for compilation # tests. AC_DEFUN([LT_OUTPUT], [: ${CONFIG_LT=./config.lt} AC_MSG_NOTICE([creating $CONFIG_LT]) _LT_GENERATED_FILE_INIT(["$CONFIG_LT"], [# Run this file to recreate a libtool stub with the current configuration.]) cat >>"$CONFIG_LT" <<\_LTEOF lt_cl_silent=false exec AS_MESSAGE_LOG_FD>>config.log { echo AS_BOX([Running $as_me.]) } >&AS_MESSAGE_LOG_FD lt_cl_help="\ '$as_me' creates a local libtool stub from the current configuration, for use in further configure time tests before the real libtool is generated. Usage: $[0] [[OPTIONS]] -h, --help print this help, then exit -V, --version print version number, then exit -q, --quiet do not print progress messages -d, --debug don't remove temporary files Report bugs to ." lt_cl_version="\ m4_ifset([AC_PACKAGE_NAME], [AC_PACKAGE_NAME ])config.lt[]dnl m4_ifset([AC_PACKAGE_VERSION], [ AC_PACKAGE_VERSION]) configured by $[0], generated by m4_PACKAGE_STRING. Copyright (C) 2011 Free Software Foundation, Inc. This config.lt script is free software; the Free Software Foundation gives unlimited permision to copy, distribute and modify it." while test 0 != $[#] do case $[1] in --version | --v* | -V ) echo "$lt_cl_version"; exit 0 ;; --help | --h* | -h ) echo "$lt_cl_help"; exit 0 ;; --debug | --d* | -d ) debug=: ;; --quiet | --q* | --silent | --s* | -q ) lt_cl_silent=: ;; -*) AC_MSG_ERROR([unrecognized option: $[1] Try '$[0] --help' for more information.]) ;; *) AC_MSG_ERROR([unrecognized argument: $[1] Try '$[0] --help' for more information.]) ;; esac shift done if $lt_cl_silent; then exec AS_MESSAGE_FD>/dev/null fi _LTEOF cat >>"$CONFIG_LT" <<_LTEOF _LT_OUTPUT_LIBTOOL_COMMANDS_INIT _LTEOF cat >>"$CONFIG_LT" <<\_LTEOF AC_MSG_NOTICE([creating $ofile]) _LT_OUTPUT_LIBTOOL_COMMANDS AS_EXIT(0) _LTEOF chmod +x "$CONFIG_LT" # configure is writing to config.log, but config.lt does its own redirection, # appending to config.log, which fails on DOS, as config.log is still kept # open by configure. Here we exec the FD to /dev/null, effectively closing # config.log, so it can be properly (re)opened and appended to by config.lt. lt_cl_success=: test yes = "$silent" && lt_config_lt_args="$lt_config_lt_args --quiet" exec AS_MESSAGE_LOG_FD>/dev/null $SHELL "$CONFIG_LT" $lt_config_lt_args || lt_cl_success=false exec AS_MESSAGE_LOG_FD>>config.log $lt_cl_success || AS_EXIT(1) ])# LT_OUTPUT # _LT_CONFIG(TAG) # --------------- # If TAG is the built-in tag, create an initial libtool script with a # default configuration from the untagged config vars. Otherwise add code # to config.status for appending the configuration named by TAG from the # matching tagged config vars. m4_defun([_LT_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_CONFIG_SAVE_COMMANDS([ m4_define([_LT_TAG], m4_if([$1], [], [C], [$1]))dnl m4_if(_LT_TAG, [C], [ # See if we are running on zsh, and set the options that allow our # commands through without removal of \ escapes. if test -n "${ZSH_VERSION+set}"; then setopt NO_GLOB_SUBST fi cfgfile=${ofile}T trap "$RM \"$cfgfile\"; exit 1" 1 2 15 $RM "$cfgfile" cat <<_LT_EOF >> "$cfgfile" #! $SHELL # `$ECHO "$ofile" | sed 's%^.*/%%'` - Provide generalized library-building support services. # Generated automatically by $as_me ($PACKAGE) $VERSION # Libtool was configured on host `(hostname || uname -n) 2>/dev/null | sed 1q`: # NOTE: Changes made to this file will be lost: look at ltmain.sh. # _LT_COPYING _LT_LIBTOOL_TAGS # ### BEGIN LIBTOOL CONFIG _LT_LIBTOOL_CONFIG_VARS _LT_LIBTOOL_TAG_VARS # ### END LIBTOOL CONFIG _LT_EOF case $host_os in aix3*) cat <<\_LT_EOF >> "$cfgfile" # AIX sometimes has problems with the GCC collect2 program. For some # reason, if we set the COLLECT_NAMES environment variable, the problems # vanish in a puff of smoke. if test set != "${COLLECT_NAMES+set}"; then COLLECT_NAMES= export COLLECT_NAMES fi _LT_EOF ;; esac _LT_PROG_LTMAIN # We use sed instead of cat because bash on DJGPP gets confused if # if finds mixed CR/LF and LF-only lines. Since sed operates in # text mode, it properly converts lines to CR/LF. This bash problem # is reportedly fixed, but why not run on old versions too? sed '$q' "$ltmain" >> "$cfgfile" \ || (rm -f "$cfgfile"; exit 1) mv -f "$cfgfile" "$ofile" || (rm -f "$ofile" && cp "$cfgfile" "$ofile" && rm -f "$cfgfile") chmod +x "$ofile" ], [cat <<_LT_EOF >> "$ofile" dnl Unfortunately we have to use $1 here, since _LT_TAG is not expanded dnl in a comment (ie after a #). # ### BEGIN LIBTOOL TAG CONFIG: $1 _LT_LIBTOOL_TAG_VARS(_LT_TAG) # ### END LIBTOOL TAG CONFIG: $1 _LT_EOF ])dnl /m4_if ], [m4_if([$1], [], [ PACKAGE='$PACKAGE' VERSION='$VERSION' RM='$RM' ofile='$ofile'], []) ])dnl /_LT_CONFIG_SAVE_COMMANDS ])# _LT_CONFIG # LT_SUPPORTED_TAG(TAG) # --------------------- # Trace this macro to discover what tags are supported by the libtool # --tag option, using: # autoconf --trace 'LT_SUPPORTED_TAG:$1' AC_DEFUN([LT_SUPPORTED_TAG], []) # C support is built-in for now m4_define([_LT_LANG_C_enabled], []) m4_define([_LT_TAGS], []) # LT_LANG(LANG) # ------------- # Enable libtool support for the given language if not already enabled. AC_DEFUN([LT_LANG], [AC_BEFORE([$0], [LT_OUTPUT])dnl m4_case([$1], [C], [_LT_LANG(C)], [C++], [_LT_LANG(CXX)], [Go], [_LT_LANG(GO)], [Java], [_LT_LANG(GCJ)], [Fortran 77], [_LT_LANG(F77)], [Fortran], [_LT_LANG(FC)], [Windows Resource], [_LT_LANG(RC)], [m4_ifdef([_LT_LANG_]$1[_CONFIG], [_LT_LANG($1)], [m4_fatal([$0: unsupported language: "$1"])])])dnl ])# LT_LANG # _LT_LANG(LANGNAME) # ------------------ m4_defun([_LT_LANG], [m4_ifdef([_LT_LANG_]$1[_enabled], [], [LT_SUPPORTED_TAG([$1])dnl m4_append([_LT_TAGS], [$1 ])dnl m4_define([_LT_LANG_]$1[_enabled], [])dnl _LT_LANG_$1_CONFIG($1)])dnl ])# _LT_LANG m4_ifndef([AC_PROG_GO], [ ############################################################ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_GO. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # ############################################################ m4_defun([AC_PROG_GO], [AC_LANG_PUSH(Go)dnl AC_ARG_VAR([GOC], [Go compiler command])dnl AC_ARG_VAR([GOFLAGS], [Go compiler flags])dnl _AC_ARG_VAR_LDFLAGS()dnl AC_CHECK_TOOL(GOC, gccgo) if test -z "$GOC"; then if test -n "$ac_tool_prefix"; then AC_CHECK_PROG(GOC, [${ac_tool_prefix}gccgo], [${ac_tool_prefix}gccgo]) fi fi if test -z "$GOC"; then AC_CHECK_PROG(GOC, gccgo, gccgo, false) fi ])#m4_defun ])#m4_ifndef # _LT_LANG_DEFAULT_CONFIG # ----------------------- m4_defun([_LT_LANG_DEFAULT_CONFIG], [AC_PROVIDE_IFELSE([AC_PROG_CXX], [LT_LANG(CXX)], [m4_define([AC_PROG_CXX], defn([AC_PROG_CXX])[LT_LANG(CXX)])]) AC_PROVIDE_IFELSE([AC_PROG_F77], [LT_LANG(F77)], [m4_define([AC_PROG_F77], defn([AC_PROG_F77])[LT_LANG(F77)])]) AC_PROVIDE_IFELSE([AC_PROG_FC], [LT_LANG(FC)], [m4_define([AC_PROG_FC], defn([AC_PROG_FC])[LT_LANG(FC)])]) dnl The call to [A][M_PROG_GCJ] is quoted like that to stop aclocal dnl pulling things in needlessly. AC_PROVIDE_IFELSE([AC_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([A][M_PROG_GCJ], [LT_LANG(GCJ)], [AC_PROVIDE_IFELSE([LT_PROG_GCJ], [LT_LANG(GCJ)], [m4_ifdef([AC_PROG_GCJ], [m4_define([AC_PROG_GCJ], defn([AC_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([A][M_PROG_GCJ], [m4_define([A][M_PROG_GCJ], defn([A][M_PROG_GCJ])[LT_LANG(GCJ)])]) m4_ifdef([LT_PROG_GCJ], [m4_define([LT_PROG_GCJ], defn([LT_PROG_GCJ])[LT_LANG(GCJ)])])])])]) AC_PROVIDE_IFELSE([AC_PROG_GO], [LT_LANG(GO)], [m4_define([AC_PROG_GO], defn([AC_PROG_GO])[LT_LANG(GO)])]) AC_PROVIDE_IFELSE([LT_PROG_RC], [LT_LANG(RC)], [m4_define([LT_PROG_RC], defn([LT_PROG_RC])[LT_LANG(RC)])]) ])# _LT_LANG_DEFAULT_CONFIG # Obsolete macros: AU_DEFUN([AC_LIBTOOL_CXX], [LT_LANG(C++)]) AU_DEFUN([AC_LIBTOOL_F77], [LT_LANG(Fortran 77)]) AU_DEFUN([AC_LIBTOOL_FC], [LT_LANG(Fortran)]) AU_DEFUN([AC_LIBTOOL_GCJ], [LT_LANG(Java)]) AU_DEFUN([AC_LIBTOOL_RC], [LT_LANG(Windows Resource)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_CXX], []) dnl AC_DEFUN([AC_LIBTOOL_F77], []) dnl AC_DEFUN([AC_LIBTOOL_FC], []) dnl AC_DEFUN([AC_LIBTOOL_GCJ], []) dnl AC_DEFUN([AC_LIBTOOL_RC], []) # _LT_TAG_COMPILER # ---------------- m4_defun([_LT_TAG_COMPILER], [AC_REQUIRE([AC_PROG_CC])dnl _LT_DECL([LTCC], [CC], [1], [A C compiler])dnl _LT_DECL([LTCFLAGS], [CFLAGS], [1], [LTCC compiler flags])dnl _LT_TAGDECL([CC], [compiler], [1], [A language specific compiler])dnl _LT_TAGDECL([with_gcc], [GCC], [0], [Is the compiler the GNU compiler?])dnl # If no C compiler was specified, use CC. LTCC=${LTCC-"$CC"} # If no C compiler flags were specified, use CFLAGS. LTCFLAGS=${LTCFLAGS-"$CFLAGS"} # Allow CC to be a program name with arguments. compiler=$CC ])# _LT_TAG_COMPILER # _LT_COMPILER_BOILERPLATE # ------------------------ # Check for compiler boilerplate output or warnings with # the simple compiler test code. m4_defun([_LT_COMPILER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_compile_test_code" >conftest.$ac_ext eval "$ac_compile" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_compiler_boilerplate=`cat conftest.err` $RM conftest* ])# _LT_COMPILER_BOILERPLATE # _LT_LINKER_BOILERPLATE # ---------------------- # Check for linker boilerplate output or warnings with # the simple link test code. m4_defun([_LT_LINKER_BOILERPLATE], [m4_require([_LT_DECL_SED])dnl ac_outfile=conftest.$ac_objext echo "$lt_simple_link_test_code" >conftest.$ac_ext eval "$ac_link" 2>&1 >/dev/null | $SED '/^$/d; /^ *+/d' >conftest.err _lt_linker_boilerplate=`cat conftest.err` $RM -r conftest* ])# _LT_LINKER_BOILERPLATE # _LT_REQUIRED_DARWIN_CHECKS # ------------------------- m4_defun_once([_LT_REQUIRED_DARWIN_CHECKS],[ case $host_os in rhapsody* | darwin*) AC_CHECK_TOOL([DSYMUTIL], [dsymutil], [:]) AC_CHECK_TOOL([NMEDIT], [nmedit], [:]) AC_CHECK_TOOL([LIPO], [lipo], [:]) AC_CHECK_TOOL([OTOOL], [otool], [:]) AC_CHECK_TOOL([OTOOL64], [otool64], [:]) _LT_DECL([], [DSYMUTIL], [1], [Tool to manipulate archived DWARF debug symbol files on Mac OS X]) _LT_DECL([], [NMEDIT], [1], [Tool to change global to local symbols on Mac OS X]) _LT_DECL([], [LIPO], [1], [Tool to manipulate fat objects and archives on Mac OS X]) _LT_DECL([], [OTOOL], [1], [ldd/readelf like tool for Mach-O binaries on Mac OS X]) _LT_DECL([], [OTOOL64], [1], [ldd/readelf like tool for 64 bit Mach-O binaries on Mac OS X 10.4]) AC_CACHE_CHECK([for -single_module linker flag],[lt_cv_apple_cc_single_mod], [lt_cv_apple_cc_single_mod=no if test -z "$LT_MULTI_MODULE"; then # By default we will add the -single_module flag. You can override # by either setting the environment variable LT_MULTI_MODULE # non-empty at configure time, or by adding -multi_module to the # link flags. rm -rf libconftest.dylib* echo "int foo(void){return 1;}" > conftest.c echo "$LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o libconftest.dylib \ -dynamiclib -Wl,-single_module conftest.c 2>conftest.err _lt_result=$? # If there is a non-empty error log, and "single_module" # appears in it, assume the flag caused a linker warning if test -s conftest.err && $GREP single_module conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD # Otherwise, if the output was created with a 0 exit code from # the compiler, it worked. elif test -f libconftest.dylib && test 0 = "$_lt_result"; then lt_cv_apple_cc_single_mod=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -rf libconftest.dylib* rm -f conftest.* fi]) AC_CACHE_CHECK([for -exported_symbols_list linker flag], [lt_cv_ld_exported_symbols_list], [lt_cv_ld_exported_symbols_list=no save_LDFLAGS=$LDFLAGS echo "_main" > conftest.sym LDFLAGS="$LDFLAGS -Wl,-exported_symbols_list,conftest.sym" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [lt_cv_ld_exported_symbols_list=yes], [lt_cv_ld_exported_symbols_list=no]) LDFLAGS=$save_LDFLAGS ]) AC_CACHE_CHECK([for -force_load linker flag],[lt_cv_ld_force_load], [lt_cv_ld_force_load=no cat > conftest.c << _LT_EOF int forced_loaded() { return 2;} _LT_EOF echo "$LTCC $LTCFLAGS -c -o conftest.o conftest.c" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS -c -o conftest.o conftest.c 2>&AS_MESSAGE_LOG_FD echo "$AR cru libconftest.a conftest.o" >&AS_MESSAGE_LOG_FD $AR cru libconftest.a conftest.o 2>&AS_MESSAGE_LOG_FD echo "$RANLIB libconftest.a" >&AS_MESSAGE_LOG_FD $RANLIB libconftest.a 2>&AS_MESSAGE_LOG_FD cat > conftest.c << _LT_EOF int main() { return 0;} _LT_EOF echo "$LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a" >&AS_MESSAGE_LOG_FD $LTCC $LTCFLAGS $LDFLAGS -o conftest conftest.c -Wl,-force_load,./libconftest.a 2>conftest.err _lt_result=$? if test -s conftest.err && $GREP force_load conftest.err; then cat conftest.err >&AS_MESSAGE_LOG_FD elif test -f conftest && test 0 = "$_lt_result" && $GREP forced_load conftest >/dev/null 2>&1; then lt_cv_ld_force_load=yes else cat conftest.err >&AS_MESSAGE_LOG_FD fi rm -f conftest.err libconftest.a conftest conftest.c rm -rf conftest.dSYM ]) case $host_os in rhapsody* | darwin1.[[012]]) _lt_dar_allow_undefined='$wl-undefined ${wl}suppress' ;; darwin1.*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; darwin*) # darwin 5.x on # if running on 10.5 or later, the deployment target defaults # to the OS version, if on x86, and 10.4, the deployment # target defaults to 10.4. Don't you love it? case ${MACOSX_DEPLOYMENT_TARGET-10.0},$host in 10.0,*86*-darwin8*|10.0,*-darwin[[91]]*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; 10.[[012]]*) _lt_dar_allow_undefined='$wl-flat_namespace $wl-undefined ${wl}suppress' ;; 10.*) _lt_dar_allow_undefined='$wl-undefined ${wl}dynamic_lookup' ;; esac ;; esac if test yes = "$lt_cv_apple_cc_single_mod"; then _lt_dar_single_mod='$single_module' fi if test yes = "$lt_cv_ld_exported_symbols_list"; then _lt_dar_export_syms=' $wl-exported_symbols_list,$output_objdir/$libname-symbols.expsym' else _lt_dar_export_syms='~$NMEDIT -s $output_objdir/$libname-symbols.expsym $lib' fi if test : != "$DSYMUTIL" && test no = "$lt_cv_ld_force_load"; then _lt_dsymutil='~$DSYMUTIL $lib || :' else _lt_dsymutil= fi ;; esac ]) # _LT_DARWIN_LINKER_FEATURES([TAG]) # --------------------------------- # Checks for linker and compiler features on darwin m4_defun([_LT_DARWIN_LINKER_FEATURES], [ m4_require([_LT_REQUIRED_DARWIN_CHECKS]) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported if test yes = "$lt_cv_ld_force_load"; then _LT_TAGVAR(whole_archive_flag_spec, $1)='`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience $wl-force_load,$conv\"; done; func_echo_all \"$new_convenience\"`' m4_case([$1], [F77], [_LT_TAGVAR(compiler_needs_object, $1)=yes], [FC], [_LT_TAGVAR(compiler_needs_object, $1)=yes]) else _LT_TAGVAR(whole_archive_flag_spec, $1)='' fi _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=$_lt_dar_allow_undefined case $cc_basename in ifort*|nagfor*) _lt_dar_can_shared=yes ;; *) _lt_dar_can_shared=$GCC ;; esac if test yes = "$_lt_dar_can_shared"; then output_verbose_link_cmd=func_echo_all _LT_TAGVAR(archive_cmds, $1)="\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dsymutil" _LT_TAGVAR(module_cmds, $1)="\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dsymutil" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$libobjs \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring $_lt_dar_single_mod$_lt_dar_export_syms$_lt_dsymutil" _LT_TAGVAR(module_expsym_cmds, $1)="sed -e 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC \$allow_undefined_flag -o \$lib -bundle \$libobjs \$deplibs \$compiler_flags$_lt_dar_export_syms$_lt_dsymutil" m4_if([$1], [CXX], [ if test yes != "$lt_cv_apple_cc_single_mod"; then _LT_TAGVAR(archive_cmds, $1)="\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dsymutil" _LT_TAGVAR(archive_expsym_cmds, $1)="sed 's|^|_|' < \$export_symbols > \$output_objdir/\$libname-symbols.expsym~\$CC -r -keep_private_externs -nostdlib -o \$lib-master.o \$libobjs~\$CC -dynamiclib \$allow_undefined_flag -o \$lib \$lib-master.o \$deplibs \$compiler_flags -install_name \$rpath/\$soname \$verstring$_lt_dar_export_syms$_lt_dsymutil" fi ],[]) else _LT_TAGVAR(ld_shlibs, $1)=no fi ]) # _LT_SYS_MODULE_PATH_AIX([TAGNAME]) # ---------------------------------- # Links a minimal program and checks the executable # for the system default hardcoded library path. In most cases, # this is /usr/lib:/lib, but when the MPI compilers are used # the location of the communication and MPI libs are included too. # If we don't find anything, use the default library path according # to the aix ld manual. # Store the results from the different compilers for each TAGNAME. # Allow to override them for all tags through lt_cv_aix_libpath. m4_defun([_LT_SYS_MODULE_PATH_AIX], [m4_require([_LT_DECL_SED])dnl if test set = "${lt_cv_aix_libpath+set}"; then aix_libpath=$lt_cv_aix_libpath else AC_CACHE_VAL([_LT_TAGVAR([lt_cv_aix_libpath_], [$1])], [AC_LINK_IFELSE([AC_LANG_PROGRAM],[ lt_aix_libpath_sed='[ /Import File Strings/,/^$/ { /^0/ { s/^0 *\([^ ]*\) *$/\1/ p } }]' _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -H conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` # Check for a 64-bit object if we didn't find anything. if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=`dump -HX64 conftest$ac_exeext 2>/dev/null | $SED -n -e "$lt_aix_libpath_sed"` fi],[]) if test -z "$_LT_TAGVAR([lt_cv_aix_libpath_], [$1])"; then _LT_TAGVAR([lt_cv_aix_libpath_], [$1])=/usr/lib:/lib fi ]) aix_libpath=$_LT_TAGVAR([lt_cv_aix_libpath_], [$1]) fi ])# _LT_SYS_MODULE_PATH_AIX # _LT_SHELL_INIT(ARG) # ------------------- m4_define([_LT_SHELL_INIT], [m4_divert_text([M4SH-INIT], [$1 ])])# _LT_SHELL_INIT # _LT_PROG_ECHO_BACKSLASH # ----------------------- # Find how we can fake an echo command that does not interpret backslash. # In particular, with Autoconf 2.60 or later we add some code to the start # of the generated configure script that will find a shell with a builtin # printf (that we can use as an echo command). m4_defun([_LT_PROG_ECHO_BACKSLASH], [ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO AC_MSG_CHECKING([how to print strings]) # Test print first, because it will be a builtin if present. if test "X`( print -r -- -n ) 2>/dev/null`" = X-n && \ test "X`print -r -- $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='print -r --' elif test "X`printf %s $ECHO 2>/dev/null`" = "X$ECHO"; then ECHO='printf %s\n' else # Use this function as a fallback that always works. func_fallback_echo () { eval 'cat <<_LTECHO_EOF $[]1 _LTECHO_EOF' } ECHO='func_fallback_echo' fi # func_echo_all arg... # Invoke $ECHO with all args, space-separated. func_echo_all () { $ECHO "$*" } case $ECHO in printf*) AC_MSG_RESULT([printf]) ;; print*) AC_MSG_RESULT([print -r]) ;; *) AC_MSG_RESULT([cat]) ;; esac m4_ifdef([_AS_DETECT_SUGGESTED], [_AS_DETECT_SUGGESTED([ test -n "${ZSH_VERSION+set}${BASH_VERSION+set}" || ( ECHO='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO ECHO=$ECHO$ECHO$ECHO$ECHO$ECHO$ECHO PATH=/empty FPATH=/empty; export PATH FPATH test "X`printf %s $ECHO`" = "X$ECHO" \ || test "X`print -r -- $ECHO`" = "X$ECHO" )])]) _LT_DECL([], [SHELL], [1], [Shell to use when invoking shell scripts]) _LT_DECL([], [ECHO], [1], [An echo program that protects backslashes]) ])# _LT_PROG_ECHO_BACKSLASH # _LT_WITH_SYSROOT # ---------------- AC_DEFUN([_LT_WITH_SYSROOT], [AC_MSG_CHECKING([for sysroot]) AC_ARG_WITH([sysroot], [AS_HELP_STRING([--with-sysroot@<:@=DIR@:>@], [Search for dependent libraries within DIR (or the compiler's sysroot if not specified).])], [], [with_sysroot=no]) dnl lt_sysroot will always be passed unquoted. We quote it here dnl in case the user passed a directory name. lt_sysroot= case $with_sysroot in #( yes) if test yes = "$GCC"; then lt_sysroot=`$CC --print-sysroot 2>/dev/null` fi ;; #( /*) lt_sysroot=`echo "$with_sysroot" | sed -e "$sed_quote_subst"` ;; #( no|'') ;; #( *) AC_MSG_RESULT([$with_sysroot]) AC_MSG_ERROR([The sysroot must be an absolute path.]) ;; esac AC_MSG_RESULT([${lt_sysroot:-no}]) _LT_DECL([], [lt_sysroot], [0], [The root where to search for ]dnl [dependent libraries, and where our libraries should be installed.])]) # _LT_ENABLE_LOCK # --------------- m4_defun([_LT_ENABLE_LOCK], [AC_ARG_ENABLE([libtool-lock], [AS_HELP_STRING([--disable-libtool-lock], [avoid locking (might break parallel builds)])]) test no = "$enable_libtool_lock" || enable_libtool_lock=yes # Some flags need to be propagated to the compiler or linker for good # libtool support. case $host in ia64-*-hpux*) # Find out what ABI is being produced by ac_compile, and set mode # options accordingly. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.$ac_objext` in *ELF-32*) HPUX_IA64_MODE=32 ;; *ELF-64*) HPUX_IA64_MODE=64 ;; esac fi rm -rf conftest* ;; *-*-irix6*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then if test yes = "$lt_cv_prog_gnu_ld"; then case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -melf32bsmip" ;; *N32*) LD="${LD-ld} -melf32bmipn32" ;; *64-bit*) LD="${LD-ld} -melf64bmip" ;; esac else case `/usr/bin/file conftest.$ac_objext` in *32-bit*) LD="${LD-ld} -32" ;; *N32*) LD="${LD-ld} -n32" ;; *64-bit*) LD="${LD-ld} -64" ;; esac fi fi rm -rf conftest* ;; mips64*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo '[#]line '$LINENO' "configure"' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then emul=elf case `/usr/bin/file conftest.$ac_objext` in *32-bit*) emul="${emul}32" ;; *64-bit*) emul="${emul}64" ;; esac case `/usr/bin/file conftest.$ac_objext` in *MSB*) emul="${emul}btsmip" ;; *LSB*) emul="${emul}ltsmip" ;; esac case `/usr/bin/file conftest.$ac_objext` in *N32*) emul="${emul}n32" ;; esac LD="${LD-ld} -m $emul" fi rm -rf conftest* ;; x86_64-*kfreebsd*-gnu|x86_64-*linux*|powerpc*-*linux*| \ s390*-*linux*|s390*-*tpf*|sparc*-*linux*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. Note that the listed cases only cover the # situations where additional linker options are needed (such as when # doing 32-bit compilation for a host where ld defaults to 64-bit, or # vice versa); the common cases where no linker options are needed do # not appear in the list. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *32-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_i386_fbsd" ;; x86_64-*linux*) case `/usr/bin/file conftest.o` in *x86-64*) LD="${LD-ld} -m elf32_x86_64" ;; *) LD="${LD-ld} -m elf_i386" ;; esac ;; powerpc64le-*linux*) LD="${LD-ld} -m elf32lppclinux" ;; powerpc64-*linux*) LD="${LD-ld} -m elf32ppclinux" ;; s390x-*linux*) LD="${LD-ld} -m elf_s390" ;; sparc64-*linux*) LD="${LD-ld} -m elf32_sparc" ;; esac ;; *64-bit*) case $host in x86_64-*kfreebsd*-gnu) LD="${LD-ld} -m elf_x86_64_fbsd" ;; x86_64-*linux*) LD="${LD-ld} -m elf_x86_64" ;; powerpcle-*linux*) LD="${LD-ld} -m elf64lppc" ;; powerpc-*linux*) LD="${LD-ld} -m elf64ppc" ;; s390*-*linux*|s390*-*tpf*) LD="${LD-ld} -m elf64_s390" ;; sparc*-*linux*) LD="${LD-ld} -m elf64_sparc" ;; esac ;; esac fi rm -rf conftest* ;; *-*-sco3.2v5*) # On SCO OpenServer 5, we need -belf to get full-featured binaries. SAVE_CFLAGS=$CFLAGS CFLAGS="$CFLAGS -belf" AC_CACHE_CHECK([whether the C compiler needs -belf], lt_cv_cc_needs_belf, [AC_LANG_PUSH(C) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]],[[]])],[lt_cv_cc_needs_belf=yes],[lt_cv_cc_needs_belf=no]) AC_LANG_POP]) if test yes != "$lt_cv_cc_needs_belf"; then # this is probably gcc 2.8.0, egcs 1.0 or newer; no need for -belf CFLAGS=$SAVE_CFLAGS fi ;; *-*solaris*) # Find out what ABI is being produced by ac_compile, and set linker # options accordingly. echo 'int i;' > conftest.$ac_ext if AC_TRY_EVAL(ac_compile); then case `/usr/bin/file conftest.o` in *64-bit*) case $lt_cv_prog_gnu_ld in yes*) case $host in i?86-*-solaris*|x86_64-*-solaris*) LD="${LD-ld} -m elf_x86_64" ;; sparc*-*-solaris*) LD="${LD-ld} -m elf64_sparc" ;; esac # GNU ld 2.21 introduced _sol2 emulations. Use them if available. if ${LD-ld} -V | grep _sol2 >/dev/null 2>&1; then LD=${LD-ld}_sol2 fi ;; *) if ${LD-ld} -64 -r -o conftest2.o conftest.o >/dev/null 2>&1; then LD="${LD-ld} -64" fi ;; esac ;; esac fi rm -rf conftest* ;; esac need_locks=$enable_libtool_lock ])# _LT_ENABLE_LOCK # _LT_PROG_AR # ----------- m4_defun([_LT_PROG_AR], [AC_CHECK_TOOLS(AR, [ar], false) : ${AR=ar} : ${AR_FLAGS=cru} _LT_DECL([], [AR], [1], [The archiver]) _LT_DECL([], [AR_FLAGS], [1], [Flags to create an archive]) AC_CACHE_CHECK([for archiver @FILE support], [lt_cv_ar_at_file], [lt_cv_ar_at_file=no AC_COMPILE_IFELSE([AC_LANG_PROGRAM], [echo conftest.$ac_objext > conftest.lst lt_ar_try='$AR $AR_FLAGS libconftest.a @conftest.lst >&AS_MESSAGE_LOG_FD' AC_TRY_EVAL([lt_ar_try]) if test 0 -eq "$ac_status"; then # Ensure the archiver fails upon bogus file names. rm -f conftest.$ac_objext libconftest.a AC_TRY_EVAL([lt_ar_try]) if test 0 -ne "$ac_status"; then lt_cv_ar_at_file=@ fi fi rm -f conftest.* libconftest.a ]) ]) if test no = "$lt_cv_ar_at_file"; then archiver_list_spec= else archiver_list_spec=$lt_cv_ar_at_file fi _LT_DECL([], [archiver_list_spec], [1], [How to feed a file listing to the archiver]) ])# _LT_PROG_AR # _LT_CMD_OLD_ARCHIVE # ------------------- m4_defun([_LT_CMD_OLD_ARCHIVE], [_LT_PROG_AR AC_CHECK_TOOL(STRIP, strip, :) test -z "$STRIP" && STRIP=: _LT_DECL([], [STRIP], [1], [A symbol stripping program]) AC_CHECK_TOOL(RANLIB, ranlib, :) test -z "$RANLIB" && RANLIB=: _LT_DECL([], [RANLIB], [1], [Commands used to install an old-style archive]) # Determine commands to create old-style static archives. old_archive_cmds='$AR $AR_FLAGS $oldlib$oldobjs' old_postinstall_cmds='chmod 644 $oldlib' old_postuninstall_cmds= if test -n "$RANLIB"; then case $host_os in bitrig* | openbsd*) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB -t \$tool_oldlib" ;; *) old_postinstall_cmds="$old_postinstall_cmds~\$RANLIB \$tool_oldlib" ;; esac old_archive_cmds="$old_archive_cmds~\$RANLIB \$tool_oldlib" fi case $host_os in darwin*) lock_old_archive_extraction=yes ;; *) lock_old_archive_extraction=no ;; esac _LT_DECL([], [old_postinstall_cmds], [2]) _LT_DECL([], [old_postuninstall_cmds], [2]) _LT_TAGDECL([], [old_archive_cmds], [2], [Commands used to build an old-style archive]) _LT_DECL([], [lock_old_archive_extraction], [0], [Whether to use a lock for old archive extraction]) ])# _LT_CMD_OLD_ARCHIVE # _LT_COMPILER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [OUTPUT-FILE], [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------------------- # Check whether the given compiler option works AC_DEFUN([_LT_COMPILER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no m4_if([$4], , [ac_outfile=conftest.$ac_objext], [ac_outfile=$4]) echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="$3" ## exclude from sc_useless_quotes_in_assignment # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. # The option is referenced via a variable to avoid confusing sed. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>conftest.err) ac_status=$? cat conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s "$ac_outfile"; then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings other than the usual output. $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' >conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if test ! -s conftest.er2 || diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi fi $RM conftest* ]) if test yes = "[$]$2"; then m4_if([$5], , :, [$5]) else m4_if([$6], , :, [$6]) fi ])# _LT_COMPILER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_COMPILER_OPTION], [_LT_COMPILER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_COMPILER_OPTION], []) # _LT_LINKER_OPTION(MESSAGE, VARIABLE-NAME, FLAGS, # [ACTION-SUCCESS], [ACTION-FAILURE]) # ---------------------------------------------------- # Check whether the given linker option works AC_DEFUN([_LT_LINKER_OPTION], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_SED])dnl AC_CACHE_CHECK([$1], [$2], [$2=no save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS $3" echo "$lt_simple_link_test_code" > conftest.$ac_ext if (eval $ac_link 2>conftest.err) && test -s conftest$ac_exeext; then # The linker can only warn and ignore the option if not recognized # So say no if there are warnings if test -s conftest.err; then # Append any errors to the config.log. cat conftest.err 1>&AS_MESSAGE_LOG_FD $ECHO "$_lt_linker_boilerplate" | $SED '/^$/d' > conftest.exp $SED '/^$/d; /^ *+/d' conftest.err >conftest.er2 if diff conftest.exp conftest.er2 >/dev/null; then $2=yes fi else $2=yes fi fi $RM -r conftest* LDFLAGS=$save_LDFLAGS ]) if test yes = "[$]$2"; then m4_if([$4], , :, [$4]) else m4_if([$5], , :, [$5]) fi ])# _LT_LINKER_OPTION # Old name: AU_ALIAS([AC_LIBTOOL_LINKER_OPTION], [_LT_LINKER_OPTION]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_LINKER_OPTION], []) # LT_CMD_MAX_LEN #--------------- AC_DEFUN([LT_CMD_MAX_LEN], [AC_REQUIRE([AC_CANONICAL_HOST])dnl # find the maximum length of command line arguments AC_MSG_CHECKING([the maximum length of command line arguments]) AC_CACHE_VAL([lt_cv_sys_max_cmd_len], [dnl i=0 teststring=ABCD case $build_os in msdosdjgpp*) # On DJGPP, this test can blow up pretty badly due to problems in libc # (any single argument exceeding 2000 bytes causes a buffer overrun # during glob expansion). Even if it were fixed, the result of this # check would be larger than it should be. lt_cv_sys_max_cmd_len=12288; # 12K is about right ;; gnu*) # Under GNU Hurd, this test is not required because there is # no limit to the length of command line arguments. # Libtool will interpret -1 as no limit whatsoever lt_cv_sys_max_cmd_len=-1; ;; cygwin* | mingw* | cegcc*) # On Win9x/ME, this test blows up -- it succeeds, but takes # about 5 minutes as the teststring grows exponentially. # Worse, since 9x/ME are not pre-emptively multitasking, # you end up with a "frozen" computer, even though with patience # the test eventually succeeds (with a max line length of 256k). # Instead, let's just punt: use the minimum linelength reported by # all of the supported platforms: 8192 (on NT/2K/XP). lt_cv_sys_max_cmd_len=8192; ;; mint*) # On MiNT this can take a long time and run out of memory. lt_cv_sys_max_cmd_len=8192; ;; amigaos*) # On AmigaOS with pdksh, this test takes hours, literally. # So we just punt and use a minimum line length of 8192. lt_cv_sys_max_cmd_len=8192; ;; bitrig* | darwin* | dragonfly* | freebsd* | netbsd* | openbsd*) # This has been around since 386BSD, at least. Likely further. if test -x /sbin/sysctl; then lt_cv_sys_max_cmd_len=`/sbin/sysctl -n kern.argmax` elif test -x /usr/sbin/sysctl; then lt_cv_sys_max_cmd_len=`/usr/sbin/sysctl -n kern.argmax` else lt_cv_sys_max_cmd_len=65536 # usable default for all BSDs fi # And add a safety zone lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` ;; interix*) # We know the value 262144 and hardcode it with a safety zone (like BSD) lt_cv_sys_max_cmd_len=196608 ;; os2*) # The test takes a long time on OS/2. lt_cv_sys_max_cmd_len=8192 ;; osf*) # Dr. Hans Ekkehard Plesser reports seeing a kernel panic running configure # due to this test when exec_disable_arg_limit is 1 on Tru64. It is not # nice to cause kernel panics so lets avoid the loop below. # First set a reasonable default. lt_cv_sys_max_cmd_len=16384 # if test -x /sbin/sysconfig; then case `/sbin/sysconfig -q proc exec_disable_arg_limit` in *1*) lt_cv_sys_max_cmd_len=-1 ;; esac fi ;; sco3.2v5*) lt_cv_sys_max_cmd_len=102400 ;; sysv5* | sco5v6* | sysv4.2uw2*) kargmax=`grep ARG_MAX /etc/conf/cf.d/stune 2>/dev/null` if test -n "$kargmax"; then lt_cv_sys_max_cmd_len=`echo $kargmax | sed 's/.*[[ ]]//'` else lt_cv_sys_max_cmd_len=32768 fi ;; *) lt_cv_sys_max_cmd_len=`(getconf ARG_MAX) 2> /dev/null` if test -n "$lt_cv_sys_max_cmd_len" && \ test undefined != "$lt_cv_sys_max_cmd_len"; then lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 4` lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \* 3` else # Make teststring a little bigger before we do anything with it. # a 1K string should be a reasonable start. for i in 1 2 3 4 5 6 7 8; do teststring=$teststring$teststring done SHELL=${SHELL-${CONFIG_SHELL-/bin/sh}} # If test is not a shell built-in, we'll probably end up computing a # maximum length that is only half of the actual maximum length, but # we can't tell. while { test X`env echo "$teststring$teststring" 2>/dev/null` \ = "X$teststring$teststring"; } >/dev/null 2>&1 && test 17 != "$i" # 1/2 MB should be enough do i=`expr $i + 1` teststring=$teststring$teststring done # Only check the string length outside the loop. lt_cv_sys_max_cmd_len=`expr "X$teststring" : ".*" 2>&1` teststring= # Add a significant safety factor because C++ compilers can tack on # massive amounts of additional arguments before passing them to the # linker. It appears as though 1/2 is a usable value. lt_cv_sys_max_cmd_len=`expr $lt_cv_sys_max_cmd_len \/ 2` fi ;; esac ]) if test -n "$lt_cv_sys_max_cmd_len"; then AC_MSG_RESULT($lt_cv_sys_max_cmd_len) else AC_MSG_RESULT(none) fi max_cmd_len=$lt_cv_sys_max_cmd_len _LT_DECL([], [max_cmd_len], [0], [What is the maximum length of a command?]) ])# LT_CMD_MAX_LEN # Old name: AU_ALIAS([AC_LIBTOOL_SYS_MAX_CMD_LEN], [LT_CMD_MAX_LEN]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_SYS_MAX_CMD_LEN], []) # _LT_HEADER_DLFCN # ---------------- m4_defun([_LT_HEADER_DLFCN], [AC_CHECK_HEADERS([dlfcn.h], [], [], [AC_INCLUDES_DEFAULT])dnl ])# _LT_HEADER_DLFCN # _LT_TRY_DLOPEN_SELF (ACTION-IF-TRUE, ACTION-IF-TRUE-W-USCORE, # ACTION-IF-FALSE, ACTION-IF-CROSS-COMPILING) # ---------------------------------------------------------------- m4_defun([_LT_TRY_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test yes = "$cross_compiling"; then : [$4] else lt_dlunknown=0; lt_dlno_uscore=1; lt_dlneed_uscore=2 lt_status=$lt_dlunknown cat > conftest.$ac_ext <<_LT_EOF [#line $LINENO "configure" #include "confdefs.h" #if HAVE_DLFCN_H #include #endif #include #ifdef RTLD_GLOBAL # define LT_DLGLOBAL RTLD_GLOBAL #else # ifdef DL_GLOBAL # define LT_DLGLOBAL DL_GLOBAL # else # define LT_DLGLOBAL 0 # endif #endif /* We may have to define LT_DLLAZY_OR_NOW in the command line if we find out it does not work in some platform. */ #ifndef LT_DLLAZY_OR_NOW # ifdef RTLD_LAZY # define LT_DLLAZY_OR_NOW RTLD_LAZY # else # ifdef DL_LAZY # define LT_DLLAZY_OR_NOW DL_LAZY # else # ifdef RTLD_NOW # define LT_DLLAZY_OR_NOW RTLD_NOW # else # ifdef DL_NOW # define LT_DLLAZY_OR_NOW DL_NOW # else # define LT_DLLAZY_OR_NOW 0 # endif # endif # endif # endif #endif /* When -fvisbility=hidden is used, assume the code has been annotated correspondingly for the symbols needed. */ #if defined __GNUC__ && (((__GNUC__ == 3) && (__GNUC_MINOR__ >= 3)) || (__GNUC__ > 3)) int fnord () __attribute__((visibility("default"))); #endif int fnord () { return 42; } int main () { void *self = dlopen (0, LT_DLGLOBAL|LT_DLLAZY_OR_NOW); int status = $lt_dlunknown; if (self) { if (dlsym (self,"fnord")) status = $lt_dlno_uscore; else { if (dlsym( self,"_fnord")) status = $lt_dlneed_uscore; else puts (dlerror ()); } /* dlclose (self); */ } else puts (dlerror ()); return status; }] _LT_EOF if AC_TRY_EVAL(ac_link) && test -s "conftest$ac_exeext" 2>/dev/null; then (./conftest; exit; ) >&AS_MESSAGE_LOG_FD 2>/dev/null lt_status=$? case x$lt_status in x$lt_dlno_uscore) $1 ;; x$lt_dlneed_uscore) $2 ;; x$lt_dlunknown|x*) $3 ;; esac else : # compilation failed $3 fi fi rm -fr conftest* ])# _LT_TRY_DLOPEN_SELF # LT_SYS_DLOPEN_SELF # ------------------ AC_DEFUN([LT_SYS_DLOPEN_SELF], [m4_require([_LT_HEADER_DLFCN])dnl if test yes != "$enable_dlopen"; then enable_dlopen=unknown enable_dlopen_self=unknown enable_dlopen_self_static=unknown else lt_cv_dlopen=no lt_cv_dlopen_libs= case $host_os in beos*) lt_cv_dlopen=load_add_on lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ;; mingw* | pw32* | cegcc*) lt_cv_dlopen=LoadLibrary lt_cv_dlopen_libs= ;; cygwin*) lt_cv_dlopen=dlopen lt_cv_dlopen_libs= ;; darwin*) # if libdl is installed we need to link against it AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl],[ lt_cv_dlopen=dyld lt_cv_dlopen_libs= lt_cv_dlopen_self=yes ]) ;; tpf*) # Don't try to run any link tests for TPF. We know it's impossible # because TPF is a cross-compiler, and we know how we open DSOs. lt_cv_dlopen=dlopen lt_cv_dlopen_libs= lt_cv_dlopen_self=no ;; *) AC_CHECK_FUNC([shl_load], [lt_cv_dlopen=shl_load], [AC_CHECK_LIB([dld], [shl_load], [lt_cv_dlopen=shl_load lt_cv_dlopen_libs=-ldld], [AC_CHECK_FUNC([dlopen], [lt_cv_dlopen=dlopen], [AC_CHECK_LIB([dl], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-ldl], [AC_CHECK_LIB([svld], [dlopen], [lt_cv_dlopen=dlopen lt_cv_dlopen_libs=-lsvld], [AC_CHECK_LIB([dld], [dld_link], [lt_cv_dlopen=dld_link lt_cv_dlopen_libs=-ldld]) ]) ]) ]) ]) ]) ;; esac if test no = "$lt_cv_dlopen"; then enable_dlopen=no else enable_dlopen=yes fi case $lt_cv_dlopen in dlopen) save_CPPFLAGS=$CPPFLAGS test yes = "$ac_cv_header_dlfcn_h" && CPPFLAGS="$CPPFLAGS -DHAVE_DLFCN_H" save_LDFLAGS=$LDFLAGS wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $export_dynamic_flag_spec\" save_LIBS=$LIBS LIBS="$lt_cv_dlopen_libs $LIBS" AC_CACHE_CHECK([whether a program can dlopen itself], lt_cv_dlopen_self, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self=yes, lt_cv_dlopen_self=yes, lt_cv_dlopen_self=no, lt_cv_dlopen_self=cross) ]) if test yes = "$lt_cv_dlopen_self"; then wl=$lt_prog_compiler_wl eval LDFLAGS=\"\$LDFLAGS $lt_prog_compiler_static\" AC_CACHE_CHECK([whether a statically linked program can dlopen itself], lt_cv_dlopen_self_static, [dnl _LT_TRY_DLOPEN_SELF( lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=yes, lt_cv_dlopen_self_static=no, lt_cv_dlopen_self_static=cross) ]) fi CPPFLAGS=$save_CPPFLAGS LDFLAGS=$save_LDFLAGS LIBS=$save_LIBS ;; esac case $lt_cv_dlopen_self in yes|no) enable_dlopen_self=$lt_cv_dlopen_self ;; *) enable_dlopen_self=unknown ;; esac case $lt_cv_dlopen_self_static in yes|no) enable_dlopen_self_static=$lt_cv_dlopen_self_static ;; *) enable_dlopen_self_static=unknown ;; esac fi _LT_DECL([dlopen_support], [enable_dlopen], [0], [Whether dlopen is supported]) _LT_DECL([dlopen_self], [enable_dlopen_self], [0], [Whether dlopen of programs is supported]) _LT_DECL([dlopen_self_static], [enable_dlopen_self_static], [0], [Whether dlopen of statically linked programs is supported]) ])# LT_SYS_DLOPEN_SELF # Old name: AU_ALIAS([AC_LIBTOOL_DLOPEN_SELF], [LT_SYS_DLOPEN_SELF]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN_SELF], []) # _LT_COMPILER_C_O([TAGNAME]) # --------------------------- # Check to see if options -c and -o are simultaneously supported by compiler. # This macro does not hard code the compiler like AC_PROG_CC_C_O. m4_defun([_LT_COMPILER_C_O], [m4_require([_LT_DECL_SED])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_CACHE_CHECK([if $compiler supports -c -o file.$ac_objext], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=no $RM -r conftest 2>/dev/null mkdir conftest cd conftest mkdir out echo "$lt_simple_compile_test_code" > conftest.$ac_ext lt_compiler_flag="-o out/conftest2.$ac_objext" # Insert the option either (1) after the last *FLAGS variable, or # (2) before a word containing "conftest.", or (3) at the end. # Note that $ac_compile itself does not contain backslashes and begins # with a dollar sign (not a hyphen), so the echo should work correctly. lt_compile=`echo "$ac_compile" | $SED \ -e 's:.*FLAGS}\{0,1\} :&$lt_compiler_flag :; t' \ -e 's: [[^ ]]*conftest\.: $lt_compiler_flag&:; t' \ -e 's:$: $lt_compiler_flag:'` (eval echo "\"\$as_me:$LINENO: $lt_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$lt_compile" 2>out/conftest.err) ac_status=$? cat out/conftest.err >&AS_MESSAGE_LOG_FD echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD if (exit $ac_status) && test -s out/conftest2.$ac_objext then # The compiler can only warn and ignore the option if not recognized # So say no if there are warnings $ECHO "$_lt_compiler_boilerplate" | $SED '/^$/d' > out/conftest.exp $SED '/^$/d; /^ *+/d' out/conftest.err >out/conftest.er2 if test ! -s out/conftest.er2 || diff out/conftest.exp out/conftest.er2 >/dev/null; then _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes fi fi chmod u+w . 2>&AS_MESSAGE_LOG_FD $RM conftest* # SGI C++ compiler will create directory out/ii_files/ for # template instantiation test -d out/ii_files && $RM out/ii_files/* && rmdir out/ii_files $RM out/* && rmdir out cd .. $RM -r conftest $RM conftest* ]) _LT_TAGDECL([compiler_c_o], [lt_cv_prog_compiler_c_o], [1], [Does compiler simultaneously support -c and -o options?]) ])# _LT_COMPILER_C_O # _LT_COMPILER_FILE_LOCKS([TAGNAME]) # ---------------------------------- # Check to see if we can do hard links to lock some files if needed m4_defun([_LT_COMPILER_FILE_LOCKS], [m4_require([_LT_ENABLE_LOCK])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl _LT_COMPILER_C_O([$1]) hard_links=nottested if test no = "$_LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)" && test no != "$need_locks"; then # do not overwrite the value of need_locks provided by the user AC_MSG_CHECKING([if we can lock with hard links]) hard_links=yes $RM conftest* ln conftest.a conftest.b 2>/dev/null && hard_links=no touch conftest.a ln conftest.a conftest.b 2>&5 || hard_links=no ln conftest.a conftest.b 2>/dev/null && hard_links=no AC_MSG_RESULT([$hard_links]) if test no = "$hard_links"; then AC_MSG_WARN(['$CC' does not support '-c -o', so 'make -j' may be unsafe]) need_locks=warn fi else need_locks=no fi _LT_DECL([], [need_locks], [1], [Must we lock files when doing compilation?]) ])# _LT_COMPILER_FILE_LOCKS # _LT_CHECK_OBJDIR # ---------------- m4_defun([_LT_CHECK_OBJDIR], [AC_CACHE_CHECK([for objdir], [lt_cv_objdir], [rm -f .libs 2>/dev/null mkdir .libs 2>/dev/null if test -d .libs; then lt_cv_objdir=.libs else # MS-DOS does not allow filenames that begin with a dot. lt_cv_objdir=_libs fi rmdir .libs 2>/dev/null]) objdir=$lt_cv_objdir _LT_DECL([], [objdir], [0], [The name of the directory that contains temporary libtool files])dnl m4_pattern_allow([LT_OBJDIR])dnl AC_DEFINE_UNQUOTED([LT_OBJDIR], "$lt_cv_objdir/", [Define to the sub-directory where libtool stores uninstalled libraries.]) ])# _LT_CHECK_OBJDIR # _LT_LINKER_HARDCODE_LIBPATH([TAGNAME]) # -------------------------------------- # Check hardcoding attributes. m4_defun([_LT_LINKER_HARDCODE_LIBPATH], [AC_MSG_CHECKING([how to hardcode library paths into programs]) _LT_TAGVAR(hardcode_action, $1)= if test -n "$_LT_TAGVAR(hardcode_libdir_flag_spec, $1)" || test -n "$_LT_TAGVAR(runpath_var, $1)" || test yes = "$_LT_TAGVAR(hardcode_automatic, $1)"; then # We can hardcode non-existent directories. if test no != "$_LT_TAGVAR(hardcode_direct, $1)" && # If the only mechanism to avoid hardcoding is shlibpath_var, we # have to relink, otherwise we might link with an installed library # when we should be linking with a yet-to-be-installed one ## test no != "$_LT_TAGVAR(hardcode_shlibpath_var, $1)" && test no != "$_LT_TAGVAR(hardcode_minus_L, $1)"; then # Linking always hardcodes the temporary library directory. _LT_TAGVAR(hardcode_action, $1)=relink else # We can link without hardcoding, and we can hardcode nonexisting dirs. _LT_TAGVAR(hardcode_action, $1)=immediate fi else # We cannot hardcode anything, or else we can only hardcode existing # directories. _LT_TAGVAR(hardcode_action, $1)=unsupported fi AC_MSG_RESULT([$_LT_TAGVAR(hardcode_action, $1)]) if test relink = "$_LT_TAGVAR(hardcode_action, $1)" || test yes = "$_LT_TAGVAR(inherit_rpath, $1)"; then # Fast installation is not supported enable_fast_install=no elif test yes = "$shlibpath_overrides_runpath" || test no = "$enable_shared"; then # Fast installation is not necessary enable_fast_install=needless fi _LT_TAGDECL([], [hardcode_action], [0], [How to hardcode a shared library path into an executable]) ])# _LT_LINKER_HARDCODE_LIBPATH # _LT_CMD_STRIPLIB # ---------------- m4_defun([_LT_CMD_STRIPLIB], [m4_require([_LT_DECL_EGREP]) striplib= old_striplib= AC_MSG_CHECKING([whether stripping libraries is possible]) if test -n "$STRIP" && $STRIP -V 2>&1 | $GREP "GNU strip" >/dev/null; then test -z "$old_striplib" && old_striplib="$STRIP --strip-debug" test -z "$striplib" && striplib="$STRIP --strip-unneeded" AC_MSG_RESULT([yes]) else # FIXME - insert some real tests, host_os isn't really good enough case $host_os in darwin*) if test -n "$STRIP"; then striplib="$STRIP -x" old_striplib="$STRIP -S" AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi ;; *) AC_MSG_RESULT([no]) ;; esac fi _LT_DECL([], [old_striplib], [1], [Commands to strip libraries]) _LT_DECL([], [striplib], [1]) ])# _LT_CMD_STRIPLIB # _LT_SYS_DYNAMIC_LINKER([TAG]) # ----------------------------- # PORTME Fill in your ld.so characteristics m4_defun([_LT_SYS_DYNAMIC_LINKER], [AC_REQUIRE([AC_CANONICAL_HOST])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_OBJDUMP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CHECK_SHELL_FEATURES])dnl AC_MSG_CHECKING([dynamic linker characteristics]) m4_if([$1], [], [ if test yes = "$GCC"; then case $host_os in darwin*) lt_awk_arg='/^libraries:/,/LR/' ;; *) lt_awk_arg='/^libraries:/' ;; esac case $host_os in mingw* | cegcc*) lt_sed_strip_eq='s|=\([[A-Za-z]]:\)|\1|g' ;; *) lt_sed_strip_eq='s|=/|/|g' ;; esac lt_search_path_spec=`$CC -print-search-dirs | awk $lt_awk_arg | $SED -e "s/^libraries://" -e $lt_sed_strip_eq` case $lt_search_path_spec in *\;*) # if the path contains ";" then we assume it to be the separator # otherwise default to the standard path separator (i.e. ":") - it is # assumed that no part of a normal pathname contains ";" but that should # okay in the real world where ";" in dirpaths is itself problematic. lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED 's/;/ /g'` ;; *) lt_search_path_spec=`$ECHO "$lt_search_path_spec" | $SED "s/$PATH_SEPARATOR/ /g"` ;; esac # Ok, now we have the path, separated by spaces, we can step through it # and add multilib dir if necessary... lt_tmp_lt_search_path_spec= lt_multi_os_dir=/`$CC $CPPFLAGS $CFLAGS $LDFLAGS -print-multi-os-directory 2>/dev/null` # ...but if some path component already ends with the multilib dir we assume # that all is fine and trust -print-search-dirs as is (GCC 4.2? or newer). case "$lt_multi_os_dir; $lt_search_path_spec " in "/; "* | "/.; "* | "/./; "* | *"$lt_multi_os_dir "* | *"$lt_multi_os_dir/ "*) lt_multi_os_dir= ;; esac for lt_sys_path in $lt_search_path_spec; do if test -d "$lt_sys_path$lt_multi_os_dir"; then lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path$lt_multi_os_dir" elif test -n "$lt_multi_os_dir"; then test -d "$lt_sys_path" && \ lt_tmp_lt_search_path_spec="$lt_tmp_lt_search_path_spec $lt_sys_path" fi done lt_search_path_spec=`$ECHO "$lt_tmp_lt_search_path_spec" | awk ' BEGIN {RS = " "; FS = "/|\n";} { lt_foo = ""; lt_count = 0; for (lt_i = NF; lt_i > 0; lt_i--) { if ($lt_i != "" && $lt_i != ".") { if ($lt_i == "..") { lt_count++; } else { if (lt_count == 0) { lt_foo = "/" $lt_i lt_foo; } else { lt_count--; } } } } if (lt_foo != "") { lt_freq[[lt_foo]]++; } if (lt_freq[[lt_foo]] == 1) { print lt_foo; } }'` # AWK program above erroneously prepends '/' to C:/dos/paths # for these hosts. case $host_os in mingw* | cegcc*) lt_search_path_spec=`$ECHO "$lt_search_path_spec" |\ $SED 's|/\([[A-Za-z]]:\)|\1|g'` ;; esac sys_lib_search_path_spec=`$ECHO "$lt_search_path_spec" | $lt_NL2SP` else sys_lib_search_path_spec="/lib /usr/lib /usr/local/lib" fi]) library_names_spec= libname_spec='lib$name' soname_spec= shrext_cmds=.so postinstall_cmds= postuninstall_cmds= finish_cmds= finish_eval= shlibpath_var= shlibpath_overrides_runpath=unknown version_type=none dynamic_linker="$host_os ld.so" sys_lib_dlsearch_path_spec="/lib /usr/lib" need_lib_prefix=unknown hardcode_into_libs=no # when you set need_version to no, make sure it does not cause -set_version # flags to be left without arguments need_version=unknown case $host_os in aix3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname.a' shlibpath_var=LIBPATH # AIX 3 has no versioning support, so we append a major version to the name. soname_spec='$libname$release$shared_ext$major' ;; aix[[4-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no hardcode_into_libs=yes if test ia64 = "$host_cpu"; then # AIX 5 supports IA64 library_names_spec='$libname$release$shared_ext$major $libname$release$shared_ext$versuffix $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH else # With GCC up to 2.95.x, collect2 would create an import file # for dependence libraries. The import file would start with # the line '#! .'. This would cause the generated library to # depend on '.', always an invalid library. This was fixed in # development snapshots of GCC prior to 3.0. case $host_os in aix4 | aix4.[[01]] | aix4.[[01]].*) if { echo '#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 97)' echo ' yes ' echo '#endif'; } | $CC -E - | $GREP yes > /dev/null; then : else can_build_shared=no fi ;; esac # AIX (on Power*) has no versioning support, so currently we cannot hardcode correct # soname into executable. Probably we can add versioning support to # collect2, so additional links can be useful in future. if test yes = "$aix_use_runtimelinking"; then # If using run time linking (on AIX 4.2 or later) use lib.so # instead of lib.a to let people know that these are not # typical AIX shared libraries. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' else # We preserve .a as extension for shared libraries through AIX4.2 # and later when we are not doing run time linking. library_names_spec='$libname$release.a $libname.a' soname_spec='$libname$release$shared_ext$major' fi shlibpath_var=LIBPATH fi ;; amigaos*) case $host_cpu in powerpc) # Since July 2007 AmigaOS4 officially supports .so libraries. # When compiling the executable, add -use-dynld -Lsobjs: to the compileline. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' ;; m68k) library_names_spec='$libname.ixlibrary $libname.a' # Create ${libname}_ixlibrary.a entries in /sys/libs. finish_eval='for lib in `ls $libdir/*.ixlibrary 2>/dev/null`; do libname=`func_echo_all "$lib" | $SED '\''s%^.*/\([[^/]]*\)\.ixlibrary$%\1%'\''`; $RM /sys/libs/${libname}_ixlibrary.a; $show "cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a"; cd /sys/libs && $LN_S $lib ${libname}_ixlibrary.a || exit 1; done' ;; esac ;; beos*) library_names_spec='$libname$shared_ext' dynamic_linker="$host_os ld.so" shlibpath_var=LIBRARY_PATH ;; bsdi[[45]]*) version_type=linux # correct to gnu/linux during the next big refactor need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/shlib /usr/lib /usr/X11/lib /usr/contrib/lib /lib /usr/local/lib" sys_lib_dlsearch_path_spec="/shlib /usr/lib /usr/local/lib" # the default ld.so.conf also contains /usr/contrib/lib and # /usr/X11R6/lib (/usr/X11 is a link to /usr/X11R6), but let us allow # libtool to hard-code these into programs ;; cygwin* | mingw* | pw32* | cegcc*) version_type=windows shrext_cmds=.dll need_version=no need_lib_prefix=no case $GCC,$cc_basename in yes,*) # gcc library_names_spec='$libname.dll.a' # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname~ chmod a+x \$dldir/$dlname~ if test -n '\''$stripme'\'' && test -n '\''$striplib'\''; then eval '\''$striplib \$dldir/$dlname'\'' || exit \$?; fi' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes case $host_os in cygwin*) # Cygwin DLLs use 'cyg' prefix rather than 'lib' soname_spec='`echo $libname | sed -e 's/^lib/cyg/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/lib/w32api"]) ;; mingw* | cegcc*) # MinGW DLLs use traditional 'lib' prefix soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' ;; pw32*) # pw32 DLLs use 'pw' prefix rather than 'lib' library_names_spec='`echo $libname | sed -e 's/^lib/pw/'``echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' ;; esac dynamic_linker='Win32 ld.exe' ;; *,cl*) # Native MSVC libname_spec='$name' soname_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext' library_names_spec='$libname.dll.lib' case $build_os in mingw*) sys_lib_search_path_spec= lt_save_ifs=$IFS IFS=';' for lt_path in $LIB do IFS=$lt_save_ifs # Let DOS variable expansion print the short 8.3 style file name. lt_path=`cd "$lt_path" 2>/dev/null && cmd //C "for %i in (".") do @echo %~si"` sys_lib_search_path_spec="$sys_lib_search_path_spec $lt_path" done IFS=$lt_save_ifs # Convert to MSYS style. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | sed -e 's|\\\\|/|g' -e 's| \\([[a-zA-Z]]\\):| /\\1|g' -e 's|^ ||'` ;; cygwin*) # Convert to unix form, then to dos form, then back to unix form # but this time dos style (no spaces!) so that the unix form looks # like /cygdrive/c/PROGRA~1:/cygdr... sys_lib_search_path_spec=`cygpath --path --unix "$LIB"` sys_lib_search_path_spec=`cygpath --path --dos "$sys_lib_search_path_spec" 2>/dev/null` sys_lib_search_path_spec=`cygpath --path --unix "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` ;; *) sys_lib_search_path_spec=$LIB if $ECHO "$sys_lib_search_path_spec" | [$GREP ';[c-zC-Z]:/' >/dev/null]; then # It is most probably a Windows format PATH. sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e 's/;/ /g'` else sys_lib_search_path_spec=`$ECHO "$sys_lib_search_path_spec" | $SED -e "s/$PATH_SEPARATOR/ /g"` fi # FIXME: find the short name or the path components, as spaces are # common. (e.g. "Program Files" -> "PROGRA~1") ;; esac # DLL is installed to $(libdir)/../bin by postinstall_cmds postinstall_cmds='base_file=`basename \$file`~ dlpath=`$SHELL 2>&1 -c '\''. $dir/'\''\$base_file'\''i; echo \$dlname'\''`~ dldir=$destdir/`dirname \$dlpath`~ test -d \$dldir || mkdir -p \$dldir~ $install_prog $dir/$dlname \$dldir/$dlname' postuninstall_cmds='dldll=`$SHELL 2>&1 -c '\''. $file; echo \$dlname'\''`~ dlpath=$dir/\$dldll~ $RM \$dlpath' shlibpath_overrides_runpath=yes dynamic_linker='Win32 link.exe' ;; *) # Assume MSVC wrapper library_names_spec='$libname`echo $release | $SED -e 's/[[.]]/-/g'`$versuffix$shared_ext $libname.lib' dynamic_linker='Win32 ld.exe' ;; esac # FIXME: first we should search . and the directory the executable is in shlibpath_var=PATH ;; darwin* | rhapsody*) dynamic_linker="$host_os dyld" version_type=darwin need_lib_prefix=no need_version=no library_names_spec='$libname$release$major$shared_ext $libname$shared_ext' soname_spec='$libname$release$major$shared_ext' shlibpath_overrides_runpath=yes shlibpath_var=DYLD_LIBRARY_PATH shrext_cmds='`test .$module = .yes && echo .so || echo .dylib`' m4_if([$1], [],[ sys_lib_search_path_spec="$sys_lib_search_path_spec /usr/local/lib"]) sys_lib_dlsearch_path_spec='/usr/local/lib /lib /usr/lib' ;; dgux*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; freebsd* | dragonfly*) # DragonFly does not have aout. When/if they implement a new # versioning mechanism, adjust this. if test -x /usr/bin/objformat; then objformat=`/usr/bin/objformat` else case $host_os in freebsd[[23]].*) objformat=aout ;; *) objformat=elf ;; esac fi version_type=freebsd-$objformat case $version_type in freebsd-elf*) library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' need_version=no need_lib_prefix=no ;; freebsd-*) library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' need_version=yes ;; esac shlibpath_var=LD_LIBRARY_PATH case $host_os in freebsd2.*) shlibpath_overrides_runpath=yes ;; freebsd3.[[01]]* | freebsdelf3.[[01]]*) shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; freebsd3.[[2-9]]* | freebsdelf3.[[2-9]]* | \ freebsd4.[[0-5]] | freebsdelf4.[[0-5]] | freebsd4.1.1 | freebsdelf4.1.1) shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; *) # from 4.6 on, and DragonFly shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; esac ;; haiku*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no dynamic_linker="$host_os runtime_loader" library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LIBRARY_PATH shlibpath_overrides_runpath=no sys_lib_dlsearch_path_spec='/boot/home/config/lib /boot/common/lib /boot/system/lib' hardcode_into_libs=yes ;; hpux9* | hpux10* | hpux11*) # Give a soname corresponding to the major version so that dld.sl refuses to # link against other versions. version_type=sunos need_lib_prefix=no need_version=no case $host_cpu in ia64*) shrext_cmds='.so' hardcode_into_libs=yes dynamic_linker="$host_os dld.so" shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' if test 32 = "$HPUX_IA64_MODE"; then sys_lib_search_path_spec="/usr/lib/hpux32 /usr/local/lib/hpux32 /usr/local/lib" else sys_lib_search_path_spec="/usr/lib/hpux64 /usr/local/lib/hpux64" fi sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; hppa*64*) shrext_cmds='.sl' hardcode_into_libs=yes dynamic_linker="$host_os dld.sl" shlibpath_var=LD_LIBRARY_PATH # How should we handle SHLIB_PATH shlibpath_overrides_runpath=yes # Unless +noenvvar is specified. library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' sys_lib_search_path_spec="/usr/lib/pa20_64 /usr/ccs/lib/pa20_64" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; *) shrext_cmds='.sl' dynamic_linker="$host_os dld.sl" shlibpath_var=SHLIB_PATH shlibpath_overrides_runpath=no # +s is required to enable SHLIB_PATH library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' ;; esac # HP-UX runs *really* slowly unless shared libraries are mode 555, ... postinstall_cmds='chmod 555 $lib' # or fails outright, so override atomically: install_override_mode=555 ;; interix[[3-9]]*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='Interix 3.x ld.so.1 (PE, like ELF)' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; irix5* | irix6* | nonstopux*) case $host_os in nonstopux*) version_type=nonstopux ;; *) if test yes = "$lt_cv_prog_gnu_ld"; then version_type=linux # correct to gnu/linux during the next big refactor else version_type=irix fi ;; esac need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$release$shared_ext $libname$shared_ext' case $host_os in irix5* | nonstopux*) libsuff= shlibsuff= ;; *) case $LD in # libtool.m4 will add one of these switches to LD *-32|*"-32 "|*-melf32bsmip|*"-melf32bsmip ") libsuff= shlibsuff= libmagic=32-bit;; *-n32|*"-n32 "|*-melf32bmipn32|*"-melf32bmipn32 ") libsuff=32 shlibsuff=N32 libmagic=N32;; *-64|*"-64 "|*-melf64bmip|*"-melf64bmip ") libsuff=64 shlibsuff=64 libmagic=64-bit;; *) libsuff= shlibsuff= libmagic=never-match;; esac ;; esac shlibpath_var=LD_LIBRARY${shlibsuff}_PATH shlibpath_overrides_runpath=no sys_lib_search_path_spec="/usr/lib$libsuff /lib$libsuff /usr/local/lib$libsuff" sys_lib_dlsearch_path_spec="/usr/lib$libsuff /lib$libsuff" hardcode_into_libs=yes ;; # No shared lib support for Linux oldld, aout, or coff. linux*oldld* | linux*aout* | linux*coff*) dynamic_linker=no ;; linux*android*) version_type=none # Android doesn't support versioned libraries. need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext' soname_spec='$libname$release$shared_ext' finish_cmds= shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes dynamic_linker='Android linker' # Don't embed -rpath directories since the linker doesn't support them. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' finish_cmds='PATH="\$PATH:/sbin" ldconfig -n $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no # Some binutils ld are patched to set DT_RUNPATH AC_CACHE_VAL([lt_cv_shlibpath_overrides_runpath], [lt_cv_shlibpath_overrides_runpath=no save_LDFLAGS=$LDFLAGS save_libdir=$libdir eval "libdir=/foo; wl=\"$_LT_TAGVAR(lt_prog_compiler_wl, $1)\"; \ LDFLAGS=\"\$LDFLAGS $_LT_TAGVAR(hardcode_libdir_flag_spec, $1)\"" AC_LINK_IFELSE([AC_LANG_PROGRAM([],[])], [AS_IF([ ($OBJDUMP -p conftest$ac_exeext) 2>/dev/null | grep "RUNPATH.*$libdir" >/dev/null], [lt_cv_shlibpath_overrides_runpath=yes])]) LDFLAGS=$save_LDFLAGS libdir=$save_libdir ]) shlibpath_overrides_runpath=$lt_cv_shlibpath_overrides_runpath # This implies no fast_install, which is unacceptable. # Some rework will be needed to allow for fast_install # before this can be enabled. hardcode_into_libs=yes # Append ld.so.conf contents to the search path if test -f /etc/ld.so.conf; then lt_ld_extra=`awk '/^include / { system(sprintf("cd /etc; cat %s 2>/dev/null", \[$]2)); skip = 1; } { if (!skip) print \[$]0; skip = 0; }' < /etc/ld.so.conf | $SED -e 's/#.*//;/^[ ]*hwcap[ ]/d;s/[:, ]/ /g;s/=[^=]*$//;s/=[^= ]* / /g;s/"//g;/^$/d' | tr '\n' ' '` sys_lib_dlsearch_path_spec="/lib /usr/lib $lt_ld_extra" fi # We used to test for /lib/ld.so.1 and disable shared libraries on # powerpc, because MkLinux only supported shared libraries with the # GNU dynamic linker. Since this was broken with cross compilers, # most powerpc-linux boxes support dynamic linking these days and # people can always --disable-shared, the test was removed, and we # assume the GNU/Linux dynamic linker is in use. dynamic_linker='GNU/Linux ld.so' ;; netbsd*) version_type=sunos need_lib_prefix=no need_version=no if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' dynamic_linker='NetBSD (a.out) ld.so' else library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' dynamic_linker='NetBSD ld.elf_so' fi shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes ;; newsos6) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; *nto* | *qnx*) version_type=qnx need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes dynamic_linker='ldqnx.so' ;; openbsd* | bitrig*) version_type=sunos sys_lib_dlsearch_path_spec=/usr/lib need_lib_prefix=no if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then need_version=no else need_version=yes fi library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/sbin" ldconfig -m $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes ;; os2*) libname_spec='$name' shrext_cmds=.dll need_lib_prefix=no library_names_spec='$libname$shared_ext $libname.a' dynamic_linker='OS/2 ld.exe' shlibpath_var=LIBPATH ;; osf3* | osf4* | osf5*) version_type=osf need_lib_prefix=no need_version=no soname_spec='$libname$release$shared_ext$major' library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH sys_lib_search_path_spec="/usr/shlib /usr/ccs/lib /usr/lib/cmplrs/cc /usr/lib /usr/local/lib /var/shlib" sys_lib_dlsearch_path_spec=$sys_lib_search_path_spec ;; rdos*) dynamic_linker=no ;; solaris*) version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes # ldd complains unless libraries are executable postinstall_cmds='chmod +x $lib' ;; sunos4*) version_type=sunos library_names_spec='$libname$release$shared_ext$versuffix $libname$shared_ext$versuffix' finish_cmds='PATH="\$PATH:/usr/etc" ldconfig $libdir' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes if test yes = "$with_gnu_ld"; then need_lib_prefix=no fi need_version=yes ;; sysv4 | sysv4.3*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH case $host_vendor in sni) shlibpath_overrides_runpath=no need_lib_prefix=no runpath_var=LD_RUN_PATH ;; siemens) need_lib_prefix=no ;; motorola) need_lib_prefix=no need_version=no shlibpath_overrides_runpath=no sys_lib_search_path_spec='/lib /usr/lib /usr/ccs/lib' ;; esac ;; sysv4*MP*) if test -d /usr/nec; then version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$shared_ext.$versuffix $libname$shared_ext.$major $libname$shared_ext' soname_spec='$libname$shared_ext.$major' shlibpath_var=LD_LIBRARY_PATH fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) version_type=freebsd-elf need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=yes hardcode_into_libs=yes if test yes = "$with_gnu_ld"; then sys_lib_search_path_spec='/usr/local/lib /usr/gnu/lib /usr/ccs/lib /usr/lib /lib' else sys_lib_search_path_spec='/usr/ccs/lib /usr/lib' case $host_os in sco3.2v5*) sys_lib_search_path_spec="$sys_lib_search_path_spec /lib" ;; esac fi sys_lib_dlsearch_path_spec='/usr/lib' ;; tpf*) # TPF is a cross-target only. Preferred cross-host = GNU/Linux. version_type=linux # correct to gnu/linux during the next big refactor need_lib_prefix=no need_version=no library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' shlibpath_var=LD_LIBRARY_PATH shlibpath_overrides_runpath=no hardcode_into_libs=yes ;; uts4*) version_type=linux # correct to gnu/linux during the next big refactor library_names_spec='$libname$release$shared_ext$versuffix $libname$release$shared_ext$major $libname$shared_ext' soname_spec='$libname$release$shared_ext$major' shlibpath_var=LD_LIBRARY_PATH ;; *) dynamic_linker=no ;; esac AC_MSG_RESULT([$dynamic_linker]) test no = "$dynamic_linker" && can_build_shared=no variables_saved_for_relink="PATH $shlibpath_var $runpath_var" if test yes = "$GCC"; then variables_saved_for_relink="$variables_saved_for_relink GCC_EXEC_PREFIX COMPILER_PATH LIBRARY_PATH" fi if test set = "${lt_cv_sys_lib_search_path_spec+set}"; then sys_lib_search_path_spec=$lt_cv_sys_lib_search_path_spec fi if test set = "${lt_cv_sys_lib_dlsearch_path_spec+set}"; then sys_lib_dlsearch_path_spec=$lt_cv_sys_lib_dlsearch_path_spec fi _LT_DECL([], [variables_saved_for_relink], [1], [Variables whose values should be saved in libtool wrapper scripts and restored at link time]) _LT_DECL([], [need_lib_prefix], [0], [Do we need the "lib" prefix for modules?]) _LT_DECL([], [need_version], [0], [Do we need a version for libraries?]) _LT_DECL([], [version_type], [0], [Library versioning type]) _LT_DECL([], [runpath_var], [0], [Shared library runtime path variable]) _LT_DECL([], [shlibpath_var], [0],[Shared library path variable]) _LT_DECL([], [shlibpath_overrides_runpath], [0], [Is shlibpath searched before the hard-coded library search path?]) _LT_DECL([], [libname_spec], [1], [Format of library name prefix]) _LT_DECL([], [library_names_spec], [1], [[List of archive names. First name is the real one, the rest are links. The last name is the one that the linker finds with -lNAME]]) _LT_DECL([], [soname_spec], [1], [[The coded name of the library, if different from the real name]]) _LT_DECL([], [install_override_mode], [1], [Permission mode override for installation of shared libraries]) _LT_DECL([], [postinstall_cmds], [2], [Command to use after installation of a shared archive]) _LT_DECL([], [postuninstall_cmds], [2], [Command to use after uninstallation of a shared archive]) _LT_DECL([], [finish_cmds], [2], [Commands used to finish a libtool library installation in a directory]) _LT_DECL([], [finish_eval], [1], [[As "finish_cmds", except a single script fragment to be evaled but not shown]]) _LT_DECL([], [hardcode_into_libs], [0], [Whether we should hardcode library paths into libraries]) _LT_DECL([], [sys_lib_search_path_spec], [2], [Compile-time system search path for libraries]) _LT_DECL([], [sys_lib_dlsearch_path_spec], [2], [Run-time system search path for libraries]) ])# _LT_SYS_DYNAMIC_LINKER # _LT_PATH_TOOL_PREFIX(TOOL) # -------------------------- # find a file program that can recognize shared library AC_DEFUN([_LT_PATH_TOOL_PREFIX], [m4_require([_LT_DECL_EGREP])dnl AC_MSG_CHECKING([for $1]) AC_CACHE_VAL(lt_cv_path_MAGIC_CMD, [case $MAGIC_CMD in [[\\/*] | ?:[\\/]*]) lt_cv_path_MAGIC_CMD=$MAGIC_CMD # Let the user override the test with a path. ;; *) lt_save_MAGIC_CMD=$MAGIC_CMD lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR dnl $ac_dummy forces splitting on constant user-supplied paths. dnl POSIX.2 word splitting is done only on the output of word expansions, dnl not every word. This closes a longstanding sh security hole. ac_dummy="m4_if([$2], , $PATH, [$2])" for ac_dir in $ac_dummy; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$1"; then lt_cv_path_MAGIC_CMD=$ac_dir/"$1" if test -n "$file_magic_test_file"; then case $deplibs_check_method in "file_magic "*) file_magic_regex=`expr "$deplibs_check_method" : "file_magic \(.*\)"` MAGIC_CMD=$lt_cv_path_MAGIC_CMD if eval $file_magic_cmd \$file_magic_test_file 2> /dev/null | $EGREP "$file_magic_regex" > /dev/null; then : else cat <<_LT_EOF 1>&2 *** Warning: the command libtool uses to detect shared libraries, *** $file_magic_cmd, produces output that libtool cannot recognize. *** The result is that libtool may fail to recognize shared libraries *** as such. This will affect the creation of libtool libraries that *** depend on shared libraries, but programs linked with such libtool *** libraries will work regardless of this problem. Nevertheless, you *** may want to report the problem to your system manager and/or to *** bug-libtool@gnu.org _LT_EOF fi ;; esac fi break fi done IFS=$lt_save_ifs MAGIC_CMD=$lt_save_MAGIC_CMD ;; esac]) MAGIC_CMD=$lt_cv_path_MAGIC_CMD if test -n "$MAGIC_CMD"; then AC_MSG_RESULT($MAGIC_CMD) else AC_MSG_RESULT(no) fi _LT_DECL([], [MAGIC_CMD], [0], [Used to examine libraries when file_magic_cmd begins with "file"])dnl ])# _LT_PATH_TOOL_PREFIX # Old name: AU_ALIAS([AC_PATH_TOOL_PREFIX], [_LT_PATH_TOOL_PREFIX]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_PATH_TOOL_PREFIX], []) # _LT_PATH_MAGIC # -------------- # find a file program that can recognize a shared library m4_defun([_LT_PATH_MAGIC], [_LT_PATH_TOOL_PREFIX(${ac_tool_prefix}file, /usr/bin$PATH_SEPARATOR$PATH) if test -z "$lt_cv_path_MAGIC_CMD"; then if test -n "$ac_tool_prefix"; then _LT_PATH_TOOL_PREFIX(file, /usr/bin$PATH_SEPARATOR$PATH) else MAGIC_CMD=: fi fi ])# _LT_PATH_MAGIC # LT_PATH_LD # ---------- # find the pathname to the GNU or non-GNU linker AC_DEFUN([LT_PATH_LD], [AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PROG_ECHO_BACKSLASH])dnl AC_ARG_WITH([gnu-ld], [AS_HELP_STRING([--with-gnu-ld], [assume the C compiler uses GNU ld @<:@default=no@:>@])], [test no = "$withval" || with_gnu_ld=yes], [with_gnu_ld=no])dnl ac_prog=ld if test yes = "$GCC"; then # Check if gcc -print-prog-name=ld gives a path. AC_MSG_CHECKING([for ld used by $CC]) case $host in *-*-mingw*) # gcc leaves a trailing carriage return, which upsets mingw ac_prog=`($CC -print-prog-name=ld) 2>&5 | tr -d '\015'` ;; *) ac_prog=`($CC -print-prog-name=ld) 2>&5` ;; esac case $ac_prog in # Accept absolute paths. [[\\/]]* | ?:[[\\/]]*) re_direlt='/[[^/]][[^/]]*/\.\./' # Canonicalize the pathname of ld ac_prog=`$ECHO "$ac_prog"| $SED 's%\\\\%/%g'` while $ECHO "$ac_prog" | $GREP "$re_direlt" > /dev/null 2>&1; do ac_prog=`$ECHO $ac_prog| $SED "s%$re_direlt%/%"` done test -z "$LD" && LD=$ac_prog ;; "") # If it fails, then pretend we aren't using GCC. ac_prog=ld ;; *) # If it is relative, then search for the first ld in PATH. with_gnu_ld=unknown ;; esac elif test yes = "$with_gnu_ld"; then AC_MSG_CHECKING([for GNU ld]) else AC_MSG_CHECKING([for non-GNU ld]) fi AC_CACHE_VAL(lt_cv_path_LD, [if test -z "$LD"; then lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. if test -f "$ac_dir/$ac_prog" || test -f "$ac_dir/$ac_prog$ac_exeext"; then lt_cv_path_LD=$ac_dir/$ac_prog # Check to see if the program is GNU ld. I'd rather use --version, # but apparently some variants of GNU ld only accept -v. # Break only if it was the GNU/non-GNU ld that we prefer. case `"$lt_cv_path_LD" -v 2>&1 &1 /dev/null 2>&1; then lt_cv_deplibs_check_method='file_magic ^x86 archive import|^x86 DLL' lt_cv_file_magic_cmd='func_win32_libid' else # Keep this pattern in sync with the one in func_win32_libid. lt_cv_deplibs_check_method='file_magic file format (pei*-i386(.*architecture: i386)?|pe-arm-wince|pe-x86-64)' lt_cv_file_magic_cmd='$OBJDUMP -f' fi ;; cegcc*) # use the weaker test based on 'objdump'. See mingw*. lt_cv_deplibs_check_method='file_magic file format pe-arm-.*little(.*architecture: arm)?' lt_cv_file_magic_cmd='$OBJDUMP -f' ;; darwin* | rhapsody*) lt_cv_deplibs_check_method=pass_all ;; freebsd* | dragonfly*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then case $host_cpu in i*86 ) # Not sure whether the presence of OpenBSD here was a mistake. # Let's accept both of them until this is cleared up. lt_cv_deplibs_check_method='file_magic (FreeBSD|OpenBSD|DragonFly)/i[[3-9]]86 (compact )?demand paged shared library' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=`echo /usr/lib/libc.so.*` ;; esac else lt_cv_deplibs_check_method=pass_all fi ;; haiku*) lt_cv_deplibs_check_method=pass_all ;; hpux10.20* | hpux11*) lt_cv_file_magic_cmd=/usr/bin/file case $host_cpu in ia64*) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|ELF-[[0-9]][[0-9]]) shared object file - IA64' lt_cv_file_magic_test_file=/usr/lib/hpux32/libc.so ;; hppa*64*) [lt_cv_deplibs_check_method='file_magic (s[0-9][0-9][0-9]|ELF[ -][0-9][0-9])(-bit)?( [LM]SB)? shared object( file)?[, -]* PA-RISC [0-9]\.[0-9]'] lt_cv_file_magic_test_file=/usr/lib/pa20_64/libc.sl ;; *) lt_cv_deplibs_check_method='file_magic (s[[0-9]][[0-9]][[0-9]]|PA-RISC[[0-9]]\.[[0-9]]) shared library' lt_cv_file_magic_test_file=/usr/lib/libc.sl ;; esac ;; interix[[3-9]]*) # PIC code is broken on Interix 3.x, that's why |\.a not |_pic\.a here lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|\.a)$' ;; irix5* | irix6* | nonstopux*) case $LD in *-32|*"-32 ") libmagic=32-bit;; *-n32|*"-n32 ") libmagic=N32;; *-64|*"-64 ") libmagic=64-bit;; *) libmagic=never-match;; esac lt_cv_deplibs_check_method=pass_all ;; # This must be glibc/ELF. linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) lt_cv_deplibs_check_method=pass_all ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ > /dev/null; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so|_pic\.a)$' fi ;; newos6*) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (executable|dynamic lib)' lt_cv_file_magic_cmd=/usr/bin/file lt_cv_file_magic_test_file=/usr/lib/libnls.so ;; *nto* | *qnx*) lt_cv_deplibs_check_method=pass_all ;; openbsd* | bitrig*) if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|\.so|_pic\.a)$' else lt_cv_deplibs_check_method='match_pattern /lib[[^/]]+(\.so\.[[0-9]]+\.[[0-9]]+|_pic\.a)$' fi ;; osf3* | osf4* | osf5*) lt_cv_deplibs_check_method=pass_all ;; rdos*) lt_cv_deplibs_check_method=pass_all ;; solaris*) lt_cv_deplibs_check_method=pass_all ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX* | sysv4*uw2*) lt_cv_deplibs_check_method=pass_all ;; sysv4 | sysv4.3*) case $host_vendor in motorola) lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[ML]]SB (shared object|dynamic lib) M[[0-9]][[0-9]]* Version [[0-9]]' lt_cv_file_magic_test_file=`echo /usr/lib/libc.so*` ;; ncr) lt_cv_deplibs_check_method=pass_all ;; sequent) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method='file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB (shared object|dynamic lib )' ;; sni) lt_cv_file_magic_cmd='/bin/file' lt_cv_deplibs_check_method="file_magic ELF [[0-9]][[0-9]]*-bit [[LM]]SB dynamic lib" lt_cv_file_magic_test_file=/lib/libc.so ;; siemens) lt_cv_deplibs_check_method=pass_all ;; pc) lt_cv_deplibs_check_method=pass_all ;; esac ;; tpf*) lt_cv_deplibs_check_method=pass_all ;; esac ]) file_magic_glob= want_nocaseglob=no if test "$build" = "$host"; then case $host_os in mingw* | pw32*) if ( shopt | grep nocaseglob ) >/dev/null 2>&1; then want_nocaseglob=yes else file_magic_glob=`echo aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ | $SED -e "s/\(..\)/s\/[[\1]]\/[[\1]]\/g;/g"` fi ;; esac fi file_magic_cmd=$lt_cv_file_magic_cmd deplibs_check_method=$lt_cv_deplibs_check_method test -z "$deplibs_check_method" && deplibs_check_method=unknown _LT_DECL([], [deplibs_check_method], [1], [Method to check whether dependent libraries are shared objects]) _LT_DECL([], [file_magic_cmd], [1], [Command to use when deplibs_check_method = "file_magic"]) _LT_DECL([], [file_magic_glob], [1], [How to find potential files when deplibs_check_method = "file_magic"]) _LT_DECL([], [want_nocaseglob], [1], [Find potential files using nocaseglob when deplibs_check_method = "file_magic"]) ])# _LT_CHECK_MAGIC_METHOD # LT_PATH_NM # ---------- # find the pathname to a BSD- or MS-compatible name lister AC_DEFUN([LT_PATH_NM], [AC_REQUIRE([AC_PROG_CC])dnl AC_CACHE_CHECK([for BSD- or MS-compatible name lister (nm)], lt_cv_path_NM, [if test -n "$NM"; then # Let the user override the test. lt_cv_path_NM=$NM else lt_nm_to_check=${ac_tool_prefix}nm if test -n "$ac_tool_prefix" && test "$build" = "$host"; then lt_nm_to_check="$lt_nm_to_check nm" fi for lt_tmp_nm in $lt_nm_to_check; do lt_save_ifs=$IFS; IFS=$PATH_SEPARATOR for ac_dir in $PATH /usr/ccs/bin/elf /usr/ccs/bin /usr/ucb /bin; do IFS=$lt_save_ifs test -z "$ac_dir" && ac_dir=. tmp_nm=$ac_dir/$lt_tmp_nm if test -f "$tmp_nm" || test -f "$tmp_nm$ac_exeext"; then # Check to see if the nm accepts a BSD-compat flag. # Adding the 'sed 1q' prevents false positives on HP-UX, which says: # nm: unknown option "B" ignored # Tru64's nm complains that /dev/null is an invalid object file case `"$tmp_nm" -B /dev/null 2>&1 | sed '1q'` in */dev/null* | *'Invalid file or object type'*) lt_cv_path_NM="$tmp_nm -B" break 2 ;; *) case `"$tmp_nm" -p /dev/null 2>&1 | sed '1q'` in */dev/null*) lt_cv_path_NM="$tmp_nm -p" break 2 ;; *) lt_cv_path_NM=${lt_cv_path_NM="$tmp_nm"} # keep the first match, but continue # so that we can try to find one that supports BSD flags ;; esac ;; esac fi done IFS=$lt_save_ifs done : ${lt_cv_path_NM=no} fi]) if test no != "$lt_cv_path_NM"; then NM=$lt_cv_path_NM else # Didn't find any BSD compatible name lister, look for dumpbin. if test -n "$DUMPBIN"; then : # Let the user override the test. else AC_CHECK_TOOLS(DUMPBIN, [dumpbin "link -dump"], :) case `$DUMPBIN -symbols -headers /dev/null 2>&1 | sed '1q'` in *COFF*) DUMPBIN="$DUMPBIN -symbols -headers" ;; *) DUMPBIN=: ;; esac fi AC_SUBST([DUMPBIN]) if test : != "$DUMPBIN"; then NM=$DUMPBIN fi fi test -z "$NM" && NM=nm AC_SUBST([NM]) _LT_DECL([], [NM], [1], [A BSD- or MS-compatible name lister])dnl AC_CACHE_CHECK([the name lister ($NM) interface], [lt_cv_nm_interface], [lt_cv_nm_interface="BSD nm" echo "int some_variable = 0;" > conftest.$ac_ext (eval echo "\"\$as_me:$LINENO: $ac_compile\"" >&AS_MESSAGE_LOG_FD) (eval "$ac_compile" 2>conftest.err) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: $NM \\\"conftest.$ac_objext\\\"\"" >&AS_MESSAGE_LOG_FD) (eval "$NM \"conftest.$ac_objext\"" 2>conftest.err > conftest.out) cat conftest.err >&AS_MESSAGE_LOG_FD (eval echo "\"\$as_me:$LINENO: output\"" >&AS_MESSAGE_LOG_FD) cat conftest.out >&AS_MESSAGE_LOG_FD if $GREP 'External.*some_variable' conftest.out > /dev/null; then lt_cv_nm_interface="MS dumpbin" fi rm -f conftest*]) ])# LT_PATH_NM # Old names: AU_ALIAS([AM_PROG_NM], [LT_PATH_NM]) AU_ALIAS([AC_PROG_NM], [LT_PATH_NM]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_PROG_NM], []) dnl AC_DEFUN([AC_PROG_NM], []) # _LT_CHECK_SHAREDLIB_FROM_LINKLIB # -------------------------------- # how to determine the name of the shared library # associated with a specific link library. # -- PORTME fill in with the dynamic library characteristics m4_defun([_LT_CHECK_SHAREDLIB_FROM_LINKLIB], [m4_require([_LT_DECL_EGREP]) m4_require([_LT_DECL_OBJDUMP]) m4_require([_LT_DECL_DLLTOOL]) AC_CACHE_CHECK([how to associate runtime and link libraries], lt_cv_sharedlib_from_linklib_cmd, [lt_cv_sharedlib_from_linklib_cmd='unknown' case $host_os in cygwin* | mingw* | pw32* | cegcc*) # two different shell functions defined in ltmain.sh; # decide which one to use based on capabilities of $DLLTOOL case `$DLLTOOL --help 2>&1` in *--identify-strict*) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib ;; *) lt_cv_sharedlib_from_linklib_cmd=func_cygming_dll_for_implib_fallback ;; esac ;; *) # fallback: assume linklib IS sharedlib lt_cv_sharedlib_from_linklib_cmd=$ECHO ;; esac ]) sharedlib_from_linklib_cmd=$lt_cv_sharedlib_from_linklib_cmd test -z "$sharedlib_from_linklib_cmd" && sharedlib_from_linklib_cmd=$ECHO _LT_DECL([], [sharedlib_from_linklib_cmd], [1], [Command to associate shared and link libraries]) ])# _LT_CHECK_SHAREDLIB_FROM_LINKLIB # _LT_PATH_MANIFEST_TOOL # ---------------------- # locate the manifest tool m4_defun([_LT_PATH_MANIFEST_TOOL], [AC_CHECK_TOOL(MANIFEST_TOOL, mt, :) test -z "$MANIFEST_TOOL" && MANIFEST_TOOL=mt AC_CACHE_CHECK([if $MANIFEST_TOOL is a manifest tool], [lt_cv_path_mainfest_tool], [lt_cv_path_mainfest_tool=no echo "$as_me:$LINENO: $MANIFEST_TOOL '-?'" >&AS_MESSAGE_LOG_FD $MANIFEST_TOOL '-?' 2>conftest.err > conftest.out cat conftest.err >&AS_MESSAGE_LOG_FD if $GREP 'Manifest Tool' conftest.out > /dev/null; then lt_cv_path_mainfest_tool=yes fi rm -f conftest*]) if test yes != "$lt_cv_path_mainfest_tool"; then MANIFEST_TOOL=: fi _LT_DECL([], [MANIFEST_TOOL], [1], [Manifest tool])dnl ])# _LT_PATH_MANIFEST_TOOL # _LT_DLL_DEF_P([FILE]) # --------------------- # True iff FILE is a Windows DLL '.def' file. # Keep in sync with func_dll_def_p in the libtool script AC_DEFUN([_LT_DLL_DEF_P], [dnl test DEF = "`$SED -n dnl -e '\''s/^[[ ]]*//'\'' dnl Strip leading whitespace -e '\''/^\(;.*\)*$/d'\'' dnl Delete empty lines and comments -e '\''s/^\(EXPORTS\|LIBRARY\)\([[ ]].*\)*$/DEF/p'\'' dnl -e q dnl Only consider the first "real" line $1`" dnl ])# _LT_DLL_DEF_P # LT_LIB_M # -------- # check for math library AC_DEFUN([LT_LIB_M], [AC_REQUIRE([AC_CANONICAL_HOST])dnl LIBM= case $host in *-*-beos* | *-*-cegcc* | *-*-cygwin* | *-*-haiku* | *-*-pw32* | *-*-darwin*) # These system don't have libm, or don't need it ;; *-ncr-sysv4.3*) AC_CHECK_LIB(mw, _mwvalidcheckl, LIBM=-lmw) AC_CHECK_LIB(m, cos, LIBM="$LIBM -lm") ;; *) AC_CHECK_LIB(m, cos, LIBM=-lm) ;; esac AC_SUBST([LIBM]) ])# LT_LIB_M # Old name: AU_ALIAS([AC_CHECK_LIBM], [LT_LIB_M]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_CHECK_LIBM], []) # _LT_COMPILER_NO_RTTI([TAGNAME]) # ------------------------------- m4_defun([_LT_COMPILER_NO_RTTI], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= if test yes = "$GCC"; then case $cc_basename in nvcc*) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -Xcompiler -fno-builtin' ;; *) _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' ;; esac _LT_COMPILER_OPTION([if $compiler supports -fno-rtti -fno-exceptions], lt_cv_prog_compiler_rtti_exceptions, [-fno-rtti -fno-exceptions], [], [_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)="$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1) -fno-rtti -fno-exceptions"]) fi _LT_TAGDECL([no_builtin_flag], [lt_prog_compiler_no_builtin_flag], [1], [Compiler flag to turn off builtin functions]) ])# _LT_COMPILER_NO_RTTI # _LT_CMD_GLOBAL_SYMBOLS # ---------------------- m4_defun([_LT_CMD_GLOBAL_SYMBOLS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_PROG_CC])dnl AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([LT_PATH_NM])dnl AC_REQUIRE([LT_PATH_LD])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_TAG_COMPILER])dnl # Check for command to grab the raw symbol name followed by C symbol from nm. AC_MSG_CHECKING([command to parse $NM output from $compiler object]) AC_CACHE_VAL([lt_cv_sys_global_symbol_pipe], [ # These are sane defaults that work on at least a few old systems. # [They come from Ultrix. What could be older than Ultrix?!! ;)] # Character class describing NM global symbol codes. symcode='[[BCDEGRST]]' # Regexp to match symbols that can be accessed directly from C. sympat='\([[_A-Za-z]][[_A-Za-z0-9]]*\)' # Define system-specific variables. case $host_os in aix*) symcode='[[BCDT]]' ;; cygwin* | mingw* | pw32* | cegcc*) symcode='[[ABCDGISTW]]' ;; hpux*) if test ia64 = "$host_cpu"; then symcode='[[ABCDEGRST]]' fi ;; irix* | nonstopux*) symcode='[[BCDEGRST]]' ;; osf*) symcode='[[BCDEGQRST]]' ;; solaris*) symcode='[[BDRT]]' ;; sco3.2v5*) symcode='[[DT]]' ;; sysv4.2uw2*) symcode='[[DT]]' ;; sysv5* | sco5v6* | unixware* | OpenUNIX*) symcode='[[ABDT]]' ;; sysv4) symcode='[[DFNSTU]]' ;; esac # If we're using GNU nm, then use its standard symbol codes. case `$NM -V 2>&1` in *GNU* | *'with BFD'*) symcode='[[ABCDGIRSTW]]' ;; esac if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Gets list of data symbols to import. lt_cv_sys_global_symbol_to_import="sed -n -e 's/^I .* \(.*\)$/\1/p'" # Adjust the below global symbol transforms to fixup imported variables. lt_cdecl_hook=" -e 's/^I .* \(.*\)$/extern __declspec(dllimport) char \1;/p'" lt_c_name_hook=" -e 's/^I .* \(.*\)$/ {\"\1\", (void *) 0},/p'" lt_c_name_lib_hook="\ -e 's/^I .* \(lib.*\)$/ {\"\1\", (void *) 0},/p'\ -e 's/^I .* \(.*\)$/ {\"lib\1\", (void *) 0},/p'" else # Disable hooks by default. lt_cv_sys_global_symbol_to_import= lt_cdecl_hook= lt_c_name_hook= lt_c_name_lib_hook= fi # Transform an extracted symbol line into a proper C declaration. # Some systems (esp. on ia64) link data and code symbols differently, # so use this general approach. lt_cv_sys_global_symbol_to_cdecl="sed -n"\ $lt_cdecl_hook\ " -e 's/^T .* \(.*\)$/extern int \1();/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/extern char \1;/p'" # Transform an extracted symbol line into symbol name and symbol address lt_cv_sys_global_symbol_to_c_name_address="sed -n"\ $lt_c_name_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/p'" # Transform an extracted symbol line into symbol name with lib prefix and # symbol address. lt_cv_sys_global_symbol_to_c_name_address_lib_prefix="sed -n"\ $lt_c_name_lib_hook\ " -e 's/^: \(.*\) .*$/ {\"\1\", (void *) 0},/p'"\ " -e 's/^$symcode$symcode* .* \(lib.*\)$/ {\"\1\", (void *) \&\1},/p'"\ " -e 's/^$symcode$symcode* .* \(.*\)$/ {\"lib\1\", (void *) \&\1},/p'" # Handle CRLF in mingw tool chain opt_cr= case $build_os in mingw*) opt_cr=`$ECHO 'x\{0,1\}' | tr x '\015'` # option cr in regexp ;; esac # Try without a prefix underscore, then with it. for ac_symprfx in "" "_"; do # Transform symcode, sympat, and symprfx into a raw symbol and a C symbol. symxfrm="\\1 $ac_symprfx\\2 \\2" # Write the raw and C identifiers. if test "$lt_cv_nm_interface" = "MS dumpbin"; then # Fake it for dumpbin and say T for any non-static function, # D for any global variable and I for any imported variable. # Also find C++ and __fastcall symbols from MSVC++, # which start with @ or ?. lt_cv_sys_global_symbol_pipe="$AWK ['"\ " {last_section=section; section=\$ 3};"\ " /^COFF SYMBOL TABLE/{for(i in hide) delete hide[i]};"\ " /Section length .*#relocs.*(pick any)/{hide[last_section]=1};"\ " /^ *Symbol name *: /{split(\$ 0,sn,\":\"); si=substr(sn[2],2)};"\ " /^ *Type *: code/{print \"T\",si,substr(si,length(prfx))};"\ " /^ *Type *: data/{print \"I\",si,substr(si,length(prfx))};"\ " \$ 0!~/External *\|/{next};"\ " / 0+ UNDEF /{next}; / UNDEF \([^|]\)*()/{next};"\ " {if(hide[section]) next};"\ " {f=\"D\"}; \$ 0~/\(\).*\|/{f=\"T\"};"\ " {split(\$ 0,a,/\||\r/); split(a[2],s)};"\ " s[1]~/^[@?]/{print f,s[1],s[1]; next};"\ " s[1]~prfx {split(s[1],t,\"@\"); print f,t[1],substr(t[1],length(prfx))}"\ " ' prfx=^$ac_symprfx]" else lt_cv_sys_global_symbol_pipe="sed -n -e 's/^.*[[ ]]\($symcode$symcode*\)[[ ]][[ ]]*$ac_symprfx$sympat$opt_cr$/$symxfrm/p'" fi lt_cv_sys_global_symbol_pipe="$lt_cv_sys_global_symbol_pipe | sed '/ __gnu_lto/d'" # Check to see that the pipe works correctly. pipe_works=no rm -f conftest* cat > conftest.$ac_ext <<_LT_EOF #ifdef __cplusplus extern "C" { #endif char nm_test_var; void nm_test_func(void); void nm_test_func(void){} #ifdef __cplusplus } #endif int main(){nm_test_var='a';nm_test_func();return(0);} _LT_EOF if AC_TRY_EVAL(ac_compile); then # Now try to grab the symbols. nlist=conftest.nm if AC_TRY_EVAL(NM conftest.$ac_objext \| "$lt_cv_sys_global_symbol_pipe" \> $nlist) && test -s "$nlist"; then # Try sorting and uniquifying the output. if sort "$nlist" | uniq > "$nlist"T; then mv -f "$nlist"T "$nlist" else rm -f "$nlist"T fi # Make sure that we snagged all the symbols we need. if $GREP ' nm_test_var$' "$nlist" >/dev/null; then if $GREP ' nm_test_func$' "$nlist" >/dev/null; then cat <<_LT_EOF > conftest.$ac_ext /* Keep this code in sync between libtool.m4, ltmain, lt_system.h, and tests. */ #if defined _WIN32 || defined __CYGWIN__ || defined _WIN32_WCE /* DATA imports from DLLs on WIN32 can't be const, because runtime relocations are performed -- see ld's documentation on pseudo-relocs. */ # define LT@&t@_DLSYM_CONST #elif defined __osf__ /* This system does not cope well with relocations in const data. */ # define LT@&t@_DLSYM_CONST #else # define LT@&t@_DLSYM_CONST const #endif #ifdef __cplusplus extern "C" { #endif _LT_EOF # Now generate the symbol file. eval "$lt_cv_sys_global_symbol_to_cdecl"' < "$nlist" | $GREP -v main >> conftest.$ac_ext' cat <<_LT_EOF >> conftest.$ac_ext /* The mapping between symbol names and symbols. */ LT@&t@_DLSYM_CONST struct { const char *name; void *address; } lt__PROGRAM__LTX_preloaded_symbols[[]] = { { "@PROGRAM@", (void *) 0 }, _LT_EOF $SED "s/^$symcode$symcode* .* \(.*\)$/ {\"\1\", (void *) \&\1},/" < "$nlist" | $GREP -v main >> conftest.$ac_ext cat <<\_LT_EOF >> conftest.$ac_ext {0, (void *) 0} }; /* This works around a problem in FreeBSD linker */ #ifdef FREEBSD_WORKAROUND static const void *lt_preloaded_setup() { return lt__PROGRAM__LTX_preloaded_symbols; } #endif #ifdef __cplusplus } #endif _LT_EOF # Now try linking the two files. mv conftest.$ac_objext conftstm.$ac_objext lt_globsym_save_LIBS=$LIBS lt_globsym_save_CFLAGS=$CFLAGS LIBS=conftstm.$ac_objext CFLAGS="$CFLAGS$_LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)" if AC_TRY_EVAL(ac_link) && test -s conftest$ac_exeext; then pipe_works=yes fi LIBS=$lt_globsym_save_LIBS CFLAGS=$lt_globsym_save_CFLAGS else echo "cannot find nm_test_func in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot find nm_test_var in $nlist" >&AS_MESSAGE_LOG_FD fi else echo "cannot run $lt_cv_sys_global_symbol_pipe" >&AS_MESSAGE_LOG_FD fi else echo "$progname: failed program was:" >&AS_MESSAGE_LOG_FD cat conftest.$ac_ext >&5 fi rm -rf conftest* conftst* # Do not use the global_symbol_pipe unless it works. if test yes = "$pipe_works"; then break else lt_cv_sys_global_symbol_pipe= fi done ]) if test -z "$lt_cv_sys_global_symbol_pipe"; then lt_cv_sys_global_symbol_to_cdecl= fi if test -z "$lt_cv_sys_global_symbol_pipe$lt_cv_sys_global_symbol_to_cdecl"; then AC_MSG_RESULT(failed) else AC_MSG_RESULT(ok) fi # Response file support. if test "$lt_cv_nm_interface" = "MS dumpbin"; then nm_file_list_spec='@' elif $NM --help 2>/dev/null | grep '[[@]]FILE' >/dev/null; then nm_file_list_spec='@' fi _LT_DECL([global_symbol_pipe], [lt_cv_sys_global_symbol_pipe], [1], [Take the output of nm and produce a listing of raw symbols and C names]) _LT_DECL([global_symbol_to_cdecl], [lt_cv_sys_global_symbol_to_cdecl], [1], [Transform the output of nm in a proper C declaration]) _LT_DECL([global_symbol_to_import], [lt_cv_sys_global_symbol_to_import], [1], [Transform the output of nm into a list of symbols to manually relocate]) _LT_DECL([global_symbol_to_c_name_address], [lt_cv_sys_global_symbol_to_c_name_address], [1], [Transform the output of nm in a C name address pair]) _LT_DECL([global_symbol_to_c_name_address_lib_prefix], [lt_cv_sys_global_symbol_to_c_name_address_lib_prefix], [1], [Transform the output of nm in a C name address pair when lib prefix is needed]) _LT_DECL([nm_interface], [lt_cv_nm_interface], [1], [The name lister interface]) _LT_DECL([], [nm_file_list_spec], [1], [Specify filename containing input files for $NM]) ]) # _LT_CMD_GLOBAL_SYMBOLS # _LT_COMPILER_PIC([TAGNAME]) # --------------------------- m4_defun([_LT_COMPILER_PIC], [m4_require([_LT_TAG_COMPILER])dnl _LT_TAGVAR(lt_prog_compiler_wl, $1)= _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)= m4_if([$1], [CXX], [ # C++ specific cases for pic, static, wl, etc. if test yes = "$GXX"; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; *djgpp*) # DJGPP does not support shared libraries at all _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac else case $host_os in aix[[4-9]]*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; chorus*) case $cc_basename in cxch68*) # Green Hills C++ Compiler # _LT_TAGVAR(lt_prog_compiler_static, $1)="--no_auto_instantiation -u __main -u __premain -u _abort -r $COOL_DIR/lib/libOrb.a $MVME_DIR/lib/CC/libC.a $MVME_DIR/lib/classix/libcx.s.a" ;; esac ;; mingw* | cygwin* | os2* | pw32* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; dgux*) case $cc_basename in ec++*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; ghcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; freebsd* | dragonfly*) # FreeBSD uses GNU C++ ;; hpux9* | hpux10* | hpux11*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' if test ia64 != "$host_cpu"; then _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' fi ;; aCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac ;; *) ;; esac ;; interix*) # This is c89, which is MS Visual C++ (no shared libs) # Anyone wants to do a port? ;; irix5* | irix6* | nonstopux*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' # CC pic flag -KPIC is the default. ;; *) ;; esac ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # KAI C++ Compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; ecpc* ) # old Intel C++ for x86_64, which still supported -KPIC. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; icpc* ) # Intel C++, used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; pgCC* | pgcpp*) # Portland Group C++ compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; cxx*) # Compaq C++ # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xlc* | xlC* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL 8.0, 9.0 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; esac ;; esac ;; lynxos*) ;; m88k*) ;; mvs*) case $cc_basename in cxx*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-W c,exportall' ;; *) ;; esac ;; netbsd*) ;; *qnx* | *nto*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='--backend -Wl,' ;; RCC*) # Rational C++ 2.4.1 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; cxx*) # Digital/Compaq C++ _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # Make sure the PIC flag is empty. It appears that all Alpha # Linux and Compaq Tru64 Unix objects are PIC. _LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; *) ;; esac ;; psos*) ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' ;; *) ;; esac ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; lcc*) # Lucid _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' ;; *) ;; esac ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) case $cc_basename in CC*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' ;; *) ;; esac ;; vxworks*) ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ], [ if test yes = "$GCC"; then _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' case $host_os in aix*) # All AIX code is PIC. if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; m68k) # FIXME: we need at least 68020 code to build shared libraries, but # adding the '-m68020' flag to GCC prevents building anything better, # like '-m68040'. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-m68020 -resident32 -malways-restore-a4' ;; esac ;; beos* | irix5* | irix6* | nonstopux* | osf3* | osf4* | osf5*) # PIC is the default for these OSes. ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). # Although the cygwin gcc ignores -fPIC, still need this for old-style # (--disable-auto-import) libraries m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' ;; haiku*) # PIC is the default for Haiku. # The "-static" flag exists, but is broken. _LT_TAGVAR(lt_prog_compiler_static, $1)= ;; hpux*) # PIC is the default for 64-bit PA HP-UX, but not for 32-bit # PA HP-UX. On IA64 HP-UX, PIC is the default but the pic flag # sets the default TLS model and affects inlining. case $host_cpu in hppa*64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac ;; interix[[3-9]]*) # Interix 3.x gcc -fpic/-fPIC options generate broken code. # Instead, we relocate shared libraries at runtime. ;; msdosdjgpp*) # Just because we use GCC doesn't mean we suddenly get shared libraries # on systems that don't support them. _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no enable_shared=no ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)=-Kconform_pic fi ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' ;; esac case $cc_basename in nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Xlinker ' if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_TAGVAR(lt_prog_compiler_pic, $1)="-Xcompiler $_LT_TAGVAR(lt_prog_compiler_pic, $1)" fi ;; esac else # PORTME Check for flag to pass linker flags through the system compiler. case $host_os in aix*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' if test ia64 = "$host_cpu"; then # AIX 5 now supports IA64 processor _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' else _LT_TAGVAR(lt_prog_compiler_static, $1)='-bnso -bI:/lib/syscalls.exp' fi ;; darwin* | rhapsody*) # PIC is the default on this platform # Common symbols not allowed in MH_DYLIB files _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fno-common' case $cc_basename in nagfor*) # NAG Fortran compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; mingw* | cygwin* | pw32* | os2* | cegcc*) # This hack is so that the source file can tell whether it is being # built for inclusion in a dll (and should export symbols for example). m4_if([$1], [GCJ], [], [_LT_TAGVAR(lt_prog_compiler_pic, $1)='-DDLL_EXPORT']) ;; hpux9* | hpux10* | hpux11*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC is the default for IA64 HP-UX and 64-bit HP-UX, but # not for PA HP-UX. case $host_cpu in hppa*64*|ia64*) # +Z the default ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)='+Z' ;; esac # Is there a better lt_prog_compiler_static that works with the bundled CC? _LT_TAGVAR(lt_prog_compiler_static, $1)='$wl-a ${wl}archive' ;; irix5* | irix6* | nonstopux*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # PIC (with -KPIC) is the default. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in # old Intel for x86_64, which still supported -KPIC. ecc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # icc used to be incompatible with GCC. # ICC 10 doesn't accept -KPIC any more. icc* | ifort*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; # Lahey Fortran 8.1. lf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='--shared' _LT_TAGVAR(lt_prog_compiler_static, $1)='--static' ;; nagfor*) # NAG Fortran compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,-Wl,,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; tcc*) # Fabrice Bellard et al's Tiny C Compiler _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; pgcc* | pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group compilers (*not* the Pentium gcc compiler, # which looks to be a dead project) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; ccc*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All Alpha code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; xl* | bgxl* | bgf* | mpixl*) # IBM XL C 8.0/Fortran 10.1, 11.1 on PPC and BlueGene _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-qpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-qstaticlink' ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ Ceres\ Fortran* | *Sun*Fortran*\ [[1-7]].* | *Sun*Fortran*\ 8.[[0-3]]*) # Sun Fortran 8.3 passes all unrecognized flags to the linker _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='' ;; *Sun\ F* | *Sun*Fortran*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' ;; *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' ;; *Intel*\ [[CF]]*Compiler*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-static' ;; *Portland\ Group*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fpic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; esac ;; esac ;; newsos6) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *nto* | *qnx*) # QNX uses GNU C++, but need to define -shared option too, otherwise # it will coredump. _LT_TAGVAR(lt_prog_compiler_pic, $1)='-fPIC -shared' ;; osf3* | osf4* | osf5*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' # All OSF/1 code is PIC. _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; rdos*) _LT_TAGVAR(lt_prog_compiler_static, $1)='-non_shared' ;; solaris*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' case $cc_basename in f77* | f90* | f95* | sunf77* | sunf90* | sunf95*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ';; *) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,';; esac ;; sunos4*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Qoption ld ' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-PIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4 | sysv4.2uw2* | sysv4.3*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(lt_prog_compiler_pic, $1)='-Kconform_pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' fi ;; sysv5* | unixware* | sco3.2v5* | sco5v6* | OpenUNIX*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_pic, $1)='-KPIC' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; unicos*) _LT_TAGVAR(lt_prog_compiler_wl, $1)='-Wl,' _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; uts4*) _LT_TAGVAR(lt_prog_compiler_pic, $1)='-pic' _LT_TAGVAR(lt_prog_compiler_static, $1)='-Bstatic' ;; *) _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no ;; esac fi ]) case $host_os in # For platforms that do not support PIC, -DPIC is meaningless: *djgpp*) _LT_TAGVAR(lt_prog_compiler_pic, $1)= ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)="$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])" ;; esac AC_CACHE_CHECK([for $compiler option to produce PIC], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)], [_LT_TAGVAR(lt_cv_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_prog_compiler_pic, $1)]) _LT_TAGVAR(lt_prog_compiler_pic, $1)=$_LT_TAGVAR(lt_cv_prog_compiler_pic, $1) # # Check to make sure the PIC flag actually works. # if test -n "$_LT_TAGVAR(lt_prog_compiler_pic, $1)"; then _LT_COMPILER_OPTION([if $compiler PIC flag $_LT_TAGVAR(lt_prog_compiler_pic, $1) works], [_LT_TAGVAR(lt_cv_prog_compiler_pic_works, $1)], [$_LT_TAGVAR(lt_prog_compiler_pic, $1)@&t@m4_if([$1],[],[ -DPIC],[m4_if([$1],[CXX],[ -DPIC],[])])], [], [case $_LT_TAGVAR(lt_prog_compiler_pic, $1) in "" | " "*) ;; *) _LT_TAGVAR(lt_prog_compiler_pic, $1)=" $_LT_TAGVAR(lt_prog_compiler_pic, $1)" ;; esac], [_LT_TAGVAR(lt_prog_compiler_pic, $1)= _LT_TAGVAR(lt_prog_compiler_can_build_shared, $1)=no]) fi _LT_TAGDECL([pic_flag], [lt_prog_compiler_pic], [1], [Additional compiler flags for building library objects]) _LT_TAGDECL([wl], [lt_prog_compiler_wl], [1], [How to pass a linker flag through the compiler]) # # Check to make sure the static flag actually works. # wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) eval lt_tmp_static_flag=\"$_LT_TAGVAR(lt_prog_compiler_static, $1)\" _LT_LINKER_OPTION([if $compiler static flag $lt_tmp_static_flag works], _LT_TAGVAR(lt_cv_prog_compiler_static_works, $1), $lt_tmp_static_flag, [], [_LT_TAGVAR(lt_prog_compiler_static, $1)=]) _LT_TAGDECL([link_static_flag], [lt_prog_compiler_static], [1], [Compiler flag to prevent dynamic linking]) ])# _LT_COMPILER_PIC # _LT_LINKER_SHLIBS([TAGNAME]) # ---------------------------- # See if the linker supports building shared libraries. m4_defun([_LT_LINKER_SHLIBS], [AC_REQUIRE([LT_PATH_LD])dnl AC_REQUIRE([LT_PATH_NM])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_DECL_SED])dnl m4_require([_LT_CMD_GLOBAL_SYMBOLS])dnl m4_require([_LT_TAG_COMPILER])dnl AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) m4_if([$1], [CXX], [ _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] case $host_os in aix[[4-9]]*) # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global defined # symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi ;; pw32*) _LT_TAGVAR(export_symbols_cmds, $1)=$ltdll_cmds ;; cygwin* | mingw* | cegcc*) case $cc_basename in cl*) _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] ;; esac ;; *) _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' ;; esac ], [ runpath_var= _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_cmds, $1)= _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED '\''s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(old_archive_from_new_cmds, $1)= _LT_TAGVAR(old_archive_from_expsyms_cmds, $1)= _LT_TAGVAR(thread_safe_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= # include_expsyms should be a list of space-separated symbols to be *always* # included in the symbol list _LT_TAGVAR(include_expsyms, $1)= # exclude_expsyms can be an extended regexp of symbols to exclude # it will be wrapped by ' (' and ')$', so one must not match beginning or # end of line. Example: 'a|bc|.*d.*' will exclude the symbols 'a' and 'bc', # as well as any symbol that contains 'd'. _LT_TAGVAR(exclude_expsyms, $1)=['_GLOBAL_OFFSET_TABLE_|_GLOBAL__F[ID]_.*'] # Although _GLOBAL_OFFSET_TABLE_ is a valid symbol C name, most a.out # platforms (ab)use it in PIC code, but their linkers get confused if # the symbol is explicitly referenced. Since portable code cannot # rely on this symbol name, it's probably fine to never include it in # preloaded symbol tables. # Exclude shared library initialization/finalization symbols. dnl Note also adjust exclude_expsyms for C++ above. extract_expsyms_cmds= case $host_os in cygwin* | mingw* | pw32* | cegcc*) # FIXME: the MSVC++ port hasn't been tested in a loooong time # When not using gcc, we currently assume that we are using # Microsoft Visual C++. if test yes != "$GCC"; then with_gnu_ld=no fi ;; interix*) # we just hope/assume this is gcc and not c89 (= MSVC++) with_gnu_ld=yes ;; openbsd* | bitrig*) with_gnu_ld=no ;; esac _LT_TAGVAR(ld_shlibs, $1)=yes # On some targets, GNU ld is compatible enough with the native linker # that we're better off using the native interface for both. lt_use_gnu_ld_interface=no if test yes = "$with_gnu_ld"; then case $host_os in aix*) # The AIX port of GNU ld has always aspired to compatibility # with the native linker. However, as the warning in the GNU ld # block says, versions before 2.19.5* couldn't really create working # shared libraries, regardless of the interface used. case `$LD -v 2>&1` in *\ \(GNU\ Binutils\)\ 2.19.5*) ;; *\ \(GNU\ Binutils\)\ 2.[[2-9]]*) ;; *\ \(GNU\ Binutils\)\ [[3-9]]*) ;; *) lt_use_gnu_ld_interface=yes ;; esac ;; *) lt_use_gnu_ld_interface=yes ;; esac fi if test yes = "$lt_use_gnu_ld_interface"; then # If archive_cmds runs LD, not CC, wlarc should be empty wlarc='$wl' # Set some defaults for GNU ld with shared library support. These # are reset later if shared libraries are not supported. Putting them # here allows them to be overridden if necessary. runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # ancient GNU ld didn't support --whole-archive et. al. if $LD --help 2>&1 | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi supports_anon_versioning=no case `$LD -v | $SED -e 's/([^)]\+)\s\+//' 2>&1` in *GNU\ gold*) supports_anon_versioning=yes ;; *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.10.*) ;; # catch versions < 2.11 *\ 2.11.93.0.2\ *) supports_anon_versioning=yes ;; # RH7.3 ... *\ 2.11.92.0.12\ *) supports_anon_versioning=yes ;; # Mandrake 8.2 ... *\ 2.11.*) ;; # other 2.11 versions *) supports_anon_versioning=yes ;; esac # See if GNU ld supports shared libraries. case $host_os in aix[[3-9]]*) # On AIX/PPC, the GNU linker is very broken if test ia64 != "$host_cpu"; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: the GNU linker, at least up to release 2.19, is reported *** to be unable to reliably create shared libraries on AIX. *** Therefore, libtool is disabling shared libraries support. If you *** really care for shared libraries, you may want to install binutils *** 2.20 or above, or modify your PATH so that a non-GNU linker is found. *** You will then need to restart the configuration process. _LT_EOF fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; cygwin* | mingw* | pw32* | cegcc*) # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1 DATA/;s/^.*[[ ]]__nm__\([[^ ]]*\)[[ ]][[^ ]]*/\1 DATA/;/^I[[ ]]/d;/^[[AITW]][[ ]]/s/.* //'\'' | sort | uniq > $export_symbols' _LT_TAGVAR(exclude_expsyms, $1)=['[_]+GLOBAL_OFFSET_TABLE_|[_]+GLOBAL__[FID]_.*|[_]+head_[A-Za-z0-9_]+_dll|[A-Za-z0-9_]+_dll_iname'] if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared $output_objdir/$soname.def $libobjs $deplibs $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; gnu* | linux* | tpf* | k*bsd*-gnu | kopensolaris*-gnu) tmp_diet=no if test linux-dietlibc = "$host_os"; then case $cc_basename in diet\ *) tmp_diet=yes;; # linux-dietlibc with static linking (!diet-dyn) esac fi if $LD --help 2>&1 | $EGREP ': supported targets:.* elf' > /dev/null \ && test no = "$tmp_diet" then tmp_addflag=' $pic_flag' tmp_sharedflag='-shared' case $cc_basename,$host_cpu in pgcc*) # Portland Group C compiler _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag' ;; pgf77* | pgf90* | pgf95* | pgfortran*) # Portland Group f77 and f90 compilers _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' tmp_addflag=' $pic_flag -Mnomain' ;; ecc*,ia64* | icc*,ia64*) # Intel C compiler on ia64 tmp_addflag=' -i_dynamic' ;; efc*,ia64* | ifort*,ia64*) # Intel Fortran compiler on ia64 tmp_addflag=' -i_dynamic -nofor_main' ;; ifc* | ifort*) # Intel Fortran compiler tmp_addflag=' -nofor_main' ;; lf95*) # Lahey Fortran 8.1 _LT_TAGVAR(whole_archive_flag_spec, $1)= tmp_sharedflag='--shared' ;; nagfor*) # NAGFOR 5.3 tmp_sharedflag='-Wl,-shared' ;; xl[[cC]]* | bgxl[[cC]]* | mpixl[[cC]]*) # IBM XL C 8.0 on PPC (deal with xlf below) tmp_sharedflag='-qmkshrobj' tmp_addflag= ;; nvcc*) # Cuda Compiler Driver 2.2 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes ;; esac case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C 5.9 _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes tmp_sharedflag='-G' ;; *Sun\ F*) # Sun Fortran 8.3 tmp_sharedflag='-G' ;; esac _LT_TAGVAR(archive_cmds, $1)='$CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC '"$tmp_sharedflag""$tmp_addflag"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi case $cc_basename in xlf* | bgf* | bgxlf* | mpixlf*) # IBM XL Fortran 10.1 on PPC cannot create shared libs itself _LT_TAGVAR(whole_archive_flag_spec, $1)='--whole-archive$convenience --no-whole-archive' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(archive_cmds, $1)='$LD -shared $libobjs $deplibs $linker_flags -soname $soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $LD -shared $libobjs $deplibs $linker_flags -soname $soname -version-script $output_objdir/$libname.ver -o $lib' fi ;; esac else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable $libobjs $deplibs $linker_flags -o $lib' wlarc= else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' fi ;; solaris*) if $LD -v 2>&1 | $GREP 'BFD 2\.8' > /dev/null; then _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: The releases 2.8.* of the GNU linker cannot reliably *** create shared libraries on Solaris systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.9.1 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF elif $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; sysv5* | sco3.2v5* | sco5v6* | unixware* | OpenUNIX*) case `$LD -v 2>&1` in *\ [[01]].* | *\ 2.[[0-9]].* | *\ 2.1[[0-5]].*) _LT_TAGVAR(ld_shlibs, $1)=no cat <<_LT_EOF 1>&2 *** Warning: Releases of the GNU linker prior to 2.16.91.0.3 cannot *** reliably create shared libraries on SCO systems. Therefore, libtool *** is disabling shared libraries support. We urge you to upgrade GNU *** binutils to release 2.16.91.0.3 or newer. Another option is to modify *** your PATH or compiler configuration so that the native linker is *** used, and then restart. _LT_EOF ;; *) # For security reasons, it is highly recommended that you always # use absolute paths for naming shared libraries, and exclude the # DT_RUNPATH tag from executables and libraries. But doing so # requires that you compile everything twice, which is a pain. if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; sunos4*) _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bshareable -o $lib $libobjs $deplibs $linker_flags' wlarc= _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac if test no = "$_LT_TAGVAR(ld_shlibs, $1)"; then runpath_var= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else # PORTME fill in a description of your system's linker (not GNU ld) case $host_os in aix3*) _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(archive_expsym_cmds, $1)='$LD -o $output_objdir/$soname $libobjs $deplibs $linker_flags -bE:$export_symbols -T512 -H512 -bM:SRE~$AR $AR_FLAGS $lib $output_objdir/$soname' # Note: this linker hardcodes the directories in LIBPATH if there # are no directories specified by -L. _LT_TAGVAR(hardcode_minus_L, $1)=yes if test yes = "$GCC" && test -z "$lt_prog_compiler_static"; then # Neither direct hardcoding nor static linking is supported with a # broken collect2. _LT_TAGVAR(hardcode_direct, $1)=unsupported fi ;; aix[[4-9]]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else # If we're using GNU nm, then we don't want the "-C" option. # -C means demangle to AIX nm, but means don't demangle with GNU nm # Also, AIX nm treats weak defined symbols like other global # defined symbols, whereas GNU nm marks them as "W". if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then _LT_TAGVAR(export_symbols_cmds, $1)='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else _LT_TAGVAR(export_symbols_cmds, $1)='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && ([substr](\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do if (test x-brtl = "x$ld_flag" || test x-Wl,-brtl = "x$ld_flag"); then aix_use_runtimelinking=yes break fi done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='$wl-f,' if test yes = "$GCC"; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi ;; esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag="$shared_flag "'$wl-G' fi else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to export. _LT_TAGVAR(always_export_symbols, $1)=yes if test yes = "$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. _LT_TAGVAR(allow_undefined_flag, $1)='-berok' # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes # This is similar to how AIX traditionally builds its shared libraries. _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs $wl-bnoentry $compiler_flags $wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; amigaos*) case $host_cpu in powerpc) # see comment about AmigaOS4 .so support _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='' ;; m68k) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/a2ixlibrary.data~$ECHO "#define NAME $libname" > $output_objdir/a2ixlibrary.data~$ECHO "#define LIBRARY_ID 1" >> $output_objdir/a2ixlibrary.data~$ECHO "#define VERSION $major" >> $output_objdir/a2ixlibrary.data~$ECHO "#define REVISION $revision" >> $output_objdir/a2ixlibrary.data~$AR $AR_FLAGS $lib $libobjs~$RANLIB $lib~(cd $output_objdir && a2ixlibrary -32)' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac ;; bsdi[[45]]*) _LT_TAGVAR(export_dynamic_flag_spec, $1)=-rdynamic ;; cygwin* | mingw* | pw32* | cegcc*) # When not using gcc, we currently assume that we are using # Microsoft Visual C++. # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. case $cc_basename in cl*) # Native MSVC _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes _LT_TAGVAR(exclude_expsyms, $1)='_NULL_IMPORT_DESCRIPTOR|_IMPORT_DESCRIPTOR_.*' _LT_TAGVAR(export_symbols_cmds, $1)='$NM $libobjs $convenience | $global_symbol_pipe | $SED -e '\''/^[[BCDGRS]][[ ]]/s/.*[[ ]]\([[^ ]]*\)/\1,DATA/'\'' | $SED -e '\''/^[[AITW]][[ ]]/s/.*[[ ]]//'\'' | sort | uniq > $export_symbols' # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # Assume MSVC wrapper _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $lib $libobjs $compiler_flags `func_echo_all "$deplibs" | $SED '\''s/ -lc$//'\''` -link -dll~linknames=' # The linker will automatically build a .lib file if we build a DLL. _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' # FIXME: Should let the user specify the lib program. _LT_TAGVAR(old_archive_cmds, $1)='lib -OUT:$oldlib$oldobjs$old_deplibs' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; dgux*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 2.2.[012] allows us to include c++rt0.o to get C++ constructor # support. Future versions do this automatically, but an explicit c++rt0.o # does not break anything, and helps significantly (at the cost of a little # extra space). freebsd2.2*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags /usr/lib/c++rt0.o' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # Unfortunately, older versions of FreeBSD 2 do not have this feature. freebsd2.*) _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; # FreeBSD 3 and greater uses gcc -shared to do shared libraries. freebsd* | dragonfly*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; hpux9*) if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $libobjs $deplibs $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$LD -b +b $install_libdir -o $output_objdir/$soname $libobjs $deplibs $linker_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' ;; hpux10*) if test yes,no = "$GCC,$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags' fi if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes fi ;; hpux11*) if test yes,no = "$GCC,$with_gnu_ld"; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags' ;; esac else case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $libobjs $deplibs $compiler_flags' ;; *) m4_if($1, [], [ # Older versions of the 11.00 compiler do not understand -b yet # (HP92453-01 A.11.01.20 doesn't, HP92453-01 B.11.X.35175-35176.GP does) _LT_LINKER_OPTION([if $CC understands -b], _LT_TAGVAR(lt_cv_prog_compiler__b, $1), [-b], [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags'], [_LT_TAGVAR(archive_cmds, $1)='$LD -b +h $soname +b $install_libdir -o $lib $libobjs $deplibs $linker_flags'])], [_LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $libobjs $deplibs $compiler_flags']) ;; esac fi if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # hardcode_minus_L: Not really in the search PATH, # but as the default location of the library. _LT_TAGVAR(hardcode_minus_L, $1)=yes ;; esac fi ;; irix5* | irix6* | nonstopux*) if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' # Try to use the -exported_symbol ld option, if it does not # work, assume that -exports_file does not work either and # implicitly export all symbols. # This should be the same for all languages, so no per-tag cache variable. AC_CACHE_CHECK([whether the $host_os linker accepts -exported_symbol], [lt_cv_irix_exported_symbol], [save_LDFLAGS=$LDFLAGS LDFLAGS="$LDFLAGS -shared $wl-exported_symbol ${wl}foo $wl-update_registry $wl/dev/null" AC_LINK_IFELSE( [AC_LANG_SOURCE( [AC_LANG_CASE([C], [[int foo (void) { return 0; }]], [C++], [[int foo (void) { return 0; }]], [Fortran 77], [[ subroutine foo end]], [Fortran], [[ subroutine foo end]])])], [lt_cv_irix_exported_symbol=yes], [lt_cv_irix_exported_symbol=no]) LDFLAGS=$save_LDFLAGS]) if test yes = "$lt_cv_irix_exported_symbol"; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations $wl-exports_file $wl$export_symbols -o $lib' fi else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -exports_file $export_symbols -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes _LT_TAGVAR(link_all_deplibs, $1)=yes ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $libobjs $deplibs $linker_flags' # a.out else _LT_TAGVAR(archive_cmds, $1)='$LD -shared -o $lib $libobjs $deplibs $linker_flags' # ELF fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; newsos6) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *nto* | *qnx*) ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes if test -z "`echo __ELF__ | $CC -E - | $GREP __ELF__`"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags $wl-retain-symbols-file,$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' fi else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; os2*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(archive_cmds, $1)='$ECHO "LIBRARY $libname INITINSTANCE" > $output_objdir/$libname.def~$ECHO "DESCRIPTION \"$libname\"" >> $output_objdir/$libname.def~echo DATA >> $output_objdir/$libname.def~echo " SINGLE NONSHARED" >> $output_objdir/$libname.def~echo EXPORTS >> $output_objdir/$libname.def~emxexp $libobjs >> $output_objdir/$libname.def~$CC -Zdll -Zcrtdll -o $lib $libobjs $deplibs $compiler_flags $output_objdir/$libname.def' _LT_TAGVAR(old_archive_from_new_cmds, $1)='emximp -o $output_objdir/$libname.a $output_objdir/$libname.def' ;; osf3*) if test yes = "$GCC"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; osf4* | osf5*) # as osf3* with the addition of -msym flag if test yes = "$GCC"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $pic_flag $libobjs $deplibs $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' else _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $libobjs $deplibs $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done; printf "%s\\n" "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $wl-input $wl$lib.exp $compiler_flags $libobjs $deplibs -soname $soname `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~$RM $lib.exp' # Both c and cxx compiler support -rpath directly _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' fi _LT_TAGVAR(archive_cmds_need_lc, $1)='no' _LT_TAGVAR(hardcode_libdir_separator, $1)=: ;; solaris*) _LT_TAGVAR(no_undefined_flag, $1)=' -z defs' if test yes = "$GCC"; then wlarc='$wl' _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $wl-z ${wl}text $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag $wl-z ${wl}text $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' else case `$CC -V 2>&1` in *"Compilers 5.0"*) wlarc='' _LT_TAGVAR(archive_cmds, $1)='$LD -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $LD -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $linker_flags~$RM $lib.exp' ;; *) wlarc='$wl' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h $soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag -M $lib.exp -h $soname -o $lib $libobjs $deplibs $compiler_flags~$RM $lib.exp' ;; esac fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. GCC discards it without '$wl', # but is careful enough not to reorder. # Supported since Solaris 2.6 (maybe 2.5.1?) if test yes = "$GCC"; then _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' else _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' fi ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes ;; sunos4*) if test sequent = "$host_vendor"; then # Use $CC to link under sequent, because it throws in some extra .o # files that make .init and .fini sections work. _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h $soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$LD -assert pure-text -Bstatic -o $lib $libobjs $deplibs $linker_flags' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4) case $host_vendor in sni) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=yes # is this really true??? ;; siemens) ## LD is ld it makes a PLAMLIB ## CC just makes a GrossModule. _LT_TAGVAR(archive_cmds, $1)='$LD -G -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(reload_cmds, $1)='$CC -r -o $output$reload_objs' _LT_TAGVAR(hardcode_direct, $1)=no ;; motorola) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_direct, $1)=no #Motorola manual says yes, but my tests say they lie ;; esac runpath_var='LD_RUN_PATH' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; sysv4.3*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)='-Bexport' ;; sysv4*MP*) if test -d /usr/nec; then _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var=LD_RUN_PATH hardcode_runpath_var=yes _LT_TAGVAR(ld_shlibs, $1)=yes fi ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport' runpath_var='LD_RUN_PATH' if test yes = "$GCC"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' else _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' fi ;; uts4*) _LT_TAGVAR(archive_cmds, $1)='$LD -G -h $soname -o $lib $libobjs $deplibs $linker_flags' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(ld_shlibs, $1)=no ;; esac if test sni = "$host_vendor"; then case $host in sysv4 | sysv4.2uw2* | sysv4.3* | sysv5*) _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Blargedynsym' ;; esac fi fi ]) AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no _LT_TAGVAR(with_gnu_ld, $1)=$with_gnu_ld _LT_DECL([], [libext], [0], [Old archive suffix (normally "a")])dnl _LT_DECL([], [shrext_cmds], [1], [Shared library suffix (normally ".so")])dnl _LT_DECL([], [extract_expsyms_cmds], [2], [The commands to extract the exported symbol list from a shared archive]) # # Do we need to explicitly link libc? # case "x$_LT_TAGVAR(archive_cmds_need_lc, $1)" in x|xyes) # Assume -lc should be added _LT_TAGVAR(archive_cmds_need_lc, $1)=yes if test yes,yes = "$GCC,$enable_shared"; then case $_LT_TAGVAR(archive_cmds, $1) in *'~'*) # FIXME: we may have to deal with multi-command sequences. ;; '$CC '*) # Test whether the compiler implicitly links with -lc since on some # systems, -lgcc has to come before -lc. If gcc already passes -lc # to ld, don't add -lc before -lgcc. AC_CACHE_CHECK([whether -lc should be explicitly linked in], [lt_cv_]_LT_TAGVAR(archive_cmds_need_lc, $1), [$RM conftest* echo "$lt_simple_compile_test_code" > conftest.$ac_ext if AC_TRY_EVAL(ac_compile) 2>conftest.err; then soname=conftest lib=conftest libobjs=conftest.$ac_objext deplibs= wl=$_LT_TAGVAR(lt_prog_compiler_wl, $1) pic_flag=$_LT_TAGVAR(lt_prog_compiler_pic, $1) compiler_flags=-v linker_flags=-v verstring= output_objdir=. libname=conftest lt_save_allow_undefined_flag=$_LT_TAGVAR(allow_undefined_flag, $1) _LT_TAGVAR(allow_undefined_flag, $1)= if AC_TRY_EVAL(_LT_TAGVAR(archive_cmds, $1) 2\>\&1 \| $GREP \" -lc \" \>/dev/null 2\>\&1) then lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=no else lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1)=yes fi _LT_TAGVAR(allow_undefined_flag, $1)=$lt_save_allow_undefined_flag else cat conftest.err 1>&5 fi $RM conftest* ]) _LT_TAGVAR(archive_cmds_need_lc, $1)=$lt_cv_[]_LT_TAGVAR(archive_cmds_need_lc, $1) ;; esac fi ;; esac _LT_TAGDECL([build_libtool_need_lc], [archive_cmds_need_lc], [0], [Whether or not to add -lc for building shared libraries]) _LT_TAGDECL([allow_libtool_libs_with_static_runtimes], [enable_shared_with_static_runtimes], [0], [Whether or not to disallow shared libs when runtime libs are static]) _LT_TAGDECL([], [export_dynamic_flag_spec], [1], [Compiler flag to allow reflexive dlopens]) _LT_TAGDECL([], [whole_archive_flag_spec], [1], [Compiler flag to generate shared objects directly from archives]) _LT_TAGDECL([], [compiler_needs_object], [1], [Whether the compiler copes with passing no objects directly]) _LT_TAGDECL([], [old_archive_from_new_cmds], [2], [Create an old-style archive from a shared archive]) _LT_TAGDECL([], [old_archive_from_expsyms_cmds], [2], [Create a temporary old-style archive to link instead of a shared archive]) _LT_TAGDECL([], [archive_cmds], [2], [Commands used to build a shared archive]) _LT_TAGDECL([], [archive_expsym_cmds], [2]) _LT_TAGDECL([], [module_cmds], [2], [Commands used to build a loadable module if different from building a shared archive.]) _LT_TAGDECL([], [module_expsym_cmds], [2]) _LT_TAGDECL([], [with_gnu_ld], [1], [Whether we are building with GNU ld or not]) _LT_TAGDECL([], [allow_undefined_flag], [1], [Flag that allows shared libraries with undefined symbols to be built]) _LT_TAGDECL([], [no_undefined_flag], [1], [Flag that enforces no undefined symbols]) _LT_TAGDECL([], [hardcode_libdir_flag_spec], [1], [Flag to hardcode $libdir into a binary during linking. This must work even if $libdir does not exist]) _LT_TAGDECL([], [hardcode_libdir_separator], [1], [Whether we need a single "-rpath" flag with a separated argument]) _LT_TAGDECL([], [hardcode_direct], [0], [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_direct_absolute], [0], [Set to "yes" if using DIR/libNAME$shared_ext during linking hardcodes DIR into the resulting binary and the resulting library dependency is "absolute", i.e impossible to change by setting $shlibpath_var if the library is relocated]) _LT_TAGDECL([], [hardcode_minus_L], [0], [Set to "yes" if using the -LDIR flag during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_shlibpath_var], [0], [Set to "yes" if using SHLIBPATH_VAR=DIR during linking hardcodes DIR into the resulting binary]) _LT_TAGDECL([], [hardcode_automatic], [0], [Set to "yes" if building a shared library automatically hardcodes DIR into the library and all subsequent libraries and executables linked against it]) _LT_TAGDECL([], [inherit_rpath], [0], [Set to yes if linker adds runtime paths of dependent libraries to runtime path list]) _LT_TAGDECL([], [link_all_deplibs], [0], [Whether libtool must link a program against all its dependency libraries]) _LT_TAGDECL([], [always_export_symbols], [0], [Set to "yes" if exported symbols are required]) _LT_TAGDECL([], [export_symbols_cmds], [2], [The commands to list exported symbols]) _LT_TAGDECL([], [exclude_expsyms], [1], [Symbols that should not be listed in the preloaded symbols]) _LT_TAGDECL([], [include_expsyms], [1], [Symbols that must always be exported]) _LT_TAGDECL([], [prelink_cmds], [2], [Commands necessary for linking programs (against libraries) with templates]) _LT_TAGDECL([], [postlink_cmds], [2], [Commands necessary for finishing linking programs]) _LT_TAGDECL([], [file_list_spec], [1], [Specify filename containing input files]) dnl FIXME: Not yet implemented dnl _LT_TAGDECL([], [thread_safe_flag_spec], [1], dnl [Compiler flag to generate thread safe objects]) ])# _LT_LINKER_SHLIBS # _LT_LANG_C_CONFIG([TAG]) # ------------------------ # Ensure that the configuration variables for a C compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to 'libtool'. m4_defun([_LT_LANG_C_CONFIG], [m4_require([_LT_DECL_EGREP])dnl lt_save_CC=$CC AC_LANG_PUSH(C) # Source file extension for C test sources. ac_ext=c # Object file extension for compiled C test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(){return(0);}' _LT_TAG_COMPILER # Save the default compiler, since it gets overwritten when the other # tags are being tested, and _LT_TAGVAR(compiler, []) is a NOP. compiler_DEFAULT=$CC # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) LT_SYS_DLOPEN_SELF _LT_CMD_STRIPLIB # Report what library types will actually be built AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu" && test no = "$aix_use_runtimelinking"; then test yes = "$enable_shared" && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_CONFIG($1) fi AC_LANG_POP CC=$lt_save_CC ])# _LT_LANG_C_CONFIG # _LT_LANG_CXX_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a C++ compiler are suitably # defined. These variables are subsequently used by _LT_CONFIG to write # the compiler configuration to 'libtool'. m4_defun([_LT_LANG_CXX_CONFIG], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl m4_require([_LT_DECL_EGREP])dnl m4_require([_LT_PATH_MANIFEST_TOOL])dnl if test -n "$CXX" && ( test no != "$CXX" && ( (test g++ = "$CXX" && `g++ -v >/dev/null 2>&1` ) || (test g++ != "$CXX"))); then AC_PROG_CXXCPP else _lt_caught_CXX_error=yes fi AC_LANG_PUSH(C++) _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(compiler_needs_object, $1)=no _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=unsupported _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for C++ test sources. ac_ext=cpp # Object file extension for compiled C++ test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the CXX compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_caught_CXX_error"; then # Code to be used in simple compile tests lt_simple_compile_test_code="int some_variable = 0;" # Code to be used in simple link tests lt_simple_link_test_code='int main(int, char *[[]]) { return(0); }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_LD=$LD lt_save_GCC=$GCC GCC=$GXX lt_save_with_gnu_ld=$with_gnu_ld lt_save_path_LD=$lt_cv_path_LD if test -n "${lt_cv_prog_gnu_ldcxx+set}"; then lt_cv_prog_gnu_ld=$lt_cv_prog_gnu_ldcxx else $as_unset lt_cv_prog_gnu_ld fi if test -n "${lt_cv_path_LDCXX+set}"; then lt_cv_path_LD=$lt_cv_path_LDCXX else $as_unset lt_cv_path_LD fi test -z "${LDCXX+set}" || LD=$LDCXX CC=${CXX-"c++"} CFLAGS=$CXXFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then # We don't want -fno-exception when compiling C++ code, so set the # no_builtin_flag separately if test yes = "$GXX"; then _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)=' -fno-builtin' else _LT_TAGVAR(lt_prog_compiler_no_builtin_flag, $1)= fi if test yes = "$GXX"; then # Set up default GNU C++ configuration LT_PATH_LD # Check if GNU C++ uses GNU ld as the underlying linker, since the # archiving commands below assume that GNU ld is being used. if test yes = "$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC $pic_flag -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # If archive_cmds runs LD, not CC, wlarc should be empty # XXX I think wlarc can be eliminated in ltcf-cxx, but I need to # investigate it a little bit more. (MM) wlarc='$wl' # ancient GNU ld didn't support --whole-archive et. al. if eval "`$CC -print-prog-name=ld` --help 2>&1" | $GREP 'no-whole-archive' > /dev/null; then _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' else _LT_TAGVAR(whole_archive_flag_spec, $1)= fi else with_gnu_ld=no wlarc= # A generic and very simple default shared library creation # command for GNU C++ for the case where it uses the native # linker, instead of GNU ld. If possible, this setting should # overridden to take advantage of the native linker features on # the platform it is being used on. _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' fi # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else GXX=no with_gnu_ld=no wlarc= fi # PORTME: fill in a description of your system's C++ link characteristics AC_MSG_CHECKING([whether the $compiler linker ($LD) supports shared libraries]) _LT_TAGVAR(ld_shlibs, $1)=yes case $host_os in aix3*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aix[[4-9]]*) if test ia64 = "$host_cpu"; then # On IA64, the linker does run time linking by default, so we don't # have to do anything special. aix_use_runtimelinking=no exp_sym_flag='-Bexport' no_entry_flag= else aix_use_runtimelinking=no # Test if we are trying to use run time linking or normal # AIX style linking. If -brtl is somewhere in LDFLAGS, we # need to do runtime linking. case $host_os in aix4.[[23]]|aix4.[[23]].*|aix[[5-9]]*) for ld_flag in $LDFLAGS; do case $ld_flag in *-brtl*) aix_use_runtimelinking=yes break ;; esac done ;; esac exp_sym_flag='-bexport' no_entry_flag='-bnoentry' fi # When large executables or shared objects are built, AIX ld can # have problems creating the table of contents. If linking a library # or program results in "error TOC overflow" add -mminimal-toc to # CXXFLAGS/CFLAGS for g++/gcc. In the cases where that is not # enough to fix the problem, add -Wl,-bbigtoc to LDFLAGS. _LT_TAGVAR(archive_cmds, $1)='' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(file_list_spec, $1)='$wl-f,' if test yes = "$GXX"; then case $host_os in aix4.[[012]]|aix4.[[012]].*) # We only want to do this on AIX 4.2 and lower, the check # below for broken collect2 doesn't work under 4.3+ collect2name=`$CC -print-prog-name=collect2` if test -f "$collect2name" && strings "$collect2name" | $GREP resolve_lib_name >/dev/null then # We have reworked collect2 : else # We have old collect2 _LT_TAGVAR(hardcode_direct, $1)=unsupported # It fails to find uninstalled libraries when the uninstalled # path is not listed in the libpath. Setting hardcode_minus_L # to unsupported forces relinking _LT_TAGVAR(hardcode_minus_L, $1)=yes _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)= fi esac shared_flag='-shared' if test yes = "$aix_use_runtimelinking"; then shared_flag=$shared_flag' $wl-G' fi else # not using gcc if test ia64 = "$host_cpu"; then # VisualAge C++, Version 5.5 for AIX 5L for IA-64, Beta 3 Release # chokes on -Wl,-G. The following line is correct: shared_flag='-G' else if test yes = "$aix_use_runtimelinking"; then shared_flag='$wl-G' else shared_flag='$wl-bM:SRE' fi fi fi _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-bexpall' # It seems that -bexpall does not export symbols beginning with # underscore (_), so it is better to generate a list of symbols to # export. _LT_TAGVAR(always_export_symbols, $1)=yes if test yes = "$aix_use_runtimelinking"; then # Warning - without using the other runtime loading flags (-brtl), # -berok will link without error, but may produce a broken library. _LT_TAGVAR(allow_undefined_flag, $1)='-berok' # Determine the default libpath from the value encoded in an empty # executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $deplibs $wl'$no_entry_flag' $compiler_flags `if test -n "$allow_undefined_flag"; then func_echo_all "$wl$allow_undefined_flag"; else :; fi` $wl'$exp_sym_flag:\$export_symbols' '$shared_flag else if test ia64 = "$host_cpu"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $libdir:/usr/lib:/lib' _LT_TAGVAR(allow_undefined_flag, $1)="-z nodefs" _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs '"\$wl$no_entry_flag"' $compiler_flags $wl$allow_undefined_flag '"\$wl$exp_sym_flag:\$export_symbols" else # Determine the default libpath from the value encoded in an # empty executable. _LT_SYS_MODULE_PATH_AIX([$1]) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-blibpath:$libdir:'"$aix_libpath" # Warning - without using the other run time loading flags, # -berok will link without error, but may produce a broken library. _LT_TAGVAR(no_undefined_flag, $1)=' $wl-bernotok' _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-berok' if test yes = "$with_gnu_ld"; then # We only use this code for GNU lds that support --whole-archive. _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' else # Exported symbols can be pulled into shared objects from archives _LT_TAGVAR(whole_archive_flag_spec, $1)='$convenience' fi _LT_TAGVAR(archive_cmds_need_lc, $1)=yes # This is similar to how AIX traditionally builds its shared # libraries. _LT_TAGVAR(archive_expsym_cmds, $1)="\$CC $shared_flag"' -o $output_objdir/$soname $libobjs $deplibs $wl-bnoentry $compiler_flags $wl-bE:$export_symbols$allow_undefined_flag~$AR $AR_FLAGS $output_objdir/$libname$release.a $output_objdir/$soname' fi fi ;; beos*) if $LD --help 2>&1 | $GREP ': supported targets:.* elf' > /dev/null; then _LT_TAGVAR(allow_undefined_flag, $1)=unsupported # Joseph Beckenbach says some releases of gcc # support --undefined. This deserves some investigation. FIXME _LT_TAGVAR(archive_cmds, $1)='$CC -nostart $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; chorus*) case $cc_basename in *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; cygwin* | mingw* | pw32* | cegcc*) case $GXX,$cc_basename in ,cl* | no,cl*) # Native MSVC # hardcode_libdir_flag_spec is actually meaningless, as there is # no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)=' ' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=yes _LT_TAGVAR(file_list_spec, $1)='@' # Tell ltmain to make .lib files, not .a files. libext=lib # Tell ltmain to make .dll files, not .so files. shrext_cmds=.dll # FIXME: Setting linknames here is a bad hack. _LT_TAGVAR(archive_cmds, $1)='$CC -o $output_objdir/$soname $libobjs $compiler_flags $deplibs -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~linknames=' _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp "$export_symbols" "$output_objdir/$soname.def"; echo "$tool_output_objdir$soname.def" > "$output_objdir/$soname.exp"; else $SED -e '\''s/^/-link -EXPORT:/'\'' < $export_symbols > $output_objdir/$soname.exp; fi~ $CC -o $tool_output_objdir$soname $libobjs $compiler_flags $deplibs "@$tool_output_objdir$soname.exp" -Wl,-DLL,-IMPLIB:"$tool_output_objdir$libname.dll.lib"~ linknames=' # The linker will not automatically build a static lib if we build a DLL. # _LT_TAGVAR(old_archive_from_new_cmds, $1)='true' _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes # Don't use ranlib _LT_TAGVAR(old_postinstall_cmds, $1)='chmod 644 $oldlib' _LT_TAGVAR(postlink_cmds, $1)='lt_outputfile="@OUTPUT@"~ lt_tool_outputfile="@TOOL_OUTPUT@"~ case $lt_outputfile in *.exe|*.EXE) ;; *) lt_outputfile=$lt_outputfile.exe lt_tool_outputfile=$lt_tool_outputfile.exe ;; esac~ func_to_tool_file "$lt_outputfile"~ if test : != "$MANIFEST_TOOL" && test -f "$lt_outputfile.manifest"; then $MANIFEST_TOOL -manifest "$lt_tool_outputfile.manifest" -outputresource:"$lt_tool_outputfile" || exit 1; $RM "$lt_outputfile.manifest"; fi' ;; *) # g++ # _LT_TAGVAR(hardcode_libdir_flag_spec, $1) is actually meaningless, # as there is no search path for DLLs. _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-L$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-all-symbols' _LT_TAGVAR(allow_undefined_flag, $1)=unsupported _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=yes if $LD --help 2>&1 | $GREP 'auto-import' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' # If the export-symbols file already is a .def file, use it as # is; otherwise, prepend EXPORTS... _LT_TAGVAR(archive_expsym_cmds, $1)='if _LT_DLL_DEF_P([$export_symbols]); then cp $export_symbols $output_objdir/$soname.def; else echo EXPORTS > $output_objdir/$soname.def; cat $export_symbols >> $output_objdir/$soname.def; fi~ $CC -shared -nostdlib $output_objdir/$soname.def $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $output_objdir/$soname $wl--enable-auto-image-base -Xlinker --out-implib -Xlinker $lib' else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; darwin* | rhapsody*) _LT_DARWIN_LINKER_FEATURES($1) ;; dgux*) case $cc_basename in ec++*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; ghcx*) # Green Hills C++ Compiler # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; freebsd2.*) # C++ shared libraries reported to be fairly broken before # switch to ELF _LT_TAGVAR(ld_shlibs, $1)=no ;; freebsd-elf*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; freebsd* | dragonfly*) # FreeBSD 3 and later use GNU C++ and GNU ld with standard ELF # conventions _LT_TAGVAR(ld_shlibs, $1)=yes ;; haiku*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(link_all_deplibs, $1)=yes ;; hpux9*) _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -b $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $EGREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then _LT_TAGVAR(archive_cmds, $1)='$RM $output_objdir/$soname~$CC -shared -nostdlib $pic_flag $wl+b $wl$install_libdir -o $output_objdir/$soname $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~test "x$output_objdir/$soname" = "x$lib" || mv $output_objdir/$soname $lib' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; hpux10*|hpux11*) if test no = "$with_gnu_ld"; then _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl+b $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: case $host_cpu in hppa*64*|ia64*) ;; *) _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' ;; esac fi case $host_cpu in hppa*64*|ia64*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no ;; *) _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(hardcode_minus_L, $1)=yes # Not in the search PATH, # but as the default # location of the library. ;; esac case $cc_basename in CC*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; aCC*) case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -b $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`($CC -b $CFLAGS -v conftest.$objext 2>&1) | $GREP "\-L"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then case $host_cpu in hppa*64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib -fPIC $wl+h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; ia64*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+nodefaultrpath -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $pic_flag $wl+h $wl$soname $wl+b $wl$install_libdir -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' ;; esac fi else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; interix[[3-9]]*) _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' # Hack: On Interix 3.x, we cannot compile PIC because of a broken gcc. # Instead, shared libraries are loaded at an image base (0x10000000 by # default) and relocated if they conflict, which is a slow very memory # consuming and fragmenting process. To avoid this, we pick a random, # 256 KiB-aligned image base between 0x50000000 and 0x6FFC0000 at link # time. Moving up from 0x10000000 also allows more sbrk(2) space. _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='sed "s|^|_|" $export_symbols >$output_objdir/$soname.expsym~$CC -shared $pic_flag $libobjs $deplibs $compiler_flags $wl-h,$soname $wl--retain-symbols-file,$output_objdir/$soname.expsym $wl--image-base,`expr ${RANDOM-$$} % 4096 / 2 \* 262144 + 1342177280` -o $lib' ;; irix5* | irix6*) case $cc_basename in CC*) # SGI C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared -all -multigot $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' # Archives containing C++ object files must be created using # "CC -ar", where "CC" is the IRIX C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -ar -WR,-u -o $oldlib $oldobjs' ;; *) if test yes = "$GXX"; then if test no = "$with_gnu_ld"; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' else _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` -o $lib' fi fi _LT_TAGVAR(link_all_deplibs, $1)=yes ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: _LT_TAGVAR(inherit_rpath, $1)=yes ;; linux* | k*bsd*-gnu | kopensolaris*-gnu | gnu*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo $lib | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib $wl-retain-symbols-file,$export_symbols; mv \$templib $lib' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 | $GREP "ld"`; rm -f libconftest$shared_ext; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' # Archives containing C++ object files must be created using # "CC -Bstatic", where "CC" is the KAI C++ compiler. _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; icpc* | ecpc* ) # Intel C++ with_gnu_ld=yes # version 8.0 and above of icpc choke on multiply defined symbols # if we add $predep_objects and $postdep_objects, however 7.1 and # earlier do not add the objects themselves. case `$CC -V 2>&1` in *"Version 7."*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 8.0 or newer tmp_idyn= case $host_cpu in ia64*) tmp_idyn=' -i_dynamic';; esac _LT_TAGVAR(archive_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared'"$tmp_idyn"' $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive$convenience $wl--no-whole-archive' ;; pgCC* | pgcpp*) # Portland Group C++ compiler case `$CC -V` in *pgCC\ [[1-5]].* | *pgcpp\ [[1-5]].*) _LT_TAGVAR(prelink_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $objs $libobjs $compile_deplibs~ compile_command="$compile_command `find $tpldir -name \*.o | sort | $NL2SP`"' _LT_TAGVAR(old_archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $oldobjs$old_deplibs~ $AR $AR_FLAGS $oldlib$oldobjs$old_deplibs `find $tpldir -name \*.o | sort | $NL2SP`~ $RANLIB $oldlib' _LT_TAGVAR(archive_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='tpldir=Template.dir~ rm -rf $tpldir~ $CC --prelink_objects --instantiation_dir $tpldir $predep_objects $libobjs $deplibs $convenience $postdep_objects~ $CC -shared $pic_flag $predep_objects $libobjs $deplibs `find $tpldir -name \*.o | sort | $NL2SP` $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; *) # Version 6 and above use weak symbols _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname $wl-retain-symbols-file $wl$export_symbols -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl--rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`for conv in $convenience\"\"; do test -n \"$conv\" && new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' ;; cxx*) # Compaq C++ _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname -o $lib $wl-retain-symbols-file $wl$export_symbols' runpath_var=LD_RUN_PATH _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld .*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "X$list" | $Xsed' ;; xl* | mpixl* | bgxl*) # IBM XL 8.0 on PPC, with GNU ld _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl--export-dynamic' _LT_TAGVAR(archive_cmds, $1)='$CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname -o $lib' if test yes = "$supports_anon_versioning"; then _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $output_objdir/$libname.ver~ cat $export_symbols | sed -e "s/\(.*\)/\1;/" >> $output_objdir/$libname.ver~ echo "local: *; };" >> $output_objdir/$libname.ver~ $CC -qmkshrobj $libobjs $deplibs $compiler_flags $wl-soname $wl$soname $wl-version-script $wl$output_objdir/$libname.ver -o $lib' fi ;; *) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file $wl$export_symbols' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl--whole-archive`new_convenience=; for conv in $convenience\"\"; do test -z \"$conv\" || new_convenience=\"$new_convenience,$conv\"; done; func_echo_all \"$new_convenience\"` $wl--no-whole-archive' _LT_TAGVAR(compiler_needs_object, $1)=yes # Not sure whether something based on # $CC $CFLAGS -v conftest.$objext -o libconftest$shared_ext 2>&1 # would be better. output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; esac ;; esac ;; lynxos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; m88k*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; mvs*) case $cc_basename in cxx*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; netbsd*) if echo __ELF__ | $CC -E - | $GREP __ELF__ >/dev/null; then _LT_TAGVAR(archive_cmds, $1)='$LD -Bshareable -o $lib $predep_objects $libobjs $deplibs $postdep_objects $linker_flags' wlarc= _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no fi # Workaround some broken pre-1.5 toolchains output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP conftest.$objext | $SED -e "s:-lgcc -lc -lgcc::"' ;; *nto* | *qnx*) _LT_TAGVAR(ld_shlibs, $1)=yes ;; openbsd* | bitrig*) if test -f /usr/libexec/ld.so; then _LT_TAGVAR(hardcode_direct, $1)=yes _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=yes _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' if test -z "`echo __ELF__ | $CC -E - | grep __ELF__`"; then _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $pic_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-retain-symbols-file,$export_symbols -o $lib' _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-E' _LT_TAGVAR(whole_archive_flag_spec, $1)=$wlarc'--whole-archive$convenience '$wlarc'--no-whole-archive' fi output_verbose_link_cmd=func_echo_all else _LT_TAGVAR(ld_shlibs, $1)=no fi ;; osf3* | osf4* | osf5*) case $cc_basename in KCC*) # Kuck and Associates, Inc. (KAI) C++ Compiler # KCC will only create a shared library if the output file # ends with ".so" (or ".sl" for HP-UX), so rename the library # to its proper name (with version) after linking. _LT_TAGVAR(archive_cmds, $1)='tempext=`echo $shared_ext | $SED -e '\''s/\([[^()0-9A-Za-z{}]]\)/\\\\\1/g'\''`; templib=`echo "$lib" | $SED -e "s/\$tempext\..*/.so/"`; $CC $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags --soname $soname -o \$templib; mv \$templib $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Archives containing C++ object files must be created using # the KAI C++ compiler. case $host in osf3*) _LT_TAGVAR(old_archive_cmds, $1)='$CC -Bstatic -o $oldlib $oldobjs' ;; *) _LT_TAGVAR(old_archive_cmds, $1)='$CC -o $oldlib $oldobjs' ;; esac ;; RCC*) # Rational C++ 2.4.1 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; cxx*) case $host in osf3*) _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $soname `test -n "$verstring" && func_echo_all "$wl-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' ;; *) _LT_TAGVAR(allow_undefined_flag, $1)=' -expect_unresolved \*' _LT_TAGVAR(archive_cmds, $1)='$CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname `test -n "$verstring" && func_echo_all "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='for i in `cat $export_symbols`; do printf "%s %s\\n" -exported_symbol "\$i" >> $lib.exp; done~ echo "-hidden">> $lib.exp~ $CC -shared$allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags -msym -soname $soname $wl-input $wl$lib.exp `test -n "$verstring" && $ECHO "-set_version $verstring"` -update_registry $output_objdir/so_locations -o $lib~ $RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-rpath $libdir' ;; esac _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. # # There doesn't appear to be a way to prevent this compiler from # explicitly linking system object files so we need to strip them # from the output so that they don't get included in the library # dependencies. output_verbose_link_cmd='templist=`$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP "ld" | $GREP -v "ld:"`; templist=`func_echo_all "$templist" | $SED "s/\(^.*ld.*\)\( .*ld.*$\)/\1/"`; list= ; for z in $templist; do case $z in conftest.$objext) list="$list $z";; *.$objext);; *) list="$list $z";;esac; done; func_echo_all "$list"' ;; *) if test yes,no = "$GXX,$with_gnu_ld"; then _LT_TAGVAR(allow_undefined_flag, $1)=' $wl-expect_unresolved $wl\*' case $host in osf3*) _LT_TAGVAR(archive_cmds, $1)='$CC -shared -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $allow_undefined_flag $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-msym $wl-soname $wl$soname `test -n "$verstring" && func_echo_all "$wl-set_version $wl$verstring"` $wl-update_registry $wl$output_objdir/so_locations -o $lib' ;; esac _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-rpath $wl$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=: # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no fi ;; esac ;; psos*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; sunos4*) case $cc_basename in CC*) # Sun C++ 4.x # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; lcc*) # Lucid # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # Sun C++ 4.2, 5.x and Centerline C++ _LT_TAGVAR(archive_cmds_need_lc,$1)=yes _LT_TAGVAR(no_undefined_flag, $1)=' -zdefs' _LT_TAGVAR(archive_cmds, $1)='$CC -G$allow_undefined_flag -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G$allow_undefined_flag $wl-M $wl$lib.exp -h$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='-R$libdir' _LT_TAGVAR(hardcode_shlibpath_var, $1)=no case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) # The compiler driver will combine and reorder linker options, # but understands '-z linker_flag'. # Supported since Solaris 2.6 (maybe 2.5.1?) _LT_TAGVAR(whole_archive_flag_spec, $1)='-z allextract$convenience -z defaultextract' ;; esac _LT_TAGVAR(link_all_deplibs, $1)=yes output_verbose_link_cmd='func_echo_all' # Archives containing C++ object files must be created using # "CC -xar", where "CC" is the Sun C++ compiler. This is # necessary to make sure instantiated templates are included # in the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC -xar -o $oldlib $oldobjs' ;; gcx*) # Green Hills C++ Compiler _LT_TAGVAR(archive_cmds, $1)='$CC -shared $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' # The C++ compiler must be used to create the archive. _LT_TAGVAR(old_archive_cmds, $1)='$CC $LDFLAGS -archive -o $oldlib $oldobjs' ;; *) # GNU C++ compiler with Solaris linker if test yes,no = "$GXX,$with_gnu_ld"; then _LT_TAGVAR(no_undefined_flag, $1)=' $wl-z ${wl}defs' if $CC --version | $GREP -v '^2\.7' > /dev/null; then _LT_TAGVAR(archive_cmds, $1)='$CC -shared $pic_flag -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -shared $pic_flag -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -shared $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' else # g++ 2.7 appears to require '-G' NOT '-shared' on this # platform. _LT_TAGVAR(archive_cmds, $1)='$CC -G -nostdlib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags $wl-h $wl$soname -o $lib' _LT_TAGVAR(archive_expsym_cmds, $1)='echo "{ global:" > $lib.exp~cat $export_symbols | $SED -e "s/\(.*\)/\1;/" >> $lib.exp~echo "local: *; };" >> $lib.exp~ $CC -G -nostdlib $wl-M $wl$lib.exp $wl-h $wl$soname -o $lib $predep_objects $libobjs $deplibs $postdep_objects $compiler_flags~$RM $lib.exp' # Commands to make compiler produce verbose output that lists # what "hidden" libraries, object files and flags are used when # linking a shared library. output_verbose_link_cmd='$CC -G $CFLAGS -v conftest.$objext 2>&1 | $GREP -v "^Configured with:" | $GREP "\-L"' fi _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R $wl$libdir' case $host_os in solaris2.[[0-5]] | solaris2.[[0-5]].*) ;; *) _LT_TAGVAR(whole_archive_flag_spec, $1)='$wl-z ${wl}allextract$convenience $wl-z ${wl}defaultextract' ;; esac fi ;; esac ;; sysv4*uw2* | sysv5OpenUNIX* | sysv5UnixWare7.[[01]].[[10]]* | unixware7* | sco3.2v5.0.[[024]]*) _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; sysv5* | sco3.2v5* | sco5v6*) # Note: We CANNOT use -z defs as we might desire, because we do not # link with -lc, and that would cause any symbols used from libc to # always be unresolved, which means just about no library would # ever link correctly. If we're not using GNU ld we use -z text # though, which does catch some bad symbols but isn't as heavy-handed # as -z defs. _LT_TAGVAR(no_undefined_flag, $1)='$wl-z,text' _LT_TAGVAR(allow_undefined_flag, $1)='$wl-z,nodefs' _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(hardcode_shlibpath_var, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)='$wl-R,$libdir' _LT_TAGVAR(hardcode_libdir_separator, $1)=':' _LT_TAGVAR(link_all_deplibs, $1)=yes _LT_TAGVAR(export_dynamic_flag_spec, $1)='$wl-Bexport' runpath_var='LD_RUN_PATH' case $cc_basename in CC*) _LT_TAGVAR(archive_cmds, $1)='$CC -G $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -G $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(old_archive_cmds, $1)='$CC -Tprelink_objects $oldobjs~ '"$_LT_TAGVAR(old_archive_cmds, $1)" _LT_TAGVAR(reload_cmds, $1)='$CC -Tprelink_objects $reload_objs~ '"$_LT_TAGVAR(reload_cmds, $1)" ;; *) _LT_TAGVAR(archive_cmds, $1)='$CC -shared $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' _LT_TAGVAR(archive_expsym_cmds, $1)='$CC -shared $wl-Bexport:$export_symbols $wl-h,$soname -o $lib $libobjs $deplibs $compiler_flags' ;; esac ;; tandem*) case $cc_basename in NCC*) # NonStop-UX NCC 3.20 # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac ;; vxworks*) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; *) # FIXME: insert proper C++ library support _LT_TAGVAR(ld_shlibs, $1)=no ;; esac AC_MSG_RESULT([$_LT_TAGVAR(ld_shlibs, $1)]) test no = "$_LT_TAGVAR(ld_shlibs, $1)" && can_build_shared=no _LT_TAGVAR(GCC, $1)=$GXX _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS LDCXX=$LD LD=$lt_save_LD GCC=$lt_save_GCC with_gnu_ld=$lt_save_with_gnu_ld lt_cv_path_LDCXX=$lt_cv_path_LD lt_cv_path_LD=$lt_save_path_LD lt_cv_prog_gnu_ldcxx=$lt_cv_prog_gnu_ld lt_cv_prog_gnu_ld=$lt_save_with_gnu_ld fi # test yes != "$_lt_caught_CXX_error" AC_LANG_POP ])# _LT_LANG_CXX_CONFIG # _LT_FUNC_STRIPNAME_CNF # ---------------------- # func_stripname_cnf prefix suffix name # strip PREFIX and SUFFIX off of NAME. # PREFIX and SUFFIX must not contain globbing or regex special # characters, hashes, percent signs, but SUFFIX may contain a leading # dot (in which case that matches only a dot). # # This function is identical to the (non-XSI) version of func_stripname, # except this one can be used by m4 code that may be executed by configure, # rather than the libtool script. m4_defun([_LT_FUNC_STRIPNAME_CNF],[dnl AC_REQUIRE([_LT_DECL_SED]) AC_REQUIRE([_LT_PROG_ECHO_BACKSLASH]) func_stripname_cnf () { case @S|@2 in .*) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%\\\\@S|@2\$%%"`;; *) func_stripname_result=`$ECHO "@S|@3" | $SED "s%^@S|@1%%; s%@S|@2\$%%"`;; esac } # func_stripname_cnf ])# _LT_FUNC_STRIPNAME_CNF # _LT_SYS_HIDDEN_LIBDEPS([TAGNAME]) # --------------------------------- # Figure out "hidden" library dependencies from verbose # compiler output when linking a shared library. # Parse the compiler output and extract the necessary # objects, libraries and library flags. m4_defun([_LT_SYS_HIDDEN_LIBDEPS], [m4_require([_LT_FILEUTILS_DEFAULTS])dnl AC_REQUIRE([_LT_FUNC_STRIPNAME_CNF])dnl # Dependencies to place before and after the object being linked: _LT_TAGVAR(predep_objects, $1)= _LT_TAGVAR(postdep_objects, $1)= _LT_TAGVAR(predeps, $1)= _LT_TAGVAR(postdeps, $1)= _LT_TAGVAR(compiler_lib_search_path, $1)= dnl we can't use the lt_simple_compile_test_code here, dnl because it contains code intended for an executable, dnl not a library. It's possible we should let each dnl tag define a new lt_????_link_test_code variable, dnl but it's only used here... m4_if([$1], [], [cat > conftest.$ac_ext <<_LT_EOF int a; void foo (void) { a = 0; } _LT_EOF ], [$1], [CXX], [cat > conftest.$ac_ext <<_LT_EOF class Foo { public: Foo (void) { a = 0; } private: int a; }; _LT_EOF ], [$1], [F77], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer*4 a a=0 return end _LT_EOF ], [$1], [FC], [cat > conftest.$ac_ext <<_LT_EOF subroutine foo implicit none integer a a=0 return end _LT_EOF ], [$1], [GCJ], [cat > conftest.$ac_ext <<_LT_EOF public class foo { private int a; public void bar (void) { a = 0; } }; _LT_EOF ], [$1], [GO], [cat > conftest.$ac_ext <<_LT_EOF package foo func foo() { } _LT_EOF ]) _lt_libdeps_save_CFLAGS=$CFLAGS case "$CC $CFLAGS " in #( *\ -flto*\ *) CFLAGS="$CFLAGS -fno-lto" ;; *\ -fwhopr*\ *) CFLAGS="$CFLAGS -fno-whopr" ;; *\ -fuse-linker-plugin*\ *) CFLAGS="$CFLAGS -fno-use-linker-plugin" ;; esac dnl Parse the compiler output and extract the necessary dnl objects, libraries and library flags. if AC_TRY_EVAL(ac_compile); then # Parse the compiler output and extract the necessary # objects, libraries and library flags. # Sentinel used to keep track of whether or not we are before # the conftest object file. pre_test_object_deps_done=no for p in `eval "$output_verbose_link_cmd"`; do case $prev$p in -L* | -R* | -l*) # Some compilers place space between "-{L,R}" and the path. # Remove the space. if test x-L = "$p" || test x-R = "$p"; then prev=$p continue fi # Expand the sysroot to ease extracting the directories later. if test -z "$prev"; then case $p in -L*) func_stripname_cnf '-L' '' "$p"; prev=-L; p=$func_stripname_result ;; -R*) func_stripname_cnf '-R' '' "$p"; prev=-R; p=$func_stripname_result ;; -l*) func_stripname_cnf '-l' '' "$p"; prev=-l; p=$func_stripname_result ;; esac fi case $p in =*) func_stripname_cnf '=' '' "$p"; p=$lt_sysroot$func_stripname_result ;; esac if test no = "$pre_test_object_deps_done"; then case $prev in -L | -R) # Internal compiler library paths should come after those # provided the user. The postdeps already come after the # user supplied libs so there is no need to process them. if test -z "$_LT_TAGVAR(compiler_lib_search_path, $1)"; then _LT_TAGVAR(compiler_lib_search_path, $1)=$prev$p else _LT_TAGVAR(compiler_lib_search_path, $1)="${_LT_TAGVAR(compiler_lib_search_path, $1)} $prev$p" fi ;; # The "-l" case would never come before the object being # linked, so don't bother handling this case. esac else if test -z "$_LT_TAGVAR(postdeps, $1)"; then _LT_TAGVAR(postdeps, $1)=$prev$p else _LT_TAGVAR(postdeps, $1)="${_LT_TAGVAR(postdeps, $1)} $prev$p" fi fi prev= ;; *.lto.$objext) ;; # Ignore GCC LTO objects *.$objext) # This assumes that the test object file only shows up # once in the compiler output. if test "$p" = "conftest.$objext"; then pre_test_object_deps_done=yes continue fi if test no = "$pre_test_object_deps_done"; then if test -z "$_LT_TAGVAR(predep_objects, $1)"; then _LT_TAGVAR(predep_objects, $1)=$p else _LT_TAGVAR(predep_objects, $1)="$_LT_TAGVAR(predep_objects, $1) $p" fi else if test -z "$_LT_TAGVAR(postdep_objects, $1)"; then _LT_TAGVAR(postdep_objects, $1)=$p else _LT_TAGVAR(postdep_objects, $1)="$_LT_TAGVAR(postdep_objects, $1) $p" fi fi ;; *) ;; # Ignore the rest. esac done # Clean up. rm -f a.out a.exe else echo "libtool.m4: error: problem compiling $1 test program" fi $RM -f confest.$objext CFLAGS=$_lt_libdeps_save_CFLAGS # PORTME: override above test on systems where it is broken m4_if([$1], [CXX], [case $host_os in interix[[3-9]]*) # Interix 3.5 installs completely hosed .la files for C++, so rather than # hack all around it, let's just trust "g++" to DTRT. _LT_TAGVAR(predep_objects,$1)= _LT_TAGVAR(postdep_objects,$1)= _LT_TAGVAR(postdeps,$1)= ;; linux*) case `$CC -V 2>&1 | sed 5q` in *Sun\ C*) # Sun C++ 5.9 # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac if test yes != "$solaris_use_stlport4"; then _LT_TAGVAR(postdeps,$1)='-library=Cstd -library=Crun' fi ;; esac ;; solaris*) case $cc_basename in CC* | sunCC*) # The more standards-conforming stlport4 library is # incompatible with the Cstd library. Avoid specifying # it if it's in CXXFLAGS. Ignore libCrun as # -library=stlport4 depends on it. case " $CXX $CXXFLAGS " in *" -library=stlport4 "*) solaris_use_stlport4=yes ;; esac # Adding this requires a known-good setup of shared libraries for # Sun compiler versions before 5.6, else PIC objects from an old # archive will be linked into the output, leading to subtle bugs. if test yes != "$solaris_use_stlport4"; then _LT_TAGVAR(postdeps,$1)='-library=Cstd -library=Crun' fi ;; esac ;; esac ]) case " $_LT_TAGVAR(postdeps, $1) " in *" -lc "*) _LT_TAGVAR(archive_cmds_need_lc, $1)=no ;; esac _LT_TAGVAR(compiler_lib_search_dirs, $1)= if test -n "${_LT_TAGVAR(compiler_lib_search_path, $1)}"; then _LT_TAGVAR(compiler_lib_search_dirs, $1)=`echo " ${_LT_TAGVAR(compiler_lib_search_path, $1)}" | $SED -e 's! -L! !g' -e 's!^ !!'` fi _LT_TAGDECL([], [compiler_lib_search_dirs], [1], [The directories searched by this compiler when creating a shared library]) _LT_TAGDECL([], [predep_objects], [1], [Dependencies to place before and after the objects being linked to create a shared library]) _LT_TAGDECL([], [postdep_objects], [1]) _LT_TAGDECL([], [predeps], [1]) _LT_TAGDECL([], [postdeps], [1]) _LT_TAGDECL([], [compiler_lib_search_path], [1], [The library search path used internally by the compiler when linking a shared library]) ])# _LT_SYS_HIDDEN_LIBDEPS # _LT_LANG_F77_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for a Fortran 77 compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_F77_CONFIG], [AC_LANG_PUSH(Fortran 77) if test -z "$F77" || test no = "$F77"; then _lt_disable_F77=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for f77 test sources. ac_ext=f # Object file extension for compiled f77 test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the F77 compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_disable_F77"; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${F77-"f77"} CFLAGS=$FFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) GCC=$G77 if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu" && test no = "$aix_use_runtimelinking"; then test yes = "$enable_shared" && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)=$G77 _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS fi # test yes != "$_lt_disable_F77" AC_LANG_POP ])# _LT_LANG_F77_CONFIG # _LT_LANG_FC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for a Fortran compiler are # suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_FC_CONFIG], [AC_LANG_PUSH(Fortran) if test -z "$FC" || test no = "$FC"; then _lt_disable_FC=yes fi _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(allow_undefined_flag, $1)= _LT_TAGVAR(always_export_symbols, $1)=no _LT_TAGVAR(archive_expsym_cmds, $1)= _LT_TAGVAR(export_dynamic_flag_spec, $1)= _LT_TAGVAR(hardcode_direct, $1)=no _LT_TAGVAR(hardcode_direct_absolute, $1)=no _LT_TAGVAR(hardcode_libdir_flag_spec, $1)= _LT_TAGVAR(hardcode_libdir_separator, $1)= _LT_TAGVAR(hardcode_minus_L, $1)=no _LT_TAGVAR(hardcode_automatic, $1)=no _LT_TAGVAR(inherit_rpath, $1)=no _LT_TAGVAR(module_cmds, $1)= _LT_TAGVAR(module_expsym_cmds, $1)= _LT_TAGVAR(link_all_deplibs, $1)=unknown _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds _LT_TAGVAR(no_undefined_flag, $1)= _LT_TAGVAR(whole_archive_flag_spec, $1)= _LT_TAGVAR(enable_shared_with_static_runtimes, $1)=no # Source file extension for fc test sources. ac_ext=${ac_fc_srcext-f} # Object file extension for compiled fc test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # No sense in running all these tests if we already determined that # the FC compiler isn't working. Some variables (like enable_shared) # are currently assumed to apply to all compilers on this platform, # and will be corrupted by setting them based on a non-working compiler. if test yes != "$_lt_disable_FC"; then # Code to be used in simple compile tests lt_simple_compile_test_code="\ subroutine t return end " # Code to be used in simple link tests lt_simple_link_test_code="\ program t end " # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_GCC=$GCC lt_save_CFLAGS=$CFLAGS CC=${FC-"f95"} CFLAGS=$FCFLAGS compiler=$CC GCC=$ac_cv_fc_compiler_gnu _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) if test -n "$compiler"; then AC_MSG_CHECKING([if libtool supports shared libraries]) AC_MSG_RESULT([$can_build_shared]) AC_MSG_CHECKING([whether to build shared libraries]) test no = "$can_build_shared" && enable_shared=no # On AIX, shared libraries and static libraries use the same namespace, and # are all built from PIC. case $host_os in aix3*) test yes = "$enable_shared" && enable_static=no if test -n "$RANLIB"; then archive_cmds="$archive_cmds~\$RANLIB \$lib" postinstall_cmds='$RANLIB $lib' fi ;; aix[[4-9]]*) if test ia64 != "$host_cpu" && test no = "$aix_use_runtimelinking"; then test yes = "$enable_shared" && enable_static=no fi ;; esac AC_MSG_RESULT([$enable_shared]) AC_MSG_CHECKING([whether to build static libraries]) # Make sure either enable_shared or enable_static is yes. test yes = "$enable_shared" || enable_static=yes AC_MSG_RESULT([$enable_static]) _LT_TAGVAR(GCC, $1)=$ac_cv_fc_compiler_gnu _LT_TAGVAR(LD, $1)=$LD ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... _LT_SYS_HIDDEN_LIBDEPS($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_SYS_DYNAMIC_LINKER($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi # test -n "$compiler" GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS fi # test yes != "$_lt_disable_FC" AC_LANG_POP ])# _LT_LANG_FC_CONFIG # _LT_LANG_GCJ_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Java Compiler compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_GCJ_CONFIG], [AC_REQUIRE([LT_PROG_GCJ])dnl AC_LANG_SAVE # Source file extension for Java test sources. ac_ext=java # Object file extension for compiled Java test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="class foo {}" # Code to be used in simple link tests lt_simple_link_test_code='public class conftest { public static void main(String[[]] argv) {}; }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GCJ-"gcj"} CFLAGS=$GCJFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)=$LD _LT_CC_BASENAME([$compiler]) # GCJ did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GCJ_CONFIG # _LT_LANG_GO_CONFIG([TAG]) # -------------------------- # Ensure that the configuration variables for the GNU Go compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_GO_CONFIG], [AC_REQUIRE([LT_PROG_GO])dnl AC_LANG_SAVE # Source file extension for Go test sources. ac_ext=go # Object file extension for compiled Go test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code="package main; func main() { }" # Code to be used in simple link tests lt_simple_link_test_code='package main; func main() { }' # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC=yes CC=${GOC-"gccgo"} CFLAGS=$GOFLAGS compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_TAGVAR(LD, $1)=$LD _LT_CC_BASENAME([$compiler]) # Go did not exist at the time GCC didn't implicitly link libc in. _LT_TAGVAR(archive_cmds_need_lc, $1)=no _LT_TAGVAR(old_archive_cmds, $1)=$old_archive_cmds _LT_TAGVAR(reload_flag, $1)=$reload_flag _LT_TAGVAR(reload_cmds, $1)=$reload_cmds ## CAVEAT EMPTOR: ## There is no encapsulation within the following macros, do not change ## the running order or otherwise move them around unless you know exactly ## what you are doing... if test -n "$compiler"; then _LT_COMPILER_NO_RTTI($1) _LT_COMPILER_PIC($1) _LT_COMPILER_C_O($1) _LT_COMPILER_FILE_LOCKS($1) _LT_LINKER_SHLIBS($1) _LT_LINKER_HARDCODE_LIBPATH($1) _LT_CONFIG($1) fi AC_LANG_RESTORE GCC=$lt_save_GCC CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_GO_CONFIG # _LT_LANG_RC_CONFIG([TAG]) # ------------------------- # Ensure that the configuration variables for the Windows resource compiler # are suitably defined. These variables are subsequently used by _LT_CONFIG # to write the compiler configuration to 'libtool'. m4_defun([_LT_LANG_RC_CONFIG], [AC_REQUIRE([LT_PROG_RC])dnl AC_LANG_SAVE # Source file extension for RC test sources. ac_ext=rc # Object file extension for compiled RC test sources. objext=o _LT_TAGVAR(objext, $1)=$objext # Code to be used in simple compile tests lt_simple_compile_test_code='sample MENU { MENUITEM "&Soup", 100, CHECKED }' # Code to be used in simple link tests lt_simple_link_test_code=$lt_simple_compile_test_code # ltmain only uses $CC for tagged configurations so make sure $CC is set. _LT_TAG_COMPILER # save warnings/boilerplate of simple test code _LT_COMPILER_BOILERPLATE _LT_LINKER_BOILERPLATE # Allow CC to be a program name with arguments. lt_save_CC=$CC lt_save_CFLAGS=$CFLAGS lt_save_GCC=$GCC GCC= CC=${RC-"windres"} CFLAGS= compiler=$CC _LT_TAGVAR(compiler, $1)=$CC _LT_CC_BASENAME([$compiler]) _LT_TAGVAR(lt_cv_prog_compiler_c_o, $1)=yes if test -n "$compiler"; then : _LT_CONFIG($1) fi GCC=$lt_save_GCC AC_LANG_RESTORE CC=$lt_save_CC CFLAGS=$lt_save_CFLAGS ])# _LT_LANG_RC_CONFIG # LT_PROG_GCJ # ----------- AC_DEFUN([LT_PROG_GCJ], [m4_ifdef([AC_PROG_GCJ], [AC_PROG_GCJ], [m4_ifdef([A][M_PROG_GCJ], [A][M_PROG_GCJ], [AC_CHECK_TOOL(GCJ, gcj,) test set = "${GCJFLAGS+set}" || GCJFLAGS="-g -O2" AC_SUBST(GCJFLAGS)])])[]dnl ]) # Old name: AU_ALIAS([LT_AC_PROG_GCJ], [LT_PROG_GCJ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_GCJ], []) # LT_PROG_GO # ---------- AC_DEFUN([LT_PROG_GO], [AC_CHECK_TOOL(GOC, gccgo,) ]) # LT_PROG_RC # ---------- AC_DEFUN([LT_PROG_RC], [AC_CHECK_TOOL(RC, windres,) ]) # Old name: AU_ALIAS([LT_AC_PROG_RC], [LT_PROG_RC]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_RC], []) # _LT_DECL_EGREP # -------------- # If we don't have a new enough Autoconf to choose the best grep # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_EGREP], [AC_REQUIRE([AC_PROG_EGREP])dnl AC_REQUIRE([AC_PROG_FGREP])dnl test -z "$GREP" && GREP=grep _LT_DECL([], [GREP], [1], [A grep program that handles long lines]) _LT_DECL([], [EGREP], [1], [An ERE matcher]) _LT_DECL([], [FGREP], [1], [A literal string matcher]) dnl Non-bleeding-edge autoconf doesn't subst GREP, so do it here too AC_SUBST([GREP]) ]) # _LT_DECL_OBJDUMP # -------------- # If we don't have a new enough Autoconf to choose the best objdump # available, choose the one first in the user's PATH. m4_defun([_LT_DECL_OBJDUMP], [AC_CHECK_TOOL(OBJDUMP, objdump, false) test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [An object symbol dumper]) AC_SUBST([OBJDUMP]) ]) # _LT_DECL_DLLTOOL # ---------------- # Ensure DLLTOOL variable is set. m4_defun([_LT_DECL_DLLTOOL], [AC_CHECK_TOOL(DLLTOOL, dlltool, false) test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program]) AC_SUBST([DLLTOOL]) ]) # _LT_DECL_SED # ------------ # Check for a fully-functional sed program, that truncates # as few characters as possible. Prefer GNU sed if found. m4_defun([_LT_DECL_SED], [AC_PROG_SED test -z "$SED" && SED=sed Xsed="$SED -e 1s/^X//" _LT_DECL([], [SED], [1], [A sed program that does not truncate output]) _LT_DECL([], [Xsed], ["\$SED -e 1s/^X//"], [Sed that helps us avoid accidentally triggering echo(1) options like -n]) ])# _LT_DECL_SED m4_ifndef([AC_PROG_SED], [ ############################################################ # NOTE: This macro has been submitted for inclusion into # # GNU Autoconf as AC_PROG_SED. When it is available in # # a released version of Autoconf we should remove this # # macro and use it instead. # ############################################################ m4_defun([AC_PROG_SED], [AC_MSG_CHECKING([for a sed that does not truncate output]) AC_CACHE_VAL(lt_cv_path_SED, [# Loop through the user's path and test for sed and gsed. # Then use that list of sed's as ones to test for truncation. as_save_IFS=$IFS; IFS=$PATH_SEPARATOR for as_dir in $PATH do IFS=$as_save_IFS test -z "$as_dir" && as_dir=. for lt_ac_prog in sed gsed; do for ac_exec_ext in '' $ac_executable_extensions; do if $as_executable_p "$as_dir/$lt_ac_prog$ac_exec_ext"; then lt_ac_sed_list="$lt_ac_sed_list $as_dir/$lt_ac_prog$ac_exec_ext" fi done done done IFS=$as_save_IFS lt_ac_max=0 lt_ac_count=0 # Add /usr/xpg4/bin/sed as it is typically found on Solaris # along with /bin/sed that truncates output. for lt_ac_sed in $lt_ac_sed_list /usr/xpg4/bin/sed; do test ! -f "$lt_ac_sed" && continue cat /dev/null > conftest.in lt_ac_count=0 echo $ECHO_N "0123456789$ECHO_C" >conftest.in # Check for GNU sed and select it if it is found. if "$lt_ac_sed" --version 2>&1 < /dev/null | grep 'GNU' > /dev/null; then lt_cv_path_SED=$lt_ac_sed break fi while true; do cat conftest.in conftest.in >conftest.tmp mv conftest.tmp conftest.in cp conftest.in conftest.nl echo >>conftest.nl $lt_ac_sed -e 's/a$//' < conftest.nl >conftest.out || break cmp -s conftest.out conftest.nl || break # 10000 chars as input seems more than enough test 10 -lt "$lt_ac_count" && break lt_ac_count=`expr $lt_ac_count + 1` if test "$lt_ac_count" -gt "$lt_ac_max"; then lt_ac_max=$lt_ac_count lt_cv_path_SED=$lt_ac_sed fi done done ]) SED=$lt_cv_path_SED AC_SUBST([SED]) AC_MSG_RESULT([$SED]) ])#AC_PROG_SED ])#m4_ifndef # Old name: AU_ALIAS([LT_AC_PROG_SED], [AC_PROG_SED]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([LT_AC_PROG_SED], []) # _LT_CHECK_SHELL_FEATURES # ------------------------ # Find out whether the shell is Bourne or XSI compatible, # or has some other useful features. m4_defun([_LT_CHECK_SHELL_FEATURES], [if ( (MAIL=60; unset MAIL) || exit) >/dev/null 2>&1; then lt_unset=unset else lt_unset=false fi _LT_DECL([], [lt_unset], [0], [whether the shell understands "unset"])dnl # test EBCDIC or ASCII case `echo X|tr X '\101'` in A) # ASCII based system # \n is not interpreted correctly by Solaris 8 /usr/ucb/tr lt_SP2NL='tr \040 \012' lt_NL2SP='tr \015\012 \040\040' ;; *) # EBCDIC based system lt_SP2NL='tr \100 \n' lt_NL2SP='tr \r\n \100\100' ;; esac _LT_DECL([SP2NL], [lt_SP2NL], [1], [turn spaces into newlines])dnl _LT_DECL([NL2SP], [lt_NL2SP], [1], [turn newlines into spaces])dnl ])# _LT_CHECK_SHELL_FEATURES # _LT_PATH_CONVERSION_FUNCTIONS # ----------------------------- # Determine what file name conversion functions should be used by # func_to_host_file (and, implicitly, by func_to_host_path). These are needed # for certain cross-compile configurations and native mingw. m4_defun([_LT_PATH_CONVERSION_FUNCTIONS], [AC_REQUIRE([AC_CANONICAL_HOST])dnl AC_REQUIRE([AC_CANONICAL_BUILD])dnl AC_MSG_CHECKING([how to convert $build file names to $host format]) AC_CACHE_VAL(lt_cv_to_host_file_cmd, [case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_w32 ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_cygwin_to_w32 ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_w32 ;; esac ;; *-*-cygwin* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_host_file_cmd=func_convert_file_msys_to_cygwin ;; *-*-cygwin* ) lt_cv_to_host_file_cmd=func_convert_file_noop ;; * ) # otherwise, assume *nix lt_cv_to_host_file_cmd=func_convert_file_nix_to_cygwin ;; esac ;; * ) # unhandled hosts (and "normal" native builds) lt_cv_to_host_file_cmd=func_convert_file_noop ;; esac ]) to_host_file_cmd=$lt_cv_to_host_file_cmd AC_MSG_RESULT([$lt_cv_to_host_file_cmd]) _LT_DECL([to_host_file_cmd], [lt_cv_to_host_file_cmd], [0], [convert $build file names to $host format])dnl AC_MSG_CHECKING([how to convert $build file names to toolchain format]) AC_CACHE_VAL(lt_cv_to_tool_file_cmd, [#assume ordinary cross tools, or native build. lt_cv_to_tool_file_cmd=func_convert_file_noop case $host in *-*-mingw* ) case $build in *-*-mingw* ) # actually msys lt_cv_to_tool_file_cmd=func_convert_file_msys_to_w32 ;; esac ;; esac ]) to_tool_file_cmd=$lt_cv_to_tool_file_cmd AC_MSG_RESULT([$lt_cv_to_tool_file_cmd]) _LT_DECL([to_tool_file_cmd], [lt_cv_to_tool_file_cmd], [0], [convert $build files to toolchain format])dnl ])# _LT_PATH_CONVERSION_FUNCTIONS isl-0.16.1/m4/ltversion.m40000644000175000017500000000131312423122120012101 00000000000000# ltversion.m4 -- version numbers -*- Autoconf -*- # # Copyright (C) 2004, 2011-2013 Free Software Foundation, Inc. # Written by Scott James Remnant, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # @configure_input@ # serial 4038 ltversion.m4 # This file is part of GNU Libtool m4_define([LT_PACKAGE_VERSION], [2.4.2.418]) m4_define([LT_PACKAGE_REVISION], [2.4.2.418]) AC_DEFUN([LTVERSION_VERSION], [macro_version='2.4.2.418' macro_revision='2.4.2.418' _LT_DECL(, macro_version, 0, [Which release of libtool.m4 was used?]) _LT_DECL(, macro_revision, 0) ]) isl-0.16.1/m4/ax_create_pkgconfig_info.m40000664000175000017500000003415512645737061015113 00000000000000# ============================================================================ # http://www.gnu.org/software/autoconf-archive/ax_create_pkgconfig_info.html # ============================================================================ # # SYNOPSIS # # AX_CREATE_PKGCONFIG_INFO [(outputfile, [requires [,libs [,summary [,cflags [, ldflags]]]]])] # # DESCRIPTION # # Defaults: # # $1 = $PACKAGE_NAME.pc # $2 = (empty) # $3 = $PACKAGE_LIBS $LIBS (as set at that point in configure.ac) # $4 = $PACKAGE_SUMMARY (or $1 Library) # $5 = $PACKAGE_CFLAGS (as set at the point in configure.ac) # $6 = $PACKAGE_LDFLAGS (as set at the point in configure.ac) # # PACKAGE_NAME defaults to $PACKAGE if not set. # PACKAGE_LIBS defaults to -l$PACKAGE_NAME if not set. # # The resulting file is called $PACKAGE.pc.in / $PACKAGE.pc # # You will find this macro most useful in conjunction with # ax_spec_defaults that can read good initializers from the .spec file. In # consequencd, most of the generatable installable stuff can be made from # information being updated in a single place for the whole project. # # LICENSE # # Copyright (c) 2008 Guido U. Draheim # Copyright (c) 2008 Sven Verdoolaege # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. #serial 12 AC_DEFUN([AX_CREATE_PKGCONFIG_INFO],[dnl AS_VAR_PUSHDEF([PKGCONFIG_suffix],[ax_create_pkgconfig_suffix])dnl AS_VAR_PUSHDEF([PKGCONFIG_libdir],[ax_create_pkgconfig_libdir])dnl AS_VAR_PUSHDEF([PKGCONFIG_libfile],[ax_create_pkgconfig_libfile])dnl AS_VAR_PUSHDEF([PKGCONFIG_libname],[ax_create_pkgconfig_libname])dnl AS_VAR_PUSHDEF([PKGCONFIG_version],[ax_create_pkgconfig_version])dnl AS_VAR_PUSHDEF([PKGCONFIG_description],[ax_create_pkgconfig_description])dnl AS_VAR_PUSHDEF([PKGCONFIG_requires],[ax_create_pkgconfig_requires])dnl AS_VAR_PUSHDEF([PKGCONFIG_pkglibs],[ax_create_pkgconfig_pkglibs])dnl AS_VAR_PUSHDEF([PKGCONFIG_libs],[ax_create_pkgconfig_libs])dnl AS_VAR_PUSHDEF([PKGCONFIG_ldflags],[ax_create_pkgconfig_ldflags])dnl AS_VAR_PUSHDEF([PKGCONFIG_cppflags],[ax_create_pkgconfig_cppflags])dnl AS_VAR_PUSHDEF([PKGCONFIG_generate],[ax_create_pkgconfig_generate])dnl AS_VAR_PUSHDEF([PKGCONFIG_src_libdir],[ax_create_pkgconfig_src_libdir])dnl AS_VAR_PUSHDEF([PKGCONFIG_src_headers],[ax_create_pkgconfig_src_headers])dnl # we need the expanded forms... test "x$prefix" = xNONE && prefix=$ac_default_prefix test "x$exec_prefix" = xNONE && exec_prefix='${prefix}' AC_MSG_CHECKING(our pkgconfig libname) test ".$PKGCONFIG_libname" != "." || \ PKGCONFIG_libname="ifelse($1,,${PACKAGE_NAME},`basename $1 .pc`)" test ".$PKGCONFIG_libname" != "." || \ PKGCONFIG_libname="$PACKAGE" PKGCONFIG_libname=`eval echo "$PKGCONFIG_libname"` PKGCONFIG_libname=`eval echo "$PKGCONFIG_libname"` AC_MSG_RESULT($PKGCONFIG_libname) AC_MSG_CHECKING(our pkgconfig version) test ".$PKGCONFIG_version" != "." || \ PKGCONFIG_version="${PACKAGE_VERSION}" test ".$PKGCONFIG_version" != "." || \ PKGCONFIG_version="$VERSION" PKGCONFIG_version=`eval echo "$PKGCONFIG_version"` PKGCONFIG_version=`eval echo "$PKGCONFIG_version"` AC_MSG_RESULT($PKGCONFIG_version) AC_MSG_CHECKING(our pkgconfig_libdir) test ".$pkgconfig_libdir" = "." && \ pkgconfig_libdir='${libdir}/pkgconfig' PKGCONFIG_libdir=`eval echo "$pkgconfig_libdir"` PKGCONFIG_libdir=`eval echo "$PKGCONFIG_libdir"` PKGCONFIG_libdir=`eval echo "$PKGCONFIG_libdir"` AC_MSG_RESULT($pkgconfig_libdir) test "$pkgconfig_libdir" != "$PKGCONFIG_libdir" && ( AC_MSG_RESULT(expanded our pkgconfig_libdir... $PKGCONFIG_libdir)) AC_SUBST([pkgconfig_libdir]) AC_MSG_CHECKING(our pkgconfig_libfile) test ".$pkgconfig_libfile" != "." || \ pkgconfig_libfile="ifelse($1,,$PKGCONFIG_libname.pc,`basename $1`)" PKGCONFIG_libfile=`eval echo "$pkgconfig_libfile"` PKGCONFIG_libfile=`eval echo "$PKGCONFIG_libfile"` AC_MSG_RESULT($pkgconfig_libfile) test "$pkgconfig_libfile" != "$PKGCONFIG_libfile" && ( AC_MSG_RESULT(expanded our pkgconfig_libfile... $PKGCONFIG_libfile)) AC_SUBST([pkgconfig_libfile]) AC_MSG_CHECKING(our package / suffix) PKGCONFIG_suffix="$program_suffix" test ".$PKGCONFIG_suffix" != .NONE || PKGCONFIG_suffix="" AC_MSG_RESULT(${PACKAGE_NAME} / ${PKGCONFIG_suffix}) AC_MSG_CHECKING(our pkgconfig description) PKGCONFIG_description="ifelse($4,,$PACKAGE_SUMMARY,$4)" test ".$PKGCONFIG_description" != "." || \ PKGCONFIG_description="$PKGCONFIG_libname Library" PKGCONFIG_description=`eval echo "$PKGCONFIG_description"` PKGCONFIG_description=`eval echo "$PKGCONFIG_description"` AC_MSG_RESULT($PKGCONFIG_description) AC_MSG_CHECKING(our pkgconfig requires) PKGCONFIG_requires="ifelse($2,,$PACKAGE_REQUIRES,$2)" PKGCONFIG_requires=`eval echo "$PKGCONFIG_requires"` PKGCONFIG_requires=`eval echo "$PKGCONFIG_requires"` AC_MSG_RESULT($PKGCONFIG_requires) AC_MSG_CHECKING(our pkgconfig ext libs) PKGCONFIG_pkglibs="$PACKAGE_LIBS" test ".$PKGCONFIG_pkglibs" != "." || PKGCONFIG_pkglibs="-l$PKGCONFIG_libname" PKGCONFIG_libs="ifelse($3,,$PKGCONFIG_pkglibs $LIBS,$3)" PKGCONFIG_libs=`eval echo "$PKGCONFIG_libs"` PKGCONFIG_libs=`eval echo "$PKGCONFIG_libs"` AC_MSG_RESULT($PKGCONFIG_libs) AC_MSG_CHECKING(our pkgconfig cppflags) PKGCONFIG_cppflags="ifelse($5,,$PACKAGE_CFLAGS,$5)" PKGCONFIG_cppflags=`eval echo "$PKGCONFIG_cppflags"` PKGCONFIG_cppflags=`eval echo "$PKGCONFIG_cppflags"` AC_MSG_RESULT($PKGCONFIG_cppflags) AC_MSG_CHECKING(our pkgconfig ldflags) PKGCONFIG_ldflags="ifelse($6,,$PACKAGE_LDFLAGS,$5)" PKGCONFIG_ldflags=`eval echo "$PKGCONFIG_ldflags"` PKGCONFIG_ldflags=`eval echo "$PKGCONFIG_ldflags"` AC_MSG_RESULT($PKGCONFIG_ldflags) test ".$PKGCONFIG_generate" != "." || \ PKGCONFIG_generate="ifelse($1,,$PKGCONFIG_libname.pc,$1)" PKGCONFIG_generate=`eval echo "$PKGCONFIG_generate"` PKGCONFIG_generate=`eval echo "$PKGCONFIG_generate"` test "$pkgconfig_libfile" != "$PKGCONFIG_generate" && ( AC_MSG_RESULT(generate the pkgconfig later... $PKGCONFIG_generate)) if test ".$PKGCONFIG_src_libdir" = "." ; then PKGCONFIG_src_libdir=`pwd` PKGCONFIG_src_libdir=`AS_DIRNAME("$PKGCONFIG_src_libdir/$PKGCONFIG_generate")` test ! -d $PKGCONFIG_src_libdir/src || \ PKGCONFIG_src_libdir="$PKGCONFIG_src_libdir/src" case ".$objdir" in *libs) PKGCONFIG_src_libdir="$PKGCONFIG_src_libdir/$objdir" ;; esac AC_MSG_RESULT(noninstalled pkgconfig -L $PKGCONFIG_src_libdir) fi if test ".$PKGCONFIG_src_headers" = "." ; then PKGCONFIG_src_headers=`pwd` v="$ac_top_srcdir" ; test ".$v" != "." || v="$ax_spec_dir" test ".$v" != "." || v="$srcdir" case "$v" in /*) PKGCONFIG_src_headers="" ;; esac PKGCONFIG_src_headers=`AS_DIRNAME("$PKGCONFIG_src_headers/$v/x")` test ! -d $PKGCONFIG_src_headers/incl[]ude || \ PKGCONFIG_src_headers="$PKGCONFIG_src_headers/incl[]ude" AC_MSG_RESULT(noninstalled pkgconfig -I $PKGCONFIG_src_headers) fi dnl AC_CONFIG_COMMANDS crap disallows to use $PKGCONFIG_libfile here... AC_CONFIG_COMMANDS([$ax_create_pkgconfig_generate],[ pkgconfig_generate="$ax_create_pkgconfig_generate" if test ! -f "$pkgconfig_generate.in" then generate="true" elif grep ' generated by configure ' $pkgconfig_generate.in >/dev/null then generate="true" else generate="false"; fi if $generate ; then AC_MSG_NOTICE(creating $pkgconfig_generate.in) cat > $pkgconfig_generate.in <conftest.sed < $pkgconfig_generate if test ! -s $pkgconfig_generate ; then AC_MSG_ERROR([$pkgconfig_generate is empty]) fi ; rm conftest.sed # DONE generate $pkgconfig_generate pkgconfig_uninstalled=`echo $pkgconfig_generate |sed 's/.pc$/-uninstalled.pc/'` AC_MSG_NOTICE(creating $pkgconfig_uninstalled) cat >conftest.sed < $pkgconfig_uninstalled if test ! -s $pkgconfig_uninstalled ; then AC_MSG_ERROR([$pkgconfig_uninstalled is empty]) fi ; rm conftest.sed # DONE generate $pkgconfig_uninstalled pkgconfig_requires_add=`echo ${pkgconfig_requires}` if test ".$pkgconfig_requires_add" != "." ; then pkgconfig_requires_add="pkg-config $pkgconfig_requires_add" else pkgconfig_requires_add=":" ; fi pkgconfig_uninstalled=`echo $pkgconfig_generate |sed 's/.pc$/-uninstalled.sh/'` AC_MSG_NOTICE(creating $pkgconfig_uninstalled) cat >conftest.sed <Name:>for option\\; do case \"\$option\" in --list-all|--name) echo > s>Description: *>\\;\\; --help) pkg-config --help \\; echo Buildscript Of > s>Version: *>\\;\\; --modversion|--version) echo > s>Requires:>\\;\\; --requires) echo $pkgconfig_requires_add> s>Libs: *>\\;\\; --libs) echo > s>Cflags: *>\\;\\; --cflags) echo > /--libs)/a\\ $pkgconfig_requires_add /--cflags)/a\\ $pkgconfig_requires_add\\ ;; --variable=*) eval echo '\$'\`echo \$option | sed -e 's/.*=//'\`\\ ;; --uninstalled) exit 0 \\ ;; *) ;; esac done AXEOF sed -f conftest.sed $pkgconfig_generate.in > $pkgconfig_uninstalled if test ! -s $pkgconfig_uninstalled ; then AC_MSG_ERROR([$pkgconfig_uninstalled is empty]) fi ; rm conftest.sed # DONE generate $pkgconfig_uninstalled ],[ dnl AC_CONFIG_COMMANDS crap, the AS_PUSHVAR defines are invalid here... ax_create_pkgconfig_generate="$ax_create_pkgconfig_generate" pkgconfig_prefix='$prefix' pkgconfig_execprefix='$exec_prefix' pkgconfig_bindir='$bindir' pkgconfig_libdir='$libdir' pkgconfig_includedir='$includedir' pkgconfig_datarootdir='$datarootdir' pkgconfig_datadir='$datadir' pkgconfig_sysconfdir='$sysconfdir' pkgconfig_suffix='$ax_create_pkgconfig_suffix' pkgconfig_package='$PACKAGE_NAME' pkgconfig_libname='$ax_create_pkgconfig_libname' pkgconfig_description='$ax_create_pkgconfig_description' pkgconfig_version='$ax_create_pkgconfig_version' pkgconfig_requires='$ax_create_pkgconfig_requires' pkgconfig_libs='$ax_create_pkgconfig_libs' pkgconfig_ldflags='$ax_create_pkgconfig_ldflags' pkgconfig_cppflags='$ax_create_pkgconfig_cppflags' pkgconfig_src_libdir='$ax_create_pkgconfig_src_libdir' pkgconfig_src_headers='$ax_create_pkgconfig_src_headers' ])dnl AS_VAR_POPDEF([PKGCONFIG_suffix])dnl AS_VAR_POPDEF([PKGCONFIG_libdir])dnl AS_VAR_POPDEF([PKGCONFIG_libfile])dnl AS_VAR_POPDEF([PKGCONFIG_libname])dnl AS_VAR_POPDEF([PKGCONFIG_version])dnl AS_VAR_POPDEF([PKGCONFIG_description])dnl AS_VAR_POPDEF([PKGCONFIG_requires])dnl AS_VAR_POPDEF([PKGCONFIG_pkglibs])dnl AS_VAR_POPDEF([PKGCONFIG_libs])dnl AS_VAR_POPDEF([PKGCONFIG_ldflags])dnl AS_VAR_POPDEF([PKGCONFIG_cppflags])dnl AS_VAR_POPDEF([PKGCONFIG_generate])dnl AS_VAR_POPDEF([PKGCONFIG_src_libdir])dnl AS_VAR_POPDEF([PKGCONFIG_src_headers])dnl ]) isl-0.16.1/m4/lt~obsolete.m40000644000175000017500000001377412423122120012444 00000000000000# lt~obsolete.m4 -- aclocal satisfying obsolete definitions. -*-Autoconf-*- # # Copyright (C) 2004-2005, 2007, 2009, 2011-2013 Free Software # Foundation, Inc. # Written by Scott James Remnant, 2004. # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 5 lt~obsolete.m4 # These exist entirely to fool aclocal when bootstrapping libtool. # # In the past libtool.m4 has provided macros via AC_DEFUN (or AU_DEFUN), # which have later been changed to m4_define as they aren't part of the # exported API, or moved to Autoconf or Automake where they belong. # # The trouble is, aclocal is a bit thick. It'll see the old AC_DEFUN # in /usr/share/aclocal/libtool.m4 and remember it, then when it sees us # using a macro with the same name in our local m4/libtool.m4 it'll # pull the old libtool.m4 in (it doesn't see our shiny new m4_define # and doesn't know about Autoconf macros at all.) # # So we provide this file, which has a silly filename so it's always # included after everything else. This provides aclocal with the # AC_DEFUNs it wants, but when m4 processes it, it doesn't do anything # because those macros already exist, or will be overwritten later. # We use AC_DEFUN over AU_DEFUN for compatibility with aclocal-1.6. # # Anytime we withdraw an AC_DEFUN or AU_DEFUN, remember to add it here. # Yes, that means every name once taken will need to remain here until # we give up compatibility with versions before 1.7, at which point # we need to keep only those names which we still refer to. # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOBSOLETE_VERSION], [m4_if([1])]) m4_ifndef([AC_LIBTOOL_LINKER_OPTION], [AC_DEFUN([AC_LIBTOOL_LINKER_OPTION])]) m4_ifndef([AC_PROG_EGREP], [AC_DEFUN([AC_PROG_EGREP])]) m4_ifndef([_LT_AC_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_AC_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_AC_SHELL_INIT], [AC_DEFUN([_LT_AC_SHELL_INIT])]) m4_ifndef([_LT_AC_SYS_LIBPATH_AIX], [AC_DEFUN([_LT_AC_SYS_LIBPATH_AIX])]) m4_ifndef([_LT_PROG_LTMAIN], [AC_DEFUN([_LT_PROG_LTMAIN])]) m4_ifndef([_LT_AC_TAGVAR], [AC_DEFUN([_LT_AC_TAGVAR])]) m4_ifndef([AC_LTDL_ENABLE_INSTALL], [AC_DEFUN([AC_LTDL_ENABLE_INSTALL])]) m4_ifndef([AC_LTDL_PREOPEN], [AC_DEFUN([AC_LTDL_PREOPEN])]) m4_ifndef([_LT_AC_SYS_COMPILER], [AC_DEFUN([_LT_AC_SYS_COMPILER])]) m4_ifndef([_LT_AC_LOCK], [AC_DEFUN([_LT_AC_LOCK])]) m4_ifndef([AC_LIBTOOL_SYS_OLD_ARCHIVE], [AC_DEFUN([AC_LIBTOOL_SYS_OLD_ARCHIVE])]) m4_ifndef([_LT_AC_TRY_DLOPEN_SELF], [AC_DEFUN([_LT_AC_TRY_DLOPEN_SELF])]) m4_ifndef([AC_LIBTOOL_PROG_CC_C_O], [AC_DEFUN([AC_LIBTOOL_PROG_CC_C_O])]) m4_ifndef([AC_LIBTOOL_SYS_HARD_LINK_LOCKS], [AC_DEFUN([AC_LIBTOOL_SYS_HARD_LINK_LOCKS])]) m4_ifndef([AC_LIBTOOL_OBJDIR], [AC_DEFUN([AC_LIBTOOL_OBJDIR])]) m4_ifndef([AC_LTDL_OBJDIR], [AC_DEFUN([AC_LTDL_OBJDIR])]) m4_ifndef([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH], [AC_DEFUN([AC_LIBTOOL_PROG_LD_HARDCODE_LIBPATH])]) m4_ifndef([AC_LIBTOOL_SYS_LIB_STRIP], [AC_DEFUN([AC_LIBTOOL_SYS_LIB_STRIP])]) m4_ifndef([AC_PATH_MAGIC], [AC_DEFUN([AC_PATH_MAGIC])]) m4_ifndef([AC_PROG_LD_GNU], [AC_DEFUN([AC_PROG_LD_GNU])]) m4_ifndef([AC_PROG_LD_RELOAD_FLAG], [AC_DEFUN([AC_PROG_LD_RELOAD_FLAG])]) m4_ifndef([AC_DEPLIBS_CHECK_METHOD], [AC_DEFUN([AC_DEPLIBS_CHECK_METHOD])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_NO_RTTI], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_NO_RTTI])]) m4_ifndef([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE], [AC_DEFUN([AC_LIBTOOL_SYS_GLOBAL_SYMBOL_PIPE])]) m4_ifndef([AC_LIBTOOL_PROG_COMPILER_PIC], [AC_DEFUN([AC_LIBTOOL_PROG_COMPILER_PIC])]) m4_ifndef([AC_LIBTOOL_PROG_LD_SHLIBS], [AC_DEFUN([AC_LIBTOOL_PROG_LD_SHLIBS])]) m4_ifndef([AC_LIBTOOL_POSTDEP_PREDEP], [AC_DEFUN([AC_LIBTOOL_POSTDEP_PREDEP])]) m4_ifndef([LT_AC_PROG_EGREP], [AC_DEFUN([LT_AC_PROG_EGREP])]) m4_ifndef([LT_AC_PROG_SED], [AC_DEFUN([LT_AC_PROG_SED])]) m4_ifndef([_LT_CC_BASENAME], [AC_DEFUN([_LT_CC_BASENAME])]) m4_ifndef([_LT_COMPILER_BOILERPLATE], [AC_DEFUN([_LT_COMPILER_BOILERPLATE])]) m4_ifndef([_LT_LINKER_BOILERPLATE], [AC_DEFUN([_LT_LINKER_BOILERPLATE])]) m4_ifndef([_AC_PROG_LIBTOOL], [AC_DEFUN([_AC_PROG_LIBTOOL])]) m4_ifndef([AC_LIBTOOL_SETUP], [AC_DEFUN([AC_LIBTOOL_SETUP])]) m4_ifndef([_LT_AC_CHECK_DLFCN], [AC_DEFUN([_LT_AC_CHECK_DLFCN])]) m4_ifndef([AC_LIBTOOL_SYS_DYNAMIC_LINKER], [AC_DEFUN([AC_LIBTOOL_SYS_DYNAMIC_LINKER])]) m4_ifndef([_LT_AC_TAGCONFIG], [AC_DEFUN([_LT_AC_TAGCONFIG])]) m4_ifndef([AC_DISABLE_FAST_INSTALL], [AC_DEFUN([AC_DISABLE_FAST_INSTALL])]) m4_ifndef([_LT_AC_LANG_CXX], [AC_DEFUN([_LT_AC_LANG_CXX])]) m4_ifndef([_LT_AC_LANG_F77], [AC_DEFUN([_LT_AC_LANG_F77])]) m4_ifndef([_LT_AC_LANG_GCJ], [AC_DEFUN([_LT_AC_LANG_GCJ])]) m4_ifndef([AC_LIBTOOL_LANG_C_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_C_CONFIG])]) m4_ifndef([_LT_AC_LANG_C_CONFIG], [AC_DEFUN([_LT_AC_LANG_C_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_CXX_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_CXX_CONFIG])]) m4_ifndef([_LT_AC_LANG_CXX_CONFIG], [AC_DEFUN([_LT_AC_LANG_CXX_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_F77_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_F77_CONFIG])]) m4_ifndef([_LT_AC_LANG_F77_CONFIG], [AC_DEFUN([_LT_AC_LANG_F77_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_GCJ_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_GCJ_CONFIG])]) m4_ifndef([_LT_AC_LANG_GCJ_CONFIG], [AC_DEFUN([_LT_AC_LANG_GCJ_CONFIG])]) m4_ifndef([AC_LIBTOOL_LANG_RC_CONFIG], [AC_DEFUN([AC_LIBTOOL_LANG_RC_CONFIG])]) m4_ifndef([_LT_AC_LANG_RC_CONFIG], [AC_DEFUN([_LT_AC_LANG_RC_CONFIG])]) m4_ifndef([AC_LIBTOOL_CONFIG], [AC_DEFUN([AC_LIBTOOL_CONFIG])]) m4_ifndef([_LT_AC_FILE_LTDLL_C], [AC_DEFUN([_LT_AC_FILE_LTDLL_C])]) m4_ifndef([_LT_REQUIRED_DARWIN_CHECKS], [AC_DEFUN([_LT_REQUIRED_DARWIN_CHECKS])]) m4_ifndef([_LT_AC_PROG_CXXCPP], [AC_DEFUN([_LT_AC_PROG_CXXCPP])]) m4_ifndef([_LT_PREPARE_SED_QUOTE_VARS], [AC_DEFUN([_LT_PREPARE_SED_QUOTE_VARS])]) m4_ifndef([_LT_PROG_ECHO_BACKSLASH], [AC_DEFUN([_LT_PROG_ECHO_BACKSLASH])]) m4_ifndef([_LT_PROG_F77], [AC_DEFUN([_LT_PROG_F77])]) m4_ifndef([_LT_PROG_FC], [AC_DEFUN([_LT_PROG_FC])]) m4_ifndef([_LT_PROG_CXX], [AC_DEFUN([_LT_PROG_CXX])]) isl-0.16.1/m4/ax_detect_imath.m40000664000175000017500000000071512645737061013233 00000000000000AC_DEFUN([AX_DETECT_IMATH], [ AC_DEFINE([USE_IMATH_FOR_MP], [], [use imath to implement isl_int]) MP_CPPFLAGS="-I$srcdir/imath_wrap" MP_LDFLAGS="" MP_LIBS="" SAVE_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$MP_CPPFLAGS $CPPFLAGS" AC_CHECK_HEADER([imath.h], [], [AC_ERROR([imath.h header not found])]) AC_CHECK_HEADER([gmp_compat.h], [], [AC_ERROR([gmp_compat.h header not found])]) CPPFLAGS="$SAVE_CPPFLAGS" AM_CONDITIONAL(NEED_GET_MEMORY_FUNCTIONS, test x = xfalse) ]) isl-0.16.1/m4/ax_cc_maxopt.m40000644000175000017500000001644311427503105012544 00000000000000# =========================================================================== # http://www.nongnu.org/autoconf-archive/ax_cc_maxopt.html # =========================================================================== # # SYNOPSIS # # AX_CC_MAXOPT # # DESCRIPTION # # Try to turn on "good" C optimization flags for various compilers and # architectures, for some definition of "good". (In our case, good for # FFTW and hopefully for other scientific codes. Modify as needed.) # # The user can override the flags by setting the CFLAGS environment # variable. The user can also specify --enable-portable-binary in order to # disable any optimization flags that might result in a binary that only # runs on the host architecture. # # Note also that the flags assume that ANSI C aliasing rules are followed # by the code (e.g. for gcc's -fstrict-aliasing), and that floating-point # computations can be re-ordered as needed. # # Requires macros: AX_CHECK_COMPILER_FLAGS, AX_COMPILER_VENDOR, # AX_GCC_ARCHFLAG, AX_GCC_X86_CPUID. # # LICENSE # # Copyright (c) 2008 Steven G. Johnson # Copyright (c) 2008 Matteo Frigo # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_CC_MAXOPT], [ AC_REQUIRE([AC_PROG_CC]) AC_REQUIRE([AX_COMPILER_VENDOR]) AC_REQUIRE([AC_CANONICAL_HOST]) AC_ARG_ENABLE(portable-binary, [AC_HELP_STRING([--enable-portable-binary], [disable compiler optimizations that would produce unportable binaries])], acx_maxopt_portable=$withval, acx_maxopt_portable=no) # Try to determine "good" native compiler flags if none specified via CFLAGS if test "$ac_test_CFLAGS" != "set"; then CFLAGS="" case $ax_cv_c_compiler_vendor in dec) CFLAGS="-newc -w0 -O5 -ansi_alias -ansi_args -fp_reorder -tune host" if test "x$acx_maxopt_portable" = xno; then CFLAGS="$CFLAGS -arch host" fi;; sun) CFLAGS="-native -fast -xO5 -dalign" if test "x$acx_maxopt_portable" = xyes; then CFLAGS="$CFLAGS -xarch=generic" fi;; hp) CFLAGS="+Oall +Optrs_ansi +DSnative" if test "x$acx_maxopt_portable" = xyes; then CFLAGS="$CFLAGS +DAportable" fi;; ibm) if test "x$acx_maxopt_portable" = xno; then xlc_opt="-qarch=auto -qtune=auto" else xlc_opt="-qtune=auto" fi AX_CHECK_COMPILER_FLAGS($xlc_opt, CFLAGS="-O3 -qansialias -w $xlc_opt", [CFLAGS="-O3 -qansialias -w" echo "******************************************************" echo "* You seem to have the IBM C compiler. It is *" echo "* recommended for best performance that you use: *" echo "* *" echo "* CFLAGS=-O3 -qarch=xxx -qtune=xxx -qansialias -w *" echo "* ^^^ ^^^ *" echo "* where xxx is pwr2, pwr3, 604, or whatever kind of *" echo "* CPU you have. (Set the CFLAGS environment var. *" echo "* and re-run configure.) For more info, man cc. *" echo "******************************************************"]) ;; intel) CFLAGS="-O3 -ansi_alias" if test "x$acx_maxopt_portable" = xno; then icc_archflag=unknown icc_flags="" case $host_cpu in i686*|x86_64*) # icc accepts gcc assembly syntax, so these should work: AX_GCC_X86_CPUID(0) AX_GCC_X86_CPUID(1) case $ax_cv_gcc_x86_cpuid_0 in # see AX_GCC_ARCHFLAG *:756e6547:*:*) # Intel case $ax_cv_gcc_x86_cpuid_1 in *6a?:*[[234]]:*:*|*6[[789b]]?:*:*:*) icc_flags="-xK";; *f3[[347]]:*:*:*|*f4[1347]:*:*:*) icc_flags="-xP -xN -xW -xK";; *f??:*:*:*) icc_flags="-xN -xW -xK";; esac ;; esac ;; esac if test "x$icc_flags" != x; then for flag in $icc_flags; do AX_CHECK_COMPILER_FLAGS($flag, [icc_archflag=$flag; break]) done fi AC_MSG_CHECKING([for icc architecture flag]) AC_MSG_RESULT($icc_archflag) if test "x$icc_archflag" != xunknown; then CFLAGS="$CFLAGS $icc_archflag" fi fi ;; gnu) # default optimization flags for gcc on all systems CFLAGS="-O3 -fomit-frame-pointer" # -malign-double for x86 systems AX_CHECK_COMPILER_FLAGS(-malign-double, CFLAGS="$CFLAGS -malign-double") # -fstrict-aliasing for gcc-2.95+ AX_CHECK_COMPILER_FLAGS(-fstrict-aliasing, CFLAGS="$CFLAGS -fstrict-aliasing") # note that we enable "unsafe" fp optimization with other compilers, too AX_CHECK_COMPILER_FLAGS(-ffast-math, CFLAGS="$CFLAGS -ffast-math") AX_GCC_ARCHFLAG($acx_maxopt_portable) # drop to -O1 for gcc 4.2 $CC --version | sed -e 's/.* \(@<:@0-9@:>@@<:@0-9@:>@*\)\.\(@<:@0-9@:>@@<:@0-9@:>@*\).*/\1 \2/' | (read major minor if test $major -eq 4 -a $minor -eq 2; then exit 0 fi exit 1 ) && CFLAGS="-O1" ;; esac if test -z "$CFLAGS"; then echo "" echo "********************************************************" echo "* WARNING: Don't know the best CFLAGS for this system *" echo "* Use ./configure CFLAGS=... to specify your own flags *" echo "* (otherwise, a default of CFLAGS=-O3 will be used) *" echo "********************************************************" echo "" CFLAGS="-O3" fi AX_CHECK_COMPILER_FLAGS($CFLAGS, [], [ echo "" echo "********************************************************" echo "* WARNING: The guessed CFLAGS don't seem to work with *" echo "* your compiler. *" echo "* Use ./configure CFLAGS=... to specify your own flags *" echo "********************************************************" echo "" CFLAGS="" ]) fi ]) isl-0.16.1/m4/ax_gcc_archflag.m40000644000175000017500000002141411250757011013145 00000000000000# =========================================================================== # http://www.nongnu.org/autoconf-archive/ax_gcc_archflag.html # =========================================================================== # # SYNOPSIS # # AX_GCC_ARCHFLAG([PORTABLE?], [ACTION-SUCCESS], [ACTION-FAILURE]) # # DESCRIPTION # # This macro tries to guess the "native" arch corresponding to the target # architecture for use with gcc's -march=arch or -mtune=arch flags. If # found, the cache variable $ax_cv_gcc_archflag is set to this flag and # ACTION-SUCCESS is executed; otherwise $ax_cv_gcc_archflag is is set to # "unknown" and ACTION-FAILURE is executed. The default ACTION-SUCCESS is # to add $ax_cv_gcc_archflag to the end of $CFLAGS. # # PORTABLE? should be either [yes] (default) or [no]. In the former case, # the flag is set to -mtune (or equivalent) so that the architecture is # only used for tuning, but the instruction set used is still portable. In # the latter case, the flag is set to -march (or equivalent) so that # architecture-specific instructions are enabled. # # The user can specify --with-gcc-arch= in order to override the # macro's choice of architecture, or --without-gcc-arch to disable this. # # When cross-compiling, or if $CC is not gcc, then ACTION-FAILURE is # called unless the user specified --with-gcc-arch manually. # # Requires macros: AX_CHECK_COMPILER_FLAGS, AX_GCC_X86_CPUID # # (The main emphasis here is on recent CPUs, on the principle that doing # high-performance computing on old hardware is uncommon.) # # LICENSE # # Copyright (c) 2008 Steven G. Johnson # Copyright (c) 2008 Matteo Frigo # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_GCC_ARCHFLAG], [AC_REQUIRE([AC_PROG_CC]) AC_REQUIRE([AC_CANONICAL_HOST]) AC_ARG_WITH(gcc-arch, [AC_HELP_STRING([--with-gcc-arch=], [use architecture for gcc -march/-mtune, instead of guessing])], ax_gcc_arch=$withval, ax_gcc_arch=yes) AC_MSG_CHECKING([for gcc architecture flag]) AC_MSG_RESULT([]) AC_CACHE_VAL(ax_cv_gcc_archflag, [ ax_cv_gcc_archflag="unknown" if test "$GCC" = yes; then if test "x$ax_gcc_arch" = xyes; then ax_gcc_arch="" if test "$cross_compiling" = no; then case $host_cpu in i[[3456]]86*|x86_64*) # use cpuid codes, in part from x86info-1.7 by D. Jones AX_GCC_X86_CPUID(0) AX_GCC_X86_CPUID(1) case $ax_cv_gcc_x86_cpuid_0 in *:756e6547:*:*) # Intel case $ax_cv_gcc_x86_cpuid_1 in *5[[48]]?:*:*:*) ax_gcc_arch="pentium-mmx pentium" ;; *5??:*:*:*) ax_gcc_arch=pentium ;; *6[[3456]]?:*:*:*) ax_gcc_arch="pentium2 pentiumpro" ;; *6a?:*[[01]]:*:*) ax_gcc_arch="pentium2 pentiumpro" ;; *6a?:*[[234]]:*:*) ax_gcc_arch="pentium3 pentiumpro" ;; *6[[9d]]?:*:*:*) ax_gcc_arch="pentium-m pentium3 pentiumpro" ;; *6[[78b]]?:*:*:*) ax_gcc_arch="pentium3 pentiumpro" ;; *6??:*:*:*) ax_gcc_arch=pentiumpro ;; *f3[[347]]:*:*:*|*f4[1347]:*:*:*) case $host_cpu in x86_64*) ax_gcc_arch="nocona pentium4 pentiumpro" ;; *) ax_gcc_arch="prescott pentium4 pentiumpro" ;; esac ;; *f??:*:*:*) ax_gcc_arch="pentium4 pentiumpro";; esac ;; *:68747541:*:*) # AMD case $ax_cv_gcc_x86_cpuid_1 in *5[[67]]?:*:*:*) ax_gcc_arch=k6 ;; *5[[8d]]?:*:*:*) ax_gcc_arch="k6-2 k6" ;; *5[[9]]?:*:*:*) ax_gcc_arch="k6-3 k6" ;; *60?:*:*:*) ax_gcc_arch=k7 ;; *6[[12]]?:*:*:*) ax_gcc_arch="athlon k7" ;; *6[[34]]?:*:*:*) ax_gcc_arch="athlon-tbird k7" ;; *67?:*:*:*) ax_gcc_arch="athlon-4 athlon k7" ;; *6[[68a]]?:*:*:*) AX_GCC_X86_CPUID(0x80000006) # L2 cache size case $ax_cv_gcc_x86_cpuid_0x80000006 in *:*:*[[1-9a-f]]??????:*) # (L2 = ecx >> 16) >= 256 ax_gcc_arch="athlon-xp athlon-4 athlon k7" ;; *) ax_gcc_arch="athlon-4 athlon k7" ;; esac ;; *f[[4cef8b]]?:*:*:*) ax_gcc_arch="athlon64 k8" ;; *f5?:*:*:*) ax_gcc_arch="opteron k8" ;; *f7?:*:*:*) ax_gcc_arch="athlon-fx opteron k8" ;; *f??:*:*:*) ax_gcc_arch="k8" ;; esac ;; *:746e6543:*:*) # IDT case $ax_cv_gcc_x86_cpuid_1 in *54?:*:*:*) ax_gcc_arch=winchip-c6 ;; *58?:*:*:*) ax_gcc_arch=winchip2 ;; *6[[78]]?:*:*:*) ax_gcc_arch=c3 ;; *69?:*:*:*) ax_gcc_arch="c3-2 c3" ;; esac ;; esac if test x"$ax_gcc_arch" = x; then # fallback case $host_cpu in i586*) ax_gcc_arch=pentium ;; i686*) ax_gcc_arch=pentiumpro ;; esac fi ;; sparc*) AC_PATH_PROG([PRTDIAG], [prtdiag], [prtdiag], [$PATH:/usr/platform/`uname -i`/sbin/:/usr/platform/`uname -m`/sbin/]) cputype=`(((grep cpu /proc/cpuinfo | cut -d: -f2) ; ($PRTDIAG -v |grep -i sparc) ; grep -i cpu /var/run/dmesg.boot ) | head -n 1) 2> /dev/null` cputype=`echo "$cputype" | tr -d ' -' |tr $as_cr_LETTERS $as_cr_letters` case $cputype in *ultrasparciv*) ax_gcc_arch="ultrasparc4 ultrasparc3 ultrasparc v9" ;; *ultrasparciii*) ax_gcc_arch="ultrasparc3 ultrasparc v9" ;; *ultrasparc*) ax_gcc_arch="ultrasparc v9" ;; *supersparc*|*tms390z5[[05]]*) ax_gcc_arch="supersparc v8" ;; *hypersparc*|*rt62[[056]]*) ax_gcc_arch="hypersparc v8" ;; *cypress*) ax_gcc_arch=cypress ;; esac ;; alphaev5) ax_gcc_arch=ev5 ;; alphaev56) ax_gcc_arch=ev56 ;; alphapca56) ax_gcc_arch="pca56 ev56" ;; alphapca57) ax_gcc_arch="pca57 pca56 ev56" ;; alphaev6) ax_gcc_arch=ev6 ;; alphaev67) ax_gcc_arch=ev67 ;; alphaev68) ax_gcc_arch="ev68 ev67" ;; alphaev69) ax_gcc_arch="ev69 ev68 ev67" ;; alphaev7) ax_gcc_arch="ev7 ev69 ev68 ev67" ;; alphaev79) ax_gcc_arch="ev79 ev7 ev69 ev68 ev67" ;; powerpc*) cputype=`((grep cpu /proc/cpuinfo | head -n 1 | cut -d: -f2 | cut -d, -f1 | sed 's/ //g') ; /usr/bin/machine ; /bin/machine; grep CPU /var/run/dmesg.boot | head -n 1 | cut -d" " -f2) 2> /dev/null` cputype=`echo $cputype | sed -e 's/ppc//g;s/ *//g'` case $cputype in *750*) ax_gcc_arch="750 G3" ;; *740[[0-9]]*) ax_gcc_arch="$cputype 7400 G4" ;; *74[[4-5]][[0-9]]*) ax_gcc_arch="$cputype 7450 G4" ;; *74[[0-9]][[0-9]]*) ax_gcc_arch="$cputype G4" ;; *970*) ax_gcc_arch="970 G5 power4";; *POWER4*|*power4*|*gq*) ax_gcc_arch="power4 970";; *POWER5*|*power5*|*gr*|*gs*) ax_gcc_arch="power5 power4 970";; 603ev|8240) ax_gcc_arch="$cputype 603e 603";; *) ax_gcc_arch=$cputype ;; esac ax_gcc_arch="$ax_gcc_arch powerpc" ;; esac fi # not cross-compiling fi # guess arch if test "x$ax_gcc_arch" != x -a "x$ax_gcc_arch" != xno; then for arch in $ax_gcc_arch; do if test "x[]m4_default([$1],yes)" = xyes; then # if we require portable code flags="-mtune=$arch" # -mcpu=$arch and m$arch generate nonportable code on every arch except # x86. And some other arches (e.g. Alpha) don't accept -mtune. Grrr. case $host_cpu in i*86|x86_64*) flags="$flags -mcpu=$arch -m$arch";; esac else flags="-march=$arch -mcpu=$arch -m$arch" fi for flag in $flags; do AX_CHECK_COMPILER_FLAGS($flag, [ax_cv_gcc_archflag=$flag; break]) done test "x$ax_cv_gcc_archflag" = xunknown || break done fi fi # $GCC=yes ]) AC_MSG_CHECKING([for gcc architecture flag]) AC_MSG_RESULT($ax_cv_gcc_archflag) if test "x$ax_cv_gcc_archflag" = xunknown; then m4_default([$3],:) else m4_default([$2], [CFLAGS="$CFLAGS $ax_cv_gcc_archflag"]) fi ]) isl-0.16.1/m4/ax_set_warning_flags.m40000664000175000017500000000127212645737061014274 00000000000000dnl Add a set of flags to WARNING_FLAGS, that enable compiler warnings for dnl isl. The warnings that are enabled vary with the compiler and only include dnl warnings that did not trigger at the time of adding these flags. AC_DEFUN([AX_SET_WARNING_FLAGS],[dnl AX_COMPILER_VENDOR WARNING_FLAGS="" if test "${ax_cv_c_compiler_vendor}" = "clang"; then dnl isl is at the moment clean of -Wall warnings. If clang adds dnl new warnings to -Wall which cause false positives, the dnl specific warning types will be disabled explicitally (by dnl adding for example -Wno-return-type). To temporarily disable dnl all warnings run configure with CFLAGS=-Wno-all. WARNING_FLAGS="-Wall" fi ]) isl-0.16.1/m4/ax_gcc_warn_unused_result.m40000644000175000017500000000472311427503105015331 00000000000000# =========================================================================== # http://www.nongnu.org/autoconf-archive/ax_gcc_warn_unused_result.html # =========================================================================== # # SYNOPSIS # # AX_GCC_WARN_UNUSED_RESULT # # DESCRIPTION # # The macro will compile a test program to see whether the compiler does # understand the per-function postfix pragma. # # LICENSE # # Copyright (c) 2008 Guido U. Draheim # # This program is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_GCC_WARN_UNUSED_RESULT],[dnl AC_CACHE_CHECK( [whether the compiler supports function __attribute__((__warn_unused_result__))], ax_cv_gcc_warn_unused_result,[ AC_TRY_COMPILE([__attribute__((__warn_unused_result__)) int f(int i) { return i; }], [], ax_cv_gcc_warn_unused_result=yes, ax_cv_gcc_warn_unused_result=no)]) if test "$ax_cv_gcc_warn_unused_result" = yes; then AC_DEFINE([GCC_WARN_UNUSED_RESULT],[__attribute__((__warn_unused_result__))], [most gcc compilers know a function __attribute__((__warn_unused_result__))]) fi ]) isl-0.16.1/m4/ltoptions.m40000644000175000017500000002775312423122120012127 00000000000000# Helper functions for option handling. -*- Autoconf -*- # # Copyright (C) 2004-2005, 2007-2009, 2011-2013 Free Software # Foundation, Inc. # Written by Gary V. Vaughan, 2004 # # This file is free software; the Free Software Foundation gives # unlimited permission to copy and/or distribute it, with or without # modifications, as long as this notice is preserved. # serial 8 ltoptions.m4 # This is to help aclocal find these macros, as it can't see m4_define. AC_DEFUN([LTOPTIONS_VERSION], [m4_if([1])]) # _LT_MANGLE_OPTION(MACRO-NAME, OPTION-NAME) # ------------------------------------------ m4_define([_LT_MANGLE_OPTION], [[_LT_OPTION_]m4_bpatsubst($1__$2, [[^a-zA-Z0-9_]], [_])]) # _LT_SET_OPTION(MACRO-NAME, OPTION-NAME) # --------------------------------------- # Set option OPTION-NAME for macro MACRO-NAME, and if there is a # matching handler defined, dispatch to it. Other OPTION-NAMEs are # saved as a flag. m4_define([_LT_SET_OPTION], [m4_define(_LT_MANGLE_OPTION([$1], [$2]))dnl m4_ifdef(_LT_MANGLE_DEFUN([$1], [$2]), _LT_MANGLE_DEFUN([$1], [$2]), [m4_warning([Unknown $1 option '$2'])])[]dnl ]) # _LT_IF_OPTION(MACRO-NAME, OPTION-NAME, IF-SET, [IF-NOT-SET]) # ------------------------------------------------------------ # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. m4_define([_LT_IF_OPTION], [m4_ifdef(_LT_MANGLE_OPTION([$1], [$2]), [$3], [$4])]) # _LT_UNLESS_OPTIONS(MACRO-NAME, OPTION-LIST, IF-NOT-SET) # ------------------------------------------------------- # Execute IF-NOT-SET unless all options in OPTION-LIST for MACRO-NAME # are set. m4_define([_LT_UNLESS_OPTIONS], [m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [m4_ifdef(_LT_MANGLE_OPTION([$1], _LT_Option), [m4_define([$0_found])])])[]dnl m4_ifdef([$0_found], [m4_undefine([$0_found])], [$3 ])[]dnl ]) # _LT_SET_OPTIONS(MACRO-NAME, OPTION-LIST) # ---------------------------------------- # OPTION-LIST is a space-separated list of Libtool options associated # with MACRO-NAME. If any OPTION has a matching handler declared with # LT_OPTION_DEFINE, dispatch to that macro; otherwise complain about # the unknown option and exit. m4_defun([_LT_SET_OPTIONS], [# Set options m4_foreach([_LT_Option], m4_split(m4_normalize([$2])), [_LT_SET_OPTION([$1], _LT_Option)]) m4_if([$1],[LT_INIT],[ dnl dnl Simply set some default values (i.e off) if boolean options were not dnl specified: _LT_UNLESS_OPTIONS([LT_INIT], [dlopen], [enable_dlopen=no ]) _LT_UNLESS_OPTIONS([LT_INIT], [win32-dll], [enable_win32_dll=no ]) dnl dnl If no reference was made to various pairs of opposing options, then dnl we run the default mode handler for the pair. For example, if neither dnl 'shared' nor 'disable-shared' was passed, we enable building of shared dnl archives by default: _LT_UNLESS_OPTIONS([LT_INIT], [shared disable-shared], [_LT_ENABLE_SHARED]) _LT_UNLESS_OPTIONS([LT_INIT], [static disable-static], [_LT_ENABLE_STATIC]) _LT_UNLESS_OPTIONS([LT_INIT], [pic-only no-pic], [_LT_WITH_PIC]) _LT_UNLESS_OPTIONS([LT_INIT], [fast-install disable-fast-install], [_LT_ENABLE_FAST_INSTALL]) ]) ])# _LT_SET_OPTIONS ## --------------------------------- ## ## Macros to handle LT_INIT options. ## ## --------------------------------- ## # _LT_MANGLE_DEFUN(MACRO-NAME, OPTION-NAME) # ----------------------------------------- m4_define([_LT_MANGLE_DEFUN], [[_LT_OPTION_DEFUN_]m4_bpatsubst(m4_toupper([$1__$2]), [[^A-Z0-9_]], [_])]) # LT_OPTION_DEFINE(MACRO-NAME, OPTION-NAME, CODE) # ----------------------------------------------- m4_define([LT_OPTION_DEFINE], [m4_define(_LT_MANGLE_DEFUN([$1], [$2]), [$3])[]dnl ])# LT_OPTION_DEFINE # dlopen # ------ LT_OPTION_DEFINE([LT_INIT], [dlopen], [enable_dlopen=yes ]) AU_DEFUN([AC_LIBTOOL_DLOPEN], [_LT_SET_OPTION([LT_INIT], [dlopen]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'dlopen' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_DLOPEN], []) # win32-dll # --------- # Declare package support for building win32 dll's. LT_OPTION_DEFINE([LT_INIT], [win32-dll], [enable_win32_dll=yes case $host in *-*-cygwin* | *-*-mingw* | *-*-pw32* | *-*-cegcc*) AC_CHECK_TOOL(AS, as, false) AC_CHECK_TOOL(DLLTOOL, dlltool, false) AC_CHECK_TOOL(OBJDUMP, objdump, false) ;; esac test -z "$AS" && AS=as _LT_DECL([], [AS], [1], [Assembler program])dnl test -z "$DLLTOOL" && DLLTOOL=dlltool _LT_DECL([], [DLLTOOL], [1], [DLL creation program])dnl test -z "$OBJDUMP" && OBJDUMP=objdump _LT_DECL([], [OBJDUMP], [1], [Object dumper program])dnl ])# win32-dll AU_DEFUN([AC_LIBTOOL_WIN32_DLL], [AC_REQUIRE([AC_CANONICAL_HOST])dnl _LT_SET_OPTION([LT_INIT], [win32-dll]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'win32-dll' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_WIN32_DLL], []) # _LT_ENABLE_SHARED([DEFAULT]) # ---------------------------- # implement the --enable-shared flag, and supports the 'shared' and # 'disable-shared' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_SHARED], [m4_define([_LT_ENABLE_SHARED_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([shared], [AS_HELP_STRING([--enable-shared@<:@=PKGS@:>@], [build shared libraries @<:@default=]_LT_ENABLE_SHARED_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_shared=yes ;; no) enable_shared=no ;; *) enable_shared=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_shared=yes fi done IFS=$lt_save_ifs ;; esac], [enable_shared=]_LT_ENABLE_SHARED_DEFAULT) _LT_DECL([build_libtool_libs], [enable_shared], [0], [Whether or not to build shared libraries]) ])# _LT_ENABLE_SHARED LT_OPTION_DEFINE([LT_INIT], [shared], [_LT_ENABLE_SHARED([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-shared], [_LT_ENABLE_SHARED([no])]) # Old names: AC_DEFUN([AC_ENABLE_SHARED], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[shared]) ]) AC_DEFUN([AC_DISABLE_SHARED], [_LT_SET_OPTION([LT_INIT], [disable-shared]) ]) AU_DEFUN([AM_ENABLE_SHARED], [AC_ENABLE_SHARED($@)]) AU_DEFUN([AM_DISABLE_SHARED], [AC_DISABLE_SHARED($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_SHARED], []) dnl AC_DEFUN([AM_DISABLE_SHARED], []) # _LT_ENABLE_STATIC([DEFAULT]) # ---------------------------- # implement the --enable-static flag, and support the 'static' and # 'disable-static' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_STATIC], [m4_define([_LT_ENABLE_STATIC_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([static], [AS_HELP_STRING([--enable-static@<:@=PKGS@:>@], [build static libraries @<:@default=]_LT_ENABLE_STATIC_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_static=yes ;; no) enable_static=no ;; *) enable_static=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_static=yes fi done IFS=$lt_save_ifs ;; esac], [enable_static=]_LT_ENABLE_STATIC_DEFAULT) _LT_DECL([build_old_libs], [enable_static], [0], [Whether or not to build static libraries]) ])# _LT_ENABLE_STATIC LT_OPTION_DEFINE([LT_INIT], [static], [_LT_ENABLE_STATIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-static], [_LT_ENABLE_STATIC([no])]) # Old names: AC_DEFUN([AC_ENABLE_STATIC], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[static]) ]) AC_DEFUN([AC_DISABLE_STATIC], [_LT_SET_OPTION([LT_INIT], [disable-static]) ]) AU_DEFUN([AM_ENABLE_STATIC], [AC_ENABLE_STATIC($@)]) AU_DEFUN([AM_DISABLE_STATIC], [AC_DISABLE_STATIC($@)]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AM_ENABLE_STATIC], []) dnl AC_DEFUN([AM_DISABLE_STATIC], []) # _LT_ENABLE_FAST_INSTALL([DEFAULT]) # ---------------------------------- # implement the --enable-fast-install flag, and support the 'fast-install' # and 'disable-fast-install' LT_INIT options. # DEFAULT is either 'yes' or 'no'. If omitted, it defaults to 'yes'. m4_define([_LT_ENABLE_FAST_INSTALL], [m4_define([_LT_ENABLE_FAST_INSTALL_DEFAULT], [m4_if($1, no, no, yes)])dnl AC_ARG_ENABLE([fast-install], [AS_HELP_STRING([--enable-fast-install@<:@=PKGS@:>@], [optimize for fast installation @<:@default=]_LT_ENABLE_FAST_INSTALL_DEFAULT[@:>@])], [p=${PACKAGE-default} case $enableval in yes) enable_fast_install=yes ;; no) enable_fast_install=no ;; *) enable_fast_install=no # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for pkg in $enableval; do IFS=$lt_save_ifs if test "X$pkg" = "X$p"; then enable_fast_install=yes fi done IFS=$lt_save_ifs ;; esac], [enable_fast_install=]_LT_ENABLE_FAST_INSTALL_DEFAULT) _LT_DECL([fast_install], [enable_fast_install], [0], [Whether or not to optimize for fast installation])dnl ])# _LT_ENABLE_FAST_INSTALL LT_OPTION_DEFINE([LT_INIT], [fast-install], [_LT_ENABLE_FAST_INSTALL([yes])]) LT_OPTION_DEFINE([LT_INIT], [disable-fast-install], [_LT_ENABLE_FAST_INSTALL([no])]) # Old names: AU_DEFUN([AC_ENABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], m4_if([$1], [no], [disable-])[fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'fast-install' option into LT_INIT's first parameter.]) ]) AU_DEFUN([AC_DISABLE_FAST_INSTALL], [_LT_SET_OPTION([LT_INIT], [disable-fast-install]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'disable-fast-install' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_ENABLE_FAST_INSTALL], []) dnl AC_DEFUN([AM_DISABLE_FAST_INSTALL], []) # _LT_WITH_PIC([MODE]) # -------------------- # implement the --with-pic flag, and support the 'pic-only' and 'no-pic' # LT_INIT options. # MODE is either 'yes' or 'no'. If omitted, it defaults to 'both'. m4_define([_LT_WITH_PIC], [AC_ARG_WITH([pic], [AS_HELP_STRING([--with-pic@<:@=PKGS@:>@], [try to use only PIC/non-PIC objects @<:@default=use both@:>@])], [lt_p=${PACKAGE-default} case $withval in yes|no) pic_mode=$withval ;; *) pic_mode=default # Look at the argument we got. We use all the common list separators. lt_save_ifs=$IFS; IFS=$IFS$PATH_SEPARATOR, for lt_pkg in $withval; do IFS=$lt_save_ifs if test "X$lt_pkg" = "X$lt_p"; then pic_mode=yes fi done IFS=$lt_save_ifs ;; esac], [pic_mode=m4_default([$1], [default])]) _LT_DECL([], [pic_mode], [0], [What type of objects to build])dnl ])# _LT_WITH_PIC LT_OPTION_DEFINE([LT_INIT], [pic-only], [_LT_WITH_PIC([yes])]) LT_OPTION_DEFINE([LT_INIT], [no-pic], [_LT_WITH_PIC([no])]) # Old name: AU_DEFUN([AC_LIBTOOL_PICMODE], [_LT_SET_OPTION([LT_INIT], [pic-only]) AC_DIAGNOSE([obsolete], [$0: Remove this warning and the call to _LT_SET_OPTION when you put the 'pic-only' option into LT_INIT's first parameter.]) ]) dnl aclocal-1.4 backwards compatibility: dnl AC_DEFUN([AC_LIBTOOL_PICMODE], []) ## ----------------- ## ## LTDL_INIT Options ## ## ----------------- ## m4_define([_LTDL_MODE], []) LT_OPTION_DEFINE([LTDL_INIT], [nonrecursive], [m4_define([_LTDL_MODE], [nonrecursive])]) LT_OPTION_DEFINE([LTDL_INIT], [recursive], [m4_define([_LTDL_MODE], [recursive])]) LT_OPTION_DEFINE([LTDL_INIT], [subproject], [m4_define([_LTDL_MODE], [subproject])]) m4_define([_LTDL_TYPE], []) LT_OPTION_DEFINE([LTDL_INIT], [installable], [m4_define([_LTDL_TYPE], [installable])]) LT_OPTION_DEFINE([LTDL_INIT], [convenience], [m4_define([_LTDL_TYPE], [convenience])]) isl-0.16.1/m4/ax_submodule.m40000644000175000017500000000365611427503105012570 00000000000000AC_DEFUN([AX_SUBMODULE], [ m4_if(m4_bregexp($2,|,choice),choice, [AC_ARG_WITH($1, [AS_HELP_STRING([--with-$1=$2], [Which $1 to use [default=$3]])])]) case "system" in $2) AC_ARG_WITH($1_prefix, [AS_HELP_STRING([--with-$1-prefix=DIR], [Prefix of $1 installation])]) AC_ARG_WITH($1_exec_prefix, [AS_HELP_STRING([--with-$1-exec-prefix=DIR], [Exec prefix of $1 installation])]) esac m4_if(m4_bregexp($2,build,build),build, [AC_ARG_WITH($1_builddir, [AS_HELP_STRING([--with-$1-builddir=DIR], [Location of $1 builddir])])]) if test "x$with_$1_prefix" != "x" -a "x$with_$1_exec_prefix" = "x"; then with_$1_exec_prefix=$with_$1_prefix fi if test "x$with_$1_prefix" != "x" -o "x$with_$1_exec_prefix" != "x"; then if test "x$with_$1" != "x" -a "x$with_$1" != "xyes" -a "x$with_$1" != "xsystem"; then AC_MSG_ERROR([Setting $with_$1_prefix implies use of system $1]) fi with_$1="system" fi if test "x$with_$1_builddir" != "x"; then if test "x$with_$1" != "x" -a "x$with_$1" != "xyes" -a "x$with_$1" != "xbuild"; then AC_MSG_ERROR([Setting $with_$1_builddir implies use of build $1]) fi with_$1="build" $1_srcdir=`echo @abs_srcdir@ | $with_$1_builddir/config.status --file=-` AC_MSG_NOTICE($1 sources in $$1_srcdir) fi if test "x$with_$1_exec_prefix" != "x"; then export PKG_CONFIG_PATH="$with_$1_exec_prefix/lib/pkgconfig${PKG_CONFIG_PATH+:$PKG_CONFIG_PATH}" fi case "$with_$1" in $2) ;; *) case "$3" in bundled) if test -d $srcdir/.git -a \ -d $srcdir/$1 -a \ ! -d $srcdir/$1/.git; then AC_MSG_WARN([git repo detected, but submodule $1 not initialized]) AC_MSG_WARN([You may want to run]) AC_MSG_WARN([ git submodule init]) AC_MSG_WARN([ git submodule update]) AC_MSG_WARN([ sh autogen.sh]) fi if test -f $srcdir/$1/configure; then with_$1="bundled" else with_$1="no" fi ;; *) with_$1="$3" ;; esac ;; esac AC_MSG_CHECKING([which $1 to use]) AC_MSG_RESULT($with_$1) ]) isl-0.16.1/m4/ax_gcc_x86_cpuid.m40000644000175000017500000000634311250757011013213 00000000000000# =========================================================================== # http://www.nongnu.org/autoconf-archive/ax_gcc_x86_cpuid.html # =========================================================================== # # SYNOPSIS # # AX_GCC_X86_CPUID(OP) # # DESCRIPTION # # On Pentium and later x86 processors, with gcc or a compiler that has a # compatible syntax for inline assembly instructions, run a small program # that executes the cpuid instruction with input OP. This can be used to # detect the CPU type. # # On output, the values of the eax, ebx, ecx, and edx registers are stored # as hexadecimal strings as "eax:ebx:ecx:edx" in the cache variable # ax_cv_gcc_x86_cpuid_OP. # # If the cpuid instruction fails (because you are running a # cross-compiler, or because you are not using gcc, or because you are on # a processor that doesn't have this instruction), ax_cv_gcc_x86_cpuid_OP # is set to the string "unknown". # # This macro mainly exists to be used in AX_GCC_ARCHFLAG. # # LICENSE # # Copyright (c) 2008 Steven G. Johnson # Copyright (c) 2008 Matteo Frigo # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or (at your # option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General # Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see . # # As a special exception, the respective Autoconf Macro's copyright owner # gives unlimited permission to copy, distribute and modify the configure # scripts that are the output of Autoconf when processing the Macro. You # need not follow the terms of the GNU General Public License when using # or distributing such scripts, even though portions of the text of the # Macro appear in them. The GNU General Public License (GPL) does govern # all other use of the material that constitutes the Autoconf Macro. # # This special exception to the GPL applies to versions of the Autoconf # Macro released by the Autoconf Archive. When you make and distribute a # modified version of the Autoconf Macro, you may extend this special # exception to the GPL to apply to your modified version as well. AC_DEFUN([AX_GCC_X86_CPUID], [AC_REQUIRE([AC_PROG_CC]) AC_LANG_PUSH([C]) AC_CACHE_CHECK(for x86 cpuid $1 output, ax_cv_gcc_x86_cpuid_$1, [AC_RUN_IFELSE([AC_LANG_PROGRAM([#include ], [ int op = $1, eax, ebx, ecx, edx; FILE *f; __asm__("cpuid" : "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) : "a" (op)); f = fopen("conftest_cpuid", "w"); if (!f) return 1; fprintf(f, "%x:%x:%x:%x\n", eax, ebx, ecx, edx); fclose(f); return 0; ])], [ax_cv_gcc_x86_cpuid_$1=`cat conftest_cpuid`; rm -f conftest_cpuid], [ax_cv_gcc_x86_cpuid_$1=unknown; rm -f conftest_cpuid], [ax_cv_gcc_x86_cpuid_$1=unknown])]) AC_LANG_POP([C]) ]) isl-0.16.1/isl_schedule.c0000664000175000017500000010242512645737235012142 00000000000000/* * Copyright 2011 INRIA Saclay * Copyright 2012-2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France, * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod, * 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include #include #include #include #include /* Return a schedule encapsulating the given schedule tree. * * We currently only allow schedule trees with a domain or extension as root. * * The leaf field is initialized as a leaf node so that it can be * used to represent leaves in the constructed schedule. * The reference count is set to -1 since the isl_schedule_tree * should never be freed. It is up to the (internal) users of * these leaves to ensure that they are only used while the schedule * is still alive. */ __isl_give isl_schedule *isl_schedule_from_schedule_tree(isl_ctx *ctx, __isl_take isl_schedule_tree *tree) { enum isl_schedule_node_type type; isl_schedule *schedule; if (!tree) return NULL; type = isl_schedule_tree_get_type(tree); if (type != isl_schedule_node_domain && type != isl_schedule_node_extension) isl_die(isl_schedule_tree_get_ctx(tree), isl_error_unsupported, "root of schedule tree should be a domain or extension", goto error); schedule = isl_calloc_type(ctx, isl_schedule); if (!schedule) goto error; schedule->leaf.ctx = ctx; isl_ctx_ref(ctx); schedule->ref = 1; schedule->root = tree; schedule->leaf.ref = -1; schedule->leaf.type = isl_schedule_node_leaf; return schedule; error: isl_schedule_tree_free(tree); return NULL; } /* Return a pointer to a schedule with as single node * a domain node with the given domain. */ __isl_give isl_schedule *isl_schedule_from_domain( __isl_take isl_union_set *domain) { isl_ctx *ctx; isl_schedule_tree *tree; ctx = isl_union_set_get_ctx(domain); tree = isl_schedule_tree_from_domain(domain); return isl_schedule_from_schedule_tree(ctx, tree); } /* Return a pointer to a schedule with as single node * a domain node with an empty domain. */ __isl_give isl_schedule *isl_schedule_empty(__isl_take isl_space *space) { return isl_schedule_from_domain(isl_union_set_empty(space)); } /* Return a new reference to "sched". */ __isl_give isl_schedule *isl_schedule_copy(__isl_keep isl_schedule *sched) { if (!sched) return NULL; sched->ref++; return sched; } /* Return an isl_schedule that is equal to "schedule" and that has only * a single reference. * * We only need and support this function when the schedule is represented * as a schedule tree. */ __isl_give isl_schedule *isl_schedule_cow(__isl_take isl_schedule *schedule) { isl_ctx *ctx; isl_schedule_tree *tree; if (!schedule) return NULL; if (schedule->ref == 1) return schedule; ctx = isl_schedule_get_ctx(schedule); if (!schedule->root) isl_die(ctx, isl_error_internal, "only for schedule tree based schedules", return isl_schedule_free(schedule)); schedule->ref--; tree = isl_schedule_tree_copy(schedule->root); return isl_schedule_from_schedule_tree(ctx, tree); } __isl_null isl_schedule *isl_schedule_free(__isl_take isl_schedule *sched) { if (!sched) return NULL; if (--sched->ref > 0) return NULL; isl_band_list_free(sched->band_forest); isl_schedule_tree_free(sched->root); isl_ctx_deref(sched->leaf.ctx); free(sched); return NULL; } /* Replace the root of "schedule" by "tree". */ __isl_give isl_schedule *isl_schedule_set_root( __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree) { if (!schedule || !tree) goto error; if (schedule->root == tree) { isl_schedule_tree_free(tree); return schedule; } schedule = isl_schedule_cow(schedule); if (!schedule) goto error; isl_schedule_tree_free(schedule->root); schedule->root = tree; return schedule; error: isl_schedule_free(schedule); isl_schedule_tree_free(tree); return NULL; } isl_ctx *isl_schedule_get_ctx(__isl_keep isl_schedule *schedule) { return schedule ? schedule->leaf.ctx : NULL; } /* Return a pointer to the leaf of "schedule". * * Even though these leaves are not reference counted, we still * indicate that this function does not return a copy. */ __isl_keep isl_schedule_tree *isl_schedule_peek_leaf( __isl_keep isl_schedule *schedule) { return schedule ? &schedule->leaf : NULL; } /* Are "schedule1" and "schedule2" obviously equal to each other? */ isl_bool isl_schedule_plain_is_equal(__isl_keep isl_schedule *schedule1, __isl_keep isl_schedule *schedule2) { if (!schedule1 || !schedule2) return isl_bool_error; if (schedule1 == schedule2) return isl_bool_true; return isl_schedule_tree_plain_is_equal(schedule1->root, schedule2->root); } /* Return the (parameter) space of the schedule, i.e., the space * of the root domain. */ __isl_give isl_space *isl_schedule_get_space( __isl_keep isl_schedule *schedule) { enum isl_schedule_node_type type; isl_space *space; isl_union_set *domain; if (!schedule) return NULL; if (!schedule->root) isl_die(isl_schedule_get_ctx(schedule), isl_error_invalid, "schedule tree representation not available", return NULL); type = isl_schedule_tree_get_type(schedule->root); if (type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(schedule), isl_error_internal, "root node not a domain node", return NULL); domain = isl_schedule_tree_domain_get_domain(schedule->root); space = isl_union_set_get_space(domain); isl_union_set_free(domain); return space; } /* Return a pointer to the root of "schedule". */ __isl_give isl_schedule_node *isl_schedule_get_root( __isl_keep isl_schedule *schedule) { isl_ctx *ctx; isl_schedule_tree *tree; isl_schedule_tree_list *ancestors; if (!schedule) return NULL; if (!schedule->root) isl_die(isl_schedule_get_ctx(schedule), isl_error_invalid, "schedule tree representation not available", return NULL); ctx = isl_schedule_get_ctx(schedule); tree = isl_schedule_tree_copy(schedule->root); schedule = isl_schedule_copy(schedule); ancestors = isl_schedule_tree_list_alloc(ctx, 0); return isl_schedule_node_alloc(schedule, tree, ancestors, NULL); } /* Set max_out to the maximal number of output dimensions over * all maps. */ static isl_stat update_max_out(__isl_take isl_map *map, void *user) { int *max_out = user; int n_out = isl_map_dim(map, isl_dim_out); if (n_out > *max_out) *max_out = n_out; isl_map_free(map); return isl_stat_ok; } /* Internal data structure for map_pad_range. * * "max_out" is the maximal schedule dimension. * "res" collects the results. */ struct isl_pad_schedule_map_data { int max_out; isl_union_map *res; }; /* Pad the range of the given map with zeros to data->max_out and * then add the result to data->res. */ static isl_stat map_pad_range(__isl_take isl_map *map, void *user) { struct isl_pad_schedule_map_data *data = user; int i; int n_out = isl_map_dim(map, isl_dim_out); map = isl_map_add_dims(map, isl_dim_out, data->max_out - n_out); for (i = n_out; i < data->max_out; ++i) map = isl_map_fix_si(map, isl_dim_out, i, 0); data->res = isl_union_map_add_map(data->res, map); if (!data->res) return isl_stat_error; return isl_stat_ok; } /* Pad the ranges of the maps in the union map with zeros such they all have * the same dimension. */ static __isl_give isl_union_map *pad_schedule_map( __isl_take isl_union_map *umap) { struct isl_pad_schedule_map_data data; if (!umap) return NULL; if (isl_union_map_n_map(umap) <= 1) return umap; data.max_out = 0; if (isl_union_map_foreach_map(umap, &update_max_out, &data.max_out) < 0) return isl_union_map_free(umap); data.res = isl_union_map_empty(isl_union_map_get_space(umap)); if (isl_union_map_foreach_map(umap, &map_pad_range, &data) < 0) data.res = isl_union_map_free(data.res); isl_union_map_free(umap); return data.res; } /* Return the domain of the root domain node of "schedule". */ __isl_give isl_union_set *isl_schedule_get_domain( __isl_keep isl_schedule *schedule) { if (!schedule) return NULL; if (!schedule->root) isl_die(isl_schedule_get_ctx(schedule), isl_error_invalid, "schedule tree representation not available", return NULL); return isl_schedule_tree_domain_get_domain(schedule->root); } /* Traverse all nodes of "sched" in depth first preorder. * * If "fn" returns -1 on any of the nodes, then the traversal is aborted. * If "fn" returns 0 on any of the nodes, then the subtree rooted * at that node is skipped. * * Return 0 on success and -1 on failure. */ isl_stat isl_schedule_foreach_schedule_node_top_down( __isl_keep isl_schedule *sched, isl_bool (*fn)(__isl_keep isl_schedule_node *node, void *user), void *user) { isl_schedule_node *node; isl_stat r; if (!sched) return isl_stat_error; node = isl_schedule_get_root(sched); r = isl_schedule_node_foreach_descendant_top_down(node, fn, user); isl_schedule_node_free(node); return r; } /* Traverse the node of "sched" in depth first postorder, * allowing the user to modify the visited node. * The traversal continues from the node returned by the callback function. * It is the responsibility of the user to ensure that this does not * lead to an infinite loop. It is safest to always return a pointer * to the same position (same ancestors and child positions) as the input node. */ __isl_give isl_schedule *isl_schedule_map_schedule_node_bottom_up( __isl_take isl_schedule *schedule, __isl_give isl_schedule_node *(*fn)( __isl_take isl_schedule_node *node, void *user), void *user) { isl_schedule_node *node; node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); node = isl_schedule_node_map_descendant_bottom_up(node, fn, user); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; } /* Wrapper around isl_schedule_node_reset_user for use as * an isl_schedule_map_schedule_node_bottom_up callback. */ static __isl_give isl_schedule_node *reset_user( __isl_take isl_schedule_node *node, void *user) { return isl_schedule_node_reset_user(node); } /* Reset the user pointer on all identifiers of parameters and tuples * in the schedule "schedule". */ __isl_give isl_schedule *isl_schedule_reset_user( __isl_take isl_schedule *schedule) { return isl_schedule_map_schedule_node_bottom_up(schedule, &reset_user, NULL); } /* Wrapper around isl_schedule_node_align_params for use as * an isl_schedule_map_schedule_node_bottom_up callback. */ static __isl_give isl_schedule_node *align_params( __isl_take isl_schedule_node *node, void *user) { isl_space *space = user; return isl_schedule_node_align_params(node, isl_space_copy(space)); } /* Align the parameters of all nodes in schedule "schedule" * to those of "space". */ __isl_give isl_schedule *isl_schedule_align_params( __isl_take isl_schedule *schedule, __isl_take isl_space *space) { schedule = isl_schedule_map_schedule_node_bottom_up(schedule, &align_params, space); isl_space_free(space); return schedule; } /* Wrapper around isl_schedule_node_pullback_union_pw_multi_aff for use as * an isl_schedule_map_schedule_node_bottom_up callback. */ static __isl_give isl_schedule_node *pullback_upma( __isl_take isl_schedule_node *node, void *user) { isl_union_pw_multi_aff *upma = user; return isl_schedule_node_pullback_union_pw_multi_aff(node, isl_union_pw_multi_aff_copy(upma)); } /* Compute the pullback of "schedule" by the function represented by "upma". * In other words, plug in "upma" in the iteration domains of "schedule". * * The schedule tree is not allowed to contain any expansion nodes. */ __isl_give isl_schedule *isl_schedule_pullback_union_pw_multi_aff( __isl_take isl_schedule *schedule, __isl_take isl_union_pw_multi_aff *upma) { schedule = isl_schedule_map_schedule_node_bottom_up(schedule, &pullback_upma, upma); isl_union_pw_multi_aff_free(upma); return schedule; } /* Intersect the domain of the schedule "schedule" with "domain". * The root of "schedule" is required to be a domain node. */ __isl_give isl_schedule *isl_schedule_intersect_domain( __isl_take isl_schedule *schedule, __isl_take isl_union_set *domain) { enum isl_schedule_node_type root_type; isl_schedule_node *node; if (!schedule || !domain) goto error; root_type = isl_schedule_tree_get_type(schedule->root); if (root_type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(schedule), isl_error_invalid, "root node must be a domain node", goto error); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); node = isl_schedule_node_domain_intersect_domain(node, domain); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; error: isl_schedule_free(schedule); isl_union_set_free(domain); return NULL; } /* Replace the domain of the schedule "schedule" with the gist * of the original domain with respect to the parameter domain "context". */ __isl_give isl_schedule *isl_schedule_gist_domain_params( __isl_take isl_schedule *schedule, __isl_take isl_set *context) { enum isl_schedule_node_type root_type; isl_schedule_node *node; if (!schedule || !context) goto error; root_type = isl_schedule_tree_get_type(schedule->root); if (root_type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(schedule), isl_error_invalid, "root node must be a domain node", goto error); node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); node = isl_schedule_node_domain_gist_params(node, context); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; error: isl_schedule_free(schedule); isl_set_free(context); return NULL; } /* Return an isl_union_map representation of the schedule. * If we still have access to the schedule tree, then we return * an isl_union_map corresponding to the subtree schedule of the child * of the root domain node. That is, we do not intersect the domain * of the returned isl_union_map with the domain constraints. * Otherwise, we must have removed it because we created a band forest. * If so, we extract the isl_union_map from the forest. * This reconstructed schedule map * then needs to be padded with zeros to unify the schedule space * since the result of isl_band_list_get_suffix_schedule may not have * a unified schedule space. */ __isl_give isl_union_map *isl_schedule_get_map(__isl_keep isl_schedule *sched) { enum isl_schedule_node_type type; isl_schedule_node *node; isl_union_map *umap; if (!sched) return NULL; if (sched->root) { type = isl_schedule_tree_get_type(sched->root); if (type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(sched), isl_error_internal, "root node not a domain node", return NULL); node = isl_schedule_get_root(sched); node = isl_schedule_node_child(node, 0); umap = isl_schedule_node_get_subtree_schedule_union_map(node); isl_schedule_node_free(node); return umap; } umap = isl_band_list_get_suffix_schedule(sched->band_forest); return pad_schedule_map(umap); } static __isl_give isl_band_list *construct_band_list( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain, __isl_keep isl_band *parent); /* Construct an isl_band structure from the given schedule tree node, * which may be either a band node or a leaf node. * In the latter case, construct a zero-dimensional band. * "domain" is the universe set of the domain elements that reach "node". * "parent" is the parent isl_band of the isl_band constructed * by this function. * * In case of a band node, we copy the properties (except tilability, * which is implicit in an isl_band) to the isl_band. * We assume that the band node is not zero-dimensional. * If the child of the band node is not a leaf node, * then we extract the children of the isl_band from this child. */ static __isl_give isl_band *construct_band(__isl_take isl_schedule_node *node, __isl_take isl_union_set *domain, __isl_keep isl_band *parent) { int i; isl_ctx *ctx; isl_band *band = NULL; isl_multi_union_pw_aff *mupa; if (!node || !domain) goto error; ctx = isl_schedule_node_get_ctx(node); band = isl_band_alloc(ctx); if (!band) goto error; band->schedule = node->schedule; band->parent = parent; if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { band->n = 0; band->pma = isl_union_pw_multi_aff_from_domain(domain); isl_schedule_node_free(node); return band; } band->n = isl_schedule_node_band_n_member(node); if (band->n == 0) isl_die(ctx, isl_error_unsupported, "zero-dimensional band nodes not supported", goto error); band->coincident = isl_alloc_array(ctx, int, band->n); if (band->n && !band->coincident) goto error; for (i = 0; i < band->n; ++i) band->coincident[i] = isl_schedule_node_band_member_get_coincident(node, i); mupa = isl_schedule_node_band_get_partial_schedule(node); band->pma = isl_union_pw_multi_aff_from_multi_union_pw_aff(mupa); if (!band->pma) goto error; node = isl_schedule_node_child(node, 0); if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf) { isl_schedule_node_free(node); isl_union_set_free(domain); return band; } band->children = construct_band_list(node, domain, band); if (!band->children) return isl_band_free(band); return band; error: isl_union_set_free(domain); isl_schedule_node_free(node); isl_band_free(band); return NULL; } /* Construct a list of isl_band structures from the children of "node". * "node" itself is a sequence or set node, so that each of the child nodes * is a filter node and the list returned by node_construct_band_list * consists of a single element. * "domain" is the universe set of the domain elements that reach "node". * "parent" is the parent isl_band of the isl_band structures constructed * by this function. */ static __isl_give isl_band_list *construct_band_list_from_children( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain, __isl_keep isl_band *parent) { int i, n; isl_ctx *ctx; isl_band_list *list; n = isl_schedule_node_n_children(node); ctx = isl_schedule_node_get_ctx(node); list = isl_band_list_alloc(ctx, 0); for (i = 0; i < n; ++i) { isl_schedule_node *child; isl_band_list *list_i; child = isl_schedule_node_get_child(node, i); list_i = construct_band_list(child, isl_union_set_copy(domain), parent); list = isl_band_list_concat(list, list_i); } isl_union_set_free(domain); isl_schedule_node_free(node); return list; } /* Construct an isl_band structure from the given sequence node * (or set node that is treated as a sequence node). * A single-dimensional band is created with as schedule for each of * filters of the children, the corresponding child position. * "domain" is the universe set of the domain elements that reach "node". * "parent" is the parent isl_band of the isl_band constructed * by this function. */ static __isl_give isl_band_list *construct_band_list_sequence( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain, __isl_keep isl_band *parent) { int i, n; isl_ctx *ctx; isl_band *band = NULL; isl_space *space; isl_union_pw_multi_aff *upma; if (!node || !domain) goto error; ctx = isl_schedule_node_get_ctx(node); band = isl_band_alloc(ctx); if (!band) goto error; band->schedule = node->schedule; band->parent = parent; band->n = 1; band->coincident = isl_calloc_array(ctx, int, band->n); if (!band->coincident) goto error; n = isl_schedule_node_n_children(node); space = isl_union_set_get_space(domain); upma = isl_union_pw_multi_aff_empty(isl_space_copy(space)); space = isl_space_set_from_params(space); space = isl_space_add_dims(space, isl_dim_set, 1); for (i = 0; i < n; ++i) { isl_schedule_node *child; isl_union_set *filter; isl_val *v; isl_val_list *vl; isl_multi_val *mv; isl_union_pw_multi_aff *upma_i; child = isl_schedule_node_get_child(node, i); filter = isl_schedule_node_filter_get_filter(child); isl_schedule_node_free(child); filter = isl_union_set_intersect(filter, isl_union_set_copy(domain)); v = isl_val_int_from_si(ctx, i); vl = isl_val_list_from_val(v); mv = isl_multi_val_from_val_list(isl_space_copy(space), vl); upma_i = isl_union_pw_multi_aff_multi_val_on_domain(filter, mv); upma = isl_union_pw_multi_aff_union_add(upma, upma_i); } isl_space_free(space); band->pma = upma; if (!band->pma) goto error; band->children = construct_band_list_from_children(node, domain, band); if (!band->children) band = isl_band_free(band); return isl_band_list_from_band(band); error: isl_union_set_free(domain); isl_schedule_node_free(node); isl_band_free(band); return NULL; } /* Construct a list of isl_band structures from "node" depending * on the type of "node". * "domain" is the universe set of the domain elements that reach "node". * "parent" is the parent isl_band of the isl_band structures constructed * by this function. * * If schedule_separate_components is set then set nodes are treated * as sequence nodes. Otherwise, we directly extract an (implicitly * parallel) list of isl_band structures. * * If "node" is a filter, then "domain" is updated by the filter. */ static __isl_give isl_band_list *construct_band_list( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain, __isl_keep isl_band *parent) { enum isl_schedule_node_type type; isl_ctx *ctx; isl_band *band; isl_band_list *list; isl_union_set *filter; if (!node || !domain) goto error; type = isl_schedule_node_get_type(node); switch (type) { case isl_schedule_node_error: goto error; case isl_schedule_node_context: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "context nodes not supported", goto error); case isl_schedule_node_domain: isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "internal domain nodes not allowed", goto error); case isl_schedule_node_expansion: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "expansion nodes not supported", goto error); case isl_schedule_node_extension: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "extension nodes not supported", goto error); case isl_schedule_node_filter: filter = isl_schedule_node_filter_get_filter(node); domain = isl_union_set_intersect(domain, filter); node = isl_schedule_node_child(node, 0); return construct_band_list(node, domain, parent); case isl_schedule_node_guard: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "guard nodes not supported", goto error); case isl_schedule_node_mark: isl_die(isl_schedule_node_get_ctx(node), isl_error_unsupported, "mark nodes not supported", goto error); case isl_schedule_node_set: ctx = isl_schedule_node_get_ctx(node); if (isl_options_get_schedule_separate_components(ctx)) return construct_band_list_sequence(node, domain, parent); else return construct_band_list_from_children(node, domain, parent); case isl_schedule_node_sequence: return construct_band_list_sequence(node, domain, parent); case isl_schedule_node_leaf: case isl_schedule_node_band: band = construct_band(node, domain, parent); list = isl_band_list_from_band(band); break; } return list; error: isl_union_set_free(domain); isl_schedule_node_free(node); return NULL; } /* Return the roots of a band forest representation of the schedule. * The band forest is constructed from the schedule tree, * but once such a band forest is * constructed, we forget about the original schedule tree since * the user may modify the schedule through the band forest. */ __isl_give isl_band_list *isl_schedule_get_band_forest( __isl_keep isl_schedule *schedule) { isl_schedule_node *node; isl_union_set *domain; if (!schedule) return NULL; if (schedule->root) { node = isl_schedule_get_root(schedule); domain = isl_schedule_node_domain_get_domain(node); domain = isl_union_set_universe(domain); node = isl_schedule_node_child(node, 0); schedule->band_forest = construct_band_list(node, domain, NULL); schedule->root = isl_schedule_tree_free(schedule->root); } return isl_band_list_dup(schedule->band_forest); } /* Call "fn" on each band in the schedule in depth-first post-order. */ int isl_schedule_foreach_band(__isl_keep isl_schedule *sched, int (*fn)(__isl_keep isl_band *band, void *user), void *user) { int r; isl_band_list *forest; if (!sched) return -1; forest = isl_schedule_get_band_forest(sched); r = isl_band_list_foreach_band(forest, fn, user); isl_band_list_free(forest); return r; } static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p, __isl_keep isl_band_list *list); static __isl_give isl_printer *print_band(__isl_take isl_printer *p, __isl_keep isl_band *band) { isl_band_list *children; p = isl_printer_start_line(p); p = isl_printer_print_union_pw_multi_aff(p, band->pma); p = isl_printer_end_line(p); if (!isl_band_has_children(band)) return p; children = isl_band_get_children(band); p = isl_printer_indent(p, 4); p = print_band_list(p, children); p = isl_printer_indent(p, -4); isl_band_list_free(children); return p; } static __isl_give isl_printer *print_band_list(__isl_take isl_printer *p, __isl_keep isl_band_list *list) { int i, n; n = isl_band_list_n_band(list); for (i = 0; i < n; ++i) { isl_band *band; band = isl_band_list_get_band(list, i); p = print_band(p, band); isl_band_free(band); } return p; } /* Insert a band node with partial schedule "partial" between the domain * root node of "schedule" and its single child. * Return a pointer to the updated schedule. * * If any of the nodes in the tree depend on the set of outer band nodes * then we refuse to insert the band node. */ __isl_give isl_schedule *isl_schedule_insert_partial_schedule( __isl_take isl_schedule *schedule, __isl_take isl_multi_union_pw_aff *partial) { isl_schedule_node *node; int anchored; node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); if (!node) goto error; if (isl_schedule_node_get_type(node) != isl_schedule_node_domain) isl_die(isl_schedule_node_get_ctx(node), isl_error_internal, "root node not a domain node", goto error); node = isl_schedule_node_child(node, 0); anchored = isl_schedule_node_is_subtree_anchored(node); if (anchored < 0) goto error; if (anchored) isl_die(isl_schedule_node_get_ctx(node), isl_error_invalid, "cannot insert band node in anchored subtree", goto error); node = isl_schedule_node_insert_partial_schedule(node, partial); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; error: isl_schedule_node_free(node); isl_multi_union_pw_aff_free(partial); return NULL; } /* Insert a context node with constraints "context" between the domain * root node of "schedule" and its single child. * Return a pointer to the updated schedule. */ __isl_give isl_schedule *isl_schedule_insert_context( __isl_take isl_schedule *schedule, __isl_take isl_set *context) { isl_schedule_node *node; node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_insert_context(node, context); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; } /* Insert a guard node with constraints "guard" between the domain * root node of "schedule" and its single child. * Return a pointer to the updated schedule. */ __isl_give isl_schedule *isl_schedule_insert_guard( __isl_take isl_schedule *schedule, __isl_take isl_set *guard) { isl_schedule_node *node; node = isl_schedule_get_root(schedule); isl_schedule_free(schedule); node = isl_schedule_node_child(node, 0); node = isl_schedule_node_insert_guard(node, guard); schedule = isl_schedule_node_get_schedule(node); isl_schedule_node_free(node); return schedule; } /* Return a tree with as top-level node a filter corresponding to "filter" and * as child, the (single) child of "tree". * However, if this single child is of type "type", then the filter is inserted * in the children of this single child instead. */ static __isl_give isl_schedule_tree *insert_filter_in_child_of_type( __isl_take isl_schedule_tree *tree, __isl_take isl_union_set *filter, enum isl_schedule_node_type type) { if (!isl_schedule_tree_has_children(tree)) { isl_schedule_tree_free(tree); return isl_schedule_tree_from_filter(filter); } else { tree = isl_schedule_tree_child(tree, 0); } if (isl_schedule_tree_get_type(tree) == type) tree = isl_schedule_tree_children_insert_filter(tree, filter); else tree = isl_schedule_tree_insert_filter(tree, filter); return tree; } /* Construct a schedule that combines the schedules "schedule1" and "schedule2" * with a top-level node (underneath the domain node) of type "type", * either isl_schedule_node_sequence or isl_schedule_node_set. * The domains of the two schedules are assumed to be disjoint. * * The new schedule has as domain the union of the domains of the two * schedules. The child of the domain node is a node of type "type" * with two filters corresponding to the domains of the input schedules. * If one (or both) of the top-level nodes of the two schedules is itself * of type "type", then the filter is pushed into the children of that * node and the sequence of set is flattened. */ __isl_give isl_schedule *isl_schedule_pair(enum isl_schedule_node_type type, __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2) { int disjoint; isl_ctx *ctx; enum isl_schedule_node_type root_type; isl_schedule_tree *tree1, *tree2; isl_union_set *filter1, *filter2, *domain; if (!schedule1 || !schedule2) goto error; root_type = isl_schedule_tree_get_type(schedule1->root); if (root_type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(schedule1), isl_error_internal, "root node not a domain node", goto error); root_type = isl_schedule_tree_get_type(schedule2->root); if (root_type != isl_schedule_node_domain) isl_die(isl_schedule_get_ctx(schedule1), isl_error_internal, "root node not a domain node", goto error); ctx = isl_schedule_get_ctx(schedule1); tree1 = isl_schedule_tree_copy(schedule1->root); filter1 = isl_schedule_tree_domain_get_domain(tree1); tree2 = isl_schedule_tree_copy(schedule2->root); filter2 = isl_schedule_tree_domain_get_domain(tree2); isl_schedule_free(schedule1); isl_schedule_free(schedule2); disjoint = isl_union_set_is_disjoint(filter1, filter2); if (disjoint < 0) filter1 = isl_union_set_free(filter1); if (!disjoint) isl_die(ctx, isl_error_invalid, "schedule domains not disjoint", filter1 = isl_union_set_free(filter1)); domain = isl_union_set_union(isl_union_set_copy(filter1), isl_union_set_copy(filter2)); filter1 = isl_union_set_gist(filter1, isl_union_set_copy(domain)); filter2 = isl_union_set_gist(filter2, isl_union_set_copy(domain)); tree1 = insert_filter_in_child_of_type(tree1, filter1, type); tree2 = insert_filter_in_child_of_type(tree2, filter2, type); tree1 = isl_schedule_tree_from_pair(type, tree1, tree2); tree1 = isl_schedule_tree_insert_domain(tree1, domain); return isl_schedule_from_schedule_tree(ctx, tree1); error: isl_schedule_free(schedule1); isl_schedule_free(schedule2); return NULL; } /* Construct a schedule that combines the schedules "schedule1" and "schedule2" * through a sequence node. * The domains of the input schedules are assumed to be disjoint. */ __isl_give isl_schedule *isl_schedule_sequence( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2) { return isl_schedule_pair(isl_schedule_node_sequence, schedule1, schedule2); } /* Construct a schedule that combines the schedules "schedule1" and "schedule2" * through a set node. * The domains of the input schedules are assumed to be disjoint. */ __isl_give isl_schedule *isl_schedule_set( __isl_take isl_schedule *schedule1, __isl_take isl_schedule *schedule2) { return isl_schedule_pair(isl_schedule_node_set, schedule1, schedule2); } /* Print "schedule" to "p". * * If "schedule" was created from a schedule tree, then we print * the schedule tree representation. Otherwise, we print * the band forest representation. */ __isl_give isl_printer *isl_printer_print_schedule(__isl_take isl_printer *p, __isl_keep isl_schedule *schedule) { isl_band_list *forest; if (!schedule) return isl_printer_free(p); if (schedule->root) return isl_printer_print_schedule_tree(p, schedule->root); forest = isl_schedule_get_band_forest(schedule); p = print_band_list(p, forest); isl_band_list_free(forest); return p; } void isl_schedule_dump(__isl_keep isl_schedule *schedule) { isl_printer *printer; if (!schedule) return; printer = isl_printer_to_file(isl_schedule_get_ctx(schedule), stderr); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_BLOCK); printer = isl_printer_print_schedule(printer, schedule); isl_printer_free(printer); } /* Return a string representation of "schedule". * Print the schedule in flow format. */ __isl_give char *isl_schedule_to_str(__isl_keep isl_schedule *schedule) { isl_printer *printer; char *s; if (!schedule) return NULL; printer = isl_printer_to_str(isl_schedule_get_ctx(schedule)); printer = isl_printer_set_yaml_style(printer, ISL_YAML_STYLE_FLOW); printer = isl_printer_print_schedule(printer, schedule); s = isl_printer_get_str(printer); isl_printer_free(printer); return s; } isl-0.16.1/isl_sort.c0000664000175000017500000001147212645737061011333 00000000000000/* * The code of this file was taken from http://jeffreystedfast.blogspot.be, * where it was posted in 2011 by Jeffrey Stedfast under the MIT license. * The MIT license text is as follows: * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #define MID(lo, hi) (lo + ((hi - lo) >> 1)) /* The code here is an optimized merge sort. Starting from a generic merge sort * the following optimizations were applied: * * o Batching of memcpy() calls: Instead of calling memcpy() to copy each and * every element into a temporary buffer, blocks of elements are copied * at a time. * * o To reduce the number of memcpy() calls further, copying leading * and trailing elements into our temporary buffer is avoided, in case it is * not necessary to merge them. * * A further optimization could be to specialize memcpy calls based on the * size of the types we compare. For now, this code does not include the * relevant optimization, as clang e.g. inlines a very efficient memcpy() * implementation. It is not clear, that the specialized version as provided in * the blog post, is really superior to the one that will be inlined by * default. So we decided to keep the code simple until this optimization was * proven to be beneficial. */ static void msort (void *array, void *buf, size_t low, size_t high, size_t size, int (* compare) (const void *, const void *, void *), void *arg) { char *a1, *al, *am, *ah, *ls, *hs, *lo, *hi, *b; size_t copied = 0; size_t mid; mid = MID (low, high); if (mid + 1 < high) msort (array, buf, mid + 1, high, size, compare, arg); if (mid > low) msort (array, buf, low, mid, size, compare, arg); ah = ((char *) array) + ((high + 1) * size); am = ((char *) array) + ((mid + 1) * size); a1 = al = ((char *) array) + (low * size); b = (char *) buf; lo = al; hi = am; do { ls = lo; hs = hi; if (lo > al || hi > am) { /* our last loop already compared lo & hi and found lo <= hi */ lo += size; } while (lo < am && compare (lo, hi, arg) <= 0) lo += size; if (lo < am) { if (copied == 0) { /* avoid copying the leading items */ a1 = lo; ls = lo; } /* our last compare tells us hi < lo */ hi += size; while (hi < ah && compare (hi, lo, arg) < 0) hi += size; if (lo > ls) { memcpy (b, ls, lo - ls); copied += (lo - ls); b += (lo - ls); } memcpy (b, hs, hi - hs); copied += (hi - hs); b += (hi - hs); } else if (copied) { memcpy (b, ls, lo - ls); copied += (lo - ls); b += (lo - ls); /* copy everything we needed to re-order back into array */ memcpy (a1, buf, copied); return; } else { /* everything already in order */ return; } } while (hi < ah); if (lo < am) { memcpy (b, lo, am - lo); copied += (am - lo); } memcpy (a1, buf, copied); } static int MergeSort (void *base, size_t nmemb, size_t size, int (* compare) (const void *, const void *, void *), void *arg) { void *tmp; if (nmemb < 2) return 0; if (!(tmp = malloc (nmemb * size))) { errno = ENOMEM; return -1; } msort (base, tmp, 0, nmemb - 1, size, compare, arg); free (tmp); return 0; } int isl_sort(void *const pbase, size_t total_elems, size_t size, int (*cmp)(const void *, const void *, void *arg), void *arg) { return MergeSort (pbase, total_elems, size, cmp, arg); } isl-0.16.1/isl_polynomial_private.h0000664000175000017500000002136412645737061014267 00000000000000#include #include #include #include #include #include #include struct isl_upoly { int ref; struct isl_ctx *ctx; int var; }; struct isl_upoly_cst { struct isl_upoly up; isl_int n; isl_int d; }; struct isl_upoly_rec { struct isl_upoly up; int n; size_t size; struct isl_upoly *p[]; }; /* dim represents the domain space. */ struct isl_qpolynomial { int ref; isl_space *dim; struct isl_mat *div; struct isl_upoly *upoly; }; struct isl_term { int ref; isl_int n; isl_int d; isl_space *dim; struct isl_mat *div; int pow[1]; }; struct isl_pw_qpolynomial_piece { struct isl_set *set; struct isl_qpolynomial *qp; }; struct isl_pw_qpolynomial { int ref; isl_space *dim; int n; size_t size; struct isl_pw_qpolynomial_piece p[1]; }; /* dim represents the domain space. */ struct isl_qpolynomial_fold { int ref; enum isl_fold type; isl_space *dim; int n; size_t size; struct isl_qpolynomial *qp[1]; }; struct isl_pw_qpolynomial_fold_piece { struct isl_set *set; struct isl_qpolynomial_fold *fold; }; struct isl_pw_qpolynomial_fold { int ref; enum isl_fold type; isl_space *dim; int n; size_t size; struct isl_pw_qpolynomial_fold_piece p[1]; }; void isl_term_get_num(__isl_keep isl_term *term, isl_int *n); __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx); __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up); __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up); __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up); void isl_upoly_free(__isl_take struct isl_upoly *up); __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2); int isl_upoly_is_cst(__isl_keep struct isl_upoly *up); int isl_upoly_is_zero(__isl_keep struct isl_upoly *up); int isl_upoly_is_one(__isl_keep struct isl_upoly *up); int isl_upoly_is_negone(__isl_keep struct isl_upoly *up); __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up); __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up); __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1, __isl_take struct isl_upoly *up2); __isl_give struct isl_upoly *isl_upoly_mul_isl_int( __isl_take struct isl_upoly *up, isl_int v); __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim, unsigned n_div, __isl_take struct isl_upoly *up); __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(__isl_take isl_space *dim, isl_int v); __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain( __isl_take isl_space *space, const isl_int n, const isl_int d); __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(__isl_take isl_space *dim, int pos, int power); isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp); int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp); int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp, isl_int *n, isl_int *d); __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain( __isl_keep isl_set *dom, __isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2); int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly); __isl_give isl_qpolynomial *isl_qpolynomial_coeff( __isl_keep isl_qpolynomial *poly, enum isl_dim_type type, unsigned pos, int deg); __isl_give isl_vec *isl_qpolynomial_extract_affine( __isl_keep isl_qpolynomial *qp); __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim, isl_int *f, isl_int denom); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_cow( __isl_take isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_piece( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_set *set, __isl_take isl_qpolynomial *qp); int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_project_out( __isl_take isl_pw_qpolynomial *pwqp, enum isl_dim_type type, unsigned first, unsigned n); __isl_give isl_val *isl_qpolynomial_opt_on_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max); enum isl_fold isl_fold_type_negate(enum isl_fold type); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_cow( __isl_take isl_qpolynomial_fold *fold); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_dup( __isl_keep isl_qpolynomial_fold *fold); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_cow( __isl_take isl_pw_qpolynomial_fold *pwf); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_add_on_domain( __isl_keep isl_set *set, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_fold_on_domain( __isl_keep isl_set *set, __isl_take isl_qpolynomial_fold *fold1, __isl_take isl_qpolynomial_fold *fold2); __isl_give isl_val *isl_qpolynomial_fold_opt_on_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *set, int max); int isl_pw_qpolynomial_fold_covers(__isl_keep isl_pw_qpolynomial_fold *pwf1, __isl_keep isl_pw_qpolynomial_fold *pwf2); __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_morph_domain( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_morph *morph); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_morph_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_morph *morph); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_morph_domain( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_morph *morph); __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp, __isl_take isl_space *dim); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_lift( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities( __isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_substitute_equalities( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_basic_set *eq); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_gist( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_set *context); __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_realign_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_reordering *r); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_realign_domain( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_reordering *r); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_realign_domain( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_reordering *r); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_reset_space( __isl_take isl_pw_qpolynomial *pwqp, __isl_take isl_space *space); __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space( __isl_take isl_qpolynomial *qp, __isl_take isl_space *dim); __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain( __isl_take isl_qpolynomial *qp, __isl_take isl_space *space, __isl_take isl_space *domain); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_domain_space( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *dim); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_reset_space_and_domain( __isl_take isl_qpolynomial_fold *fold, __isl_take isl_space *space, __isl_take isl_space *domain); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_reset_domain_space( __isl_take isl_pw_qpolynomial_fold *pwf, __isl_take isl_space *dim); void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d); __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int( __isl_take isl_qpolynomial *qp, isl_int v); __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int( __isl_take isl_qpolynomial *qp, isl_int v); __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul_isl_int( __isl_take isl_pw_qpolynomial *pwqp, isl_int v); __isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_mul_isl_int( __isl_take isl_qpolynomial_fold *fold, isl_int v); __isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_mul_isl_int( __isl_take isl_pw_qpolynomial_fold *pwf, isl_int v); __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul_isl_int( __isl_take isl_union_pw_qpolynomial *upwqp, isl_int v); __isl_give isl_union_pw_qpolynomial_fold * isl_union_pw_qpolynomial_fold_mul_isl_int( __isl_take isl_union_pw_qpolynomial_fold *upwf, isl_int v); isl-0.16.1/isl_hash.c0000664000175000017500000001170012645737060011260 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include #include #include "isl_config.h" uint32_t isl_hash_string(uint32_t hash, const char *s) { for (; *s; s++) isl_hash_byte(hash, *s); return hash; } uint32_t isl_hash_mem(uint32_t hash, const void *p, size_t len) { int i; const char *s = p; for (i = 0; i < len; ++i) isl_hash_byte(hash, s[i]); return hash; } static unsigned int round_up(unsigned int v) { int old_v = v; while (v) { old_v = v; v ^= v & -v; } return old_v << 1; } int isl_hash_table_init(struct isl_ctx *ctx, struct isl_hash_table *table, int min_size) { size_t size; if (!table) return -1; if (min_size < 2) min_size = 2; table->bits = ffs(round_up(4 * (min_size + 1) / 3 - 1)) - 1; table->n = 0; size = 1 << table->bits; table->entries = isl_calloc_array(ctx, struct isl_hash_table_entry, size); if (!table->entries) return -1; return 0; } /* Dummy comparison function that always returns false. */ static int no(const void *entry, const void *val) { return 0; } /* Extend "table" to twice its size. * Return 0 on success and -1 on error. * * We reuse isl_hash_table_find to create entries in the extended table. * Since all entries in the original table are assumed to be different, * there is no need to compare them against each other. */ static int grow_table(struct isl_ctx *ctx, struct isl_hash_table *table) { int n; size_t old_size, size; struct isl_hash_table_entry *entries; uint32_t h; entries = table->entries; old_size = 1 << table->bits; size = 2 * old_size; table->entries = isl_calloc_array(ctx, struct isl_hash_table_entry, size); if (!table->entries) { table->entries = entries; return -1; } n = table->n; table->n = 0; table->bits++; for (h = 0; h < old_size; ++h) { struct isl_hash_table_entry *entry; if (!entries[h].data) continue; entry = isl_hash_table_find(ctx, table, entries[h].hash, &no, NULL, 1); if (!entry) { table->bits--; free(table->entries); table->entries = entries; table->n = n; return -1; } *entry = entries[h]; } free(entries); return 0; } struct isl_hash_table *isl_hash_table_alloc(struct isl_ctx *ctx, int min_size) { struct isl_hash_table *table = NULL; table = isl_alloc_type(ctx, struct isl_hash_table); if (isl_hash_table_init(ctx, table, min_size)) goto error; return table; error: isl_hash_table_free(ctx, table); return NULL; } void isl_hash_table_clear(struct isl_hash_table *table) { if (!table) return; free(table->entries); } void isl_hash_table_free(struct isl_ctx *ctx, struct isl_hash_table *table) { if (!table) return; isl_hash_table_clear(table); free(table); } /* A dummy entry that can be used to make a distinction between * a missing entry and an error condition. * It is used by isl_union_*_find_part_entry. */ static struct isl_hash_table_entry none = { 0, NULL }; struct isl_hash_table_entry *isl_hash_table_entry_none = &none; struct isl_hash_table_entry *isl_hash_table_find(struct isl_ctx *ctx, struct isl_hash_table *table, uint32_t key_hash, int (*eq)(const void *entry, const void *val), const void *val, int reserve) { size_t size; uint32_t h, key_bits; key_bits = isl_hash_bits(key_hash, table->bits); size = 1 << table->bits; for (h = key_bits; table->entries[h].data; h = (h+1) % size) if (table->entries[h].hash == key_hash && eq(table->entries[h].data, val)) return &table->entries[h]; if (!reserve) return NULL; if (4 * table->n >= 3 * size) { if (grow_table(ctx, table) < 0) return NULL; return isl_hash_table_find(ctx, table, key_hash, eq, val, 1); } table->n++; table->entries[h].hash = key_hash; return &table->entries[h]; } isl_stat isl_hash_table_foreach(isl_ctx *ctx, struct isl_hash_table *table, isl_stat (*fn)(void **entry, void *user), void *user) { size_t size; uint32_t h; if (!table->entries) return isl_stat_error; size = 1 << table->bits; for (h = 0; h < size; ++ h) if (table->entries[h].data && fn(&table->entries[h].data, user) < 0) return isl_stat_error; return isl_stat_ok; } void isl_hash_table_remove(struct isl_ctx *ctx, struct isl_hash_table *table, struct isl_hash_table_entry *entry) { int h, h2; size_t size; if (!table || !entry) return; size = 1 << table->bits; h = entry - table->entries; isl_assert(ctx, h >= 0 && h < size, return); for (h2 = h+1; table->entries[h2 % size].data; h2++) { uint32_t bits = isl_hash_bits(table->entries[h2 % size].hash, table->bits); uint32_t offset = (size + bits - (h+1)) % size; if (offset <= h2 - (h+1)) continue; *entry = table->entries[h2 % size]; h = h2; entry = &table->entries[h % size]; } entry->hash = 0; entry->data = NULL; table->n--; } isl-0.16.1/isl_imath.c0000664000175000017500000000216212645737060011441 00000000000000#include uint32_t isl_imath_hash(mp_int v, uint32_t hash) { unsigned const char *data = (unsigned char *)v->digits; unsigned const char *end = data + v->used * sizeof(v->digits[0]); if (v->sign == 1) isl_hash_byte(hash, 0xFF); for (; data < end; ++data) isl_hash_byte(hash, *data); return hash; } /* Try a standard conversion that fits into a long. */ int isl_imath_fits_slong_p(mp_int op) { long out; mp_result res = mp_int_to_int(op, &out); return res == MP_OK; } /* Try a standard conversion that fits into an unsigned long. */ int isl_imath_fits_ulong_p(mp_int op) { unsigned long out; mp_result res = mp_int_to_uint(op, &out); return res == MP_OK; } void isl_imath_addmul_ui(mp_int rop, mp_int op1, unsigned long op2) { mpz_t temp; mp_int_init(&temp); mp_int_set_uvalue(&temp, op2); mp_int_mul(op1, &temp, &temp); mp_int_add(rop, &temp, rop); mp_int_clear(&temp); } void isl_imath_submul_ui(mp_int rop, mp_int op1, unsigned long op2) { mpz_t temp; mp_int_init(&temp); mp_int_set_uvalue(&temp, op2); mp_int_mul(op1, &temp, &temp); mp_int_sub(rop, &temp, rop); mp_int_clear(&temp); } isl-0.16.1/isl_multi_apply_union_set.c0000664000175000017500000000021312645737061014755 00000000000000#define APPLY_DOMBASE union_set #define APPLY_DOM isl_union_set #include #undef APPLY_DOMBASE #undef APPLY_DOM isl-0.16.1/isl_point_private.h0000664000175000017500000000035112645737061013226 00000000000000#include #include #include struct isl_point { int ref; isl_space *dim; struct isl_vec *vec; }; __isl_give isl_point *isl_point_alloc(__isl_take isl_space *dim, __isl_take isl_vec *vec); isl-0.16.1/isl_test_int.c0000664000175000017500000003654612645737061012206 00000000000000/* * Copyright 2015 INRIA Paris-Rocquencourt * * Use of this software is governed by the MIT license * * Written by Michael Kruse, INRIA Paris-Rocquencourt, * Domaine de Voluceau, Rocquenqourt, B.P. 105, * 78153 Le Chesnay Cedex France */ #include #include #include #define ARRAY_SIZE(array) (sizeof(array)/sizeof(*array)) #ifdef USE_SMALL_INT_OPT /* Test whether small and big representation of the same number have the same * hash. */ static void int_test_hash(isl_int val) { uint32_t demotedhash, promotedhash; isl_int demoted, promoted; isl_int_init(demoted); isl_int_set(demoted, val); isl_int_init(promoted); isl_int_set(promoted, val); isl_sioimath_try_demote(demoted); isl_sioimath_promote(promoted); assert(isl_int_eq(demoted, promoted)); demotedhash = isl_int_hash(demoted, 0); promotedhash = isl_int_hash(promoted, 0); assert(demotedhash == promotedhash); } struct { void (*fn)(isl_int); char *val; } int_single_value_tests[] = { { &int_test_hash, "0" }, { &int_test_hash, "1" }, { &int_test_hash, "-1" }, { &int_test_hash, "23" }, { &int_test_hash, "-23" }, { &int_test_hash, "107" }, { &int_test_hash, "32768" }, { &int_test_hash, "2147483647" }, { &int_test_hash, "-2147483647" }, { &int_test_hash, "2147483648" }, { &int_test_hash, "-2147483648" }, }; static void int_test_single_value() { int i; for (i = 0; i < ARRAY_SIZE(int_single_value_tests); i += 1) { isl_int val; isl_int_init(val); isl_int_read(val, int_single_value_tests[i].val); (*int_single_value_tests[i].fn)(val); isl_int_clear(val); } } static void invoke_alternate_representations_2args(char *arg1, char *arg2, void (*fn)(isl_int, isl_int)) { int j; isl_int int1, int2; isl_int_init(int1); isl_int_init(int2); for (j = 0; j < 4; ++j) { isl_int_read(int1, arg1); isl_int_read(int2, arg2); if (j & 1) isl_sioimath_promote(int1); else isl_sioimath_try_demote(int1); if (j & 2) isl_sioimath_promote(int2); else isl_sioimath_try_demote(int2); (*fn)(int1, int2); } isl_int_clear(int1); isl_int_clear(int2); } static void invoke_alternate_representations_3args(char *arg1, char *arg2, char *arg3, void (*fn)(isl_int, isl_int, isl_int)) { int j; isl_int int1, int2, int3; isl_int_init(int1); isl_int_init(int2); isl_int_init(int3); for (j = 0; j < 8; ++j) { isl_int_read(int1, arg1); isl_int_read(int2, arg2); isl_int_read(int3, arg3); if (j & 1) isl_sioimath_promote(int1); else isl_sioimath_try_demote(int1); if (j & 2) isl_sioimath_promote(int2); else isl_sioimath_try_demote(int2); if (j & 4) isl_sioimath_promote(int3); else isl_sioimath_try_demote(int3); (*fn)(int1, int2, int3); } isl_int_clear(int1); isl_int_clear(int2); isl_int_clear(int3); } #else /* USE_SMALL_INT_OPT */ static void int_test_single_value() { } static void invoke_alternate_representations_2args(char *arg1, char *arg2, void (*fn)(isl_int, isl_int)) { isl_int int1, int2; isl_int_init(int1); isl_int_init(int2); isl_int_read(int1, arg1); isl_int_read(int2, arg2); (*fn)(int1, int2); isl_int_clear(int1); isl_int_clear(int2); } static void invoke_alternate_representations_3args(char *arg1, char *arg2, char *arg3, void (*fn)(isl_int, isl_int, isl_int)) { isl_int int1, int2, int3; isl_int_init(int1); isl_int_init(int2); isl_int_init(int3); isl_int_read(int1, arg1); isl_int_read(int2, arg2); isl_int_read(int3, arg3); (*fn)(int1, int2, int3); isl_int_clear(int1); isl_int_clear(int2); isl_int_clear(int3); } #endif /* USE_SMALL_INT_OPT */ static void int_test_neg(isl_int expected, isl_int arg) { isl_int result; isl_int_init(result); isl_int_neg(result, arg); assert(isl_int_eq(result, expected)); isl_int_neg(result, expected); assert(isl_int_eq(result, arg)); isl_int_clear(result); } static void int_test_abs(isl_int expected, isl_int arg) { isl_int result; isl_int_init(result); isl_int_abs(result, arg); assert(isl_int_eq(result, expected)); isl_int_clear(result); } struct { void (*fn)(isl_int, isl_int); char *expected, *arg; } int_unary_tests[] = { { &int_test_neg, "0", "0" }, { &int_test_neg, "-1", "1" }, { &int_test_neg, "-2147483647", "2147483647" }, { &int_test_neg, "-2147483648", "2147483648" }, { &int_test_neg, "-9223372036854775807", "9223372036854775807" }, { &int_test_neg, "-9223372036854775808", "9223372036854775808" }, { &int_test_abs, "0", "0" }, { &int_test_abs, "1", "1" }, { &int_test_abs, "1", "-1" }, { &int_test_abs, "2147483647", "2147483647" }, { &int_test_abs, "2147483648", "-2147483648" }, { &int_test_abs, "9223372036854775807", "9223372036854775807" }, { &int_test_abs, "9223372036854775808", "-9223372036854775808" }, }; static void int_test_divexact(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; unsigned long rhsulong; if (isl_int_sgn(rhs) == 0) return; isl_int_init(result); isl_int_divexact(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_tdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_fdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_cdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); if (isl_int_fits_ulong(rhs)) { rhsulong = isl_int_get_ui(rhs); isl_int_divexact_ui(result, lhs, rhsulong); assert(isl_int_eq(expected, result)); isl_int_fdiv_q_ui(result, lhs, rhsulong); assert(isl_int_eq(expected, result)); } isl_int_clear(result); } static void int_test_mul(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_mul(result, lhs, rhs); assert(isl_int_eq(expected, result)); if (isl_int_fits_ulong(rhs)) { unsigned long rhsulong = isl_int_get_ui(rhs); isl_int_mul_ui(result, lhs, rhsulong); assert(isl_int_eq(expected, result)); } if (isl_int_fits_slong(rhs)) { unsigned long rhsslong = isl_int_get_si(rhs); isl_int_mul_si(result, lhs, rhsslong); assert(isl_int_eq(expected, result)); } isl_int_clear(result); } /* Use a triple that satisfies 'product = factor1 * factor2' to check the * operations mul, divexact, tdiv, fdiv and cdiv. */ static void int_test_product(isl_int product, isl_int factor1, isl_int factor2) { int_test_divexact(factor1, product, factor2); int_test_divexact(factor2, product, factor1); int_test_mul(product, factor1, factor2); int_test_mul(product, factor2, factor1); } static void int_test_add(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_add(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static void int_test_sub(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_sub(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } /* Use a triple that satisfies 'sum = term1 + term2' to check the operations add * and sub. */ static void int_test_sum(isl_int sum, isl_int term1, isl_int term2) { int_test_sub(term1, sum, term2); int_test_sub(term2, sum, term1); int_test_add(sum, term1, term2); int_test_add(sum, term2, term1); } static void int_test_fdiv(isl_int expected, isl_int lhs, isl_int rhs) { unsigned long rhsulong; isl_int result; isl_int_init(result); isl_int_fdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); if (isl_int_fits_ulong(rhs)) { rhsulong = isl_int_get_ui(rhs); isl_int_fdiv_q_ui(result, lhs, rhsulong); assert(isl_int_eq(expected, result)); } isl_int_clear(result); } static void int_test_cdiv(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_cdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static void int_test_tdiv(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_tdiv_q(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static void int_test_fdiv_r(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_fdiv_r(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static void int_test_gcd(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_gcd(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_gcd(result, rhs, lhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static void int_test_lcm(isl_int expected, isl_int lhs, isl_int rhs) { isl_int result; isl_int_init(result); isl_int_lcm(result, lhs, rhs); assert(isl_int_eq(expected, result)); isl_int_lcm(result, rhs, lhs); assert(isl_int_eq(expected, result)); isl_int_clear(result); } static int sgn(int val) { if (val > 0) return 1; if (val < 0) return -1; return 0; } static void int_test_cmp(int exp, isl_int lhs, isl_int rhs) { long rhslong; assert(exp == sgn(isl_int_cmp(lhs, rhs))); if (isl_int_fits_slong(rhs)) { rhslong = isl_int_get_si(rhs); assert(exp == sgn(isl_int_cmp_si(lhs, rhslong))); } } /* Test the comparison relations over two numbers. * expected is the sign (1, 0 or -1) of 'lhs - rhs'. */ static void int_test_cmps(isl_int expected, isl_int lhs, isl_int rhs) { int exp; isl_int diff; exp = isl_int_get_si(expected); isl_int_init(diff); isl_int_sub(diff, lhs, rhs); assert(exp == isl_int_sgn(diff)); isl_int_clear(diff); int_test_cmp(exp, lhs, rhs); int_test_cmp(-exp, rhs, lhs); } static void int_test_abs_cmp(isl_int expected, isl_int lhs, isl_int rhs) { int exp; exp = isl_int_get_si(expected); assert(exp == sgn(isl_int_abs_cmp(lhs, rhs))); assert(-exp == sgn(isl_int_abs_cmp(rhs, lhs))); } struct { void (*fn)(isl_int, isl_int, isl_int); char *expected, *lhs, *rhs; } int_binary_tests[] = { { &int_test_sum, "0", "0", "0" }, { &int_test_sum, "1", "1", "0" }, { &int_test_sum, "2", "1", "1" }, { &int_test_sum, "-1", "0", "-1" }, { &int_test_sum, "-2", "-1", "-1" }, { &int_test_sum, "2147483647", "1073741823", "1073741824" }, { &int_test_sum, "-2147483648", "-1073741824", "-1073741824" }, { &int_test_sum, "2147483648", "2147483647", "1" }, { &int_test_sum, "-2147483648", "-2147483647", "-1" }, { &int_test_product, "0", "0", "0" }, { &int_test_product, "0", "0", "1" }, { &int_test_product, "1", "1", "1" }, { &int_test_product, "6", "2", "3" }, { &int_test_product, "-6", "2", "-3" }, { &int_test_product, "-6", "-2", "3" }, { &int_test_product, "6", "-2", "-3" }, { &int_test_product, "2147483648", "65536", "32768" }, { &int_test_product, "-2147483648", "65536", "-32768" }, { &int_test_product, "4611686014132420609", "2147483647", "2147483647" }, { &int_test_product, "-4611686014132420609", "-2147483647", "2147483647" }, { &int_test_product, "4611686016279904256", "2147483647", "2147483648" }, { &int_test_product, "-4611686016279904256", "-2147483647", "2147483648" }, { &int_test_product, "-4611686016279904256", "2147483647", "-2147483648" }, { &int_test_product, "4611686016279904256", "-2147483647", "-2147483648" }, { &int_test_product, "85070591730234615847396907784232501249", "9223372036854775807", "9223372036854775807" }, { &int_test_product, "-85070591730234615847396907784232501249", "-9223372036854775807", "9223372036854775807" }, { &int_test_product, "85070591730234615856620279821087277056", "9223372036854775807", "9223372036854775808" }, { &int_test_product, "-85070591730234615856620279821087277056", "-9223372036854775807", "9223372036854775808" }, { &int_test_product, "-85070591730234615856620279821087277056", "9223372036854775807", "-9223372036854775808" }, { &int_test_product, "85070591730234615856620279821087277056", "-9223372036854775807", "-9223372036854775808" }, { &int_test_product, "340282366920938463426481119284349108225", "18446744073709551615", "18446744073709551615" }, { &int_test_product, "-340282366920938463426481119284349108225", "-18446744073709551615", "18446744073709551615" }, { &int_test_product, "340282366920938463444927863358058659840", "18446744073709551615", "18446744073709551616" }, { &int_test_product, "-340282366920938463444927863358058659840", "-18446744073709551615", "18446744073709551616" }, { &int_test_product, "-340282366920938463444927863358058659840", "18446744073709551615", "-18446744073709551616" }, { &int_test_product, "340282366920938463444927863358058659840", "-18446744073709551615", "-18446744073709551616" }, { &int_test_fdiv, "0", "1", "2" }, { &int_test_fdiv_r, "1", "1", "3" }, { &int_test_fdiv, "-1", "-1", "2" }, { &int_test_fdiv_r, "2", "-1", "3" }, { &int_test_fdiv, "-1", "1", "-2" }, { &int_test_fdiv_r, "-2", "1", "-3" }, { &int_test_fdiv, "0", "-1", "-2" }, { &int_test_fdiv_r, "-1", "-1", "-3" }, { &int_test_cdiv, "1", "1", "2" }, { &int_test_cdiv, "0", "-1", "2" }, { &int_test_cdiv, "0", "1", "-2" }, { &int_test_cdiv, "1", "-1", "-2" }, { &int_test_tdiv, "0", "1", "2" }, { &int_test_tdiv, "0", "-1", "2" }, { &int_test_tdiv, "0", "1", "-2" }, { &int_test_tdiv, "0", "-1", "-2" }, { &int_test_gcd, "0", "0", "0" }, { &int_test_lcm, "0", "0", "0" }, { &int_test_gcd, "7", "0", "7" }, { &int_test_lcm, "0", "0", "7" }, { &int_test_gcd, "1", "1", "1" }, { &int_test_lcm, "1", "1", "1" }, { &int_test_gcd, "1", "1", "-1" }, { &int_test_lcm, "1", "1", "-1" }, { &int_test_gcd, "1", "-1", "-1" }, { &int_test_lcm, "1", "-1", "-1" }, { &int_test_gcd, "3", "6", "9" }, { &int_test_lcm, "18", "6", "9" }, { &int_test_gcd, "1", "14", "2147483647" }, { &int_test_lcm, "15032385529", "7", "2147483647" }, { &int_test_gcd, "2", "6", "-2147483648" }, { &int_test_lcm, "6442450944", "6", "-2147483648" }, { &int_test_gcd, "1", "6", "9223372036854775807" }, { &int_test_lcm, "55340232221128654842", "6", "9223372036854775807" }, { &int_test_gcd, "2", "6", "-9223372036854775808" }, { &int_test_lcm, "27670116110564327424", "6", "-9223372036854775808" }, { &int_test_gcd, "1", "18446744073709551616", "18446744073709551615" }, { &int_test_lcm, "340282366920938463444927863358058659840", "18446744073709551616", "18446744073709551615" }, { &int_test_cmps, "0", "0", "0" }, { &int_test_abs_cmp, "0", "0", "0" }, { &int_test_cmps, "1", "1", "0" }, { &int_test_abs_cmp, "1", "1", "0" }, { &int_test_cmps, "-1", "-1", "0" }, { &int_test_abs_cmp, "1", "-1", "0" }, { &int_test_cmps, "-1", "-1", "1" }, { &int_test_abs_cmp, "0", "-1", "1" }, { &int_test_cmps, "-1", "5", "2147483647" }, { &int_test_abs_cmp, "-1", "5", "2147483647" }, { &int_test_cmps, "1", "5", "-2147483648" }, { &int_test_abs_cmp, "-1", "5", "-2147483648" }, { &int_test_cmps, "-1", "5", "9223372036854775807" }, { &int_test_abs_cmp, "-1", "5", "9223372036854775807" }, { &int_test_cmps, "1", "5", "-9223372036854775809" }, { &int_test_abs_cmp, "-1", "5", "-9223372036854775809" }, }; /* Tests the isl_int_* function to give the expected results. Tests are * grouped by the number of arguments they take. * * If small integer optimization is enabled, we also test whether the results * are the same in small and big representation. */ int main() { int i; int_test_single_value(); for (i = 0; i < ARRAY_SIZE(int_unary_tests); i += 1) { invoke_alternate_representations_2args( int_unary_tests[i].expected, int_unary_tests[i].arg, int_unary_tests[i].fn); } for (i = 0; i < ARRAY_SIZE(int_binary_tests); i += 1) { invoke_alternate_representations_3args( int_binary_tests[i].expected, int_binary_tests[i].lhs, int_binary_tests[i].rhs, int_binary_tests[i].fn); } return 0; } isl-0.16.1/ChangeLog0000664000175000017500000001100112645754022011063 00000000000000version: 0.16.1 date: Thu Jan 14 18:08:06 CET 2016 changes: - fix bug in simplification --- version: 0.16 date: Tue Jan 12 09:56:16 CET 2016 changes: - add 32 bit integer optimization for IMath - minor AST generator improvements - add isl_union_flow_get_full_{may,must}_dependence - minor improvements to Python bindings - minor improvements to set and map printing --- version: 0.15 date: Thu Jun 11 12:45:33 CEST 2015 changes: - improve coalescing - add isl_union_access_info_compute_flow - add mark nodes in AST - add isl_union_pw_aff and isl_multi_union_pw_aff - add schedule trees - deprecate band forests - deprecate separation_class AST generation option - introduce isl_bool and isl_stat types --- version: 0.14.1 date: Thu Apr 9 12:57:23 CEST 2015 changes: - fix bug in affine expression normalization - fix handling of conditional validity constraints --- version: 0.14 date: Sat Oct 25 16:08:47 CEST 2014 changes: - support IMath as an optional replacement for GMP - minor AST generator improvements --- version: 0.13 date: Mon Apr 14 11:08:45 CEST 2014 changes: - deprecate isl_int - improved support for multi piecewise quasi-affine expressions - allow the user to impose a bound on the number of low-level operations - add isl_id_to_ast_expr and isl_id_to_pw_aff - add isl_schedule_constraints - hide internal structure of isl_vec - remove support for piplib --- version: 0.12.2 date: Sun Jan 12 12:09:46 CET 2014 changes: - MinGW-w64 build fix - fix simplification bug --- version: 0.12.1 date: Wed Jul 24 12:54:46 CEST 2013 changes: - handle malloc returning NULL on zero-size allocation - fix regression in AST generator --- version: 0.12 date: Sun Jun 23 20:23:05 CEST 2013 changes: - add isl_val abstraction --- version: 0.11.2 date: Tue Apr 9 18:45:10 CEST 2013 changes: - make code generation output the same on Solaris - fix some hard to trigger bugs --- version: 0.11.1 date: Mon Dec 10 11:55:30 CET 2012 changes: - add LICENSE file to distribution - make code generation output independent of endianness --- version: 0.11 date: Mon Dec 3 08:17:18 CET 2012 changes: - change license from LGPL 2.1 to MIT - add support for multi piecewise quasi-affine expressions - add code generation - various minor bug fixes --- version: 0.10 date: Sun Jun 3 18:00:16 CEST 2012 changes: - support for interaction with dependence analysis - add public API for vectors - improved support for (piecewise) multi quasi-affine expressions - various minor bug fixes --- version: 0.09 date: Sat Dec 17 18:19:26 CET 2011 changes: - improved argument parsing - hide internal structure of isl_options - improved support for parameter sets - configurable scheduling --- version: 0.08 date: Fri Oct 21 12:36:20 CEST 2011 changes: - improved parsing - drop isl_div abstraction - rename isl_dim to isl_space - |- explicitly differentiate between spaces of maps, sets and parameter sets - add support for identifiers - add support for (piecewise) multi quasi-affine expressions - preliminary Python bindings --- version: 0.07 date: Tue Jul 12 19:34:51 CEST 2011 changes: - hide internal structures of isl_div and isl_constraint - preliminary scheduling - add support for local spaces and (piecewise) quasi-affine expressions --- version: 0.06 date: Fri Mar 18 15:59:16 CET 2011 changes: - improved parsing - consistency changes in API - hide internal structure of isl_ctx --- version: 0.05.1 date: Wed Jan 5 10:21:42 CET 2011 changes: - fix simple symmetry detection in parametric integer programming --- version: 0.05 date: Thu Dec 23 17:03:14 CET 2010 changes: - rename header files from isl_header.h to isl/header.h - add higher level interface for dependence analysis - improved argument parsing - optionally triangulate domains during Bernstein expansion - support extended PolyLib format - hide internal structure of some data types - improved coalescing - add simple symmetry detection in parametric integer programming --- version: 0.04 date: Fri Sep 10 12:57:50 CEST 2010 changes: - rename isl_pw_qpolynomial_fold_add - add isl_map_apply_pw_qpolynomial_fold - support named and nested spaces - support union sets and maps - add public API for matrices --- version: 0.03 date: Tue Jun 29 13:16:46 CEST 2010 changes: - new printing functions - support for "may" accesses in dependence analysis - improved coalescing - improved transitive closure - fix several hard to trigger bugs - improved argument parsing - support parametric vertex enumeration for barvinok - optionally use Bernstein expansion to compute bounds isl-0.16.1/isl_union_macro.h0000664000175000017500000000024012645737061012651 00000000000000#define xFN(TYPE,NAME) TYPE ## _ ## NAME #define FN(TYPE,NAME) xFN(TYPE,NAME) #define xS(TYPE,NAME) struct TYPE ## _ ## NAME #define S(TYPE,NAME) xS(TYPE,NAME) isl-0.16.1/isl_flow.c0000664000175000017500000022532712645737450011323 00000000000000/* * Copyright 2005-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * Copyright 2012 Universiteit Leiden * Copyright 2014 Ecole Normale Superieure * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France */ #include #include #include #include #include #include #include enum isl_restriction_type { isl_restriction_type_empty, isl_restriction_type_none, isl_restriction_type_input, isl_restriction_type_output }; struct isl_restriction { enum isl_restriction_type type; isl_set *source; isl_set *sink; }; /* Create a restriction of the given type. */ static __isl_give isl_restriction *isl_restriction_alloc( __isl_take isl_map *source_map, enum isl_restriction_type type) { isl_ctx *ctx; isl_restriction *restr; if (!source_map) return NULL; ctx = isl_map_get_ctx(source_map); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = type; isl_map_free(source_map); return restr; error: isl_map_free(source_map); return NULL; } /* Create a restriction that doesn't restrict anything. */ __isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map) { return isl_restriction_alloc(source_map, isl_restriction_type_none); } /* Create a restriction that removes everything. */ __isl_give isl_restriction *isl_restriction_empty( __isl_take isl_map *source_map) { return isl_restriction_alloc(source_map, isl_restriction_type_empty); } /* Create a restriction on the input of the maximization problem * based on the given source and sink restrictions. */ __isl_give isl_restriction *isl_restriction_input( __isl_take isl_set *source_restr, __isl_take isl_set *sink_restr) { isl_ctx *ctx; isl_restriction *restr; if (!source_restr || !sink_restr) goto error; ctx = isl_set_get_ctx(source_restr); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = isl_restriction_type_input; restr->source = source_restr; restr->sink = sink_restr; return restr; error: isl_set_free(source_restr); isl_set_free(sink_restr); return NULL; } /* Create a restriction on the output of the maximization problem * based on the given source restriction. */ __isl_give isl_restriction *isl_restriction_output( __isl_take isl_set *source_restr) { isl_ctx *ctx; isl_restriction *restr; if (!source_restr) return NULL; ctx = isl_set_get_ctx(source_restr); restr = isl_calloc_type(ctx, struct isl_restriction); if (!restr) goto error; restr->type = isl_restriction_type_output; restr->source = source_restr; return restr; error: isl_set_free(source_restr); return NULL; } __isl_null isl_restriction *isl_restriction_free( __isl_take isl_restriction *restr) { if (!restr) return NULL; isl_set_free(restr->source); isl_set_free(restr->sink); free(restr); return NULL; } isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr) { return restr ? isl_set_get_ctx(restr->source) : NULL; } /* A private structure to keep track of a mapping together with * a user-specified identifier and a boolean indicating whether * the map represents a must or may access/dependence. */ struct isl_labeled_map { struct isl_map *map; void *data; int must; }; /* A structure containing the input for dependence analysis: * - a sink * - n_must + n_may (<= max_source) sources * - a function for determining the relative order of sources and sink * The must sources are placed before the may sources. * * domain_map is an auxiliary map that maps the sink access relation * to the domain of this access relation. * This field is only needed when restrict_fn is set and * the field itself is set by isl_access_info_compute_flow. * * restrict_fn is a callback that (if not NULL) will be called * right before any lexicographical maximization. */ struct isl_access_info { isl_map *domain_map; struct isl_labeled_map sink; isl_access_level_before level_before; isl_access_restrict restrict_fn; void *restrict_user; int max_source; int n_must; int n_may; struct isl_labeled_map source[1]; }; /* A structure containing the output of dependence analysis: * - n_source dependences * - a wrapped subset of the sink for which definitely no source could be found * - a wrapped subset of the sink for which possibly no source could be found */ struct isl_flow { isl_set *must_no_source; isl_set *may_no_source; int n_source; struct isl_labeled_map *dep; }; /* Construct an isl_access_info structure and fill it up with * the given data. The number of sources is set to 0. */ __isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink, void *sink_user, isl_access_level_before fn, int max_source) { isl_ctx *ctx; struct isl_access_info *acc; if (!sink) return NULL; ctx = isl_map_get_ctx(sink); isl_assert(ctx, max_source >= 0, goto error); acc = isl_calloc(ctx, struct isl_access_info, sizeof(struct isl_access_info) + (max_source - 1) * sizeof(struct isl_labeled_map)); if (!acc) goto error; acc->sink.map = sink; acc->sink.data = sink_user; acc->level_before = fn; acc->max_source = max_source; acc->n_must = 0; acc->n_may = 0; return acc; error: isl_map_free(sink); return NULL; } /* Free the given isl_access_info structure. */ __isl_null isl_access_info *isl_access_info_free( __isl_take isl_access_info *acc) { int i; if (!acc) return NULL; isl_map_free(acc->domain_map); isl_map_free(acc->sink.map); for (i = 0; i < acc->n_must + acc->n_may; ++i) isl_map_free(acc->source[i].map); free(acc); return NULL; } isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc) { return acc ? isl_map_get_ctx(acc->sink.map) : NULL; } __isl_give isl_access_info *isl_access_info_set_restrict( __isl_take isl_access_info *acc, isl_access_restrict fn, void *user) { if (!acc) return NULL; acc->restrict_fn = fn; acc->restrict_user = user; return acc; } /* Add another source to an isl_access_info structure, making * sure the "must" sources are placed before the "may" sources. * This function may be called at most max_source times on a * given isl_access_info structure, with max_source as specified * in the call to isl_access_info_alloc that constructed the structure. */ __isl_give isl_access_info *isl_access_info_add_source( __isl_take isl_access_info *acc, __isl_take isl_map *source, int must, void *source_user) { isl_ctx *ctx; if (!acc) goto error; ctx = isl_map_get_ctx(acc->sink.map); isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error); if (must) { if (acc->n_may) acc->source[acc->n_must + acc->n_may] = acc->source[acc->n_must]; acc->source[acc->n_must].map = source; acc->source[acc->n_must].data = source_user; acc->source[acc->n_must].must = 1; acc->n_must++; } else { acc->source[acc->n_must + acc->n_may].map = source; acc->source[acc->n_must + acc->n_may].data = source_user; acc->source[acc->n_must + acc->n_may].must = 0; acc->n_may++; } return acc; error: isl_map_free(source); isl_access_info_free(acc); return NULL; } /* Return -n, 0 or n (with n a positive value), depending on whether * the source access identified by p1 should be sorted before, together * or after that identified by p2. * * If p1 appears before p2, then it should be sorted first. * For more generic initial schedules, it is possible that neither * p1 nor p2 appears before the other, or at least not in any obvious way. * We therefore also check if p2 appears before p1, in which case p2 * should be sorted first. * If not, we try to order the two statements based on the description * of the iteration domains. This results in an arbitrary, but fairly * stable ordering. */ static int access_sort_cmp(const void *p1, const void *p2, void *user) { isl_access_info *acc = user; const struct isl_labeled_map *i1, *i2; int level1, level2; uint32_t h1, h2; i1 = (const struct isl_labeled_map *) p1; i2 = (const struct isl_labeled_map *) p2; level1 = acc->level_before(i1->data, i2->data); if (level1 % 2) return -1; level2 = acc->level_before(i2->data, i1->data); if (level2 % 2) return 1; h1 = isl_map_get_hash(i1->map); h2 = isl_map_get_hash(i2->map); return h1 > h2 ? 1 : h1 < h2 ? -1 : 0; } /* Sort the must source accesses in their textual order. */ static __isl_give isl_access_info *isl_access_info_sort_sources( __isl_take isl_access_info *acc) { if (!acc) return NULL; if (acc->n_must <= 1) return acc; if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map), access_sort_cmp, acc) < 0) return isl_access_info_free(acc); return acc; } /* Align the parameters of the two spaces if needed and then call * isl_space_join. */ static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left, __isl_take isl_space *right) { if (isl_space_match(left, isl_dim_param, right, isl_dim_param)) return isl_space_join(left, right); left = isl_space_align_params(left, isl_space_copy(right)); right = isl_space_align_params(right, isl_space_copy(left)); return isl_space_join(left, right); } /* Initialize an empty isl_flow structure corresponding to a given * isl_access_info structure. * For each must access, two dependences are created (initialized * to the empty relation), one for the resulting must dependences * and one for the resulting may dependences. May accesses can * only lead to may dependences, so only one dependence is created * for each of them. * This function is private as isl_flow structures are only supposed * to be created by isl_access_info_compute_flow. */ static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc) { int i, n; struct isl_ctx *ctx; struct isl_flow *dep; if (!acc) return NULL; ctx = isl_map_get_ctx(acc->sink.map); dep = isl_calloc_type(ctx, struct isl_flow); if (!dep) return NULL; n = 2 * acc->n_must + acc->n_may; dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n); if (n && !dep->dep) goto error; dep->n_source = n; for (i = 0; i < acc->n_must; ++i) { isl_space *dim; dim = space_align_and_join( isl_map_get_space(acc->source[i].map), isl_space_reverse(isl_map_get_space(acc->sink.map))); dep->dep[2 * i].map = isl_map_empty(dim); dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map); dep->dep[2 * i].data = acc->source[i].data; dep->dep[2 * i + 1].data = acc->source[i].data; dep->dep[2 * i].must = 1; dep->dep[2 * i + 1].must = 0; if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map) goto error; } for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) { isl_space *dim; dim = space_align_and_join( isl_map_get_space(acc->source[i].map), isl_space_reverse(isl_map_get_space(acc->sink.map))); dep->dep[acc->n_must + i].map = isl_map_empty(dim); dep->dep[acc->n_must + i].data = acc->source[i].data; dep->dep[acc->n_must + i].must = 0; if (!dep->dep[acc->n_must + i].map) goto error; } return dep; error: isl_flow_free(dep); return NULL; } /* Iterate over all sources and for each resulting flow dependence * that is not empty, call the user specfied function. * The second argument in this function call identifies the source, * while the third argument correspond to the final argument of * the isl_flow_foreach call. */ isl_stat isl_flow_foreach(__isl_keep isl_flow *deps, isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user, void *user), void *user) { int i; if (!deps) return isl_stat_error; for (i = 0; i < deps->n_source; ++i) { if (isl_map_plain_is_empty(deps->dep[i].map)) continue; if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must, deps->dep[i].data, user) < 0) return isl_stat_error; } return isl_stat_ok; } /* Return a copy of the subset of the sink for which no source could be found. */ __isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must) { if (!deps) return NULL; if (must) return isl_set_unwrap(isl_set_copy(deps->must_no_source)); else return isl_set_unwrap(isl_set_copy(deps->may_no_source)); } void isl_flow_free(__isl_take isl_flow *deps) { int i; if (!deps) return; isl_set_free(deps->must_no_source); isl_set_free(deps->may_no_source); if (deps->dep) { for (i = 0; i < deps->n_source; ++i) isl_map_free(deps->dep[i].map); free(deps->dep); } free(deps); } isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps) { return deps ? isl_set_get_ctx(deps->must_no_source) : NULL; } /* Return a map that enforces that the domain iteration occurs after * the range iteration at the given level. * If level is odd, then the domain iteration should occur after * the target iteration in their shared level/2 outermost loops. * In this case we simply need to enforce that these outermost * loop iterations are the same. * If level is even, then the loop iterator of the domain should * be greater than the loop iterator of the range at the last * of the level/2 shared loops, i.e., loop level/2 - 1. */ static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level) { struct isl_basic_map *bmap; if (level % 2) bmap = isl_basic_map_equal(dim, level/2); else bmap = isl_basic_map_more_at(dim, level/2 - 1); return isl_map_from_basic_map(bmap); } /* Compute the partial lexicographic maximum of "dep" on domain "sink", * but first check if the user has set acc->restrict_fn and if so * update either the input or the output of the maximization problem * with respect to the resulting restriction. * * Since the user expects a mapping from sink iterations to source iterations, * whereas the domain of "dep" is a wrapped map, mapping sink iterations * to accessed array elements, we first need to project out the accessed * sink array elements by applying acc->domain_map. * Similarly, the sink restriction specified by the user needs to be * converted back to the wrapped map. */ static __isl_give isl_map *restricted_partial_lexmax( __isl_keep isl_access_info *acc, __isl_take isl_map *dep, int source, __isl_take isl_set *sink, __isl_give isl_set **empty) { isl_map *source_map; isl_restriction *restr; isl_set *sink_domain; isl_set *sink_restr; isl_map *res; if (!acc->restrict_fn) return isl_map_partial_lexmax(dep, sink, empty); source_map = isl_map_copy(dep); source_map = isl_map_apply_domain(source_map, isl_map_copy(acc->domain_map)); sink_domain = isl_set_copy(sink); sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map)); restr = acc->restrict_fn(source_map, sink_domain, acc->source[source].data, acc->restrict_user); isl_set_free(sink_domain); isl_map_free(source_map); if (!restr) goto error; if (restr->type == isl_restriction_type_input) { dep = isl_map_intersect_range(dep, isl_set_copy(restr->source)); sink_restr = isl_set_copy(restr->sink); sink_restr = isl_set_apply(sink_restr, isl_map_reverse(isl_map_copy(acc->domain_map))); sink = isl_set_intersect(sink, sink_restr); } else if (restr->type == isl_restriction_type_empty) { isl_space *space = isl_map_get_space(dep); isl_map_free(dep); dep = isl_map_empty(space); } res = isl_map_partial_lexmax(dep, sink, empty); if (restr->type == isl_restriction_type_output) res = isl_map_intersect_range(res, isl_set_copy(restr->source)); isl_restriction_free(restr); return res; error: isl_map_free(dep); isl_set_free(sink); *empty = NULL; return NULL; } /* Compute the last iteration of must source j that precedes the sink * at the given level for sink iterations in set_C. * The subset of set_C for which no such iteration can be found is returned * in *empty. */ static struct isl_map *last_source(struct isl_access_info *acc, struct isl_set *set_C, int j, int level, struct isl_set **empty) { struct isl_map *read_map; struct isl_map *write_map; struct isl_map *dep_map; struct isl_map *after; struct isl_map *result; read_map = isl_map_copy(acc->sink.map); write_map = isl_map_copy(acc->source[j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); after = after_at_level(isl_map_get_space(dep_map), level); dep_map = isl_map_intersect(dep_map, after); result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty); result = isl_map_reverse(result); return result; } /* For a given mapping between iterations of must source j and iterations * of the sink, compute the last iteration of must source k preceding * the sink at level before_level for any of the sink iterations, * but following the corresponding iteration of must source j at level * after_level. */ static struct isl_map *last_later_source(struct isl_access_info *acc, struct isl_map *old_map, int j, int before_level, int k, int after_level, struct isl_set **empty) { isl_space *dim; struct isl_set *set_C; struct isl_map *read_map; struct isl_map *write_map; struct isl_map *dep_map; struct isl_map *after_write; struct isl_map *before_read; struct isl_map *result; set_C = isl_map_range(isl_map_copy(old_map)); read_map = isl_map_copy(acc->sink.map); write_map = isl_map_copy(acc->source[k].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); dim = space_align_and_join(isl_map_get_space(acc->source[k].map), isl_space_reverse(isl_map_get_space(acc->source[j].map))); after_write = after_at_level(dim, after_level); after_write = isl_map_apply_range(after_write, old_map); after_write = isl_map_reverse(after_write); dep_map = isl_map_intersect(dep_map, after_write); before_read = after_at_level(isl_map_get_space(dep_map), before_level); dep_map = isl_map_intersect(dep_map, before_read); result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty); result = isl_map_reverse(result); return result; } /* Given a shared_level between two accesses, return 1 if the * the first can precede the second at the requested target_level. * If the target level is odd, i.e., refers to a statement level * dimension, then first needs to precede second at the requested * level, i.e., shared_level must be equal to target_level. * If the target level is odd, then the two loops should share * at least the requested number of outer loops. */ static int can_precede_at_level(int shared_level, int target_level) { if (shared_level < target_level) return 0; if ((target_level % 2) && shared_level > target_level) return 0; return 1; } /* Given a possible flow dependence temp_rel[j] between source j and the sink * at level sink_level, remove those elements for which * there is an iteration of another source k < j that is closer to the sink. * The flow dependences temp_rel[k] are updated with the improved sources. * Any improved source needs to precede the sink at the same level * and needs to follow source j at the same or a deeper level. * The lower this level, the later the execution date of source k. * We therefore consider lower levels first. * * If temp_rel[j] is empty, then there can be no improvement and * we return immediately. */ static int intermediate_sources(__isl_keep isl_access_info *acc, struct isl_map **temp_rel, int j, int sink_level) { int k, level; int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1; if (isl_map_plain_is_empty(temp_rel[j])) return 0; for (k = j - 1; k >= 0; --k) { int plevel, plevel2; plevel = acc->level_before(acc->source[k].data, acc->sink.data); if (!can_precede_at_level(plevel, sink_level)) continue; plevel2 = acc->level_before(acc->source[j].data, acc->source[k].data); for (level = sink_level; level <= depth; ++level) { struct isl_map *T; struct isl_set *trest; struct isl_map *copy; if (!can_precede_at_level(plevel2, level)) continue; copy = isl_map_copy(temp_rel[j]); T = last_later_source(acc, copy, j, sink_level, k, level, &trest); if (isl_map_plain_is_empty(T)) { isl_set_free(trest); isl_map_free(T); continue; } temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest); temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T); } } return 0; } /* Compute all iterations of may source j that precedes the sink at the given * level for sink iterations in set_C. */ static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc, __isl_take isl_set *set_C, int j, int level) { isl_map *read_map; isl_map *write_map; isl_map *dep_map; isl_map *after; read_map = isl_map_copy(acc->sink.map); read_map = isl_map_intersect_domain(read_map, set_C); write_map = isl_map_copy(acc->source[acc->n_must + j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); after = after_at_level(isl_map_get_space(dep_map), level); dep_map = isl_map_intersect(dep_map, after); return isl_map_reverse(dep_map); } /* For a given mapping between iterations of must source k and iterations * of the sink, compute the all iteration of may source j preceding * the sink at level before_level for any of the sink iterations, * but following the corresponding iteration of must source k at level * after_level. */ static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc, __isl_take isl_map *old_map, int j, int before_level, int k, int after_level) { isl_space *dim; isl_set *set_C; isl_map *read_map; isl_map *write_map; isl_map *dep_map; isl_map *after_write; isl_map *before_read; set_C = isl_map_range(isl_map_copy(old_map)); read_map = isl_map_copy(acc->sink.map); read_map = isl_map_intersect_domain(read_map, set_C); write_map = isl_map_copy(acc->source[acc->n_must + j].map); write_map = isl_map_reverse(write_map); dep_map = isl_map_apply_range(read_map, write_map); dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map), isl_space_reverse(isl_map_get_space(acc->source[k].map))); after_write = after_at_level(dim, after_level); after_write = isl_map_apply_range(after_write, old_map); after_write = isl_map_reverse(after_write); dep_map = isl_map_intersect(dep_map, after_write); before_read = after_at_level(isl_map_get_space(dep_map), before_level); dep_map = isl_map_intersect(dep_map, before_read); return isl_map_reverse(dep_map); } /* Given the must and may dependence relations for the must accesses * for level sink_level, check if there are any accesses of may access j * that occur in between and return their union. * If some of these accesses are intermediate with respect to * (previously thought to be) must dependences, then these * must dependences are turned into may dependences. */ static __isl_give isl_map *all_intermediate_sources( __isl_keep isl_access_info *acc, __isl_take isl_map *map, struct isl_map **must_rel, struct isl_map **may_rel, int j, int sink_level) { int k, level; int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map, isl_dim_in) + 1; for (k = 0; k < acc->n_must; ++k) { int plevel; if (isl_map_plain_is_empty(may_rel[k]) && isl_map_plain_is_empty(must_rel[k])) continue; plevel = acc->level_before(acc->source[k].data, acc->source[acc->n_must + j].data); for (level = sink_level; level <= depth; ++level) { isl_map *T; isl_map *copy; isl_set *ran; if (!can_precede_at_level(plevel, level)) continue; copy = isl_map_copy(may_rel[k]); T = all_later_sources(acc, copy, j, sink_level, k, level); map = isl_map_union(map, T); copy = isl_map_copy(must_rel[k]); T = all_later_sources(acc, copy, j, sink_level, k, level); ran = isl_map_range(isl_map_copy(T)); map = isl_map_union(map, T); may_rel[k] = isl_map_union_disjoint(may_rel[k], isl_map_intersect_range(isl_map_copy(must_rel[k]), isl_set_copy(ran))); T = isl_map_from_domain_and_range( isl_set_universe( isl_space_domain(isl_map_get_space(must_rel[k]))), ran); must_rel[k] = isl_map_subtract(must_rel[k], T); } } return map; } /* Compute dependences for the case where all accesses are "may" * accesses, which boils down to computing memory based dependences. * The generic algorithm would also work in this case, but it would * be overkill to use it. */ static __isl_give isl_flow *compute_mem_based_dependences( __isl_keep isl_access_info *acc) { int i; isl_set *mustdo; isl_set *maydo; isl_flow *res; res = isl_flow_alloc(acc); if (!res) return NULL; mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); maydo = isl_set_copy(mustdo); for (i = 0; i < acc->n_may; ++i) { int plevel; int is_before; isl_space *dim; isl_map *before; isl_map *dep; plevel = acc->level_before(acc->source[i].data, acc->sink.data); is_before = plevel & 1; plevel >>= 1; dim = isl_map_get_space(res->dep[i].map); if (is_before) before = isl_map_lex_le_first(dim, plevel); else before = isl_map_lex_lt_first(dim, plevel); dep = isl_map_apply_range(isl_map_copy(acc->source[i].map), isl_map_reverse(isl_map_copy(acc->sink.map))); dep = isl_map_intersect(dep, before); mustdo = isl_set_subtract(mustdo, isl_map_range(isl_map_copy(dep))); res->dep[i].map = isl_map_union(res->dep[i].map, dep); } res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo)); res->must_no_source = mustdo; return res; } /* Compute dependences for the case where there is at least one * "must" access. * * The core algorithm considers all levels in which a source may precede * the sink, where a level may either be a statement level or a loop level. * The outermost statement level is 1, the first loop level is 2, etc... * The algorithm basically does the following: * for all levels l of the read access from innermost to outermost * for all sources w that may precede the sink access at that level * compute the last iteration of the source that precedes the sink access * at that level * add result to possible last accesses at level l of source w * for all sources w2 that we haven't considered yet at this level that may * also precede the sink access * for all levels l2 of w from l to innermost * for all possible last accesses dep of w at l * compute last iteration of w2 between the source and sink * of dep * add result to possible last accesses at level l of write w2 * and replace possible last accesses dep by the remainder * * * The above algorithm is applied to the must access. During the course * of the algorithm, we keep track of sink iterations that still * need to be considered. These iterations are split into those that * haven't been matched to any source access (mustdo) and those that have only * been matched to may accesses (maydo). * At the end of each level, we also consider the may accesses. * In particular, we consider may accesses that precede the remaining * sink iterations, moving elements from mustdo to maydo when appropriate, * and may accesses that occur between a must source and a sink of any * dependences found at the current level, turning must dependences into * may dependences when appropriate. * */ static __isl_give isl_flow *compute_val_based_dependences( __isl_keep isl_access_info *acc) { isl_ctx *ctx; isl_flow *res; isl_set *mustdo = NULL; isl_set *maydo = NULL; int level, j; int depth; isl_map **must_rel = NULL; isl_map **may_rel = NULL; if (!acc) return NULL; res = isl_flow_alloc(acc); if (!res) goto error; ctx = isl_map_get_ctx(acc->sink.map); depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1; mustdo = isl_map_domain(isl_map_copy(acc->sink.map)); maydo = isl_set_empty(isl_set_get_space(mustdo)); if (!mustdo || !maydo) goto error; if (isl_set_plain_is_empty(mustdo)) goto done; must_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); may_rel = isl_alloc_array(ctx, struct isl_map *, acc->n_must); if (!must_rel || !may_rel) goto error; for (level = depth; level >= 1; --level) { for (j = acc->n_must-1; j >=0; --j) { isl_space *space; space = isl_map_get_space(res->dep[2 * j].map); must_rel[j] = isl_map_empty(space); may_rel[j] = isl_map_copy(must_rel[j]); } for (j = acc->n_must - 1; j >= 0; --j) { struct isl_map *T; struct isl_set *rest; int plevel; plevel = acc->level_before(acc->source[j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; T = last_source(acc, mustdo, j, level, &rest); must_rel[j] = isl_map_union_disjoint(must_rel[j], T); mustdo = rest; intermediate_sources(acc, must_rel, j, level); T = last_source(acc, maydo, j, level, &rest); may_rel[j] = isl_map_union_disjoint(may_rel[j], T); maydo = rest; intermediate_sources(acc, may_rel, j, level); if (isl_set_plain_is_empty(mustdo) && isl_set_plain_is_empty(maydo)) break; } for (j = j - 1; j >= 0; --j) { int plevel; plevel = acc->level_before(acc->source[j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; intermediate_sources(acc, must_rel, j, level); intermediate_sources(acc, may_rel, j, level); } for (j = 0; j < acc->n_may; ++j) { int plevel; isl_map *T; isl_set *ran; plevel = acc->level_before(acc->source[acc->n_must + j].data, acc->sink.data); if (!can_precede_at_level(plevel, level)) continue; T = all_sources(acc, isl_set_copy(maydo), j, level); res->dep[2 * acc->n_must + j].map = isl_map_union(res->dep[2 * acc->n_must + j].map, T); T = all_sources(acc, isl_set_copy(mustdo), j, level); ran = isl_map_range(isl_map_copy(T)); res->dep[2 * acc->n_must + j].map = isl_map_union(res->dep[2 * acc->n_must + j].map, T); mustdo = isl_set_subtract(mustdo, isl_set_copy(ran)); maydo = isl_set_union_disjoint(maydo, ran); T = res->dep[2 * acc->n_must + j].map; T = all_intermediate_sources(acc, T, must_rel, may_rel, j, level); res->dep[2 * acc->n_must + j].map = T; } for (j = acc->n_must - 1; j >= 0; --j) { res->dep[2 * j].map = isl_map_union_disjoint(res->dep[2 * j].map, must_rel[j]); res->dep[2 * j + 1].map = isl_map_union_disjoint(res->dep[2 * j + 1].map, may_rel[j]); } if (isl_set_plain_is_empty(mustdo) && isl_set_plain_is_empty(maydo)) break; } free(must_rel); free(may_rel); done: res->must_no_source = mustdo; res->may_no_source = maydo; return res; error: isl_flow_free(res); isl_set_free(mustdo); isl_set_free(maydo); free(must_rel); free(may_rel); return NULL; } /* Given a "sink" access, a list of n "source" accesses, * compute for each iteration of the sink access * and for each element accessed by that iteration, * the source access in the list that last accessed the * element accessed by the sink access before this sink access. * Each access is given as a map from the loop iterators * to the array indices. * The result is a list of n relations between source and sink * iterations and a subset of the domain of the sink access, * corresponding to those iterations that access an element * not previously accessed. * * To deal with multi-valued sink access relations, the sink iteration * domain is first extended with dimensions that correspond to the data * space. However, these extra dimensions are not projected out again. * It is up to the caller to decide whether these dimensions should be kept. */ static __isl_give isl_flow *access_info_compute_flow_core( __isl_take isl_access_info *acc) { struct isl_flow *res = NULL; if (!acc) return NULL; acc->sink.map = isl_map_range_map(acc->sink.map); if (!acc->sink.map) goto error; if (acc->n_must == 0) res = compute_mem_based_dependences(acc); else { acc = isl_access_info_sort_sources(acc); res = compute_val_based_dependences(acc); } acc = isl_access_info_free(acc); if (!res) return NULL; if (!res->must_no_source || !res->may_no_source) goto error; return res; error: isl_access_info_free(acc); isl_flow_free(res); return NULL; } /* Given a "sink" access, a list of n "source" accesses, * compute for each iteration of the sink access * and for each element accessed by that iteration, * the source access in the list that last accessed the * element accessed by the sink access before this sink access. * Each access is given as a map from the loop iterators * to the array indices. * The result is a list of n relations between source and sink * iterations and a subset of the domain of the sink access, * corresponding to those iterations that access an element * not previously accessed. * * To deal with multi-valued sink access relations, * access_info_compute_flow_core extends the sink iteration domain * with dimensions that correspond to the data space. These extra dimensions * are projected out from the result of access_info_compute_flow_core. */ __isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc) { int j; struct isl_flow *res; if (!acc) return NULL; acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map)); res = access_info_compute_flow_core(acc); if (!res) return NULL; for (j = 0; j < res->n_source; ++j) { res->dep[j].map = isl_map_range_factor_domain(res->dep[j].map); if (!res->dep[j].map) goto error; } return res; error: isl_flow_free(res); return NULL; } /* Keep track of some information about a schedule for a given * access. In particular, keep track of which dimensions * have a constant value and of the actual constant values. */ struct isl_sched_info { int *is_cst; isl_vec *cst; }; static void sched_info_free(__isl_take struct isl_sched_info *info) { if (!info) return; isl_vec_free(info->cst); free(info->is_cst); free(info); } /* Extract information on the constant dimensions of the schedule * for a given access. The "map" is of the form * * [S -> D] -> A * * with S the schedule domain, D the iteration domain and A the data domain. */ static __isl_give struct isl_sched_info *sched_info_alloc( __isl_keep isl_map *map) { isl_ctx *ctx; isl_space *dim; struct isl_sched_info *info; int i, n; if (!map) return NULL; dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map))); if (!dim) return NULL; n = isl_space_dim(dim, isl_dim_in); isl_space_free(dim); ctx = isl_map_get_ctx(map); info = isl_alloc_type(ctx, struct isl_sched_info); if (!info) return NULL; info->is_cst = isl_alloc_array(ctx, int, n); info->cst = isl_vec_alloc(ctx, n); if (n && (!info->is_cst || !info->cst)) goto error; for (i = 0; i < n; ++i) { isl_val *v; v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i); if (!v) goto error; info->is_cst[i] = !isl_val_is_nan(v); if (info->is_cst[i]) info->cst = isl_vec_set_element_val(info->cst, i, v); else isl_val_free(v); } return info; error: sched_info_free(info); return NULL; } /* This structure represents the input for a dependence analysis computation. * * "sink" represents the sink accesses. * "must_source" represents the definite source accesses. * "may_source" represents the possible source accesses. * * "schedule" or "schedule_map" represents the execution order. * Exactly one of these fields should be NULL. The other field * determines the execution order. * * The domains of these four maps refer to the same iteration spaces(s). * The ranges of the first three maps also refer to the same data space(s). * * After a call to isl_union_access_info_introduce_schedule, * the "schedule_map" field no longer contains useful information. */ struct isl_union_access_info { isl_union_map *sink; isl_union_map *must_source; isl_union_map *may_source; isl_schedule *schedule; isl_union_map *schedule_map; }; /* Free "access" and return NULL. */ __isl_null isl_union_access_info *isl_union_access_info_free( __isl_take isl_union_access_info *access) { if (!access) return NULL; isl_union_map_free(access->sink); isl_union_map_free(access->must_source); isl_union_map_free(access->may_source); isl_schedule_free(access->schedule); isl_union_map_free(access->schedule_map); free(access); return NULL; } /* Return the isl_ctx to which "access" belongs. */ isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access) { return access ? isl_union_map_get_ctx(access->sink) : NULL; } /* Create a new isl_union_access_info with the given sink accesses and * and no source accesses or schedule information. * * By default, we use the schedule field of the isl_union_access_info, * but this may be overridden by a call * to isl_union_access_info_set_schedule_map. */ __isl_give isl_union_access_info *isl_union_access_info_from_sink( __isl_take isl_union_map *sink) { isl_ctx *ctx; isl_space *space; isl_union_map *empty; isl_union_access_info *access; if (!sink) return NULL; ctx = isl_union_map_get_ctx(sink); access = isl_alloc_type(ctx, isl_union_access_info); if (!access) goto error; space = isl_union_map_get_space(sink); empty = isl_union_map_empty(isl_space_copy(space)); access->sink = sink; access->must_source = isl_union_map_copy(empty); access->may_source = empty; access->schedule = isl_schedule_empty(space); access->schedule_map = NULL; if (!access->sink || !access->must_source || !access->may_source || !access->schedule) return isl_union_access_info_free(access); return access; error: isl_union_map_free(sink); return NULL; } /* Replace the definite source accesses of "access" by "must_source". */ __isl_give isl_union_access_info *isl_union_access_info_set_must_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *must_source) { if (!access || !must_source) goto error; isl_union_map_free(access->must_source); access->must_source = must_source; return access; error: isl_union_access_info_free(access); isl_union_map_free(must_source); return NULL; } /* Replace the possible source accesses of "access" by "may_source". */ __isl_give isl_union_access_info *isl_union_access_info_set_may_source( __isl_take isl_union_access_info *access, __isl_take isl_union_map *may_source) { if (!access || !may_source) goto error; isl_union_map_free(access->may_source); access->may_source = may_source; return access; error: isl_union_access_info_free(access); isl_union_map_free(may_source); return NULL; } /* Replace the schedule of "access" by "schedule". * Also free the schedule_map in case it was set last. */ __isl_give isl_union_access_info *isl_union_access_info_set_schedule( __isl_take isl_union_access_info *access, __isl_take isl_schedule *schedule) { if (!access || !schedule) goto error; access->schedule_map = isl_union_map_free(access->schedule_map); isl_schedule_free(access->schedule); access->schedule = schedule; return access; error: isl_union_access_info_free(access); isl_schedule_free(schedule); return NULL; } /* Replace the schedule map of "access" by "schedule_map". * Also free the schedule in case it was set last. */ __isl_give isl_union_access_info *isl_union_access_info_set_schedule_map( __isl_take isl_union_access_info *access, __isl_take isl_union_map *schedule_map) { if (!access || !schedule_map) goto error; isl_union_map_free(access->schedule_map); access->schedule = isl_schedule_free(access->schedule); access->schedule_map = schedule_map; return access; error: isl_union_access_info_free(access); isl_union_map_free(schedule_map); return NULL; } __isl_give isl_union_access_info *isl_union_access_info_copy( __isl_keep isl_union_access_info *access) { isl_union_access_info *copy; if (!access) return NULL; copy = isl_union_access_info_from_sink( isl_union_map_copy(access->sink)); copy = isl_union_access_info_set_must_source(copy, isl_union_map_copy(access->must_source)); copy = isl_union_access_info_set_may_source(copy, isl_union_map_copy(access->may_source)); if (access->schedule) copy = isl_union_access_info_set_schedule(copy, isl_schedule_copy(access->schedule)); else copy = isl_union_access_info_set_schedule_map(copy, isl_union_map_copy(access->schedule_map)); return copy; } /* Print a key-value pair of a YAML mapping to "p", * with key "name" and value "umap". */ static __isl_give isl_printer *print_union_map_field(__isl_take isl_printer *p, const char *name, __isl_keep isl_union_map *umap) { p = isl_printer_print_str(p, name); p = isl_printer_yaml_next(p); p = isl_printer_print_str(p, "\""); p = isl_printer_print_union_map(p, umap); p = isl_printer_print_str(p, "\""); p = isl_printer_yaml_next(p); return p; } /* Print the information contained in "access" to "p". * The information is printed as a YAML document. */ __isl_give isl_printer *isl_printer_print_union_access_info( __isl_take isl_printer *p, __isl_keep isl_union_access_info *access) { if (!access) return isl_printer_free(p); p = isl_printer_yaml_start_mapping(p); p = print_union_map_field(p, "sink", access->sink); p = print_union_map_field(p, "must_source", access->must_source); p = print_union_map_field(p, "may_source", access->may_source); if (access->schedule) { p = isl_printer_print_str(p, "schedule"); p = isl_printer_yaml_next(p); p = isl_printer_print_schedule(p, access->schedule); p = isl_printer_yaml_next(p); } else { p = print_union_map_field(p, "schedule_map", access->schedule_map); } p = isl_printer_yaml_end_mapping(p); return p; } /* Return a string representation of the information in "access". * The information is printed in flow format. */ __isl_give char *isl_union_access_info_to_str( __isl_keep isl_union_access_info *access) { isl_printer *p; char *s; if (!access) return NULL; p = isl_printer_to_str(isl_union_access_info_get_ctx(access)); p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW); p = isl_printer_print_union_access_info(p, access); s = isl_printer_get_str(p); isl_printer_free(p); return s; } /* Update the fields of "access" such that they all have the same parameters, * keeping in mind that the schedule_map field may be NULL and ignoring * the schedule field. */ static __isl_give isl_union_access_info *isl_union_access_info_align_params( __isl_take isl_union_access_info *access) { isl_space *space; if (!access) return NULL; space = isl_union_map_get_space(access->sink); space = isl_space_align_params(space, isl_union_map_get_space(access->must_source)); space = isl_space_align_params(space, isl_union_map_get_space(access->may_source)); if (access->schedule_map) space = isl_space_align_params(space, isl_union_map_get_space(access->schedule_map)); access->sink = isl_union_map_align_params(access->sink, isl_space_copy(space)); access->must_source = isl_union_map_align_params(access->must_source, isl_space_copy(space)); access->may_source = isl_union_map_align_params(access->may_source, isl_space_copy(space)); if (!access->schedule_map) { isl_space_free(space); } else { access->schedule_map = isl_union_map_align_params(access->schedule_map, space); if (!access->schedule_map) return isl_union_access_info_free(access); } if (!access->sink || !access->must_source || !access->may_source) return isl_union_access_info_free(access); return access; } /* Prepend the schedule dimensions to the iteration domains. * * That is, if the schedule is of the form * * D -> S * * while the access relations are of the form * * D -> A * * then the updated access relations are of the form * * [S -> D] -> A * * The schedule map is also replaced by the map * * [S -> D] -> D * * that is used during the internal computation. * Neither the original schedule map nor this updated schedule map * are used after the call to this function. */ static __isl_give isl_union_access_info * isl_union_access_info_introduce_schedule( __isl_take isl_union_access_info *access) { isl_union_map *sm; if (!access) return NULL; sm = isl_union_map_reverse(access->schedule_map); sm = isl_union_map_range_map(sm); access->sink = isl_union_map_apply_range(isl_union_map_copy(sm), access->sink); access->may_source = isl_union_map_apply_range(isl_union_map_copy(sm), access->may_source); access->must_source = isl_union_map_apply_range(isl_union_map_copy(sm), access->must_source); access->schedule_map = sm; if (!access->sink || !access->must_source || !access->may_source || !access->schedule_map) return isl_union_access_info_free(access); return access; } /* This structure represents the result of a dependence analysis computation. * * "must_dep" represents the full definite dependences * "may_dep" represents the full non-definite dependences. * Both are of the form * * [Source] -> [[Sink -> Data]] * * (after the schedule dimensions have been projected out). * "must_no_source" represents the subset of the sink accesses for which * definitely no source was found. * "may_no_source" represents the subset of the sink accesses for which * possibly, but not definitely, no source was found. */ struct isl_union_flow { isl_union_map *must_dep; isl_union_map *may_dep; isl_union_map *must_no_source; isl_union_map *may_no_source; }; /* Return the isl_ctx to which "flow" belongs. */ isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow) { return flow ? isl_union_map_get_ctx(flow->must_dep) : NULL; } /* Free "flow" and return NULL. */ __isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow) { if (!flow) return NULL; isl_union_map_free(flow->must_dep); isl_union_map_free(flow->may_dep); isl_union_map_free(flow->must_no_source); isl_union_map_free(flow->may_no_source); free(flow); return NULL; } void isl_union_flow_dump(__isl_keep isl_union_flow *flow) { if (!flow) return; fprintf(stderr, "must dependences: "); isl_union_map_dump(flow->must_dep); fprintf(stderr, "may dependences: "); isl_union_map_dump(flow->may_dep); fprintf(stderr, "must no source: "); isl_union_map_dump(flow->must_no_source); fprintf(stderr, "may no source: "); isl_union_map_dump(flow->may_no_source); } /* Return the full definite dependences in "flow", with accessed elements. */ __isl_give isl_union_map *isl_union_flow_get_full_must_dependence( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_copy(flow->must_dep); } /* Return the full possible dependences in "flow", including the definite * dependences, with accessed elements. */ __isl_give isl_union_map *isl_union_flow_get_full_may_dependence( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_union(isl_union_map_copy(flow->must_dep), isl_union_map_copy(flow->may_dep)); } /* Return the definite dependences in "flow", without the accessed elements. */ __isl_give isl_union_map *isl_union_flow_get_must_dependence( __isl_keep isl_union_flow *flow) { isl_union_map *dep; if (!flow) return NULL; dep = isl_union_map_copy(flow->must_dep); return isl_union_map_range_factor_domain(dep); } /* Return the possible dependences in "flow", including the definite * dependences, without the accessed elements. */ __isl_give isl_union_map *isl_union_flow_get_may_dependence( __isl_keep isl_union_flow *flow) { isl_union_map *dep; if (!flow) return NULL; dep = isl_union_map_union(isl_union_map_copy(flow->must_dep), isl_union_map_copy(flow->may_dep)); return isl_union_map_range_factor_domain(dep); } /* Return the non-definite dependences in "flow". */ static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_copy(flow->may_dep); } /* Return the subset of the sink accesses for which definitely * no source was found. */ __isl_give isl_union_map *isl_union_flow_get_must_no_source( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_copy(flow->must_no_source); } /* Return the subset of the sink accesses for which possibly * no source was found, including those for which definitely * no source was found. */ __isl_give isl_union_map *isl_union_flow_get_may_no_source( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_union(isl_union_map_copy(flow->must_no_source), isl_union_map_copy(flow->may_no_source)); } /* Return the subset of the sink accesses for which possibly, but not * definitely, no source was found. */ static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source( __isl_keep isl_union_flow *flow) { if (!flow) return NULL; return isl_union_map_copy(flow->may_no_source); } /* Create a new isl_union_flow object, initialized with empty * dependence relations and sink subsets. */ static __isl_give isl_union_flow *isl_union_flow_alloc( __isl_take isl_space *space) { isl_ctx *ctx; isl_union_map *empty; isl_union_flow *flow; if (!space) return NULL; ctx = isl_space_get_ctx(space); flow = isl_alloc_type(ctx, isl_union_flow); if (!flow) goto error; empty = isl_union_map_empty(space); flow->must_dep = isl_union_map_copy(empty); flow->may_dep = isl_union_map_copy(empty); flow->must_no_source = isl_union_map_copy(empty); flow->may_no_source = empty; if (!flow->must_dep || !flow->may_dep || !flow->must_no_source || !flow->may_no_source) return isl_union_flow_free(flow); return flow; error: isl_space_free(space); return NULL; } /* Drop the schedule dimensions from the iteration domains in "flow". * In particular, the schedule dimensions have been prepended * to the iteration domains prior to the dependence analysis by * replacing the iteration domain D, by the wrapped map [S -> D]. * Replace these wrapped maps by the original D. * * In particular, the dependences computed by access_info_compute_flow_core * are of the form * * [S -> D] -> [[S' -> D'] -> A] * * The schedule dimensions are projected out by first currying the range, * resulting in * * [S -> D] -> [S' -> [D' -> A]] * * and then computing the factor range * * D -> [D' -> A] */ static __isl_give isl_union_flow *isl_union_flow_drop_schedule( __isl_take isl_union_flow *flow) { if (!flow) return NULL; flow->must_dep = isl_union_map_range_curry(flow->must_dep); flow->must_dep = isl_union_map_factor_range(flow->must_dep); flow->may_dep = isl_union_map_range_curry(flow->may_dep); flow->may_dep = isl_union_map_factor_range(flow->may_dep); flow->must_no_source = isl_union_map_domain_factor_range(flow->must_no_source); flow->may_no_source = isl_union_map_domain_factor_range(flow->may_no_source); if (!flow->must_dep || !flow->may_dep || !flow->must_no_source || !flow->may_no_source) return isl_union_flow_free(flow); return flow; } struct isl_compute_flow_data { isl_union_map *must_source; isl_union_map *may_source; isl_union_flow *flow; int count; int must; isl_space *dim; struct isl_sched_info *sink_info; struct isl_sched_info **source_info; isl_access_info *accesses; }; static isl_stat count_matching_array(__isl_take isl_map *map, void *user) { int eq; isl_space *dim; struct isl_compute_flow_data *data; data = (struct isl_compute_flow_data *)user; dim = isl_space_range(isl_map_get_space(map)); eq = isl_space_is_equal(dim, data->dim); isl_space_free(dim); isl_map_free(map); if (eq < 0) return isl_stat_error; if (eq) data->count++; return isl_stat_ok; } static isl_stat collect_matching_array(__isl_take isl_map *map, void *user) { int eq; isl_space *dim; struct isl_sched_info *info; struct isl_compute_flow_data *data; data = (struct isl_compute_flow_data *)user; dim = isl_space_range(isl_map_get_space(map)); eq = isl_space_is_equal(dim, data->dim); isl_space_free(dim); if (eq < 0) goto error; if (!eq) { isl_map_free(map); return isl_stat_ok; } info = sched_info_alloc(map); data->source_info[data->count] = info; data->accesses = isl_access_info_add_source(data->accesses, map, data->must, info); data->count++; return isl_stat_ok; error: isl_map_free(map); return isl_stat_error; } /* Determine the shared nesting level and the "textual order" of * the given accesses. * * We first determine the minimal schedule dimension for both accesses. * * If among those dimensions, we can find one where both have a fixed * value and if moreover those values are different, then the previous * dimension is the last shared nesting level and the textual order * is determined based on the order of the fixed values. * If no such fixed values can be found, then we set the shared * nesting level to the minimal schedule dimension, with no textual ordering. */ static int before(void *first, void *second) { struct isl_sched_info *info1 = first; struct isl_sched_info *info2 = second; int n1, n2; int i; n1 = isl_vec_size(info1->cst); n2 = isl_vec_size(info2->cst); if (n2 < n1) n1 = n2; for (i = 0; i < n1; ++i) { int r; int cmp; if (!info1->is_cst[i]) continue; if (!info2->is_cst[i]) continue; cmp = isl_vec_cmp_element(info1->cst, info2->cst, i); if (cmp == 0) continue; r = 2 * i + (cmp < 0); return r; } return 2 * n1; } /* Given a sink access, look for all the source accesses that access * the same array and perform dataflow analysis on them using * isl_access_info_compute_flow_core. */ static isl_stat compute_flow(__isl_take isl_map *map, void *user) { int i; isl_ctx *ctx; struct isl_compute_flow_data *data; isl_flow *flow; isl_union_flow *df; data = (struct isl_compute_flow_data *)user; df = data->flow; ctx = isl_map_get_ctx(map); data->accesses = NULL; data->sink_info = NULL; data->source_info = NULL; data->count = 0; data->dim = isl_space_range(isl_map_get_space(map)); if (isl_union_map_foreach_map(data->must_source, &count_matching_array, data) < 0) goto error; if (isl_union_map_foreach_map(data->may_source, &count_matching_array, data) < 0) goto error; data->sink_info = sched_info_alloc(map); data->source_info = isl_calloc_array(ctx, struct isl_sched_info *, data->count); data->accesses = isl_access_info_alloc(isl_map_copy(map), data->sink_info, &before, data->count); if (!data->sink_info || (data->count && !data->source_info) || !data->accesses) goto error; data->count = 0; data->must = 1; if (isl_union_map_foreach_map(data->must_source, &collect_matching_array, data) < 0) goto error; data->must = 0; if (isl_union_map_foreach_map(data->may_source, &collect_matching_array, data) < 0) goto error; flow = access_info_compute_flow_core(data->accesses); data->accesses = NULL; if (!flow) goto error; df->must_no_source = isl_union_map_union(df->must_no_source, isl_union_map_from_map(isl_flow_get_no_source(flow, 1))); df->may_no_source = isl_union_map_union(df->may_no_source, isl_union_map_from_map(isl_flow_get_no_source(flow, 0))); for (i = 0; i < flow->n_source; ++i) { isl_union_map *dep; dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map)); if (flow->dep[i].must) df->must_dep = isl_union_map_union(df->must_dep, dep); else df->may_dep = isl_union_map_union(df->may_dep, dep); } isl_flow_free(flow); sched_info_free(data->sink_info); if (data->source_info) { for (i = 0; i < data->count; ++i) sched_info_free(data->source_info[i]); free(data->source_info); } isl_space_free(data->dim); isl_map_free(map); return isl_stat_ok; error: isl_access_info_free(data->accesses); sched_info_free(data->sink_info); if (data->source_info) { for (i = 0; i < data->count; ++i) sched_info_free(data->source_info[i]); free(data->source_info); } isl_space_free(data->dim); isl_map_free(map); return isl_stat_error; } /* Remove the must accesses from the may accesses. * * A must access always trumps a may access, so there is no need * for a must access to also be considered as a may access. Doing so * would only cost extra computations only to find out that * the duplicated may access does not make any difference. */ static __isl_give isl_union_access_info *isl_union_access_info_normalize( __isl_take isl_union_access_info *access) { if (!access) return NULL; access->may_source = isl_union_map_subtract(access->may_source, isl_union_map_copy(access->must_source)); if (!access->may_source) return isl_union_access_info_free(access); return access; } /* Given a description of the "sink" accesses, the "source" accesses and * a schedule, compute for each instance of a sink access * and for each element accessed by that instance, * the possible or definite source accesses that last accessed the * element accessed by the sink access before this sink access * in the sense that there is no intermediate definite source access. * * The must_no_source and may_no_source elements of the result * are subsets of access->sink. The elements must_dep and may_dep * map domain elements of access->{may,must)_source to * domain elements of access->sink. * * This function is used when only the schedule map representation * is available. * * We first prepend the schedule dimensions to the domain * of the accesses so that we can easily compare their relative order. * Then we consider each sink access individually in compute_flow. */ static __isl_give isl_union_flow *compute_flow_union_map( __isl_take isl_union_access_info *access) { struct isl_compute_flow_data data; access = isl_union_access_info_align_params(access); access = isl_union_access_info_introduce_schedule(access); if (!access) return NULL; data.must_source = access->must_source; data.may_source = access->may_source; data.flow = isl_union_flow_alloc(isl_union_map_get_space(access->sink)); if (isl_union_map_foreach_map(access->sink, &compute_flow, &data) < 0) goto error; data.flow = isl_union_flow_drop_schedule(data.flow); isl_union_access_info_free(access); return data.flow; error: isl_union_access_info_free(access); isl_union_flow_free(data.flow); return NULL; } /* A schedule access relation. * * The access relation "access" is of the form [S -> D] -> A, * where S corresponds to the prefix schedule at "node". * "must" is only relevant for source accesses and indicates * whether the access is a must source or a may source. */ struct isl_scheduled_access { isl_map *access; int must; isl_schedule_node *node; }; /* Data structure for keeping track of individual scheduled sink and source * accesses when computing dependence analysis based on a schedule tree. * * "n_sink" is the number of used entries in "sink" * "n_source" is the number of used entries in "source" * * "set_sink", "must" and "node" are only used inside collect_sink_source, * to keep track of the current node and * of what extract_sink_source needs to do. */ struct isl_compute_flow_schedule_data { isl_union_access_info *access; int n_sink; int n_source; struct isl_scheduled_access *sink; struct isl_scheduled_access *source; int set_sink; int must; isl_schedule_node *node; }; /* Align the parameters of all sinks with all sources. * * If there are no sinks or no sources, then no alignment is needed. */ static void isl_compute_flow_schedule_data_align_params( struct isl_compute_flow_schedule_data *data) { int i; isl_space *space; if (data->n_sink == 0 || data->n_source == 0) return; space = isl_map_get_space(data->sink[0].access); for (i = 1; i < data->n_sink; ++i) space = isl_space_align_params(space, isl_map_get_space(data->sink[i].access)); for (i = 0; i < data->n_source; ++i) space = isl_space_align_params(space, isl_map_get_space(data->source[i].access)); for (i = 0; i < data->n_sink; ++i) data->sink[i].access = isl_map_align_params(data->sink[i].access, isl_space_copy(space)); for (i = 0; i < data->n_source; ++i) data->source[i].access = isl_map_align_params(data->source[i].access, isl_space_copy(space)); isl_space_free(space); } /* Free all the memory referenced from "data". * Do not free "data" itself as it may be allocated on the stack. */ static void isl_compute_flow_schedule_data_clear( struct isl_compute_flow_schedule_data *data) { int i; if (!data->sink) return; for (i = 0; i < data->n_sink; ++i) { isl_map_free(data->sink[i].access); isl_schedule_node_free(data->sink[i].node); } for (i = 0; i < data->n_source; ++i) { isl_map_free(data->source[i].access); isl_schedule_node_free(data->source[i].node); } free(data->sink); } /* isl_schedule_foreach_schedule_node_top_down callback for counting * (an upper bound on) the number of sinks and sources. * * Sinks and sources are only extracted at leaves of the tree, * so we skip the node if it is not a leaf. * Otherwise we increment data->n_sink and data->n_source with * the number of spaces in the sink and source access domains * that reach this node. */ static isl_bool count_sink_source(__isl_keep isl_schedule_node *node, void *user) { struct isl_compute_flow_schedule_data *data = user; isl_union_set *domain; isl_union_map *umap; isl_bool r = isl_bool_false; if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf) return isl_bool_true; domain = isl_schedule_node_get_universe_domain(node); umap = isl_union_map_copy(data->access->sink); umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain)); data->n_sink += isl_union_map_n_map(umap); isl_union_map_free(umap); if (!umap) r = isl_bool_error; umap = isl_union_map_copy(data->access->must_source); umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain)); data->n_source += isl_union_map_n_map(umap); isl_union_map_free(umap); if (!umap) r = isl_bool_error; umap = isl_union_map_copy(data->access->may_source); umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain)); data->n_source += isl_union_map_n_map(umap); isl_union_map_free(umap); if (!umap) r = isl_bool_error; isl_union_set_free(domain); return r; } /* Add a single scheduled sink or source (depending on data->set_sink) * with scheduled access relation "map", must property data->must and * schedule node data->node to the list of sinks or sources. */ static isl_stat extract_sink_source(__isl_take isl_map *map, void *user) { struct isl_compute_flow_schedule_data *data = user; struct isl_scheduled_access *access; if (data->set_sink) access = data->sink + data->n_sink++; else access = data->source + data->n_source++; access->access = map; access->must = data->must; access->node = isl_schedule_node_copy(data->node); return isl_stat_ok; } /* isl_schedule_foreach_schedule_node_top_down callback for collecting * individual scheduled source and sink accesses (taking into account * the domain of the schedule). * * We only collect accesses at the leaves of the schedule tree. * We prepend the schedule dimensions at the leaf to the iteration * domains of the source and sink accesses and then extract * the individual accesses (per space). * * In particular, if the prefix schedule at the node is of the form * * D -> S * * while the access relations are of the form * * D -> A * * then the updated access relations are of the form * * [S -> D] -> A * * Note that S consists of a single space such that introducing S * in the access relations does not increase the number of spaces. */ static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node, void *user) { struct isl_compute_flow_schedule_data *data = user; isl_union_map *prefix; isl_union_map *umap; isl_bool r = isl_bool_false; if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf) return isl_bool_true; data->node = node; prefix = isl_schedule_node_get_prefix_schedule_relation(node); prefix = isl_union_map_reverse(prefix); prefix = isl_union_map_range_map(prefix); data->set_sink = 1; umap = isl_union_map_copy(data->access->sink); umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap); if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0) r = isl_bool_error; isl_union_map_free(umap); data->set_sink = 0; data->must = 1; umap = isl_union_map_copy(data->access->must_source); umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap); if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0) r = isl_bool_error; isl_union_map_free(umap); data->set_sink = 0; data->must = 0; umap = isl_union_map_copy(data->access->may_source); umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap); if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0) r = isl_bool_error; isl_union_map_free(umap); isl_union_map_free(prefix); return r; } /* isl_access_info_compute_flow callback for determining whether * the shared nesting level and the ordering within that level * for two scheduled accesses for use in compute_single_flow. * * The tokens passed to this function refer to the leaves * in the schedule tree where the accesses take place. * * If n is the shared number of loops, then we need to return * "2 * n + 1" if "first" precedes "second" inside the innermost * shared loop and "2 * n" otherwise. * * The innermost shared ancestor may be the leaves themselves * if the accesses take place in the same leaf. Otherwise, * it is either a set node or a sequence node. Only in the case * of a sequence node do we consider one access to precede the other. */ static int before_node(void *first, void *second) { isl_schedule_node *node1 = first; isl_schedule_node *node2 = second; isl_schedule_node *shared; int depth; int before = 0; shared = isl_schedule_node_get_shared_ancestor(node1, node2); if (!shared) return -1; depth = isl_schedule_node_get_schedule_depth(shared); if (isl_schedule_node_get_type(shared) == isl_schedule_node_sequence) { int pos1, pos2; pos1 = isl_schedule_node_get_ancestor_child_position(node1, shared); pos2 = isl_schedule_node_get_ancestor_child_position(node2, shared); before = pos1 < pos2; } isl_schedule_node_free(shared); return 2 * depth + before; } /* Add the scheduled sources from "data" that access * the same data space as "sink" to "access". */ static __isl_give isl_access_info *add_matching_sources( __isl_take isl_access_info *access, struct isl_scheduled_access *sink, struct isl_compute_flow_schedule_data *data) { int i; isl_space *space; space = isl_space_range(isl_map_get_space(sink->access)); for (i = 0; i < data->n_source; ++i) { struct isl_scheduled_access *source; isl_space *source_space; int eq; source = &data->source[i]; source_space = isl_map_get_space(source->access); source_space = isl_space_range(source_space); eq = isl_space_is_equal(space, source_space); isl_space_free(source_space); if (!eq) continue; if (eq < 0) goto error; access = isl_access_info_add_source(access, isl_map_copy(source->access), source->must, source->node); } isl_space_free(space); return access; error: isl_space_free(space); isl_access_info_free(access); return NULL; } /* Given a scheduled sink access relation "sink", compute the corresponding * dependences on the sources in "data" and add the computed dependences * to "uf". * * The dependences computed by access_info_compute_flow_core are of the form * * [S -> I] -> [[S' -> I'] -> A] * * The schedule dimensions are projected out by first currying the range, * resulting in * * [S -> I] -> [S' -> [I' -> A]] * * and then computing the factor range * * I -> [I' -> A] */ static __isl_give isl_union_flow *compute_single_flow( __isl_take isl_union_flow *uf, struct isl_scheduled_access *sink, struct isl_compute_flow_schedule_data *data) { int i; isl_access_info *access; isl_flow *flow; isl_map *map; if (!uf) return NULL; access = isl_access_info_alloc(isl_map_copy(sink->access), sink->node, &before_node, data->n_source); access = add_matching_sources(access, sink, data); flow = access_info_compute_flow_core(access); if (!flow) return isl_union_flow_free(uf); map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 1)); uf->must_no_source = isl_union_map_union(uf->must_no_source, isl_union_map_from_map(map)); map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 0)); uf->may_no_source = isl_union_map_union(uf->may_no_source, isl_union_map_from_map(map)); for (i = 0; i < flow->n_source; ++i) { isl_union_map *dep; map = isl_map_range_curry(isl_map_copy(flow->dep[i].map)); map = isl_map_factor_range(map); dep = isl_union_map_from_map(map); if (flow->dep[i].must) uf->must_dep = isl_union_map_union(uf->must_dep, dep); else uf->may_dep = isl_union_map_union(uf->may_dep, dep); } isl_flow_free(flow); return uf; } /* Given a description of the "sink" accesses, the "source" accesses and * a schedule, compute for each instance of a sink access * and for each element accessed by that instance, * the possible or definite source accesses that last accessed the * element accessed by the sink access before this sink access * in the sense that there is no intermediate definite source access. * Only consider dependences between statement instances that belong * to the domain of the schedule. * * The must_no_source and may_no_source elements of the result * are subsets of access->sink. The elements must_dep and may_dep * map domain elements of access->{may,must)_source to * domain elements of access->sink. * * This function is used when a schedule tree representation * is available. * * We extract the individual scheduled source and sink access relations * (taking into account the domain of the schedule) and * then compute dependences for each scheduled sink individually. */ static __isl_give isl_union_flow *compute_flow_schedule( __isl_take isl_union_access_info *access) { struct isl_compute_flow_schedule_data data = { access }; int i, n; isl_ctx *ctx; isl_union_flow *flow; ctx = isl_union_access_info_get_ctx(access); data.n_sink = 0; data.n_source = 0; if (isl_schedule_foreach_schedule_node_top_down(access->schedule, &count_sink_source, &data) < 0) goto error; n = data.n_sink + data.n_source; data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n); if (n && !data.sink) goto error; data.source = data.sink + data.n_sink; data.n_sink = 0; data.n_source = 0; if (isl_schedule_foreach_schedule_node_top_down(access->schedule, &collect_sink_source, &data) < 0) goto error; flow = isl_union_flow_alloc(isl_union_map_get_space(access->sink)); isl_compute_flow_schedule_data_align_params(&data); for (i = 0; i < data.n_sink; ++i) flow = compute_single_flow(flow, &data.sink[i], &data); isl_compute_flow_schedule_data_clear(&data); isl_union_access_info_free(access); return flow; error: isl_union_access_info_free(access); isl_compute_flow_schedule_data_clear(&data); return NULL; } /* Given a description of the "sink" accesses, the "source" accesses and * a schedule, compute for each instance of a sink access * and for each element accessed by that instance, * the possible or definite source accesses that last accessed the * element accessed by the sink access before this sink access * in the sense that there is no intermediate definite source access. * * The must_no_source and may_no_source elements of the result * are subsets of access->sink. The elements must_dep and may_dep * map domain elements of access->{may,must)_source to * domain elements of access->sink. * * We check whether the schedule is available as a schedule tree * or a schedule map and call the correpsonding function to perform * the analysis. */ __isl_give isl_union_flow *isl_union_access_info_compute_flow( __isl_take isl_union_access_info *access) { access = isl_union_access_info_normalize(access); if (!access) return NULL; if (access->schedule) return compute_flow_schedule(access); else return compute_flow_union_map(access); } /* Print the information contained in "flow" to "p". * The information is printed as a YAML document. */ __isl_give isl_printer *isl_printer_print_union_flow( __isl_take isl_printer *p, __isl_keep isl_union_flow *flow) { isl_union_map *umap; if (!flow) return isl_printer_free(p); p = isl_printer_yaml_start_mapping(p); p = print_union_map_field(p, "must_dependence", flow->must_dep); umap = isl_union_flow_get_may_dependence(flow); p = print_union_map_field(p, "may_dependence", umap); isl_union_map_free(umap); p = print_union_map_field(p, "must_no_source", flow->must_no_source); umap = isl_union_flow_get_may_no_source(flow); p = print_union_map_field(p, "may_no_source", umap); isl_union_map_free(umap); p = isl_printer_yaml_end_mapping(p); return p; } /* Return a string representation of the information in "flow". * The information is printed in flow format. */ __isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow) { isl_printer *p; char *s; if (!flow) return NULL; p = isl_printer_to_str(isl_union_flow_get_ctx(flow)); p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW); p = isl_printer_print_union_flow(p, flow); s = isl_printer_get_str(p); isl_printer_free(p); return s; } /* Given a collection of "sink" and "source" accesses, * compute for each iteration of a sink access * and for each element accessed by that iteration, * the source access in the list that last accessed the * element accessed by the sink access before this sink access. * Each access is given as a map from the loop iterators * to the array indices. * The result is a relations between source and sink * iterations and a subset of the domain of the sink accesses, * corresponding to those iterations that access an element * not previously accessed. * * We collect the inputs in an isl_union_access_info object, * call isl_union_access_info_compute_flow and extract * the outputs from the result. */ int isl_union_map_compute_flow(__isl_take isl_union_map *sink, __isl_take isl_union_map *must_source, __isl_take isl_union_map *may_source, __isl_take isl_union_map *schedule, __isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep, __isl_give isl_union_map **must_no_source, __isl_give isl_union_map **may_no_source) { isl_union_access_info *access; isl_union_flow *flow; access = isl_union_access_info_from_sink(sink); access = isl_union_access_info_set_must_source(access, must_source); access = isl_union_access_info_set_may_source(access, may_source); access = isl_union_access_info_set_schedule_map(access, schedule); flow = isl_union_access_info_compute_flow(access); if (must_dep) *must_dep = isl_union_flow_get_must_dependence(flow); if (may_dep) *may_dep = isl_union_flow_get_non_must_dependence(flow); if (must_no_source) *must_no_source = isl_union_flow_get_must_no_source(flow); if (may_no_source) *may_no_source = isl_union_flow_get_non_must_no_source(flow); isl_union_flow_free(flow); if ((must_dep && !*must_dep) || (may_dep && !*may_dep) || (must_no_source && !*must_no_source) || (may_no_source && !*may_no_source)) goto error; return 0; error: if (must_dep) *must_dep = isl_union_map_free(*must_dep); if (may_dep) *may_dep = isl_union_map_free(*may_dep); if (must_no_source) *must_no_source = isl_union_map_free(*must_no_source); if (may_no_source) *may_no_source = isl_union_map_free(*may_no_source); return -1; } isl-0.16.1/isl_bernstein.c0000664000175000017500000003573212645737060012341 00000000000000/* * Copyright 2006-2007 Universiteit Leiden * Copyright 2008-2009 Katholieke Universiteit Leuven * Copyright 2010 INRIA Saclay * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science, * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, * B-3001 Leuven, Belgium * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite, * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France */ #include #include #include #include #include #include #include #include #include #include #include struct bernstein_data { enum isl_fold type; isl_qpolynomial *poly; int check_tight; isl_cell *cell; isl_qpolynomial_fold *fold; isl_qpolynomial_fold *fold_tight; isl_pw_qpolynomial_fold *pwf; isl_pw_qpolynomial_fold *pwf_tight; }; static int vertex_is_integral(__isl_keep isl_basic_set *vertex) { unsigned nvar; unsigned nparam; int i; nvar = isl_basic_set_dim(vertex, isl_dim_set); nparam = isl_basic_set_dim(vertex, isl_dim_param); for (i = 0; i < nvar; ++i) { int r = nvar - 1 - i; if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) && !isl_int_is_negone(vertex->eq[r][1 + nparam + i])) return 0; } return 1; } static __isl_give isl_qpolynomial *vertex_coordinate( __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *dim) { unsigned nvar; unsigned nparam; int r; isl_int denom; isl_qpolynomial *v; nvar = isl_basic_set_dim(vertex, isl_dim_set); nparam = isl_basic_set_dim(vertex, isl_dim_param); r = nvar - 1 - i; isl_int_init(denom); isl_int_set(denom, vertex->eq[r][1 + nparam + i]); isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error); if (isl_int_is_pos(denom)) isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + isl_basic_set_total_dim(vertex)); else isl_int_neg(denom, denom); v = isl_qpolynomial_from_affine(dim, vertex->eq[r], denom); isl_int_clear(denom); return v; error: isl_space_free(dim); isl_int_clear(denom); return NULL; } /* Check whether the bound associated to the selection "k" is tight, * which is the case if we select exactly one vertex and if that vertex * is integral for all values of the parameters. */ static int is_tight(int *k, int n, int d, isl_cell *cell) { int i; for (i = 0; i < n; ++i) { int v; if (k[i] != d) { if (k[i]) return 0; continue; } v = cell->ids[n - 1 - i]; return vertex_is_integral(cell->vertices->v[v].vertex); } return 0; } static void add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom, int *k, int n, int d, struct bernstein_data *data) { isl_qpolynomial_fold *fold; fold = isl_qpolynomial_fold_alloc(data->type, b); if (data->check_tight && is_tight(k, n, d, data->cell)) data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom, data->fold_tight, fold); else data->fold = isl_qpolynomial_fold_fold_on_domain(dom, data->fold, fold); } /* Extract the coefficients of the Bernstein base polynomials and store * them in data->fold and data->fold_tight. * * In particular, the coefficient of each monomial * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]! * * c[i] contains the coefficient of the selected powers of the first i+1 vars. * multinom[i] contains the partial multinomial coefficient. */ static void extract_coefficients(isl_qpolynomial *poly, __isl_keep isl_set *dom, struct bernstein_data *data) { int i; int d; int n; isl_ctx *ctx; isl_qpolynomial **c = NULL; int *k = NULL; int *left = NULL; isl_vec *multinom = NULL; if (!poly) return; ctx = isl_qpolynomial_get_ctx(poly); n = isl_qpolynomial_dim(poly, isl_dim_in); d = isl_qpolynomial_degree(poly); isl_assert(ctx, n >= 2, return); c = isl_calloc_array(ctx, isl_qpolynomial *, n); k = isl_alloc_array(ctx, int, n); left = isl_alloc_array(ctx, int, n); multinom = isl_vec_alloc(ctx, n); if (!c || !k || !left || !multinom) goto error; isl_int_set_si(multinom->el[0], 1); for (k[0] = d; k[0] >= 0; --k[0]) { int i = 1; isl_qpolynomial_free(c[0]); c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]); left[0] = d - k[0]; k[1] = -1; isl_int_set(multinom->el[1], multinom->el[0]); while (i > 0) { if (i == n - 1) { int j; isl_space *dim; isl_qpolynomial *b; isl_qpolynomial *f; for (j = 2; j <= left[i - 1]; ++j) isl_int_divexact_ui(multinom->el[i], multinom->el[i], j); b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in, n - 1 - i, left[i - 1]); b = isl_qpolynomial_project_domain_on_params(b); dim = isl_qpolynomial_get_domain_space(b); f = isl_qpolynomial_rat_cst_on_domain(dim, ctx->one, multinom->el[i]); b = isl_qpolynomial_mul(b, f); k[n - 1] = left[n - 2]; add_fold(b, dom, k, n, d, data); --i; continue; } if (k[i] >= left[i - 1]) { --i; continue; } ++k[i]; if (k[i]) isl_int_divexact_ui(multinom->el[i], multinom->el[i], k[i]); isl_qpolynomial_free(c[i]); c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in, n - 1 - i, k[i]); left[i] = left[i - 1] - k[i]; k[i + 1] = -1; isl_int_set(multinom->el[i + 1], multinom->el[i]); ++i; } isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]); } for (i = 0; i < n; ++i) isl_qpolynomial_free(c[i]); isl_vec_free(multinom); free(left); free(k); free(c); return; error: isl_vec_free(multinom); free(left); free(k); if (c) for (i = 0; i < n; ++i) isl_qpolynomial_free(c[i]); free(c); return; } /* Perform bernstein expansion on the parametric vertices that are active * on "cell". * * data->poly has been homogenized in the calling function. * * We plug in the barycentric coordinates for the set variables * * \vec x = \sum_i \alpha_i v_i(\vec p) * * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension. * Next, we extract the coefficients of the Bernstein base polynomials. */ static int bernstein_coefficients_cell(__isl_take isl_cell *cell, void *user) { int i, j; struct bernstein_data *data = (struct bernstein_data *)user; isl_space *dim_param; isl_space *dim_dst; isl_qpolynomial *poly = data->poly; unsigned nvar; int n_vertices; isl_qpolynomial **subs; isl_pw_qpolynomial_fold *pwf; isl_set *dom; isl_ctx *ctx; if (!poly) goto error; nvar = isl_qpolynomial_dim(poly, isl_dim_in) - 1; n_vertices = cell->n_vertices; ctx = isl_qpolynomial_get_ctx(poly); if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate) return isl_cell_foreach_simplex(cell, &bernstein_coefficients_cell, user); subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar); if (!subs) goto error; dim_param = isl_basic_set_get_space(cell->dom); dim_dst = isl_qpolynomial_get_domain_space(poly); dim_dst = isl_space_add_dims(dim_dst, isl_dim_set, n_vertices); for (i = 0; i < 1 + nvar; ++i) subs[i] = isl_qpolynomial_zero_on_domain(isl_space_copy(dim_dst)); for (i = 0; i < n_vertices; ++i) { isl_qpolynomial *c; c = isl_qpolynomial_var_on_domain(isl_space_copy(dim_dst), isl_dim_set, 1 + nvar + i); for (j = 0; j < nvar; ++j) { int k = cell->ids[i]; isl_qpolynomial *v; v = vertex_coordinate(cell->vertices->v[k].vertex, j, isl_space_copy(dim_param)); v = isl_qpolynomial_add_dims(v, isl_dim_in, 1 + nvar + n_vertices); v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c)); subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v); } subs[0] = isl_qpolynomial_add(subs[0], c); } isl_space_free(dim_dst); poly = isl_qpolynomial_copy(poly); poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices); poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs); poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar); data->cell = cell; dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom)); data->fold = isl_qpolynomial_fold_empty(data->type, isl_space_copy(dim_param)); data->fold_tight = isl_qpolynomial_fold_empty(data->type, dim_param); extract_coefficients(poly, dom, data); pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom), data->fold); data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf); pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight); data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf); isl_qpolynomial_free(poly); isl_cell_free(cell); for (i = 0; i < 1 + nvar; ++i) isl_qpolynomial_free(subs[i]); free(subs); return 0; error: isl_cell_free(cell); return -1; } /* Base case of applying bernstein expansion. * * We compute the chamber decomposition of the parametric polytope "bset" * and then perform bernstein expansion on the parametric vertices * that are active on each chamber. */ static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight) { unsigned nvar; isl_space *dim; isl_pw_qpolynomial_fold *pwf; isl_vertices *vertices; int covers; nvar = isl_basic_set_dim(bset, isl_dim_set); if (nvar == 0) { isl_set *dom; isl_qpolynomial_fold *fold; fold = isl_qpolynomial_fold_alloc(data->type, poly); dom = isl_set_from_basic_set(bset); if (tight) *tight = 1; pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold); return isl_pw_qpolynomial_fold_project_domain_on_params(pwf); } if (isl_qpolynomial_is_zero(poly)) { isl_set *dom; isl_qpolynomial_fold *fold; fold = isl_qpolynomial_fold_alloc(data->type, poly); dom = isl_set_from_basic_set(bset); pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold); if (tight) *tight = 1; return isl_pw_qpolynomial_fold_project_domain_on_params(pwf); } dim = isl_basic_set_get_space(bset); dim = isl_space_params(dim); dim = isl_space_from_domain(dim); dim = isl_space_add_dims(dim, isl_dim_set, 1); data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(dim), data->type); data->pwf_tight = isl_pw_qpolynomial_fold_zero(dim, data->type); data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly)); vertices = isl_basic_set_compute_vertices(bset); isl_vertices_foreach_disjoint_cell(vertices, &bernstein_coefficients_cell, data); isl_vertices_free(vertices); isl_qpolynomial_free(data->poly); isl_basic_set_free(bset); isl_qpolynomial_free(poly); covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf); if (covers < 0) goto error; if (tight) *tight = covers; if (covers) { isl_pw_qpolynomial_fold_free(data->pwf); return data->pwf_tight; } data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight); return data->pwf; error: isl_pw_qpolynomial_fold_free(data->pwf_tight); isl_pw_qpolynomial_fold_free(data->pwf); return NULL; } /* Apply bernstein expansion recursively by working in on len[i] * set variables at a time, with i ranging from n_group - 1 to 0. */ static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive( __isl_take isl_pw_qpolynomial *pwqp, int n_group, int *len, struct bernstein_data *data, int *tight) { int i; unsigned nparam; unsigned nvar; isl_pw_qpolynomial_fold *pwf; if (!pwqp) return NULL; nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param); nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in); pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam, isl_dim_in, 0, nvar - len[n_group - 1]); pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight); for (i = n_group - 2; i >= 0; --i) { nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param); pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0, isl_dim_param, nparam - len[i], len[i]); if (tight && !*tight) tight = NULL; pwf = isl_pw_qpolynomial_fold_bound(pwf, tight); } return pwf; } static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight) { isl_factorizer *f; isl_set *set; isl_pw_qpolynomial *pwqp; isl_pw_qpolynomial_fold *pwf; f = isl_basic_set_factorizer(bset); if (!f) goto error; if (f->n_group == 0) { isl_factorizer_free(f); return bernstein_coefficients_base(bset, poly, data, tight); } set = isl_set_from_basic_set(bset); pwqp = isl_pw_qpolynomial_alloc(set, poly); pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph)); pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data, tight); isl_factorizer_free(f); return pwf; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return NULL; } static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive( __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct bernstein_data *data, int *tight) { int i; int *len; unsigned nvar; isl_pw_qpolynomial_fold *pwf; isl_set *set; isl_pw_qpolynomial *pwqp; if (!bset || !poly) goto error; nvar = isl_basic_set_dim(bset, isl_dim_set); len = isl_alloc_array(bset->ctx, int, nvar); if (nvar && !len) goto error; for (i = 0; i < nvar; ++i) len[i] = 1; set = isl_set_from_basic_set(bset); pwqp = isl_pw_qpolynomial_alloc(set, poly); pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight); free(len); return pwf; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return NULL; } /* Compute a bound on the polynomial defined over the parametric polytope * using bernstein expansion and store the result * in bound->pwf and bound->pwf_tight. * * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if * the polytope can be factorized and apply bernstein expansion recursively * on the factors. * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply * bernstein expansion recursively on each dimension. * Otherwise, we apply bernstein expansion on the entire polytope. */ int isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly, struct isl_bound *bound) { struct bernstein_data data; isl_pw_qpolynomial_fold *pwf; unsigned nvar; int tight = 0; int *tp = bound->check_tight ? &tight : NULL; if (!bset || !poly) goto error; data.type = bound->type; data.check_tight = bound->check_tight; nvar = isl_basic_set_dim(bset, isl_dim_set); if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS) pwf = bernstein_coefficients_factors(bset, poly, &data, tp); else if (nvar > 1 && (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS)) pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp); else pwf = bernstein_coefficients_base(bset, poly, &data, tp); if (tight) bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf); else bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf); return 0; error: isl_basic_set_free(bset); isl_qpolynomial_free(poly); return -1; } isl-0.16.1/isl_schedule_node_private.h0000664000175000017500000000457612645737450014715 00000000000000#ifndef ISL_SCHEDLUE_NODE_PRIVATE_H #define ISL_SCHEDLUE_NODE_PRIVATE_H #include #include #include /* An isl_schedule_node points to a particular location in a schedule tree. * * "schedule" is the schedule that the node is pointing to. * "ancestors" is a list of the n ancestors of the node * that is being pointed to. * The first ancestor is the root of "schedule", while the last ancestor * is the parent of the specified location. * "child_pos" is an array of child positions of the same length as "ancestors", * where ancestor i (i > 0) appears in child_pos[i - 1] of ancestor i - 1 and * "tree" appears in child_pos[n - 1] of ancestor n - 1. * "tree" is the subtree at the specified location. * * Note that the same isl_schedule_tree object may appear several times * in a schedule tree and therefore does not uniquely identify a position * in the schedule tree. */ struct isl_schedule_node { int ref; isl_schedule *schedule; isl_schedule_tree_list *ancestors; int *child_pos; isl_schedule_tree *tree; }; __isl_give isl_schedule_node *isl_schedule_node_alloc( __isl_take isl_schedule *schedule, __isl_take isl_schedule_tree *tree, __isl_take isl_schedule_tree_list *ancestors, int *child_pos); __isl_give isl_schedule_node *isl_schedule_node_graft_tree( __isl_take isl_schedule_node *pos, __isl_take isl_schedule_tree *tree); __isl_give isl_schedule_tree *isl_schedule_node_get_tree( __isl_keep isl_schedule_node *node); __isl_give isl_schedule_node *isl_schedule_node_pullback_union_pw_multi_aff( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *upma); __isl_give isl_schedule_node *isl_schedule_node_gist( __isl_take isl_schedule_node *node, __isl_take isl_union_set *context); __isl_give isl_schedule_node *isl_schedule_node_domain_intersect_domain( __isl_take isl_schedule_node *node, __isl_take isl_union_set *domain); __isl_give isl_schedule_node *isl_schedule_node_domain_gist_params( __isl_take isl_schedule_node *node, __isl_take isl_set *context); __isl_give isl_schedule_node *isl_schedule_node_insert_expansion( __isl_take isl_schedule_node *node, __isl_take isl_union_pw_multi_aff *contraction, __isl_take isl_union_map *expansion); __isl_give isl_schedule_node *isl_schedule_node_insert_extension( __isl_take isl_schedule_node *node, __isl_take isl_union_map *extension); #endif isl-0.16.1/isl_blk.c0000664000175000017500000000552212645737060011112 00000000000000/* * Copyright 2008-2009 Katholieke Universiteit Leuven * * Use of this software is governed by the MIT license * * Written by Sven Verdoolaege, K.U.Leuven, Departement * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium */ #include #include /* The maximal number of cache misses before first element is evicted */ #define ISL_BLK_MAX_MISS 100 struct isl_blk isl_blk_empty() { struct isl_blk block; block.size = 0; block.data = NULL; return block; } static int isl_blk_is_empty(struct isl_blk block) { return block.size == 0 && block.data == NULL; } static struct isl_blk isl_blk_error() { struct isl_blk block; block.size = -1; block.data = NULL; return block; } int isl_blk_is_error(struct isl_blk block) { return block.size == -1 && block.data == NULL; } static struct isl_blk extend(struct isl_ctx *ctx, struct isl_blk block, size_t new_n) { int i; isl_int *p; if (block.size >= new_n) return block; p = block.data; block.data = isl_realloc_array(ctx, block.data, isl_int, new_n); if (!block.data) { free(p); return isl_blk_error(); } for (i = block.size; i < new_n; ++i) isl_int_init(block.data[i]); block.size = new_n; return block; } static void isl_blk_free_force(struct isl_ctx *ctx, struct isl_blk block) { int i; for (i = 0; i < block.size; ++i) isl_int_clear(block.data[i]); free(block.data); } struct isl_blk isl_blk_alloc(struct isl_ctx *ctx, size_t n) { int i; struct isl_blk block; block = isl_blk_empty(); if (n && ctx->n_cached) { int best = 0; for (i = 1; ctx->cache[best].size != n && i < ctx->n_cached; ++i) { if (ctx->cache[best].size < n) { if (ctx->cache[i].size > ctx->cache[best].size) best = i; } else if (ctx->cache[i].size >= n && ctx->cache[i].size < ctx->cache[best].size) best = i; } if (ctx->cache[best].size < 2 * n + 100) { block = ctx->cache[best]; if (--ctx->n_cached != best) ctx->cache[best] = ctx->cache[ctx->n_cached]; if (best == 0) ctx->n_miss = 0; } else if (ctx->n_miss++ >= ISL_BLK_MAX_MISS) { isl_blk_free_force(ctx, ctx->cache[0]); if (--ctx->n_cached != 0) ctx->cache[0] = ctx->cache[ctx->n_cached]; ctx->n_miss = 0; } } return extend(ctx, block, n); } struct isl_blk isl_blk_extend(struct isl_ctx *ctx, struct isl_blk block, size_t new_n) { if (isl_blk_is_empty(block)) return isl_blk_alloc(ctx, new_n); return extend(ctx, block, new_n); } void isl_blk_free(struct isl_ctx *ctx, struct isl_blk block) { if (isl_blk_is_empty(block) || isl_blk_is_error(block)) return; if (ctx->n_cached < ISL_BLK_CACHE_SIZE) ctx->cache[ctx->n_cached++] = block; else isl_blk_free_force(ctx, block); } void isl_blk_clear_cache(struct isl_ctx *ctx) { int i; for (i = 0; i < ctx->n_cached; ++i) isl_blk_free_force(ctx, ctx->cache[i]); ctx->n_cached = 0; } isl-0.16.1/aclocal.m40000664000175000017500000012317012645755060011167 00000000000000# generated automatically by aclocal 1.14.1 -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY, to the extent permitted by law; without # even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. m4_ifndef([AC_CONFIG_MACRO_DIRS], [m4_defun([_AM_CONFIG_MACRO_DIRS], [])m4_defun([AC_CONFIG_MACRO_DIRS], [_AM_CONFIG_MACRO_DIRS($@)])]) m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl m4_if(m4_defn([AC_AUTOCONF_VERSION]), [2.69],, [m4_warning([this file was generated for autoconf 2.69. You have another version of autoconf. It may work, but is not guaranteed to. If you have problems, you may need to regenerate the build system entirely. To do so, use the procedure documented by the package, typically 'autoreconf'.])]) # Copyright (C) 2002-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_AUTOMAKE_VERSION(VERSION) # ---------------------------- # Automake X.Y traces this macro to ensure aclocal.m4 has been # generated from the m4 files accompanying Automake X.Y. # (This private macro should not be called outside this file.) AC_DEFUN([AM_AUTOMAKE_VERSION], [am__api_version='1.14' dnl Some users find AM_AUTOMAKE_VERSION and mistake it for a way to dnl require some minimum version. Point them to the right macro. m4_if([$1], [1.14.1], [], [AC_FATAL([Do not call $0, use AM_INIT_AUTOMAKE([$1]).])])dnl ]) # _AM_AUTOCONF_VERSION(VERSION) # ----------------------------- # aclocal traces this macro to find the Autoconf version. # This is a private macro too. Using m4_define simplifies # the logic in aclocal, which can simply ignore this definition. m4_define([_AM_AUTOCONF_VERSION], []) # AM_SET_CURRENT_AUTOMAKE_VERSION # ------------------------------- # Call AM_AUTOMAKE_VERSION and AM_AUTOMAKE_VERSION so they can be traced. # This function is AC_REQUIREd by AM_INIT_AUTOMAKE. AC_DEFUN([AM_SET_CURRENT_AUTOMAKE_VERSION], [AM_AUTOMAKE_VERSION([1.14.1])dnl m4_ifndef([AC_AUTOCONF_VERSION], [m4_copy([m4_PACKAGE_VERSION], [AC_AUTOCONF_VERSION])])dnl _AM_AUTOCONF_VERSION(m4_defn([AC_AUTOCONF_VERSION]))]) # AM_AUX_DIR_EXPAND -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # For projects using AC_CONFIG_AUX_DIR([foo]), Autoconf sets # $ac_aux_dir to '$srcdir/foo'. In other projects, it is set to # '$srcdir', '$srcdir/..', or '$srcdir/../..'. # # Of course, Automake must honor this variable whenever it calls a # tool from the auxiliary directory. The problem is that $srcdir (and # therefore $ac_aux_dir as well) can be either absolute or relative, # depending on how configure is run. This is pretty annoying, since # it makes $ac_aux_dir quite unusable in subdirectories: in the top # source directory, any form will work fine, but in subdirectories a # relative path needs to be adjusted first. # # $ac_aux_dir/missing # fails when called from a subdirectory if $ac_aux_dir is relative # $top_srcdir/$ac_aux_dir/missing # fails if $ac_aux_dir is absolute, # fails when called from a subdirectory in a VPATH build with # a relative $ac_aux_dir # # The reason of the latter failure is that $top_srcdir and $ac_aux_dir # are both prefixed by $srcdir. In an in-source build this is usually # harmless because $srcdir is '.', but things will broke when you # start a VPATH build or use an absolute $srcdir. # # So we could use something similar to $top_srcdir/$ac_aux_dir/missing, # iff we strip the leading $srcdir from $ac_aux_dir. That would be: # am_aux_dir='\$(top_srcdir)/'`expr "$ac_aux_dir" : "$srcdir//*\(.*\)"` # and then we would define $MISSING as # MISSING="\${SHELL} $am_aux_dir/missing" # This will work as long as MISSING is not called from configure, because # unfortunately $(top_srcdir) has no meaning in configure. # However there are other variables, like CC, which are often used in # configure, and could therefore not use this "fixed" $ac_aux_dir. # # Another solution, used here, is to always expand $ac_aux_dir to an # absolute PATH. The drawback is that using absolute paths prevent a # configured tree to be moved without reconfiguration. AC_DEFUN([AM_AUX_DIR_EXPAND], [dnl Rely on autoconf to set up CDPATH properly. AC_PREREQ([2.50])dnl # expand $ac_aux_dir to an absolute path am_aux_dir=`cd $ac_aux_dir && pwd` ]) # AM_CONDITIONAL -*- Autoconf -*- # Copyright (C) 1997-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_CONDITIONAL(NAME, SHELL-CONDITION) # ------------------------------------- # Define a conditional. AC_DEFUN([AM_CONDITIONAL], [AC_PREREQ([2.52])dnl m4_if([$1], [TRUE], [AC_FATAL([$0: invalid condition: $1])], [$1], [FALSE], [AC_FATAL([$0: invalid condition: $1])])dnl AC_SUBST([$1_TRUE])dnl AC_SUBST([$1_FALSE])dnl _AM_SUBST_NOTMAKE([$1_TRUE])dnl _AM_SUBST_NOTMAKE([$1_FALSE])dnl m4_define([_AM_COND_VALUE_$1], [$2])dnl if $2; then $1_TRUE= $1_FALSE='#' else $1_TRUE='#' $1_FALSE= fi AC_CONFIG_COMMANDS_PRE( [if test -z "${$1_TRUE}" && test -z "${$1_FALSE}"; then AC_MSG_ERROR([[conditional "$1" was never defined. Usually this means the macro was only invoked conditionally.]]) fi])]) # Copyright (C) 1999-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # There are a few dirty hacks below to avoid letting 'AC_PROG_CC' be # written in clear, in which case automake, when reading aclocal.m4, # will think it sees a *use*, and therefore will trigger all it's # C support machinery. Also note that it means that autoscan, seeing # CC etc. in the Makefile, will ask for an AC_PROG_CC use... # _AM_DEPENDENCIES(NAME) # ---------------------- # See how the compiler implements dependency checking. # NAME is "CC", "CXX", "OBJC", "OBJCXX", "UPC", or "GJC". # We try a few techniques and use that to set a single cache variable. # # We don't AC_REQUIRE the corresponding AC_PROG_CC since the latter was # modified to invoke _AM_DEPENDENCIES(CC); we would have a circular # dependency, and given that the user is not expected to run this macro, # just rely on AC_PROG_CC. AC_DEFUN([_AM_DEPENDENCIES], [AC_REQUIRE([AM_SET_DEPDIR])dnl AC_REQUIRE([AM_OUTPUT_DEPENDENCY_COMMANDS])dnl AC_REQUIRE([AM_MAKE_INCLUDE])dnl AC_REQUIRE([AM_DEP_TRACK])dnl m4_if([$1], [CC], [depcc="$CC" am_compiler_list=], [$1], [CXX], [depcc="$CXX" am_compiler_list=], [$1], [OBJC], [depcc="$OBJC" am_compiler_list='gcc3 gcc'], [$1], [OBJCXX], [depcc="$OBJCXX" am_compiler_list='gcc3 gcc'], [$1], [UPC], [depcc="$UPC" am_compiler_list=], [$1], [GCJ], [depcc="$GCJ" am_compiler_list='gcc3 gcc'], [depcc="$$1" am_compiler_list=]) AC_CACHE_CHECK([dependency style of $depcc], [am_cv_$1_dependencies_compiler_type], [if test -z "$AMDEP_TRUE" && test -f "$am_depcomp"; then # We make a subdir and do the tests there. Otherwise we can end up # making bogus files that we don't know about and never remove. For # instance it was reported that on HP-UX the gcc test will end up # making a dummy file named 'D' -- because '-MD' means "put the output # in D". rm -rf conftest.dir mkdir conftest.dir # Copy depcomp to subdir because otherwise we won't find it if we're # using a relative directory. cp "$am_depcomp" conftest.dir cd conftest.dir # We will build objects and dependencies in a subdirectory because # it helps to detect inapplicable dependency modes. For instance # both Tru64's cc and ICC support -MD to output dependencies as a # side effect of compilation, but ICC will put the dependencies in # the current directory while Tru64 will put them in the object # directory. mkdir sub am_cv_$1_dependencies_compiler_type=none if test "$am_compiler_list" = ""; then am_compiler_list=`sed -n ['s/^#*\([a-zA-Z0-9]*\))$/\1/p'] < ./depcomp` fi am__universal=false m4_case([$1], [CC], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac], [CXX], [case " $depcc " in #( *\ -arch\ *\ -arch\ *) am__universal=true ;; esac]) for depmode in $am_compiler_list; do # Setup a source with many dependencies, because some compilers # like to wrap large dependency lists on column 80 (with \), and # we should not choose a depcomp mode which is confused by this. # # We need to recreate these files for each test, as the compiler may # overwrite some of them when testing with obscure command lines. # This happens at least with the AIX C compiler. : > sub/conftest.c for i in 1 2 3 4 5 6; do echo '#include "conftst'$i'.h"' >> sub/conftest.c # Using ": > sub/conftst$i.h" creates only sub/conftst1.h with # Solaris 10 /bin/sh. echo '/* dummy */' > sub/conftst$i.h done echo "${am__include} ${am__quote}sub/conftest.Po${am__quote}" > confmf # We check with '-c' and '-o' for the sake of the "dashmstdout" # mode. It turns out that the SunPro C++ compiler does not properly # handle '-M -o', and we need to detect this. Also, some Intel # versions had trouble with output in subdirs. am__obj=sub/conftest.${OBJEXT-o} am__minus_obj="-o $am__obj" case $depmode in gcc) # This depmode causes a compiler race in universal mode. test "$am__universal" = false || continue ;; nosideeffect) # After this tag, mechanisms are not by side-effect, so they'll # only be used when explicitly requested. if test "x$enable_dependency_tracking" = xyes; then continue else break fi ;; msvc7 | msvc7msys | msvisualcpp | msvcmsys) # This compiler won't grok '-c -o', but also, the minuso test has # not run yet. These depmodes are late enough in the game, and # so weak that their functioning should not be impacted. am__obj=conftest.${OBJEXT-o} am__minus_obj= ;; none) break ;; esac if depmode=$depmode \ source=sub/conftest.c object=$am__obj \ depfile=sub/conftest.Po tmpdepfile=sub/conftest.TPo \ $SHELL ./depcomp $depcc -c $am__minus_obj sub/conftest.c \ >/dev/null 2>conftest.err && grep sub/conftst1.h sub/conftest.Po > /dev/null 2>&1 && grep sub/conftst6.h sub/conftest.Po > /dev/null 2>&1 && grep $am__obj sub/conftest.Po > /dev/null 2>&1 && ${MAKE-make} -s -f confmf > /dev/null 2>&1; then # icc doesn't choke on unknown options, it will just issue warnings # or remarks (even with -Werror). So we grep stderr for any message # that says an option was ignored or not supported. # When given -MP, icc 7.0 and 7.1 complain thusly: # icc: Command line warning: ignoring option '-M'; no argument required # The diagnosis changed in icc 8.0: # icc: Command line remark: option '-MP' not supported if (grep 'ignoring option' conftest.err || grep 'not supported' conftest.err) >/dev/null 2>&1; then :; else am_cv_$1_dependencies_compiler_type=$depmode break fi fi done cd .. rm -rf conftest.dir else am_cv_$1_dependencies_compiler_type=none fi ]) AC_SUBST([$1DEPMODE], [depmode=$am_cv_$1_dependencies_compiler_type]) AM_CONDITIONAL([am__fastdep$1], [ test "x$enable_dependency_tracking" != xno \ && test "$am_cv_$1_dependencies_compiler_type" = gcc3]) ]) # AM_SET_DEPDIR # ------------- # Choose a directory name for dependency files. # This macro is AC_REQUIREd in _AM_DEPENDENCIES. AC_DEFUN([AM_SET_DEPDIR], [AC_REQUIRE([AM_SET_LEADING_DOT])dnl AC_SUBST([DEPDIR], ["${am__leading_dot}deps"])dnl ]) # AM_DEP_TRACK # ------------ AC_DEFUN([AM_DEP_TRACK], [AC_ARG_ENABLE([dependency-tracking], [dnl AS_HELP_STRING( [--enable-dependency-tracking], [do not reject slow dependency extractors]) AS_HELP_STRING( [--disable-dependency-tracking], [speeds up one-time build])]) if test "x$enable_dependency_tracking" != xno; then am_depcomp="$ac_aux_dir/depcomp" AMDEPBACKSLASH='\' am__nodep='_no' fi AM_CONDITIONAL([AMDEP], [test "x$enable_dependency_tracking" != xno]) AC_SUBST([AMDEPBACKSLASH])dnl _AM_SUBST_NOTMAKE([AMDEPBACKSLASH])dnl AC_SUBST([am__nodep])dnl _AM_SUBST_NOTMAKE([am__nodep])dnl ]) # Generate code to set up dependency tracking. -*- Autoconf -*- # Copyright (C) 1999-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_OUTPUT_DEPENDENCY_COMMANDS # ------------------------------ AC_DEFUN([_AM_OUTPUT_DEPENDENCY_COMMANDS], [{ # Older Autoconf quotes --file arguments for eval, but not when files # are listed without --file. Let's play safe and only enable the eval # if we detect the quoting. case $CONFIG_FILES in *\'*) eval set x "$CONFIG_FILES" ;; *) set x $CONFIG_FILES ;; esac shift for mf do # Strip MF so we end up with the name of the file. mf=`echo "$mf" | sed -e 's/:.*$//'` # Check whether this is an Automake generated Makefile or not. # We used to match only the files named 'Makefile.in', but # some people rename them; so instead we look at the file content. # Grep'ing the first line is not enough: some people post-process # each Makefile.in and add a new line on top of each file to say so. # Grep'ing the whole file is not good either: AIX grep has a line # limit of 2048, but all sed's we know have understand at least 4000. if sed -n 's,^#.*generated by automake.*,X,p' "$mf" | grep X >/dev/null 2>&1; then dirpart=`AS_DIRNAME("$mf")` else continue fi # Extract the definition of DEPDIR, am__include, and am__quote # from the Makefile without running 'make'. DEPDIR=`sed -n 's/^DEPDIR = //p' < "$mf"` test -z "$DEPDIR" && continue am__include=`sed -n 's/^am__include = //p' < "$mf"` test -z "$am__include" && continue am__quote=`sed -n 's/^am__quote = //p' < "$mf"` # Find all dependency output files, they are included files with # $(DEPDIR) in their names. We invoke sed twice because it is the # simplest approach to changing $(DEPDIR) to its actual value in the # expansion. for file in `sed -n " s/^$am__include $am__quote\(.*(DEPDIR).*\)$am__quote"'$/\1/p' <"$mf" | \ sed -e 's/\$(DEPDIR)/'"$DEPDIR"'/g'`; do # Make sure the directory exists. test -f "$dirpart/$file" && continue fdir=`AS_DIRNAME(["$file"])` AS_MKDIR_P([$dirpart/$fdir]) # echo "creating $dirpart/$file" echo '# dummy' > "$dirpart/$file" done done } ])# _AM_OUTPUT_DEPENDENCY_COMMANDS # AM_OUTPUT_DEPENDENCY_COMMANDS # ----------------------------- # This macro should only be invoked once -- use via AC_REQUIRE. # # This code is only required when automatic dependency tracking # is enabled. FIXME. This creates each '.P' file that we will # need in order to bootstrap the dependency handling code. AC_DEFUN([AM_OUTPUT_DEPENDENCY_COMMANDS], [AC_CONFIG_COMMANDS([depfiles], [test x"$AMDEP_TRUE" != x"" || _AM_OUTPUT_DEPENDENCY_COMMANDS], [AMDEP_TRUE="$AMDEP_TRUE" ac_aux_dir="$ac_aux_dir"]) ]) # Do all the work for Automake. -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # This macro actually does too much. Some checks are only needed if # your package does certain things. But this isn't really a big deal. dnl Redefine AC_PROG_CC to automatically invoke _AM_PROG_CC_C_O. m4_define([AC_PROG_CC], m4_defn([AC_PROG_CC]) [_AM_PROG_CC_C_O ]) # AM_INIT_AUTOMAKE(PACKAGE, VERSION, [NO-DEFINE]) # AM_INIT_AUTOMAKE([OPTIONS]) # ----------------------------------------------- # The call with PACKAGE and VERSION arguments is the old style # call (pre autoconf-2.50), which is being phased out. PACKAGE # and VERSION should now be passed to AC_INIT and removed from # the call to AM_INIT_AUTOMAKE. # We support both call styles for the transition. After # the next Automake release, Autoconf can make the AC_INIT # arguments mandatory, and then we can depend on a new Autoconf # release and drop the old call support. AC_DEFUN([AM_INIT_AUTOMAKE], [AC_PREREQ([2.65])dnl dnl Autoconf wants to disallow AM_ names. We explicitly allow dnl the ones we care about. m4_pattern_allow([^AM_[A-Z]+FLAGS$])dnl AC_REQUIRE([AM_SET_CURRENT_AUTOMAKE_VERSION])dnl AC_REQUIRE([AC_PROG_INSTALL])dnl if test "`cd $srcdir && pwd`" != "`pwd`"; then # Use -I$(srcdir) only when $(srcdir) != ., so that make's output # is not polluted with repeated "-I." AC_SUBST([am__isrc], [' -I$(srcdir)'])_AM_SUBST_NOTMAKE([am__isrc])dnl # test to see if srcdir already configured if test -f $srcdir/config.status; then AC_MSG_ERROR([source directory already configured; run "make distclean" there first]) fi fi # test whether we have cygpath if test -z "$CYGPATH_W"; then if (cygpath --version) >/dev/null 2>/dev/null; then CYGPATH_W='cygpath -w' else CYGPATH_W=echo fi fi AC_SUBST([CYGPATH_W]) # Define the identity of the package. dnl Distinguish between old-style and new-style calls. m4_ifval([$2], [AC_DIAGNOSE([obsolete], [$0: two- and three-arguments forms are deprecated.]) m4_ifval([$3], [_AM_SET_OPTION([no-define])])dnl AC_SUBST([PACKAGE], [$1])dnl AC_SUBST([VERSION], [$2])], [_AM_SET_OPTIONS([$1])dnl dnl Diagnose old-style AC_INIT with new-style AM_AUTOMAKE_INIT. m4_if( m4_ifdef([AC_PACKAGE_NAME], [ok]):m4_ifdef([AC_PACKAGE_VERSION], [ok]), [ok:ok],, [m4_fatal([AC_INIT should be called with package and version arguments])])dnl AC_SUBST([PACKAGE], ['AC_PACKAGE_TARNAME'])dnl AC_SUBST([VERSION], ['AC_PACKAGE_VERSION'])])dnl _AM_IF_OPTION([no-define],, [AC_DEFINE_UNQUOTED([PACKAGE], ["$PACKAGE"], [Name of package]) AC_DEFINE_UNQUOTED([VERSION], ["$VERSION"], [Version number of package])])dnl # Some tools Automake needs. AC_REQUIRE([AM_SANITY_CHECK])dnl AC_REQUIRE([AC_ARG_PROGRAM])dnl AM_MISSING_PROG([ACLOCAL], [aclocal-${am__api_version}]) AM_MISSING_PROG([AUTOCONF], [autoconf]) AM_MISSING_PROG([AUTOMAKE], [automake-${am__api_version}]) AM_MISSING_PROG([AUTOHEADER], [autoheader]) AM_MISSING_PROG([MAKEINFO], [makeinfo]) AC_REQUIRE([AM_PROG_INSTALL_SH])dnl AC_REQUIRE([AM_PROG_INSTALL_STRIP])dnl AC_REQUIRE([AC_PROG_MKDIR_P])dnl # For better backward compatibility. To be removed once Automake 1.9.x # dies out for good. For more background, see: # # AC_SUBST([mkdir_p], ['$(MKDIR_P)']) # We need awk for the "check" target. The system "awk" is bad on # some platforms. AC_REQUIRE([AC_PROG_AWK])dnl AC_REQUIRE([AC_PROG_MAKE_SET])dnl AC_REQUIRE([AM_SET_LEADING_DOT])dnl _AM_IF_OPTION([tar-ustar], [_AM_PROG_TAR([ustar])], [_AM_IF_OPTION([tar-pax], [_AM_PROG_TAR([pax])], [_AM_PROG_TAR([v7])])]) _AM_IF_OPTION([no-dependencies],, [AC_PROVIDE_IFELSE([AC_PROG_CC], [_AM_DEPENDENCIES([CC])], [m4_define([AC_PROG_CC], m4_defn([AC_PROG_CC])[_AM_DEPENDENCIES([CC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_CXX], [_AM_DEPENDENCIES([CXX])], [m4_define([AC_PROG_CXX], m4_defn([AC_PROG_CXX])[_AM_DEPENDENCIES([CXX])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJC], [_AM_DEPENDENCIES([OBJC])], [m4_define([AC_PROG_OBJC], m4_defn([AC_PROG_OBJC])[_AM_DEPENDENCIES([OBJC])])])dnl AC_PROVIDE_IFELSE([AC_PROG_OBJCXX], [_AM_DEPENDENCIES([OBJCXX])], [m4_define([AC_PROG_OBJCXX], m4_defn([AC_PROG_OBJCXX])[_AM_DEPENDENCIES([OBJCXX])])])dnl ]) AC_REQUIRE([AM_SILENT_RULES])dnl dnl The testsuite driver may need to know about EXEEXT, so add the dnl 'am__EXEEXT' conditional if _AM_COMPILER_EXEEXT was seen. This dnl macro is hooked onto _AC_COMPILER_EXEEXT early, see below. AC_CONFIG_COMMANDS_PRE(dnl [m4_provide_if([_AM_COMPILER_EXEEXT], [AM_CONDITIONAL([am__EXEEXT], [test -n "$EXEEXT"])])])dnl # POSIX will say in a future version that running "rm -f" with no argument # is OK; and we want to be able to make that assumption in our Makefile # recipes. So use an aggressive probe to check that the usage we want is # actually supported "in the wild" to an acceptable degree. # See automake bug#10828. # To make any issue more visible, cause the running configure to be aborted # by default if the 'rm' program in use doesn't match our expectations; the # user can still override this though. if rm -f && rm -fr && rm -rf; then : OK; else cat >&2 <<'END' Oops! Your 'rm' program seems unable to run without file operands specified on the command line, even when the '-f' option is present. This is contrary to the behaviour of most rm programs out there, and not conforming with the upcoming POSIX standard: Please tell bug-automake@gnu.org about your system, including the value of your $PATH and any error possibly output before this message. This can help us improve future automake versions. END if test x"$ACCEPT_INFERIOR_RM_PROGRAM" = x"yes"; then echo 'Configuration will proceed anyway, since you have set the' >&2 echo 'ACCEPT_INFERIOR_RM_PROGRAM variable to "yes"' >&2 echo >&2 else cat >&2 <<'END' Aborting the configuration process, to ensure you take notice of the issue. You can download and install GNU coreutils to get an 'rm' implementation that behaves properly: . If you want to complete the configuration process using your problematic 'rm' anyway, export the environment variable ACCEPT_INFERIOR_RM_PROGRAM to "yes", and re-run configure. END AC_MSG_ERROR([Your 'rm' program is bad, sorry.]) fi fi]) dnl Hook into '_AC_COMPILER_EXEEXT' early to learn its expansion. Do not dnl add the conditional right here, as _AC_COMPILER_EXEEXT may be further dnl mangled by Autoconf and run in a shell conditional statement. m4_define([_AC_COMPILER_EXEEXT], m4_defn([_AC_COMPILER_EXEEXT])[m4_provide([_AM_COMPILER_EXEEXT])]) # When config.status generates a header, we must update the stamp-h file. # This file resides in the same directory as the config header # that is generated. The stamp files are numbered to have different names. # Autoconf calls _AC_AM_CONFIG_HEADER_HOOK (when defined) in the # loop where config.status creates the headers, so we can generate # our stamp files there. AC_DEFUN([_AC_AM_CONFIG_HEADER_HOOK], [# Compute $1's index in $config_headers. _am_arg=$1 _am_stamp_count=1 for _am_header in $config_headers :; do case $_am_header in $_am_arg | $_am_arg:* ) break ;; * ) _am_stamp_count=`expr $_am_stamp_count + 1` ;; esac done echo "timestamp for $_am_arg" >`AS_DIRNAME(["$_am_arg"])`/stamp-h[]$_am_stamp_count]) # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_SH # ------------------ # Define $install_sh. AC_DEFUN([AM_PROG_INSTALL_SH], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl if test x"${install_sh}" != xset; then case $am_aux_dir in *\ * | *\ *) install_sh="\${SHELL} '$am_aux_dir/install-sh'" ;; *) install_sh="\${SHELL} $am_aux_dir/install-sh" esac fi AC_SUBST([install_sh])]) # Copyright (C) 2003-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # Check whether the underlying file-system supports filenames # with a leading dot. For instance MS-DOS doesn't. AC_DEFUN([AM_SET_LEADING_DOT], [rm -rf .tst 2>/dev/null mkdir .tst 2>/dev/null if test -d .tst; then am__leading_dot=. else am__leading_dot=_ fi rmdir .tst 2>/dev/null AC_SUBST([am__leading_dot])]) # Check to see how 'make' treats includes. -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MAKE_INCLUDE() # ----------------- # Check to see how make treats includes. AC_DEFUN([AM_MAKE_INCLUDE], [am_make=${MAKE-make} cat > confinc << 'END' am__doit: @echo this is the am__doit target .PHONY: am__doit END # If we don't find an include directive, just comment out the code. AC_MSG_CHECKING([for style of include used by $am_make]) am__include="#" am__quote= _am_result=none # First try GNU make style include. echo "include confinc" > confmf # Ignore all kinds of additional output from 'make'. case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=include am__quote= _am_result=GNU ;; esac # Now try BSD make style include. if test "$am__include" = "#"; then echo '.include "confinc"' > confmf case `$am_make -s -f confmf 2> /dev/null` in #( *the\ am__doit\ target*) am__include=.include am__quote="\"" _am_result=BSD ;; esac fi AC_SUBST([am__include]) AC_SUBST([am__quote]) AC_MSG_RESULT([$_am_result]) rm -f confinc confmf ]) # Fake the existence of programs that GNU maintainers use. -*- Autoconf -*- # Copyright (C) 1997-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_MISSING_PROG(NAME, PROGRAM) # ------------------------------ AC_DEFUN([AM_MISSING_PROG], [AC_REQUIRE([AM_MISSING_HAS_RUN]) $1=${$1-"${am_missing_run}$2"} AC_SUBST($1)]) # AM_MISSING_HAS_RUN # ------------------ # Define MISSING if not defined so far and test if it is modern enough. # If it is, set am_missing_run to use it, otherwise, to nothing. AC_DEFUN([AM_MISSING_HAS_RUN], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([missing])dnl if test x"${MISSING+set}" != xset; then case $am_aux_dir in *\ * | *\ *) MISSING="\${SHELL} \"$am_aux_dir/missing\"" ;; *) MISSING="\${SHELL} $am_aux_dir/missing" ;; esac fi # Use eval to expand $SHELL if eval "$MISSING --is-lightweight"; then am_missing_run="$MISSING " else am_missing_run= AC_MSG_WARN(['missing' script is too old or missing]) fi ]) # Helper functions for option handling. -*- Autoconf -*- # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_MANGLE_OPTION(NAME) # ----------------------- AC_DEFUN([_AM_MANGLE_OPTION], [[_AM_OPTION_]m4_bpatsubst($1, [[^a-zA-Z0-9_]], [_])]) # _AM_SET_OPTION(NAME) # -------------------- # Set option NAME. Presently that only means defining a flag for this option. AC_DEFUN([_AM_SET_OPTION], [m4_define(_AM_MANGLE_OPTION([$1]), [1])]) # _AM_SET_OPTIONS(OPTIONS) # ------------------------ # OPTIONS is a space-separated list of Automake options. AC_DEFUN([_AM_SET_OPTIONS], [m4_foreach_w([_AM_Option], [$1], [_AM_SET_OPTION(_AM_Option)])]) # _AM_IF_OPTION(OPTION, IF-SET, [IF-NOT-SET]) # ------------------------------------------- # Execute IF-SET if OPTION is set, IF-NOT-SET otherwise. AC_DEFUN([_AM_IF_OPTION], [m4_ifset(_AM_MANGLE_OPTION([$1]), [$2], [$3])]) # Copyright (C) 1999-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_PROG_CC_C_O # --------------- # Like AC_PROG_CC_C_O, but changed for automake. We rewrite AC_PROG_CC # to automatically call this. AC_DEFUN([_AM_PROG_CC_C_O], [AC_REQUIRE([AM_AUX_DIR_EXPAND])dnl AC_REQUIRE_AUX_FILE([compile])dnl AC_LANG_PUSH([C])dnl AC_CACHE_CHECK( [whether $CC understands -c and -o together], [am_cv_prog_cc_c_o], [AC_LANG_CONFTEST([AC_LANG_PROGRAM([])]) # Make sure it works both with $CC and with simple cc. # Following AC_PROG_CC_C_O, we do the test twice because some # compilers refuse to overwrite an existing .o file with -o, # though they will create one. am_cv_prog_cc_c_o=yes for am_i in 1 2; do if AM_RUN_LOG([$CC -c conftest.$ac_ext -o conftest2.$ac_objext]) \ && test -f conftest2.$ac_objext; then : OK else am_cv_prog_cc_c_o=no break fi done rm -f core conftest* unset am_i]) if test "$am_cv_prog_cc_c_o" != yes; then # Losing compiler, so override with the script. # FIXME: It is wrong to rewrite CC. # But if we don't then we get into trouble of one sort or another. # A longer-term fix would be to have automake use am__CC in this case, # and then we could set am__CC="\$(top_srcdir)/compile \$(CC)" CC="$am_aux_dir/compile $CC" fi AC_LANG_POP([C])]) # For backward compatibility. AC_DEFUN_ONCE([AM_PROG_CC_C_O], [AC_REQUIRE([AC_PROG_CC])]) # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_RUN_LOG(COMMAND) # ------------------- # Run COMMAND, save the exit status in ac_status, and log it. # (This has been adapted from Autoconf's _AC_RUN_LOG macro.) AC_DEFUN([AM_RUN_LOG], [{ echo "$as_me:$LINENO: $1" >&AS_MESSAGE_LOG_FD ($1) >&AS_MESSAGE_LOG_FD 2>&AS_MESSAGE_LOG_FD ac_status=$? echo "$as_me:$LINENO: \$? = $ac_status" >&AS_MESSAGE_LOG_FD (exit $ac_status); }]) # Check to make sure that the build environment is sane. -*- Autoconf -*- # Copyright (C) 1996-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SANITY_CHECK # --------------- AC_DEFUN([AM_SANITY_CHECK], [AC_MSG_CHECKING([whether build environment is sane]) # Reject unsafe characters in $srcdir or the absolute working directory # name. Accept space and tab only in the latter. am_lf=' ' case `pwd` in *[[\\\"\#\$\&\'\`$am_lf]]*) AC_MSG_ERROR([unsafe absolute working directory name]);; esac case $srcdir in *[[\\\"\#\$\&\'\`$am_lf\ \ ]]*) AC_MSG_ERROR([unsafe srcdir value: '$srcdir']);; esac # Do 'set' in a subshell so we don't clobber the current shell's # arguments. Must try -L first in case configure is actually a # symlink; some systems play weird games with the mod time of symlinks # (eg FreeBSD returns the mod time of the symlink's containing # directory). if ( am_has_slept=no for am_try in 1 2; do echo "timestamp, slept: $am_has_slept" > conftest.file set X `ls -Lt "$srcdir/configure" conftest.file 2> /dev/null` if test "$[*]" = "X"; then # -L didn't work. set X `ls -t "$srcdir/configure" conftest.file` fi if test "$[*]" != "X $srcdir/configure conftest.file" \ && test "$[*]" != "X conftest.file $srcdir/configure"; then # If neither matched, then we have a broken ls. This can happen # if, for instance, CONFIG_SHELL is bash and it inherits a # broken ls alias from the environment. This has actually # happened. Such a system could not be considered "sane". AC_MSG_ERROR([ls -t appears to fail. Make sure there is not a broken alias in your environment]) fi if test "$[2]" = conftest.file || test $am_try -eq 2; then break fi # Just in case. sleep 1 am_has_slept=yes done test "$[2]" = conftest.file ) then # Ok. : else AC_MSG_ERROR([newly created file is older than distributed files! Check your system clock]) fi AC_MSG_RESULT([yes]) # If we didn't sleep, we still need to ensure time stamps of config.status and # generated files are strictly newer. am_sleep_pid= if grep 'slept: no' conftest.file >/dev/null 2>&1; then ( sleep 1 ) & am_sleep_pid=$! fi AC_CONFIG_COMMANDS_PRE( [AC_MSG_CHECKING([that generated files are newer than configure]) if test -n "$am_sleep_pid"; then # Hide warnings about reused PIDs. wait $am_sleep_pid 2>/dev/null fi AC_MSG_RESULT([done])]) rm -f conftest.file ]) # Copyright (C) 2009-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_SILENT_RULES([DEFAULT]) # -------------------------- # Enable less verbose build rules; with the default set to DEFAULT # ("yes" being less verbose, "no" or empty being verbose). AC_DEFUN([AM_SILENT_RULES], [AC_ARG_ENABLE([silent-rules], [dnl AS_HELP_STRING( [--enable-silent-rules], [less verbose build output (undo: "make V=1")]) AS_HELP_STRING( [--disable-silent-rules], [verbose build output (undo: "make V=0")])dnl ]) case $enable_silent_rules in @%:@ ((( yes) AM_DEFAULT_VERBOSITY=0;; no) AM_DEFAULT_VERBOSITY=1;; *) AM_DEFAULT_VERBOSITY=m4_if([$1], [yes], [0], [1]);; esac dnl dnl A few 'make' implementations (e.g., NonStop OS and NextStep) dnl do not support nested variable expansions. dnl See automake bug#9928 and bug#10237. am_make=${MAKE-make} AC_CACHE_CHECK([whether $am_make supports nested variables], [am_cv_make_support_nested_variables], [if AS_ECHO([['TRUE=$(BAR$(V)) BAR0=false BAR1=true V=1 am__doit: @$(TRUE) .PHONY: am__doit']]) | $am_make -f - >/dev/null 2>&1; then am_cv_make_support_nested_variables=yes else am_cv_make_support_nested_variables=no fi]) if test $am_cv_make_support_nested_variables = yes; then dnl Using '$V' instead of '$(V)' breaks IRIX make. AM_V='$(V)' AM_DEFAULT_V='$(AM_DEFAULT_VERBOSITY)' else AM_V=$AM_DEFAULT_VERBOSITY AM_DEFAULT_V=$AM_DEFAULT_VERBOSITY fi AC_SUBST([AM_V])dnl AM_SUBST_NOTMAKE([AM_V])dnl AC_SUBST([AM_DEFAULT_V])dnl AM_SUBST_NOTMAKE([AM_DEFAULT_V])dnl AC_SUBST([AM_DEFAULT_VERBOSITY])dnl AM_BACKSLASH='\' AC_SUBST([AM_BACKSLASH])dnl _AM_SUBST_NOTMAKE([AM_BACKSLASH])dnl ]) # Copyright (C) 2001-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # AM_PROG_INSTALL_STRIP # --------------------- # One issue with vendor 'install' (even GNU) is that you can't # specify the program used to strip binaries. This is especially # annoying in cross-compiling environments, where the build's strip # is unlikely to handle the host's binaries. # Fortunately install-sh will honor a STRIPPROG variable, so we # always use install-sh in "make install-strip", and initialize # STRIPPROG with the value of the STRIP variable (set by the user). AC_DEFUN([AM_PROG_INSTALL_STRIP], [AC_REQUIRE([AM_PROG_INSTALL_SH])dnl # Installed binaries are usually stripped using 'strip' when the user # run "make install-strip". However 'strip' might not be the right # tool to use in cross-compilation environments, therefore Automake # will honor the 'STRIP' environment variable to overrule this program. dnl Don't test for $cross_compiling = yes, because it might be 'maybe'. if test "$cross_compiling" != no; then AC_CHECK_TOOL([STRIP], [strip], :) fi INSTALL_STRIP_PROGRAM="\$(install_sh) -c -s" AC_SUBST([INSTALL_STRIP_PROGRAM])]) # Copyright (C) 2006-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_SUBST_NOTMAKE(VARIABLE) # --------------------------- # Prevent Automake from outputting VARIABLE = @VARIABLE@ in Makefile.in. # This macro is traced by Automake. AC_DEFUN([_AM_SUBST_NOTMAKE]) # AM_SUBST_NOTMAKE(VARIABLE) # -------------------------- # Public sister of _AM_SUBST_NOTMAKE. AC_DEFUN([AM_SUBST_NOTMAKE], [_AM_SUBST_NOTMAKE($@)]) # Check how to create a tarball. -*- Autoconf -*- # Copyright (C) 2004-2013 Free Software Foundation, Inc. # # This file is free software; the Free Software Foundation # gives unlimited permission to copy and/or distribute it, # with or without modifications, as long as this notice is preserved. # _AM_PROG_TAR(FORMAT) # -------------------- # Check how to create a tarball in format FORMAT. # FORMAT should be one of 'v7', 'ustar', or 'pax'. # # Substitute a variable $(am__tar) that is a command # writing to stdout a FORMAT-tarball containing the directory # $tardir. # tardir=directory && $(am__tar) > result.tar # # Substitute a variable $(am__untar) that extract such # a tarball read from stdin. # $(am__untar) < result.tar # AC_DEFUN([_AM_PROG_TAR], [# Always define AMTAR for backward compatibility. Yes, it's still used # in the wild :-( We should find a proper way to deprecate it ... AC_SUBST([AMTAR], ['$${TAR-tar}']) # We'll loop over all known methods to create a tar archive until one works. _am_tools='gnutar m4_if([$1], [ustar], [plaintar]) pax cpio none' m4_if([$1], [v7], [am__tar='$${TAR-tar} chof - "$$tardir"' am__untar='$${TAR-tar} xf -'], [m4_case([$1], [ustar], [# The POSIX 1988 'ustar' format is defined with fixed-size fields. # There is notably a 21 bits limit for the UID and the GID. In fact, # the 'pax' utility can hang on bigger UID/GID (see automake bug#8343 # and bug#13588). am_max_uid=2097151 # 2^21 - 1 am_max_gid=$am_max_uid # The $UID and $GID variables are not portable, so we need to resort # to the POSIX-mandated id(1) utility. Errors in the 'id' calls # below are definitely unexpected, so allow the users to see them # (that is, avoid stderr redirection). am_uid=`id -u || echo unknown` am_gid=`id -g || echo unknown` AC_MSG_CHECKING([whether UID '$am_uid' is supported by ustar format]) if test $am_uid -le $am_max_uid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi AC_MSG_CHECKING([whether GID '$am_gid' is supported by ustar format]) if test $am_gid -le $am_max_gid; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) _am_tools=none fi], [pax], [], [m4_fatal([Unknown tar format])]) AC_MSG_CHECKING([how to create a $1 tar archive]) # Go ahead even if we have the value already cached. We do so because we # need to set the values for the 'am__tar' and 'am__untar' variables. _am_tools=${am_cv_prog_tar_$1-$_am_tools} for _am_tool in $_am_tools; do case $_am_tool in gnutar) for _am_tar in tar gnutar gtar; do AM_RUN_LOG([$_am_tar --version]) && break done am__tar="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$$tardir"' am__tar_="$_am_tar --format=m4_if([$1], [pax], [posix], [$1]) -chf - "'"$tardir"' am__untar="$_am_tar -xf -" ;; plaintar) # Must skip GNU tar: if it does not support --format= it doesn't create # ustar tarball either. (tar --version) >/dev/null 2>&1 && continue am__tar='tar chf - "$$tardir"' am__tar_='tar chf - "$tardir"' am__untar='tar xf -' ;; pax) am__tar='pax -L -x $1 -w "$$tardir"' am__tar_='pax -L -x $1 -w "$tardir"' am__untar='pax -r' ;; cpio) am__tar='find "$$tardir" -print | cpio -o -H $1 -L' am__tar_='find "$tardir" -print | cpio -o -H $1 -L' am__untar='cpio -i -H $1 -d' ;; none) am__tar=false am__tar_=false am__untar=false ;; esac # If the value was cached, stop now. We just wanted to have am__tar # and am__untar set. test -n "${am_cv_prog_tar_$1}" && break # tar/untar a dummy directory, and stop if the command works. rm -rf conftest.dir mkdir conftest.dir echo GrepMe > conftest.dir/file AM_RUN_LOG([tardir=conftest.dir && eval $am__tar_ >conftest.tar]) rm -rf conftest.dir if test -s conftest.tar; then AM_RUN_LOG([$am__untar /dev/null 2>&1 && break fi done rm -rf conftest.dir AC_CACHE_VAL([am_cv_prog_tar_$1], [am_cv_prog_tar_$1=$_am_tool]) AC_MSG_RESULT([$am_cv_prog_tar_$1])]) AC_SUBST([am__tar]) AC_SUBST([am__untar]) ]) # _AM_PROG_TAR m4_include([m4/ax_c___attribute__.m4]) m4_include([m4/ax_cc_maxopt.m4]) m4_include([m4/ax_check_compiler_flags.m4]) m4_include([m4/ax_compiler_vendor.m4]) m4_include([m4/ax_create_pkgconfig_info.m4]) m4_include([m4/ax_create_stdint_h.m4]) m4_include([m4/ax_detect_git_head.m4]) m4_include([m4/ax_detect_gmp.m4]) m4_include([m4/ax_detect_imath.m4]) m4_include([m4/ax_gcc_archflag.m4]) m4_include([m4/ax_gcc_warn_unused_result.m4]) m4_include([m4/ax_gcc_x86_cpuid.m4]) m4_include([m4/ax_set_warning_flags.m4]) m4_include([m4/ax_submodule.m4]) m4_include([m4/libtool.m4]) m4_include([m4/ltoptions.m4]) m4_include([m4/ltsugar.m4]) m4_include([m4/ltversion.m4]) m4_include([m4/lt~obsolete.m4]) isl-0.16.1/isl_config.h.in0000664000175000017500000001272112645755103012216 00000000000000/* isl_config.h.in. Generated from configure.ac by autoheader. */ /* Define if HeaderSearchOptions::AddPath takes 4 arguments */ #undef ADDPATH_TAKES_4_ARGUMENTS /* Clang installation prefix */ #undef CLANG_PREFIX /* Define if CompilerInstance::createDiagnostics takes argc and argv */ #undef CREATEDIAGNOSTICS_TAKES_ARG /* Define if CompilerInstance::createPreprocessor takes TranslationUnitKind */ #undef CREATEPREPROCESSOR_TAKES_TUKIND /* Define if TargetInfo::CreateTargetInfo takes pointer */ #undef CREATETARGETINFO_TAKES_POINTER /* Define if TargetInfo::CreateTargetInfo takes shared_ptr */ #undef CREATETARGETINFO_TAKES_SHARED_PTR /* Define if Driver constructor takes default image name */ #undef DRIVER_CTOR_TAKES_DEFAULTIMAGENAME /* Define to Diagnostic for older versions of clang */ #undef DiagnosticsEngine /* most gcc compilers know a function __attribute__((__warn_unused_result__)) */ #undef GCC_WARN_UNUSED_RESULT /* Define if llvm/ADT/OwningPtr.h exists */ #undef HAVE_ADT_OWNINGPTR_H /* Define if clang/Basic/DiagnosticOptions.h exists */ #undef HAVE_BASIC_DIAGNOSTICOPTIONS_H /* Define if Driver constructor takes CXXIsProduction argument */ #undef HAVE_CXXISPRODUCTION /* Define to 1 if you have the declaration of `ffs', and to 0 if you don't. */ #undef HAVE_DECL_FFS /* Define to 1 if you have the declaration of `mp_get_memory_functions', and to 0 if you don't. */ #undef HAVE_DECL_MP_GET_MEMORY_FUNCTIONS /* Define to 1 if you have the declaration of `snprintf', and to 0 if you don't. */ #undef HAVE_DECL_SNPRINTF /* Define to 1 if you have the declaration of `strcasecmp', and to 0 if you don't. */ #undef HAVE_DECL_STRCASECMP /* Define to 1 if you have the declaration of `strncasecmp', and to 0 if you don't. */ #undef HAVE_DECL_STRNCASECMP /* Define to 1 if you have the declaration of `_BitScanForward', and to 0 if you don't. */ #undef HAVE_DECL__BITSCANFORWARD /* Define to 1 if you have the declaration of `_snprintf', and to 0 if you don't. */ #undef HAVE_DECL__SNPRINTF /* Define to 1 if you have the declaration of `_stricmp', and to 0 if you don't. */ #undef HAVE_DECL__STRICMP /* Define to 1 if you have the declaration of `_strnicmp', and to 0 if you don't. */ #undef HAVE_DECL__STRNICMP /* Define to 1 if you have the declaration of `__builtin_ffs', and to 0 if you don't. */ #undef HAVE_DECL___BUILTIN_FFS /* Define to 1 if you have the header file. */ #undef HAVE_DLFCN_H /* Define to 1 if you have the header file. */ #undef HAVE_INTTYPES_H /* Define if Driver constructor takes IsProduction argument */ #undef HAVE_ISPRODUCTION /* Define to 1 if you have the `gmp' library (-lgmp). */ #undef HAVE_LIBGMP /* Define to 1 if you have the header file. */ #undef HAVE_MEMORY_H /* Define if SourceManager has a setMainFileID method */ #undef HAVE_SETMAINFILEID /* Define to 1 if you have the header file. */ #undef HAVE_STDINT_H /* Define to 1 if you have the header file. */ #undef HAVE_STDLIB_H /* Define to 1 if you have the header file. */ #undef HAVE_STRINGS_H /* Define to 1 if you have the header file. */ #undef HAVE_STRING_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_STAT_H /* Define to 1 if you have the header file. */ #undef HAVE_SYS_TYPES_H /* Define to 1 if you have the header file. */ #undef HAVE_UNISTD_H /* define if your compiler has __attribute__ */ #undef HAVE___ATTRIBUTE__ /* Return type of HandleTopLevelDeclReturn */ #undef HandleTopLevelDeclContinue /* Return type of HandleTopLevelDeclReturn */ #undef HandleTopLevelDeclReturn /* Define to the sub-directory where libtool stores uninstalled libraries. */ #undef LT_OBJDIR /* Name of package */ #undef PACKAGE /* Define to the address where bug reports for this package should be sent. */ #undef PACKAGE_BUGREPORT /* Define to the full name of this package. */ #undef PACKAGE_NAME /* Define to the full name and version of this package. */ #undef PACKAGE_STRING /* Define to the one symbol short name of this package. */ #undef PACKAGE_TARNAME /* Define to the home page for this package. */ #undef PACKAGE_URL /* Define to the version of this package. */ #undef PACKAGE_VERSION /* The size of `char', as computed by sizeof. */ #undef SIZEOF_CHAR /* The size of `int', as computed by sizeof. */ #undef SIZEOF_INT /* The size of `long', as computed by sizeof. */ #undef SIZEOF_LONG /* The size of `short', as computed by sizeof. */ #undef SIZEOF_SHORT /* The size of `void*', as computed by sizeof. */ #undef SIZEOF_VOIDP /* Define to 1 if you have the ANSI C header files. */ #undef STDC_HEADERS /* Define if Driver::BuildCompilation takes ArrayRef */ #undef USE_ARRAYREF /* use gmp to implement isl_int */ #undef USE_GMP_FOR_MP /* use imath to implement isl_int */ #undef USE_IMATH_FOR_MP /* Use small integer optimization */ #undef USE_SMALL_INT_OPT /* Version number of package */ #undef VERSION /* Define to getParamType for newer versions of clang */ #undef getArgType /* Define to getHostTriple for older versions of clang */ #undef getDefaultTargetTriple /* Define to getInstantiationLineNumber for older versions of clang */ #undef getExpansionLineNumber /* Define to getNumParams for newer versions of clang */ #undef getNumArgs /* Define to getResultType for older versions of clang */ #undef getReturnType /* Define to InitializeBuiltins for older versions of clang */ #undef initializeBuiltins #include isl-0.16.1/install-sh0000755000175000017500000003325512423122200011307 00000000000000#!/bin/sh # install - install a program, script, or datafile scriptversion=2011-11-20.07; # UTC # This originates from X11R5 (mit/util/scripts/install.sh), which was # later released in X11R6 (xc/config/util/install.sh) with the # following copyright and license. # # Copyright (C) 1994 X Consortium # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN # AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC- # TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # Except as contained in this notice, the name of the X Consortium shall not # be used in advertising or otherwise to promote the sale, use or other deal- # ings in this Software without prior written authorization from the X Consor- # tium. # # # FSF changes to this file are in the public domain. # # Calling this script install-sh is preferred over install.sh, to prevent # 'make' implicit rules from creating a file called install from it # when there is no Makefile. # # This script is compatible with the BSD install script, but was written # from scratch. nl=' ' IFS=" "" $nl" # set DOITPROG to echo to test this script # Don't use :- since 4.3BSD and earlier shells don't like it. doit=${DOITPROG-} if test -z "$doit"; then doit_exec=exec else doit_exec=$doit fi # Put in absolute file names if you don't have them in your path; # or use environment vars. chgrpprog=${CHGRPPROG-chgrp} chmodprog=${CHMODPROG-chmod} chownprog=${CHOWNPROG-chown} cmpprog=${CMPPROG-cmp} cpprog=${CPPROG-cp} mkdirprog=${MKDIRPROG-mkdir} mvprog=${MVPROG-mv} rmprog=${RMPROG-rm} stripprog=${STRIPPROG-strip} posix_glob='?' initialize_posix_glob=' test "$posix_glob" != "?" || { if (set -f) 2>/dev/null; then posix_glob= else posix_glob=: fi } ' posix_mkdir= # Desired mode of installed file. mode=0755 chgrpcmd= chmodcmd=$chmodprog chowncmd= mvcmd=$mvprog rmcmd="$rmprog -f" stripcmd= src= dst= dir_arg= dst_arg= copy_on_change=false no_target_directory= usage="\ Usage: $0 [OPTION]... [-T] SRCFILE DSTFILE or: $0 [OPTION]... SRCFILES... DIRECTORY or: $0 [OPTION]... -t DIRECTORY SRCFILES... or: $0 [OPTION]... -d DIRECTORIES... In the 1st form, copy SRCFILE to DSTFILE. In the 2nd and 3rd, copy all SRCFILES to DIRECTORY. In the 4th, create DIRECTORIES. Options: --help display this help and exit. --version display version info and exit. -c (ignored) -C install only if different (preserve the last data modification time) -d create directories instead of installing files. -g GROUP $chgrpprog installed files to GROUP. -m MODE $chmodprog installed files to MODE. -o USER $chownprog installed files to USER. -s $stripprog installed files. -t DIRECTORY install into DIRECTORY. -T report an error if DSTFILE is a directory. Environment variables override the default commands: CHGRPPROG CHMODPROG CHOWNPROG CMPPROG CPPROG MKDIRPROG MVPROG RMPROG STRIPPROG " while test $# -ne 0; do case $1 in -c) ;; -C) copy_on_change=true;; -d) dir_arg=true;; -g) chgrpcmd="$chgrpprog $2" shift;; --help) echo "$usage"; exit $?;; -m) mode=$2 case $mode in *' '* | *' '* | *' '* | *'*'* | *'?'* | *'['*) echo "$0: invalid mode: $mode" >&2 exit 1;; esac shift;; -o) chowncmd="$chownprog $2" shift;; -s) stripcmd=$stripprog;; -t) dst_arg=$2 # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac shift;; -T) no_target_directory=true;; --version) echo "$0 $scriptversion"; exit $?;; --) shift break;; -*) echo "$0: invalid option: $1" >&2 exit 1;; *) break;; esac shift done if test $# -ne 0 && test -z "$dir_arg$dst_arg"; then # When -d is used, all remaining arguments are directories to create. # When -t is used, the destination is already specified. # Otherwise, the last argument is the destination. Remove it from $@. for arg do if test -n "$dst_arg"; then # $@ is not empty: it contains at least $arg. set fnord "$@" "$dst_arg" shift # fnord fi shift # arg dst_arg=$arg # Protect names problematic for 'test' and other utilities. case $dst_arg in -* | [=\(\)!]) dst_arg=./$dst_arg;; esac done fi if test $# -eq 0; then if test -z "$dir_arg"; then echo "$0: no input file specified." >&2 exit 1 fi # It's OK to call 'install-sh -d' without argument. # This can happen when creating conditional directories. exit 0 fi if test -z "$dir_arg"; then do_exit='(exit $ret); exit $ret' trap "ret=129; $do_exit" 1 trap "ret=130; $do_exit" 2 trap "ret=141; $do_exit" 13 trap "ret=143; $do_exit" 15 # Set umask so as not to create temps with too-generous modes. # However, 'strip' requires both read and write access to temps. case $mode in # Optimize common cases. *644) cp_umask=133;; *755) cp_umask=22;; *[0-7]) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw='% 200' fi cp_umask=`expr '(' 777 - $mode % 1000 ')' $u_plus_rw`;; *) if test -z "$stripcmd"; then u_plus_rw= else u_plus_rw=,u+rw fi cp_umask=$mode$u_plus_rw;; esac fi for src do # Protect names problematic for 'test' and other utilities. case $src in -* | [=\(\)!]) src=./$src;; esac if test -n "$dir_arg"; then dst=$src dstdir=$dst test -d "$dstdir" dstdir_status=$? else # Waiting for this to be detected by the "$cpprog $src $dsttmp" command # might cause directories to be created, which would be especially bad # if $src (and thus $dsttmp) contains '*'. if test ! -f "$src" && test ! -d "$src"; then echo "$0: $src does not exist." >&2 exit 1 fi if test -z "$dst_arg"; then echo "$0: no destination specified." >&2 exit 1 fi dst=$dst_arg # If destination is a directory, append the input filename; won't work # if double slashes aren't ignored. if test -d "$dst"; then if test -n "$no_target_directory"; then echo "$0: $dst_arg: Is a directory" >&2 exit 1 fi dstdir=$dst dst=$dstdir/`basename "$src"` dstdir_status=0 else # Prefer dirname, but fall back on a substitute if dirname fails. dstdir=` (dirname "$dst") 2>/dev/null || expr X"$dst" : 'X\(.*[^/]\)//*[^/][^/]*/*$' \| \ X"$dst" : 'X\(//\)[^/]' \| \ X"$dst" : 'X\(//\)$' \| \ X"$dst" : 'X\(/\)' \| . 2>/dev/null || echo X"$dst" | sed '/^X\(.*[^/]\)\/\/*[^/][^/]*\/*$/{ s//\1/ q } /^X\(\/\/\)[^/].*/{ s//\1/ q } /^X\(\/\/\)$/{ s//\1/ q } /^X\(\/\).*/{ s//\1/ q } s/.*/./; q' ` test -d "$dstdir" dstdir_status=$? fi fi obsolete_mkdir_used=false if test $dstdir_status != 0; then case $posix_mkdir in '') # Create intermediate dirs using mode 755 as modified by the umask. # This is like FreeBSD 'install' as of 1997-10-28. umask=`umask` case $stripcmd.$umask in # Optimize common cases. *[2367][2367]) mkdir_umask=$umask;; .*0[02][02] | .[02][02] | .[02]) mkdir_umask=22;; *[0-7]) mkdir_umask=`expr $umask + 22 \ - $umask % 100 % 40 + $umask % 20 \ - $umask % 10 % 4 + $umask % 2 `;; *) mkdir_umask=$umask,go-w;; esac # With -d, create the new directory with the user-specified mode. # Otherwise, rely on $mkdir_umask. if test -n "$dir_arg"; then mkdir_mode=-m$mode else mkdir_mode= fi posix_mkdir=false case $umask in *[123567][0-7][0-7]) # POSIX mkdir -p sets u+wx bits regardless of umask, which # is incompatible with FreeBSD 'install' when (umask & 300) != 0. ;; *) tmpdir=${TMPDIR-/tmp}/ins$RANDOM-$$ trap 'ret=$?; rmdir "$tmpdir/d" "$tmpdir" 2>/dev/null; exit $ret' 0 if (umask $mkdir_umask && exec $mkdirprog $mkdir_mode -p -- "$tmpdir/d") >/dev/null 2>&1 then if test -z "$dir_arg" || { # Check for POSIX incompatibilities with -m. # HP-UX 11.23 and IRIX 6.5 mkdir -m -p sets group- or # other-writable bit of parent directory when it shouldn't. # FreeBSD 6.1 mkdir -m -p sets mode of existing directory. ls_ld_tmpdir=`ls -ld "$tmpdir"` case $ls_ld_tmpdir in d????-?r-*) different_mode=700;; d????-?--*) different_mode=755;; *) false;; esac && $mkdirprog -m$different_mode -p -- "$tmpdir" && { ls_ld_tmpdir_1=`ls -ld "$tmpdir"` test "$ls_ld_tmpdir" = "$ls_ld_tmpdir_1" } } then posix_mkdir=: fi rmdir "$tmpdir/d" "$tmpdir" else # Remove any dirs left behind by ancient mkdir implementations. rmdir ./$mkdir_mode ./-p ./-- 2>/dev/null fi trap '' 0;; esac;; esac if $posix_mkdir && ( umask $mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir" ) then : else # The umask is ridiculous, or mkdir does not conform to POSIX, # or it failed possibly due to a race condition. Create the # directory the slow way, step by step, checking for races as we go. case $dstdir in /*) prefix='/';; [-=\(\)!]*) prefix='./';; *) prefix='';; esac eval "$initialize_posix_glob" oIFS=$IFS IFS=/ $posix_glob set -f set fnord $dstdir shift $posix_glob set +f IFS=$oIFS prefixes= for d do test X"$d" = X && continue prefix=$prefix$d if test -d "$prefix"; then prefixes= else if $posix_mkdir; then (umask=$mkdir_umask && $doit_exec $mkdirprog $mkdir_mode -p -- "$dstdir") && break # Don't fail if two instances are running concurrently. test -d "$prefix" || exit 1 else case $prefix in *\'*) qprefix=`echo "$prefix" | sed "s/'/'\\\\\\\\''/g"`;; *) qprefix=$prefix;; esac prefixes="$prefixes '$qprefix'" fi fi prefix=$prefix/ done if test -n "$prefixes"; then # Don't fail if two instances are running concurrently. (umask $mkdir_umask && eval "\$doit_exec \$mkdirprog $prefixes") || test -d "$dstdir" || exit 1 obsolete_mkdir_used=true fi fi fi if test -n "$dir_arg"; then { test -z "$chowncmd" || $doit $chowncmd "$dst"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dst"; } && { test "$obsolete_mkdir_used$chowncmd$chgrpcmd" = false || test -z "$chmodcmd" || $doit $chmodcmd $mode "$dst"; } || exit 1 else # Make a couple of temp file names in the proper directory. dsttmp=$dstdir/_inst.$$_ rmtmp=$dstdir/_rm.$$_ # Trap to clean up those temp files at exit. trap 'ret=$?; rm -f "$dsttmp" "$rmtmp" && exit $ret' 0 # Copy the file name to the temp name. (umask $cp_umask && $doit_exec $cpprog "$src" "$dsttmp") && # and set any options; do chmod last to preserve setuid bits. # # If any of these fail, we abort the whole thing. If we want to # ignore errors from any of these, just make sure not to ignore # errors from the above "$doit $cpprog $src $dsttmp" command. # { test -z "$chowncmd" || $doit $chowncmd "$dsttmp"; } && { test -z "$chgrpcmd" || $doit $chgrpcmd "$dsttmp"; } && { test -z "$stripcmd" || $doit $stripcmd "$dsttmp"; } && { test -z "$chmodcmd" || $doit $chmodcmd $mode "$dsttmp"; } && # If -C, don't bother to copy if it wouldn't change the file. if $copy_on_change && old=`LC_ALL=C ls -dlL "$dst" 2>/dev/null` && new=`LC_ALL=C ls -dlL "$dsttmp" 2>/dev/null` && eval "$initialize_posix_glob" && $posix_glob set -f && set X $old && old=:$2:$4:$5:$6 && set X $new && new=:$2:$4:$5:$6 && $posix_glob set +f && test "$old" = "$new" && $cmpprog "$dst" "$dsttmp" >/dev/null 2>&1 then rm -f "$dsttmp" else # Rename the file to the real destination. $doit $mvcmd -f "$dsttmp" "$dst" 2>/dev/null || # The rename failed, perhaps because mv can't rename something else # to itself, or perhaps because mv is so ancient that it does not # support -f. { # Now remove or move aside any old file at destination location. # We try this two ways since rm can't unlink itself on some # systems and the destination file might be busy for other # reasons. In this case, the final cleanup might fail but the new # file should still install successfully. { test ! -f "$dst" || $doit $rmcmd -f "$dst" 2>/dev/null || { $doit $mvcmd -f "$dst" "$rmtmp" 2>/dev/null && { $doit $rmcmd -f "$rmtmp" 2>/dev/null; :; } } || { echo "$0: cannot unlink or rename $dst" >&2 (exit 1); exit 1 } } && # Now rename the file to the real destination. $doit $mvcmd "$dsttmp" "$dst" } fi || exit 1 trap '' 0 fi done # Local variables: # eval: (add-hook 'write-file-hooks 'time-stamp) # time-stamp-start: "scriptversion=" # time-stamp-format: "%:y-%02m-%02d.%02H" # time-stamp-time-zone: "UTC" # time-stamp-end: "; # UTC" # End: